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Abstract

A swarm intelligence System is a type of multiagent System with the following distinctive 
characteristics: (i) it is composed of a large number of agents, (ii) the agents that comprise 
the System are simple with respect to the complexity of the task the System is required to 
perform, (iii) its control relies on principles of decentralization and self-organization, and 
(iv) its constituent agents internet locally with one another and with their environment.

Interactions among agents, either direct or indirect through the environment in which 
they act, are fundamental for swarm intelligence to exist; however, there is a class of 
interactions, referred to as interférence, that actually blocks or hinders the agents’ goal- 
seeking behavior. For example, compétition for space may reduce the mobility of robots 
in a swarm robotics System, or misleading information may spread through the System in 
a particle swarm optimization algorithm. One of the most visible effects of interférence in 
a swarm intelligence System is the réduction of its efEciency. In other words, interférence 
increases the time required by the System to reach a desired State. Thus, interférence 
is a fundamental problem which negatively affects the viability of the swarm intelligence 
approach for solving important, practical problems.

We propose a framework called incrémental social leaming (ISL) as a solution to the 
aforementioned problem. It consista of two éléments: (i) a growing population of agents, 
and (ii) a social learning mechanism. Initially, a System under the control of ISL consista 
of a small population of agents. These agents internet with one another and with their 
environment for some time before new agents are added to the System according to a 
predefined schedule. When a new agent is about to be added, it learns socially from a 
subset of the agents that hâve been part of the System for some time, and that, as a 
conséquence, may hâve gathered useful information. The implémentation of the social 
learning mechanism is application-dependent, but the goal is to transfer knowledge from 
a set of experienced agents that are already in the environment to the newly added agent. 
The process continues until one of the following criteria is met: (i) the maximum number 
of agents is reached, (ii) the assigned task is finished, or (iii) the System performs as 
desired. Starting with a small number of agents reduces interférence because it reduces 
the number of interactions within the System, and thus, fast progress toward the desired 
State may be achieved. By learning socially, newly added agents acquire knowledge about 
their environment without incurring the costs of acquiring that knowledge individually. As 
a resuit, ISL can make a swarm intelligence System reach a desired State more rapidly.

We hâve successfully applied ISL to two very different swarm intelligence Systems. 
We applied ISL to particle swarm optimization algorithms. The results of this study 
demonstrate that ISL substantially improves the performance of these kinds of algorithms. 
In fact, two of the resulting algorithms are compétitive with state-of-the-art algorithms 
in the field. The second System to which we applied ISL exploits a collective decision- 
making mechanism based on an opinion formation model. This mechanism is also one of 
the original contributions presented in this dissertation. A swarm robotics System under 
the control of the proposed mechanism allows robots to choose from a set of two actions 
the action that is fastest to execute. In this case, when only a small proportion of the 
swarm is able to concurrently execute the alternative actions, ISL substantially improves 
the system’s performance.
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Chapter 1 

Introduction

The term swarm intelligence refers to the group-level intelligence that some groups of 
animais exhibit in nature (Bonabeau et al., 1999; Dorigo and Birattari, 2007; Garnier 
et al., 2007a). Famous examples of the swarm intelligence exhibited by some groups of 
animais are the ability of swarms of bees to choose the best site on which to build their 
nest (Seeley, 2010) or the ability of ant colonies to find the shortest path between their nest 
and a food source (Goss et al., 1989). A fundamental characteristic of a group exhibiting 
swarm intelligence is its ability to solve problems that the group’s constituent members 
cannot solve individually. This fact has made scientists wonder whether it is possible 
to design problem-solving techniques or Systems that use many, yet simple, constituent 
parts - referred to as agents^. A first wave of advances in swarm intelligence research led 
to the development of successful optimization techniques such as ant colony optimization 
(ACO) (Dorigo et al., 1991a,b; Dorigo, 1992; Dorigo et al., 1996; Dorigo and Di Caro, 
1999; Bonabeau et al., 2000; Dorigo and Stützle, 2004; Dorigo, 2007) and particle swarm 
optimization (PSO) (Kennedy and Eberhart, 1995; Kennedy et al., 2001; Engelbrecht, 2005; 
Clerc, 2006; Poli et al., 2007; Dorigo et al., 2008). In this first wave of advances, swarm 
intelligence was also investigated in the context of multi-robot Systems (Deneubourg et al., 
1990b; Holland and Melhuish, 1999; Dorigo et al., 2004; Béni, 2005).

Most artificial swarm intelligence Systems in existence today were inspired by natural 
swarms. For example, the foraging behavior of ants inspired the design of ACO (Dorigo 
and Stützle, 2004), and the flocking behavior of birds inspired the design of PSO (Kennedy 
and Eberhart, 1995). Likewise, in swarm robotics research it is possible to find complété 
research projects inspired by the way social insects, in particular ants, cooperate to solve 
problems (see e.g., Dorigo et al. (2004); Kernbach et al. (2008)). Despite the différences 
among these Systems, their constituent agents share a common behavioral trait: they are 
usually searching agents, that is, they are agents that are continuously in search of a target 
State. What agents search for dépends on the purpose of the System. For example, in 
ACO, the agents that form the swarm (called “colony” in the context of ACO) search for 
solutions to combinatorial optimization problems. In PSO, agents search for solutions to 
continuons optimization problems. In swarm robotics, the searching behavior of robots 
can be more elusive, but in many cases, it involves searching for a desired individual or 
collective State. For example, in the work of Turgut et al. (2008) or Trianni and Nolfi 
(2009), robots are continuously searching for a State that makes the swarm cohesive in 
space (flocking) or time (synchronization), respectively.

Swarm intelligence is the resuit of agents interacting with each other and with their 
environment. At the same time, however, sharing information and an environment with 
other agents produces négative interactions that we refer to as interférence. This class of 
interactions blocks or hinders an agent’s behavior. As a resuit of interférence, the speed 
at which a swarm intelligence System reaches a desired State will be reduced. Importantly, 
interférence will tend to increase with the size of the System as a resuit of the fact that

'^Throughout this dissertation, we will use the Word agent to generically refer to an entity, be it an 
animal or an artifact, such as a robot or a piece of software, capable of autonomous perception and action.
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interférence is a function of the number of interactions within a System. Thus, interférence 
hinders the scalability of swarm intelligence Systems.

Two examples will help us illustrate how interférence reduces the performance of swarm 
intelligence Systems. We first consider a PSO algorithm, in which a swarm of agents (called 
particles) exchange information with one another in order to bias their search toward the 
best points they find in the search space of a continuons optimization problem. Although 
coopération is fondamental for the success of the algorithm, it is also a source of inter­
férence, especially during the first itérations of the algorithm. The mutual influence that 
particles exert on each other makes them move to régions that do not contain the optimal 
solution to the problem. If the swarm of particles is large, the number of objective function 
évaluations spent in this initial phase will also be large, and thus, the time needed by the 
swarm to start making progress toward good solutions will increase. As a second example, 
we consider a swarm robotics System in which robots hâve to search for a resource. Since 
the environment in which they move has ônite dimensions, robots hâve to continuously 
avoid collisions with each other. If the swarm of robots is large, the space between robots 
may be such that robots spend most of their time and energy unproductively by avoiding 
collisions rather than completing their assigned tasks. The overall effect of interférence in 
this example is also to slow down progress toward a desired state.

1.1 Objective
The main objective of the work presented in this dissertation is to reduce the effects of 
interférence in swarm intelligence Systems composed of multiple searching agents. Since 
interférence manifests itself as an influence that slows down progress toward a desired State, 
reducing its effects helps a swarm intelligence System to reach a desired State more rapidly.

To meet the aforementioned objective, in this dissertation we introduce the incrémental 
social leaming (ISL) framework. This framework consists of two éléments: (i) an initially 
small population of agents that grows over time, and (ii) a social learning process whereby 
new agents learn from more experienced ones. A small population of agents would reach 
a certain state more rapidly than a large population because of the reduced interférence. 
However, it is possible that a small swarm cannot reach the desired state. For example, 
imagine a scénario in which too few robots cannot move a heavy object. We tackle this 
problem by adding agents to the swarm according to some predefined criterion. An agent 
that is added to the swarm learns from the agents that hâve been in the swarm for some 
time. This element of ISL is attractive because new agents acquire knowledge from more 
experienced ones without incurring the costs of acquiring that knowledge individually. 
Thus, ISL allows the new agents to save time that they can use to perform other tasks. 
After the inclusion of a new agent, the swarm needs to re-adapt to the new conditions; 
however, the agents that are part of the swarm do not need to start from scratch because 
some useful work would hâve already been completed.

1.2 Methodology
We considered two case studies of the application of the incrémental social learning frame­
work to swarm intelligence Systems:

1. Swarm intelligence for continuons optimization. We considered PSO algo- 
rithms as a case study to measure the effectiveness of ISL. As a resuit, three PSO- 
based optimization algorithms are proposed. Two of these algorithms obtain results 
comparable with those obtained by other state-of-the-art continuons optimization 
algorithms. The development and analysis of these algorithms is presented in Chap- 
ter 4.

2. Swarm intelligence for robotics. As a second case study, we considered a swarm 
intelligence System in which robots perform a foraging task that involves collective
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transport. In this task, robots need to choose one of two available paths to a storage 
room for transported objects. In this second case study, we first developed a collective 
decision-making mechanism that allows a swarm of robots to select the shortest 
path. Then, we instantiated the incrémental social learning framework using the 
aforementioned decision-making mechanism as the searching algorithm used by the 
swarm. The collective decision-making mechanism and its combination with ISL are 
presented in Chapter 5.

In both case studies, the application of the incrémental social learning framework re- 
sulted in a substantial improvement of the underlying system’s performance. These suc- 
cesses should be taken as proof of concept. Our experiments are not formai proof that 
the approach will always produce positive results. However, some requirements that the 
underlying swarm intelligence System should satisfy in order to expect benefits from the 
application of ISL are proposed.

1.3 Contributions

In this dissertation, the following three contributions axe presented:

1. Incrémental social learning framework. This original framework aims to tackle 
interférence in swarm intelligence Systems. Since such Systems are usually composed 
of a large number of interacting agents, interférence can be a major problem because 
the effects of interférence are stronger when a large population of agents is involved. 
The incrémental social learning framework addresses this problem by making a swarm 
intelligence System start with a small population and by letting new agents learn from 
more experienced agents.

2. High-performance PSO algorithms. A number of high-performance PSO algo- 
rithms are proposed in this dissertation. Two of these algorithms are the resuit of 
the instantiation of the incrémental social learning framework in the context of PSO 
algorithms. These algorithms are identified by the names IPSOLS and IPSOLS-f. 
They are PSO algorithms with a growing population size in which individual and so­
cial learning are simulated through local search and biased initialization, respectively. 
The third algorithm, which is not based on the incrémental social learning frame­
work, is presented in Appendix A. This algorithm, called Prankenstein’s PSO, is an 
intégration of algorithmic components that were found to provide good performance 
in an extensive empirical évaluation of PSO algorithms.

3. Self-organized collective decision-making mechanism for swarms of robots. 
A self-organized collective-decision making mechanism with application to swarm 
robotics is proposed. Positive feedback and a consensus-building procedure are the 
key éléments of this mechanism that allows a population of robots to select the 
fastest-to-execute action from a set of alternatives, thus improving the efüciency of 
the System. We apply the incrémental social learning framework to this mechanism 
in order to make it more efficient in situations where a small fraction of the swarm 
can concurrently execute the available alternative actions.

1.4 Publications
A number of publications hâve been produced during the development of the research 
Work presented in this dissertation. Many of these publications hâve been written in 
collaboration with colleagues under the supervision of Prof. Marco Dorigo and/or Dr. 
Thomas Stützle.

The publications associated with this dissertation are listed below. The majority of 
them deal with the incrémental social learning framework and its applications. However,
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we hâve also listed publications that laid the ground for the development of the incrémental 
social learning framework.

1.4.1 Internatioricil Journals

1. Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., 
and Dorigo, M. (2010b). Majority-rule opinion dynamics with differential la- 
tency: A mechanism for self-organized collective decision-making. Technical Report 
TR/IRIDIA/2010-023, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. 
[Révision submitted to Swarm Intelligence]

2. Montes de Oca, M. A., Aydin, D., and Stützle, T. (2011a). An incrémental par- 
ticle swarm for large-scale optimization problems: An example of tuning-in-the- 
loop (re)design of optimization algorithme. Soft Computing. Forthcoming. DOI: 
10.1007/S00500-010-0649-0

3. Montes de Oca, M. A., Stützle, T., Van den Enden, K., and Dorigo, M. (2011b). 
Incrémental social learning in particle swarms. IEEE Transactions on Systems, Man 
and Cybemetics - Part B: Cybemetics, 41(2):368-384

4. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2009c). Franken- 
stein’s PSO; A composite particle swarm optimization algorithm. IEEE Transactions 
on Evolutionary Computation, 13(5):1120-1132

5. Dorigo, M., Montes de Oca, M. A., and Engelbrecht, A. P. (2008). Particle swarm 
optimization. Scholarpedia, 3(11);1486

1.4.2 International Conférences, Workshops and Symposia

1. Liao, T., Montes de Oca, M. A., Aydm, D., Stützle, T., and Dorigo, M. (2011). An 
incrémental ant colony algorithm with local search for continuons optimization. In 
Krasnogor, N. et al., editors, Proceedings of the Genetic and Evolutionary Computa­
tion Conférence (GECCO 2011). ACM Press, New York. To appear. Preprint avail- 
able at http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr201l-005r002.pdf 
[Nominated for the best paper award in the Ant Colony Optimization 
and Swarm Intelligence track]

2. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2010c). Incrémen­
tal social learning applied to a decentralized decision-making mechanism: Collective 
learning made faster. In Gupta, L, Hassas, S., and Rolia, J., editors, Proceedings of 
the Fourth IEEE Gonference on Self-Adaptive and Self-Organizing Systems (SASO 
2010), pages 243-252. IEEE Computer Society Press, Los Alamitos, CA

3. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M. 
(2010a). Opinion dynamics for decentralized decision-making in a robot swarm. In 
Dorigo, M. et al., editors, LNGS 6234- Proceedings of the Seventh International Gon­
ference on Swarm Intelligence (ANTS 2010), pages 251-262. Springer, Berlin, Ger- 
many [Nominated for the best paper award]

4. Yuan, Z., Montes de Oca, M. A., Stützle, T., and Birattari, M. (2010). Modem 
continuons optimization algorithms for tuning real and integer algorithm parameters. 
In Dorigo, M. et al., editors, LNGS 6234. Proceedings of the Seventh International 
Gonference on Swarm Intelligence (ANTS 2010), pages 204-215. Springer, Berlin, 
Germany

5. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M. 
(2009a). Optimal collective decision-making through social influence and different 
action execution times. In Curran, D. and O’Riordan, C., editors, Proceedings of the
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Workshop on Organisation, Coopération and Emergence in Social Leaming Agents 
of the European Conférence on Artificial Life (ECAL 2009). No formai proceedings 
published

6. Montes de Oca, M. A., Van den Enden, K., and Stützle, T. (2008). Incrémental 
particle swarm-guided local search for continuons optimization. In Blesa, M. J. et al., 
editors, LNCS 5296. Proceedings of the International Workshop on Hybrid Metaheu- 
ristics (HM 2008), pages 72-86. Springer, Berlin, Germany

7. Montes de Oca, M. A. and Stützle, T. (2008b). Towards incrémental social learning 
in optimization and multiagent Systems. In Rand, W. et al., editors, Workshop 
on Evolutionary Computation and Multiagent Systems Simulation of the Genetic 
and Evolutionary Computation Conférence (GECCO 2008), pages 1939-1944. ACM 
Press, New York

8. Montes de Oca, M. A. and Stützle, T. (2008a). Convergence behavior of the fully 
informed particle swarm optimization algorithm. In Keijzer, M. et al., editors, Pro­
ceedings of the Genetic and Evolutionary Computation Conférence (GECCO 2008), 
pages 71-78. ACM Press, New York [Nominated for the best paper award in 
the Ant Colony Optimization, Swarm Intelligence, and Artificial Immune 
Systems track]

9. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006a). A compa- 
rison of particle swarm optimization algorithms based on run-length distributions. In 
Dorigo, M. et al., editors, LNCS 4150. Proceedings of the Fifth International Work­
shop on Ant Colony Optimization and Swarm Intelligence (ANTS 2006), pages 1-12. 
Springer, Berlin, Germany

10. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006b). On the 
performance analysis of particle swarm optimisers. AISB Quarterly, 124:6-7

1.5 Structure

This dissertation consists of six chapters and one appendix. In Chapter 2, we provide 
relevant background information for the rest of the dissertation. In Chapter 3, we présent 
the rationale and the algorithmic structure of the incrémental social learning framework as 
well as a discussion of related work. The application of ISL to PSO algorithms is described 
in Chapter 4. First, we présent a simple incrémental PSO algorithm, called IPSO. Then, 
we présent two high-performing PSO algorithms, called IPSOLS and IPSOLS+, that are 
derived from it. In Chapter 5, we présent the application of ISL to a swarm robotics System. 
First, we describe the actual swarm robotics System the framework is applied to. Then, we 
describe the application of ISL to this System. Finally, in Chapter 6, we présent the main 
conclusions of the research work documented in this dissertation. Appendix A is devoted 
to the description of Frankenstein’s PSO algorithm, which is the resuit of an extensive 
expérimentation with several PSO algorithms. Results of those experiments inspired in 
part some features of the ISL framework.
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Chapter 2 

Background

In this chapter, we présent some of the basic concepts of swarm intelligence and social 
learning, which are central to our work. In Section 2.1, we présent the concept of swarm 
intelligence, and describe its principles and mechanisms. We also describe the most success- 
ful artificial swarm intelligence Systems together with the natural phenomena that inspired 
their development. In Section 2.2, we présent the concepts of individual and social learning, 
and describe the main mechanisms involved in social learning.

2.1 Swarm Intelligence

In nature, different kinds of animais tend to congregate in large numbers. For instance, 
European starlings can gather in thousands to form flocks (Carere et al., 2009), atlantic 
silversides form schools of hundreds of individuals (Paxtridge, 1982), and ants make colonies 
that range in size from a few dozen to millions of ants (Hôlldobler and Wilson, 1990). When 
animais form these swarms, they are often able to solve problems that no single member 
could if it acted alone. From an external observer’s point of view, it may appear as if the 
swarm possessed a certain level of intelligence that is well superior to that of any of its 
constituent members. This collective-level intelligence is called swarm intelligence.

The size and behavior of swarms hâve fascinated humans since antiquity. At times, 
swarms inspire fear. For example, it is written in the Bible that swarms of locusts plagued 
Egypt (Exodus:10.3-6). At other times, swarms inspire respect. An old Mesoamerican leg- 
end tells the story of how ants helped the gods feed ail humans with cultivated maize (Nut- 
tall, 1930). Both extremes of feelings, fear and awe, hâve motivated researchers to wonder 
whether it is possible to control swarms. On the one hand, controlling swarms would allow 
us to alleviate the efîects of plagues, like those of locusts or termites (Buhl et al., 2006). On 
the other hand, controlling swarms would allow us to devise techniques that can be used 
to control man-made artifacts such as robots or software agents (Bonabeau et al., 1999). 
However, before we are able to control swarms, we need to understand their governing 
principles.

2.1,1 Principles and Mechanisms

Even though the characteristics of swarm-forming animais vary substantially, swarms ex- 
hibit behaviors that are in fact very similar. This similarity has pointed toward the exis­
tence of a set of general principles responsible for the emergence of swarm-level organization 
and intelligence (Buhl et al., 2006). The existence of these principles makes the design of 
artificial swarm intelligence Systems possible. Thus, as a discipline, swarm intelligence has 
a twofold objective. First, it aims to understand the fundamental principles that are the 
responsible for the collective-level intelligence sometimes exhibited by large groups of ani­
mais. Second, it aims to define engineering méthodologies for the design and construction
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of large groupe of man-made entities that collectively solve practical problems (Dorigo and 
Birattari, 2007).

Reseaxchers hâve made progress in the study of swarm intelligence and a set of principles 
and mechanisms that make it possible hâve been identified. The principles and mechanisms 
that we will describe hâve been found to operate in many animal societies, but especially in 
social insects groups (Bonabeau et al., 1999; Garnier et al., 2007a; Beekman et al., 2008).

Decentralization

The behavior exhibited by a swarm is not dictated by any central authority. The unfortu- 
nate name given to the reproductive member of an ant colony or a bee hive (i.e., a “queen”) 
gives the impression that the organization observed at the collective level is the resuit of a 
hierarchical command structure. However, it is now well known that such a structure does 
not exist (Bonabeau, 1998; Garnier et al, 2007a). In a swarm, no single agent supervises 
the actions of, or issues orders to, other members of the swarm. The perception and inter­
action scope of a swarm member is local. Thus, the swarm’s organization is the resuit of 
local interactions, both among the swarm members and between the swarm members and 
the environment.

Stigmergy

The theory of stigmergy (from the Greek roots stigma, which means mark, sign, or punc- 
ture, and ergon, which means action, labor, or work) was proposed by Grasse (1959) in 
the context of task coordination and nest construction régulation in colonies of termites. 
Grassé defined stigmergy as “the stimulation of the workers by the very performances they 
hâve achieved” (Grassé, 1959) p. 79. In other words, stigmergy refers to the coordination 
process that arises when an agent performs an action as a conséquence of stimuli that are 
the resuit of another agent’s - or possibly the same agent’s - actions.

Stigmergy is key to explain how termites and other social insects are able to build 
structures and produce collective-level patterns that are orders of magnitude larger than 
a single individual, ail without a central authority or global blueprint. For example, the 
construction of soil arches in termite nests starts when a termite fortuitously places a soil 
pellet on top of other pellets. This bigger soil structure stimulâtes termites to keep placing 
pellets on top. A self-reinforcing process then follows: the larger the structure, the stronger 
the attraction termites feel toward that structure to deposit soil pellets. Eventually an arch 
is built if two pillars happen to be at an appropriate distance. Another prominent example 
of how stigmergy enables swarm intelligence to occur is the ability of ants of some species 
to find the shortest path between their nest and a food source. While moving, ants deposit 
on the ground Chemical substances called pheromones. These pheromones modify the envi­
ronment and trigger a change in the behavior of ants. In particular, ants become attracted 
to areas of the environment marked with pheromones. This pheromone laying and follow- 
ing behavior induces a positive feedback process whereby areas with high concentration of 
pheromones become more and more attractive as more ants follow them (Pasteels et al, 
1987; Goss et al., 1989; Deneubourg et al., 1990a). As a resuit, if there are several paths 
to the same food source, the colony is more likely to select the shortest path because ants 
will traverse it faster, and thus, it will hâve a higher pheromone concentration than longer 
ones.

Self-Organization

The theory of self-organization hais found applications in such diverse fields as économies, 
urbanism, physics, chemistry, and biology (Haken, 2008). For example, it has been used to 
explain Chemical reactions, such as the Belousov-Zhabotinsky reaction (Zhabotinsky, 2007), 
and the organization of cities (Portugali, 2000). In biology, it has been used to explain 
the external patterns on the skin or on the protective shells of some animais (Camazine 
et al., 2001), the movement of vertebrates in crowds (Couzin and Krause, 2003), and, most
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relevant for our discussion here, the behavior of social insects swarms (Bonabeau et al., 
1997).

Self-organization is a term with different meanings in different contexts (Gershenson, 
2007). In this dissertation, we adopt Camazine et al.’s définition:

Définition Self-organization is a process in which [a] pattern at the global level of a Sys­
tem emerges solely from numerous interactions among the lower-level components of the 
System. Moreover, the raies specifying interactions among the system’s components are 
executed using only local information, without reference to the global pattern. (Camazine 
et al., 2001) p. 8.

With this définition, some forms of swarm intelligence can be considered to be the 
resuit of self-organization. For example, the ability of ant colonies to find the shortest path 
between their nest and a food source can be seen as a self-organization process. First, a 
pheromone trail that connects an ant colony nest to a food source is the pattern at the global 
level cited in Cama.zine et al.’s définition. Such a trail is the resuit of several ants reinforcing 
it every time they traverse it, that is, it is the resuit of multiple interactions among the 
system’s components (the ants). Stigmergy is in this case the interaction mechanism. 
The pheromone-laying and pheromone-following behavior exhibited by ants serves as an 
interaction rule, which is triggered only when an ant perçoives pheromones in its vicinity. 
Finally, the behavioral rules followed by ants do not make any reference to pheromone 
trails and do not encode desired goals such as finding shortest paths. The shortest path 
between an ant colony’s nest and a food source is an emergent pattern.

Self-organization is itself the resuit of the interaction of several processes and éléments. 
According to Camazine et al. (2001) and Moussaid et al. (2009), these processes and 
éléments are the following:

1. Multiple direct or indirect interactions among the system’s components. By défi­
nition, a self-organizing System is composed of a number of components whose be­
havior dépends on the State of their immédiate environment or on the information 
they possess. In such a setting, the system’s components mutually influence each 
other because the behavior of one of them may affect the environment of, or the 
information perceived by, other components. If the system’s components are able to 
communicate directly with each other, it is also possible to influence the behavior of 
these components via direct communication.

2. Presence of fluctuations. The components of a self-organizing System may be subject 
to external perturbations or may behave nondeterministically. As a resuit, there 
may be fluctuations in the system’s State. For example, in the absence of pheromone 
trails, an ant chooses a walking direction at random, or an ant colony may suffer the 
sudden loss of several members due to the presence of predators or inclement weather 
conditions.

3. Positive feedback. Fluctuations, random or not, are often reinforced in self-organizing 
Systems. The way termites construct pillars with soil pellets or the reinforcement of 
pheromone trails by ants are examples of positive feedback processes. Positive feed­
back is responsible for the appearance of new structures (e.g., pillars or pheromone 
trails) that in turn modify the behavior of the System.

4. Négative feedback. The self-reinforcing process brought about by positive feed­
back loops must be limited. It is impossible, for example, that the concentration 
of pheromones in an ant trail grows to infinity. In self-organizing Systems this task is 
performed by a so-called négative feedback process. Négative feedback encompasses 
ail limiting environmental factors and a system’s internai régulation processes. In the
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ant trails example, négative feedback includes pheromone évaporation, food déplétion 
and satiation.

5. Bifurcations and multiple stable States. Self-organizing Systems often show abrupt 
changes in their behavior without an abrupt change in the value of a control pa- 
rameter. For example, the density of insects is often a parameter that aiîects the 
behavior of a swarm. Below a certain threshold, no swarm behavior is observed, 
whereas above it, a swarm behavior suddenly appears (Buhl et al., 2006). A self- 
organizing System will reach a stable State which dépends on the initial conditions. 
Since self-organization is often triggered by random fluctuations, the stable State of 
a System may be just one of several available States.

Currently, there is a growing interest in developing méthodologies for the design and 
control of self-organizing Systems (see, for example, Gershenson (2007); Di Marzo Seru- 
gendo et al. (2004); Bruecker et al. (2005, 2006, 2007)). The knowledge gained in the 
process will certainly affect our ability to design and control swarm intelligence Systems.

Other Mechanisms

Self-organization can account for many swarm intelligence behaviors, but they may also 
be the resuit of other mechanisms, either alone or in combination with a self-organizing 
process (Camazine et al, 2001; Johnson, 2009). Some of these mechanisms are leadership, 
blueprints, recipes, templates, or threshold-based responses (Bonabeau, 1998; Camazine 
et al., 2001; Garnier et al., 2007a). Leadership may play a rôle when some individuals axe 
more experienced than others or simply when there are better informed individuals. This 
mechanism, as we will discuss in Chapter 3, is important in the framework proposed in 
this dissertation. Leadership plays an important rôle in large groups of moving animais as 
suggested by recent studies (Couzin et al., 2005). Blueprints are usually associated with 
the process of constructing a structure. They are représentations of the desired structure; 
however, they do not specify how such a structure should be built. There is an ongoing de- 
bate as to whether blueprints are actually used by building animais; however, it is definitely 
possible to imagine man-made swarm intelligence Systems in which agents use such a mech­
anism. Recipes are step>-by-step directions to carry out a task. The execution of a recipe 
often ignores feedback from the execution process. This aspect of recipes is fundamental 
in order to distinguish them from stigmergic task execution, in which the execution of an 
action modifies the environment providing feedback to the acting animal or agent. A tem- 
plate is a kind of “preexisting pattern” in the environment that elicits a spécifie response 
from the members of a swarm, normally to actually build over them. For example, termites 
build a chamber around the body of the queen which produces a pheromone gradient that 
serves as a template (Bonabeau et al., 1998). Finally, in a threshold-based mechanism, an 
action is performed as a response to the strength of a stimulus. Threshold-based models 
hâve been used in the context of social insects to explain division of labor (Theraulaz et al, 
1998), the mechanism whereby insects split responsibilities, as well as to explain collective 
phenomena in humans (Granovetter, 1978).

2.1.2 Artificial Swarm Intelligence Systems

The design and construction of artificial swarm intelligence Systems hâve been heavily 
inspired by the behavior of natural swarms. The first efforts toward the development of 
artificial swarm intelligence Systems began in the 1990s with pioneering works in robotics, 
data mining, and optimization. In fact, these domains axe still the application areas of 
most artificial swarm intelligence Systems (Dorigo and Birattari, 2007).

In the remainder of this section, we describe some of the most successful swarm intel­
ligence Systems devised to date.
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Ant Colony Optimization

The ants’ pheromone trail laying and trail following behavior described in Section 2.1.1 
inspired the development of ant colony optimization (ACO) (Dorigo et al., 1991a,b; Dorigo, 
1992; Dorigo et al., 1996; Dorigo and Di Caro, 1999; Bonabeau et al., 2000; Dorigo and 
Stützle, 2004; Dorigo, 2007). Some aspects of the real behavior of ants that allows them to 
find shortest paths in nature are simulated in ACO algorithms in order to tackle optimiza­
tion problems. In nature, real ants form pheromone trails; in ACO, artificial ants construct 
candidate solutions to the problem instance under considération. Solution construction is 
a stochastic process biased by artificial pheromone trails and possibly by available heuristic 
information based on the input data of the instance being solved. Pheromones are simu­
lated as numerical information associated with appropriately defined solution components. 
A positive feedback process implemented by itérative modifications of the artificial phero­
mone trails is key for ail ACO algorithms. In ACO algorithms, pheromone trails can be 
thought of as a function of the ants’ search expérience. The goal of positive feedback is to 
bias the colony towards the most promising solutions.

The ACO metaheuristic (Dorigo and Di Caro, 1999; Dorigo et al., 1999) is an algorithmic 
framework that allows the implémentation of the aforementioned ideas for the approximate 
solution of optimization problems. Such a framework needs to be instantiated into an 
algorithm in order to tackle a spécifie problem. The framework is flexible enough to 
accommodate specialized problem-solving techniques.

ACO is commonly used to solve combinatorial optimization problems. A formai défi­
nition of a combinatorial optimization problem is given next.

Définition A combinatorial optimization problem is modeled by the tuple (S, f, dl), where:

• S is the set of candidate solutions defined over a finite set of discrète decision variables 
X. S is referred to as the search space of the problem being tackled;

• f : S is an objective function to be minimized;^

• ù is a (possibly empty) set of constraints among the decision variables.

A decision variable Xi G X, with i = 1,... ,n, is said to be instantiated when a value 
v{ that belongs to its domain Di = ,..., is assigned to it. A solution s £ S
is called feasible if each decision variable has been instantiated satisfying ail constraints 
in the set fi. Solving the optimization problem requires finding a solution s* such that 
f{s*) < f(s) Vs S 5, while satisfying ail constraints in Cl.

Three high-level procedures compose ACO (see Algorithm 1);

• ConstructSolutions. This procedure implements the artificial ants’ incrémental 
construction of candidate solutions.

In ACO, an instantiated decision variable A, is called a solution component
Cij S C, where C dénotés the set of solution components. A pheromone trail value 
Tij is associated with each component Cij G C.
A solution construction starts from an initially empty partial solution s^. At each 
construction step, it is extended by appending to it a feasible solution component 
from the set of feasible neighbors N{s^) Ç C that satisfies the constraints in 12. The 
choice of a solution component is guided by a stochastic decision policy, which is 
biased by both the pheromone trail and the heuristic values associated with Cij. The 
exact rules for the probabilistic choice of solution components vary across different 
ACO variants. The rule proposed in the Ant System algorithm (Dorigo et al., 1996) 
is the best known rule:

'Note that minimizing the value of an objective function / is the same as maximizing the value of — 
hence, every optimization problem can be described as a minimization problem.
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Algorithm 1 Basic structure of an ant colony optimization algorithm

repeat
ConstructSolutions 
DaemonActions /* Optional */ 
UpdatePheromones 

until Stopping criterion is satisfied

Pcij\a^
XI • [Piif ’

CueN(aP)

(2.1)

where rÿ and riij are, respectively, the pheromone value and the heuristic value 
associated with the component Cij. The parameters a > 0 and /3 > 0 détermine the 
relative importance of pheromone versus heuristic information.

• DeamonActions. This procedure, although optional, is important when state-of- 
the-art results are sought (Dorigo and Stützle, 2004). It allows for the execution of 
problem-specific operations, such as the use of local search procedures, or of central- 
ized actions that cannot be performed by artificial ants. It is usually executed before 
the update of pheromone values so that ants bias their search toward high quality 
solutions.

• UpdatePheromones. This procedure updates the pheromone trail values associ­
ated with the solution components in the set C. The modification of the pheromone 
trail values is composed of two stages: (i) pheromone évaporation, which decreases 
the pheromone values of ail components by a constant factor p (called évaporation 
rate) in order to avoid prématuré convergence, and (ii) pheromone deposit, which in- 
creases the pheromone trail values associated with components of a set of promising 
solutions Supd- The general form of the pheromone update rule is as follows:

Tij<-{l-p)-Tij+p- X •^(®)’ (2.2)
Supd

where p € (0,1] is the évaporation rate, and F : S ^ is a function such that 
f{s) < f{s') F{s) > F{s'), y s ^ s' € S. F{-) is called the fitness function. 
Different définitions for the set 5«pd exist. Two common choices are Sy^pj = si)gf, 
and Sypd = Sib, where Sbsf is the best-so-far solution, that is, the best solution found 
since the start of the algorithm, and Sib is the best solution of the current itération. 
The spécifie implémentation of the pheromone update mechanism differs across ACO 
variants (Dorigo et al., 1991a,b, 1996; Dorigo and Gambardella, 1997; Gambardella 
and Dorigo, 1996; Stützle and Hoos, 2000).

Many ACO algorithme hâve been proposed. Some of them aim to solve spécifie prob­
lème, and others hâve a more general purpose. In Table 2.1, we list some of the most 
représentative ACO algorithme proposed to date.

Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 
1995; Kennedy et al., 2001; Engelbrecht, 2005; Clerc, 2006; Poli et al., 2007; Dorigo et al., 
2008) is a population-based stochastic optimization technique primarily used to tackle 
continuous optimization problème. A continuons optimization problem is defined as follows:
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Table 2.1: Représentative ACO works.

ACO algorithm Main référencés
Ant System (AS) (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al., 

1996)
Elitist AS (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al., 

1996)
Ant-Q (Gambardella and Dorigo, 1995)
Ant Colony System (AGS) (Dorigo and Gambardella, 1997; Gambardella and 

Dorigo, 1996)
MAX-MXN Ant
(MMAS)

System (Stützle and Hoos, 1996, 1997, 2000)

Rank-based AS (Bullnheimer et al., 1999)
ANTS (Maniezzo, 1998, 1999)
Best-worst AS (Cordon et al., 2002, 2000)
Population-based ACO (Guntsch and Middendorf, 2002)
Beam-ACO (Blum, 2004, 2005)

Définition Given a set Q C R" and an objective function / : © —> R, the continuons 
optimization problem consists in finding at least one member of the set

0* = arg min f{9) = {0* G 0 : /(0*) < f{9), V0 G 0} .
9ee

The set 0 is referred to as the feasible solution space or as the search space of function 
f. IfQ = R", then the problem is called an unconstrained continuons optimization problem. 
Otherwise, the problem is called a constrained continuons optimization problem.

PSO has roots in computer graphies, social psychology, and natural swarm intelligence. 
Within the computer graphies field, the first antécédents of PSO can be traced back to the 
work of Reeves (1983), who proposed particle Systems to model objects that are dynamic 
and cannot be easily represented by polygons or surfaces. Examples of such objects are 
fire, smoke, water and clouds. In these Systems, particles are independent of each other 
and their movements are governed by a set of mies. A few years later, Reynolds (1987) 
used a particle System to simulate the collective behavior of a flock of birds. In a similar 
kind of simulation, Heppner and Grenander (1990) included a roost that was attractive 
to the simulated birds. Reynolds’s and Heppner and Grenander’s models inspired the 
set of rules that were later used in the original PSO algorithm (Kennedy and Eberhart, 
1995). According to Kennedy (2006), social psychology research, in particular the theory 
of social impact (Latané, 1981; Nowak et al., 1990), was another source of inspiration in 
the development of the first particle swarm optimization algorithm (see Chapter 3 for more 
information).

PSO is a direct search method, which means that it works only with ordinal relations 
between objective function values and does not use the actual values to model, directly or 
indirectly, higher order properties of the objective function. In a PSO algorithm, simple 
agents, called particles, move in the solution space of an n-dimensional objective function 
/ (see définition above). There are three vectors associated with a particle i at time 
step t: its position vector x*, which represents a candidate solution, its velocity vector v/, 
representing the particle’s search direction, and its Personal best vector pb/, which dénotés 
the particle’s best position attained by particle i since the beginning of the algorithm’s 
execution.

The rules that détermine the particles’ movement are the core of any PSO algorithm. 
These rules détermine from which other particles a certain particle i should get information, 
and how that information should be exploited. The set of particles from which particle i 
may obtain information is referred to as particle i’s neighborhood and is denoted by A/). 
However, particle i’s informers, denoted by I, with Xi Ç Afi, are the particles from which
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Figure 2.1: Example population topologies. The leftmost picture depicts a fully connected 
topology, that is, TVi is composed of ail the particles in the swarm (self-links are not drawn 
for simplicity). The picture in the center depicts a so-called von Neumann topology, in 
which |A/i| = 4 Vi. The rightmost picture depicts a ring topology in which each particle is 
neighbor to two other particles.

it actually obtains information. The sets 7VÎ can be visualized as a graph called population 
topology (see Figure 2.1). The model of influence defines the mechanism to form 2) from 
A/). Finally, a particle’s velocity-update rule détermines how to compute the particle’s next 
position using information from its informers.

In the standard PSO algorithm (Bratton and Kennedy, 2007), for example, the afore- 
mentioned factors are instantiated as follows: (i) fully-connected graphs or rings (respec- 
tively known as gbest and Ibest models in PSO parlance) as population topologies, (ii) a 
best-of-neighborhood model of influence such that only the best particle in the neighbor- 
hood and the particle itself are taken as informers, and (iii) an update rule for the jth 
component of the ith particle’s velocity and position vectors given by

(P^lj - ^Ij) + (Iblj - xlj) , (2.3)

and
■ A- v' ‘‘'«O ^ ‘’îj

t+i (2.4)

where w is a parameter called inertia weight (Shi and Eberhart, 1998a), (pi and ip2 are 
parameters called accélération coefficients, U\ and U2 are uniformly distributed pseudo- 
random numbers in the range [0,1) that axe generated for each particle for each coordinate 
at each itération. A particle’s velocity in each coordinate j is usually constrained within the 
range [—Umax,'t'max]- Finally, the vector Ibf is the best solution in particle i’s neighborhood 
A/i, that is:

Ib- = argmin f{pbj). (2.5)
jeM

The basic structure of a PSO algorithm is shown in Algorithm 2. In the procedure 
InitializeSwarm, a certain number of particles are created and placed uniformly at random 
in the problem’s search space. Each particle’s velocity is initialized to zéro or a small 
random value (Dorigo et al., 2008). In this procedure, the population topology is also 
initialized. In the procedure EvaluateSwarm, each particle’s position is evaluated using 
the problem’s objective function. If a particle finds a position that is better than its 
Personal best solution, it updates its memory. Otherwise, it remains unchanged. In the 
procedure UpdatePositions, ail particles are moved using Eqs. 2.3 and 2.4. The procedures 
EvaluateSwarm and UpdatePositions are executed iteratively until the stopping criterion 
is satisfied.

Different settings for the population topology, the model of influence, or the velocity- 
update rule give rise to different PSO algorithms. Two-dimensional lattices, small-world 
networks or random graphs are among the possible choices for replacing the standard 
fully-connected or ring graphs as population topologies (Kennedy, 1999; Kennedy and
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Algorithm 2 Basic structure of a particle swarm optimization algorithm

InitializeSwarm
repeat

EvaluateSwarm
UpdatePositions

until Stopping criterion is satisfied

Table 2.2: Représentative PSO works
Investigated Aspect Main référencés
Accélération Coefficients Kennedy (1997); Ratnaweera et al. (2004); Chat­

terjee et al. (2007); Chaturvedi et al. (2009)
Inertia Weight Shi and Eberhart (1998a,b, 1999, 2001); Eberhart 

and Shi (2001); Zheng et al. (2003a,b); Chatterjee 
and Siarry (2006)

Model of Influence Mendes et al. (2004); Jordan et al. (2008); Montes 
de Oca and Stützle (2008a)

Population Size van den Bergh and Engelbrecht (2001); Lanzarini 
et al. (2008); Coelho and de Oliveira (2008); Chen 
and Zhao (2009)

Population Topology Kennedy (1999); Suganthan (1999); Janson and 
Middendorf (2003, 2005); Mohais et al. (2005); 
Kennedy and Mendes (2006)

Theoretical Aspects Ozean and Mohan (1999); Clerc and Kennedy 
(2002); Trelea (2003); Kadirkamanathan et al. 
(2006); Poli (2007, 2009); Fernandez Martinez and 
Garcia Gonzalo (2009); Ghosh et al. (2011)

Velocity-Update Rule Kennedy (2003); Blackwell and Branke (2006); 
Mendes and Kennedy (2007); dos Santos Coelho 
(2008)

Mendes, 2002). Likewise, alternatives to the best-of-neighborhood model of influence can 
be implemented. The most salient example is the fully-informed model, in which a particle 
is informed by ail of its neighbors (Mendes et al, 2004; Mendes, 2004). In Table 2.2 we list a 
number of works in which one or more of the three aforementioned factors are investigated.

Sw8irm Robotics

Robotics has been pivotai in the development of the swarm intelligence field. In fact, it 
was in a robotics paper that the term swarm intelligence was first used (Béni and Wang, 
1993; Béni, 2005). Swarm intelligence applied to the multi-robot domain is called swarm 
robotics (Dorigo and §ahin, 2004; §ahin, 2005; Bayindir and Sahin, 2007). It is sometimes 
defined as “the study of how [a] large number of relatively simple physically embodied 
agents can be designed such that a desired collective behavior emerges from the local 
interactions among agents and between the agents and the environment.” (§ahin, 2005) 
(p. 12). This définition is very similar to that of the engineering branch of the swarm 
intelligence field (Dorigo and Birattari, 2007). The particularity of swarm robotics is the 
embodiment of robots. In one of the first works in the field, Deneubourg et al. (1990b) 
used the term “ant-like” to describe the robots they used in one of the first experiments 
in the history of the swarm robotics field. At the same time, Deneubourg et al. reinforced 
the link of the field with one of its major sources of inspiration: social insects. Deneubourg 
et al. also showed that swarm robotics could be used as a scientific tool to test hypothèses 
about the mechanisms involved in swarm organization in animais— cf. Webb (2000). For
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this and other reasons, swarm robotics research, unlike ACO and PSO research, does not 
focus solely on applications.

In swarm robotics, some mechanisms involved in robot control and the benchmark 
tasks robots solve, bave been inspired by studies of real swarm-forming animais. For 
example, Deneubourg et al. (1990b), Holland and Melhuish (1999), Wilson et al. (2004), 
and Melhuish et al. (2006) studied swarms of robots performing spatial sorting inspired 
by the brood sorting behavior of ants; Theraulaz and Bonabeau (1995) and Grushin and 
Reggia (2008) studied structure building mechanisms inspired by wasps and other social 
insects; Kube and Bonabeau (2000) and Gro6 and Dorigo (2008) reproduced with robots 
the cooperative transport abilities of ants; and Mondada et al. (2004) and O’Grady et al. 
(2010b) draw inspiration from social insect assemblages (Anderson et al., 2002) to devise 
control algorithms that allow swarms of robots to perform collective tasks.

Research in swarm robotics is not only focused on tasks that can be solved collectively 
by robots. There are also practical problems that need to be tackled in a swarm robotics 
System. For example, robots that are part of a swarm may need to know when one of their 
peers stops working properly, or they may need to know how many robots compose the 
swarm. Some of these problems hâve been tackled using nature-inspired as well as purely 
engineered approaches. For instance, Christensen et al. (2009) proposed a distributed 
mechanism for robot fault détection within a swarm that was inspired by models of firefly 
synchronization. Using a similar approach, Brambilla et al. (2009) built on the work 
of Holland et al. (1999) to design a mechanism that allows individual robots to reliably 
estimate the size of the group that they belong to. Energy supply within a swarm is 
another practical problem that needs to be dealt with. Batteries hâve a limited capacity, 
thus, robots hâve a limited lifetime. If the robots lifetime is short, a swarm of robots is 
of little practical use. To tackle this problem, some researchers, for example Witkowski 
(2007), Melhuish and Kubo (2007), and Schloler and Ngo (2008) hâve proposed energy 
sharing mechanisms inspired by trophallaxis, that is, the direct exchange of food between 
animais (Hôlldobler and Wilson, 1990). By sharing charge with one another, some robots 
can continuously operate while other robots get their batteries recharged.

One application area for which swarm robotics is particularly appealing is the con­
struction of two- and three-dimensional structures (Stewart and Russell, 2006; Werfel and 
Nagpal, 2008; Mellinger et al., 2010). In this application area, most of the basic collective 
behaviors inspired by animais can be integrated into a single complex task. For example, 
robots need to aggregate, find construction materials, sort them, transport them from one 
place to another (most likely, cooperatively), and finally, coordinate their actions in order 
to actually build the desired structure.

Other Swarm Intelligence Systems

ACO, PSO, and swarm robotics hâve undoubtedly been the most popular swarm intelli­
gence Systems to date. However, other Systems exist and deserve being mentioned.

A family of swarm intelligence Systems is used to perform data clustering. The goal 
of any clustering algorithm is to partition a set of data or objects into clusters (groups, 
subsets, classes) so that éléments belonging to the same cluster are as similar as possible 
and éléments that belong to different clusters are as dissimilar as possible (Hôppner et al., 
1999). Some of these swarm intelligence Systems for data clustering focus on optimization, 
and thus, use ACO, or PSO to tackle the problem (Martens et al., 2011). Other Systems, 
however, are inspired by the brood sorting behavior of some ant species. These Systems are 
called ant-based clustering algorithms (Lumer and Faieta, 1994; Handl et al., 2005; Handl 
and Meyer, 2007).

Ant-based clustering algorithms are related to experiments in swarm robotics. Deneubourg 
et al. (1990b) made robots execute the following rules: pick up an object if it is relatively 
isolated, and put down an object if there are other objects around. As a resuit, the robots 
created “heaps” of objects in the environment. Lumer and Faieta (1994) implemented in 
software a similar System in which agents move over a toroidal square grid on which there
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are objects representing data items. Agents pick up an object with high probability if it is 
not surrounded by other similar objects. By the same token, agents put down objects on 
any free location surrounded by similar objects to the one they are carrying. As a resuit, 
groups of similar data items are created. In other words, the algorithm performs data 
clustering. A number of improvements of the basic technique hâve followed (see the work 
of Handl and Meyer (2007) for one of the latest surveys of the topic).

A family of swarm intelligence algorithms, inspired by the behavior of bees, is attract- 
ing the attention of researchers in the field (see the work of Karaboga and Akay (2009) 
for a recent review). One of the algorithms that belong to this category is called Bee 
Colony Optimization (BCO) (Teodorovic, 2009). This algorithm is typically used to tackle 
combinatorial optimization problems. BCO consista of two procedures that are executed 
iteratively. In the first procedure, artificial bees build partial candidate solutions. In the 
second procedure, the artificial bees “meet” in order to recruit other bees to search in the 
area in proximity to the best found partial solutions. These two procedures roughly mimic 
the behavior of scout bees looking for rich food sources and of the waggle dance of bees, 
which is aimed at recruiting other bees from the nest. Another bee-inspired algorithm, the 
Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2007), is used for tackling 
continuous optimization problems. In ABC, the position of the bees represent candidate 
solutions to the problem. The algorithm works through the interaction of three kinds of 
artificial bees. Bees can be play three rôles. They can be “employed”, “onlookers”, or 
“scouts.” An employed bee exploits a promising région. In other words, the bee carries 
out a sort of local search. Onlooker bees search around promising régions based on their 
quality. Onlooker bees can compare the quality of different régions in the search space, 
thus they perform a more global search than employed bees. Finally, scout bees perform 
random search, which enables them to discover new promising régions in the search space.

2.2 Social Learning

Social and individual learning are terms that are often used vaguely, meaning different 
things in different contexte. For the purpose of this dissertation, it is therefore important 
to clearly define the meaning of these two concepts and their relationship.

Individual (or asocial) learning is the process whereby an agent benefits from expérience 
to become better adapted to its environment (Rescorla, 1988). The exact meaning of 
“expérience” and “adaptation” dépends on the context in which the term “learning” is 
used. In any case, learning implies a change in an agent’s behavior from the moment in 
which it interacts with its environment, or gains “expérience”, and the moment in which 
its level of “adaptation” to its environment is measured or observed. In Chapters 4 and 5, 
we will explicitly define these terms in the context of the two case studies presented in this 
dissertation.

From a machine learning perspective, learning is finding an association between inputs 
and some output. Inputs can hâve many forms, from abstract data, to actual information 
gathered through electronic sensors. An agent’s output can be, for example, actions that 
change the agent’s environment, or an abstract concept, such as a category identifier. The 
association between inputs and output changes during the lifetime of the learning agent. 
This association represents the agent’s “expérience” discussed in the previous paragraph. 
The purpose of associating inputs with outputs is to maximize some performance measure. 
A better score using a performance measure means that the agent is “better adapted” to 
its environment. There are roughly three categories of learning problems (Birattari, 2009): 
supervised, reinforcement, and unsupervised. In supervised learning (Aha et al., 1991), 
a superviser provides examples of the desired input-output associations. In this case, a 
learning agent tries to minimize the différences between its own responses and the desired 
ones. Reinforcement learning (Kaebling et al., 1996) is based on rewards given to a learning 
agent when it performs actions that lead to a certain environment State. In this case, a 
learning agent tries to maximize the collected rewards. Unsupervised learning (Jain et al..
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1999) does not require any examples or rewards. In this case, a learning agent tries to 
identify input patterns that trigger similar outputs or responses.

There are more définitions of social learning than of individual learning. Fortunately, 
Heyes (1994) provides a définition onto which one can map many working définitions ex- 
isting in the literature:

Définition The term ‘social learning’ refers to learning that is influenced by observation 
of, or interaction with, another animal (typically a conspecific) or its products [■■■]■ The 
complementary set is commonly known as ‘individual learning’. (Heyes, 1994) p. 207.

Heyes’s définition is general enough to encompass the définitions of Biederman et al. 
(1993) who refer to social learning as learning from the observation of others’ behavior, 
and Caldwell and Millen (2009) who use the term social learning as learning from the 
interaction with others. Other authors prefer to use Heyes’s full définition (Brown and 
Laland, 2003; Caldwell and Millen, 2009; Rendell et al., 2010b,a, 2011).

Social learning in animais has been studied since the 19th century (Galef Jr., 1990). 
In humans, social learning started to be seriously studied around the 1970s with the work 
of Bandura (1977) and other psychologists. Similarly to other théories of behavior, social 
learning in humans and animais has been studied firom a mechanistic as well as from a 
functional point of view. Ethologists and psychologists take a mechanistic perspective in 
order to détermine the mechanisms and strategies that animais use to learn from others. 
Biologists and scientists from other disciplines, including économies, study social learning 
from a functional perspective in order to answer the question of why and under which 
circumstances social learning is useful.

2.2.1 Social Learning Mechanisms and Strategies

Social learning mechanisms (how an agent may learn from others) and strategies (when 
and from whom should an agent learn socially) are the subject matter of the mechanistic 
approach to the study of social learning. In the following paragraphs, we will briefly define 
some of the most commonly studied social learning mechanisms and strategies.

Mechanisms

Imitation, émulation, enhancement, conditioning, facilitation and mimicking are social 
learning mechanisms. They are not learning phenomena themselves, but they may lead 
to learning (Heyes et al., 2000). Imitation and émulation involve copying. When an 
observer imitâtes, it copies the actions of a demonstrator with the goal of reproducing 
the actions’ effects; when an observer emulates, it uses its own actions to reproduce the 
results produced by a demonstrator’s actions (Heyes, 1994; Caldwell and Millen, 2009; 
Cakmak et al., 2010). Imitation has been traditionally assumed to be the main mechanism 
through which animais learn socially (Galef Jr., 1990). However, Imitation is a relatively 
complex process that implies that the copying animal is able to take the perspective of 
the demonstrating animal. Thus, to explain social learning in animais that are considered 
to hâve limited cognitive abilities, such as insects, simpler mechanisms hâve been sought. 
One such mechanism is called social enhancement (Franz and Matthews, 2010). Some 
authors distinguish between two forms of social enhancement; stimulus enhancement and 
local enhancement. Stimulus enhancement occurs when an agent calls the attention of 
another one to a particular object, increasing the likelihood that the observer interacts 
with that object (or with objects with similar physical features) in the future, regardless 
of the objects’ location (Heyes, 1994; Bonnie and de Waal, 2007; Franz and Matthews, 
2010). Local enhancement occurs when an agent is attracted to the location where a 
certain behavior was observed (Galef Jr., 1990; Heyes, 1994; Franz and Matthews, 2010). 
Social enhancement makes some features of the environment more salient than others. As 
a resuit, the observer may save time and effort exploring the environment in order to find 
interesting objects or locations. Social enhancement imposes lower cognitive capabilities
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Table 2.3: Examples of “When” and “From whom” components of a social learning strat- 
egy- _______________________________________________________________

When From whom
When established behavior is unproductive 

When asocial learning is costly 
When uncertain 

When dissatisfied 
When environment is stable

From majority 
From successful individuals 
From good social learners 

From related individuals (kin) 
From familiar individuals 

From older individuals

on animais than imitation or émulation do. Conditioning in a social context means that 
an animal learns an association between two stimuli as a resuit of observing the reaction 
of a demonstrator to a stimulus (Heyes, 1994). Social facilitation occurs when an animal 
manifests a behavior more (or less) strongly in the presence of another passive animal 
of the same species (Zajonc, 1965; Guérin, 1993; Heyes et al., 2000). Social facilitation 
is considered a social learning mechanism because the influence of another animal may 
increase or decrease the responsiveness of the observer to its environment, and thus, may 
change the observer’s learning ability. Mimicking is similar to imitation in that the observer 
copies the actions of a demonstrator. However, when mimicking, the observer is not trying 
to get the same results as the demonstrator; it simply performs the actions without regard 
to the actions’ goals (Tomasello, 2004). Mimicking could be seen as a socially mediated 
action exploration mechanism.

Strategies

Functional studies of social learning (see Section 2.2.2) suggest that agents should not 
learn socially ail the time. Instead, these studies conclude that agents should selectively 
choose between individual and social learning depending on the characteristics of their 
environment. The strategy used by an agent to décidé when and from whom to learn is 
called a social learning strategy (Laland, 2004; Galef Jr., 2009).

Social learning strategies hâve been studied mostly theoretically within a functional 
framework to détermine which ones are more likely to offer advantages under predefined 
circumstances (Laland, 2004). Examples of social learning strategies can be built from 
the components listed in Table 2.3, which lists some plausible ‘Svhen” and “from whom” 
components of a social learning strategy. This list was proposed by Laland (2004) and 
later adapted by Galef Jr. (2009).

In experiments with animais, some scientists hâve reported what probably is the ex­
ecution of certain social learning strategies. For example, a copy-when-uncertain social 
strategy could explain the behavior of Norway rats in an experiment designed by Galef Jr. 
(1996) in which Norway rats had to choose between two completely novel foods. In such 
an uncertain situation, the rats preferred the foods that had been consumed by other rats 
(detected through breath odor) instead of trying any of them with equal probability, which 
would hâve been the case if they had been learning individually.

The study of social learning strategies is still in its infancy, but some important efforts 
are being made in order to discover strategies robust to different environmental condi­
tions. For example, Rendell et al. (2010a) organized a computer-based tournament aimed 
at discovering effective social learning strategies under a wide range of environmental con­
ditions. In total, 104 strategies were submitted and the final outcome of the tournament 
has given researchers useful insight into what makes a social learning strategy successful. 
The strategy that won the tournament favored social learning almost ail the time. The 
reason, Rendell et al. conclude, is that since agents frequently demonstrated the highest- 
payoff behavior, social learners could observe and copy only promising behaviors. In effect, 
through the démonstration of good behaviors, agents were filtering out médiocre behaviors 
that could not be spread through social learning.
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2.2.2 Functional Value of Social Learning

The functional approach to the study of social learning aims at understanding the condi­
tions under which social learning evolved and what the adaptive value of social learning is. 
This approach is of interest to scientists of many disciplines. For example, biologists wonder 
how variable can an environment be so that social learning evolves (Wakano et al., 2004). 
Sociologists consider that social learning is at the root of culture but since social learning 
is a product of évolution, they wonder how cultural and genetic évolution internet (Cavalli- 
Sforza and Feldman, 1983; Boyd and Richerson, 1985; Flinn, 1997). Economists wonder 
what is the effect of social learning in the decisions économie agents maJee and its con­
séquences for the population as a whole (Ellison and Fudenberg, 1995; Chamley, 2004). 
Computer scientists and engineers are interested in exploiting social learning in the design 
and use of software and robots (Thomaz, 2006; Nehaniv and Dautenhahn, 2007; Cakmak 
et al., 2010). We belong to this last class of researchers. As it will be discussed in more 
detail in Chapter 3, the work presented in this dissertation takes a functional approach 
toward the application of social learning ideas.

The adaptive value of social learning has been studied mainly through mathematical 
and computational models. Almost ail models assume that social learning is a convenient 
way to acquire adaptive behavior because it allows the social learning agent to save time 
and energy that it would otherwise spend learning individually (Laland, 2004). There are 
also other advantages associated with social learning, such as reducing the risk of exposure 
to predators or lowering the chances of getting poisoned as a resuit of trying unknown 
foods (Galef Jr., 2009). Consequently, it would be reasonable to assume that a population 
composed of social learning agents would hâve a higher average fitness than a population 
composed of only individual learning agents. As it turns out, this reasoning is flawed as 
shown by Rogers (1988). He demonstrated that social learning agents hâve an advantage 
only when individual learning agents are présent. This insight motivâtes research on social 
learning strategies as we saw above.

A family of social learning models is aimed at investigating the degree to which an 
environment can change so that social learning is useful (Bergman and Feldman, 1995; 
Wakano et al., 2004; Laland and Kendal, 2003; Galef Jr., 2009). These models study the 
relative advantage that reliance on social and individual learning as well as genetically 
encoded behavior offers to an agent in the presence of a changing environment. As a residt 
of years of theoretical work, it is now well established that when the environment does 
not change, or when it changes too frequently, a genetically encoded behavior prevails. In 
the first case, it is assumed that there is a cost associated to learning. Thus, a genetically 
encoded behavior provides everything an agent needs at a lower cost. In the second case, 
there is no possibility of learning and thus, again for économie re£isons, a genetically encoded 
behavior prevails. At high rates of change that still allow for some predictability of the 
environment, individual learning lets an agent hâve up>-to-date information whereas social 
learning can potentially be harmful since outdated information can pass from one agent to 
another. At intermediate rates of change social learning flourishes more than individual 
learning because it is a cheaper way of obtaining adaptive information. Note that social 
learning models and their implications are subject to change because their prédictions hâve 
been subjected to limited empirical tests (Laland and Kendal, 2003). As recently shown 
by (Rendell et al., 2010a), a population of agents might still rely on social learning even in 
a frequently changing environment simply because demonstrators will tend to adapt their 
own behavior to the new circumstances and thus, they can still pass useful information to 
others.

Other models hâve been devised in order to study the spread of behavior through so­
cial learning (Laland and Kendal, 2003; Cavalli-Sforza and Feldman, 1981). The goal of 
these models is to find a “signature” of social learning in the curves that represent the 
proportion of individuals in a population adopting a particular behavior. Unfortunately, 
these models do not consider simple explanations that could account for the adoption 
patterns observed (Laland and Kendal, 2003). Finally, there are models aimed at under-
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standing whether culture (the cumulative effect of social learning) and natural évolution 
internet (Feldman and Laland, 1996; Laland and Kendal, 2003). The basic assumption 
here is that an animal’s génotype may détermine what it learns, and that learned behavior 
affects, in turn, the sélection pressure on that génotype.
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Chapter 3

Incrémental Social Learning

In this chapter, we présent the incrémental social learning (ISL) framework. First, we de- 
scribe the problem of interférence in multiagent Systems. Then, we explain how interférence 
is addressed by the ISL framework and présent the framework’s algorithmic structure. We 
finish with a brief discussion of related work. Work specifically related to each instantiation 
of the ISL framework in our case studies is discussed in Chapters 4 and 5.

3.1 Interférence

There are different kinds of interactions among agents in multiagent Systems. Depending 
on the effect of such interactions, they can be labeled as “positive”, “négative”, or “neutral” 
interactions (Gershenson, 2007). Positive interactions facilitate the accomplishment of an 
assigned task. For example, in a collective transport task, robots form teams in order to 
transport objects that are too difficult for a single robot to move (Kube and Bonabeau, 
2000; Tuci et al., 2006). Négative interactions, also called interférence^ (Mataric, 1997), 
friction (Gershenson, 2007), or répulsive and compétitive interactions (Helbing and Vicsek, 
1999), are those that block or hinder the functioning of the system’s constituent agents. 
As a resuit, interférence decreases the performance of a multiagent System. For instance, 
in an ant-based clustering algorithm (see Section 2.1.2) agents can undo the actions of 
other agents, which increases the time needed by the algorithm to find a satisfactory final 
clustering. A neutral interaction does not affect the system’s dynamics in such a way that 
it benefits or harms progress toward the completion of an assigned task. Deciding whether 
an interaction is positive, négative, or neutral dépends on the time scale used to measure 
the interaction’s effects. For example, an interaction that involves two robots performing 
a collision avoidance behavior can be labeled as a négative interaction in the short term 
because time is spent unproductively. However, if the time horizon of the task the robots 
are performing is significantly longer than the time frame of a collision avoidance maneuver, 
then the overall effect of such an interaction may be negligible. In this case, such interaction 
can be labeled as neutral.

Interférence is one of the main challenges to overcome during the design and opera­
tion of Systems composed of many agents (Gershenson, 2007). For example, Kennedy and 
Eberhart, the designers of the first PSO algorithm, pondered different candidate particle 
interaction rules before proposing the rules that we now know (see Eqs. 2.3 and 2.4). Their 
ultimate goal was to design rules that promoted positive interactions between particles. In 
the final design, particles cooperate, that is, they engage in positive interactions, by ex- 
changing information with one another about the best solution to an optimization problem 
that each particle finds during its lifetime. At the same time, however, such an exchange 
of information can “distract” particles and make them search in régions of a problem’s 
search space that seem promising but that in fact do not contain the optimal solution

^In this dissertation, we use the term interférence to refer to the set of négative intereictions that occur 
within multiagent Systems, including swarm intelligence Systems.
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that the particles are looking for. The net effect of such interactions is that particles may 
spend objective function évaluations unproductively. This effect intensifies as the size of 
the particle swarm increases.

Directly measuring interférence is difficult. First, one can détermine whether the effects 
of an interaction, or a set of interactions, are bénéficiai or not only after the task has been 
performed. Second, as we mentioned before, an interaction may be positive, négative or 
neutral, depending on the time scale used to measure its effect. In this dissertation, we 
advocate for qualifying interactions based on their effects in the long term. We do so 
because it is only at a time scale similar to the time a System needs to perform a task that 
labeling interactions is relevant for practical purposes. Third, the nature of the interactions 
themselves poses a challenge. In some Systems, agents internet directly on a one-to-one or 
one-to-some basis, such as in PSO algorithms. In other Systems, such as ACO algorithms, 
agents internet indirectly through the environment and there may be extended periods 
of time between the moment an agent acts and the moment another agent is affected by 
those actions. With these restrictions, interférence can only be measured indirectly through 
observation of the system’s performance. Despite these difficulties, two measures can be 
used to indirectly gauge interférence; (i) the time needed by the System to reach a desired 
or target State, or (ii) the amount of work performed in a certain amount of time. If one 
compares two Systems, we expect the System with higher interférence to make progress 
toward a desired State more slowly than the System with lower interférence. As a resuit, if 
one let two Systems run for the same amount of time, the System with larger interférence 
would perform less work than the System with lower interférence.

There are two properties of Systems composed of many agents that are in direct relation 
with interférence:

1. Interférence increases with the number of agents in the System. This effect is the 
resuit of the increased number of interactions within the System. The larger the 
number of agents that comprise the System, the higher the probability of a négative 
interaction occurring.

2. Interférence tends to decrease over time. At one extreme of the spectrum, one can 
find a System in which interactions between agents are completely random or not 
purposeful. In such a case, it is expected that agents cannot coordinate and thus, 
cannot perform useful work. Thus, we expect interférence to remain at a constant 
level over time. At the other extreme of the spectrum, one finds well-behaved Systems 
consisting of a number of agents whose interaction rules are designed in order to make 
agents coordinate with each other. Initially, we expect a high-level of interférence 
because agents would not hâve enough knowledge about their current environment. 
However, over time, the behavioral rules of these agents would exploit any gained 
knowledge in order to make progress toward the completion of the assigned task. 
Thus, we expect that in cases like these, interférence decreases over time, because 
the other alternatives would be a random behavior or a pathological System in which 
interférence increases.

By making use of these two properties, it is possible to control, to a certain extent, the 
levels of interférence in a multiagent System. The incrémental social learning framework, 
which will be described next, is based on this observation.

3.2 The Incrémental Social Learning Framework
Our goal with the incrémental social learning (ISL) framework is to reduce the effects of 
interférence in swarm intelligence Systems. ISL is a framework because it offers a concep- 
tual structure that does not prescribe a spécifie implémentation of the ideas on which it 
relies. Each instantiation of the framework will benefit from knowledge about the spécifie 
application domain, and therefore, spécifie properties of the framework should be analyzed 
in an application-dependent context.
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Algorithm 3 Incrémental social learning framework

Input: Agent addition criteria, stopping criteria 
1: /* Initialization */
2: t ^— 0
3: Initialize environment E*
4: Initialize population of agents X*
5:
6: /* Main loop */
7: while Stopping criteria not met do 
8: if Agent addition criteria is not met then
9: default(X*, E*) /* Default System */

10: else
11: Create new agent amw
12: slearn(a„euj, X*) /* Social learning */
13: X‘+l ^ X‘ U {ünew}
14: end if
15: E*"^^ ■<— update(E^) /* Update environment */
16: t i— t + 1
17: end while

The ISL framework consists of two éléments that manipulate and exploit the two prop>- 
erties mentioned in Section 3.1. The first element of the framework directly affects the 
interférence levels within a System by manipulating the number of interactions among the 
system’s constituent agents. Such a control is achieved by varying the number of agents in 
the System. The strategy for controlling the size of the agent population exploits the second 
property, that is, that interférence tends to decrease over time. The System starts with a 
small population that grows at a rate determined by agent addition criteria specified by 
the user. Two phenomena with opposite effects occur while the System is under the control 
of the ISL framework. On the one hand, interférence increases as a resuit of adding new 
agents to the swarm (first property described in Section 3.1). On the other hand, interfér­
ence decreases because the System opérâtes while the population grows (second property 
described in Section 3.1).

The second element of the framework is social learning. This element is présent before 
a new agent freely interacts with its peers. Social learning is used so that the new agent 
does not produce extra interférence due to its lack of knowledge about the environment. 
Leadership, a swarm intelligence mechanism (see Chapter 2), is présent in the framework 
in the process of selecting a subset of agents from which the new agent learns. The best 
strategy to select such a set dépends on the spécifie application. However, even in the case 
in which a random agent is chosen as a “model” to learn from, knowledge transfer occurs 
because the selected agent will hâve more expérience than the new agent that is about 
to be added. As stated in Chapter 2, we take a functional approach to the use of social 
learning concepts. We do not pay attention to the mechanisms used by the agents to learn 
from each other. Instead, we are interested in the effects that social learning has on the 
agents and on the System.

The two éléments that compose ISL are executed iteratively as shown in Algorithm 3.
In a typical implémentation of the ISL framework, an initial population of agents is 

created and initialized (line 4). The size of the initial population dépends on the spécifie 
application domain. In any case, the size of this initial population should be small in order 
to reduce interférence to the lowest level possible. A loop structure allows the interspersed 
execution of the underlying System and the création and initialization of new agents (line 
7). This loop is executed until some user-specified stopping criteria are met. Stopping 
criteria can be spécifie to the application or related to the ISL framework. For example, the 
framework may stop when the task assigned to the swarm intelligence System is completed
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or when a meiximum number of agents are reached. While executing the main loop, agent 
addition criteria, which are also supplied by the user, are repeatedly evaluated (line 8). 
The criteria can range from a predefined schedule to conditions based on statistics of 
the system’s progress. If the agent addition criteria are not met, the set of agents work 
normally, that is, the underlying swarm intelligence System is executed. In line 9, such an 
event is denoted by a call to the procedure defauIt(X‘, E‘). If the agent addition criteria 
are satisfied, a new agent is created (line 11). In contrast to a default initialization such 
as the one in line 4, this new agent is initialized with information extracted from a subset 
of the currently active population (line 12). Such an initialization is denoted by a call 
to the procedure slearn(a„etu,X*). This procedure is responsible for the sélection of the 
agents from which the new agent will learn, and for the actual implémentation of the social 
learning mechanism. Once the new agent is properly initialized, it becomes part of the 
System (line 13). In line 15, we explicitly update the environment. However, in a real 
implémentation, the environment may be continuously updated as a resuit of the system’s 
operation.

In most swarm intelligence Systems, the population of agents is large and homogeneous, 
that is, it is composed of agents that follow exactly the same behavioral rules. Thus, any 
knowledge acquired by an agent is likely to be useful for another one. The social learning 
mechanism used in an instantiation of the ISL framework should allow the transfer of 
knowledge from one agent to the other. In some cases, it is possible to hâve access to the 
full State of the agent that serves as a “model” to be imitated, and thus, the social learning 
mechanism is simple. In other cases, access to the model agent’s State may be limited and 
a more sophisticated mechanism is required. In most cases, the resuit of the social learning 
mechanism will not be simply a copy of the model agent’s state, but a biased initialization 
toward it. Copying is not always a good idea because what may work very well for an 
agent in a System composed of n agents may not work well in a System of n + 1 agents.

3.3 Related Work

The ISL framework and many works in the field of multiagent Systems (Wooldridge, 2009) 
share a common goal: interférence réduction. The means used by these works and the ISL 
framework to achieve this goal differ. In traditional multiagent Systems, interférence is a 
problem that has been tackled indirectly through the careful design of interaction proto- 
cols that consider ail the possible events that the agents can possibly expérience (Shoham 
and Tennenholtz, 1995; Gmytrasiewicz and Durfee, 2000). Examples of protocols designed 
in such a way are the following: Contract Net (Smith, 1980), coalition formation algo- 
rithms (Shehory and Kraus, 1998), or the protocols used for negotiation in agent-mediated 
electronic commerce applications (He et al., 2003). Tackling interférence has required a 
significant effort on the part of the multiagent Systems community. These efforts could 
be grouped into categories such as méthodologies, standards, or communication protocols. 
Early on in the development of the field of multiagent Systems, researchers recognized that 
for analyzing and designing multiagent Systems, new méthodologies were required. Well- 
known méthodologies that are the resuit of work in this direction are MaSE (Deloach et al., 
2001) and the Gaia methodology (Zambonelli et al., 2003). Through these méthodologies, 
interactions between agents are identified and carefully designed. Standards hâve been pro- 
posed to allow interoperability of agents developed by different parties. The best known 
organization dedicated to establish spécifications for multiagent Systems is the Foundation 
for Intelligent Physical Agents (FIPA)^ (O’Brien and Nicol, 1998). A sign that interactions 
are one of the main issues in the design of multiagent Systems is that the core FIPA spéci­
fication is the one related to agent communication. Méthodologies and standards call for a 
common communication language between the agents that comprise a System. As a resuit, 
some agent languages hâve been proposed. For example, languages such as KQML (Finin 
et al., 1994), or FIPA-ACL (IEEE Foundation for Intelligent Physical Agents, 2011) hâve

^http://wwv.fipa.org
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explicit spécifications that let agents exchange knowledge with each other.
A complété review of the literature in the field of multiagent Systems that deals with 

interférence, either directly or indirectly, is ont of the scope of this dissertation. However, 
we can say that there are strong différences between practically ail previous works in the 
field of multiagent Systems and the ISL framework. First, the size of the Systems that 
can be designed with a traditional approach is limited to just a few and very sophisticated 
agents. Moreover, when taking a traditional approach, one is necessarily assuming that the 
number of agents is constant over time. This assumption is needed because with traditional 
approaches, each agent plays a spécifie rôle in the System, and adding or removing an agent 
would require the designer to re-program ail or at least some of the agents that comprise 
the System.

In contrast, in the ISL framework we assume that the agents are very similar, if not 
identical, to each other. As a resuit, since each agent does not play a spécifie rôle, it is 
possible to assume that the number of agents can change over time and that the total 
number of agents can be very large. Thus, even though the framework may work for small 
Systems, we are proposing the framework to be primarily used with Systems composed of 
a large number of agents. Hence, we expect the ISL framework to hâve a larger impact on 
the design and operation of swarm intelligence Systems than on the design and operation 
of small multiagent Systems.

The other body of literature that is related to the ISL framework is the one in which 
social learning or related concepts are used in the context of multiagent Systems and swarm 
intelligence Systems. Two main categories of works can be distinguished: (i) those that 
study social learning using a multiagent System as a tool, and (ii) those that exploit social 
learning as a tool for developing better performing Systems. The ISL framework belongs to 
this second category of works. Until recently, the first category was the most active of the 
two. Simulations of social Systems in computers began in the 1950s (Conte et al., 1998) 
and hâve continued gaining popularity. This increased popularity is evidenced by the fact 
that there are now scholarly journals, such as the Journal of Artificial Societies and Social 
Simulation (JASS)^, devoted to the topic. Areas of interest in this category range firom 
the study of the usefulness of social learning under different environmental conditions (An- 
nunziato and Pierucci, 2003; Noble and Pranks, 2003; van der Post and Hogeweg, 2004; 
Priesterjahn and Eberling, 2008) to the évolution of language and culture (Divina and 
Vogt, 2006; Vogt, 2006). The second category of works has being attracting the attention 
of a growing community. Social learning as a mechanism to improve the performance of 
Systems composed of many agents has been investigated in the context of robotics (Mataric, 
1997; Pini and Tuci, 2008; Cakmak et al., 2010), multiagent Systems (Kopp and Graeser, 
2006; Garcia-Pardo et al., 2010), and neural computation (Jang and Cho, 2002).

In the swarm intelligence field, social learning concepts hâve been associated with PSO 
algorithms almost since they were first proposed. Kennedy (2006) explains how the de­
velopment of the first PSO algorithm was heavily influenced by Latané’s social impact 
theory (Latané, 1981). This theory argues that an individual changes its psychological 
State to a degree that is a function of the strength, immediacy, and the number of other 
individuals. In the context of PSO algorithms, this theory was another source of inspira­
tion for the rules that govern the movement of particles. Although swarm intelligence is 
based on the idea that the actions of one agent can affect the behavior of another agent, for 
instance, via stigmergy (see Section 2.1), social learning has been overlooked by researchers 
in the field. We hope that this dissertation makes social learning research more visible to 
the swarm intelligence community, and that the community of scientists studying social 
learning in animais becomes aware of the potential of swarm intelligence as a hypothesis 
and application testing field. We hope that the mutual exchange of ideas will serve to 
enrich both fields.

In the next two chapters, we will describe the case studies designed to test the effective- 
ness of the ISL framework. Previous work specifically related to the instantiation of the 
ISL framework in the context of each case study is presented in the corresponding chapter.

®http;//jasss.soc.surrey.ac.uk
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Chapter 4

Incrémental Social Learning Applied 
to Particle Swarms

In this chapter, we describe the first of the two case studies that we use to evaluate the 
effectiveness of the ISL framework. In the instantiation of the ISL framework described in 
this chapter, a PSO algorithm serves as the underlying swarm intelligence System. Three 
different algorithms are presented. The first two algorithme are straightforward instantia- 
tions of the ISL framework. The third algorithm is the resuit of a more elaborate design 
process in which automatic tuning plays an important rôle.

In Section 2.2, we said that the meanings of “expérience” and “adaptation” need to be 
explicitly defined in order to understand the rôle of social learning in a spécifie instantiation 
of the ISL framework. In the case study presented in this chapter, these terms are intimately 
related to the purpose of particles in a PSO algorithm. The term “expérience” is the 
memory that each particle maintains about its search history, that is, the best solution 
found since the beginning of the algorithm’s run. The term “adaptation” is interpreted as 
the actual quality of that best-found solution. Therefore, in the context of the case study 
presented in this chapter, “learning” is interpreted as a process through which a particle’s 
memory is used in order to find better solutions to the optimization problem at hand. The 
social learning procedure used throughout this chapter (see Section 4.1) is consistent with 
this interprétation.

As mentioned in Section 2.1.2, PSO is a direct search method. Thus, no assumptions 
are made regarding the features of the problems PSO is applied to. In other words, our 
experiments are carried out under the assumption that the objective function’s dérivatives 
are not available and that only direct fonction évaluations can be performed. In this 
context, interférence in PSO algorithms is seen as a trade-off between solution quality and 
the number of fonction évaluations used. This trade-off is greatly affected by the size of the 
population: When a limited number of fonction évaluations are allowed, small populations 
obtain the best results. In contrast, when solution quality is the most important aspect, 
large populations usually work better (van den Bergh and Engelbrecht, 2001) (see also 
Appendix A). Thus, the analysis of the benefits due to the use of the ISL framework is 
based on the solution quality obtained after a certain number of fonction évaluations or 
the number of fonction évaluations needed to find a solution of a certain quality.

4.1 Incrémental Particle Swarm Optimizer

The first instantiation of the ISL framework in the context of PSO algorithms is an algo­
rithm with a growing population size that we call incrémental particle swarm optimizer 
(IPSO). IPSO is based on the constricted PSO algorithm, which strictly speaking is a 
particular setting of numerical parameters of the standard PSO algorithm. However, this 
setting has become so popular since it was proposed by Clerc and Kennedy (2002) that we 
refer to it as a variant.
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Clerc and Kennedy (2002) modified Eq. 2.3 and introduced a constant called constric- 
tion factor. The goal of this modification was to avoid the unlimited growth of the particles’ 
velocity that may occur with certain parameter settings (Clerc and Kennedy, 2002). In 
the constricted PSO variant, the velocity update rule for particle i’s j-th component is

^ (Kj + "PiUiiptlj - xlj) + P2U2{lblj - xlj)) , (4.1)

where x Is the constriction factor. The value taken by the constriction factor is based 
on the following relation: x = 2/ |2 — cp — where = ipi + <^2 and <p > 4.
Note that Eqs. 2.3 and 4.1 can be équivalent if the values of w and ip\ and <P2 are set 
appropriately.

In the ISL framework, every time a new agent is added to the population, it learns 
socially from a subset of the more experienced agents. In IPSO, every time a new particle 
is added, it is initialized using information from particles that hâve already been part of the 
swarm for some time. This social learning mechanism is implemented as an initialization 
rule that moves a new particle from an initial randomly generated position in the problem’s 
search space to one that is doser to the position of a particle that serves as a “model” to 
imitate (hereafter referred to as model particle). The initialization rule used in IPSO, as 
applied to a new particle’s j-th dimension, is as follows:

^new,j ~ ^new,j ~b C * {Pmodel.j ^new.j)i (^*2)

where is the new particle’s updated position, Xnew,j is the new particle’s original
random position, Pmodeij is the model particle’s previous best position, and {/ is a uniformly 
distributed random number in the range [0,1). Once the rule is applied for each dimension, 
the new particle’s previous best position is initialized to the point and its velocity is 
set to zéro. The random number U is the same for ail dimensions in order to ensure that the 
new particle’s updated previous best position will lie somewhere along the direct attraction 
vector p.^g^^i — Xnew Using independent random numbers for each dimension would reduce 
the strength of the bias induced by the initialization rule because the resulting attraction 
vector would be rotated and scaled with respect to the direct attraction vector. Finally, 
the new particle’s neighborhood, that is, the set of particles from which it will receive 
information in subséquent itérations, is generated at random, respecting the connectivity 
degree of the swarm’s population topology. A pseudo-code version of IPSO is shown in 
Algorithm 4.

The model particle can be selected in several ways. Here we présent the results obtained 
with the best particle as a model. Experimental results indicate that choosing the model 
particle at random does not produce significantly different results. We conjecture that this 
resuit is due to the tendency that particles hâve to cluster in the search space. In such a 
case, the distance between the best and a random particle would not be large enough to 
produce significantly different results.

4.2 Incrémental Particle Swarm Optimizer with Local 
Search

The second instantiation of the ISL framework in the context of PSO algorithms is an 
incrémental particle swarm optimizer with local search (IPSOLS). This algorithm Works 
similarly to IPSO; However, in IPSOLS, particles not only move using the traditional PSO 
rules, but also by invoking a local search procedure. In the context of the ISL framework, 
the local search procedure can be interpreted as a particle’s “individual learning” ability 
because it allows a particle to improve its solution in the absence of any social influence.

In IPSOLS, the local search procedure is called only when it is expected to be bénéficiai; 
the local search procedure is called only when a particle’s previous best position is not 
considered to be already in a local optimum. We détermine when to call again the local 
search procedure by letting the local search procedure return a value that indicates either
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Algorithm 4 Incrémental particle swarm optimizer: IPSO

Input: Objective function / : © Ç R" —> R, the initialization domain 0' Ç 0, the agent-addition 
criterion A, the maximum population size N, and the parameters used by the PSO rules (<pi, 
tp2, and x).

Output: The best found solution aol G ©

/* Initialization */ 
t •<— 0 /* Itération counter */ 
i 1 I* Population size */
Initialize position vector x/ to random values within 0' 
Initialize velocity vector vf to zéro
pI ^ xf

/* Main Loop */ 
repeat

/* PSO Rules */ 
for J = 1 to i do

Generate 
if /(x‘+^) < f{p*) then

end if 
end for

using Eqs. 4.1 and 2.4

/* Population Growth and Social Learning */ 
if Particle addition criterion A is met and i < N then

Initialize vector using Eq. 4.2 for each component 
Initialize velocity vector to zéro
‘-i+i

i + l
end if
t G— t -f- 1
sol i— argmin /(pj)

je{i....i}
until Stopping criterion is satisfied

that it finished because a very small différence between two solutions was detected or that 
the maximum number of itérations allocated to it was reached. In the first case, it is 
assumed that the local search has converged to a local optimum, and the particle does 
not invoke the procedure again because no further significant improvements are expected. 
In the second case, the particle may call the local search procedure again because further 
significant improvements can still be achieved. The two parameters of the local search 
procedure that control these exit criteria are the tolérance and the maximum number of 
itérations respectively. IPSOLS is sketched in Algorithm 5.

In principle, any local search algorithm for continuons optimization can be used with 
IPSOLS. In the first set of experiments (reported in Section 4.4), we use Powell’s conjugate 
directions set method using Brent’s technique (Brent, 1973) as the auxiliary line minimiza- 
tion algorithm. In Section 4.5.2, we explore the impact that the sélection of a spécifie local 
search algorithm has on the performance of IPSOLS.

Powell’s conjugate directions set method tries to minimize an n-dimensional objective 
function by constructing a set of conjugate directions through a sériés of line searches. 
Directions Vi, i G {1 : n}, are said to be conjugate with respect to an rr x n positive 
definite matrix A, if

vfAvj = 0, 'iij € ijt:j.

Additionally, directions Vi, i G {1 : n}, must satisfy linear independence to be con- 
sidered conjugate. Conjugate search directions are attractive because if A is the Hessian
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Algorithm 5 Incrémental partiale swarm optimizer with local search: IPSOLS

Input: Objective function / : 0 Ç E" -> R, the initialization domain 0' Ç 0, the agent-addition 
criterion A, the maximum population size N, the local search procedure parameters (tolérance, 
maximum number of itérations, step size) and the parameters used by the PSO rules (<pi, <P2, 
and x)-

Output: The best found solution sol e 0

/* Initialization */ 
t <— 0 /* Itération counter */ 
i i— l /* Population size */
Initialize position vector i/ to random values within 0'
Initialize velocity vector v* to zéro
p! t- xt
Si true /* If Ci = true, a local search should be invoked for particle i */

/* Main Loop */ 
repeat

/* Local Search */ 
for J = 1 to i do 

if Sj = true then
Cj localsearch(/,Pj‘) /* true if exited without converging, else returns false */ 

end if 
end for

/* PSO Rules */ 
for j = 1 to i do

Generate Xj~^^ using Eqs. 4.1 and 2.4 
if /(Xj‘+^) < /(pj) then

6j true 
end if 

end for

/* Population Growth and Social Learning */ 
if Agent-addition criterion A is met and i < N then

Initialize vector p*^i using Eq. 4.2 for each component 
Initialize velocity vector to zéro
^i+i ■ p!+i
Ci+i <— true
i •(— i -I- 1

end if

t i— f -j- 1
sol <— argmin J {pi)

J6{1....<}
until Stopping criterion is satisfied

matrix of the objective function, it can be minimized in exactly n line searches (Press et al., 
1992).

Po-well’s conjugale directions set method starts from an initial point po £ M". It 
then performs n line searches using the unit vectors ej as initial search directions Ui. 
A parameter of the algorithm is the initial step size s of the search. At each step, the 
new initial point from which the next line search is carried out is the point where the 
previous line search found a relative minimum. A point p„ dénotés the minimum discovered 
after ail n line searches. Next, the method éliminâtes the first search direction by doing 
Ui = Ui+i, Vi 6 {1 : n—1}, and replacing the last direction for Pn—Po- Then, a move to 
the minimum along the direction u„ is performed. The next itération is executed starting
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from the minimum found in the last step. We used an implémentation of the method 
similar to the one described by Press et al. (1992). In this implémentation, line searches 
receive a parameter referred to as step size that détermines the initial points from which 
the method performs its initial bracketing steps. The line search method is restricted to a 
line segment equal to 100 times the length of the step size. Thus, the line search procedme 
is not constrained within a line segment of length equal to the step size parameter, but 
can potentially explore the full search direction. Our implémentation terminâtes when the 
maximum number of itérations, MaxITER, is reached or when the tolérance FTol, that 
is, the relative change between solutions found in two consecutive itérations, falls below a 
certain threshold.

4.3 Determining the Probability Density Function In- 
duced by the Social Learning Rule

The position of a newly added particle in IPSO and IPSOLS can be modeled as a random 
variable Z which is a function of two indépendant continuons random variables X and Y. X 
is a uniformly distributed random variable in the complété initialization range [xmin, Xmax), 
while E is a uniformly distributed random variable in the range [0,1). Y détermines the 
strength of the attraction toward the position of the particle used as a model (the best 
particle in the swarm in our case). The model’s position is, strictly speaking, also a random 
variable due to the fact that it is the resuit of a number of itérations of the PSO position- 
update mechanism. However, when the initialization rule is invoked, the model’s position 
can be taken as a constant. Based on Eq. 4.2, Z is defined as follows:

Z = X + Y{c-X), (4.3)

where Xmin < c < Xmax is a constant representing the location of the attractor particle. 
The distribution function Fz of Z is given by

Fz{a) = P{Z < a) = jj f{x,y)dxdy, (4.4)
(x,y):x+y(c—x)<a

where f{x, y) is the joint probability distribution of X and Y.
Since X and Y are independent, we hâve that

f{x,y) = fx {x)fY {y) =------- ^------- , (4.5)
^max ^min

where fx and fy are the marginal probability functions of X and Y respectively. This 
holds for Xmin < X < Xmax and 0 < y < 1.

Using 4.5 and considering that y = fEf i we can rewrite 4.4 as follows

Fz{a)

1
^max ^min

a — X .------ dx.
c — X

(4.6)

Eq. 4.6 must be solved in two parts: when Xmin < x < a < c and when c < a < x < 
Xmax- In the spécial case when x = c, Fz(a) = c/{xmax ~ ^min) (see Eq. 4.3).

When Xmin < X < a < c, we obtain

Fz(a)
1 r a-X ^---------  I ------ dx

: Xmin Jxmin ^ ^

-------- O + (a — c) In
•'TTiax '*'Tnin

C X-n (4.7)
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Search range

Figure 4.1: Probability density function induced by the initialization rule of new particles. 
In the figure, the attractor Pmodei,j = 0.2. The initialization range in this example is [0,1). 
The figure shows both the analytical density function and the density histogram obtained 
using Monte Carlo simulation (10® samples).

When c < a < X < Xmax< we obtain

Fz(a) =
1

^max ^min 
1

X.max ‘*'771171

/•Xm« a-x , '
1—1 ------- dxJ a C-X

a + (a — c) In
C

C — a

Hence the probability density function fz of Z is given by

fz{z) = -^Fz{z) = -------^
ÜZ ^max •^min

In I

0
Inl

if Z < c 

if 2 = c 
if Z > c.

(4.8)

(4.9)

Changing variables, we obtain the probability density function induced by the social 
learning rule for dimension j:

fXi(Xj)
1

^maxj ^min,j

'in Pmodel.i
Pmodel,j ® J

0
In PmodeL. i ^max. i

Pmodelfj

if Xj ■< Pmodel,j 

if Xj = pmodeUj 
if Xj > Pmodel,j »

(4.10)

where Xminj and Xmaxj are the minimum and maximum limits of the initialization range 
over the problem’s jth dimension and Xminj ^ Xj < Xmaxj- Figure 4.1 shows the exact 
density function and a density histogram obtained using Monte Carlo simulation when the 
initialization range is [0,1) and Pmodeij = 0.2. In a density histogram, the height of each 
rectangle is equal to where Oj is the number of observations of class i in an experiment 
of N samples. The value Wi is known as class l’s width, and it is the length of the range 
that defines class i. In our case, we set the class width to Wi — 0.02.

Most of the samples concentrate around the model’s position as desired. Note, however, 
that there is a nonzero probability of sampling régions far away from the model. This 
probability distribution offers a certain level of exploration-by-initialization which would 
be difficult to obtain with a normally distributed initialization around the model paxticle’s 
position. The problem would be that setting the right value for the standard déviation 
would dépend on the model particle’s position. The probability density function induced
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Figure 4.2: Probability density function induced by the initialization rule of new particles 
when the attractor lies outside the original initialization range. In the figure, the attractor 
Pmodeij = 1-2. The initialization range is [0,1). The figure shows that the density function 
follows the analytical density function up to the limit of the original initialization range. 
The histogram obtained using Monte Carlo simulation (10® samples) shows the actual 
density function.

by the new particles initialization rule is not symmetric except in the case Pmodeij = 
{xmaxj + The expected value of a new particle’s position is the following:

E( j) "h F/(f/) {pmodelj F(Xriew,j))

— E{Xnew,j^ "f“ 2 (.P^odetfj E{Xnew,j'Ÿ} 
d^maXfj ^ Pmodel,j (4.11)

The analysis presented above is valid only if the attractor particle’s position is within the 
range [xmin,j,^max,j)- If the attractor is outside the initialization range, the probability 
density function remains the same within the initialization range. However, the probability 
density function is similar to a uniform distribution outside this range (see Figure 4.2).

Under these conditions, a new particle will follow the model from only one of its sides. 
The initialization rule is not able to position a new particle beyond the location of the 
attractor particle if this particle is outside the original initialization range. This effect is 
not necessarily a drawback because one would usually expect the sought global optimum 
to lie within the chosen initialization région.

4.4 Experimental Evaluation

In this section, we first describe the setup used to carry out our experiments. Next, we 
présent and discuss the results of the empirical performance évaluation of the algorithme 
presented in Sections 4.1 and 4.2.

4.4.1 Setup

The performance of IPSO and IPSOLS was compared to that of the following algorithme:

1. A constricted PSO algorithm with constant population size. This algorithm was 
included in the évaluation in order to measure the contribution of the incrémental 
population component used in IPSO. This algorithm is labeled as PSO-X, where X 
is the population size.
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2. A recently proposée! PSO algorithm, called EPUS, in which the population size varies 
over time (Hsieh et al., 2009). This algorithm increases the population size by one 
if the best-so-far solution is not improved during h consecutive itérations and if the 
current population size is not larger than a maximum limit. The new particle’s 
position is equal to the resuit of a crossover operation on the personal best positions 
of two randomly selected particles. If the best-so-far solution is improved during h 
consecutive itérations, the worst particle of the swarm is removed from the swarm 
unless the population size falls below a minimum limit after the operation. Finally, 
if the population size is equal to the maximum limit but the swarm is unable to 
improve the best-so-far solution during h consecutive itérations, the worst particle is 
replaced by a new one. We do not use the mutation and solution sharing mechanisms 
described in (Hsieh et al., 2009) in order not to confound the effects of the variable 
population size with those of these operators.

3. A hybrid particle swarm optimization algorithm with local search (labeled PSOLS). 
This algorithm is a constant population size particle swarm algorithm in which the 
particles’ previous best positions undergo an improvement phase (via Powell’s con- 
jugate directions set method) before the velocity update rule is applied. The local 
search is only applied when a particle’s previous best position is not located in a local 
optimum, just as is done in IPSOLS. PSOLS was included in the évaluation because, 
by comparing its performance to that of IPSOLS, we can measure the contribution of 
the incrémental population component in combination with a local search procedure.

4. A hybrid algorithm (labeled EPUSLS) that combines EPUS with local search (Pow­
ell’s conjugate directions set method). This algorithm allows us to measure the 
relative performance différences that may exist between purely increasing and vari­
able population size approaches in combination with a local search procedure. The 
same parameter settings used for EPUS were used for EPUSLS.

5. A random restart local search algorithm (labeled RLS). Every time the local search 
procedure (also Powell’s conjugate directions set method) converges, it is restarted 
from a newly generated random solution. The best solution found so far is considered 
to be the output of the algorithm. This algorithm was considered a baseline for 
the évaluation of the effectiveness of the PSO component in EPUSLS, PSOLS, and 
IPSOLS.

Ail algorithms were run on a set of twelve commonly used benchmark functions whose 
mathematical définition is shown in Table 4.1. In ail cases, we used the 100-dimensional 
versions of the benchmark functions (n = 100). In our experimental setup, each algorithm 
was run with the same parameter settings across ail benchmark functions. The parameter 
settings used for each algorithm are the most commonly used in the PSO literature. These 
settings are listed in Table 4.2.

Our results are based on statistics taken from 100 independent runs, each of which 
was stopped whenever one of the following criteria was met: (i) 10® function évaluations 
had been performed, or (ii) the objective function value was less than or equal to 10“^®. 
However, it is still possible to find solutions with a lower value than this threshold because 
the stopping criteria were evaluated outside the local search procedure. To eliminate the 
effects of any possible search bias toward the origin of the coordinate System, at each run, 
a benchmark function was randomly shifted within the specified search range. Functions 
Schwefel and Step were not shifted since their optima are not at the origin of the coordinate 
System. Bound constraints were enforced by putting variable values of candidate solutions 
on the corresponding bounds. This mechanism proved to be effective and easily applicable 
to both PSO and local search components.

PSOLS was run with fewer particles than PSO because larger populations would hâve 
prevented us from observing the effects that are due to the interaction of the PSO and 
local search components, given the stopping criteria used. Given the number of function 
évaluations required by each invocation of the local search procedure and the maximum
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Table 4.1: Benchmark functions used for evaluating IPSO and IPSOLS
Name Définition Search Range

[®mtn»®maz]

Ackley -20=-“ Vi -Kci E?=l —(2-i)+20+. [-32,32]”

Axis-parallel
Hyper-ellipsoid

[-100,100]"

Expanded Schaffer ES(fe)=Y,^—l )+5(xyi,ii),where

S(x,y)-0.5+
[-100,100]"

Griewank [-600,600]"

Penalized function
{lOsin^ (’r!/i+l)]+(yn-l)^}

+ u(xt,10,100,4), where [-50,50]"
1 fe(xj—a)*” if n > a

Vi=H-(j:i-l-l)/4 , u(i,o,fc,m)=f if i, < a

y 0 otherwise
Rastrigin 10n-f-J3r=i (®f — 10cos(27rxi)) [-5.12,5.12]"

Rosenbrock [-30,30]"

Salomon l-C03(27Ty/i;^^l *?)+0-l\/S"=l [-100,100]"

Schwefel 418.9829ti+52Î^1 —Xj [-500,500]"

Sphere i:?=i [-100,100]"

Step 6n-tEr=lL:rd [-5.12,5.12]"

Weierstrass 1 co3^27rb*’ (xi+O.S)^^ — n j ,where
a=0.5, b=3,

]-0.5,0.5]"

Table 4.2: Parameter settings used for evaluating IPSO and IPSOLS
Setting(s) Algorithm(s)

Accélération coefficients: y’i = <P2 = 2.05 

Constriction coefficient: x = 0.729 

Maximum velocity: Vmax — Lxmax 

Population size: 10,100,1000 particles 

Population size: 5,10,20 particles 

Population size control paraimeter: h = 2 

Minimum population size: 1 particle 

Meiximum population size: 1000 particles 

Model particle for Initialization: Best 

Powell’s method tolérance: 0.01

Powell’s method maximum number of itér­
ations: 10
Powell’s method step size: 20% of the
length of the search range

AU except RLS 

AU except RLS 

AU except RLS 

PSO 

PSOLS

EPUS, EPUSLS 

EPUS, EPUSLS, IPSO, IPSOLS 

EPUS, EPUSLS, IPSO, IPSOLS 

IPSO, IPSOLS

EPUSLS, IPSOLS, PSOLS, RLS 

EPUSLS, IPSOLS, PSOLS, RLS

EPUSLS, IPSOLS, PSOLS, RLS

number of function évaluations allocated for each experiment, a large population would 
essentially behave as a random restart local search, which was included in the comparison.

AU particle swarm-based algorithms (PSO, PSOLS, EPUS, EPUSLS, IPSO and IP­
SOLS) were run with two population topologies; a fully connected topology, in which each 
particle is a neighbor to ail others including itself, and the so-called ring topology, in which 
each particle has two neighbors apart from itself. In the incrémental algorithms, the new 
particle is randomly placed within the topological structure.
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4.4.2 Performance Evaluation Results

Algorithms for continuous optimization are often evaluated according to two different cri- 
teria. One of these criteria measures the quality of the solutions (through the objective 
function values associated with them) that algorithms are able to find, given a maximum 
number of function évaluations. The other criterion meaaures the number of function évalu­
ations needed by algorithms to reach a target objective function value. Since the algorithms 
used in our study are stochastic, both performance measures are also stochastic. For this 
reason, we look at the distribution of the objective function values obtained after a certain 
number of function évaluations (the number of function évaluations used for tackling a 
problem is also called run length (Hoos and Stützle, 2004)), and the distribution of the 
number of function évaluations needed to reach some target objective function values.^ We 
also look at some central tendency measures to hâve a more aggregated summary of the 
performance of the compared algorithms. Finally, we présent a summary of the statistical 
data analysis performed on ail the data. In the discussion of the results, we pay particular 
attention to the two main components of the ISL-based algorithms: the variable population 
size and the use of a local search procedure.

Particle Addition Schedule

The first aspect that we investigate is the effect of the particle addition schedule on the 
performance of IPSO and IPSOLS. Figure 4.3 shows the average solution quality^ obtained 
with three instantiations of IPSO and four of the constant population size PSO as a function 
of the number of function évaluations used. The three instantiations of IPSO axe labeled 
“IPSO-A”, meaning that a new particle is added every X itérations. The labels used for 
the constant population size PSO are explained in Section 4.4.1.

Clearly, the particle addition schedule affects the exploration-exploitation behavior of 
IPSO. Faster schedules encourage exploration while slower ones encourage exploitation. 
The resuit of this behavior is that better solutions are found in the long run with IPSO 
with a fast particle addition schedule. In IPSOLS, the exploitative behavior induced by the 
local search procedure needs to be balanced with an exploration-encouraging, fast particle- 
addition schedule. Thus, in the experiments that are described next, we use the fastest 
particle addition schedule, that is, we add a particle every itération of the algorithm until 
a maximum population size is reached. In Section 4.5, both the initial population size and 
the particle addition schedule are free parameters that are later tuned.

Constant vs. Variable Population Size

The distributions of the objective function values after 10^ and 10® function évaluations 
are shown in Figures 4.4 and 4.5, respectively. On top of each box plot there may be two 
rows of symbols. The lower row, made of -t- symbols, indicates in which cases a statistically 
significant différence exists between the marked algorithm and IPSO (in favor of IPSO). 
The upper row, made of x symbols, indicates in which cases a statistically significant différ­
ence exists between the marked algorithm and IPSOLS (in favor of IPSOLS). Significance 
was determined at the 5% level using a Wilcoxon test with Holm’s correction method for 
multiple comparisons.

The performance of constant population size PSO algorithms without local search 
greatly dépends on the population size. These results, together with the ones of the pré­
viens section, confirm the trade-off between solution quality and speed that we mentioned 
at the beginning of this chapter. Swarms of 10 particles usually find better solutions than

^In this dissertation’s supplementary information web page Montes de Oca (2011), the reader can find 
the complété data that, for the sake of conciseness, are not included. Nevertheless, the main results are 
discussed in the text.

^The quality of a solution is its objective function value. For minimization problems, the lower the 
objective function value, the better. In the rest of the chapter, the terms “solution quality” and “objective 
function value” are used interchangeably.
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IPSO-1
IP80-5

• IPSO-10 PSO-1000
' PSO-100
• PSO-10
• PSO-i

10' 10^ 10^ 10* io’
Function évaluations

(a) Ackley

Function évaluations

(b) Rastrigin

Figure 4.3: Effect of the particle addition schedules on the performance of IPSO. We plot 
the average objective function value as a function of the number of function évaluations. 
In the figure, we plot the results obtained with three particle addition schedules as well as 
the results obtained with four instantiations of a constant population size PSO algorithm. 
Fully-connected topologies were used to produce the data on which this plots are based.

larger swarms up to around 10^ function évaluations. The swarms of 100 particles are typi- 
cally the best performing after 10® function évaluations, and after 10® function évaluations, 
the swarms with 1000 particles often return the best solutions. This tendency can also be 
seen in Table 4.3, which lists the médian objective function values obtained by the tested 
algorithms on ail benchmark fonctions at different run lengths.

Regarding the algorithms with variable population size, it can be said that IPSO is the 
best among the studied algorithms for runs of up to 10^ function évaluations. The data in 
Table 4.3 show that IPSO finds the best médian objective function values for 11 out of the 
12 fonctions used. IPSOLS and RLS find the best solutions for 6 out of the 12 possible
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(a) Ackiey (b) Axis-parallel Hyper-ellipsoid (c) Extended Schaffer

(d) Griewank (e) Penalized function
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Figure 4.4: The box plots show the distribution of the solution quality obtained with the 
compared algorithms for runs of up to 10'* function évaluations. These results correspond 
to the case in which a fully-connected topology is used with ail particle swarm-based 
algorithms. A Symbol on top of a box plot dénotés a statistically significant différence at 
the 5% level between the results obtained with the indicated algorithm and those obtained 
with IPSO (in favor of IPSO, marked with a + Symbol) or with IPSOLS (in favor of 
IPSOLS, marked with a x symbol).
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(a) Ackley (b) Axis-parallel Hyper-ellipsoid (c) Extended Schaffer

(d) Griewank (e) Penalized function (f) Rastrigin
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Figure 4.5: The box plots show the distribution of the solution quality obtained with the 
compared algorithms for runs of up to 10® function évaluations. These results correspond 
to the case in which a fully-connected topology is used with ail particle swarm-based 
algorithms. In the Griewank and Sphere functions, the solution values obtained with the 
traditional PSO algorithm with 10 particles are so much higher than those obtained with 
the other algorithms that its box plot does not appear. A Symbol on top of a box plot 
dénotés a statistically significant différence at the 5% level between the results obtained 
with the indicated algorithm and those obtained with IPSO (in favor of IPSO, marked 
with a + Symbol) or with IPSOLS (in favor of IPSOLS, marked with a x symbol).
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CHAPTER 4. INCREMENTAL SOCIAL LEARNING APPLIED TO PARTICLE
SWARMS

Table 4.4: Number of Times IPSO Performs Either 
Better or no Worse^ than Other PSO-based Algo- 
rithms at Different Run Lengths^

Evaluations PSO-10^ PSO-10^ PSO-IO-’ EPUS
17(5) 22 (2) 22 (2) 22 (2)

10^ 1 (5) 23 (1) 24 (0) 19 (2)
10“* 10 (2) 17 (7) 24 (0) 10 (2)
10^ 14 (0) 3 (7) 22 (2) 8 (2)
10® 23 (0) 10 (5) 19 (5) 9(3)

^ No worse cases shown in parenthesis.
^ 12 problems x 2 topologies = 24 cases.

cases for runs of up to 10^ function évaluations; however, the best results are distributed 
among ail the tested algorithms. For 10^ or more function évaluations, algorithms that 
use local search find the best solutions (except for the Salomon function). IPSOLS finds 
at least the same number of best solutions as the other local search-based algorithms. For 
runs of up to one million function évaluations, IPSOLS finds 8 out of the 12 possible best 
médian solutions.

Data from Figures 4.4 and 4.5, and Table 4.3 suggest that in contrast ivith constant 
population size PSO algorithms, the performance of EPUS and IPSO does not greatly 
dépend on the duration of a run. A strong point in favor of PSO algorithms that vary the 
population size over time is that both EPUS and IPSO compete with the best constant 
population size PSO algorithm at different run durations. However, the mechanism used for 
varying the size of the population does hâve an impact on performance as demonstrated in 
Table 4.4, which shows the number of times IPSO performs at least as well (in a statistical 
sense) as other PSO-based algorithms at different run durations. In total, 24 cases are 
considered, which are the resuit of summarizing the results obtained on the 12 benchmark 
functions using both the fully connected and ring topologies. Also in Table 4.4, one can 
see that IPSO dominâtes at least two of the constant population size PSO algorithms at 
different run durations. For runs of up to 10® function évaluations, the constant population 
size PSO algorithms with 100 and 1000 particles are dominated by IPSO. For longer runs, 
IPSO dominâtes the algorithms with 10 and 1000 particles. The data shown in Table 4.4 
demonstrate that the performance of IPSO follows closely the performance of the best 
constant population size PSO algorithm for a certain run-length. Regarding the différence 
in performance due to différences in the mechanism for varying the population size, IPSO 
dominâtes EPUS for short runs. For long runs, IPSO performs better or not worse than 
EPUS in half of the cases.

Use vs. No Use of Local Search

The local search component plays a major rôle in the performance of the algorithms that 
include it. Table 4.3 and Figures 4.4 and 4.5 show that for runs of at least 10^ function 
évaluations, the quality of the solutions obtained with the algorithms that include a local 
search procedure is typically higher than the quality of the solutions obtained with the 
algorithms that do not. The only case in which an algorithm without a local search 
component (IPSO) dominâtes is when solving the Salomon function. Speed is also affected 
by the use of a local search component. Table 4.5 lists the first, second, and third quartiles 
of the algorithms’ run-length distributions (Hoos and Stützle, 2004). A hyphen in an 
entry indicates that the target objective function value was not reached within the 10® 
function évaluations allocated for the experiments. Therefore, if there is a hyphen in a 
third quartile entry, least 25% of the runs did not find the target objective function value. 
A similar reasoning applies if there is a hyphen in a first or second quartile entry. The data 
in Table 4.5 show that the algorithms that combine a variable population size with a local 
search component (EPUSLS and IPSOLS) are the fastest and most reliable of the studied 
algorithms. EPUSLS and IPSOLS together are the fastest algorithms for 9 out of the 12 
considered functions.
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Table 4.5: First, second, and third quartiles of the number of function évaluations needed to find a target solution value^

Algorithm Quartile

Benchmark function 
(Target value)

Ackley
(10)

Axis-parallel
Hyper-ellipsoid

(0.01)

Extended
Schaffer

(10)
Griewank

(0.01)
Penalized

(0.001)
Rastrigin

(1000)
Roscnbrock

(0.01)
Salomon

(10)
Schwefel
(10000)

Sphere
(0,01)

Step
(10)

Weierstrass
(0.01)

3rd - - - 1.640+04 - - -
PSO-IO* 2nd - - - 4.41e-h03 -

Ist - - - 2.81e+03 - - - -
3?a - 1.05C4-04 3.09C-I-04 - - -

PSO-10^ 2nd - 3.65e+05 9.26e+03 2.61O+04 - 2.04e-|-05 - -
Ist 3.02e+04 2.84e+05 - 8.01O+03 2.11e-|-04 - 1.65e+05 - -
3rd 1.28e+05 - 6.00O+04 1.04O+05 - 7.04O+05 -

PSO-10^ 2nd 9.94e-f04 - 5.440+04 9.46e-|-04 - 6.21e-h05 -
Ist 8.56e+04 9.16e+05 5.93e+05 4.74e+04 - 8.83e+04 4.23e+05 5.71e-|-05 -
3rd l.lOe+05 - - 2.180+04 1.41e+05 - 5.49e-|-04 -

EPUS 2nd 1.02e+05 1.97e+05 1.33e-f-04 9.48e-|-04 - 5.15e-|-04 - -
Ist 9.57e+04 - 5.38e+04 1.23e+05 8.45e+03 e.iOo+04 - 4.750+04 -
3?a 7.10e+05 - 1.25e+04 - 2.21e-|-04 - 3.09O+05 2.26e-b05 -

IPSO 2nd 3.41C+04 6.24e+05 - 3.44e+05 9.530+03 - 2.00e-f-04 2.82e+05 1.530+05 -
Ist 2.16e+04 5.68e+05 - 2.70e+05 9.64e+05 7.25e+03 1.87e-j-04 6.47e+05 2.65e-b05 1.03e-l-05 -
3rd 1.39e+03 1.34C+05 2.61e-f04 1.23e+03 9.37C-I-02 - 9.81e+04 1.70e-|-03 8.62e-|-02 1.98e-l-05 -

PSOLS-5 2nd 9.38e+02 1.12e-|-05 1.25e-|-04 1.12e+03 8.93e+02 9.49e-|-04 1.60e-|-03 8.52e-t-02 1.59e-f05 -
Ist - 8.51e+02 9.54e+04 6.89e+03 1.09e+03 8.47O+02 - 9.24e+04 1.46e-f03 8.48e+02 1.42e-b05 -
3rd 1.39e+03 2.15C+05 2.66e+04 1.23e-i-03 9.42C-I-02 1.78e-l-05 1.71C-I-03 8.67e+02 3.68e-t-05 -

PSOLS-10 2nd - 9.44e+02 1.92e+05 1.25e+04 1.13e-1-03 8.98e-l-02 1.75e-|-05 i.eoe+os 8.57e-|-02 2.92e-j-05 -
Ist 2.65e+04 8.56e+02 1.76e+05 6.90e-f03 l.lOe-1-03 8.52e-|-02 4.33e+05 1.72e-f05 1.47e-|-03 8.53e+02 2.51e-b05 -
3r3 . 1.40e+03 3.76e+05 2.60e+O4 1.24e-|-03 9.52O+02 3.39e+05 1.72e+03 8.77e+02 6.68e-b05 -

PSOLS-20 2nd 9.54e+02 3.53e+05 1.25e+04 1.14e+03 9.08e-|-02 - 3.34e-l-05 1.61e-|-03 8.67O+02 5.80C-1-05 -
Ist 2.65e+04 8.66e+02 3.38O+05 6.91e-|-03 l.lle+03 8.62e+02 7.16e+05 3.31e+05 1.48e-|-03 8.63O+02 5.10C-I-05 1.85e-|-05
3fa 1.39e+03 4.75e+04 1.22e+03 9.1OO+02 8.70e+05 4.31O+04 1.69e+03 8.59e-1-02 -

EPUSLS 2nd 3.04e+05 8.60e+02 3.44e+04 1.41e+05 1.12e+03 8.64e+02 4.87e-f05 3.21O+04 i.eio+03 8.49e-f02 - -
Ist 3.92e+04 8.48e-|-02 2.99e-|-04 6.66e+03 l.lOe+03 8.22e-l-02 3.20e+06 2.86O+04 1.48e-|-03 8.45O+02 -
3r3 1.76C+05 1.38e+03 - 3.08e+04 1.22e+03 9.33O+02 - l.rOe+03 8.58e+02 8.58e-}-05

RLS 2nd 7.01e+04 9.34e+02 1.40e+04 1.12e-|-03 8.89e-f-02 - 1.59e+03 8.48e-f-02 3.80e-l-05
Ist 3.36e+04 8.47e-f02 6.91e+03 1.09e+03 8.43O+02 1.40e+O3 8.44e-}-02 - 1.37e+06
3rd 1.42e+04 1.38e+03 6.25e+04 2.46e+04 1.22e+03 9.33O+02 3.41O+04 1.70e-|-03 8.68e+02 1.02e+06 6.880 +05

IPSOLS 2nd 1.03e+04 9.34e+02 3.81e+04 1.36e-l-04 1.12e+03 8.89e-l-02 8.96e-|-05 3.10e-|-04 1.59e+03 8.48e-f-02 8.87e-l-04 4.11e-|-05
Ist 7.60e+03 8.47C+02 3.11e+04 6.82e+03 1.09e+03 8.430+02 3.82e-|-05 2.86e-l-04 1.46e+03 8.44e+02 4.30e+04 1.83e-l-05

^ Results of PSO-bascd algorithms obtained with a fully-connccted topology. The target value for each function is indicated under its name in parenthèses. The results 
with the lowest médian number of function évaluations are highlighted in boldface.
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CHAPTER 4. INCREMENTAL SOCIAL LEARNING APPLIED TO PARTICLE
SWARMS

Table 4.6: Number of Times IPSOLS Performs Either Bet- 
ter or no Worse^ than Other PSO-Local Search Hybrids at 
Different Run Lengths^

Evaluations PSOLS-5 PSOLS-10 PSOLS-20 EPUSLS RLS
10^ 0 (3) 0(2) 0 (2) 0 (24) 0 (23)
10^ 15 (6) 15 (6) 15 (6) 0 (23) 0 (23)
10^ 14 (5) 15 (4) 15 (4) 12 (11) 8 (15)
10® 15 (4) 14 (5) 14 (5) 19 (4) 14 (9)
10® 12 (5) 10 (7) 12 (5) 18 (2) 14 (9)

^ No worse cases shown in parenthesis.
^ 12 problems X 2 topologies = 24 cases.

In terms of the quality of the solutions found by the local search-based algorithms, 
IPSOLS outperforms EPUSLS, as seen in Tables 4.3 and 4.6. Table 4.6 shows the number 
of times IPSOLS performs either better or no worse (in a statistical sense) than other 
PSO-local search hybrids at different run durations.

The différence in performance between the constant population size algorithms that we 
observed when they do not use local search, almost disappears when local search is used. 
For runs of some hundreds of function évaluations, IPSOLS performs no better than any 
other hybrid PSO-local search algorithms (see first row in Table 4.6). These results occur 
for two reasons: (i) the Powell’s conjugate directions set method has to perform at least n 
line searches (n is the number of dimensions of the problem) before signifîcantly improving 
the quality of the solutions found, and (ii) PSOLS first explores and then invokes the local 
search component. However, for longer runs, IPSOLS clearly dominâtes ail other hybrid 
algorithms, including EPUSLS.

IPSOLS is an algorithm that repeatedly calls a local search procedure from different 
initial solutions. In this respect, IPSOLS is similar to a random restart local search algo­
rithm (RLS). However, the différence between RLS and IPSOLS is that in RLS, the new 
initial solutions are chosen at random, while in IPSOLS the new initial solutions are the 
resuit of the application of the PSO rules. Thus, a comparison of the results obtained 
with these two algorithms can give us an indication of the impact of the PSO component 
in IPSOLS. The results presented in Figmre 4.5 indicate that IPSOLS outperforms RLS 
in ail problems except on Axis-parallel Hyper-ellipsoid, Griewank, Penalized, Sphere and 
Weierstrass. In the case of the Sphere function, the local search procedure alone is able to 
find the optimum (with an objective function value that is lower than or equal to 10“^®, 
one of our stopping criteria). In the case of the Griewank function, IPSOLS solves the 
problem with a population of around 3 particles — data shown in Montes de Oca (2011). 
Thus, IPSOLS’s behavior is similar to that of RLS when its population does not grow 
signifîcantly (see Figure 4.6).

In Figure 4.6, we show two examples of the compared algorithms’ behavior over time. 
These examples correspond to the solution development over the number of function éval­
uations obtained by a sélection of the compared algorithms on the Rastrigin and Sphere 
functions. These functions are chosen so that the behavior of the algorithms on unimodal 
(Sphere) and multimodal (Rastrigin) functions can be compared. In these figures, we also 
show the average population size growth over time in IPSO, EPUS, EPUSLS and IPSOLS.

In some cases, as noted before, IPSOLS is outperformed by other algorithms for short 
runs (in our case, runs between 10^ and 10^ function évaluations). However, IPSOLS im- 
proves dramatically once the population size starts growing, as exemplifîed in Figrue 4.6(d) 
in which IPSOLS starts differentiating from RLS, EPUSLS and PSOLS after approximately 
5,000 function évaluations. IPSOLS improves rapidly once the local search procedure be- 
gins to make progress, as seen in Figure 4.6(c). When IPSOLS and EPUSLS are applied 
to the Sphere function, the population size does not grow (see Figure 4.6(e)). As a resuit, 
IPSOLS, EPUSLS, and RLS are équivalent on problems solvable by local search alone. In 
most cases, the population growth in IPSOLS is independent of the population topology 
used — data shown in Montes de Oca (2011).
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Figure 4.6; Solution development over time obtained by a sélection of the compared algo­
rithme (PSO-based algorithme using a fully-connected topology) on the Sphere and Rast- 
rigin functions. Figures (a) and (b) show the résulté without local search. Figures (c) and 
(d) show the résulté with local search. Figures (e) and (f) show the average population 
size growth in IPSO, EPUS, EPUSLS and IPSOLS.

An exception in the conclusions of the analysis of the résulté has been the Salomon 
function case. This function can be thought of as a multidimensional wave that is symmetric 
in ail directions with respect to the optimum. We believe that the poor performance of ail 
the tested local search-based algorithme is due to the undulatory nature of this function. 
When the local search is invoked in the proximity of the global optimum, valleys that are 
far away from it can actually attract the local search method. As a resuit, the global 
optimization algorithm that calls the local search method is “deceived.” This phenomenon 
seems to be exacerbated when Powell’s method is applied in high dimensions.

From a practitioner’s point of view, there are at least two advantages to using IPSOLS 
instead of a hybrid PSO algorithm: (i) IPSOLS does not require the practitioner to fix 
the population size in advance, hoping to hâve chosen the right size for his/her problem, 
and (ii) IPSOLS is more robust to the choice of the population’s topology. The différence
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Table 4.7: Amplitudes used in the Rastrigin function to obtain spécifie fitness distance 
corrélations (FDCs)

Amplitude FDC Amplitude FDC
155.9111 w 0.001 13.56625 Ri 0.6
64.56054 Ri 0.1 10.60171 Ri 0.7
40.09456 Ri 0.2 7.938842 Ri 0.8
28.56419 Ri 0.3 5.21887 Ri 0.9
21.67512 Ri 0.4 0.0 Ri 0.999
16.95023 Ri 0.5 - -

between the results obtained through IPSOLS with a fully-connected topology and with a 
ring topology are smaller than the différences observed in the results obtained through the 
hybrid algorithme — data shown in Montes de Oca (2011).

4.4.3 Is Social Learning Necessary?

The ISL framework calls for social learning when a new agent is added to the population. 
However, is social learning really necessary in the context of IPSO and IPSOLS? Would 
the performance of these algorithme be the same if new particles were simply initialized at 
random? In this section, we présent the results of an experiment aimed at measuring the 
effects of the social learning rule (Eq. 4.2) on the performance of IPSO and IPSOLS.

We measure the extent to which the initialization rule applied to new particles affects 
the quality of the solution obtained after a certain number of function évaluations with 
respect to a random initialization. For this purpose, IPSO and IPSOLS are run with 
initialization mechanisms that induce a bias of different strength toward the best particle 
of the swarm. These mechanisms are (in increasing order of bias strength): (i) random 
initialization, (ii) the initialization rule as defined in Eq. 4.2 (labeled as “weak bias”), and 
(iii) the same rule as defined in Eq. 4.2, but with the random number U drawn from a 
uniform distribution in the range [0.95,1) (labeled as “strong bias”).

The experiments are carried out on problems derived from the Rastrigin function. Each 
derived problem has different fitness distance corrélation (FDC) (Jones and Forrest, 1995). 
To compute a problem’s FDC, a set of sample solutions are generated. For each sample, 
its objective function value (called “fitness” in the evolutionary computation field where 
the measure originated) and its distance to a reference point are computed. The reference 
point can be the known optimum or the best known solution to the problem. A problem’s 
FDC is simply the corrélation between the objective function values of the samples and 
their distance to the reference point. If a problem’s FDC is large and positive, an algorithm 
that searches in the vicinity of the best-so-far-solution is expected to perform well. If the 
problem’s FDC is low or négative, the problem becomes much harder because the best-so- 
far solution does not give much information about which régions of the search space are 
promising.

Since the social learning rule used in IPSO and IPSOLS implicitly assumes that good 
solutions are close to each other, the hypothesis is that the performance of the algorithme 
dégradés as the problem’s FDC approaches zéro. Additionally, one hypothesizes that the 
rate of performance dégradation is faster with stronger initialization bias.

The Rastrigin function, whose n-dimensional formulation is nA+Y^'^—i {xf — A cos{u>Xi)), 
can be thought of as a parabola with a superimposed (co)sine wave with an amplitude and 
frequency controlled by parameters A and u> respectively. By changing the values of A and 
U one can obtain a whole family of problems. In our experiments, we set uj = 2tt, as is usu- 
ally done, and tuned the amplitude A to obtain functions with spécifie FDCs. The search 
range and the dimensionality of the problem are set to [—5.12, 5.12]" and n = 100, respec­
tively. The amplitude and the resulting FDCs (estimated using 10“^ uniformly distributed 
random samples over the search range) are shown in Table 4.7.
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IPSO and IPSOLS with the three initialization rules described above were run 100 
times on each problem for up to 10® function évaluations. To meeisure the magnitude of 
the effect of using one or another initialization scheme, we use Cohen’s d statistic (Cohen, 
1988), which for the case of two samples is defined as follows:

(4.12)
^pooled

with

^pooled — SQVt
(ni - l)cfi^ + (n2 - l)ef2^ 

ni + n2 - 2
(4.13)

where fii and <fj are the mean and standard déviation of sample i, respectively (Nakagawa 
and Cuthill, 2007).

As an effect size index, Cohen’s d statistic measures the différence between the mean 
responses of a treatment and a control group expressed in standard déviation units (Sheskin, 
2000). The treatment group is, in our case, the set of solutions obtained with IPSO and 
IPSOLS using the initialization rule that biases the position of a new particle toward the 
best particle of the swarm. The control group is the set of solutions obtained with IPSO 
and IPSOLS when new particles are initialized completely at random. (Since in our case 
the lower the solution value the better, the order of the operands in the subtraction is 
reversed.) An effect size value of 0.8, for example, means that the average solution found 
using the particles’ initialization rule is better than 79% of the solutions found without 
using it. The practical significance that the value associated with an effect has dépends, 
of course, on the situation under considération; however, Cohen (1988) States that a value 
of 0.8 can already be considered a large effect.

The observed effect sizes with 95% confidence intervals on the solution quality obtained 
with IPSO and IPSOLS after 10® function évaluations are shown in Figure 4.7.

In IPSO, the effects of using the new particles initialization rule are very different from 
the ones in IPSOLS. In IPSO, the weak bias initialization rule produces better results than 
random initialization only in two cases: (i) when the problem’s FDC is almost equal to 
one and the algorithm is run with a ring topology, and (ii) when the problem’s FDC is 
close to zéro, irrespective of the population topology used. In ail other cases, the weak bias 
initialization rule produces results similar to those obtained with a random initialization. 
The strong bias initialization rule reports benefits only in the case of a high FDC and a 
ring topology. In ail other cases, the strong bias initialization rule produces results that 
are significantly worse than the results obtained with a random initialization. The worst 
performance of IPSO with the strong bias initialization rule is obtained when the problem’s 
FDC is in the range (0.3,0.6). This behavior is a conséquence of the new particle’s velocity 
being equal to zéro, which effectively reduces the particle’s initial exploratory behavior. 
Setting the new particle’s initial velocity to a value different from zéro reduces the effect 
of the initialization bias because it would immediately make the particle move to a quasi- 
random position right after the first itération of the algorithm’s PSO component. The 
performance observed when the problem’s FDC is close to zéro is the resuit of the fact that 
with a fixed search range and a high amplitude, the parabolic component of the Rastrigin 
function has a much lower influence and many of the locally optimal solutions are of the 
same quality. Thus, moving close to or away from already good solutions has no major 
impact on the solution quality.

While the effect in IPSO is positive only in a few cases, in IPSOLS, the effect size 
is not only positive in almost ail cases but it is also large. IPSOLS with the weak bias 
initialization rule produces significantly better solutions than with a random initialization 
in ail but one case. This case corresponds to the situation where the problem’s FDC is 
close to one. When the strong bias initialization rule is used, IPSOLS produces better 
solutions than with random initialization when the problem’s FDC is in the range (0.1, 
1.0). In the range (0.4,1.0), the solutions obtained with a strong bias initialization rule axe 
better than or equal to those obtained with a weak bias initialization rule.
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(b) IPSO, Ring topology

(d) IPSOLS, Ring topology

Figtire 4.7: Effect size of the new particles initialization rule, as measured using Cohen’s d 
statistic with 95% confidence intervals (indicated by either error bars or dashed fines), on 
the solution quality obtained with IPSO and IPSOLS after 10® function évaluations. Two 
bias strengths are tested: (i) weak bias and (ii) strong bias. The reference results (fine at 
zéro) are obtained with a random initialization.

In IPSOLS, when the problem’s FDC is almost one, initializing a new particle com- 
pletely at random, or with a bias toward the location of the best particle of the swarm, 
is effectively the same. This phenomenon can be explained if we recall that IPSOLS is a 
local search algorithm that starts from a single solution. Since a local search algorithm 
alone can solve a problem with an FDC close to one, no population growth occurs, and the 
initialization rule is never used. Thus, it does not matter how new particles axe initialized. 
The dégradation of the effect size as the problem’s FDC decreases can be observed in the 
range (0.0,0.5) for the strong bias initialization rule and in the range (0.0, 0.3) for the weak 
bias initialization rule. As hypothesized, the rate of dégradation is faster when using a 
strong bias.

In summary, the use of the weak bias initialization rule in IPSOLS, which is the origi- 
nally proposed social learning rule, provides significant benefits over random initialization 
on the family of problems we examined with a fitness distance corrélation in the range 
(0,1).

4.5 IPSOLS+: A Redesigned IPSOLS

In this section, we présent a variant of IPSOLS, called IPSOLS+, that is the resuit of 
a redesign process based on an automatic parameter tuning System. The motivation for 
this approach arose from the fact that the once art of algorithm design, has turned into 
an engineering task (Stützle et al., 2007, 2009). In part, this transition has happened
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thajiks to the recent availability of automatic parameter tuning Systems, which make the 
semi-automated design of high-performing optimization algorithms possible. Nowadays, 
optimization algorithms can be seen as entities made of a number of components that a 
designer intégrâtes with one another in order to tackle an optimization problem. However, 
despite the progress hitherto made, there are still many decisions in the design process that 
are made by the designer based on intuition or limited information about the interaction 
between the chosen components and their behavior on the target problem. For example, a 
designer may choose a mutation operator for a genetic algorithm (Goldberg, 1989) based on 
information gathered through some limited tests. However, what if the designer’s choice of 
parameter settings during testing is unfortunate? Could one operator make the algorithm 
hâve a better average performance than another one once properly tuned?

Clearly, if the designer left ail the possibilities open until a final parameter tuning phase, 
the design problem could be seen as a stochastic optimization problem. First steps in this 
direction hâve already been taken with some very promising results (see e.g., (KhudaBukhsh 
et al., 2009; Lopez-Ibâfiez and Stützle, 2010)). In these works, however, the high-level 
algorithm architecture that defines the component interactions remains fixed and is based 
on the extensive expérience of the authors with the target problems. In this section, we take 
a step back and explore the intégration of automatic tuning as a decision-aid tool during the 
design loop of optimization algorithms. We see two advantages in such a tuning-in-the loop 
approach: (i) the parameter search space is kept to a reasonable size, and (ii) the resuit of 
tuning can give us insight into the interactions between algorithmic components and their 
behavior on the optimization problem at hand. We describe the whole redesign process of 
IPSOLS and study the final algorithm’s performance scalability as the dimensionality of 
the problem increases. This scalability study is carried out following the protocol defined 
by Lozano et al. (2011), which consists in running an algorithm 25 times on each of the 
19 benchmark functions listed in Table 4.8 for up to 5000n function évaluations, where 
n is the dimensionality of the function. Algorithms are stopped earlier if the objective 
function value of the best-so-far solution is lower than le—14 (we refer to this number as 
0-threshold). When an objective function value lower than the 0-threshold is found, we 
report Oe+00 instead. This évaluation protocol is used throughout the rest of this chapter.

Some of the benchmark functions shown in Table 4.8 are hybrid, that is, they combine 
two basic functions (from F\ to En). Herrera et al. (2010) describe the combination 
procedrue denoted by the Symbol 0. The parameter is used to control the number of 
components that are taken from a nonseparable function (functions F3, F5, Fg, and Fig)- 
A higher m„3, results in a larger number of components that corne from a nonseparable 
function.

For functions Fi to Fn (and some of the hybrid functions, Fig to F19), candidate 
solutions, X, axe transformed as ^ = x — o before évaluation. This transformation shifts 
the optimal solution from the origin of the coordinate System to o, with o € [Amin, Amax]"- 
For function F3, the transformation isz = x — o + l.

4.5.1 Tuning Algorithm: Iterated F-Race

During the redesign cycle of IPSOLS, we used iterated F-Race (Balaprakash et al., 2007; 
Birattari et al., 2010) to perform an ad-hoc tuning of the algorithm’s parameters on the 
complété benchmark function set shown in Table 4.8. F-Race (Birattari et al., 2002; Bi­
rattari, 2009) is at the core of iterated F-Race. F-Race is a method used for selecting the 
best algorithm configuration (a particular setting of numerical and categorical parameters 
of an algorithm) from of a set of candidate configiuations under stochastic évaluations. 
In F-Race, candidate configurations are evaluated iteratively on a sequence of problem 
instances. As soon as sufficient statistical evidence is gathered against a candidate con­
figuration, it is discarded from the race. The process continues until only one candidate 
configuration remains, or until the maximum number of évaluations or instances is reached.

The génération of candidate configurations is independent of F-Race. Iterated F-Race 
is a method that combines F-Race with a process capable of generating promising can-
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Table 4.8: Scalable Benchmark Functions for Large Scale Optimization
Name Définition Search Range

[■-^min) -^max]”

Fl Er=i-? [-100,100]"

F2 5 1 < i < n} [-100,100]"

F3 Er=“iMioo(2?-21+1)21)2] [-100,100]"

Fa, lOn -1- E7=i ~ 10cos(27r2i)) [-5,5]"

Fs 4èôi:r=i-?-nr=icos(^) + i [-600,600]"

Fs -20e~°'  ̂V" ^^=1 - ei ^‘‘=1 <^°®(2îT2i) ^ 20 + e [-32,32]"

Fr E"=iki| + n?=ikl [-10,10]"

Fs E"=i(EU^t)' 1 -65.536,65.536]"

Fg E"Ji^ fio(2i,2i+i) + /io(zn,2i),where
/lofx.ÿ) = (l2 + î/2)0.25(gj„2(5Q(2.2 + y2)0.1) ^ [-100,100]"

Fio E." (zf -f-2z2^j — 0.3cos (Stizi) — 0.4cos (4712:1+1) + 0.7) [-15,15]"

Fil (zf + zf^,r^HsinH50(zf + 2?+i)0 l) + 1) [-100,100]"

Fl 2 Fg ffî Fl , m„3 = 0.25 [-100,100]"

Fis Fg © F3 , mns = 0.25 [-100,100]"

Fia Fg © F4 , mns - 0.25 [-5,5]"

^15 Fio ® Fr , TUns = 0.25 [-10,10]"

Fie Fg © Fl, mns = 0.5 [-100,100]"

Fl 7 Fg © F3 , mns = 0.75 [-100,100]"

Fis Fg © F4 , m„s = 0.75 [-5,5]"

Fig Fio © Fr, mns = 0.75 [-10,10]"

didate configurations. Iterated F-Race consista of the steps of configuration génération, 
sélection and refinement iteratively. For numerical parameters, the configuration généra­
tion step involves sampling from Gaussian distributions centered at promising solutions. 
The standard déviations of these Gaussian distributions vary over time in order to focus 
the search around the best-so-far solutions. For categorical parameters, the configuration 
génération procedure samples from a discrète distribution that gives the highest probability 
to the values that are found in the best configurations. The process is described in detail 
in (Birattari et al., 2010; Lôpez-Ibânez et al., 2011).

Tuning Setup

While tuning, problem instances are usually fed into iterated F-Race as a stream. At 
each step of F-Race, ail surviving candidate configurations are evaluated on one additional 
problem instance. Once each surviving candidate configuration has been evaluated, a sta- 
tistical test is applied in order to détermine whether there are configurations that hâve, 
up to that point, performed significantly worse than others. First, the Friedman test is 
applied and, if its null hypothesis of equal performance of ail surviving candidate configu­
rations is rejected, Friedman post-tests are used to eliminate configurations that perform 
worse than the best one (Birattari et al., 2002; Birattari, 2009). In our case, we hâve a 
limited set of 19 benchmark functions. Additionally, the set of benchmark functions may 
resuit in very different performances because they include very easy functions, such as 
Sphere (Fi) but also much more difficult ones, such as Rastrigin (F4) and hybrid functions
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Table 4.9; Free parameters in IPSOLS (ail 
versions)

Peurameter Range/Domain
w [ôô]

<pi [0.4]
(p2 [0,4]

Init. pop. size [1,100]
Particle addition schedule, k [1,10]

Topology^ {FC, R}
FTol [-13,-1]

2
pstart [1,50]

«3 [6, 100]
MaxFES^ [22,210]

MaxITER® [1,10]
MaxFailur^ [1,20]
MaxStagIter [2,30]

^ FC stands for fully connected, R for ring.
^ Used with BOBYQA (see Section 4.5.2).
® Used with Powell’s conjugate directions 

method.

(F12-F19). Therefore, we used a modified version of F-race. We define a block évaluation 
as running ail (surviving) candidate configurations once on each benchmark function in a 
block (Chiarandini et al., 2006); a block consiste of ail 19 benchmark functions. After each 
block évaluation, the usual statistical tests in F-race are applied, and inferior candidate 
configurations are eliminated. Throughout a run of iterated F-race, a cumulative average 
solution value is computed for each surviving solution. This value is used as a rough in- 
dicator of their quality, which is in turn used to select the prototypes that serve as guides 
for the next itération of iterated F-race.

Tuning was performed on low dimensionality (n = 10) versions of the benchmark 
functions, using the hypothesis that some structure of the problems is maintained across 
versions of different dimensionality. Testing was carried out on versions of medium size 
(n = 100). Thus, we distinguish between a training set used for tuning and a test set 
for évaluation. The scalability study of the final design was carried out on the versions of 
higher dimensionality (n = {50,100,200,500,1000}). To hâve a higher chance of selecting 
a good candidate configuration, we launched 10 independent runs of the iterated F-Race 
algorithm and finally selected the one with the lowest average objective function value as 
the tuned configuration.

To use iterated F-Race, one needs to select the parameters to be tuned, such as their 
range or domain, and the set of instances on which tuning is performed. The list of free 
parameters and their corresponding range or domain as used with iterated F-Race is given 
in Table 4.9. A description of the meaning and effect of these parameters is given in the 
sections where a variant of IPSOLS is described.

Other parameter settings for IPSOLS, for both tuned and non-tuned versions, remained 
fixed. A list of them with their settings is shown in Table 4.10.

Table 4.10: Fixed parameters in IPSOLS
Parameter Value

Max. pop. size 1000

ï 1 ^ J ^ ^
Bound constraint handling (PSO part) Fix on the bound, set velocity to zéro

€ 0-threshold (see Section 4.5.2).

Finally, iterated F-Race itself has a number of parameters that need to be set before it 
can be used. These parameters and the values used are listed in Table 4.11.

In iterated F-Race, the number of itérations L is equal to 2 -I- round(log2(d)), where 
d is the number of parameters to tune. In iterated F-Race, each itération has a different
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Table 4.11: Iterated F-Race parameter settings
Parameter Value

Max. Evaluations (B) 
Ml

5e+04
764-i

maximum number of évaluations. This number, denoted by Bi, is equal to {B—Based)/{L — 
Z + 1), where l is the itération counter, B is the overall maximum number of évaluations, 
and Sused is the number of évaluations used until itération / — 1. The number of candidate 
configurations tested during itération l is equal to [Bi/m]. For more information on the 
parameters of iterated F-Race and their effect, please consult (Balaprakash et al., 2007; 
Birattari et al, 2010).

4.5.2 Stage I: Choosing a Local Search Method

In this section, we explore the impact of the local search method on the performance 
of IPSOLS. As an alternative to Powell’s conjugate directions set method, we consider 
Powell’s BOBYQA method (Powell, 2009), which is described below. To ease the naming 
of intermediate variants of IPSOLS we use the following convention: the variant introduced 
at stage X, is labeled as IPSOLS-Stage-X.

The acronym BOBYQA stands for bound constrained optimization by quadratic approx­
imation. The algorithm that it represents was proposed by Powell (2009). BOBYQA is 
a derivative-free optimization algorithm based on the trust-région paradigm (Conn et al., 
2000). BOBYQA is an extension of the NEWUOA (Powell, 2006) algorithm that is able 
to deal with bound constraints. At each itération, BOBYQA computes and minimizes a 
quadratic model that interpolâtes m points in the current trust région. These points are 
automatically generated by the algorithm starting from an initial guess provided by the 
user. Then, either the best-so-far solution or the trust-région radius is updated. The rec- 
ommended number of points to compute the quadratic model is m = 2n-|-1 (Powell, 2009), 
where n is the dimensionality of the search space. We decided to study the performance of 
IPSOLS with BOBYQA as its local search method because the number of points BOBYQA 
needs to compute the model is linear with respect to the dimensionality of the search space. 
In fact, BOBYQA’s author proposed it as a method for tackling large-scale optimization 
problems (Powell, 2009). NEWUOA, and by extension BOBYQA, are considered to be 
state-of-the-art continuons optimization techniques (More and Wild, 2009; Auger et al., 
2009).

We used the implémentation that cornes with NLopt, a library for nonlinear optimi­
zation (Johnson, 2008). The main parameter that Controls this method in NLopt is the 
initial trust-région radius, Pstart- The stopping condition dépends on the values assigned to 
FTol, defined in the same way as in Powell’s conjugate directions method, and to MaxFES, 
which is the maximum number of function évaluations allocated for the method.

Conjugate Directions vs. BOBYQA

To measure the performance différences due to the local search methods, we compared the 
default and tuned versions of IPSOLS-Stage-I with Powell’s conjugate directions method 
and BOBYQA. The default and the best parameter settings found through iterated F-Race 
are shown in Table 4.12.^

For the default configuration of IPSOLS-Stage-I as well as of the subséquent config­
urations, we use the inertia weight, w, instead of the constriction factor, x- The two 
accélération coefficients, and ip2, were set according to Clerc and Kennedy’s analytical 
analysis of the PSO algorithm (Clerc and Kennedy, 2002). For other parameters, values 
hâve been set by the designers of the algorithms based on expérience and on commonly

^For conciseness, we présent here only the most relevant results. The complété set of results can be 
found in this dissertation’s companion website Montes de Oca (2011).
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Table 4.12: Default and best configuration obtained through iterated F-Race for IPSOLS-Stage-I in 10-dimensional 
instances^

Method Configuration w (P2 Init. pop. size k Topology FTol 5/ Pstart MaxITER/FES

BOBYQA
Default 0.72 1.49 1.49 1 1 FC -1 20% 10(2n-t-l)î
Tuned 0.25 0.0 2.9 50 6 R -3.4 ÏWo 210

Conjugate Default 0.72 1.49 1.49 1 1 FC -1 20% 10
Directions Tuned 0.0 0.0 1.82 3 6 R -2.92 15.75% 9

t FC stands for fully connected, R for ring. FTol and MaxITER/FES are parameters that détermine the stopping 
condition of the local search method. The conjugate directions method’s step size and BOBYQA’s trust-région 
radius is specified as a percentage of the length of the search space in one dimension.

^ n is the dimensionality of the problem.
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Figure 4.8: Box-plot of the médian objective function values obtained by the four con­
figurations listed in Table 4.12. In ail cases, we used the 100-dimensional versions of the 
benchmark fonctions proposed for this spécial issue. The line at the bottom represents the 
0-threshold.

used parameter settings found in the PSO literature. The range for the parameters Pstart 
and s is expressed as a percentage of the size of the search range [xmin, a^max] in each di­
mension. For example, if irnin = —100, Xmax = 100, and Pstart = 20, then the real value 
that BOBYQA will use as the initial trust-région radius will be 0.2 • 200 = 40. Before 
calling either local search method, the value of the parameter FTol is also transformed. 
The real value sent to the routine is 10“^*°^

The four configurations shown in Table 4.12 were run on the 100-dimensional version 
of the 19 benchmark functions suite. In Figure 4.8, we show the distribution of the médian 
objective function value obtained by the resulting four configurations.

The default as well as the tuned configurations of IPSOLS-Stage-I using Powell’s con- 
jugate directions method perform better than their BOBYQA-based counterparts. The 
différences between the two default and two tuned versions were found to be statistically 
significant at the 5% level using a Wilcoxon test (p = 0.0008, and p = 0.01, respectively). 
This resuit and the best parameter setting found for IPSOLS using Powell’s conjugate 
directions method suggest that line seaxches and a strong bias towards the best solutions 
(due to the setting w = ipi = 0) are well suited for optimizing the considered benchmark 
functions. In fact, these insights are exploited in the next section, where a new strategy 
for calling and controlling Powell’s conjugate directions method is proposed.

4.5.3 Stage II: Changing the Strategy for Calling and Controlling 
the Local Search Method

The results of the tuning process presented in the previous section are very interesting 
because they are counterintuitive at first sight. The parameter w in Eq. 2.3 Controls the 
influence of the velocity of particles in the computation of new candidate solutions. Thus, 
setting w = 0 removes ail influence of the particles’ previous moves on the génération of 
new solutions. The parameter <pi in Eq. 2.3 Controls the strength of the attraction of a 
particle toward the best solution it has ever found. Thus, setting cpi = 0 removes ail 
influence of the particles’ memory on the génération of new solutions. Setting <p2 > 0, 
as was the case in the experiments of the previous section, accelerates particles toward
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Table 4.13: Default and best configuration obtained through iterated F-Race for
IPSOLS-Stage-II in 10-dimensional instances^

Configuration w ipi ip2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.02 2.51 1.38 85 9 FC -11.85 10

FC stands for fully connected, R for ring. FTol and MaxITER are parameters that 
détermine the stopping condition of the local search method.
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Figure 4.9: Box-plot of the médian objective fonction values obtained by the two configu­
rations listed in Table 4.12 of IPSOLS-Stage-I using Powell’s conjugale directions method, 
and the two configurations listed in Table 4.13 of IPSOLS-Stage-II. In ail cases, we used 
the 100-dimensional versions of the benchmark fonctions proposed for this spécial issue. 
The line at the bottom represents the 0-threshold.

their best neighbor’s position. It seems that a ring topology provided the necessary search 
diversification to avoid the prématuré convergence that a fully-connected topology would 
hâve induced in this case.

In this second stage of the redesign process, we intégrale some of these insights into 
the algorithm itself by changing the strategy for calling and controlling the local search 
method. This new strategy seeks to enhance the search around the best-so-far-solution. 
Two changes with respect to the original version are introduced. First, the local search 
procedure is no longer called from each particle’s previous best position. Instead, the 
local search procedure is only called from the best-so-far solution. Second, the step size 
that Controls the granularity of the local search procedure is no longer fixed; it changes 
according to the State of the search. This “adaptive” step size control is implemented as 
follows: a particle, different from the best particle, is picked at random. The maximum 
norm (|| ■ ||cx)) of the vector that séparâtes this random particle from the best particle is 
used as the local search step size. At the beginning, if the swarm size is equal to one, the 
step size is a random number in the range [0, [XI), where IA"! = aimai — aimim aimin and 
Xmax are the minimum and maximum limits of the search range. With these changes, we 
focus the search around the best-so-far solution with a further local search enhancement 
through step sizes that tend to decrease over time due to the swarm’s convergence.

In Table 4.13, we show the default and best configurations for IPSOLS-Stage-II, as 
described above.
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Table 4.14: Default and best configuration obtained through iterated F-Race for
IPSOLS-Stage-III in 10-dimensional instances^

Configuration w tpi ip2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.0 0.0 2.34 45 10 FC -1 5

t FC stands for fully connected, R for ring. FTol and MaxITER are parameters that 
détermine the stopping condition of the local search method.

A comparison of the results obtained with IPSOLS-Stage-I and IPSOLS-Stage-II is 
shown in Figure 4.9. Statistically significant différences between the results obtained with 
IPSOLS-Stage-I and IPSOLS-Stage-II are detected through the application of Wilcoxon’s 
test. The default and tuned configurations of IPSOLS-Stage-II are better than those of 
IPSOLS-Stage-I (p = 0.0006 and p = 0.01, respectively).

The parameter values that correspond to the tuned configuration of IPSOLS-Stage-II 
are now different from those found for IPSOLS-Stage-I. The inertia weight is still very small, 
but the accélération coefficient <pi is not. Moreover, the initial population size increased 
from three to 85. This is interesting because, given that local search is only applied to the 
best particle, increasing the initial population size increases the chances of selecting a good 
initial solution from which to call the local search method. The incrément of the particle 
addition schedule, k, seems to indicate that IPSOLS-Stage-II needs a greater number of 
itérations with a constant population size than the previous version. This phenomenon 
may be due to the fact that the step size now dépends on the spatial spread of the swarm. 
By having a slower particle addition schedule, particles hâve more time to converge, which 
allows the local search step size to decrease to levels that allow further progress. The fact 
that the parameter FTol decreased to a value of -11.85 is also interesting; however, it is not 
clear whether the local search method actually reaches such small tolérance values, given 
the fact that the setting for the parameter MaxITER is the same as the default.

4.5.4 Stage III: Vectorial PSO Rules

IPSOLS-Stage-III is the same as IPSOLS-Stage-II except for a modification of Eq. 2.3. 
In the original PSO algorithm and in most, if not ail, variants proposed so far, particles 
move independently in each dimension of the search space. In contraat, IPSOLS-Stage- 
III uses a modification of Eq. 2.3 so that particles accelerate along the attraction vectors 
toward their own personal best position and their neighbor’s personal best position. This 
modification is straightforward and consista of using the same pseudorandom numbers on ail 
dimensions instead of generating different numbers for each dimension. This modification is 
inspired by Powell’s conjugate directions method. Once a good direction of improvement is 
detected, the algorithm searches along that direction. Since the vectorial PSO rules helps 
the algorithm search along fruitful directions, and Powell’s conjugate directions method 
always starts searching along the original coordinate System, we conjectured that their 
combination would work well on both separable and nonseparable problems.

Table 4.14 lists the default and the tuned configurations of IPSOLS-Stage-III. The 
distributions of the médian objective fonction values obtained with IPSOLS-Stage-II and 
IPSOLS-Stage-III are shown in Figure 4.10.

Through the use of Wilcoxon’s test, it is possible to reject the null hypothesis of equal 
performance when comparing the default configurations (p = 0.004). However, it is not 
possible to reject the null hypothesis in the case of the tuned configurations (p = 0.06). 
The addition of the vectorial update rules does not return a significant improvement over 
IPSOLS-Stage-II when both versions are tuned; however, with default settings it does. 
Therefore, we keep the vectorial update rules because they make the IPSOLS-Stage-III 
less sensitive to different parameter values.
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Figure 4.10: Box-plot of the médian objective function values obtained by the two con­
figurations listed in Table 4.13 of IPSOLS-Stage-II, and the two configurations listed in 
Table 4.14 of IPSOLS-Stage-III. In ail cases, we used the 100-dimensional versions of the 
benchmark functions proposed for this spécial issue. The line at the bottom représenta the 
0-threshold.

4.5.5 Stage IV: Penalizing Bound Constraints Violation

One advantage of BOBYQA over Powell’s conjugate directions method is that is has a 
built-in mechanism for dealing with bound constraints. In tests with IPSOLS-Stage-III, 
we observed that Powell’s conjugate directions method would make some exclusions outside 
the bounds.

Hence, we opted for including a mechanism into IPSOLS-Stage-III that would help to 
enforce bound constraints. These constraints are enforced because it is known that some 
benchmark functions give the impression that very good solutions are outside the defined 
bounds. A well-known example of this phenomenon is Schwefel’s sine root function. In 
initial experiments, we noted that simply setting solutions to the bound deteriorated the 
performance of the algorithm significantly. IPSOLS-Stage-IV tries to include a mechanism 
to enforce boundary constraints using the penalty function

where B{xi) is defined as

B{xi)

n

P{x) = fes'Y^B{xi),

i=l

0, if Xmin “S. — ^max
* (^min , if Xî < ^min

^ (^max 7 if Xj > Xmax î

(4.14)

(4.15)

where n is the dimensionality of the problem, Xmin and Xmax are the minimum and maxi­
mum limits of the search range, respectively, and fes is the number of function évaluations 
that hâve been used so far. The goal with this penalty function is to discourage long 
and far excursions outside the bounds. Strictly speaking, Eq. 4.14 does not change the 
algorithm but the objective function. Nevertheless, we describe it as if it was part of the 
algorithm because bound constraints handling mechanisms are important components of 
any algorithm.
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Table 4.15: Default and best configuration obtained through iterated F-Race for IPSOLS-
Stage-LV in 10-dimensional instances^

Configuration w tpi <p2 Init. pop. size k Topology FTol MaxITER
Default 0.72 1.49 1.49 1 1 FC -1 10
Tuned 0.0 0.0 2.32 64 5 FC -1.32 4

^ FC stands for fully connected, R for ring. FTol and MaxITER are pararaeters that 
détermine the stopping condition of the local search method.

Table 4.15 shows the default and tuned configurations of IPSOLS-Stage-IV. As may be 
expected, not many changes in the tuned configuration can be found with respect to the 
tuned configuration of IPSOLS-Stage-III.
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Figure 4.11: Box-plot of the médian objective function values obtained by the two con­
figurations listed in Table 4.14 of IPSOLS-Stage-III, and the two configurations listed in 
Table 4.15 of IPSOLS-Stage-IV. In ail cases, we used the 100-dimensional versions of the 
benchmark functions proposed for this spécial issue. The line at the bottom represents the 
0-threshold.

Figure 4.11 shows the box-plots of the médian objective function values obtained with 
IPSOLS-Stage-III and IPSOLS-Stage-IV. IPSOLS-Stage-III and IPSOLS-Stage-IV differ 
slightly, and consequently, we expect that their performance is slightly different. Our 
expectation is confirmed through the application of Wilcoxon’s test on the samples of 
results. The default and tuned versions can be considered équivalent (p = 0.87 and p = 
0.81, respectively). Therefore, mainly motivated by the potential importance of being able 
to enforce bound constraints, we kept the design of IPSOLS-Stage-IV.

4.5.6 Stage V: Fighting Stagnation by Modifying the Local Search 
Call Strategy

We noticed in preliminary experiments that IPSOLS-Stage-IV stagnated in functions in 
which IPSOLS-Stage-I had very good results (e.g.. Fs). A common approach to deal 
with stagnation is to add diversification strategies (Hoos and Stützle, 2004). The first 
diversification strategy that we added to IPSOLS-Stage-IV is based on the way IPSOLS- 
Stage-I opérâtes. (The second strategy is described in the next section.) Specifically, in
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Table 4.16: Default and best configuration obtained through iterated F-Race for
IPSOLS-Stage-V in 10-dimensional instances^

Configuration w ^pi ip2 Init. pop. size k Topology FTol MaxITER MaxFailures
Default 0.72 1.49 1.49 1 1 FC -1 10 2
Tuned 0.0 0.0 2.6 3 1 FC -1 7 20

t FC stands for fully connected, R for ring. FTol and MaxITER are parameters that déterminé the 
stopping condition of the local search method.

IPSOLS-Stage-I, ail particles call the local search method, but in IPSOLS-Stage-IV, only 
the best particle does. In IPSOLS-Stage-V, we sporadically let other particles call the local 
search method. We introduce a parameter, MaxFailures, which déterminés the maximum 
number of repeated calls to the local search method from the same initial solution that 
does not resuit in a solution improvement. Each particle maintains a failures counter and 
when that counter reaches the value MaxFailures, the local search procedure cannot be 
called again from that particle’s personal best position. In that situation, local search is 
applied from a random particle’s personal best position as long as this random particle’s 
failures counter is less than MaxFailures. If the random particle’s failures counter is equal 
to MaxFailures, the algorithm continues sampling particles at random until it finds one 
that satisfies the requirements, or until ail particles are tried. This last situation is not 
likely to happen because new particles are periodically added to the population. When a 
particle’s personal best position improves thanks to a PSO move, the failures counter is 
reset so that the local search procedure can be called again from that newly discovered 
solution.

In Table 4.16, the default and tuned configurations of IPSOLS-Stage-V are listed. The 
distributions of the médian objective fimction values of the default and tuned configurations 
of IPSOLS-Stage-IV and IPSOLS-Stage-V are shown in Figure 4.12.

Figure 4.12: Box-plot of the médian objective fonction values obtained by the two con­
figurations listed in Table 4.15 of IPSOLS-Stage-IV, and the two configurations listed in 
Table 4.16 of IPSOLS-Stage-V. In ail cases, we used the 100-dimensional versions of the 
benchmark fonctions proposed for this spécial issue. The line at the bottom represents the 
0-threshold.

So far, we hâve been able to accept ail modifications based on the analysis of the 
distributions of médian objective fonction values. In this case, the introduced modification 
with default parameter settings is worse than the unmodified version with default settings 
(p = 0.03). After tuning, the null hypothesis that assumes that both samples are drawn 
from the same population cannot be rejected (p = 0.36). It would seem clear that the 
proposed modification could be safely rejected. However, if we look at the distribution
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Table 4.17: Default and best configuration obtained through iterated F-Race for IPSOLS- 
Stage-VI in 10-dimensional instances^

Configuration w tpi ip2 Init. pop. size k Topology FTol MaxITER MaxFailures MaxStagIter
Default 0.72 1.49 1.49 ï î FC T lÔ 2 ÎÔ
Tuned 0.0 0.84 1.85_________ 1__________1 FC -1 87____________13_____________27

t FC stands for fully connected, R for ring. FTol and MaxITER are parameters that détermine the stopping 
condition of the local search method.

Figure 4.13: Box-plot of the médian objective function values obtained by the two con­
figurations listed in Table 4.16 of IPSOLS-Stage-V, and the two configurations listed in 
Table 4.17 of IPSOLS-Stage-VI. In ail cases, we used the 100-dimensional versions of the 
benchmark functions proposed for this spécial issue. The line at the bottom represents the 
0-threshold.

of the mean objective function values instead of the médian'*, the situation is completely 
different. In this case, the default and the tuned configurations of IPSOLS-Stage-V are 
better than the one of IPSOLS-Stage-IV (p = 0.002 and p = 0.01, respectively). This 
resuit indicates that the introduced modification indeed reduces the likelihood of IPSOLS- 
Stage-IV stagnating, but this is seen only in the upper quartiles of the solution quality 
distributions generated by the algorithm, that is, the worst results are improved but not 
necessarily the best results. In fact, the lower quartiles of these distributions (i.e., the 
best solutions) either deteriorated, as with the default configuration, or are not affected, 
as seems to be the case with the tuned configuration.

4.5.7 Stage VI: Fighting Stagnation with Restarts

In IPSOLS-Stage-VI, we included an algorithm-level diversification strategy. This strategy 
consists in restarting the algorithm but keeping the best-so-far solution in the population of 
particles across restarts. In particular, the best-so-far solution becomes the new first par- 
ticle’s current and previous best position. The restart criterion is the number of PSO-level 
consecutive itérations with a relative solution improvement lower than a certain thresh- 
old e. In our experiments, we set e = 0-threshold. The number of consecutive itérations 
without significant improvement is a parameter of IPSOLS-Stage-VI, MaxStagIter.

The list of default and tuned parameter settings for IPSOLS-Stage-VI is shown in 
Table 4.17. The distributions of the médian objective function values obtained by the 
default and tuned configurations for IPSOLS-Stage-V and IPSOLS-Stage-VI are shown in 
Figure 4.13.

When comparing the aggregated data of IPSOLS-Stage-V and IPSOLS-Stage-VI using 

^We remind the reader that the complété set of results can be found in (Montes de Oca, 2011).
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Figure 4.14; Box-plot of the médian objective function values obtained by the two configu­
rations listed in Table 4.12 of IPSOLS-Stage-I using PowelFs conjugale directions method, 
and the two configurations listed in Table 4.17 of IPSOLS-Stage-VI. In ail cases, we used 
the 100-dimensional versions of the benchmark functions proposed for this spécial issue. 
The line at the bottom représenta the 0-threshold.

a Wilcoxon test, the null hypothesis cannot be rejected with médians or with means. 
While the actual performance of IPSOLS-Stage-VI is statistically équivalent to that of 
IPSOLS-Stage-V with the 100-dimensional versions of the benchmark functions, we prefer 
to keep the extra diversification layer that a strong restart ofîers. During scalability tests, 
which will be presented later, we will see that this extra diversification layer does not hurt 
performance and does provide extra fiexibility that can be exploited in certain application 
scénarios, such as when a laxger number of function évaluations can be used.

With IPSOLS-Stage-VI, we conclude the redesign cycle of IPSOLS. In Figure 4.14 we 
can clearly see the improvement with respect to the original algorithm that we were able 
to obtain through a tuning-in-the-loop redesign process.

It is interesting to see the positive effects that tuning had on most of the tested variants 
of IPSOLS. It should not be forgotten that the tuning process was performed with instances 
whose size was only 10% the size of the instances over which we tested the eflfectiveness of 
tuning. In the following section, we will see that the effectiveness of tuning also extends to 
instances that are up to 100 times larger than the ones seen during tuning.

4.5.8 Performance Scalability Study

In this section, we study the performance of IPSOLS-Stage-VI, which we refer to as IP- 
SOLS-I-, on the 50-, 100-, 200-, 500-, and 1000-dimensional versions of the 19 benchmark 
functions shown in Table 4.8.

Reference Algorithms

The performance of the tuned version of IPSOLS-I- was compared to that of 15 other 
algorithms, which were recently proposed in a spécial issue of the Soft Computing jour­
nal (Lozano et al., 2011). These algorithms include differential évolution (DE) (Storn and 
Price, 1997), the CHC algorithm (Eshelman and Schaffer, 1993), and a CMA-ES algo­
rithm with increasing population size (G-CMA-ES) (Auger and Hansen, 2005). In recent 
years, DE and G-CMA-ES hâve been widely considered as représentatives of the state-of- 
the-art of heuristic continuons optimization problems. In particular, G-CMA-ES was the 
best-ranked algorithm of a spécial session organized for the 2005 IEEE Congress on Evolu- 
tionary Computation (Smit and Eiben, 2010). The parameter settings used with DE, CHC,

62



CHAPTER 4. INCREMENTAL SOCIAL LEARNING APPLIED TO PARTICLE
SWARMS

and G-CMA-ES were proposed by Lozano and Herrera (2010a). The parameter settings 
for the other algorithms were set by their respective authors. Moreover, these algorithms’ 
source code and summary statistics of their performance on the 19 benchmark functions 
listed in Table 4.8 are available at Lozano and Herrera (2010b). For more information 
about these algorithms, we refer the reader to (Lozano et al., 2011) and the papers in 
which they were proposed.

Solution Quality Scalability

We use box-plots to show the distribution of the average objective function values obtained 
by each algorithm on the 19 benchmark functions suite (19 values per box-plot). These 
box-plots are shown in Figure 4.15.

The first striking resuit of this comparison is that the performance of G-CMA-ES is 
very poor in comparison to that of the other 15 algorithms including IPSOLS-I-. The 
performance of IPSOLS-1- improves with the dimensionality of the benchmark functions 
used for this comparison as can be seen by the ranking of IPSOLS-I- based on the médian 
value of the distribution of the 19 average objective function values. We tested the null 
hypothesis with a multiple pairwise Wilcoxon’s test with a 0.95 confidence level. Except 
for the comparisons of IPSOLS-I- to CHC, EvoPROpt, and G-CMA-ES, it is not possible to 
reject the null hypothesis of IPSOLS-I- with any other algorithm. Thus, we can confidently 
say that IPSOLS-I- obtains results that are not distinguishable from those obtained with 
state-of-the-art algorithms for small and large-scale continuons optimization problems.

Execution Time Scalability

The results presented so far hâve focused on the solution quality obtained after some com- 
putational budget (in our case, the maximum number of function évaluations) has expired. 
While those results are important, it is still unclear whether the proposed algorithms are 
really suitable for tackling large-scale continuons optimization problems. This ambiguity 
is due to the fact that, in some cases, the execution time can grow so fast with the problem 
size that an otherwise good algorithm may become impractical. For example, the execution 
time of G-CMA-ES was so high that its results on 1000-dimensional problems were not 
even reported in the spécial issue of the Soft Computing journal (Lozano et al., 2011).

In this section, we study the execution time scalability of IPSOLS-h. During each 
run of the algorithm, we recorded the number of function évaluations and the CPU time 
used, when the best-so-far solution was improved. With this information, we can estimate 
the solution quality distribution (SQD) (Hoos and Stützle, 2004) of the algorithm at, for 
example, the maximum number of function evalutions. To conduct the scalability study, 
we use the 0.9-quantile of the SQDs of IPSOLS-I- on each benchmark function. We chose 
the 0.9-quantile as a conservative measure of the achievable solution quality. We focus on 
two measures: the médian number of function évaluations (FES) and the médian time (in 
seconds) needed by IPSOLS+ (in its default configuration) to find a solution that is at least 
as good as the 0.9-quantile of the SQD after up to 5000n function évaluations, where n is 
the dimensionality of the function tackled. Since the scalability behavior of any algorithm 
is problem-dependent, we show only three examples in Figure 4.16. The rest of the results 
can be found in (Montes de Oca, 2011).

We first focus on the behavior of the algorithm with respect to the number of function 
évaluations consumed. For function Fi, the linear model fes = 18.08n — 424.96 fits the data 
with an adjusted score of 0.9957. The variable fes is the number of function évaluations 
needed by IPSOLS-f to find a solution at least as good as the 0.9-quantile of the SQD, 
and n is the dimensionality of the function. It is clear that the time execution scalability 
of IPSOLS+ with function Fi is quite good as a conséquence of the fact that Powell’s 
conjugate directions method exploits the separability of the function. In the case of function 
Fs, the linear model fes = 4699.85n -I- 16261.51 fits the data with an adjusted score of 
0.9999. The slope of this model is almost the same as the slope of the computational 
budget limit, which means that IPSOLS-I- would most likely continue making progress
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Figure 4.15: Distribution of the 19 average objective function values obtained by each of the 
16 compared algorithms. The boxplots are sorted in ascending order based on the médian 
value of the distribution. In the plot that corresponds to 1000 dimensions, the results 
obtained with G-CMA-ES are missing due to this algorithm’s excessive computation time 
for this dimensionality. The line at the bottom of each plot represents the 0-threshold.
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Function dimensionality
(c) FES scalability with Fg

Function dimensionality
(d) Time scalability with Fs

S§

Function dimensionality 
(e) FES scalability with F17

Function dimensionâlity 
(f) Time scalability with Fir

Figure 4.16: Médian number of function évaluations (FES) and médian number of seconds 
needed by IPSOLS+ to find a solution at least as good as the 0.9-quantile of the solution 
quality distribution after up to 5000n FES (i.e., the maximum computational budget rep>- 
resented by the thin dotted line) on functions Fi, Fÿ, and F17. The resuit of a régression 
analysis over the observed data is shown with a dotted line.

toward better solutions if more function évaluations were allowed. This resuit is due to 
the Powell’s conjugate directions method, which in the case of Fg would align the search 
directions, one by one, with the axes of the hyperellipsoid that Fg generates. Finally, we 
show the execution time of IPSOLS+ with function Fit, which scales quadratically with 
the size of the problem. In this case, the model is fes = 5.14n^ — 1643.03n+182300 with an 
adjusted score of 0.998. The extra complexity that this function represents for IPSOLS+ 
is évident.

In terms of CPU time, the scalability of IPSOLS+ seems to follow the form time = 
Ae^". For Fl, the parameters of the fitted model are A = 0.0031 and B = 0.0056 with an
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adjusted score equal to 0.949. For Fs, the parameters are A = 3.1598 and B = 0.0042 
with an adjusted score equal to 0.902. Finally, for En, the parameters are A = 2.0851 
and B = 0.0075 with an adjusted score equal to 0.936. Even though the fitted model 
is exponential, the scalability of IPSOLS+ in seconds is very good because the coefficient 
B is rather small (in the order of le—03) for ail the 19 functions studied. We ran our 
experiments on Intel Xeon E5410 quad core 2.33GHz computers with 2x6MB L2 cache 
and 8GB of RAM. Ail computers used Linux (kernel 2.6.9-78.0.22) as operating System, 
and IPSOLS+ was compiled with GCC 4.1.0.

4.6 Related Work

IPSO, IPSOLS, and IPSOLS+ aie PSO-based algorithms in which the population size 
changes during the optimization process. IPSOLS and IPSOLS-I- are also hybrid algorithms 
in which PSO and a local search procedure are combined. In this section, we briefly review 
related work on both of these topics. We highlight the différences that exist between 
previous approaches and IPSO, IPSOLS, and IPSOLS-I-.

4.6.1 PSO Algorithms with Time-Varying Population Size

Population sizing has been studied within the field of evolutionary computation for many 
years. Prom that expérience, it is now generally accepted that the population size in 
evolutionary algorithms should be proportional to the problem’s difficulty (Lobo and Lima, 
2007). The issue is that it is not uncommon to know little about a problem’s difficulty a 
priori. As a resuit, evolutionary algorithms with time-varying population size hâve been 
proposed (see e.g. Arabas et al. (1994); Harik and Lobo (1999); Bàck et al. (2000); Eiben 
et al. (2004); Auger and Hansen (2005); Eiben et al. (2006); Fernandes and Rosa (2006) ). 
This research issue has just recently been addressed by the PSO community, and thus not 
many research contributions exist. Coelho and de Oliveira (2008) adapt the population 
resizing mechanisms used in APGA (Bàck et al., 2000) and PRoFIGA (Eiben et al., 2004) 
for their use in PSO algorithms. Lanzarini et al. (2008) proposed a method for varying 
the size of the population by assigning a maximum lifetime to groups of particles based on 
their performance and spatial distribution. A time-varying population size approach has 
been adopted by Leong and Yen (2008) for tackling multiobjective optimization problems 
with PSO algorithms. In the work of Chen and Zhao (2009), the optimization process is 
divided into a number of periods at the end of which the population size changes. The 
decision of whether the population size should increase or decrease dépends on a diversity 
measure. Finally, Hsieh et al. (2009) adapt the swarm size based on the ability of the 
particles to improve their personal best solutions and the best-so-far solution.

Ail these proposais share a common problem: they eliminate the population size pa- 
rameter, but introduce many others. For example, many proposais require the user to set 
a particle’s maximum lifetime, to select the number of itérations without improvement so 
that a particle is added or removed, to choose particle recombination operators, etc. In 
contrast, our approach introduces only two parameters: the rate at which the population 
size should grow and how new particles should be initialized. Additionally, our approach 
is simple to understand and implement.

In contrast to practically ail previously studied strategies, our approach, in its current 
form, does not consider the possibility of reducing the size of the population during an 
algorithm’s run. The rationale behind previous approaches is that large populations require 
more function évaluations per itération and thus, if the particles hâve converged, they can 
resuit in a waste of function évaluations. However, in at least another algorithm the 
population size is not decreased. Such an algorithm is G-CMA-ES (Auger and Hansen, 
2005), in which the population size is doubled each time it is restarted. As we hâve seen, not 
decreasing the population size does not negatively affect the performance of G-CMA-ES, 
IPSO, IPSOLS, and IPSOLS+.
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4.6.2 PSO Algorithms Hybridized with Local Seeirch Procedures

The idea of combining local search techniques with PSO algorithms cornes partly from the 
observation that particles are attracted to their own and their neighbors’ previous best 
positions. The underlying idea is that the better the attractors of a particle are, the higher 
the chances that a particle finds even better solutions. The goal of most hybrid algorithms, 
IPSOLS and IPSOLS+ included, is thus to accelerate the placement of the particles’ previ­
ous best positions in good locations. For example, Chen et al. (2005) combined a particle 
swarm algorithm with a hill-climbing local search procedure. Liang and Suganthan (2005) 
used a quasi-Newton method to improve a subset of the solutions found by a multi-swarm 
algorithm. Gimmler et al. (2006) experimented with PSO-based hybrids using Nelder and 
Mead’s simplex method and Powell’s conjugate directions set method. In their results, the 
hybrid algorithm that uses the Powell’s conjugate directions set method obtained better 
results than the algorithm that uses Nelder and Mead’s simplex method. Das et al. (2006) 
also used Nelder and Mead’s simplex method and proposed the inclusion of an estimate of 
the local gradient into the particles’ velocity update rule. In (Coelho and Mariani, 2006), 
a two-phase approach is described where a PSO algorithm is used first to find a good so­
lution and, in a second phase, a quasi-Newton method is used to refine it. Petalas et al. 
(2007) report experiments with several local search-particle swarm combination schemes. 
Müller et al. (2009) describe in their work a hybrid PSO-CMA-ES algorithm in which a 
full-fledged population-based algorithm (CMA-ES Hansen et al. (2003); Hansen and Kern 
(2004)) is used as a local search procedure. Other PSO-local search hybrids are reported 
in Hao and Hu (2009) and Chen et al. (2010). Our proposai is not different from the 
above-mentioned approaches in the sense that it uses a local search procedure. In ail cases, 
the goal is to accelerate the discovery of good solutions. However, our work is the first 
to explore the possible benefits of combining a variable population size with local search 
procedures in the context of PSO algorithms. We hâve seen that this combination allows 
IPSOLS and IPSOLS+ to “adapt” to the features of the objective fonction as discussed in 
Section 4.4.2.

4.7 Conclusions and Future Work

In this chapter, we hâve shown how the ISL framework can be used for enhancing the 
performance of PSO algorithms. We analyzed and empirically evaluated three algorithms 
that are the resuit of applying ISL to PSO. The first one, IPSO, is a PSO algorithm 
with a growing population size, in which new particles are initialized biasing their initial 
position toward the best-so-far solution. The second algorithm, IPSOLS, is an extension 
of IPSO, which implements “individual learning” through a local search procedure. The 
third algorithm, called IPSOLS-I-, resulted from a redesign process in which an automatic 
tuning System, iterated F-Race, was used at each design stage. IPSOLS-b is the most 
compétitive of the three algorithms proposed. In IPSOLS-f-, a local search procedure is 
almost always invoked from the best-so-far solution. However, when this strategy is not 
successful, local search is invoked from the position of a randomly chosen particle. The 
local search procedure and the PSO algorithm are tightly coupled because the initial step 
size used in the local search procedure dépends on the interparticle distance. Thus, the 
local search is naturally more focused toward the end of the optimization process. A restart 
mechanism is used in order to increase the chances of the algorithm of finding good quality 
solutions. Despite their différences, ail of these three algorithms keep the two basic éléments 
of the ISL framework; (i) incrémental growth of the population and (ii) social learning at 
the moment a particle is added. We showed that the effects of the social learning rule are 
positive on a very wide range of problems.

We are not the first to use automatic parameter configuration methods in the con­
text of heuristic algorithms for continuons optimization. Earlier approaches designed to 
tune numerical parameters of algorithms for continuons optimization include SPO (Bartz- 
Beielstein, 2006), SPO+ (Hutter et al., 2009), and REVAC (Nannen and Eiben, 2007). A
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comparison of such methods has been presented in (Smit and Eiben, 2009). In ail these 
approaches, however, the algorithm was tuned on the very same benchmark function on 
which it was later tested; thus, ail these examples are prône to over-tuning. Only rather 
recently, an experimental comparison of tuning algorithme for calibrating numerical algo­
rithm parameters in numerical optimization that does not incur the problems of over-tuning 
has been presented (Yuan et al., 2010). In this chapter, we also avoid over-tuning by ap- 
plying iterated F-race to problems of much smaller dimension than the ones on which the 
algorithme are later tested. In addition, in contrast with previous work, we maJce extensive 
usage of automatic tuning during the design process of a high-performing algorithm; others 
hâve so far focused on the fine-tuning of an already developed, final algorithmic scheme.

There are a number of promising avenues for future research. First, an important issue 
that needs to be addressed in the future is the applicability of ISL to other population- 
based optimization techniques. In principle, ISL can be used with any population-based 
optimization algorithm. However, it is not always évident how to apply ISL to a cer­
tain algorithm. For example, it is not straightforward that one may apply ISL to ACO 
algorithms (Dorigo and Stützle, 2004), which hâve a centralized memory structure that 
already allows agents (in this case artificial ants) to share their search expérience with 
others. Nevertheless, Liao et al. (2011) hâve recently shown that it is possible to apply ISL 
to ACOk (Socha and Dorigo, 2008), which is an ACO variant for continuons optimization 
problems. Second, it is important to extend automatic algorithm configuration techniques 
to very large-scale problems in order to better deal with the scaling behavior of algorithm 
parameters. In fact, our algorithm tuning was done on 10-dimensional versions of the high- 
dimensional benchmark functions and, maybe luckily, the found parameter settings turned 
out to resuit in very high performance even on benchmark functions that had 100 times 
larger dimension. Further research is needed to explore better ways to find well-scaling 
algorithm parameters. Third, we need to further investigate methods for automatic al­
gorithm configiuation for tackling continuons optimization problems. Some approaches 
exist, but often these suffer from over-tuning since tuning is done on single benchmark 
functions. Finally, another promising direction for future work is to apply our tuning-in- 
the-loop algorithm engineering methodology to other algorithms for continuons function 
optimization. In fact, the DE algorithm proposed as a baseline for the compétition would 
be an interesting candidate for such an undertaking.
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Chapter 5

Incrémental Social Learning Applied 
to Robot Swarms

In this chapter, we describe the application of ISL to a collective decision-making mech- 
anism for robot swarms. This mechanism is also a contribution of this dissertation as 
mentioned in Section 1.3. First, we describe the collective decision-making mechanism 
(Sections 5.1 and 5.2). Then, in Section 5.3, we describe the intégration of such a mecha­
nism with ISL and report the results obtained. Related work is described in Section 5.4. 
Opportunities for future work and conclusions are presented in Section 5.5.

5.1 Majority-Rule Opinion Formation Models

When a person is immersed in a social context, her decisions are influenced by those of 
others. The effects of social influence on the collective-level behavior of groups of people 
hâve been studied by economists and sociologists since at least the 1970s (Schelling, 1978; 
Granovetter, 1978). More recently, statistical physicists hâve developed models to quanti- 
tatively describe social and économie phenomena that involve large numbers of interacting 
people (Chakrabarti et al., 2006; Castellano et al., 2009; Helbing, 2010). Some of the 
models that hâve emerged from these efforts are referred to as opinion formation models.

Krapivsky and Redner (2003) proposed a binary opinion formation model in which a 
population of agents reaches a consensus with high probability on the opinion initially 
favored by more than 50% of the population. The process that drives the System to 
consensus is based on the repeated application of the majority rule at a local level on small 
teams of agents (see Section 5.1.1). This model is interesting from a swarm intelligence 
perspective because the resulting opinion dynamics can be seen as a decentralized collective 
decision-making process. However, to be of practical use, the opinion dynamics induced 
by the majority rule need to make an initially unbiased population reach consensus on the 
opinion associated with the “best” alternative. In this chapter, we demonstrate how to 
achieve this goal in a swarm robotics context by making opinions represent actions robots 
need to choose from while executing a task (see Section 5.1.2). The criterion used to 
evaluate alternative actions is the time needed to execute them. Thus, an action that has 
the same effect as another one but that takes less time to perform is preferred.

We introduce a number of modifications to the majority-rule opinion formation model 
that capture éléments of the interaction of real robots with a physical environment. One of 
these modifications builds on the concept of latency, which is a period of time of stochastic 
duration during which an agent cannot be influenced by other agents, and thus cannot 
change opinion (Lambiotte et al., 2009). In our model, we call this modifleation differential 
latency because the duration of a latency period is different for different opinions. We 
demonstrate, in simulation, that with the introduced modifications, a population of agents 
reaches consensus on the opinion associated with the shortest average latency even if that 
opinion is initially favored by a slight minority of the population. In Section 5.2, we propose
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Figure 5.1: Majority-rule opinion dynamics. Initially, three agents hâve opinion A (rep- 
resented in black) and three others hâve opinion B (represented in gray). After applying 
three times the majority rule on randomly-formed teams of three agents each (marked with 
squares), the population reaches consensus on one of the two opinions.

a collective decision-making mechanism for robot swarms that exploits the dynamics of the 
majority-rule opinion formation model with differential latency.

5.1.1 Majority-Rule Opinion Formation With and Without La­
tency

The majority rule as an element of opinion formation models was first used by Galam 
(1986) to study voting in hierarchical structures. Krapivsky and Redner (2003) studied the 
dynamics induced by the majority rule in a well-mixed population case, that is, a situation 
where everyone can interact with the same probability with everyone else (Nowak, 2006). 
In Krapivsky and Redner’s model, a population of agents, each of which can assume one of 
two States, called opinions {A or B)^, evolves as follows: First, a team of three randomly 
chosen agents is formed. Then, the team members adopt the opinion held by the majority 
within the team. Finally, the team members are put back in the population and the process 
is repeated. Figure 5.1 shows an example of the process just described.

An important aspect of the system’s dynamics is the probability of reaching consensus 
on one opinion, say A, as a function of the initial fraction of the population favoring it (see 
Figure 5.2(a)). In Krapivsky and Redner’s model, the value of this probability abruptly 
increases at a critical initial fraction equal to 0.5. If the initial fraction of the population 
in favor of opinion A is greater than 0.5, then the population reaches consensus on opinion 
A with a higher probability than on opinion B. If the initial fraction is exactly 0.5, then 
the probability of reaching consensus on opinion A is also 0.5. For large populations, this 
probability approximates a unit step function with a discontinuity at the critical initial 
fraction. For small populations, the probability is a stepKwise function. The number of 
team formations required to reach consensus in the majority-rule opinion formation model 
also dépends on both the initial fraction of the population favoring one opinion and the 
population size. At the critical initial fraction, the System takes the longest to reach 
consensus (see Figure 5.2(b)).

Lambiotte et al. (2009) incorporated latency to Krapivsky and Redner’s model. In 
Lambiotte et al.’s model, a team is formed with three randomly picked agents that can be 
either latent or non-latent. The team’s majority opinion is adopted only by the team’s non- 
latent agents. If the team’s non-latent agents switch opinion as a resuit of the majority 
rule, then they become latent. Otherwise, they remain non-latent. The team’s latent

^Throughout this chapter, we use letters A and B to label the two available opinions.
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Figure 5.2: Dynamics of Krapivsky and Redner’s model. Figure (a) shows the probability 
of reaching consensus on one opinion (labeled as a function of the initial fraction of 
agents in its favor. Figure (b) shows the average number of team formations needed to 
reach consensus on one opinion. N is the size of the population. These plots are based on 
results obtained through 1,000 independent runs of a Monte Carlo simulation.

Initial fraction of agents wHh opinion A

(a)

Initial fraction of agents with opinion A

(b)

Figure 5.3: Dynamics of Lambiotte et al.’s model. Depending on the value of the parameter 
a, consensus may or may not be the only stable state of the System. When a = 1/2 
(Figure (a)) consensus is always achieved (we plot the probability of reaching consensus 
on opinion A). By contrast, when a = 1/20 (Figure (b)), the population does not always 
achieve consensus because a third stable State, in which the fraction of agents favoring one 
opinion fluctuâtes around 0.5, arises. Thus, in this case, we plot the average fraction of 
agents with opinion A after 100,000 team formations. These plots are based on results 
obtained through 1,000 independent runs of a Monte Carlo simulation.

agents become non-latent with probability q, which is a parameter of the model. In this 
model, consensus may be reached for any value of a; however, for a < 1/4, a third state in 
which the fraction of agents favoring one opinion fluctuâtes around 0.5, is also stable. The 
characteristic dynamics of Lambiotte et al.’s model are shown in Figure 5.3.

5.1.2 Majority-Rule Opinion Formation With Differential Latency

We introduce an opinion formation model based on Krapivsky and Redner’s and Lambiotte 
et al.’s models. The proposed model captures some properties of real-world swarm robotics 
Systems. Our goal is to exploit the resulting system’s dynamics as a collective decision-
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making mechanism. In order to meet our goal, we need to interpret agents as robots, and 
opinions as actions or sequences of actions that robots hâve to choose from while solving 
a task. For example, an opinion can model a robot’s decision whether or not to establish 
a physical connection with another robot—cf. Ampatzis et al. (2009). An example of an 
opinion representing a sequence of actions is whether to follow the rules for assembling one 
morphology or another for a spécifie task—cf. O’Grady et al. (2010a).

The modifications we introduce to Krapivsky and Redner’s and Lambiotte et al.’s mod- 
els are the following:

1. Robots in a swarm can operate in parallel. This property is translated into k inde- 
pendent teams being formed instead of just one as in the original formulations.

2. Robot actions may induce physical displacement. Thus, robots executing an action 
cannot simultaneously be part of two teams. As a resuit, robots executing an action 
cannot be influenced by other robots, and crucially, cannot influence other robots, 
unless they are in their immédiate vicinity. This phenomenon is partially captured by 
the concept of latency as defined by Lambiotte et al.. However, in Lambiotte et al.’s 
model, latent agents can still influence other agents. Thus, we restrict agents to be 
non-latent at the moment of forming a team. This change prevents latent agents 
from influencing other agents.

3. Robot actions take time to perform. Moreover, the duration of an action is stochastic 
because there are physical interactions between robots and the environment. In 
addition, different actions may hâve different average duration. This is translated 
into differential latency, that is, the average duration of the latency period dépends 
on the agents’ adopted opinion. In contrast with Lambiotte et al.’s model in which 
agents become latent only if they switch opinions, in our case, agents become latent 
regardless of whether they switch opinion or not.

A System governed by the proposed model evolves as follows: k teams of three randomly 
chosen agents are formed. The majority rule is used within each team in order to update 
its members’ opinions. Agents that belong to a team enter a latent State whose duration 
dépends on the team’s adopted opinion. When a team’s latency period finishes, its members 
become non-latent and eligible to form a new team. When a new team is formed, its 
members axe picked from the population of non-latent agents. The process is repeated 
until the population reaches a consensus. Algorithm 6 shows a pseudo-code version of the 
process just described.

5.2 Majority-Rule Opinion Dynamics With Differen­
tial Latency as a Collective Decision-Maiking Mech­
anism for Robot Swarms

In this section, we study the opinion dynamics induced by the majority-rule opinion for­
mation model with differential latency. The study is performed in two stages. In the first 
stage, we use Monte Carlo simulation in order to study the effects of a broad range of pa- 
rameters on the system’s dynamics. In the second stage, we use a physics-based simulator 
that accurately simulâtes robots and their interactions with an environment in order to 
validate the proposed collective decision-making mechanism.

5.2.1 Monte Carlo Simulation Study

Our simulation study is performed in three steps. First, we explore the effects of different 
parameters on the system’s dynamics. In particular, we focus on the effects of different 
durations of the latency periods associated with each opinion and the number of teams. 
Next, we study the system’s dynamics when the number of teams k is equal, or very close
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Algorithm 6 Majority-rule opinion formation with differential latency

Input: Number of agents N, number of teams k, initial fraction of the population with opinion

/* Initialization */ 
t ^— 0
Initialize population of agents X.
/* Initial team formations */ 
for î = 1 to /c do

Form team i by selecting at random three non-latent agents from X.
Apply the majority rule on team i, updating ail team members’ opinions.
Team i becomes latent for a period of time whose duration dépends on the adopted opinion, 

end for 
repeat

for i = 1 to A: do
if Team i becomes non-latent then

Form new team i by selecting at random three non-latent agents from X.
Apply the majority rule on team i, updating ail team members’ opinions.
Team i becomes latent for a period of time whose duration dépends on the adopted 
opinion, 

end if 
end for 
t i— t 4-1

until Consensus is reached

to the limit N/3. This case is interesting because, in the continous case, the probability 
of two teams becoming non-latent at exaclty the same time is zéro. Thus, we expect that 
when k = N/3 the System will behave difîerently than when k < N/3. However, since in 
our simulations we use discretization of the normal distribution, the actual probability of 
two teams becoming non-latent at exaclty the same time is not zéro. To compensate for 
this différence between the continuons model and its discrète implémentation, we do not 
allow teams that happen to finish at the same time to exchange team members. Finally, 
we study the system’s dynamics when the durations of the latency periods are such that 
opinions may be difficult to distinguish.

Our simulations are based on the fact that robot actions may hâve a typical duration 
with some déviation. For example, going from one place to another cannot happen in- 
stantaneously, and, depending on the number of obstacles présent in the environment, one 
trip may take more or less time than another. Thus, as a first approximation of such a 
scénario, we study the system’s dynamics with normally distributed latency periods using 
Monte Carlo simulation.

The durations of latency periods associated with opinions A and B are modeled as two 
normally distributed random variables with means ha and fis, and standard déviations 
(Ta and o’s, respectively. The latency period duration ratio is defined as r = fis/f^A- The 
simulation proceeds as follows: Teams are formed at random, the majority rule is applied 
within each team, and the resulting opinions are adopted by the involved agents. The 
execution times for each team are drawn from a normal distribution with the appropriate 
parameters and the resulting number is rounded to the nearest integer. The time steps 
counter runs until a team’s execution time expires. At that point, a new team is formed 
and the process is repeated until the maximum number of time steps is reached. In our 
simulations, we use populations of A G {9,90,900} agents. For each population size, we 
vary the number of teams: k G {1,2,3}, when A = 9, fc G (1,10,20,30}, when N = 90, and 
k G {1,100,200,300}, when N = 900. We also vary r by changing the value of /is. The 
explored values of r are 1, 2, 3, and 4. The reference mean fiA is fixed to a value of 100 time 
steps. We set cta = ctb = 20 time steps. With these settings, the two distributions do not 
significantly overlap, which allows us to see the dynamics in the absence of high levels of 
interférence. Later in this section, we study the system’s dynamics when the distributions
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of the latency periods overlap.

Dynamics

Figure 5.4 shows the dynamics of the proposed model with a population of 900 agents.^ 
The relation between the initial configuration of the population and the probability of 
reaching consensus on one of the alternative opinions follows the same nonlinear pattern 
observed in Figure 5.2(a). However, when latency periods hâve a different mean duration, 
it is more likely that the System achieves consensus on the opinion associated with the 
shortest latency period. This fact is reflected by a lower critical initial fraction. In Figure 
5.4(a), for example, the critical initial fraction is approximately equal to 0.35 when r = 4 
whereas it is approximately equal to 0.42 when r = 2. In every case, the peak on the 
number of team formations needed to reach consensus occurs at the critical initial fraction 
(see Figure 5.4(b)). Additionally, at the critical initial fraction, the larger the latency 
period duration ratio, the more team formations are needed to reach consensus.

A second aspect that we study in this experiment is the effect of the number of teams 
on the system’s dynamics. An example of the obtained results is shown in Figures 5.4(c) 
and 5.4(d). For a latency period duration ratio greater than one, increasing the number of 
teams reduces the critical initial fraction. In terms of the number of team formations to 
achieve consensus, the results are similar to the ones observed in Figure 5.2, that is, the 
maximum number of team formations occurs at the critical initial fraction. As expected, 
when k approaches N/3, the System exhibits different dynamics and stops obeying the 
aforementioned tendencies. Except for cases in which consensus is reached after the first 
team formations (e.g., with very small populations and very low or large initial densities), 
when N = 3k the System does not reach consensus (see Figure 5.4(e)). Next, we study in 
detail the dynamics of the System when k approaches the value N/3.

Consensus and Critical Initial Fractions

We tracked over time the proportion of latent and non-latent agents with the opinion asso- 
ciated with the shortest latency period (opinion A) in order to explain two phenomena: i) 
why the System does not always reach consensus when k = N/3 and ii) why, for different 
latency duration ratios or different number of teams, there are different critical initial frac­
tions. Figure 5.5 shows the development of these proportions over time for three different 
cases: N 6 {900,901,902}. To produce these plots, we fixed r = A, k = 300, and the initial 
fraction of the population in favor of opinion A was set to 0.5.

When N = 3k (see Figure 5.5(a)), every time a team is destroyed and formed anew, it is 
composed of exactly the same members. This means that when N = 3k there is no change 
in the number of agents with one or another opinion after the initial team formations. 
When N = 3k + l (see Figure 5.5(b)) consensus is not reached as in the previous case. This 
phenomenon occurs because three of the four non-latent agents available at the moment of 
forming a new team hâve the same opinion. Thus, while there may be a different agent in 
a new team, the team’s opinion does not change, eliminating the possibility of an eventual 
consensus. When N = 3k+ 2 (see Figure 5.5(c)) the population always reaches consensus. 
Two non-latent agents are enough to possibly change the opinion of one agent that just 
switched from a latent to a non-latent State. Thus, a non-latent population of at least two 
non-latent agents guarantees consensus.

The “waves” depicted in Figure 5.5 are caused by the existence of two different latency 
periods. The valleys of the waves concur with multiples of the mean of the slowest latency 
period, that is, the period of these waves is fis- In our example, hb = 400 because r = 4 
and Ha = 100. The amplitude of these waves is proportional to the number of teams. 
These wave-like variations help explain the existence of critical initial fractions. A latency 
duration ratio greater than one gives, on average, more time to teams with agents with 
opinion A than to teams with opinion B to accumulate agents with that same opinion in the

^In Montes de Oca (2011), the reader can find the complété set of results.
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Figure 5.4: Dynamics of the majority-rule opinion formation model with normally dis- 
tributed latency periods on a population of 900 agents. Figure (a) and (b) show, re- 
spectively, the probability of reaching consensus on opinion A, and the number of team 
formations to reach consensus for different latency period duration ratios and a fixed num­
ber of teams (k = 200). Figures (c) and (d) show, respectively, the probability of reaching 
consensus on opinion A, and the number of team formations to reach consensus for different 
number of teams and a fixed latency period duration ratio (r = 4). The plot in Figure (e) 
shows the case k = N/3 in which the System does not reach consensus. These plots are 
based on results obtained through 1,000 independent runs of a Monte Carlo simulation.

non-latent subpopulation. Given that fis — ru a, by the time the first teams with opinion 
B become non-latent, teams with opinion A will hâve done so approximately r times. This
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Figure 5.5: Development of the total proportion of agents with opinion A, and the pro­
portion of non-latent agents with opinion A. Opinion A is associated with the shortest 
latency period. These plots are based on results obtained through 1,000 independent runs 
of a Monte Carlo simulation.

imbalance makes the population reach consensus on opinion A with higher probability than 
on opinion B. If the initial fraction of the population favors opinion B, that is, the initial 
fraction is lower than 0.5, then it is possible to balance the System. In such a situation, 
consensus is reached on either of the two opinions due to random fluctuations. Thus, the 
initial fraction that balances the opinion update process in the non-latent population is 
the initial critical fraction. A similar reasoning explains why the initial critical fraction 
decreases when the number of teams increases.

Distributions Overlap and the Discrimination Ability of the System

If the distributions of the duration of latency periods significantly overlap, we expect that 
the population of agents will not be able to consistently reach consensus on the opinion 
associated with the shortest latency period. Thus, it is important to assess the ability of 
the System to discriminate between the two distributions if the system’s dynamics are to 
be used as a decision-making mechanism.

The following experiment is aimed at measuring the extent to which the population can 
still reach consensus on the opinion associated with the shortest latency period when the 
two latency duration distributions overlap. We assume that there is no a priori information 
about which opinion is associated with the shortest latency period. Thus, the initial fraction 
of agents in favor of one opinion or the other is equal to 0.5. We fix the parameters of 
the distribution associated with the shortest latency period {fiA> o'a)- We vary both the 
mean and standard déviation of the distribution associated with the longest latency period 
(MB) <^b)- The explored ranges are: pB = fPA with r € [1.0,2.0] in incréments of 0.1, and 
(Tb = sa A with s € [1.0,3.0] in incréments of 0.5. The parameters used for the distribution 
associated with the shortest latency period are pA = 100, and aA = 10. Other values were 
explored but the System does not exhibit different dynamics as long as the relations between 
the distributions’ coefficients of variation remain the same. As discussed in Section 5.2.1, 
two extra non-latent agents are needed to ensure consensus. Thus, in these experiments, we 
increase the population size with respect to the previous experiments. The results obtained 
with 902 agents are shown in Figure 5.6.

The probability of reaching consensus on the opinion associated with the shortest la­
tency period grows more rapidly when a large number of teams and, consequently, a large 
population is used. For example, with 11 agents the System has great difficulties in de- 
tecting the opinion associated with the shortest latency period (results shown in (Montes 
de Oca, 2011)). With 11 agents, the maximum probability of reaching consensus on the 
opinion associated with the shortest latency period is approximately 0.8. In contrast, in 
the example shown in Figure 5.6, the System is able to discriminate latency periods un-
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(a) N = 902, k = 100 (b) N = 902, k = 200 (c) N = 902, k = 300

(d) JV = 902, k = 100 (e) N = 902, k = 200 (f) N = 902, k = 300

Figure 5.6: Probability of reaching consensus on the opinion associated with the shortest 
latency period and the average number of team formations needed to do it as a function of 
different levels of overlap between latency period duration distributions. These plots axe 
based on results obtained through 1,000 independent runs of a Monte Carlo simulation.

der a wide range of combinations of means and standard déviation ratios. With 100 and 
200 teams (Figures 5.6(a) and 5.6(b)), the System is mostly affected by the ratio between 
means. When using 200 teams, the System reaches a probability of 1 for achieving consen­
sus on the opinion associated with the shortest latency period already from r > 1.3. At 
the same time, the number of team formations needed to reach consensus decreases as r 
increases (Figures 5.6(d) and 5.6(e)). With 300 teams (Figure 5.6(c)), the System exhibits 
a good discrimination ability (although not as good as with 200 teams) but at a much 
higher cost in terms of team formations (Figure 5.6(f)).

Irrespective of the size of the population, the standard déviation ratio does not hâve a 
significant impact on the probability of the System discriminating between the two distri­
butions. We believe that this phenomenon is the resuit of an “averaging” effect due to the 
large number of team formations needed to reach a consensus. The effects of short-term 
fluctuations due to the high variability of one of the distributions become negligible in the 
long run.

5.2.2 Physics-Based Simulation Study

In the experiments described in this section, the interaction between robots and their 
environment détermines the duration of latency periods. Moreover, the physical dimensions 
of the environment détermines the maximum number of teams that can be used to perform 
a certain task. We use a scénario that resembles the well-known double bridge experiment 
designed by Goss et al. (1989) (see Figure 5.7(a)). The task of the robots is to transport 
objects from a starting location (at the bottom of the figure) to a target location (at the top
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Figure 5.7: Task Scénario. The arena is a bridge-like environment with two branches of 
diflterent lengths (see Figure (a)). Teams of robots carry objects (see Figure (b)) from one 
end of the arena to the other. Robots must choose to take either the left or the right path.

of the figure). The objects that need to be transported weigh more than what a single robot 
can carry. Thus, robots need to team up in order to move the objects. An assembled team 
ready to transport an object is shown in Figure 5.7(b). While performing this task, robots 
must choose to take either the left or right path to reach the target location. These two 
options represent the robots’ “opinions.” The time needed by robots to go from the starting 
point to the target location and back is the duration of the latency period associated with 
the chosen path. Robots traversing a path are latent with respect to the decision-making 
process because they can neither change opinion nor influence other robots to do so. On 
the contrary, robots that are waiting in the starting location are non-latent because they 
can form new teams, and thus can change or spread their opinion. Like the ants in Goss 
et al.’s experiment, robots do not hâve any knowledge about the length of the paths and 
do not measure distances or travel times.

Experimental Setup

We used ARGoS (Pinciroli et ah, 2010), a simulator developed as part of the SWAR- 
MANOID Project.^ ARGoS accurately simulâtes physical interactions between robots and 
their environment. The robot models are based on the physical and electronic designs of 
the actual SWARMANOID foot-bots (Bonani et al., 2010).

In ail our simulations, non-active robots are not placed inside the arena; only active 
robots are. The size of the environment does not allow a parallel deployment of teams. 
Thus, a sequential deployment strategy is adopted. From the set of non-active robots, three 
robots are chosen at random and placed in the starting location together with the object 
to be carried. These robots attach to the object using their gripper actuator. Then, the 
robots détermine the team’s majority opinion by exchanging messages using their range 
and bearing communication device, which allows robots to communicate locally with other 
robots (Roberts et al., 2009). Only robots that are located within a short range and that 
are in line of sight receive messages. Each robot sends its own opinion to the other two 
robots of the team, and once a robot reçoives the opinions of the others, it locally applies 
the majority rule to détermine the opinion to adopt. Upon agreement on the path to 
follow, the robots start moving toward the target location. Two LEDs are placed at the 
bifurcations to let robot teams know in which direction they should turn. Robots detect

®http://www.swarmanoid.org/
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Seconds Seconds

(a) Two teams (b) Ten teams

Figure 5.8: Estimated action execution time distributions for the two available actions 
when there are two (a) and ten (b) teams in the environment. Each density plot is based 
on 10,000 round trips (100 runs of 100 trips each) of a robot between the starting and goal 
locations in the environment shown in Figure 5.7(a).

LEDs using their omni-directional caméra. When robots reach the goal area, they detach 
from the object they were transporting and go back, as single robots, through the same 
path they used when they were part of a team. On their way to the target location, robots 
use the collective transport controller designed by Ferrante et al. (2010). This controller 
allows robots to transport the object to the goal location while avoiding obstacles (walls 
and single robots on the way back to the starting location). Obstacles are detected using 
a rotating infra-red emitter and receiver. The target location is indicated by a light source 
located above it, which the robots perceive through their light sensors. To go back to 
the starting location, robots use the light source that identifies the target location as a 
landmark and then move away from it. To coordinate the heading direction, robots again 
use the range and bearing device as described by Ferrante et al. (2010). New teams are 
deployed every 40 simulated seconds until a spécifie number of teams is reached or the 
environment reaches its maximum capacity. The shortest branch of this environment can 
hold up to to ten teams.

Estimation of the Action Execution Time Distributions

In the analysis presented in Section 5.2.1, we assumed that the distributions of the latency 
periods are independent of the number of agents with a paxticular opinion. However, in 
a swarm robotics scénario, this assumption does not generally hold because interférence 
between robots is likely to dynamically change the latency distributions and their ratio. 
In our environment, for instance, a branch could become congested if a large number of 
robots choose it. This increased congestion translates into longer and more variable path 
traversai times. To measure the effects of interférence in our environment, we deploy from 
two to ten robot teams and make them traverse several times the environment using only 
one of the two branches. The estimated action execution time distributions when there are 
two and ten teams in the environment are shown in Figure 5.8.

The résulta of this experiment show that both the mean and the standard déviation 
of the action execution time distributions change as a resuit of the number of teams that 
choose each branch. When there are only two teams in the environment, the average 
time needed to traverse the left and right branches of the environment is 408.5 and 699.8 
seconds, respectively. Similarly, the standard déviation is 59.3 seconds for the left path 
and 15.7 seconds for the right path. When there are ten teams, the average time needed to
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Figure 5.9; Shortest path sélection process. Figure (a) shows a swarm of robots in the 
process of transporting objects frora the starting point to the target location. Note that the 
robots use both branches of the environment. Figure (b) shows the State of the environment 
when the swarm of robots has reached consensus. The path selected by the swarm of robots 
is the shortest one.

traverse the left and right branches of the environment becomes 419.2 and 724.0 seconds, 
respectively. The standard déviation in that case becomes 29.0 seconds for the left path 
and 35.9 seconds for the right path. In our simulations with two agents choosing the 
left path, there were a few rare cases in which the time needed by a robot to perform 
a round trip between the starting and the target location was very long. These outliers 
afîected the computation of the standard déviations (note that the standard déviation 
actually decreased when using ten teams). In our experiment, the action execution time 
ratio and standard déviation ratio for the two cases shown in Figure 5.8 are (1.71,0.26) 
for the two teams case, and (1.72, 1.23) for the ten-teams case. From two to ten teams, 
the mean execution ratio remained approximately the same, but the standard déviation 
ratio increased about five times. Additionally, the action execution distributions are right- 
skewed because robots that hâve reached the target location hâve to avoid collisions with 
incoming teams. This phenomenon occurs more frequently when the number of teams in 
the environment increases.

Collective Decision-Making

We now test the ability of a swarm of robots to choose the shortest path between the starting 
and target locations in the environment shown in Figure 5.7(a). In this experiment, the 
robots’ decisions are governed by the dynamics of the model described in Section 5.3. We 
use a total of 32 robots (30 of which are executing the taak at the same time plus two 
extra ones that are used in order to ensure consensus). The initial fraction of robots with 
the opinion associated with the shortest path is 0.5, that is, 16 robots initially favor the 
shortest path and 16 favor the longest one. In Figure 5.9, we show two snapshots of a 
simulation that finishes with the swarm selecting the shortest path. In the accompanying 
supplementary information webpage (Montes de Oca, 2011), the reader can find a video 
that shows the System in action.

Figure 5.10 shows two example plots of the évolution over time of the proportion of 
robots with the opinion associated with the shortest path. Consensus is the final State of 
ail individual runs; however, the swarm does not reach consensus on the shortest path in ail 
runs. The probability of reaching consensus on the shortest path dépends on the number 
of teams deployed. In Table 5.1, we list the estimated probabilities of reaching consensus
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Figure 5.10: Proportion of robots with the opinion associated with the shortest path. 
The évolution of the System with five and ten teams are shown in Figures (a) and (b) 
respectively. Single run results are shown in gray lines. The average over 100 runs is 
maxked with a thick black line.

Table 5.1: Probability of choosing the shortest branch of the environment as a fonction 
of the number of teams k. The population size N is equal to 32 robots. The highest 
probability is highlighted in boldface. These results are based on statistics taken from 100 
indépendant simulations._______________________________________________________________

Physics-Based Simulation Monte Carlo Simulation
k Probability Avg. Team Formations Probability Avg. Team Formations
1 0.48 74.29 0.54 70.66
2 0.52 72.67 0.62 74.62
3 0.69 72.75 0.58 74.39
4 0.71 70.28 0.68 71.87
5 0.75 71.60 0.74 70.17
6 0.74 75.22 0.72 71.18
7 0.79 76.20 0.83 80.84
8 0.86 77.73 0.82 85.58
9 0.83 81.29 0.86 98.43
10 0.81 109.95 0.69 248.25

on the shortest path. We also include results obtained with the Monte Carlo simulator 
used in Section 5.2.1 for validation purposes. The simulation setup uses the data gathered 
in the experiment described in Section 5.2.2. Specifically, we set the mean and standard 
déviation of the latency period associated with the shortest path to 100 and 20 time steps, 
respectively. The mean of the latency period associated with the longest path was set to 
1.72 X 100 = 172 time steps, and its standard déviation is set to [1.23 x 20] = 25 time 
steps.

The probability of choosing the shortest path increases with the number of teams and 
reaches its maximum value with eight teams when using the physics-based simulator and 
with nine teams when using the Monte Carlo simulator. In both cases, the maximum prob­
ability is 0.86. The average team formations needed to reach consensus oscillâtes within the 
range [70,75] for most cases and grows substantially when the number of teams approaches 
the limit N/3, where N is the number of robots. These results are the conséquence of three 
factors. First, small swarms (our 32-robot swarm can still be considered small) hâve diffi- 
culties in discriminating latency duration distributions whose ratio is lower than two (see 
Section 5.2.1). Second, as the number of teams approaches the limit N/3, the size of the
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non-latent subpopulation starts playing a rôle in both the quality of ttie decision eventually 
made by the swarm (lowering its quality) and the time it takes to reach consensus (increas- 
ing the number of needed team formations). Finally, the sequential deployment of teams 
seems to reduce the number of team formations needed to reach consensus. This phe- 
nomenon may occur because the time delay between deployments enables a better mixture 
of opinions in the non-latent population of robots before a new team formation.

5.3 Intégration with the Incrémental Social Learning 
Framework

The collective decision-making mechanism described in Section 5.2 potentially maximizes 
the amount of work performed by a swarm of robots in a given amount of time by allowing 
robots to select the fastest-to-execute action. However, reaching consensus on the fastest- 
to-execute action is a necessary but not a sufBcient condition to maximize the swarm’s 
efficiency. To maximize its efSciency, the robot swarm should also reach consensus as fast 
as possible. Unfortunately, the time necessary for the swarm to reach a consensus increases 
with the size of the population if the number of teams concurrently executing actions 
remains constant (see Figure 5.11). Such a situation would not be rare in environments 
that can hold only a certain number of teams executing a task in parallel (e.g., when the 
robots must travel through a corridor).

With 92 agents, the probability of reaching consensus on the opinion associated with 
the shortest latency period reaches the value 1.0 only with r = 4 and r = 8, and with 10 to 
15 active teams. The number of team formations needed to reach consensus remains ap- 
proximately the same at a value of approximately 300 team formations with up to 10 active 
teams. With more active teams, more team formations are needed. This number increases 
more rapidly with higher latency period duration ratios. For our purposes, however, the 
most important measure is the actual time needed to reach consensus. The number of time 
steps needed to reach consensus decreases rapidly as the number of active teams increases. 
However, past a certain value that dépends on the latency period duration ratio, this time 
increases again. With 902 agents, the trends are similar to the ones observed with 92 
agents. It is important to note that the same quality vs. time trade-off observed in the 
PSO algorithms (see Chapter 4) is observed with this System; Higher quality results, that 
is, reaching with high probability consensus on the opinion associated with the shortest 
latency period are obtained with large populations but at a higher cost in terms of the 
time needed to reach consensus. This characteristic trade-off makes the System suitable 
to be combined with the ISL framework as discussed in Chapter 3. The intégration of 
this collective decision-making mechanism with ISL is described and evaluated in the next 
section.

5.3.1 Incrémental Social Learning Implémentation

In our ISL implémentation, we start with a population size N = 6, which means that we 
start with k = 2 teams. The reason for this choice is that the System needs at least two 
teams in order to detect any différence between the duration of latency periods. One team 
would make the population reach consensus, as demonstrated by Krapivsky and Redner 
(2003), but the consensus would be on a random opinion.

The agent addition schedule used is the fastest possible, that is, we add an agent to 
the population every time step until the maximum population size is reached. With this 
schedule, newly added agents are ready to form a team by the time the first team becomes 
non-latent. If the number of teams to build is greater than two, a new team is created as 
soon as there are enough free agents. Once the maximum number of teams is reached, no 
new teams are created even if the population is still growing.

The social learning rule is implemented as follows. When a new agent is added to the 
population, its initial opinion is copied from one random agent chosen from the set of non-
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Figure 5.11: Probability of reaching consensus on the opinion associated with the shortest 
latency period (Figures (a) and (b)), the average number of team formations (Figures (c) 
and (d)), and time steps (Figures (e) and (f)) needed to reach consensus as a function of 
the population size and number of active teams. Figures (a), (c), and (e) correspond to 
the case with 92 agents. Figures (b), (d), and (f) correspond to the case with 902 agents. 
The data used to produce these plots were obtained through 1,000 independent runs of the 
Monte Carlo simulator described in Section 5.2.1. In these plots, we used three latency 
period duration ratios r- = 2,4,8.

latent agents. If such an agent does not exist, for example, when ail agents are latent, the 
new agent is initialized at random. A pseudo-code description of the integrated System is
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Algorithm 7 Collective decision-making with incrémental social learning

/* Initialization */ 
t ■<— 0
Initialize swarm S with six agents /* Two teams */

/* Main loop */
while Stopping criteria not met do

/* Agents are added according to a schedule */ 
if Agent-addition criterion is not met then

/* Exécuté collective decision-making mechanism as in Algorithm 6 */ 
else

Croate new agent ünew
ünew adopts the opinion of a randomly picked non-latent agent /* Social learning */ 
S‘+i ^ S* U {a„e»} 

end if 
t i— £ “h 1 

end while

shown in Algorithm 7.

Evaluation Setup

Our évaluation setup is designed in order to meet the following two goals: (i) to déter­
mine whether ISL improves the performance of the collective decision-making mechanism 
described in Section 5.2, and if improvement is indeed achieved, (ii) to measure the magni­
tude of the improvement and to détermine the conditions under which such an improvement 
occurs.

We measure the performance of the collective decision-making mechanism as the number 
of times agents become latent, which is équivalent to the number of times actions are 
executed in a given amount of time. Thus, we emphasize the amount of useful work 
performed by the System. Given two System settings, the one that lets agents execute 
more actions in the same amount of time is preferred. Additionally, we also look at the 
average number of times each agent in the population executes each of the two available 
actions. This measure allows us to observe whether ISL reduces the time agents spend 
trying the available alternative actions.

We use Monte Carlo simulation to carry out our experiments. As in Section 5.2.1, 
the durations of latency periods are modeled as two normally distributed random variables 
with means ha and fiA, and standard déviations cta and ctb, respectively. We also associate 
opinion A with the shortest latency period. We study the system’s behavior as a function 
of the latency period duration ratio. Different action execution time ratios are obtained 
by varying fis- The standard déviations <7a and ctb are kept constant.

Two majcimum population sizes are used in our simulations: N G {100,1000}. Different 
numbers of teams for each population size are used: kxoo S {2,3,4,5,6,7,8,9,10,20,30}, 
and fciooo € {2,3,4,5,6,7,8,9,10,20,30,..., 90,100,200,300}. The initial opinion of each 
agent is set at random. Three different values for the latency period duration ratio are 
tried (r G {2,4,8}). The means and standard déviations of the action execution times are 
set as follows: ha = 10, hb ê {20,40,80}, and cta = ctb = 2. This value is chosen in 
order to allow a clear séparation of execution times between the alternative actions. Each 
simulation runs for 10,000 time steps. 500 simulations are run for each combination of 
parameters.

5.3.2 Results

The results of our simulations are reported in this section. First, we look at the relative 
différence of the number of times agents become latent in a given number of time steps.
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Then, we look at the exploration time savings due to the use of ISL.

Amount of Work Performed

In each experiment, we count the number of times agents become latent in the original 
and the ISL-based System. We dénoté these quantities by wisl and leoriginaii respectively. 
Since these quantities are in fact random variables, we use their médians, denoted by i&isl 
and têoriginaii for our analysis. We then compute the médians relative différence with a 
normalizing factor that is equal to the expected number of times agents would become latent 
if the opinion associated with the shortest latency period was known from the beginning 
of the simulation. This number is estimated as H/ha, where k is the number of active 
teams, t is the number of time steps (in our case, the maximum value that t can take is 
T = 10000), and ha is the mean of the shortest latency period. Our performance measure 
as a function of time is thus;

n t^A(wiSL ÛiOriginal)
■KiSL-OriginaUtj = ------------------- ----------------------- • fo.lj

If iïisL-Originai(^) > 0, then the différence is in favor of the System that uses ISL. If 
^ISL-Originai(^) < 0, then the différence is in favor of the original System. No différence 
would be detected if iîisL-Originai(i) = 0. The results obtained as a function of the number 
of active teams and latency period duration ratios are shown in Figure 5.12. We analyze 
the results along the following influencing factors:

• Latency period duration ratio. A general trend is that the greater the latency 
period duration ratio, the stronger the effects of ISL are on the performance of the 
System. This phenomenon may be due to the small population size with which 
the System begins. Contrary to what would happen with a constant population 
size System where many teams would adopt the opinion associated with the longest 
latency period, with ISL only one team (on average) would. If the latency period 
duration ratio is large, a team that adopts the opinion associated with the longest 
latency period does not hâve many chances to influence other agents once it finishes. 
The resuit is thus an accelerated convergence toward a consensus on the opinion 
associated with the shortest latency period.

• Number of active teams. The effects of ISL diminish as the number of active 
teams increases. In fact, the différences due to different latency period duration ratios 
disappear when many teams are active in the environment. This resuit may be the 
conséquence of the fact that increasing the number of teams in a constant population 
size System speeds up consensus building as seen in Figure 5.11. Nevertheless, the 
performance obtained by the ISL-based System is comparable to the performance of 
the original System.

• Maximum population size. The effects of ISL increase as the size of the population 
increases. Small populations converge rapidly as a resuit of the rapid amplification of 
fiuctuations in the opinions of the population due to team formations. For example, 
if iV = 10, a single team can alter the opinion of 1/10 of the population, whereas if 
N = 1000, a team can only alter the opinion of 1/1000 of the population. •

• Available time. The accelerated convergence that results from the application of 
ISL proves more useful if time constraints exist. In other words, if the time allocated 
for the System to perform the foraging task is limited, using the ISL framework 
provides benefits. This resuit is true even with medium-sized populations and a 
relatively large number of active teams.
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Figure 5.12: Performance différences between the original collective decision-making mech- 
anism and its combination with ISL. The normalizing factor used is the expected number 
of times agents would become latent if the opinion associated with the shortest latency 
period was chosen from the beginning of a run.

Exploration Time

As explained in Chapter 2, it is usually assumed that social learning allows agents to save 
time that would hâve otherwise been spent learning to accomplish tasks individually (La- 
land, 2004). As a resuit, social learning agents can spend more time performing more 
rewarding actions.

To see whether ISL allows agents to save the time otherwise needed to try the different 
available alternatives (that is, to learn individually), we proceed as follows. During each 
simulation run, we count the number of times each agent adopts each of the two available 
opinions. The sum of these “expériences” at the end of the simulation is then divided by
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(a) N =100 after 10,000 time steps (b) N =1,000 after 10,000 time steps

Figure 5.13: Exploration vs. exploitation behavior. Each plot shows the ratio between 
the average individual expérience obtained with ISL and the average individual expérience 
obtained with a constant population size. The size of the gap between the ratios for the 
shortest and longest latency period is a measure of the time agents saved exploring the 
available opinions thanks to ISL. The solid line at ratio 1 represents the same measure but 
for constant population size Systems.

the maximum population size. The resulting quantities can be interpreted as the average 
individual expérience on each action, that is, the average number of times each action is 
tried by an agent. The différence between these quantities serve as a measure of the balance 
between exploration and exploitation.

To hâve a direct comparison between the original System and the one based on ISL, 
we compute the ratio of the médian average individual expériences for each action and for 
each latency period duration ratio. The results are shown in Figure 5.13.

We conclude that ISL reduces the time spent by agents exploring the available opinions. 
The actual réduction dépends on a number of factors including the maximum population 
size, the number of active teams, and the latency period duration ratio. In some cases, 
the réduction is substantial. For example, with a constant population size of 1000 agents 
and 10 active teams, agents choose the opinion associated with the longest latency period 
about 100 times more than agents in an ISL-based System. However, as the number of 
active teams increases, the advantage of using ISL is reduced.

5.4 Related Work

5.4.1 Models

In biological sciences, self-organization models hâve been proposed to explain the coor­
dination of large groups of animais (Camazine et al., 2001; Couzin and Krause, 2003). 
Self-organization is itself the resuit of the interaction between several éléments that in- 
clude multiple direct or indirect interactions among the system’s components, positive and 
négative feedback, and random fluctuations (Camazine et al., 2001). These models are 
particularly relevant for our proposai because the mechanism described in the previous 
section can be seen as an example of self-organization. In fact, the double-bridge experi- 
ment proposed by Goss et al. (1989) is reproduced here with the goal of pinpointing the 
self-organized nature of the collective decision-making mechanism introduced in this chap- 
ter. Some of the reasons that lead us to affirm this are the following: First, a large-scale 
spatio-temporal pattern, consensus on one branch of the environment, emerges as a resuit 
of local interactions among robots. Second, the majority rule used to control the interac­
tions among robots does not make any reference to the pattern that emerges. Third, no 
single robot is capable of supervising or controlling the évolution of the System. Fourth,

87



CHAPTER 5. INCREMENTAL SOCIAL LEARNING APPLIED TO ROBOT
SWARMS

positive feedback occurs because robots that use the shortest path go back to the starting 
location before others. Thus, the probability that a new team has a majority in favor of 
the shortest path increases. Fifth, négative feedback is the resuit of the increased difficulty 
with which teams that adopt the opinion associated with the longest path are formed. 
Finally, randomness plays an important rôle in breaking symmetries and producing the 
fluctuations that are amplified by the processes described above.

In a recent study, Scheidler (2011) analyzes a simplified version of our model in which 
the fraction of non-latent agents is assumed to be negligible. Scheidler détermines the 
probability of reaching consensus on the opinion associated with the shortest latency as 
well as the time needed to reach consensus in finite Systems using Fokker-Planck équations. 
Moreover, an asymptotical characterization of the time to consensus is also presented.

5.4.2 Collective Decision-Making in Artificial Swarms

Many collective decision-making mechanisms in swarm robotics are based on the simulation 
of pheromones. Approaches range from the use of real Chemicals (Russell, 1999; Fujisawa 
et al, 2008a,b), to the use of digital video projectors to cast images of pheromone trails 
on the ground (Sugawara et al., 2004; Garnier et al., 2007b; Hamman et al., 2007). There 
are also works in which the environment is enhanced so that it may store information. For 
example, Mamei and Zambonelli (2005), Herianto and Kurabayashi (2009) and Johansson 
and SafBotti (2009) deploy RFID tags in the environment so that robots can read from or 
Write in them. Mayet et al. (2010) use an environment in which the floor is covered with 
a paint that glows if robots activate ultraviolet LEDs. Another variant of the pheromone- 
inspired approach is to use actual robots as markers to form trails. Some works that use this 
approach are the ones by Werger and Mataric (1996); Payton et al. (2001); Nouyan et al. 
(2008, 2009) and Ducatelle et al. (2010). As performed to date, simulating pheromones 
has important limitations. For example, dealing with Chemicals is problematic because 
very specialized sensors are needed. The level of sophistication is such that some authors 
hâve used real insects antennae (Kuwana et al., 1995; Nagasawa et al., 1999). Using 
video projectors is an approach that can be adopted only indoors and under controlled 
conditions. Furthermore, the use of video projectors requires the use of tracking caméras 
and a central computer to generate the images to be projected. The existence of such a 
central information processing unit gives the approach a single point of failure. Modifying 
the environment with spécial floors or with RFID tags is a cheap and interesting approach. 
However, the applicability of such an approach is limited to situations in which it is possible 
to design and build an environment where it is known a priori that robots are going to 
be deployed. Finally, using robots as markers allows a swarm to operate in unknown 
environments without central control. However, complex robot controllers are needed 
in order to allow individual robots to play different rôles in the swarm. Although this 
approach is promising, the development of complex robot control software for swarms is in 
its infancy, since we are still trying to understand the connection between individual-level 
and collective-level behaviors.

Other insect behaviors hâve also served as sources of inspiration. For example, trophal- 
laods, the exchange of liquid food between insects, was first used in swarm robotics by 
Schmickl and Crailsheim (2008) to generate gradients through robot-to-robot communi­
cation to allow robots to find the shortest path between two locations. Gutiérrez et al. 
(2010) also used trophallaxis as source of inspiration for a method through which a swarm 
of robots can locate and navigate to the closest location of interest from a particular origin. 
In both of these methods, robots implicitly know that the goal is to find the shortest path 
between two locations. In Schmickl and Crailsheim’s work, robots decrease a numerical 
value at a certain rate as they move. This value is communicated when there are encoun- 
ters with other robots. Thus, the exchanged information gives a rough indication of the 
distance traveled. In Gutiérrez et al.’s work, robots actually measure the distance they 
hâve traveled and communicate this information to other robots in order to reduce the un- 
certainty of each robot’s estimate of the location of a target. In our work, robots measure
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neither travel times nor distances, and still, the swaxm finds the shortest path between two 
locations.

The aggregation behavior of cockroaches has been the source of inspiration for a site- 
selection mechanism with robots (Garnier et al., 2009). The nest-selection mechanism used 
by ants, which is based on detecting a quorum in favor of one option, has inspired the work 
of Parker and Zhang (2009, 2010). In these works, robots need to know whether there 
are enough committed robots for one of the competing options. In both cases, the more 
committed robots there are for one of the options, the more likely it is for a robot to 
commit to that option. In Garnier et al.’s work, the decision is probabilistic, and in Parker 
and Zhang’s work, the decision dépends on whether the number of committed robots is 
larger than a threshold. Deciding the value of this threshold or the rate at which the 
commitment probability increases is a critical issue because the first alternative that is 
identified as dominant will be the alternative chosen by the swarm. In our work, there are 
no thresholds or probabilities that dépend on the number of robots with a spécifie opinion. 
Thus, decision-making is a continuons process that ends when the whole population reaches 
a consensus.

In the work of Wessnitzer and Melhuish (2003), robots use the majority rule to décidé 
which of two “prey” to chase and immobilize. Robots capture one prey after the other. 
Although the decision is collective, the majority rule is used simply to break the symmetry 
of the decision problem.

5.4.3 Social Learning and Incrémental Deployment with Robots

Work related to the intégration of ISL with swarm robotics belongs to one of two categories: 
(i) social learning with robots, and (ii) incrémental deployment of robots.

The first category has been the most productive of the two and it has been dominated 
by researchers interested in endowing robots with social learning capabilities so that they 
can naturally interact with humans. For example, in this category we can find the work of 
Kuniyoshi et al. (1994), Dautenhahn (1995), Billard and Dautenhahn (1999), Breazeal and 
Scassellati (2000), Breazeal and Scassellati (2002), Saunders et al. (2006), and Thomaz 
and Cakmak (2009). This kind of work is now an important aspect of the subfield of 
robotics research called human-robot interaction (Goodrich and Schultz, 2007). There 
is also work aimed at understanding how social learning can be exploited in multi-robot 
Systems; however, it comprises only a small percentage of the body of literature about social 
learning in robotics. Mataric (1997) studied three kinds of “social reinforcement” with the 
goal of allowing a group of robots to learn interaction rules that reduced interférence (see 
Chapter 3) in a foraging task. Acerbi et al. (2007) studied the influence of exploiting social 
eues into the effectiveness of individual and genetic (through an evolutionary computation 
algorithm) learning. In Acerbi et al.’s experiments, robots biased their individual learning 
strategy in order to induce a conformist behavior that made robots copy the behavior 
of other robots. This strategy proved successful in a site sélection task. Pini and Tuci 
(2008) used artificial évolution to synthesize a neural network controller that allows a 
robot to use both individual and social learning in a foraging task. In their experiments, 
robots with the same controller can perform two different learning tasks. One of these 
robots learns socially from another robot that has previously learnt a task individually. 
Recent work has explored the relationship between a learner robot and a teacher robot. 
Cakmak et al. (2010) study different social learning mechanisms (see Section 2.2.1) in a 
two-robot scénario. The learner robot uses stimulus enhancement, mimicking, imitation, 
and émulation as mechanisms to exploit the information given by a demonstrator robot. 
In their experiments, the performance of the learner robot dépends on the nature of the 
learning task. Thus, Cakmak et al. conclude that it might be advantageous to devise a 
mechanism that allows a learner robot to choose which social learning mechanism to use. 
One important problem that is often avoided is choosing from whom to learn. Normally, 
the decision is made by the expérimenter. Recently, however, Kaipa et al. (2010) hâve 
tackled this problem through a self-other matching algorithm that allows a robot to choose
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the teacher robot based on how similar the learner and the teacher appear to be. Our 
work is much simpler than the ones we just mentioned. In our case, the teacher robot is a 
random robot. We can use this simple strategy thanks to the fact that ail robots hâve the 
same capabilities and goals. Moreover, our robots copy opinions, which is équivalent to 
copying an observed behavior. However, copying occurs through the transfer of only one 
bit of information. In summary, we do not study social learning mechanisms. Instead, we 
exploit the effects of social learning.

Works that belong to the second category, that is, of incrémental deployment of robots, 
are even less common than the ones dealing with social learning between robots. Howard 
et al. (2002) developed an incrémental deployment algorithm that allowed a group of robots 
to cover a two-dimensional space while keeping line-of-sight contact. In a recent work, 
Stirling et al. (2010) show that an incrémental deployment of aerial robots increases the 
system’s energy efficiency. Both sets of authors. Howard et al. and Stirling et al., use 
communication between robots in order to guide the newly added robot toward its position 
in the environment. Their work is similar to ours in the sense that robots are deployed 
one at a time, and every time a new robot is deployed, information gathered by already 
deployed robots is exploited by the newly deployed robot.

5.5 Conclusions and Future Work

In this chapter, we introduced a collective decision-making mechanism for robot swarms 
that is based on the opinion dynamics induced by the majority-rule opinion formation 
model with differential latency. We first introduced a number of modifications to Krapivsky 
and Redner’s and Lambiotte et al.’s majority-rule opinion formation models in order to 
capture some properties of real-world swarm robotics Systems. Agents represent robots 
and opinions represent actions or sequences of actions that robots hâve to choose from 
while solving a task. One of the main modifications that we introduced is called differen­
tial latency. This concept models the fact that different actions that robots can perform 
take different amounts of time to be completed. With the proposed modifications, the 
population of agents reaches a consensus on the opinion associated with the shortest la­
tency period. We demonstrated that this is the case when the duration of latency periods 
are normally distributed as well as when latency period distributions are the resuit of the 
interaction of the agents with their environment.

The opinion dynamics of the majority-rule opinion formation model with differential 
latency can be exploited in the field of swarm robotics as a self-organized collective decision- 
making mechanism. We believe that the proposed mechanism is promising because it 
enables a swarm of robots to make a decision that from an observer’s point of view is 
intelligent without requiring intelligent individual decision makers. As an example of the 
potential of the new approach, we tested it on a scénario based on the well-known double- 
bridge experiment. The results of this experiment clearly show that through the proposed 
mechanism, a swarm of robots is able to find the shortest path between two locations 
without simulating pheromones or requiring robots to measure distance or time.

We observed that when large populations are involved, the time necessary for the System 
to reach consensus may make it impractical for some applications. We tackled this problem 
by integrating the proposed collective decision-making mechanism with ISL. By starting 
with a small population and increasing its size over time, the System converges faster. 
The social learning rule allows new agents to learn from more experienced ones, thus 
saving exploration time. Our simulation results show that through the application of 
ISL, the performance of the decision-making mechanism can be substantially improved in 
situations where a small fraction of the population concurrently tries the different available 
alternatives and when time constraints exist. This resuit is very positive because in many 
situations, reducing the number of active agents without sacrificing the amount of work 
performed may allow the spared agents to perform other tasks.

We believe future work should focus on the improvement of the collective decision- 
making mechanism in order to facilitate its use on real robotics tcisks and its combination
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with other approaches. Some of the challenges and opportunities that the proposed mech- 
anism ofFers are:

• In the proposed scénario, robots know exactly when they need to form teams and 
make local decisions. However, in many situations the environment is unknown to 
the robots. Thus, it is difficult for a robot to know its position and therefore, when 
it should form a team. In our experiments, teams are deployed in the team assembly 
area in order to avoid this problem. Additionally, we used an LED to mark the 
decision point. Future work should address these shortcomings.

• In the proposed scénario, robots know the number of available alternatives. We tested 
only the case of two opinions, but cases in which there are more than two opinions 
should definitely be explored. An even more flexible approach would be to let robots 
discover the number of available actions they can choose from as they interact with 
the environment.

• An interesting research direction could be the intégration of opinion dynamics with 
task allocation methods in order to tackle problems for which consensus is a subop­
timal solution.

• If the environment changes after the System heis reached a consensus, the population 
cannot adapt. This problem could be tackled if some fixed number of robots do not 
change opinion. We are exploring this direction in ongoing work.

• In our work, the opinion dynamics that allow the swarm to reach consensus on one 
opinion are based on time-related “rewards.” Thus, the proposed approach is useful 
when the desired collective decision is the one associated with the shortest execution 
time. However, there are problems for which the best collective decision is based 
on more qualitative aspects. Translating these qualitative aspects into latencies of 
different duration would be a first approach toward a more general collective decision- 
making mechanism. For example, if an object is more interesting than another, robots 
that prefer the more interesting object should spend less time in a non-latent State 
than the other robots. Consequently, a positive feedback process could favor that 
option.

• The decision quality dépends on the population size. Large populations usually make 
better decisions. While such a property is désirable in swarm robotics Systems, it 
also hinders its use in real robotics Systems because the promise of having thousands 
of cheap robots has not been met yet. Thus, research is needed in order to improve 
the decision quality when the size of the swarm is relatively small. An option, that 
we are currently studying, is to simulate large swarms by making robots remember 
their past over long time horizons (not of just one action execution as it is currently 
done) and make a decision based on the opinion that has been observed more often 
during that period.

• The proposed approach requires robots to form teams and execute actions together. 
However, in some situations (e.g., when the physical dimensions of the environment 
does not allow robots to move together), forming teams might not be possible. Thus, 
a collective decision-making mechanism that works with single robots is désirable. A 
first attempt toward this goal is reported in (Montes de Oca et al., 2009a).

To conclude, we believe that collective decision-making in swarms based on opinion 
formation models is a new and exciting research direction with the potential of cross- 
pollinating the fields of swarm intelligence and statistical physics. On the one hand, the 
field of swarm intelligence may greatly benefit from ideas and tools developed in statistical 
physics literature. On the other hand, physicists may regard swarm intelligence as a rich 
source of interesting problems waiting to be modeled and solved.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the résulta and contributions presented in this dissertation. 
We also offer some ideas for future work that we believe can contribute to the further 
development of the swarm intelligence field.

6.1 Swarm Intelligence Systems and Interférence

Swarm intelligence is the problem-solving behavior of large groupa of simple entities capable 
of autonomous perception and action (called agents) that collectively are referred to as a 
swarm. The term swarm intelligence evokes a mental image in which a large group of insect- 
like entities congregates and exhibits a purposeful behavior without a central authority to 
supervise the actions of each individual or issue commanda to govern the group’s behavior. 
Despite its name, which makes us recall science fiction works, swarm intelligence exists 
in nature. Bees form swarms to collectively find and choose the best location to build 
a new home. Ant colonies, which can be composed of millions of ants, build complex 
nests, search and retrieve food, maintain the young, etc. In each case, a swarm intelligence 
System performs a particular task without any single individual supervising or directing 
the actions of other members of the swarm. Swarm intelligence can also be the product of 
engineering efforts. Powerful optimization techniques and control mechanisms for groups 
of mobile robots hâve been designed exploiting swarm intelligence principles.

Artificial swarm intelligence Systems are composed of numerous agents that interact 
locally with one another and with their environment. Through different mechanisms, but 
predominantly through self-organization and decentralized control, these kinds of Systems 
exhibit a collective intelligence that allows them to solve problems that their constituent 
agents cannot solve individually. As in any System whose constituent agents interact with 
each other, there are interactions among the agents that form a swarm that reduce the 
efficiency of the System. These interactions are collectively referred to as interférence. One 
of the most visible effects of interférence in a swarm intelligence System is the réduction 
of the system’s efficiency; that is, the time required by the System to reach a desired 
State is increased. Interférence increases with the size of the population of agents. Thus, 
interférence is a major problem in swarm intelligence Systems since many of them require 
large populations to perform their tasks satisfactorily. Interférence is thus a fundamental 
problem inhérent to Systems composed of many agents because it negatively affects the 
viability of the swarm intelligence approach when solving important practical problems.

6.2 Incrémental Social Learning as a Mechanism for 
Reducing the Effects of Interférence

In this dissertation, an original framework called incrémental social learning (ISL) was 
proposed in Chapter 3. This framework aims to reduce the négative effects of interférence
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in swarm intelligence Systems. Two components form the core of the ISL framework. 
The first component directly manipulâtes one of the factors that causes interférence: the 
number of agents that compose a swarm. A swarm intelligence System under the control 
of ISL starts with a small population. Gradually, the population grows until the System 
performs as desired or a maximum number of agents is reached. The second component 
of ISL is social learning. ISL exploits the fact that learning socially is less costly, in terms 
of trial-and-error trials for an individual, than asocial learning. Through social learning, 
newly added agents acquire knowledge from agents that hâve been part of the swarm for 
some time. As a resuit of the combination of these two components, a growing population 
size, and social learning, the effects of interférence is reduced. Consequently, the swarm 
reaches a desired State more rapidly than without using ISL.

6.2.1 Incrémental Social Learning in Particle Sweirms

We demonstrated the efîectiveness of ISL through two case studies. In the first case study, 
presented in Chapter 4, we applied ISL to particle swarm optimization (PSO) algorithms. 
These algorithms are commonly used to tackle continuons optimization problems and are 
composed of a population of searching agents called partiales. PSO algorithms with a con­
stant population size exhibit a trade-off between solution quality and number of objective 
function évaluations amenable to the application of ISL. With a small population size, 
the solution quality improves rapidly during the first objective function évaluations until 
it reaches a stable value. With laxge populations, the same solution quality reached by 
a small population is reached after many more objective function évaluations. However, 
if more évaluations are allowed, a better solution quality may be reached. The hypothe- 
sis that supports the application of ISL to PSO algorithms is that the trade-off between 
solution quality and number of objective function évaluations is due, at least partially, 
to interférence among particles. Interférence in PSO algorithms is the resuit of particles 
being attracted toward the best solutions found by other particles. Interférence is large 
in big swarms because at the beginning of the optimization process too much information 
flows through the network of particles. This phenomenon makes particles spend objective 
function évaluations in régions that do not contain the optimal solution.

As a resuit of the application of ISL to PSO algorithms, three new PSO variants were 
designed. The first one, which serves as a basis for the other two, is an incrémental particle 
swarm optimization algorithm that we call IPSO. In IPSO, the population of particles grows 
over time until the optimization process returns a solution of acceptable quality or until a 
maximum population size is reached. The rate at which particles are added to the System 
is scheduled and controlled through a parameter. Each time a new particle is added, its 
position in the objective function’s domain (usually a subset of E”) is generated through a 
rule that biases the placement of the new particle toward the best-so-far solution. Through 
a thorough experimental évaluation, we could show how IPSO, with the appropriate setting 
of the population growth, could return solutions that are comparable to those that would 
be returned if multiple PSO algorithms with different constant population sizes were run 
in parallel and only the best solution found by any of those algorithms was returned. The 
other two algorithms that resuit from the use of ISL on PSO algorithms, called IPSOLS and 
IPSOLS-t-, repeatedly call a local search procedure from a particle’s best found position 
in order to intensify the search. Each call of the local search procedure could be seen as 
simulating the individual learning of a particle. IPSOLS works in the same way as IPSO 
with an added step that consista in calling a local search procedure from each particle’s 
best found position. IPSOLS-f- is a further refinement of IPSOLS in which the local search 
is called more frequently from the particle’s position that représenta the best-so-far solution 
and in which the PSO rules are modified. IPSOLS’s performance is comparable with state- 
of-the-art PSO algorithms. IPSOLS-f’s performance is comparable with state-of-the-art 
algorithms for large-scale continuons optimization problems.
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6.2.2 Incrémental Social Learning in Robot Swarms

In the second case study, presented in Chapter 5, we applied ISL to a collective decision- 
making mechanism for swarms of mobile robots. Two contributions are presented in that 
chapter. First, the collective decision-making itself, and second, the application of ISL 
to that mechanism. For this case study, we chose a foraging task that involves group 
transport in an arena that consista of two locations connected by two paths. During the 
execution of the task, which is to transport objects from one location to the other, a 
swarm of robots must choose one of the two paths. In one of the two locations, robots form 
teams to transport the objects, which cannot be transported by single robots. From that 
location, teams of robots transport objects to the other location. Robots hâve a preferred 
branch (encoded as an “opinion”) and whenever they form a team, they advocate for 
their preferred path. The final team’s decision is that of the local majority. Robots not 
only choose that path, but they also change their preference if it is different from the 
one they had before forming a team. After making a decision, a team moves from one 
location to the other using the chosen path. Once a team arrives at the target location, it 
disassembles and its component robots return as individuals using again the chosen path. 
Once they arrive at the initial location, robots can form new teams, repeating the process 
until the task is performed. The length of the paths induce a latency period during which 
robots can neither change opinion nor influence other robots. Thus, each opinion has a 
latency period whose duration dépends on the length of the paths and on the number of 
robots in the environment. We showed through Monte Carlo and physics-based simulations 
that the dynamics of the System makes a swarm of robots reach a consensus. If the initial 
distribution of opinions in the swarm is such that half of the swarm prefers one opinion and 
the other half prefers the other opinion, the proposed collective decision-making mechanism 
makes the swarm reach consensus with high probability on the opinion associated with the 
shortest latency period. In the robotics setting described in Chapter 5, this means that a 
swarm reaches consensus on the opinion associated with the shortest path.

The aforementioned swarm robotics System shows a trade-ofî between performance and 
population size similar to the one observed in PSO algorithme. In this case, however, 
it is the population of “idle” robots, that is, those robots that are not engaged in the 
transportation task, that affects the system’s performance. Our implémentation of ISL 
manipulâtes this population. We start the process with only six robots (two teams). At 
each time step, we add a robot and let it copy the opinion of a randomly picked “idle” 
robot. If there are no robots to copy from, the opinion of the new robot is initialized 
at random. Because of the dynamics of the System, it is more likely for a new robot to 
copy the opinion associated with the shortest path. As a resuit, the population reaches 
a consensus on the opinion associated with the shortest path in fewer time steps than it 
would without ISL. The effectiveness of ISL, however, dépends on the number of active 
robots in the environment. With more active teams, there are fewer “idle” robots, and 
thus, the effects of ISL diminish to the point at which there is practically no différence 
between the System that is using ISL and the System that is no using ISL.

6.2.3 Impact

One of the major challenges in swarm intelligence research is to design agent-level behav- 
iors in order to obtain a certain desired behavior at the collective-level. Since a general 
methodology for achieving this goal has been elusive, most researchers in the field concen- 
trate their efforts on speciflc applications. In doing so, a number of assumptions are made. 
One of these assumptions is that the size of a swarm of agents remains constant over time. 
In many cases, this assumption may not be well justified.

The framework proposed in this dissertation challenges the constant population size 
assumption. In the ISL framework, the population size changes over time and we hâve 
demonstrated that some benefits can be obtained with such an approach. As seen in 
Chapter 5, we are not the only ones to realize that an incrémental deployment of agents 
(robots) can bring benefits and can even simplify the design of the agent-level behaviors. In
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fact, in many practical applications of swarm intelligence Systems, in particular in swarm 
robotics and affine fields, such as sensor networks, it is actually more difficult to deploy 
hundreds of robots at once, than to deploy a few robots at different points in time. For 
example, consider the deployment of the 30 Galileo satellites (European Space Agency, 
2010). It is not reasonable to assume that tens of satellites can be deployed at once. Rather, 
the deployment is painfully slow, with one or two satellites being deployed at a time. If 
these satellites were peirt of a swarm of satellites with spécifie tasks such as maintaining a 
formation in space, the rules needed to fulfill that task would be quite complex. Instead, 
with an incrémental deployment, each satellite could take its position without disturbing 
the behavior of other satellites. In other words, the interférence between satellites would 
be greatly reduced.

With our proposai, we hope that researchers in the swarm intelligence field will con­
sider the possibility of an incrémental deployment of agents in the design of new swarm 
intelligence Systems.

The other aspect of our proposai, the use of some form of social learning, can potentially 
hâve a bigger impact in the field. Social learning can be the mechanism that enables the 
appearance of a form of cumulative “culture” in a swarm that passes from one “génération” 
of agents to another. A continuons process of addition and élimination of agents can make 
this process possible as long as the knowledge acquired during the lifetime of one agent is 
not lost, but is instead transmitted to a new agent. This new agent in turn would hâve 
time to accumulate more knowledge to pass on to another agent, and so on. Perhaps the 
biggest impact of this idea will be in the field of swarm robotics, in which each robot has a 
lifetime determined by the capacity of its batteries. Before running out of power, a robot 
could pass on its knowledge to another fully charged robot, which will hâve more time to 
refine and accumulate more information.

6.3 Future Work

We believe that the work presented in this dissertation opens a number of potentially 
fruitful research avenues. In the remainder of this section, we will briefly describe some of 
them. Our présentation is divided in two parts. In the first, we describe future work that 
is directly related to the ISL framework. In the second part, future work derived from the 
two case studies presented in this dissertation is proposed.

6.3.1 Future Work Related to the Incrémental Social Learning 
Framework

Theory

Interférence has been identified by some authors, notably Mataric (1997); Helbing and 
Viesek (1999) and Gershenson (2007), as an influence that we need to control in order to 
be able to design large multiagent and self-organizing Systems. Unfortunately, very little 
theoretical work that could help us understand how to do that has been performed. Future 
work in this area, we believe, could significantly impact swarm intelligence, self-organizing 
Systems, complex Systems, and other related fields.

Throughout this dissertation, we hâve given empirical evidence of the effectiveness of the 
ISL framework. However, we hâve not determined analytically the conditions under which 
the ISL framework is guaranteed to reduce interférence. Future work should be directed 
toward achieving this goal as this would increase the impact of the proposed approach.

More Applications

The performance of the optimization algorithms presented in Chapter 4 suggests that the 
ISL framework can improve the performance of other swarm intelligence-based optimization 
algorithms. In fact, in a recent paper, we explored the application of the ISL framework to
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an ant colony optimization algorithm for continuons optimization problems and obtained 
promising results (Liao et al., 2011). Another related and potentially fruitful research direc­
tion is the application of the ISL framework to evolutionary algorithms such as differential 
évolution (Storn and Price, 1997) or CMA-ES (Hansen et al., 1995). However, it should 
be noted that these algorithms’ search dynamics are different from the search dynamics 
of swarm intelligence algorithms. Thus, even though it is straightforward to apply ISL to 
these algorithms, and that the two classes of algorithms share some common features, such 
as a population of candidate solutions, the results of the application of ISL to evolutionary 
algorithms may be different from the results obtained with swarm intelligence algorithms.

In swarm robotics, more studies about the possible use and benefits of using the ISL 
framework should be undertaken. In particular, it would be interesting to follow and build 
on the work of Winfield and GrifEths (2010) who are investigating how a “robotic culture” 
could eraerge. The ISL framework could play the rôle of a knowledge transfer facilitator 
between “générations” of robots in those settings.

6.3.2 Future Work Related to the Case Studies

Tuning-in-the-Ioop Design of Optimization Algorithms

In Chapter 4, we described the redesign process of IPSOLS that led to IPSOLS-t-. This 
process relied on a parameter tuning tool, iterated F-Race, as a way to measure the impact 
of each important design decision. The resuit of this process was a highly compétitive 
algorithm in the field of large-scale continuons optimization. We believe that a methodology 
that intégrâtes parameter tuning tools as part of the optimization algorithm design process 
can hâve an important rôle in the emerging field of engineering stochastic local search 
algorithms (Stützle et al., 2007, 2009).

Collective Decision-Making Mechanisms based on Opinion Formation Models

The majority-rule opinion formation model which is at the basis of the collective decision- 
making mechanism introduced in Chapter 5 is only one of a large number of opinion- 
formation models that hâve been proposed in the statistical physics literature (Castellano 
et al., 2009). Considering the promising results that we were able to obtain, we believe 
that the swarm intelligence field could greatly benefit if more researchers consider using 
similar methods to address scénarios in which agents must choose among multiple choices. 
Also of interest is the study of the resulting Systems’ dynamics in changing environments. 
Domains in which the agents agréé on a continuons quantity instead of on a discrète one 
should also be explored.

6.4 Concluding Statement

In this dissertation, we hâve introduced the incrémental social learning framework. Its 
design is aimed at reducing interférence in Systems composed of many interacting agents. 
To show its potential, we instantiated the framework in the context of particle swarm 
optimization algorithms and swarm robotics. The results obtained represent evidence that 
the framework indeed reduces interférence, which in turn makes the Systems hâve a better 
performance.

We hope that these results motivate other researchers interested in multiagent Systems, 
swarm intelligence, and other affine fields, to integrate the incrémental social framework 
into a set of agent deployment strategies. Such a set of strategies can indeed simplify the 
agent design process because, as we demonstrated, by reducing the levels of interférence, 
it is possible to simplify the rules that govern agent interactions.
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Appendix A

Frankenstein’s PSO: A Composite 
Partiale Swarm Optimization 
Algorithm

Since the first PSO algorithm was introduced, many variants hâve been proposed. In many 
cases, the différence between two variants can be seen as an algorithmic component being 
présent in one variant but not in the other. In the first part of this appendix, we présent 
the results and insights obtained from a detailed empirical study of several PSO variants 
from a component différence point of view. We then describe a new PSO algorithm that 
combines a number of algorithmic components that showed distinct advantages in the 
experimental study concerning optimization speed and reliability. We call this composite 
algorithm Frankenstein’s PSO in an analogy to the popular character of Mary Shelley’s 
novel. Ftankenstein’s PSO performance évaluation shows that by integrating components 
in novel ways effective optimizers can be designed.

A.l Comparée! PSO Algorithms

In this section, we describe the variants that were selected to be part of our study. For 
practical reasons, many variants had to be left out; however, the sélection allows the study 
of a number of different PSO algorithmic components including those that, for us, are 
among the most influential or promising ones. In the description of the algorithms, we use 
the notation used in Chapters 2 and 4.

A. 1.1 Time-Varying Inertia Weight Particle Swarm Optimizers

Shi and Eberhart (1998a, 1999) noticed that the first term of the right hand side of Eq. 2.3 
plays the rôle of a particle’s “inertia” and they introduced the idea of an inertia weight. 
The velocity-update rule was modified to

- ^i,j) + ‘P2U2(lblj - xIj) , (A.l)

where lü* is the time-dependent inertia weight. Shi and Eberhart proposed to set the 
inertia weight according to a time-decreasing function so as to hâve an algorithm that 
initially explores the search space and only later focuses on the most promising régions. 
Experimental results showed that this approach is effective (Shi and Eberhart, 1998b,a, 
1999). The function used to schedule the inertia weight is defined as follows:

w ^^max t
Wtrnav (^max 'n^min) T '^n (A.2)

where retmax marks the time at which w* = Wmin\ ^^max and Wmin are the maximum 
and minimum values the inertia weight can take, respectively. Normally, îutmax coincides
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with the maximum time allocated for the optimization process. We identify this variant 
as decreasing-IW PSO. The constricted PSO is a spécial case of this variant but with 
a constant inertia weight. We treat them as different variants because of their different 
behavior and for historical reasons.

Zheng et al. (2003b,a) experimented with a time-increasing inertia weight function 
obtaining, in some cases, better results than the decreasing-IW variant. Concerning the 
schedule of the inertia weight, Zheng et al. also used Eq. A.2, except that the values of 
lümax and Wmin were interchanged. This variant is referred to as increasing-IW PSO.

Eberhart and Shi (2001) proposed a variant in which an inertia weight vector is ran- 
domly generated according to a uniform distribution in the range [0.5,1.0) with a different 
inertia weight for each dimension. This range was inspired by Clerc and Kennedy’s constric- 
tion factor because the expected value of the inertia weight in this case is 0.75 ~ 0.729 (see 
Section 4.4). Accordingly, in this stochastic-IW PSO algorithm, accélération coefficients 
are set to the product of x • with i e {1,2}.

A.1.2 Fully Informed Particle Swarm Optimizer

Mendes et al. (2004) proposed the fully informed particle swarm (FIPS), in which a particle 
uses information from ail its topological neighbors. Clerc and Kennedy’s constriction factor 
is also adopted in FIPS; however, the value (p (i.e., the sum of the accélération coefficients) 
is equally distributed among ail the neighbors of a particle.

For a given particle i, ip is decomposed as ipk = <p/|A/i| i V/c € Ai- The velocity-update 
équation becomes

A.1.3 Self-Organizing Hierarchical Particle Swarm Optimizer with 
Time-varying Accélération Coefficients

Ratnaweera et al. (2004) proposed the self-organizing hierarchical particle swarm optimizer 
with time-varying accélération coefficients (HPSOTVAC), in which the inertia term in the 
velocity-update rule is eliminated. Additionally, if any component of a particle’s velocity 
vector becomes zéro (or very close to zéro), it is reinitialized to a value proportional to 
y-maxi the maximum velocity allowed. These changes give the algorithm a local seaxch 
behavior that is amplified by linearly adapting the value of the accélération coefficients <pi 
and ip2- The coefficient <pi is decreased from 2.5 to 0.5 and the coefficient ip2 is increased 
from 0.5 to 2.5. In HPSOTVAC, the maximum velocity is linearly decreased during a run 
so as to reach one tenth of its value at the end of a run. A low reinitialization velocity 
near the end of a run allows particles to move slowly near the best région they hâve found. 
The resulting PSO variant is a kind of local search algorithm with occasional magnitude- 
decreasing unidimensional restarts.

A.1.4 Adaptive Hierarchical Particle Swarm Optimizer

The adaptive hierarchical PSO (AHPSO) (Janson and Middendorf, 2005) modifies the 
neighborhood topology at run time. This algorithm uses a tree-like topology structure in 
which particles with better objective function évaluations are located in the upper nodes 
of the tree. At each itération, a child particle updates its velocity considering its own 
previous best performance and the previous best performance of its parent. Before the 
velocity-update process takes place, the previous best objective function value of a particle 
is compared with the previous best objective function value of its parent. If the comparison 
is favorable to the child particle, child and parent swap their positions in the hierarchy. 
Additionally, AHPSO adapts the branching degree of the tree while solving a problem in 
order to balance the exploration-exploitation behavior of the algorithm; a hierarchy with 
a low branching degree has a more exploratory behavior than a hierarchy with a high

(A.3)
fc€W
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Table A.l: Benchmark Functions
Name Définition Search Range

Ackley -20e~°'^v^^/"^î=i _^20 + e [-32.0,32.0]"

Griewank 4èôSr=i^?-n”=icos(^)+i 1 -600.0,600.0]"

Rastrigin lOn + ~ 10cos(27ra;j)) [-5.12,5.12]"

Salomon 1 - cos(27Tv/Er=i ) + 0-VEr=i 1 -100.0,100.0]"

Schwefel (sine root) 418.9829n + E"=i \/W) 1 -512.0,512.0]"

Step 6n + [^i\ [-5.12,5.12]"

Rosenbrock [-30.0,30.0]"

Sphere _____________________ ______________________________ ! -100.0,100.0]"

branching degree. In AHPSO, the branching degree is decreased by fcadapt degrees (one at 
a time) until a certain minimum degree dmin is reached. This process takes place every 
/adapt number of itérations. For more details, see (Janson and Middendorf, 2005).

A.2 Experimental Setup

The complété experimental design examines five factors:

1. PSO algorithm. This factor considers the différences between PSO variants. Specif- 
ically, we focused on (i) different strategies for updating inertia weights, (ii) the use 
of static and time-varying population topologies, and (iii) different strategies for up>- 
dating a particle’s velocity.

2. Problem. We selected some of the most commonly used benchmark functions in 
experimental evolutionary computation. Since most of these functions hâve their 
global optimum located at the origin, we shifted it to avoid any possible search bias 
as suggested by Liang et al. (2005). In most cases, we used the shift values proposed 
in the set of benchmark functions used for the spécial session on real parameter 
optimization of the IEEE CEC 2005 (Suganthan et al., 2005). Table A.l lists the 
benchmark functions used in our study. In ail cases, we used their 30-dimensional 
versions, that is, n = 30. Ail algorithms were run 100 times on each problem.

3. Population topology. We use three of the most commonly used population topolo­
gies: The fully connected topology, in which every particle is a neighbor of any other 
particle in the swarm; the von Neumann topology, in which each particle is a neigh­
bor of 4 other particles; and the ring topology, in which each particle is a neighbor of 
another 2 particles. In our setup, ail particles are also neighbors to themselves. These 
three topologies are tested with ail variants except in the case of AHPSO which uses 
a time-varying topology. The selected topologies provide different degrees of connec- 
tivity between particles. The goal is to favor exploration in different degrees: The 
less connected is a topology, the more it delays the propagation of the best-so-far 
solution. Thus, low connected topologies resuit in more exploratory behavior than 
highly connected ones (Mendes, 2004). Although recent research suggests that ran- 
dom topologies can be compétitive with predefined ones (Mohais et al., 2005), they 
are not included in our setup in order not to hâve an unmanageable number of free 
variables.

4. Population size. We considered three population sizes: 20, 40 and 60 particles. 
With low connected topologies and large populations, the propagation of informa­
tion is slower and thus it is expected that a more “parallel” search takes place. The
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Table A.2: Parameter settings
Algorithm Settings
Constricted Accélération coefficients = <P2 = 2.05. Constriction 

factor X = 0.729. Maximum velocity Vmax = 
where Xmax is the maximum of the search range.

Decreasing-IW Accélération coefficients = (^2 = 2.0. Linearly-
decreasing inertia weight from 0.9 to 0.4. The final 
value is reached at the end of the run. Maximum ve­
locity Vmax ~

Increasing-IW Accélération coefficients 'Pi = ^2 = 2.0. Linearly- 
increasing inertia weight from 0.4 to 0.9. The final 
value is reached at the end of the run. Maximum ve­
locity Vmax — ^-^max'

Stochastic-IW Accélération coefficients pi = P2 = 1-494. Uni­
formly distributed random inertia weight in the range 
[0.5,1.0]. Maximum velocity Vmax = àzXmax-

FIPS Accélération parameter p = 4.1. Constriction factor 
X = 0.729. Maximum velocity Vmax = ±Amax-

HPSOTVAC Accélération coefficient pi linearly decreased from 2.5 
to 0.5 and coefficient p2 linearly increased from 0.5 to 
2.5. Linearly decreased reinitialization velocity from 
Vmax to Q.l-Vmax- Maximum velocity Vmax — i^^max-

AHPSO Accélération coefficients pi = P2 = 2.05. Constriction 
factor X = 0.729. Initial branching factor is set to 20, 
^Tnim fadapta and kadapt were set to 2, 1000 * 77Z, and 3 
respectively, where m is the number of particles.

configurations of the von Neumann topologies for 20, 40 and 60 partiales were, re- 
spectively, 5 x 4, 5 x 8 and 6 x 10 particles. The population is initialized uniformly 
at random over the ranges specified in Table A.l. Since the problems’ optima were 
shifted, the initialization range is asymmetric with respect to them.

5. Maximum number of function évaluations. This factor determined the stopping 
criterion. The limit was set to 10® function évaluations. However, data were collected 
during a run to détermine relative performances for shorter runs. The goal was to 
find variants that are well suited for different application scénarios. The first two 
cases (10® and 10^ function évaluations) model scénarios in which there are scarce 
resources and the best possible solution is sought given a restrictive time limit. The 
other two cases (10® and 10® function évaluations) model scénarios in which the main 
concern is to find high quality solutions without paying too much attention to the 
time it takes to find them.

In our experimental setup, each algorithm was run with the same parameter settings 
across ail benchmark problems. When possible, we use the most commonly used parameter 
settings found in the literature. These parameter settings are listed in Table A. 2.

In our experimental analysis, we examined the algorithme’ performance at different 
levels of aggregation. At a detailed level, we analyze the algorithme’ qualified run-length 
distributions (RLDs, for short). At a more aggregate level, we use the médian solution 
quality reached by the algorithme at different stopping criteria. The most important élé­
ments of the RLD methodology are explained below (for a detailed exposition, see (Hoos
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and Stützle, 2004)).
The number of function évaluations a stochastic optimization algorithm needs to find a 

solution of a certain quality on a given problem can be modeled as a random variable. Its 
associated cumulative probability distribution RLq[l) is the algorithm’s RLD, defined as

RLq{l) = P{Lq < l), (A.4)

where Lq is the random variable representing the number of function évaluations needed 
to find a solution of quality q, and P{Lq < l) is the probability that L, takes a value less 
than or equal to l function évaluations. Theoretical RLDs can be estimated empirically 
using multiple independent runs of an algorithm.

An empirical RLD provides a graphical view of the development of the probability of 
finding a solution of a certain quality as a function of time. When this probability does 
not increase or it does but very slowly, the algorithm is said to stagnate. In this appendix 
we use the word “stagnation” to refer to the phenomenon of slow or no incrément of the 
probability of finding a solution of a spécifie quality. Note that no reference to the State of 
the optimization algorithm is implied (e.g. in active search or otherwise).

In stagnation cases, the probability of finding a solution of a certain quality may be 
increased by restarting the algorithm at fîxed cut-off times without carrying over informa­
tion from the previous runs (Hoos and Stützle, 2004). These independent restarts entail 
re-running the algorithm using a different random seed. However, the output of the algo­
rithm with restarts is always the overall best-so-far solution across ail independent runs.

The RLD of the algorithm with periodic restarts will approximate, in the long run, 
an exponential distribution. However, independent restarts can be detrimental if an algo­
rithm’s original RLD grows faster than an exponential distribution. Given an algorithms 
RLD, it is possible to estimate the number of function évaluations needed for finding a 
solution of required quality with a probability greater than or equal to z supposing an 
optimal restart policy. This estimation is sometimes called computational effort (Niehaus 
and Banzhaf, 2003) and is defined as

effort = min 11 ■ 1. (A.5)
i X ln(l - RLq{l)) / ^ ’

We use this measure to account for the possibility of restarting the compared algorithms 
with optimal restart policies.

Another measure that will be used in the description of the results is the ffrst hitting 
time Hq for a spécifie solution quality q. Hq is an estimation of the minimum number of 
évaluations that an algorithm needs for finding a solution of a quality level q. It is defined 
as

Hq = min{Z > 0‘,RLq{l) > 0} . (A.6)

A.3 Performance Comparison of Partiale Swarm Opti­
mization Algorithms

The comparison is carried out in three phases. In the first one, a problem-dependent 
run-time behavior comparison based on RLDs is performed. In the second phase, data 
from ail the problems of our benchmark suite are aggregated and analyzed. In the third 
phase, we study the effects of using different inertia weight schedules on the performance 
of the concerned variants. Results that are valid for ail the tested problems are explicitly 
summarized.

A.3.1 Results: Run-Length Distributions

The graphs presented in this section show a curve for each of the compared algorithms 
corresponding to a particular combination of a population topology and a population size.

105



APPENDIX A. FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM
OPTIMIZATION ALGORITHM

Since AHPSO does not use a fixed topology, its RLDs are the same across topologies and 
its results can therefore be used as a reference aeross plots for a same problem. The RLDs 
we présent here were obtained using swarms of 20 and 60 particles.

We présent only one représentative example of the results we obtained. Fig. A.l shows 
some of the algorithme’ RLDs when solving Griewank’s function.^ These plots are given 
with respect to a bound of 0.001% above the optimum value, corresponding to an absolute 
error of 0.0018. The smallest first hitting times for the same algorithm across different 
population size and topology settings are obtained with a population size of 20 and the 
fully cormected topology. Conversely, the largest ones are obtained with a population size 
of 60 and the ring topology. With 20 particles, the right tails of the RLDs show a slowly- 
increasing or a non-increasing slope. This means that, for the Griewank’s function, ail the 
PSO variants included in our study, when using 20 particles and the parameter settings 
shown in Table II, hâve a strong stagnation tendency. In fact, no variant is capable of 
finding a solution of the required quality with probability 1.0 with this population size. 
With 60 particles and a ring topology, only FIPS finds the required solution quality with 
probability 1.0, while the constricted PSO and HPSOTVAC reach a solution of the required 
quality with probability 0.99.

Resuit 1: Depending on the problem and required solution quality, PSO algorithms
exhibit a stagnation tendency with different degrees of severity. This tendency is smaller 
when using large population sizes and/or low connected topologies than it is when using 
small population sizes and/or highly connected topologies; however, even though the prob­
ability of solving the problem increases, first hitting times are normally delayed.

An interesting fact is the strong influence of the topology on the algorithms’ perfor­
mance. For example, FIPS with a fully connected topology does not find a single solution 
of the required quality; however, with a ring topology, it is among the fastest algorithms (in 
terms of first hitting time). AHPSO seems to profit from a highly connected topology at 
the beginning of a run. It is also among the fastest variants when the rest of the algorithms 
use a von Neumann or ring topology. However, it is unable to solve the problem with a 
high probability.

Resuit 2: PSO algorithms are sensitive to changes in the population topology in
different degrees. Among those tested, FIPS is the most sensitive variant to a change of 
this nature. On the contrary, HPSOTVAC and the decreasing inertia weight PSO algorithm 
are quite robust to topology changes.

As a best-case analysis, we now consider the possibility of restarting the algorithms with 
an optimal cut-off period. In Table A.3, we show the best configuration of each algorithm 
to solve Griewank’s problem (at 0.001% above the global optimum) with probability 0.99. 
The best performing configurations of FIPS and the constricted PSO, both with 60 particles 
and the ring topology, do not benefit from restarts under these conditions, and they are 
the two best variants for the considered goal. In this case, the joint effect of choosing the 
right algorithm, with an appropriate population size and with the right topology, cannot 
be outperformed by configurations that benefit the most from restarts (i.e., those that 
stagnate). Similar analyses were performed on ail the problems of our benchmark suite 
but different results were obtained in each case.

Resuit 3: Independent restarts can improve the performance of various PSO algo­
rithms. In some cases, configurations that favor an exploitative behavior can outperform 
those that favor an exploratory one if optimal restant policies are used. However, the op­
timal restant policy is algorithm- and problem-dépendent and therefore cannot be defined a 
priori.

^The complété set of results can be found at Montes de Oca et al. (2007).
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Figure A.l: RLDs on the Griewank function. The solution quality bound is set to 0.001% 
above the global optimum (équivalent to an absolute error of 0.0018). Plots (a), (c), and 
(e) in the left column show the RLDs obtained with 20 particles. Plots (b), (d), and (f) in 
the right column show the RLDs obtained with 60 particles. The effect of using different 
population topologies can be seen by comparing plots in different rows. The effect of using 
a different number of particles can be seen by comparing columns.
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Table A.3: Best performing configurations of each
algorithm using indépendant restarts on Griewank’s 
function^’ ^

Algorithm Pop. Size Topology Cut-off Effort Rfôtarts
FIPS 60 Ring 46440 46440 0

Constricted 60 Ring 71880 71880 0
Sto-IW 40 Ring 52160 131075 2
Inc-IW 20 Ring 24040 138644 5

HPSOTVAC 40 Ring 132080 155482 1
AHPSO 40 Dynamic 17360 207295 11
Dec-IW 60 Ring 663000 1326000 1

* Probabilities taken trom the RLDs.
^ Cut-off and effort measured in function évaluations. The effort 

is computed using Eq. A.5.

A.3.2 Results: Aggregated Data

The analysis that follows is based on the médian solution quality achieved by an algorithm 
after some spécifie number of function évaluations. This analysis considers only the 40 
particles case, which represents the intermediate case in terms of population size in our 
experimental setup. For each problem, we ranked 19 configurations (6 PSO algorithms x 
3 topologies + AHPSO) and selected only those that were ranked in the first three places 
(what we call the top-three group). For this analysis, we assume that the algorithms are 
neither restarted nor fine-tuned for any spécifie problem.

Table A.5 shows the distribution of appearances of the compared PSO algorithms in the 
top-three group. The table shows configurations ranked among the three best algorithms 
for different numbers of function évaluations (FES). The topology used by a particular 
configuration is shown in parenthesis. If two or more configurations found solutions with 
the same quality level (différences smaller than are not considered) and they were
among the three best solution qualities, these configurations were considered to be part 
of the top-three group. In fact, we observed that, as the number of function évaluations 
increases, more and more algorithms appear in the top>-three group. This indicates that 
the différence in the solution quality achieved by different algorithms decreases and that 
many algorithms find solutions of the same quality level.

Table A.4 shows the algorithms that most often appear in the topy-three group in Ta­
ble A.5 for different termination criteria. The column labeled “E” shows the total number 
of times each algorithm appeared in the top-three group. The rightmost column shows the 
distribution of appearances in the to]>three group between multi- and unimodal functions.

Table A.4: Best PSO variants for different termination criteria
Budget (in FES) Algorithm(Topology) E multi / unimodal

ÎÜ^ Inc-IW(F), FIPS(F,vN) 6 5/1
10“* Inc-IW(F) 7 6/1
10® Constricted(vN) 5 4/1
10® Dec-IW(vN), FIPS(R) 6 5/1

Note that the connectivity of the topology used by the best ranked variants decreases 
as the maximum number of function évaluations increases. Note also that FIPS is among 
the best ranked variants; for the shortest runs, using a fully-connected or a von Neumann 
topology and, for the longest runs, using a ring topology. Even though these results 
may seem counterintuitive at first inspection, they can be understood by looking at the 
convergence behavior of the algorithm when topologies of different connectivity degree are 
used. In FIPS, highly connected topologies induce a strongly convergent behavior that, 
depending on the features of the objective function, can resuit in a very fast solution 
improvement during the first itérations (Montes de Oca and Stützle, 2008a). Indeed, it 
has been shown that under stagnation, the moments of the sampling distribution of FIPS 
become more and more stable (over time) as the topology connectivity increases (Poli,
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2007). This means that in FIPS the more connected the population topology, the lower 
the stochasticity in the behavior of a particle. By observing the behavior of FIPS over 
different run lengths, our results extend those of Mendes (2004) who studied the behavior 
of FIPS using only a fixed number of function évaluations as stopping criterion.

Resuit 4: When a limited number of function évaluations are allowed, configurations
that favor an exploitative behavior (i.e., those with highly connected topologies and/or low 
inertia weights) obtain the best results. When solution quality is the most important aspect, 
algorithms with exploratory properties are the best performing.

A.3.3 Results: Different Inertia Weight Schedules

With very few exceptions, e.g., (Wang and Wang, 2004), the change of the inertia weight 
value in the time-decreasing/increasing inertia weight variants is normally scheduled over 
the whole optimization process. Here we présent a study on the effects of using different 
schedules on both the time-decreasing and time increasing inertia weight variants. To do 
so, we modified the inertia weight schedule, which is based on Eq. A.2, so that whenever 
the inertia weight reaches its lirait value, it remains there. We experimented with five 
inertia weight schedules of ictmax € {10^, 10®, 10“*, 10®, 10®} function évaluations each. The 
remaining parameters were set as shown in Table A.2.

As an example of the effects of different inertia weight schedules, consider Fig. A.2, 
which shows the development of the solution quality over time (using both the time- 
decreasing and time-increasing inertia weight variants) for different inertia weight schedules 
on the Rastrigin function.

Figure A.2: Solution quality and inertia weight development over time for different inertia 
weight schedules on the Rastrigin function. The solution quality development plots are 
based on the médians of the algorithme’ RLDs. The first and third quartiles are shown 
at selected points. These results correspond to configurations of 20 particles in a fully 
connected topology. The results obtained with the schedules of 10® and 10® function 
évaluations (not shown) are intermediate with respect to the results obtained with the 
other schedules.

In the case of the time-decreasing inertia weight variant, slow schedules (ictmax = 10® 
or 10® function évaluations) perform poorly during the first phase of the optimization 
process; however, they are the ones that are capable of finding the best quality solutions. 
On the other hand, fast schedules (ictmax = 10® or 10® function évaluations) produce rapid 
improvement but at the cost of stagnation later in the optimization process.

With the time-increasing inertia weight variant, slow schedules provide the best perfor­
mance. Fast schedules make the time-increasing inertia weight variant strongly stagnant. 
For both variants, the severity of the stagnation tendency induced by different schedules 
is alleviated by both an increase in the number of particles and the use of a low connected 
topology.

109



Table A.5: Distribution of appearances of different PSO algorithms in the top-three groupé
FES Ackley Griewank Rastrigin Salomon Schwefcl Step Rosenbrock Sphere

10^
FlPà (F,vN) 
Inc-lW (F)

FIPS (F,vN) 
Inc-IW (F)

FIPS (f7vN) 
Inc-IW (F)

FIPS (F,vN) 
HPSOTVAC

Inc-IW (F,vN,R) FIPS (F.vN) 
Inc-IW (F)

AHPSO 
Constrictcd (F) 

Sto-IW (F)

FIPS (F,vN) 
Inc-IW (F)

10^
FIPS (vN,R) 
Inc-IW (F)

Constrictcd (F) 
FIPS (vN) 
Inc-IW (F)

AHPSO 
Constrictcd (F) 

Inc-lW (F)

Constrictcd (F) 
Inc-IW (F) 
Sto-IW (F)

AHPSO 
Inc-IW (F) 
Sto-IW (F)

AHPSO 
Constrictcd (F) 

Inc-IW (F) 
Sto-IW (F)

AHPSO 
Constrictcd (F) 

Sto-IW (F)

AHPSO 
Constrictcd (F) 

Inc-IW (F)

io‘

Constrictcd (vN) 
FIPS (R) 

Inc-IW (F)

Constrictcd (vN,R) 
FIPS (R) 

Inc-IW (vN,R) 
Sto-IW (vN,R)

FIPS (vN) 
Inc-IW (vN) 
Sto-IW (vN)

Constrictcd (vN,R) 
FIPS (R) 

Inc-IW (F,vN) 
Sto-IW (F,vN,R)

HPSOTVAC (F,vN,R) Constrictcd (vN) 
Inc-IW (F) 
Sto-IW (F)

AHPSO AHPSO
Constrictcd (F)Constrictcd (F,vN,R) 

Sto-IW (F) FIPS (R)
Inc-IW (F,vN,R) 
Sto-IW (F,vN,R)

10°

Constrictcd (vN,R] 
Doc-IW (F,vN,R) 

FIPS (R) 
Inc-IW (vN,R) 
Sto-IW (vN,R)

Constrictcd (vN,R) 
Dec-IW (vN,R) 

FIPS (R)
HPSOTVAC (F,vN,R) 

Inc-IW (vN,R) 
Sto-IW (vN,R)

HPSOTVAC (F,vN,R) Constrictcd (vN,R) 
Dec-IW (F,vN,R) 

FIPS (R)
HPSOTVAC (F,vN,R) 

Inc-IW (vN,R) 
Sto-IW (vN,R)

Dec-IW (vN) 
FIPS (R) 

HPSOTVAC(R)

Constrictcd (vN,R) AHPSO AHPSO
Dec-IW (F,vN,R) Constrictcd (F)Constricted (F,vN,R) 

FIPS (R) Sto-IW (F) Dec-IW (F,vN,R)
HPSOTVAC (F,vN,R) FIPS (R)

Inc-IW (F,vN,R) HPSOTVAC (vN)
Sto-IW (F,vN,R) Inc-IW (F,vN,R)

Sto-IW (F.vN.R)

' F, vN and R stand for fully connected, von Neumann and ring, respectivcly. FES stands for function évaluations.



APPENDIX A. FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM
OPTIMIZATION ALGORITHM

Resuit 5: By varying the inertia weight schedule, it is possible to control the conver­
gence speed of the time-varying inertia weight variants. In the case of the time-decreasing 
inertia weight variant, faster schedules induce a faster convergence speed, albeit at the cost 
of increasing the algorithm ’s stagnation tendencies. In the time-increasing inertia weight 
variant, slow schedules provide the best performance both in terms of speed and quality.

A.3.4 Summary

The goal of the comparison presented in this section was to identify algorithmic components 
that provide good performance under different operating conditions (specially run-lengths). 
The five main résulta give insight into what factors should be taken into account when trying 
to solve effectively a problem using a PSO algorithm.

Among other results, we hâve seen that the stagnation tendency of PSO algorithms 
can be alleviated by using a large population and/or a low connected topology. Another 
approach to reduce stagnation in some cases is to use restarts. However, optimal restart 
schedules are algorithm- and problem-dependent and determining them requires previous 
expérimentation. We hâve also seen how different inertia weight schedules affect the per­
formance of the time-decreasing/increasing inertia weight variants.

A.4 Frankenstein’s Particle Swarm Optimization Algo­
rithm

Insights gained from experimental studies ideally guide toward the définition of new, better 
performing algorithms. In this section, a composite algorithm called Prankenstein’s PSO 
is assembled from algorithmic components that are taken from the PSO algorithms that 
we hâve examined or that are derived from the analysis of the comparison results.

A.4.1 The Algorithm

Frankenstein’s PSO is composed of three main algorithmic components, namely (i) a time- 
varying population topology that reduces its connectivity over time, (ii) FIPS’s mechanism 
for updating a particle’s velocity, and (iii) a decreasing inertia weight. These components 
are taken from AHPSO, FIPS and the time-decreasing inertia weight variant, respectively. 
The first component is included as a mechanism for improving the trade-off between speed 
and quality associated with topologies of different connectivity degrees. The second com­
ponent is used because the analysis showed that FIPS is the only algorithm that can 
outperform the others using topologies of different connectivity degree (see Table A.4). 
Finally, the decreasing inertia weight component is included as a mean to balance the 
exploration-exploitation behavior of the algorithm.

The time-varying topology starts as a fully connected one and, as the optimization 
process evolves, decreases its connectivity until it ends up being a ring topology. Interest- 
ingly, it is the opposite approach than the one taken by Suganthan (1999). Note, however, 
that our approach is entirely based on the results of the empirical analysis presented in 
the previous section. Specifically, our choice is based on the fact that a highly connected 
topology during the first itérations gives an algorithm the opportunity to find good quality 
solutions early in a run (see Table A.4 and Results 1 and 4 in Section A.3). The topology 
connectivity is then decreased, so that the risk of getting trapped somewhere in the search 
space is reduced and, hence, exploration is enhanced. Including this component into the 
algorithm allows it to achieve good performance across a wider range of run lengths as it 
will be shown later. As we said before, this component is taken from AHPSO. Information 
flow in AHPSO is very fast during the first itérations because the topology connectivity is 
high. As the optimization process evolves, its connectivity decreases.

In Frankenstein’s PSO, we do not use a hierarchical topology as it is not clear from 
our results how it contributes to a good performance. Instead, the topology is changed
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Figure A.3: Topology change process. Suppose n = 6 and k = 12. Then, every [12/(6 — 
3)] = 4 itérations we remove some edges from the graph. In 6 — 3 = 3 steps, the élimination 
process will be finished. (a). At t = 0 a fully connected topology is used. (b). At t = 4 the 
6 — 2 = 4 edges to be removed are shown in dashed lines. (c). At t = 8 the 6 — 3 = 3 edges 
to be removed are shown in dashed lines. (d). At t = 12 the remaining 6 — 4 = 2 edges to 
be removed are shown in dashed lines. From t = 12 on, the algorithm uses a ring topology.

as follows. Suppose we hâve a particle swarm composed of n particles. We schedule the 
change of the topology so that in k itérations (with fc > n), we transform a fully connected 
topology with n{n — l)/2 edges into a ring topology with n edges. The total number of 
edges that hâve to be eliminated is n{n — 3)/2. Every \k/{n — 3)] itérations we remove m 
edges, where m follows an arithmetic régression pattern of the form n — 2, n — 3,..., 2. We 
sweep m nodes removing one edge per node. The edge to be removed is chosen uniformly 
at random from the edges that do not belong to the exterior ring, which is predefined in 
advance (just as it is done when using the normal ring topology). The transformation from 
the initially fully connected to the final ring topology is performed in n — 3 élimination 
steps. Fig. A.3 shows a graphical example of how the process just described is carried out.

Changes in the population topology must be exploited by the underlying particles’ 
velocity-update mechanism. In Frankenstein’s PSO we included the mechanism used by 
FIPS. The reason for this is that we need a component that offers good performance 
across different topology connectivities. According to Table A.4, the only velocity-update 
mechanism that is ranked among the best variants when using different topologies is the one 
used by FIPS. For short runs, FIPS’s best performance is obtained with the fully connected 
topology (the way Frankenstein’s PSO topology starts); for long runs, FIPS reaches very 
high performance with a low connected topology (the way Frankenstein’s PSO topology 
ends).

The constriction factor originally used in FIPS is substituted by a decreasing inertia 
weight. A decreasing inertia weight was chosen because it is a parameter that can be 
used to control the algorithm’s exploration/exploitation capabilities. In Section A.3.3, we 
saw that a proper sélection of the inertia weight schedule can dramatically change the 
performance of a PSO algorithm. A decreasing inertia weight would counterbalance the 
exploratory behavior that the chosen topology change scheme could induce.
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The pseudocode of Prankenstein’s PSO is shown in Algorithm A.4.1. The main loop 
cycles through the three algorithmic components: topology update, inertia weight update, 
and the particles’ velocity and position updates. The topology update mechanism is only 
executed while the algorithm’s current number of itérations is lower than or equal to a 
parameter k, which spécifiés the topology update schedule. Since it is guaranteed that the 
ring topology is reached after itération fc, there is no need to call this procedure thereafter. 
In Algorithm 1, a variable esteps is used to ensure that the number of eliminated edges in 
the topology follows an arithmetic régression pattern. Note that the élimination of neigh- 
borhood relations is symmetrical, that is, if particle r is removed from the neighborhood 
of particle i, particle i is also removed from the neighborhood of particle r. The inertia 
weight is then updated, and finally, the velocity-update mechanism is applied in the same 
way as in FIPS.

A.4.2 Parameterization Effects

We studied the impact of using different schedules for the topology and inertia weight 
updates on the algorithm’s performance. The remaining parameters were set as follows: 
the maximum velocity Vmax is set to iATmax (the maximum of the search range), the 
linearly-decreasing inertia weight is varied from 0.9 to 0.4, and the sum of the accélération 
coefficients, <p, is set to 4.0.

The experimental conditions described in Section A.2 are used. Three swarm sizes (n = 
20, 40, 60), four schedules of the topology update (measured in itérations; k = n, 2n, 3n, 
4n) and four schedules of the inertia weight (measured in function évaluations; wt^ax. = 
2n^, 3n^, 4n^) were tried. Note that the values of k and wt^ax are independent of each 
other.

As an illustrative example of the results, consider Fig. A.4. It shows the RLDs obtained 
by Frankenstein’s PSO algorithm on Griewank’s function. These distributions correspond, 
as before, to a solution quality 0.001% above the optimum value. Only the results obtained 
with 4 out of the 12 possible combinations of topology schedules and population sizes are 
shown.

A combination of a slow topology update schedule (3n or An) and a fast inertia weight 
schedule (n^ or 2n^) promotes the stagnation of the algorithm. This can be explained if we 
recall that FIPS has a strong stagnation tendency when using a highly connected topology: 
A slow topology update schedule maintains a high topology connectivity for more itérations 
and a fast inertia weight schedule quickly reduces the exploration capabilities of the particle 
swarm. These two effects also increase the algorithm’s stagnation tendency. To counteract 
a fast stagnation tendency, the two possibilities are to slow down the inertia weight schedule 
or to speed up the change of the topology.

Increasing the number of particles increases the amount of information available to the 
algorithm during the first itérations. The exploitation of this information dépends on the 
topology update and inertia weight schedules. The configurations that appear to better 
exploit it are those in which these two schedules are slow.

To compare the configurations’ relative performance across problems that hâve different 
scales, we look at the average (over the 8 benchmark problems of the experimental setup) 
of the standardized médian solution quality (i.e., for each group, the mean is equal to 
zéro and the standard déviation is equal to one) as a function of the topology update and 
the inertia weight schedules for different termination criteria. The results are shown in 
Fig. A.5. Since we work with minimization problems, a lower average standard solution 
quality means that the spécifie configuration found better solutions.

According to Fig. A.5, the algorithm needs more exploratory configurations (i.e., fast 
topology update schedules and slow inertia weight schedules) for long runs. For short runs, 
configurations with slow topology update schedules and fast inertia weight schedules yield 
the best results. For runs of 10^ and 10® function évaluations, the best configurations 
are intermediate ones (i.e., fast or slow schedules for both the topology and inertia weight 
updates).
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Algorithm 8 Frankenstein’s partiale swarm optimization algorithm
/* Initializâtion */ 
for i = 1 to n do

Create particle i and add it to the set of particles P
Initialize its vectors Xi and V{ to random values within the search range and mEocimum allowed 
velocities 
Set p6j = Xi 
Set ^^i = V 

end for

/* Main Loop */
Set t = 0
Set esteps = 0
repeat

/* Evaluation Loop */ 
for i = 1 to n do

if f{xi) is better than f{pbi) then 
Set p6j = Xi 

end if 
end for
/* Topology Update */
if t > 0 At <= k A tmod \k/{n — 3)] =0 then

/* t > 0 ensures that a fully connected topology is used first */
/* t <= k ensures that the topology update process is not called after itération k */
/* tmod [fc/(n — 3)] =0 ensures the correct scheduling of the topology update process */ 
for i = 1 to n — (2 + esteps) do

/* Tl — (2 + esteps) ensures the arithmetic régression pattern */ 
if |A/i| > 2 then

/* |M|>2 ensures proper node sélection */
Select at random particle r from A/i such that r is not adjacent to i 
Eliminate particle r from A/i 
Eliminate particle î from A/i- 

end if 
end for
Set esteps = esteps + 1 

end if
/* Inertia Weight Update */ 
if t < wtmax then

Set w{t) = {Wmax 'eJmin) ^min
else

Set W{t) = Wmin

end if
/* Velocity and Position Update */ 
for i = 1 to n do

Generate U m Vm 6 A/i
Set ipm = <p/|A/i| Vm 6 A/i
Set ^ ifkUk{pbl - xl)

mÇ.Mi

Set X= xl + t) ?+' 
end for 
Set t = t + \
Set soi = argmin/(pb/) 

i€V
until /(soi) value is good enough or i = tmax

The more exploratory behavior that a large population provides needs to be counter- 
balanced by the chosen configuration. For example, at 10^ fonction évaluations, the best 
configuration tends to hâve faster inertia weight schedules for larger swarms. With 20 
particles, the best configuration is at point (4,3) while with 40 and 60 particles, the best 
configurations are at (4,2) and (4,1), respectively. These results are consistent with those 
of the experimental comparison.

Like any other algorithm, Frankenstein’s PSO has its own set of parameters that need 
to be set by the practitioner before trying to solve a problem. The final parameter settings 
will dépend on the class of problems one is trying to solve and on the application scénario
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Figure A.4: RLDs obtained by Prankenstein’s PSO algorithm on the Griewank function. 
The solution quality demanded is 0.001% above the global optimum. Each graph shows 
four RLDs that correspond to different inertia weight schedules.

(c) 20 particles, 10® évaluations (d) 60 particles, 10® évaluations

Figure A.5: Average standard solution quality as a function of the topology update and 
the inertia weight schedules for different termination criteria. In each case, the best con­
figuration is pointed by an arrow.

requirements. Based on the results presented in this section we can dérivé the following 
guidelines for choosing the topology and the inertia weight schedules. If the number of 
function évaluations is restricted, a configuration with 20 particles, a slow topology change 
schedule (« An) and an intermediate inertia weight schedule (« 3n^) would be the first 
one to try. If solution quality is the main concern, a configmation with 60 particles, a fast
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topology update schedule (~ n), and a slow inertia weight (« 4n^) should be preferred.

A.5 Performance Evaluation

The performance of Frankenstein’s PSO is evaluated by comparing its best configurations 
with those of the PSO algorithms described in Section A.3. The best configurations of 
each variant were selected using the same ranking scheme as in Section A.3.2. The list of 
selected configurations is available at Montes de Oca et al. (2007).

Table A.6 shows the standardized médian solution quality obtained by each configura­
tion (identified only by the algorithm’s name) for each termination criterion.

For runs of 10^, 10® and 10® function évaluations, the best overall configuration is 
the one of Frankenstein’s PSO. For runs of 10^ function évaluations, the configuration of 
Frankenstein’s PSO is ranked in the fourth place. However, with this same number of 
function évaluations, the configuration of Frankenstein’s PSO is the best configuration in 6 
of the 8 benchmark problems. The average rank of Frankenstein’s PSO after 10^ function 
évaluations can be explained with the results on Schwefel’s function: FIPS (of which a 
component is used in Frankenstein’s PSO) is the worst algorithm for this termination 
criterion (and also for the one of 10® function évaluations) on Schwefel’s function.

The performance of Frankenstein’s PSO suggests that indeed it is possible and profitable 
to integrate different existing algorithmic components into a single PSO variant. The 
results show that by composing existing algorithmic components, new high-performance 
variants can be built. At the same time, it is possible to gain insights into the effects of 
the interactions of different components on the algorithm’s final performance. Of course, 
just as it is possible to take advantage of the strengths of different components, it is also 
possible that their weaknesses are passed on: the performance of Frankenstein’s PSO on 
Schwefel’s function is an example of this.

A.6 Conclusions and Future Work

Many PSO variants are proposed in the current literature. This is a conséquence of the 
great attention that PSO has received since its introduction. However, it is also a sign of 
the lack of knowledge about which algorithmic components provide good performance on 
particular types of problems and under different operating conditions.

In an attempt to gain insight into the performance advantages that different algorithmic 
components provide, we compared what we consider to be some of the most influential or 
promising PSO variants. For practical reasons, many variants were left out of this study. 
Future studies should consider other variants as well as other components that are not 
necessarily présent in existing PSO algorithms. In fact, some works are already exploring 
these issues (Mendes and Kennedy, 2007; Jordan et al., 2008; Yisu et al., 2008; Ramana 
Murthy et al., 2009; Garcia-Villoria and Pastor, 2009). Recently, an alternative way of 
composing algorithmic components has been proposed by Montes de Oca et al. (2009b) 
and Engelbrecht (2010). The approach consists in shifting the intégration of components 
from the paxticle level to the swarm level by creating heterogeneous swarms, that is, swarms 
composed of particles that move using different rules (i.e., algorithmic components). An 
avenue of research that seems promising is to experiment with random topologies that 
satisfy some constraints (e.g., a desired average connection degree). These works would help 
in improving our understanding of the interactions among PSO algorithmic components.

As it may hâve been expected, the results of our experimental comparison showed that 
no variant dominâtes ail the others on ail the problems of our benchmark suite over different 
run lengths. Nevertheless, we were able to identify general trends on the influence that 
varions PSO algorithmic components and their parameters hâve on performance.

Based on these insights, we explored the possible advantages of combining algorithmic 
components that provided good performance into a single PSO variant by assembling a com­
posite algorithm that we call Frankenstein’s PSO. This new PSO algorithm is composed of
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Table A.6: Best overall configurations of different PSO variants for different termination criteria. Bach group is sorted by the average standard solution 
quality in ascending order, so the best overall configuration is listed first. The best values for each individual problem and stopping criterion are 
highlighted in boldface. ___________________________________________________________________________________________________

FES Algorithm Acklcy Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphère Average
Frankcnstein’s PSO -2.024 -0.055 -0.975 -0.517 1.378 -1.316 -0.302 -1.108 -0.727

Incrcasing-IW -0.013 -0.393 -0.950 -0.323 -1.229 -0.645 -0.367 -0.371 -0.536
Dccrccising-IW -0.002 -0.386 -1.067 -0.316 -1.199 -0.359 -0.474 -0.425 -0.528

10^ FIPS -0.765 -0.430 -0.080 -0.457 1.432 -0.932 0.206 -0.538 -0.195
Constrictcd 0.476 -0.156 0.287 -0.276 -0.213 0.406 -0.491 -0.057 -0.003

Stochastic-IW 0.656 0.124 0.652 -0.237 -0.046 0.693 -0.488 0.304 0.207
AHPSO 0.476 -0.156 0.287 2.464 -0.213 0.406 -0.491 -0.057 0.340

HPSOTVAC 1.198 2.353 1.847 -0.338 0.090 1.745 2.406 2.251 1.444
Incrcasing-IW -0.129 -0.564 -0.593 -0.349 -0.797 -0.539 -0.348 -0.359 -0.460
Constrictcd -0.212 -0.616 -0.591 -0.373 -0.459 -0.539 -0.376 -0.359 -0.441

Decreasing-IW -0.065 -0.518 -0.962 -0.341 -0.754 -0.085 -0.370 -0.358 -0.431

10'“
Frankenstein’s PSO -1.061 -0.T61 0.056 -0.386 1.332 -0.993 -0.414 -0.361 -0.324

Stochastic-IW -0.131 0.443 -0.512 -0.361 -0.541 -0.085 -0.290 -0.359 -0.230
FIPS -1.056 -0.718 1.567 -0.378 1.760 -0.539 -0.364 -0.361 -0.011

AHPSO 0.569 0.656 -0.512 2.474 -0.641 0.596 -0.312 -0.316 0.314
HPSOTVAC 2.086 2.077 1.546 -0.287 0.101 2.185 2.473 2.475 1.582

Frankcnstcin’s PSO -0.354 -0.883 -1.192 -0.359 -1.548 -0.487 0.782 -0.354 -0.549
Decreasing-IW -0.354 0.631 -0.709 -0.355 -0.311 -0.787 -0.983 -0.354 -0.402
Increasing-IW -0.354 0.631 0.108 -0.355 -0.271 -0.787 -0.441 -0.354 -0.228

10= Constrictcd -0.354 -0.883 0.313 -0.359 0.729 -0.487 0.216 -0.354 -0.147
Stochastic-IW -0.354 0.631 1.130 -0.359 0.649 -0.787 -1.013 -0.354 -0.057

FIPS -0.354 -0.883 1.060 -0.355 1.372 0.712 1.008 -0.354 0.276
AHPSO -0.364 1.639 0.721 2.475 0.529 0.712 -1.019 -0.354 0.544

HPSOTVAC 2.475 -0.883 -1.431 -0.334 -1.149 1.911 1.449 2.475 0.564
Frankcnstcin’s PSO -0.354 -0.354 -0.787 -0.358 -1.257 -0.601 -0.058 -0.504 -0.542

Increasing-IW -0.354 -0.354 0.002 -0.354 0.019 -0.661 0.039 -0.504 -0.271
Dccrcasing-IW -0.354 -0.354 0.472 -0.354 0.367 -0.661 -0.778 -0.504 -0.271

10®
FIPS -0.354 -0.354 -0.546 -0.354 -1.349 0.661 0.685 -0.504 -0.264

Stochastic-IW -0.354 -0.354 0.415 -0.358 0.705 -0.661 -0.529 -0.504 -0.205
Constrictcd -0.354 -0.354 0.815 -0.358 1.072 -0.661 -0.717 -0.504 -0.132
HPSOTVAC 2.475 -0.354 -1.760 -0.341 -0.705 0.661 2.129 2.184 0.536

AHPSO -0.354 2.475 1.388 2.475 1.149 1.984 -0.771 0.840 1.148
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APPENDIX A. FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM
OPTIMIZATION ALGORITHM

three main algorithmic components: (i) a time-varying population topology that decreases 
its connectivity aa the optimization process evolves; (ii) a particles’ velocity-update mech- 
anism that exploits every stage of the topology change process, and (iii) a time-decreasing 
inertia weight that allows the user to tune the algorithm’s exploration/exploitation capabil- 
ities. In many cases, Prankenstein’s PSO is capable of performing better than the variants 
from which its components were taken.

As a methodological approach, in-depth experimental studies can help in identifying 
positive and négative (in terms of performance) interactions among algorithmic compo­
nents and provide strong guidance for the informed design of new composite algorithms. 
Another sélection of PSO variants would hâve probably ended up in a different Pranken­
stein’s PSO algorithm. For this reason, further research is needed to understand which 
components are better suited for particular classes of problems and operating conditions 
and whether some components can be integrated into the same composite algorithm or not. 
Methods to quantify the contribution of each component on the composite algorithms’ final 
performance axe also needed to achieve this goal.
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