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et de développements en intelligence artificielle

Incremental Social Learning in
Swarm Intelligence Systems

Marco A. Montes de Oca Roldán

Promoteur:

Prof. Marco Dorigo

Directeur de Recherches du F.R.S.–FNRS

IRIDIA, CoDE, Université Libre de Bruxelles
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Abstract

A swarm intelligence system is a type of multiagent system with the following distinctive
characteristics: (i) it is composed of a large number of agents, (ii) the agents that comprise
the system are simple with respect to the complexity of the task the system is required to
perform, (iii) its control relies on principles of decentralization and self-organization, and
(iv) its constituent agents interact locally with one another and with their environment.

Interactions among agents, either direct or indirect through the environment in which
they act, are fundamental for swarm intelligence to exist; however, there is a class of
interactions, referred to as interference, that actually blocks or hinders the agents’ goal-
seeking behavior. For example, competition for space may reduce the mobility of robots
in a swarm robotics system, or misleading information may spread through the system in
a particle swarm optimization algorithm. One of the most visible effects of interference in
a swarm intelligence system is the reduction of its efficiency. In other words, interference
increases the time required by the system to reach a desired state. Thus, interference
is a fundamental problem which negatively affects the viability of the swarm intelligence
approach for solving important, practical problems.

We propose a framework called incremental social learning (ISL) as a solution to the
aforementioned problem. It consists of two elements: (i) a growing population of agents,
and (ii) a social learning mechanism. Initially, a system under the control of ISL consists
of a small population of agents. These agents interact with one another and with their
environment for some time before new agents are added to the system according to a
predefined schedule. When a new agent is about to be added, it learns socially from a
subset of the agents that have been part of the system for some time, and that, as a
consequence, may have gathered useful information. The implementation of the social
learning mechanism is application-dependent, but the goal is to transfer knowledge from
a set of experienced agents that are already in the environment to the newly added agent.
The process continues until one of the following criteria is met: (i) the maximum number
of agents is reached, (ii) the assigned task is finished, or (iii) the system performs as
desired. Starting with a small number of agents reduces interference because it reduces
the number of interactions within the system, and thus, fast progress toward the desired
state may be achieved. By learning socially, newly added agents acquire knowledge about
their environment without incurring the costs of acquiring that knowledge individually. As
a result, ISL can make a swarm intelligence system reach a desired state more rapidly.

We have successfully applied ISL to two very different swarm intelligence systems.
We applied ISL to particle swarm optimization algorithms. The results of this study
demonstrate that ISL substantially improves the performance of these kinds of algorithms.
In fact, two of the resulting algorithms are competitive with state-of-the-art algorithms
in the field. The second system to which we applied ISL exploits a collective decision-
making mechanism based on an opinion formation model. This mechanism is also one of
the original contributions presented in this dissertation. A swarm robotics system under
the control of the proposed mechanism allows robots to choose from a set of two actions
the action that is fastest to execute. In this case, when only a small proportion of the
swarm is able to concurrently execute the alternative actions, ISL substantially improves
the system’s performance.
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Chapter 1

Introduction

The term swarm intelligence refers to the group-level intelligence that some groups of
animals exhibit in nature (Bonabeau et al., 1999; Dorigo and Birattari, 2007; Garnier
et al., 2007a). Famous examples of the swarm intelligence exhibited by some groups of
animals are the ability of swarms of bees to choose the best site on which to build their
nest (Seeley, 2010) or the ability of ant colonies to find the shortest path between their nest
and a food source (Goss et al., 1989). A fundamental characteristic of a group exhibiting
swarm intelligence is its ability to solve problems that the group’s constituent members
cannot solve individually. This fact has made scientists wonder whether it is possible
to design problem-solving techniques or systems that use many, yet simple, constituent
parts – referred to as agents1. A first wave of advances in swarm intelligence research led
to the development of successful optimization techniques such as ant colony optimization
(ACO) (Dorigo et al., 1991a,b; Dorigo, 1992; Dorigo et al., 1996; Dorigo and Di Caro,
1999; Bonabeau et al., 2000; Dorigo and Stützle, 2004; Dorigo, 2007) and particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995; Kennedy et al., 2001; Engelbrecht, 2005;
Clerc, 2006; Poli et al., 2007; Dorigo et al., 2008). In this first wave of advances, swarm
intelligence was also investigated in the context of multi-robot systems (Deneubourg et al.,
1990b; Holland and Melhuish, 1999; Dorigo et al., 2004; Beni, 2005).

Most artificial swarm intelligence systems in existence today were inspired by natural
swarms. For example, the foraging behavior of ants inspired the design of ACO (Dorigo
and Stützle, 2004), and the flocking behavior of birds inspired the design of PSO (Kennedy
and Eberhart, 1995). Likewise, in swarm robotics research it is possible to find complete
research projects inspired by the way social insects, in particular ants, cooperate to solve
problems (see e.g., Dorigo et al. (2004); Kernbach et al. (2008)). Despite the differences
among these systems, their constituent agents share a common behavioral trait: they are
usually searching agents, that is, they are agents that are continuously in search of a target
state. What agents search for depends on the purpose of the system. For example, in
ACO, the agents that form the swarm (called “colony” in the context of ACO) search for
solutions to combinatorial optimization problems. In PSO, agents search for solutions to
continuous optimization problems. In swarm robotics, the searching behavior of robots
can be more elusive, but in many cases, it involves searching for a desired individual or
collective state. For example, in the work of Turgut et al. (2008) or Trianni and Nolfi
(2009), robots are continuously searching for a state that makes the swarm cohesive in
space (flocking) or time (synchronization), respectively.

Swarm intelligence is the result of agents interacting with each other and with their
environment. At the same time, however, sharing information and an environment with
other agents produces negative interactions that we refer to as interference. This class of
interactions blocks or hinders an agent’s behavior. As a result of interference, the speed
at which a swarm intelligence system reaches a desired state will be reduced. Importantly,
interference will tend to increase with the size of the system as a result of the fact that

1Throughout this dissertation, we will use the word agent to generically refer to an entity, be it an
animal or an artifact, such as a robot or a piece of software, capable of autonomous perception and action.
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interference is a function of the number of interactions within a system. Thus, interference
hinders the scalability of swarm intelligence systems.

Two examples will help us illustrate how interference reduces the performance of swarm
intelligence systems. We first consider a PSO algorithm, in which a swarm of agents (called
particles) exchange information with one another in order to bias their search toward the
best points they find in the search space of a continuous optimization problem. Although
cooperation is fundamental for the success of the algorithm, it is also a source of inter-
ference, especially during the first iterations of the algorithm. The mutual influence that
particles exert on each other makes them move to regions that do not contain the optimal
solution to the problem. If the swarm of particles is large, the number of objective function
evaluations spent in this initial phase will also be large, and thus, the time needed by the
swarm to start making progress toward good solutions will increase. As a second example,
we consider a swarm robotics system in which robots have to search for a resource. Since
the environment in which they move has finite dimensions, robots have to continuously
avoid collisions with each other. If the swarm of robots is large, the space between robots
may be such that robots spend most of their time and energy unproductively by avoiding
collisions rather than completing their assigned tasks. The overall effect of interference in
this example is also to slow down progress toward a desired state.

1.1 Objective

The main objective of the work presented in this dissertation is to reduce the effects of
interference in swarm intelligence systems composed of multiple searching agents. Since
interference manifests itself as an influence that slows down progress toward a desired state,
reducing its effects helps a swarm intelligence system to reach a desired state more rapidly.

To meet the aforementioned objective, in this dissertation we introduce the incremental
social learning (ISL) framework. This framework consists of two elements: (i) an initially
small population of agents that grows over time, and (ii) a social learning process whereby
new agents learn from more experienced ones. A small population of agents would reach
a certain state more rapidly than a large population because of the reduced interference.
However, it is possible that a small swarm cannot reach the desired state. For example,
imagine a scenario in which too few robots cannot move a heavy object. We tackle this
problem by adding agents to the swarm according to some predefined criterion. An agent
that is added to the swarm learns from the agents that have been in the swarm for some
time. This element of ISL is attractive because new agents acquire knowledge from more
experienced ones without incurring the costs of acquiring that knowledge individually.
Thus, ISL allows the new agents to save time that they can use to perform other tasks.
After the inclusion of a new agent, the swarm needs to re-adapt to the new conditions;
however, the agents that are part of the swarm do not need to start from scratch because
some useful work would have already been completed.

1.2 Methodology

We considered two case studies of the application of the incremental social learning frame-
work to swarm intelligence systems:

1. Swarm intelligence for continuous optimization. We considered PSO algo-
rithms as a case study to measure the effectiveness of ISL. As a result, three PSO-
based optimization algorithms are proposed. Two of these algorithms obtain results
comparable with those obtained by other state-of-the-art continuous optimization
algorithms. The development and analysis of these algorithms is presented in Chap-
ter 4.

2. Swarm intelligence for robotics. As a second case study, we considered a swarm
intelligence system in which robots perform a foraging task that involves collective
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transport. In this task, robots need to choose one of two available paths to a storage
room for transported objects. In this second case study, we first developed a collective
decision-making mechanism that allows a swarm of robots to select the shortest
path. Then, we instantiated the incremental social learning framework using the
aforementioned decision-making mechanism as the searching algorithm used by the
swarm. The collective decision-making mechanism and its combination with ISL are
presented in Chapter 5.

In both case studies, the application of the incremental social learning framework re-
sulted in a substantial improvement of the underlying system’s performance. These suc-
cesses should be taken as proof of concept. Our experiments are not formal proof that
the approach will always produce positive results. However, some requirements that the
underlying swarm intelligence system should satisfy in order to expect benefits from the
application of ISL are proposed.

1.3 Contributions

In this dissertation, the following three contributions are presented:

1. Incremental social learning framework. This original framework aims to tackle
interference in swarm intelligence systems. Since such systems are usually composed
of a large number of interacting agents, interference can be a major problem because
the effects of interference are stronger when a large population of agents is involved.
The incremental social learning framework addresses this problem by making a swarm
intelligence system start with a small population and by letting new agents learn from
more experienced agents.

2. High-performance PSO algorithms. A number of high-performance PSO algo-
rithms are proposed in this dissertation. Two of these algorithms are the result of
the instantiation of the incremental social learning framework in the context of PSO
algorithms. These algorithms are identified by the names IPSOLS and IPSOLS+.
They are PSO algorithms with a growing population size in which individual and so-
cial learning are simulated through local search and biased initialization, respectively.
The third algorithm, which is not based on the incremental social learning frame-
work, is presented in Appendix A. This algorithm, called Frankenstein’s PSO, is an
integration of algorithmic components that were found to provide good performance
in an extensive empirical evaluation of PSO algorithms.

3. Self-organized collective decision-making mechanism for swarms of robots.
A self-organized collective-decision making mechanism with application to swarm
robotics is proposed. Positive feedback and a consensus-building procedure are the
key elements of this mechanism that allows a population of robots to select the
fastest-to-execute action from a set of alternatives, thus improving the efficiency of
the system. We apply the incremental social learning framework to this mechanism
in order to make it more efficient in situations where a small fraction of the swarm
can concurrently execute the available alternative actions.

1.4 Publications

A number of publications have been produced during the development of the research
work presented in this dissertation. Many of these publications have been written in
collaboration with colleagues under the supervision of Prof. Marco Dorigo and/or Dr.
Thomas Stützle.

The publications associated with this dissertation are listed below. The majority of
them deal with the incremental social learning framework and its applications. However,
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we have also listed publications that laid the ground for the development of the incremental
social learning framework.

1.4.1 International Journals

1. Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
and Dorigo, M. (2010b). Majority-rule opinion dynamics with differential la-
tency: A mechanism for self-organized collective decision-making. Technical Report
TR/IRIDIA/2010-023, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.
[Revision submitted to Swarm Intelligence]

2. Montes de Oca, M. A., Aydın, D., and Stützle, T. (2011a). An incremental par-
ticle swarm for large-scale optimization problems: An example of tuning-in-the-
loop (re)design of optimization algorithms. Soft Computing. Forthcoming. DOI:
10.1007/s00500-010-0649-0

3. Montes de Oca, M. A., Stützle, T., Van den Enden, K., and Dorigo, M. (2011b).
Incremental social learning in particle swarms. IEEE Transactions on Systems, Man
and Cybernetics - Part B: Cybernetics, 41(2):368–384

4. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2009c). Franken-
stein’s PSO: A composite particle swarm optimization algorithm. IEEE Transactions
on Evolutionary Computation, 13(5):1120–1132

5. Dorigo, M., Montes de Oca, M. A., and Engelbrecht, A. P. (2008). Particle swarm
optimization. Scholarpedia, 3(11):1486

1.4.2 International Conferences, Workshops and Symposia

1. Liao, T., Montes de Oca, M. A., Aydın, D., Stützle, T., and Dorigo, M. (2011). An
incremental ant colony algorithm with local search for continuous optimization. In
Krasnogor, N. et al., editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2011). ACM Press, New York. To appear. Preprint avail-
able at http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-005r002.pdf

[Nominated for the best paper award in the Ant Colony Optimization
and Swarm Intelligence track]

2. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2010c). Incremen-
tal social learning applied to a decentralized decision-making mechanism: Collective
learning made faster. In Gupta, I., Hassas, S., and Rolia, J., editors, Proceedings of
the Fourth IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO
2010), pages 243–252. IEEE Computer Society Press, Los Alamitos, CA

3. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M.
(2010a). Opinion dynamics for decentralized decision-making in a robot swarm. In
Dorigo, M. et al., editors, LNCS 6234. Proceedings of the Seventh International Con-
ference on Swarm Intelligence (ANTS 2010), pages 251–262. Springer, Berlin, Ger-
many [Nominated for the best paper award]

4. Yuan, Z., Montes de Oca, M. A., Stützle, T., and Birattari, M. (2010). Modern
continuous optimization algorithms for tuning real and integer algorithm parameters.
In Dorigo, M. et al., editors, LNCS 6234. Proceedings of the Seventh International
Conference on Swarm Intelligence (ANTS 2010), pages 204–215. Springer, Berlin,
Germany

5. Montes de Oca, M. A., Ferrante, E., Mathews, N., Birattari, M., and Dorigo, M.
(2009a). Optimal collective decision-making through social influence and different
action execution times. In Curran, D. and O’Riordan, C., editors, Proceedings of the
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Workshop on Organisation, Cooperation and Emergence in Social Learning Agents
of the European Conference on Artificial Life (ECAL 2009). No formal proceedings
published

6. Montes de Oca, M. A., Van den Enden, K., and Stützle, T. (2008). Incremental
particle swarm-guided local search for continuous optimization. In Blesa, M. J. et al.,
editors, LNCS 5296. Proceedings of the International Workshop on Hybrid Metaheu-
ristics (HM 2008), pages 72–86. Springer, Berlin, Germany

7. Montes de Oca, M. A. and Stützle, T. (2008b). Towards incremental social learning
in optimization and multiagent systems. In Rand, W. et al., editors, Workshop
on Evolutionary Computation and Multiagent Systems Simulation of the Genetic
and Evolutionary Computation Conference (GECCO 2008), pages 1939–1944. ACM
Press, New York

8. Montes de Oca, M. A. and Stützle, T. (2008a). Convergence behavior of the fully
informed particle swarm optimization algorithm. In Keijzer, M. et al., editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008),
pages 71–78. ACM Press, New York [Nominated for the best paper award in
the Ant Colony Optimization, Swarm Intelligence, and Artificial Immune
Systems track]

9. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006a). A compa-
rison of particle swarm optimization algorithms based on run-length distributions. In
Dorigo, M. et al., editors, LNCS 4150. Proceedings of the Fifth International Work-
shop on Ant Colony Optimization and Swarm Intelligence (ANTS 2006), pages 1–12.
Springer, Berlin, Germany

10. Montes de Oca, M. A., Stützle, T., Birattari, M., and Dorigo, M. (2006b). On the
performance analysis of particle swarm optimisers. AISB Quarterly, 124:6–7

1.5 Structure

This dissertation consists of six chapters and one appendix. In Chapter 2, we provide
relevant background information for the rest of the dissertation. In Chapter 3, we present
the rationale and the algorithmic structure of the incremental social learning framework as
well as a discussion of related work. The application of ISL to PSO algorithms is described
in Chapter 4. First, we present a simple incremental PSO algorithm, called IPSO. Then,
we present two high-performing PSO algorithms, called IPSOLS and IPSOLS+, that are
derived from it. In Chapter 5, we present the application of ISL to a swarm robotics system.
First, we describe the actual swarm robotics system the framework is applied to. Then, we
describe the application of ISL to this system. Finally, in Chapter 6, we present the main
conclusions of the research work documented in this dissertation. Appendix A is devoted
to the description of Frankenstein’s PSO algorithm, which is the result of an extensive
experimentation with several PSO algorithms. Results of those experiments inspired in
part some features of the ISL framework.

5



CHAPTER 1. INTRODUCTION

6



Chapter 2

Background

In this chapter, we present some of the basic concepts of swarm intelligence and social
learning, which are central to our work. In Section 2.1, we present the concept of swarm
intelligence, and describe its principles and mechanisms. We also describe the most success-
ful artificial swarm intelligence systems together with the natural phenomena that inspired
their development. In Section 2.2, we present the concepts of individual and social learning,
and describe the main mechanisms involved in social learning.

2.1 Swarm Intelligence

In nature, different kinds of animals tend to congregate in large numbers. For instance,
European starlings can gather in thousands to form flocks (Carere et al., 2009), atlantic
silversides form schools of hundreds of individuals (Partridge, 1982), and ants make colonies
that range in size from a few dozen to millions of ants (Hölldobler and Wilson, 1990). When
animals form these swarms, they are often able to solve problems that no single member
could if it acted alone. From an external observer’s point of view, it may appear as if the
swarm possessed a certain level of intelligence that is well superior to that of any of its
constituent members. This collective-level intelligence is called swarm intelligence.

The size and behavior of swarms have fascinated humans since antiquity. At times,
swarms inspire fear. For example, it is written in the Bible that swarms of locusts plagued
Egypt (Exodus:10.3–6). At other times, swarms inspire respect. An old Mesoamerican leg-
end tells the story of how ants helped the gods feed all humans with cultivated maize (Nut-
tall, 1930). Both extremes of feelings, fear and awe, have motivated researchers to wonder
whether it is possible to control swarms. On the one hand, controlling swarms would allow
us to alleviate the effects of plagues, like those of locusts or termites (Buhl et al., 2006). On
the other hand, controlling swarms would allow us to devise techniques that can be used
to control man-made artifacts such as robots or software agents (Bonabeau et al., 1999).
However, before we are able to control swarms, we need to understand their governing
principles.

2.1.1 Principles and Mechanisms

Even though the characteristics of swarm-forming animals vary substantially, swarms ex-
hibit behaviors that are in fact very similar. This similarity has pointed toward the exis-
tence of a set of general principles responsible for the emergence of swarm-level organization
and intelligence (Buhl et al., 2006). The existence of these principles makes the design of
artificial swarm intelligence systems possible. Thus, as a discipline, swarm intelligence has
a twofold objective. First, it aims to understand the fundamental principles that are the
responsible for the collective-level intelligence sometimes exhibited by large groups of ani-
mals. Second, it aims to define engineering methodologies for the design and construction
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of large groups of man-made entities that collectively solve practical problems (Dorigo and
Birattari, 2007).

Researchers have made progress in the study of swarm intelligence and a set of principles
and mechanisms that make it possible have been identified. The principles and mechanisms
that we will describe have been found to operate in many animal societies, but especially in
social insects groups (Bonabeau et al., 1999; Garnier et al., 2007a; Beekman et al., 2008).

Decentralization

The behavior exhibited by a swarm is not dictated by any central authority. The unfortu-
nate name given to the reproductive member of an ant colony or a bee hive (i.e., a “queen”)
gives the impression that the organization observed at the collective level is the result of a
hierarchical command structure. However, it is now well known that such a structure does
not exist (Bonabeau, 1998; Garnier et al., 2007a). In a swarm, no single agent supervises
the actions of, or issues orders to, other members of the swarm. The perception and inter-
action scope of a swarm member is local. Thus, the swarm’s organization is the result of
local interactions, both among the swarm members and between the swarm members and
the environment.

Stigmergy

The theory of stigmergy (from the Greek roots stigma, which means mark, sign, or punc-
ture, and ergon, which means action, labor, or work) was proposed by Grassé (1959) in
the context of task coordination and nest construction regulation in colonies of termites.
Grassé defined stigmergy as “the stimulation of the workers by the very performances they
have achieved” (Grassé, 1959) p. 79. In other words, stigmergy refers to the coordination
process that arises when an agent performs an action as a consequence of stimuli that are
the result of another agent’s – or possibly the same agent’s – actions.

Stigmergy is key to explain how termites and other social insects are able to build
structures and produce collective-level patterns that are orders of magnitude larger than
a single individual, all without a central authority or global blueprint. For example, the
construction of soil arches in termite nests starts when a termite fortuitously places a soil
pellet on top of other pellets. This bigger soil structure stimulates termites to keep placing
pellets on top. A self-reinforcing process then follows: the larger the structure, the stronger
the attraction termites feel toward that structure to deposit soil pellets. Eventually an arch
is built if two pillars happen to be at an appropriate distance. Another prominent example
of how stigmergy enables swarm intelligence to occur is the ability of ants of some species
to find the shortest path between their nest and a food source. While moving, ants deposit
on the ground chemical substances called pheromones. These pheromones modify the envi-
ronment and trigger a change in the behavior of ants. In particular, ants become attracted
to areas of the environment marked with pheromones. This pheromone laying and follow-
ing behavior induces a positive feedback process whereby areas with high concentration of
pheromones become more and more attractive as more ants follow them (Pasteels et al.,
1987; Goss et al., 1989; Deneubourg et al., 1990a). As a result, if there are several paths
to the same food source, the colony is more likely to select the shortest path because ants
will traverse it faster, and thus, it will have a higher pheromone concentration than longer
ones.

Self-Organization

The theory of self-organization has found applications in such diverse fields as economics,
urbanism, physics, chemistry, and biology (Haken, 2008). For example, it has been used to
explain chemical reactions, such as the Belousov-Zhabotinsky reaction (Zhabotinsky, 2007),
and the organization of cities (Portugali, 2000). In biology, it has been used to explain
the external patterns on the skin or on the protective shells of some animals (Camazine
et al., 2001), the movement of vertebrates in crowds (Couzin and Krause, 2003), and, most
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relevant for our discussion here, the behavior of social insects swarms (Bonabeau et al.,
1997).

Self-organization is a term with different meanings in different contexts (Gershenson,
2007). In this dissertation, we adopt Camazine et al.’s definition:

Definition Self-organization is a process in which [a] pattern at the global level of a sys-
tem emerges solely from numerous interactions among the lower-level components of the
system. Moreover, the rules specifying interactions among the system’s components are
executed using only local information, without reference to the global pattern. (Camazine
et al., 2001) p. 8.

With this definition, some forms of swarm intelligence can be considered to be the
result of self-organization. For example, the ability of ant colonies to find the shortest path
between their nest and a food source can be seen as a self-organization process. First, a
pheromone trail that connects an ant colony nest to a food source is the pattern at the global
level cited in Camazine et al.’s definition. Such a trail is the result of several ants reinforcing
it every time they traverse it, that is, it is the result of multiple interactions among the
system’s components (the ants). Stigmergy is in this case the interaction mechanism.
The pheromone-laying and pheromone-following behavior exhibited by ants serves as an
interaction rule, which is triggered only when an ant perceives pheromones in its vicinity.
Finally, the behavioral rules followed by ants do not make any reference to pheromone
trails and do not encode desired goals such as finding shortest paths. The shortest path
between an ant colony’s nest and a food source is an emergent pattern.

Self-organization is itself the result of the interaction of several processes and elements.
According to Camazine et al. (2001) and Moussaid et al. (2009), these processes and
elements are the following:

1. Multiple direct or indirect interactions among the system’s components. By defi-
nition, a self-organizing system is composed of a number of components whose be-
havior depends on the state of their immediate environment or on the information
they possess. In such a setting, the system’s components mutually influence each
other because the behavior of one of them may affect the environment of, or the
information perceived by, other components. If the system’s components are able to
communicate directly with each other, it is also possible to influence the behavior of
these components via direct communication.

2. Presence of fluctuations. The components of a self-organizing system may be subject
to external perturbations or may behave nondeterministically. As a result, there
may be fluctuations in the system’s state. For example, in the absence of pheromone
trails, an ant chooses a walking direction at random, or an ant colony may suffer the
sudden loss of several members due to the presence of predators or inclement weather
conditions.

3. Positive feedback. Fluctuations, random or not, are often reinforced in self-organizing
systems. The way termites construct pillars with soil pellets or the reinforcement of
pheromone trails by ants are examples of positive feedback processes. Positive feed-
back is responsible for the appearance of new structures (e.g., pillars or pheromone
trails) that in turn modify the behavior of the system.

4. Negative feedback. The self-reinforcing process brought about by positive feed-
back loops must be limited. It is impossible, for example, that the concentration
of pheromones in an ant trail grows to infinity. In self-organizing systems this task is
performed by a so-called negative feedback process. Negative feedback encompasses
all limiting environmental factors and a system’s internal regulation processes. In the
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ant trails example, negative feedback includes pheromone evaporation, food depletion
and satiation.

5. Bifurcations and multiple stable states. Self-organizing systems often show abrupt
changes in their behavior without an abrupt change in the value of a control pa-
rameter. For example, the density of insects is often a parameter that affects the
behavior of a swarm. Below a certain threshold, no swarm behavior is observed,
whereas above it, a swarm behavior suddenly appears (Buhl et al., 2006). A self-
organizing system will reach a stable state which depends on the initial conditions.
Since self-organization is often triggered by random fluctuations, the stable state of
a system may be just one of several available states.

Currently, there is a growing interest in developing methodologies for the design and
control of self-organizing systems (see, for example, Gershenson (2007); Di Marzo Seru-
gendo et al. (2004); Bruecker et al. (2005, 2006, 2007)). The knowledge gained in the
process will certainly affect our ability to design and control swarm intelligence systems.

Other Mechanisms

Self-organization can account for many swarm intelligence behaviors, but they may also
be the result of other mechanisms, either alone or in combination with a self-organizing
process (Camazine et al., 2001; Johnson, 2009). Some of these mechanisms are leadership,
blueprints, recipes, templates, or threshold-based responses (Bonabeau, 1998; Camazine
et al., 2001; Garnier et al., 2007a). Leadership may play a role when some individuals are
more experienced than others or simply when there are better informed individuals. This
mechanism, as we will discuss in Chapter 3, is important in the framework proposed in
this dissertation. Leadership plays an important role in large groups of moving animals as
suggested by recent studies (Couzin et al., 2005). Blueprints are usually associated with
the process of constructing a structure. They are representations of the desired structure;
however, they do not specify how such a structure should be built. There is an ongoing de-
bate as to whether blueprints are actually used by building animals; however, it is definitely
possible to imagine man-made swarm intelligence systems in which agents use such a mech-
anism. Recipes are step-by-step directions to carry out a task. The execution of a recipe
often ignores feedback from the execution process. This aspect of recipes is fundamental
in order to distinguish them from stigmergic task execution, in which the execution of an
action modifies the environment providing feedback to the acting animal or agent. A tem-
plate is a kind of “preexisting pattern” in the environment that elicits a specific response
from the members of a swarm, normally to actually build over them. For example, termites
build a chamber around the body of the queen which produces a pheromone gradient that
serves as a template (Bonabeau et al., 1998). Finally, in a threshold-based mechanism, an
action is performed as a response to the strength of a stimulus. Threshold-based models
have been used in the context of social insects to explain division of labor (Theraulaz et al.,
1998), the mechanism whereby insects split responsibilities, as well as to explain collective
phenomena in humans (Granovetter, 1978).

2.1.2 Artificial Swarm Intelligence Systems

The design and construction of artificial swarm intelligence systems have been heavily
inspired by the behavior of natural swarms. The first efforts toward the development of
artificial swarm intelligence systems began in the 1990s with pioneering works in robotics,
data mining, and optimization. In fact, these domains are still the application areas of
most artificial swarm intelligence systems (Dorigo and Birattari, 2007).

In the remainder of this section, we describe some of the most successful swarm intel-
ligence systems devised to date.
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Ant Colony Optimization

The ants’ pheromone trail laying and trail following behavior described in Section 2.1.1
inspired the development of ant colony optimization (ACO) (Dorigo et al., 1991a,b; Dorigo,
1992; Dorigo et al., 1996; Dorigo and Di Caro, 1999; Bonabeau et al., 2000; Dorigo and
Stützle, 2004; Dorigo, 2007). Some aspects of the real behavior of ants that allows them to
find shortest paths in nature are simulated in ACO algorithms in order to tackle optimiza-
tion problems. In nature, real ants form pheromone trails; in ACO, artificial ants construct
candidate solutions to the problem instance under consideration. Solution construction is
a stochastic process biased by artificial pheromone trails and possibly by available heuristic
information based on the input data of the instance being solved. Pheromones are simu-
lated as numerical information associated with appropriately defined solution components.
A positive feedback process implemented by iterative modifications of the artificial phero-
mone trails is key for all ACO algorithms. In ACO algorithms, pheromone trails can be
thought of as a function of the ants’ search experience. The goal of positive feedback is to
bias the colony towards the most promising solutions.

The ACO metaheuristic (Dorigo and Di Caro, 1999; Dorigo et al., 1999) is an algorithmic
framework that allows the implementation of the aforementioned ideas for the approximate
solution of optimization problems. Such a framework needs to be instantiated into an
algorithm in order to tackle a specific problem. The framework is flexible enough to
accommodate specialized problem-solving techniques.

ACO is commonly used to solve combinatorial optimization problems. A formal defi-
nition of a combinatorial optimization problem is given next.

Definition A combinatorial optimization problem is modeled by the tuple (S, f , Ω), where:

• S is the set of candidate solutions defined over a finite set of discrete decision variables
X. S is referred to as the search space of the problem being tackled;

• f : S → R is an objective function to be minimized ;1

• Ω is a (possibly empty) set of constraints among the decision variables.

A decision variable Xi ∈ X, with i = 1, . . . , n, is said to be instantiated when a value

vji that belongs to its domain Di =
{
v1
i , . . . , v

|Di|
i

}
is assigned to it. A solution s ∈ S

is called feasible if each decision variable has been instantiated satisfying all constraints
in the set Ω. Solving the optimization problem requires finding a solution s∗ such that
f(s∗) ≤ f(s) ∀s ∈ S, while satisfying all constraints in Ω.

Three high-level procedures compose ACO (see Algorithm 1):

• ConstructSolutions. This procedure implements the artificial ants’ incremental
construction of candidate solutions.

In ACO, an instantiated decision variable Xi ← vji is called a solution component
cij ∈ C, where C denotes the set of solution components. A pheromone trail value
τij is associated with each component cij ∈ C.

A solution construction starts from an initially empty partial solution sp. At each
construction step, it is extended by appending to it a feasible solution component
from the set of feasible neighbors N(sp) ⊆ C that satisfies the constraints in Ω. The
choice of a solution component is guided by a stochastic decision policy, which is
biased by both the pheromone trail and the heuristic values associated with cij . The
exact rules for the probabilistic choice of solution components vary across different
ACO variants. The rule proposed in the Ant System algorithm (Dorigo et al., 1996)
is the best known rule:

1Note that minimizing the value of an objective function f is the same as maximizing the value of −f ;
hence, every optimization problem can be described as a minimization problem.
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Algorithm 1 Basic structure of an ant colony optimization algorithm

repeat
ConstructSolutions
DaemonActions /* Optional */
UpdatePheromones

until Stopping criterion is satisfied

pcij |sp =
[τij ]

α · [ηij ]β∑
cil∈N(sp)

[τil]
α · [ηil]β

, (2.1)

where τij and ηij are, respectively, the pheromone value and the heuristic value
associated with the component cij . The parameters α > 0 and β > 0 determine the
relative importance of pheromone versus heuristic information.

• DeamonActions. This procedure, although optional, is important when state-of-
the-art results are sought (Dorigo and Stützle, 2004). It allows for the execution of
problem-specific operations, such as the use of local search procedures, or of central-
ized actions that cannot be performed by artificial ants. It is usually executed before
the update of pheromone values so that ants bias their search toward high quality
solutions.

• UpdatePheromones. This procedure updates the pheromone trail values associ-
ated with the solution components in the set C. The modification of the pheromone
trail values is composed of two stages: (i) pheromone evaporation, which decreases
the pheromone values of all components by a constant factor ρ (called evaporation
rate) in order to avoid premature convergence, and (ii) pheromone deposit, which in-
creases the pheromone trail values associated with components of a set of promising
solutions Supd. The general form of the pheromone update rule is as follows:

τij ← (1− ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F (s) , (2.2)

where ρ ∈ (0, 1] is the evaporation rate, and F : S → R+ is a function such that
f(s) < f(s′) ⇒ F (s) ≥ F (s′), ∀ s 6= s′ ∈ S. F (·) is called the fitness function.
Different definitions for the set Supd exist. Two common choices are Supd = sbsf,
and Supd = sib, where sbsf is the best-so-far solution, that is, the best solution found
since the start of the algorithm, and sib is the best solution of the current iteration.
The specific implementation of the pheromone update mechanism differs across ACO
variants (Dorigo et al., 1991a,b, 1996; Dorigo and Gambardella, 1997; Gambardella
and Dorigo, 1996; Stützle and Hoos, 2000).

Many ACO algorithms have been proposed. Some of them aim to solve specific prob-
lems, and others have a more general purpose. In Table 2.1, we list some of the most
representative ACO algorithms proposed to date.

Particle Swarm Optimization

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Eberhart and Kennedy,
1995; Kennedy et al., 2001; Engelbrecht, 2005; Clerc, 2006; Poli et al., 2007; Dorigo et al.,
2008) is a population-based stochastic optimization technique primarily used to tackle
continuous optimization problems. A continuous optimization problem is defined as follows:
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Table 2.1: Representative ACO works.

ACO algorithm Main references
Ant System (AS) (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al.,

1996)
Elitist AS (Dorigo et al., 1991b; Dorigo, 1992; Dorigo et al.,

1996)
Ant-Q (Gambardella and Dorigo, 1995)
Ant Colony System (ACS) (Dorigo and Gambardella, 1997; Gambardella and

Dorigo, 1996)
MAX–MIN Ant System
(MMAS)

(Stützle and Hoos, 1996, 1997, 2000)

Rank-based AS (Bullnheimer et al., 1999)
ANTS (Maniezzo, 1998, 1999)
Best-worst AS (Cordón et al., 2002, 2000)
Population-based ACO (Guntsch and Middendorf, 2002)
Beam-ACO (Blum, 2004, 2005)

Definition Given a set Θ ⊆ Rn and an objective function f : Θ → R, the continuous
optimization problem consists in finding at least one member of the set

Θ∗ = arg min
θ∈Θ

f(θ) = {θ∗ ∈ Θ: f(θ∗) ≤ f(θ), ∀θ ∈ Θ} .

The set Θ is referred to as the feasible solution space or as the search space of function
f . If Θ = Rn, then the problem is called an unconstrained continuous optimization problem.
Otherwise, the problem is called a constrained continuous optimization problem.

PSO has roots in computer graphics, social psychology, and natural swarm intelligence.
Within the computer graphics field, the first antecedents of PSO can be traced back to the
work of Reeves (1983), who proposed particle systems to model objects that are dynamic
and cannot be easily represented by polygons or surfaces. Examples of such objects are
fire, smoke, water and clouds. In these systems, particles are independent of each other
and their movements are governed by a set of rules. A few years later, Reynolds (1987)
used a particle system to simulate the collective behavior of a flock of birds. In a similar
kind of simulation, Heppner and Grenander (1990) included a roost that was attractive
to the simulated birds. Reynolds’s and Heppner and Grenander’s models inspired the
set of rules that were later used in the original PSO algorithm (Kennedy and Eberhart,
1995). According to Kennedy (2006), social psychology research, in particular the theory
of social impact (Latané, 1981; Nowak et al., 1990), was another source of inspiration in
the development of the first particle swarm optimization algorithm (see Chapter 3 for more
information).

PSO is a direct search method, which means that it works only with ordinal relations
between objective function values and does not use the actual values to model, directly or
indirectly, higher order properties of the objective function. In a PSO algorithm, simple
agents, called particles, move in the solution space of an n-dimensional objective function
f (see definition above). There are three vectors associated with a particle i at time
step t: its position vector x t

i , which represents a candidate solution, its velocity vector v t
i ,

representing the particle’s search direction, and its personal best vector pb t
i , which denotes

the particle’s best position attained by particle i since the beginning of the algorithm’s
execution.

The rules that determine the particles’ movement are the core of any PSO algorithm.
These rules determine from which other particles a certain particle i should get information,
and how that information should be exploited. The set of particles from which particle i
may obtain information is referred to as particle i’s neighborhood and is denoted by Ni.
However, particle i’s informers, denoted by Ii with Ii ⊆ Ni, are the particles from which

13



CHAPTER 2. BACKGROUND

Figure 2.1: Example population topologies. The leftmost picture depicts a fully connected
topology, that is, Ni is composed of all the particles in the swarm (self-links are not drawn
for simplicity). The picture in the center depicts a so-called von Neumann topology, in
which |Ni| = 4 ∀i. The rightmost picture depicts a ring topology in which each particle is
neighbor to two other particles.

it actually obtains information. The sets Ni can be visualized as a graph called population
topology (see Figure 2.1). The model of influence defines the mechanism to form Ii from
Ni. Finally, a particle’s velocity-update rule determines how to compute the particle’s next
position using information from its informers.

In the standard PSO algorithm (Bratton and Kennedy, 2007), for example, the afore-
mentioned factors are instantiated as follows: (i) fully-connected graphs or rings (respec-
tively known as gbest and lbest models in PSO parlance) as population topologies, (ii) a
best-of-neighborhood model of influence such that only the best particle in the neighbor-
hood and the particle itself are taken as informers, and (iii) an update rule for the jth
component of the ith particle’s velocity and position vectors given by

v t+1
i,j = wv ti,j + ϕ1U1

(
pb ti,j − x ti,j

)
+ ϕ2U2

(
lb ti,j − x ti,j

)
, (2.3)

and
x t+1
i,j = x ti,j + v t+1

i,j , (2.4)

where w is a parameter called inertia weight (Shi and Eberhart, 1998a), ϕ1 and ϕ2 are
parameters called acceleration coefficients, U1 and U2 are uniformly distributed pseudo-
random numbers in the range [0, 1) that are generated for each particle for each coordinate
at each iteration. A particle’s velocity in each coordinate j is usually constrained within the
range [−vmax, vmax]. Finally, the vector lb ti is the best solution in particle i’s neighborhood
Ni, that is:

lb ti = arg min
j∈Ni

f(pb tj ) . (2.5)

The basic structure of a PSO algorithm is shown in Algorithm 2. In the procedure
InitializeSwarm, a certain number of particles are created and placed uniformly at random
in the problem’s search space. Each particle’s velocity is initialized to zero or a small
random value (Dorigo et al., 2008). In this procedure, the population topology is also
initialized. In the procedure EvaluateSwarm, each particle’s position is evaluated using
the problem’s objective function. If a particle finds a position that is better than its
personal best solution, it updates its memory. Otherwise, it remains unchanged. In the
procedure UpdatePositions, all particles are moved using Eqs. 2.3 and 2.4. The procedures
EvaluateSwarm and UpdatePositions are executed iteratively until the stopping criterion
is satisfied.

Different settings for the population topology, the model of influence, or the velocity-
update rule give rise to different PSO algorithms. Two-dimensional lattices, small-world
networks or random graphs are among the possible choices for replacing the standard
fully-connected or ring graphs as population topologies (Kennedy, 1999; Kennedy and
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Algorithm 2 Basic structure of a particle swarm optimization algorithm

InitializeSwarm
repeat
EvaluateSwarm
UpdatePositions

until Stopping criterion is satisfied

Table 2.2: Representative PSO works
Investigated Aspect Main references
Acceleration Coefficients Kennedy (1997); Ratnaweera et al. (2004); Chat-

terjee et al. (2007); Chaturvedi et al. (2009)
Inertia Weight Shi and Eberhart (1998a,b, 1999, 2001); Eberhart

and Shi (2001); Zheng et al. (2003a,b); Chatterjee
and Siarry (2006)

Model of Influence Mendes et al. (2004); Jordan et al. (2008); Montes
de Oca and Stützle (2008a)

Population Size van den Bergh and Engelbrecht (2001); Lanzarini
et al. (2008); Coelho and de Oliveira (2008); Chen
and Zhao (2009)

Population Topology Kennedy (1999); Suganthan (1999); Janson and
Middendorf (2003, 2005); Mohais et al. (2005);
Kennedy and Mendes (2006)

Theoretical Aspects Ozcan and Mohan (1999); Clerc and Kennedy
(2002); Trelea (2003); Kadirkamanathan et al.
(2006); Poli (2007, 2009); Fernández Mart́ınez and
Garćıa Gonzalo (2009); Ghosh et al. (2011)

Velocity-Update Rule Kennedy (2003); Blackwell and Branke (2006);
Mendes and Kennedy (2007); dos Santos Coelho
(2008)

Mendes, 2002). Likewise, alternatives to the best-of-neighborhood model of influence can
be implemented. The most salient example is the fully-informed model, in which a particle
is informed by all of its neighbors (Mendes et al., 2004; Mendes, 2004). In Table 2.2 we list a
number of works in which one or more of the three aforementioned factors are investigated.

Swarm Robotics

Robotics has been pivotal in the development of the swarm intelligence field. In fact, it
was in a robotics paper that the term swarm intelligence was first used (Beni and Wang,
1993; Beni, 2005). Swarm intelligence applied to the multi-robot domain is called swarm
robotics (Dorigo and Şahin, 2004; Şahin, 2005; Bayindir and Şahin, 2007). It is sometimes
defined as “the study of how [a] large number of relatively simple physically embodied
agents can be designed such that a desired collective behavior emerges from the local
interactions among agents and between the agents and the environment.” (Şahin, 2005)
(p. 12). This definition is very similar to that of the engineering branch of the swarm
intelligence field (Dorigo and Birattari, 2007). The particularity of swarm robotics is the
embodiment of robots. In one of the first works in the field, Deneubourg et al. (1990b)
used the term “ant-like” to describe the robots they used in one of the first experiments
in the history of the swarm robotics field. At the same time, Deneubourg et al. reinforced
the link of the field with one of its major sources of inspiration: social insects. Deneubourg
et al. also showed that swarm robotics could be used as a scientific tool to test hypotheses
about the mechanisms involved in swarm organization in animals— cf. Webb (2000). For
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this and other reasons, swarm robotics research, unlike ACO and PSO research, does not
focus solely on applications.

In swarm robotics, some mechanisms involved in robot control and the benchmark
tasks robots solve, have been inspired by studies of real swarm-forming animals. For
example, Deneubourg et al. (1990b), Holland and Melhuish (1999), Wilson et al. (2004),
and Melhuish et al. (2006) studied swarms of robots performing spatial sorting inspired
by the brood sorting behavior of ants; Theraulaz and Bonabeau (1995) and Grushin and
Reggia (2008) studied structure building mechanisms inspired by wasps and other social
insects; Kube and Bonabeau (2000) and Groß and Dorigo (2008) reproduced with robots
the cooperative transport abilities of ants; and Mondada et al. (2004) and O’Grady et al.
(2010b) draw inspiration from social insect assemblages (Anderson et al., 2002) to devise
control algorithms that allow swarms of robots to perform collective tasks.

Research in swarm robotics is not only focused on tasks that can be solved collectively
by robots. There are also practical problems that need to be tackled in a swarm robotics
system. For example, robots that are part of a swarm may need to know when one of their
peers stops working properly, or they may need to know how many robots compose the
swarm. Some of these problems have been tackled using nature-inspired as well as purely
engineered approaches. For instance, Christensen et al. (2009) proposed a distributed
mechanism for robot fault detection within a swarm that was inspired by models of firefly
synchronization. Using a similar approach, Brambilla et al. (2009) built on the work
of Holland et al. (1999) to design a mechanism that allows individual robots to reliably
estimate the size of the group that they belong to. Energy supply within a swarm is
another practical problem that needs to be dealt with. Batteries have a limited capacity,
thus, robots have a limited lifetime. If the robots lifetime is short, a swarm of robots is
of little practical use. To tackle this problem, some researchers, for example Witkowski
(2007), Melhuish and Kubo (2007), and Schloler and Ngo (2008) have proposed energy
sharing mechanisms inspired by trophallaxis, that is, the direct exchange of food between
animals (Hölldobler and Wilson, 1990). By sharing charge with one another, some robots
can continuously operate while other robots get their batteries recharged.

One application area for which swarm robotics is particularly appealing is the con-
struction of two- and three-dimensional structures (Stewart and Russell, 2006; Werfel and
Nagpal, 2008; Mellinger et al., 2010). In this application area, most of the basic collective
behaviors inspired by animals can be integrated into a single complex task. For example,
robots need to aggregate, find construction materials, sort them, transport them from one
place to another (most likely, cooperatively), and finally, coordinate their actions in order
to actually build the desired structure.

Other Swarm Intelligence Systems

ACO, PSO, and swarm robotics have undoubtedly been the most popular swarm intelli-
gence systems to date. However, other systems exist and deserve being mentioned.

A family of swarm intelligence systems is used to perform data clustering. The goal
of any clustering algorithm is to partition a set of data or objects into clusters (groups,
subsets, classes) so that elements belonging to the same cluster are as similar as possible
and elements that belong to different clusters are as dissimilar as possible (Höppner et al.,
1999). Some of these swarm intelligence systems for data clustering focus on optimization,
and thus, use ACO, or PSO to tackle the problem (Martens et al., 2011). Other systems,
however, are inspired by the brood sorting behavior of some ant species. These systems are
called ant-based clustering algorithms (Lumer and Faieta, 1994; Handl et al., 2005; Handl
and Meyer, 2007).

Ant-based clustering algorithms are related to experiments in swarm robotics. Deneubourg
et al. (1990b) made robots execute the following rules: pick up an object if it is relatively
isolated, and put down an object if there are other objects around. As a result, the robots
created “heaps” of objects in the environment. Lumer and Faieta (1994) implemented in
software a similar system in which agents move over a toroidal square grid on which there
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are objects representing data items. Agents pick up an object with high probability if it is
not surrounded by other similar objects. By the same token, agents put down objects on
any free location surrounded by similar objects to the one they are carrying. As a result,
groups of similar data items are created. In other words, the algorithm performs data
clustering. A number of improvements of the basic technique have followed (see the work
of Handl and Meyer (2007) for one of the latest surveys of the topic).

A family of swarm intelligence algorithms, inspired by the behavior of bees, is attract-
ing the attention of researchers in the field (see the work of Karaboga and Akay (2009)
for a recent review). One of the algorithms that belong to this category is called Bee
Colony Optimization (BCO) (Teodorović, 2009). This algorithm is typically used to tackle
combinatorial optimization problems. BCO consists of two procedures that are executed
iteratively. In the first procedure, artificial bees build partial candidate solutions. In the
second procedure, the artificial bees “meet” in order to recruit other bees to search in the
area in proximity to the best found partial solutions. These two procedures roughly mimic
the behavior of scout bees looking for rich food sources and of the waggle dance of bees,
which is aimed at recruiting other bees from the nest. Another bee-inspired algorithm, the
Artificial Bee Colony (ABC) algorithm (Karaboga and Basturk, 2007), is used for tackling
continuous optimization problems. In ABC, the position of the bees represent candidate
solutions to the problem. The algorithm works through the interaction of three kinds of
artificial bees. Bees can be play three roles. They can be “employed”, “onlookers”, or
“scouts.” An employed bee exploits a promising region. In other words, the bee carries
out a sort of local search. Onlooker bees search around promising regions based on their
quality. Onlooker bees can compare the quality of different regions in the search space,
thus they perform a more global search than employed bees. Finally, scout bees perform
random search, which enables them to discover new promising regions in the search space.

2.2 Social Learning

Social and individual learning are terms that are often used vaguely, meaning different
things in different contexts. For the purpose of this dissertation, it is therefore important
to clearly define the meaning of these two concepts and their relationship.

Individual (or asocial) learning is the process whereby an agent benefits from experience
to become better adapted to its environment (Rescorla, 1988). The exact meaning of
“experience” and “adaptation” depends on the context in which the term “learning” is
used. In any case, learning implies a change in an agent’s behavior from the moment in
which it interacts with its environment, or gains “experience”, and the moment in which
its level of “adaptation” to its environment is measured or observed. In Chapters 4 and 5,
we will explicitly define these terms in the context of the two case studies presented in this
dissertation.

From a machine learning perspective, learning is finding an association between inputs
and some output. Inputs can have many forms, from abstract data, to actual information
gathered through electronic sensors. An agent’s output can be, for example, actions that
change the agent’s environment, or an abstract concept, such as a category identifier. The
association between inputs and output changes during the lifetime of the learning agent.
This association represents the agent’s “experience” discussed in the previous paragraph.
The purpose of associating inputs with outputs is to maximize some performance measure.
A better score using a performance measure means that the agent is “better adapted” to
its environment. There are roughly three categories of learning problems (Birattari, 2009):
supervised, reinforcement, and unsupervised. In supervised learning (Aha et al., 1991),
a supervisor provides examples of the desired input-output associations. In this case, a
learning agent tries to minimize the differences between its own responses and the desired
ones. Reinforcement learning (Kaebling et al., 1996) is based on rewards given to a learning
agent when it performs actions that lead to a certain environment state. In this case, a
learning agent tries to maximize the collected rewards. Unsupervised learning (Jain et al.,
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1999) does not require any examples or rewards. In this case, a learning agent tries to
identify input patterns that trigger similar outputs or responses.

There are more definitions of social learning than of individual learning. Fortunately,
Heyes (1994) provides a definition onto which one can map many working definitions ex-
isting in the literature:

Definition The term ‘social learning’ refers to learning that is influenced by observation
of, or interaction with, another animal (typically a conspecific) or its products [. . . ]. The
complementary set is commonly known as ‘individual learning’. (Heyes, 1994) p. 207.

Heyes’s definition is general enough to encompass the definitions of Biederman et al.
(1993) who refer to social learning as learning from the observation of others’ behavior,
and Caldwell and Millen (2009) who use the term social learning as learning from the
interaction with others. Other authors prefer to use Heyes’s full definition (Brown and
Laland, 2003; Caldwell and Millen, 2009; Rendell et al., 2010b,a, 2011).

Social learning in animals has been studied since the 19th century (Galef Jr., 1990).
In humans, social learning started to be seriously studied around the 1970s with the work
of Bandura (1977) and other psychologists. Similarly to other theories of behavior, social
learning in humans and animals has been studied from a mechanistic as well as from a
functional point of view. Ethologists and psychologists take a mechanistic perspective in
order to determine the mechanisms and strategies that animals use to learn from others.
Biologists and scientists from other disciplines, including economics, study social learning
from a functional perspective in order to answer the question of why and under which
circumstances social learning is useful.

2.2.1 Social Learning Mechanisms and Strategies

Social learning mechanisms (how an agent may learn from others) and strategies (when
and from whom should an agent learn socially) are the subject matter of the mechanistic
approach to the study of social learning. In the following paragraphs, we will briefly define
some of the most commonly studied social learning mechanisms and strategies.

Mechanisms

Imitation, emulation, enhancement, conditioning, facilitation and mimicking are social
learning mechanisms. They are not learning phenomena themselves, but they may lead
to learning (Heyes et al., 2000). Imitation and emulation involve copying. When an
observer imitates, it copies the actions of a demonstrator with the goal of reproducing
the actions’ effects; when an observer emulates, it uses its own actions to reproduce the
results produced by a demonstrator’s actions (Heyes, 1994; Caldwell and Millen, 2009;
Cakmak et al., 2010). Imitation has been traditionally assumed to be the main mechanism
through which animals learn socially (Galef Jr., 1990). However, imitation is a relatively
complex process that implies that the copying animal is able to take the perspective of
the demonstrating animal. Thus, to explain social learning in animals that are considered
to have limited cognitive abilities, such as insects, simpler mechanisms have been sought.
One such mechanism is called social enhancement (Franz and Matthews, 2010). Some
authors distinguish between two forms of social enhancement: stimulus enhancement and
local enhancement. Stimulus enhancement occurs when an agent calls the attention of
another one to a particular object, increasing the likelihood that the observer interacts
with that object (or with objects with similar physical features) in the future, regardless
of the objects’ location (Heyes, 1994; Bonnie and de Waal, 2007; Franz and Matthews,
2010). Local enhancement occurs when an agent is attracted to the location where a
certain behavior was observed (Galef Jr., 1990; Heyes, 1994; Franz and Matthews, 2010).
Social enhancement makes some features of the environment more salient than others. As
a result, the observer may save time and effort exploring the environment in order to find
interesting objects or locations. Social enhancement imposes lower cognitive capabilities
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Table 2.3: Examples of “When” and “From whom” components of a social learning strat-
egy.

When From whom
When established behavior is unproductive From majority

When asocial learning is costly From successful individuals
When uncertain From good social learners

When dissatisfied From related individuals (kin)
When environment is stable From familiar individuals

From older individuals

on animals than imitation or emulation do. Conditioning in a social context means that
an animal learns an association between two stimuli as a result of observing the reaction
of a demonstrator to a stimulus (Heyes, 1994). Social facilitation occurs when an animal
manifests a behavior more (or less) strongly in the presence of another passive animal
of the same species (Zajonc, 1965; Guérin, 1993; Heyes et al., 2000). Social facilitation
is considered a social learning mechanism because the influence of another animal may
increase or decrease the responsiveness of the observer to its environment, and thus, may
change the observer’s learning ability. Mimicking is similar to imitation in that the observer
copies the actions of a demonstrator. However, when mimicking, the observer is not trying
to get the same results as the demonstrator; it simply performs the actions without regard
to the actions’ goals (Tomasello, 2004). Mimicking could be seen as a socially mediated
action exploration mechanism.

Strategies

Functional studies of social learning (see Section 2.2.2) suggest that agents should not
learn socially all the time. Instead, these studies conclude that agents should selectively
choose between individual and social learning depending on the characteristics of their
environment. The strategy used by an agent to decide when and from whom to learn is
called a social learning strategy (Laland, 2004; Galef Jr., 2009).

Social learning strategies have been studied mostly theoretically within a functional
framework to determine which ones are more likely to offer advantages under predefined
circumstances (Laland, 2004). Examples of social learning strategies can be built from
the components listed in Table 2.3, which lists some plausible “when” and “from whom”
components of a social learning strategy. This list was proposed by Laland (2004) and
later adapted by Galef Jr. (2009).

In experiments with animals, some scientists have reported what probably is the ex-
ecution of certain social learning strategies. For example, a copy-when-uncertain social
strategy could explain the behavior of Norway rats in an experiment designed by Galef Jr.
(1996) in which Norway rats had to choose between two completely novel foods. In such
an uncertain situation, the rats preferred the foods that had been consumed by other rats
(detected through breath odor) instead of trying any of them with equal probability, which
would have been the case if they had been learning individually.

The study of social learning strategies is still in its infancy, but some important efforts
are being made in order to discover strategies robust to different environmental condi-
tions. For example, Rendell et al. (2010a) organized a computer-based tournament aimed
at discovering effective social learning strategies under a wide range of environmental con-
ditions. In total, 104 strategies were submitted and the final outcome of the tournament
has given researchers useful insight into what makes a social learning strategy successful.
The strategy that won the tournament favored social learning almost all the time. The
reason, Rendell et al. conclude, is that since agents frequently demonstrated the highest-
payoff behavior, social learners could observe and copy only promising behaviors. In effect,
through the demonstration of good behaviors, agents were filtering out mediocre behaviors
that could not be spread through social learning.
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2.2.2 Functional Value of Social Learning

The functional approach to the study of social learning aims at understanding the condi-
tions under which social learning evolved and what the adaptive value of social learning is.
This approach is of interest to scientists of many disciplines. For example, biologists wonder
how variable can an environment be so that social learning evolves (Wakano et al., 2004).
Sociologists consider that social learning is at the root of culture but since social learning
is a product of evolution, they wonder how cultural and genetic evolution interact (Cavalli-
Sforza and Feldman, 1983; Boyd and Richerson, 1985; Flinn, 1997). Economists wonder
what is the effect of social learning in the decisions economic agents make and its con-
sequences for the population as a whole (Ellison and Fudenberg, 1995; Chamley, 2004).
Computer scientists and engineers are interested in exploiting social learning in the design
and use of software and robots (Thomaz, 2006; Nehaniv and Dautenhahn, 2007; Cakmak
et al., 2010). We belong to this last class of researchers. As it will be discussed in more
detail in Chapter 3, the work presented in this dissertation takes a functional approach
toward the application of social learning ideas.

The adaptive value of social learning has been studied mainly through mathematical
and computational models. Almost all models assume that social learning is a convenient
way to acquire adaptive behavior because it allows the social learning agent to save time
and energy that it would otherwise spend learning individually (Laland, 2004). There are
also other advantages associated with social learning, such as reducing the risk of exposure
to predators or lowering the chances of getting poisoned as a result of trying unknown
foods (Galef Jr., 2009). Consequently, it would be reasonable to assume that a population
composed of social learning agents would have a higher average fitness than a population
composed of only individual learning agents. As it turns out, this reasoning is flawed as
shown by Rogers (1988). He demonstrated that social learning agents have an advantage
only when individual learning agents are present. This insight motivates research on social
learning strategies as we saw above.

A family of social learning models is aimed at investigating the degree to which an
environment can change so that social learning is useful (Bergman and Feldman, 1995;
Wakano et al., 2004; Laland and Kendal, 2003; Galef Jr., 2009). These models study the
relative advantage that reliance on social and individual learning as well as genetically
encoded behavior offers to an agent in the presence of a changing environment. As a result
of years of theoretical work, it is now well established that when the environment does
not change, or when it changes too frequently, a genetically encoded behavior prevails. In
the first case, it is assumed that there is a cost associated to learning. Thus, a genetically
encoded behavior provides everything an agent needs at a lower cost. In the second case,
there is no possibility of learning and thus, again for economic reasons, a genetically encoded
behavior prevails. At high rates of change that still allow for some predictability of the
environment, individual learning lets an agent have up-to-date information whereas social
learning can potentially be harmful since outdated information can pass from one agent to
another. At intermediate rates of change social learning flourishes more than individual
learning because it is a cheaper way of obtaining adaptive information. Note that social
learning models and their implications are subject to change because their predictions have
been subjected to limited empirical tests (Laland and Kendal, 2003). As recently shown
by (Rendell et al., 2010a), a population of agents might still rely on social learning even in
a frequently changing environment simply because demonstrators will tend to adapt their
own behavior to the new circumstances and thus, they can still pass useful information to
others.

Other models have been devised in order to study the spread of behavior through so-
cial learning (Laland and Kendal, 2003; Cavalli-Sforza and Feldman, 1981). The goal of
these models is to find a “signature” of social learning in the curves that represent the
proportion of individuals in a population adopting a particular behavior. Unfortunately,
these models do not consider simple explanations that could account for the adoption
patterns observed (Laland and Kendal, 2003). Finally, there are models aimed at under-
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standing whether culture (the cumulative effect of social learning) and natural evolution
interact (Feldman and Laland, 1996; Laland and Kendal, 2003). The basic assumption
here is that an animal’s genotype may determine what it learns, and that learned behavior
affects, in turn, the selection pressure on that genotype.
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Chapter 3

Incremental Social Learning

In this chapter, we present the incremental social learning (ISL) framework. First, we de-
scribe the problem of interference in multiagent systems. Then, we explain how interference
is addressed by the ISL framework and present the framework’s algorithmic structure. We
finish with a brief discussion of related work. Work specifically related to each instantiation
of the ISL framework in our case studies is discussed in Chapters 4 and 5.

3.1 Interference

There are different kinds of interactions among agents in multiagent systems. Depending
on the effect of such interactions, they can be labeled as “positive”, “negative”, or “neutral”
interactions (Gershenson, 2007). Positive interactions facilitate the accomplishment of an
assigned task. For example, in a collective transport task, robots form teams in order to
transport objects that are too difficult for a single robot to move (Kube and Bonabeau,
2000; Tuci et al., 2006). Negative interactions, also called interference1 (Matarić, 1997),
friction (Gershenson, 2007), or repulsive and competitive interactions (Helbing and Vicsek,
1999), are those that block or hinder the functioning of the system’s constituent agents.
As a result, interference decreases the performance of a multiagent system. For instance,
in an ant-based clustering algorithm (see Section 2.1.2) agents can undo the actions of
other agents, which increases the time needed by the algorithm to find a satisfactory final
clustering. A neutral interaction does not affect the system’s dynamics in such a way that
it benefits or harms progress toward the completion of an assigned task. Deciding whether
an interaction is positive, negative, or neutral depends on the time scale used to measure
the interaction’s effects. For example, an interaction that involves two robots performing
a collision avoidance behavior can be labeled as a negative interaction in the short term
because time is spent unproductively. However, if the time horizon of the task the robots
are performing is significantly longer than the time frame of a collision avoidance maneuver,
then the overall effect of such an interaction may be negligible. In this case, such interaction
can be labeled as neutral.

Interference is one of the main challenges to overcome during the design and opera-
tion of systems composed of many agents (Gershenson, 2007). For example, Kennedy and
Eberhart, the designers of the first PSO algorithm, pondered different candidate particle
interaction rules before proposing the rules that we now know (see Eqs. 2.3 and 2.4). Their
ultimate goal was to design rules that promoted positive interactions between particles. In
the final design, particles cooperate, that is, they engage in positive interactions, by ex-
changing information with one another about the best solution to an optimization problem
that each particle finds during its lifetime. At the same time, however, such an exchange
of information can “distract” particles and make them search in regions of a problem’s
search space that seem promising but that in fact do not contain the optimal solution

1In this dissertation, we use the term interference to refer to the set of negative interactions that occur
within multiagent systems, including swarm intelligence systems.
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that the particles are looking for. The net effect of such interactions is that particles may
spend objective function evaluations unproductively. This effect intensifies as the size of
the particle swarm increases.

Directly measuring interference is difficult. First, one can determine whether the effects
of an interaction, or a set of interactions, are beneficial or not only after the task has been
performed. Second, as we mentioned before, an interaction may be positive, negative or
neutral, depending on the time scale used to measure its effect. In this dissertation, we
advocate for qualifying interactions based on their effects in the long term. We do so
because it is only at a time scale similar to the time a system needs to perform a task that
labeling interactions is relevant for practical purposes. Third, the nature of the interactions
themselves poses a challenge. In some systems, agents interact directly on a one-to-one or
one-to-some basis, such as in PSO algorithms. In other systems, such as ACO algorithms,
agents interact indirectly through the environment and there may be extended periods
of time between the moment an agent acts and the moment another agent is affected by
those actions. With these restrictions, interference can only be measured indirectly through
observation of the system’s performance. Despite these difficulties, two measures can be
used to indirectly gauge interference: (i) the time needed by the system to reach a desired
or target state, or (ii) the amount of work performed in a certain amount of time. If one
compares two systems, we expect the system with higher interference to make progress
toward a desired state more slowly than the system with lower interference. As a result, if
one let two systems run for the same amount of time, the system with larger interference
would perform less work than the system with lower interference.

There are two properties of systems composed of many agents that are in direct relation
with interference:

1. Interference increases with the number of agents in the system. This effect is the
result of the increased number of interactions within the system. The larger the
number of agents that comprise the system, the higher the probability of a negative
interaction occurring.

2. Interference tends to decrease over time. At one extreme of the spectrum, one can
find a system in which interactions between agents are completely random or not
purposeful. In such a case, it is expected that agents cannot coordinate and thus,
cannot perform useful work. Thus, we expect interference to remain at a constant
level over time. At the other extreme of the spectrum, one finds well-behaved systems
consisting of a number of agents whose interaction rules are designed in order to make
agents coordinate with each other. Initially, we expect a high-level of interference
because agents would not have enough knowledge about their current environment.
However, over time, the behavioral rules of these agents would exploit any gained
knowledge in order to make progress toward the completion of the assigned task.
Thus, we expect that in cases like these, interference decreases over time, because
the other alternatives would be a random behavior or a pathological system in which
interference increases.

By making use of these two properties, it is possible to control, to a certain extent, the
levels of interference in a multiagent system. The incremental social learning framework,
which will be described next, is based on this observation.

3.2 The Incremental Social Learning Framework

Our goal with the incremental social learning (ISL) framework is to reduce the effects of
interference in swarm intelligence systems. ISL is a framework because it offers a concep-
tual structure that does not prescribe a specific implementation of the ideas on which it
relies. Each instantiation of the framework will benefit from knowledge about the specific
application domain, and therefore, specific properties of the framework should be analyzed
in an application-dependent context.
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Algorithm 3 Incremental social learning framework

Input: Agent addition criteria, stopping criteria
1: /* Initialization */
2: t← 0
3: Initialize environment Et

4: Initialize population of agents Xt

5:

6: /* Main loop */
7: while Stopping criteria not met do
8: if Agent addition criteria is not met then
9: default(Xt,Et) /* Default system */

10: else
11: Create new agent anew
12: slearn(anew,X

t) /* Social learning */
13: Xt+1 ← Xt ∪ {anew}
14: end if
15: Et+1 ← update(Et) /* Update environment */
16: t← t+ 1
17: end while

The ISL framework consists of two elements that manipulate and exploit the two prop-
erties mentioned in Section 3.1. The first element of the framework directly affects the
interference levels within a system by manipulating the number of interactions among the
system’s constituent agents. Such a control is achieved by varying the number of agents in
the system. The strategy for controlling the size of the agent population exploits the second
property, that is, that interference tends to decrease over time. The system starts with a
small population that grows at a rate determined by agent addition criteria specified by
the user. Two phenomena with opposite effects occur while the system is under the control
of the ISL framework. On the one hand, interference increases as a result of adding new
agents to the swarm (first property described in Section 3.1). On the other hand, interfer-
ence decreases because the system operates while the population grows (second property
described in Section 3.1).

The second element of the framework is social learning. This element is present before
a new agent freely interacts with its peers. Social learning is used so that the new agent
does not produce extra interference due to its lack of knowledge about the environment.
Leadership, a swarm intelligence mechanism (see Chapter 2), is present in the framework
in the process of selecting a subset of agents from which the new agent learns. The best
strategy to select such a set depends on the specific application. However, even in the case
in which a random agent is chosen as a “model” to learn from, knowledge transfer occurs
because the selected agent will have more experience than the new agent that is about
to be added. As stated in Chapter 2, we take a functional approach to the use of social
learning concepts. We do not pay attention to the mechanisms used by the agents to learn
from each other. Instead, we are interested in the effects that social learning has on the
agents and on the system.

The two elements that compose ISL are executed iteratively as shown in Algorithm 3.

In a typical implementation of the ISL framework, an initial population of agents is
created and initialized (line 4). The size of the initial population depends on the specific
application domain. In any case, the size of this initial population should be small in order
to reduce interference to the lowest level possible. A loop structure allows the interspersed
execution of the underlying system and the creation and initialization of new agents (line
7). This loop is executed until some user-specified stopping criteria are met. Stopping
criteria can be specific to the application or related to the ISL framework. For example, the
framework may stop when the task assigned to the swarm intelligence system is completed
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or when a maximum number of agents are reached. While executing the main loop, agent
addition criteria, which are also supplied by the user, are repeatedly evaluated (line 8).
The criteria can range from a predefined schedule to conditions based on statistics of
the system’s progress. If the agent addition criteria are not met, the set of agents work
normally, that is, the underlying swarm intelligence system is executed. In line 9, such an
event is denoted by a call to the procedure default(Xt,Et). If the agent addition criteria
are satisfied, a new agent is created (line 11). In contrast to a default initialization such
as the one in line 4, this new agent is initialized with information extracted from a subset
of the currently active population (line 12). Such an initialization is denoted by a call
to the procedure slearn(anew,X

t). This procedure is responsible for the selection of the
agents from which the new agent will learn, and for the actual implementation of the social
learning mechanism. Once the new agent is properly initialized, it becomes part of the
system (line 13). In line 15, we explicitly update the environment. However, in a real
implementation, the environment may be continuously updated as a result of the system’s
operation.

In most swarm intelligence systems, the population of agents is large and homogeneous,
that is, it is composed of agents that follow exactly the same behavioral rules. Thus, any
knowledge acquired by an agent is likely to be useful for another one. The social learning
mechanism used in an instantiation of the ISL framework should allow the transfer of
knowledge from one agent to the other. In some cases, it is possible to have access to the
full state of the agent that serves as a “model” to be imitated, and thus, the social learning
mechanism is simple. In other cases, access to the model agent’s state may be limited and
a more sophisticated mechanism is required. In most cases, the result of the social learning
mechanism will not be simply a copy of the model agent’s state, but a biased initialization
toward it. Copying is not always a good idea because what may work very well for an
agent in a system composed of n agents may not work well in a system of n+ 1 agents.

3.3 Related Work

The ISL framework and many works in the field of multiagent systems (Wooldridge, 2009)
share a common goal: interference reduction. The means used by these works and the ISL
framework to achieve this goal differ. In traditional multiagent systems, interference is a
problem that has been tackled indirectly through the careful design of interaction proto-
cols that consider all the possible events that the agents can possibly experience (Shoham
and Tennenholtz, 1995; Gmytrasiewicz and Durfee, 2000). Examples of protocols designed
in such a way are the following: Contract Net (Smith, 1980), coalition formation algo-
rithms (Shehory and Kraus, 1998), or the protocols used for negotiation in agent-mediated
electronic commerce applications (He et al., 2003). Tackling interference has required a
significant effort on the part of the multiagent systems community. These efforts could
be grouped into categories such as methodologies, standards, or communication protocols.
Early on in the development of the field of multiagent systems, researchers recognized that
for analyzing and designing multiagent systems, new methodologies were required. Well-
known methodologies that are the result of work in this direction are MaSE (Deloach et al.,
2001) and the Gaia methodology (Zambonelli et al., 2003). Through these methodologies,
interactions between agents are identified and carefully designed. Standards have been pro-
posed to allow interoperability of agents developed by different parties. The best known
organization dedicated to establish specifications for multiagent systems is the Foundation
for Intelligent Physical Agents (FIPA)2 (O’Brien and Nicol, 1998). A sign that interactions
are one of the main issues in the design of multiagent systems is that the core FIPA speci-
fication is the one related to agent communication. Methodologies and standards call for a
common communication language between the agents that comprise a system. As a result,
some agent languages have been proposed. For example, languages such as KQML (Finin
et al., 1994), or FIPA-ACL (IEEE Foundation for Intelligent Physical Agents, 2011) have

2http://www.fipa.org
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explicit specifications that let agents exchange knowledge with each other.
A complete review of the literature in the field of multiagent systems that deals with

interference, either directly or indirectly, is out of the scope of this dissertation. However,
we can say that there are strong differences between practically all previous works in the
field of multiagent systems and the ISL framework. First, the size of the systems that
can be designed with a traditional approach is limited to just a few and very sophisticated
agents. Moreover, when taking a traditional approach, one is necessarily assuming that the
number of agents is constant over time. This assumption is needed because with traditional
approaches, each agent plays a specific role in the system, and adding or removing an agent
would require the designer to re-program all or at least some of the agents that comprise
the system.

In contrast, in the ISL framework we assume that the agents are very similar, if not
identical, to each other. As a result, since each agent does not play a specific role, it is
possible to assume that the number of agents can change over time and that the total
number of agents can be very large. Thus, even though the framework may work for small
systems, we are proposing the framework to be primarily used with systems composed of
a large number of agents. Hence, we expect the ISL framework to have a larger impact on
the design and operation of swarm intelligence systems than on the design and operation
of small multiagent systems.

The other body of literature that is related to the ISL framework is the one in which
social learning or related concepts are used in the context of multiagent systems and swarm
intelligence systems. Two main categories of works can be distinguished: (i) those that
study social learning using a multiagent system as a tool, and (ii) those that exploit social
learning as a tool for developing better performing systems. The ISL framework belongs to
this second category of works. Until recently, the first category was the most active of the
two. Simulations of social systems in computers began in the 1950s (Conte et al., 1998)
and have continued gaining popularity. This increased popularity is evidenced by the fact
that there are now scholarly journals, such as the Journal of Artificial Societies and Social
Simulation (JASS)3, devoted to the topic. Areas of interest in this category range from
the study of the usefulness of social learning under different environmental conditions (An-
nunziato and Pierucci, 2003; Noble and Franks, 2003; van der Post and Hogeweg, 2004;
Priesterjahn and Eberling, 2008) to the evolution of language and culture (Divina and
Vogt, 2006; Vogt, 2006). The second category of works has being attracting the attention
of a growing community. Social learning as a mechanism to improve the performance of
systems composed of many agents has been investigated in the context of robotics (Matarić,
1997; Pini and Tuci, 2008; Cakmak et al., 2010), multiagent systems (Kopp and Graeser,
2006; Garćıa-Pardo et al., 2010), and neural computation (Jang and Cho, 2002).

In the swarm intelligence field, social learning concepts have been associated with PSO
algorithms almost since they were first proposed. Kennedy (2006) explains how the de-
velopment of the first PSO algorithm was heavily influenced by Latané’s social impact
theory (Latané, 1981). This theory argues that an individual changes its psychological
state to a degree that is a function of the strength, immediacy, and the number of other
individuals. In the context of PSO algorithms, this theory was another source of inspira-
tion for the rules that govern the movement of particles. Although swarm intelligence is
based on the idea that the actions of one agent can affect the behavior of another agent, for
instance, via stigmergy (see Section 2.1), social learning has been overlooked by researchers
in the field. We hope that this dissertation makes social learning research more visible to
the swarm intelligence community, and that the community of scientists studying social
learning in animals becomes aware of the potential of swarm intelligence as a hypothesis
and application testing field. We hope that the mutual exchange of ideas will serve to
enrich both fields.

In the next two chapters, we will describe the case studies designed to test the effective-
ness of the ISL framework. Previous work specifically related to the instantiation of the
ISL framework in the context of each case study is presented in the corresponding chapter.

3http://jasss.soc.surrey.ac.uk
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