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Abstract

The operation and design of nuclear reactors is continuously concerned with
safety. The lifetime of these facilities is limited by changes in the mechanical
behaviour of their metallic components (mainly the reactor pressure vessel but also
the internals), either accelerated or induced by neutron irradiation. To achieve
an accurate quantitative prediction of these changes, depending on the materials
compositions and irradiation conditions, is therefore of prime importance in the
field of nuclear material science. A formidable experience has been gathered in
the last few decades for the case of generation II reactors, thanks to years of safe
exploitation of these reactors, and also thanks to the battery of experiments that
was performed. This experience, however, cannot directly be enjoyed for the
design of new generations of reactors, because the conditions in which materials
are expected to be used are sensibly different, and, in fact, more severe by means
of temperature, cumulated neutron fluence, and, finally, because of the different
chemical environment. In consequence, modelling is nowadays regarded as a vital
complement to experimental approaches, for the purpose of achieving a better
understanding of the physical and chemical processes that take place in metallic
materials under neutron irradiation.

Modelling the effects of neutron irradiation in steels is inherently a multiscale
problem. The starting point is the atomic collision cascades, initiated by impinging
high energy neutrons, that introduce mobile point-defects in the material. Sev-
eral different physical models, acting at increasing time- and length-scales, must
be developed to properly account for all processes that lead to changes in the
macroscopic properties of the material, because of the presence of these mobile
point-defects. Furthermore, links are needed between the different physical models
involved, because the outputs obtained at a given level are used as inputs for the
next models. In this thesis, such a link is performed between the atomic level
and coarse-grained models, by developing a novel atomistic kinetic Monte Carlo
(AKMC) algorithm, where the material is described as a set of atoms sitting in
regular lattice sites. The simulated process is naturally decomposed in elementary
thermally activated migration events of point-defects, vacancies or self-interstitial
atoms (SIA), that are in competition with each others according to their respective



frequencies of occurrence. The latter are calculated on the basis of the migration
energies, that are calculated with little approximations using a non-approximate
method taking into account all the effects of long-range static atomic relaxation and
chemical interactions. The proposed AKMC algorithm is therefore a physical model,
entirely based on a given interatomic potential that is used in the most complete
possible way, without the need to define arbitrary parameters that should be, for
example, fitted to experimental data. To speed-up the simulation by several orders
of magnitude, avoiding the systematic rigorous calculation of migration energies,
artificial neural networks (ANN) are trained to predict them, according to the point-
defects local atomic environments.

The developed ANN-based AKMC model is successfully applied to the simulation
of thermal annealing experiments (where a single vacancy is introduced in the
simulation box), for the main purpose of validation by comparison of the obtained
results with experimental data. Very satisfying comparison is achieved for two
model alloys of interest for nuclear materials science. In both cases, the evolution
with annealing time of the average clusters radius and the clusters density are in
excellent agreement with experimental data found in literature, differently from
results previously obtained by other authors. Next, the algorithm is successfully
generalized to allow for the introduction of any number of vacancies, which is one
of the two necessary ingredients for the simulation of neutron irradiation damage in
metals. This allows for the simulation of long and complex processes, for example
the calculation and tabulation of diffusion coefficients and lifetimes of Cu-vacancy
clusters, that are necessary inputs for coarse-grained models. Finally, convincing
evidence is brought that the ANN-based AKMC algorithm can be generalized to the
introduction of SIAs as well, thereby opening the way for simulation of complete
irradiation cycles in the future.
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Résumé

La sécurité des installations nucléaires est constamment un souci majeur lors de
leur exploitation, mais aussi lors de la conception de nouveaux réacteurs. Leurs
durées de vie est limitée à cause des changements de comportement mécanique
de leurs composants métalliques (principalement la cuve du réacteur mais aussi
ses composants internes), qui sont accélérés ou induits par l’irradiation de neu-
trons. Une prédiction quantitative précise de ces changements, en fonction de la
composition des matériaux et des conditions d’irradiation, est par conséquent un
objectif de première importance pour la science des matériaux nucléaires. Une vaste
expérience a été obtenue concernant les réacteurs de seconde génération, grâce aux
nombreuses années d’exploitation de ces réacteurs, mais aussi grâce à la batterie
de travaux expérimentaux qui ont été conduits. Cette expérience, cependant, n’est
pas directement exploitable pour les réacteurs de nouvelle génération, parce que
les conditions dans lesquelles les matériaux seront vraisemblablement utilisés sont
sensiblement différentes, et, en réalité, plus sévères en termes de température et
dose neutronique cumulée, et également parce que l’environnement chimique est
différent. En conséquence, la modélisation est de nos jours considérée comme un
complément vital aux approches expérimentales, avec l’objectif d’apporter une
meilleure compréhension des processus physiques et chimiques qui se produisent
dans les matériaux métalliques sous irradiation de neutrons.

La modélisation des effets de l’irradiation de neutrons dans les aciers est par
nature un problème multi-échelle. Le point de départ est la simulation des cascades
de collisions atomiques initiées par les neutrons à hautes énergies qui pénètrent
dans le matériau, créant ainsi des défauts ponctuels mobiles. Différents modèles
physiques, considérant des échelles de temps et de longueur croissantes, doivent
être développés afin de convenablement tenir en compte de tous les différents
processus qui provoquent des changements de comportement macroscopique, à
cause de la présence de ces défauts ponctuels mobiles. En outre, des liens entre les
différents modèles doivent être créés, parce que les prédictions de chacun d’entre
eux doivent servir de paramètres d’entrée pour les modèles qui travaillent aux
échelles supérieures. Dans cette thèse, un tel lien est créé entre le niveau atomique
et les modèles à gros-grains, en développant un nouvel algorithme Monte-Carlo



cinétique atomistique (MCCA), où le matériau est décrit comme une collection
d’atomes occupant des sites cristallographiques réguliers. Le processus simulé est
dès lors naturellement décomposé en séries d’évènements élémentaires activés
thermiquement, correspondant à la migration des défauts ponctuels (lacunes ou
interstitiels) vers des positions de proches voisins, qui sont en permanence en
compétition en fonction de leurs fréquences d’occurrences respectives. Ces dernières
sont calculées en fonction des énergies de migrations, qui sont elles-mêmes calculées
avec peu d’approximations par une méthode qui prend en compte tous les effets
de la relaxation statique et des interactions chimiques à longue portée. Le nouvel
algorithme MCCA est par conséquent un modèle physique, entièrement basé sur
un potentiel inter-atomique approprié qui est utilisé de la manière la plus complète
possible, sans définir de paramètres empiriques qui devraient être, par exemple,
fittés depuis des données expérimentales. Finalement, l’algorithme est accéléré de
plusieurs ordres de grandeur en utilisant des réseaux de neurones artificiels (RNA),
entraînés à prédire les énergies de migrations des défauts ponctuels en fonction de
leur environnement atomique local.

Le nouvel algorithme MCCA est utilisé avec succès pour simuler des expériences
de recuits (pour lesquels une seule lacune doit être introduite dans la boîte),
afin de valider le modèle grâce à une comparaison directe de ses prédictions
avec des résultats expérimentaux trouvés dans la littérature. Une comparaison
très satisfaisante est accomplie pour deux alliages modèles importants pour la
science des matériaux nucléaires. Dans les deux cas, l’évolution avec le temps de
recuit du rayon moyen des précipités formés, ainsi que de leur densité, est en
très bonne adéquation avec les mesures expérimentales trouvées dans la littérature,
contrairement à ce que d’autres auteurs avaient jusqu’à présent réussi. Ensuite,
l’algorithme est généralisé avec succès afin de permettre l’introduction d’un grand
nombre de lacunes, ce qui est un des deux ingrédients nécessaires pour la simulation
des effets de l’irradiation de neutrons dans les métaux. Cet accomplissement permet
la simulation de processus longs et complexes, par exemple le calcul de coefficients
de diffusions et temps de vies d’amats de cuivre-lacunes, qui sont des paramètres
d’entrée nécessaires pour des modèles de simulation à gros-grains. Finalement, des
preuves convaincantes sont apportées que l’algorithme MCCA peut être, dans un
futur proche, généralisé d’avantage et permettre la prise en compte des interstitiels,
ouvrant ainsi la voie vers la simulation de cycles complets d’irradiation.
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1 Motivation
and framework
of the thesis

Electricity is a vector for the transportation and distribution of energy that presents
a number of practical advantages. It allows for the production of large quantities of
energy in centralized areas, with the highest possible efficiency, and transport and
dispatch within a large community of users, finding the correct balance between
efficiency (achieved with high voltage power lines) and safety (transformed to low
voltage that is more appropriate for distribution in particular houses for example).
Once received, electricity can be transformed in many different forms of useful
effects, ranging for example from a mixer (rotation of an axis), air dryer (production
and blow of hot air), television or computer (electronics), transportation (electric
car or bus),. . . The production of large quantities of electricity is unquestionably an
appreciable added value in the development of our society, not only from the point
of view of the common people, but also from the point of view of industry.

The possible primary resources for the production of electricity are manifold: fossil
fuels, coal, sun, wind, water, and, finally, the controlled chained nuclear reactions
from fissile or fissionable materials. Concerning the last one, the question of the
safety of the installations (nuclear reactors) and of the possible consequences of
severe accidents has always been, and is especially now, a source of debate and
concern. However, the production of electricity without gas, petrol or coal has been,
and in the future will even more be, a necessary condition to ensure a progressive
then definite transition from the era of fossil fuels, also at shorter term to reduce
the emissions of green-house-gases (201). As a matter of fact, nuclear energy has
been recommended by groups of experts as a strategic decision when advising
governments. Concerning Belgium, see for example (193; 195; 199). At the moment,
nuclear energy is included as part of the Strategic Energy Technology plan (SET-
plan) of the European Union towards cost effective low-carbon energy production
(206).



On the side of possible achievements in the development of profitable fusion
technologies, the increase of production of nuclear energy from the reaction of
fission, or at least the maintenance of the current levels, can be achieved by two
different means:

• The lifetime extension of existing nuclear installations, mainly second gen-
eration light-water-reactors (LWR), i.e. either pressurized-water-reactors or
boiling-water-reactors, usually designed for a 40-years lifetime. The necessary
condition to achieve this is the demonstration to safety authorities that an
extension of years of services can be envisaged while keeping the same level
of safety. This mainly concerns the pressurized vessel that must be able to
withstand abnormal changes of temperature and pressure in either service
or accidental conditions. Lifetime limiting factors are mostly hardening and
embrittlement of the vessel, but also stress corrosion cracking of in-core
components.

• The construction of new reactors, of new generation: III or III+ in the
immediate future, IV in a more distant future. In these new generation reactors:
(i) Safety will be improved, for example accounting for the core melt-down
accident (this is the original feature of the EPR design (196)), or via a systematic
use of passive safety systems. (ii) The proportion of use of fissile or fissionable
materials as compared to second generation reactors by higher burnup in
GenIII and III+ reactors, and by building fast breeder reactors in GenIV. (iii)
The warm coolant produced by the core, either liquid or gaseous, must be
produced at higher temperature and higher pressure (if gaseous), for reasons
of thermodynamical efficiency of production of electricity. As an order of
magnitude, in LWR reactors, steam is produced at about 150 bars and 300◦C,
allowing for an efficiency of hardly 30%.

In either cases, as well as in the case of fusion applications, the main factor
limiting the lifetime of the structural materials is their exposure to prolonged fluxes
of neutrons. As discussed in the next section, these cause a sometimes severe
degradation of the mechanical properties of materials, thereby putting at risk the
integrity of the components. It is clear, therefore, that a complete understanding of
the effects of neutron irradiation is required for either the design of new components,
and/or the prediction of the evolution of the behaviour of given materials under
given irradiation conditions and in a given environment. A large experience in this
field has quite naturally been gathered in the case of LWRs, after decades of safe
exploitation and by conducting a battery of experimental studies. This formidable
experience, however, is insufficient if fourth generation reactors are involved, for
the simple reason that the operation conditions to which materials are expected
to be subjected are sensibly different: (i) the service temperature is expected to
be much higher; (ii) the cumulated irradiation dose is expected to be up to three
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orders of magnitude larger; (iii) the cooling fluids must be different than water, as a
necessary condition against thermalisation of the core neutrons in fast reactors. The
construction of sufficiently large databases of experimental data in order to cover
these conditions is a formidable time- and money-consuming challenge that cannot
be realistically achieved within the desired time-frame for the construction of new
generation reactors. For this reason, the development of models, nowadays often
based based on computer simulations, of the effects of irradiation in steels is an
activity of research that is growing in importance, recognized and recommended
by the scientific community as a vital complement to experimental approaches
(108; 207).

The present thesis is situated in this framework, and adds a small but valuable
contribution to the development of a long-term project of research, which includes
aspects of fundamental but also technological research, involving many partners
in the world (especially in Europe), that aims at providing a better physical
understanding of the effects of neutron irradiation in metals. The rest of this chapter
is organized as follows. In section 1.1, the effects of neutron irradiation in steels are
briefly described, with the purpose to situate the objectives of the thesis in the global
picture. Last, in section 1.2, the multiscale modelling approach used in this thesis is
presented, and the exact objectives of the thesis are stated.

1.1 Effects of neutron irradiation in steels

The interested reader can find complete information about the effects of neutron
irradiation in steels in books, for example in Ref (69; 118). In this section, some
aspects of this complex problem are evoked, to fix the ideas and situate the
framework of the thesis.

The origin of all the effects of neutron irradiation in steels is naturally to be found at
the atomic level. Impinging high energy neutrons (> 1 MeV), after penetrating the
material, enter in collision with atoms that are ejected from their position, thereby
initiating atomic collision cascades. These cascades take place like lightnings,
lasting very short times (only a few picoseconds). Many thousands of atoms are
involved, but most of them actually almost immediately come back to a regular
crystal lattice position. Some atoms, however, do not: debris of the cascade are
point-defects, constituted by an equal number of vacancies - that correspond to the
absence of atoms in volumes where there used to be one atom before irradiation
- and self-interstitial atoms (SIA) - that correspond to the inclusion of a second
atom in volumes where there used to be only one. The pair constituted by one
vacancy and its corresponding SIA is generally called a Frenkel pair. Many of these
Frenkel pairs recombine in a very short time (about 100 ps), but the other ones have
opportunities to get away from each other, with successions of thermally activated
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jumps. SIA or vacancies, alone, migrate in three dimensions, SIAs being sensibly
faster because of the lower activation energies (47; 60; 61; 102; 169). When they form
clusters, SIAs end-up in parallel orientations and migrate mostly in one dimension
(102; 134; 165; 188), though possibly influenced by the chemical environment (102),
whereas clusters of vacancies keep a relatively slow and 3-dimensional motion. Both
point-defects are capable, in general, of transporting mass, thereby either enhancing
or provoking segregation and precipitation of insoluble atoms (10; 127; 150; 154; 181–
183).

In fission light-water reactors, the first metallic materials to be irradiated are the
clads of the nuclear fuel, that mainly play the role of containment for the fission
products, either gaseous or not. Clads in LWRs are made of zirconium alloys.
Next, structural materials, whose main objective is to maintain a given geometry
of the fuel elements in the core, allowing for an appropriate flow of the coolant,
are irradiated typically up to doses over one displacement-per-atom (1 dpa) per
year. They are for the most austenitic stainless steels that may undergo, as a
combined consequence of irradiation and contact with water, irradiation assisted
stress corrosion cracking, radiation induced creep and swelling may become an issue
for these materials. Finally, the reactor pressure vessel steel (RPV) itself is a bainitic
steel irradiated at typically 275◦C to 300◦C. The neutron dose accumulated is of
limited extent (typically 0.1 dpa after 40 years of normal operation). However, it
is proven that these steels undergo as a consequence hardening and embrittlement,
phenomena for which the formation of copper-rich precipitates, also enriched in
Ni, Mn and Si (7; 31; 85; 136; 137), and sometimes copper-free as well as other
nanofeatures, under neutron irradiation, is widely accepted to be the main cause
(7; 31; 40; 52; 62; 116; 120; 125; 126; 144; 147), as a consequence of their acting as
obstacles to the motion of dislocations. The RPV is the key component to decide the
lifetime of the reactor, because it cannot be replaced. As a consequence, much effort
is devoted to predicting how hardening and embrittlement evolve with irradiation
dose, depending on environmental conditions and composition and microstructure
of the steel. Any model for the prediction of RPV steel hardening versus radiation
dose, which is the basic requirement for the RPV lifetime assessment, therefore
needs to be able to account as correctly as possible for the build-up of, at least, Cu
precipitates, ideally taking into account in general also the presence of many other
chemical elements.

Working conditions are, as already mentioned, much harder for new generation
nuclear reactor materials, for either fission or fusion applications. Not only the
neutron fluxes are expected to be higher (and in some cases also the energy of
impinging neutron), but the service temperature is expected to be in the range
between 500◦C and 1000◦C, and, finally, the cumulated dose can go as high as 150
or even 200 dpa. In this range of temperature and doses, the most problematic effect
that is expected for these materials is irradiation-induced swelling, as well as both
thermal and irradiation-induced creep. In addition, microchemical changes in terms
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of segregation or appearance of new phases will influence the mechanical properties
of these materials. Swelling itself, by being correlated with the formation of large
voids and bubbles, has non-hardening embrittlement consequences. Most of these
nanostructural changes are believed to be largely determined by the formation and
properties (especially mobility) of SIA, while the kinetics of void and precipitate
formation will also be influenced by the mobility of vacancies and their clusters. This
highlights the importance, for understanding and modelling purposes, of studying
and quantifying the behaviour of point-defects and their clusters, in interaction with
chemical species, at the atomic level.

1.2 Multi-scale modelling: a fundamental and long-
term perspective of research in the field of nuclear
materials

It is clear from what has been discussed in the previous section that modelling
the effects of neutron irradiation in steels, from the atomic collision cascades to
the change of mechanical properties is an inherently multiscale problem: many
effects have to be taken into account, involving numbers of atoms that vary by
several orders of magnitude, during time-scales that also vary by many orders of
magnitudes. These cannot possibly be encompassed with the appropriate level of
accuracy by a single physical model. Instead, a chain of models, based on computer
simulations but that also include experimental aspects, must be constructed from the
sub-atomic to the macroscopic scale, as depicted in Fig. 1.1.

Due to their importance, multi-scale modelling activities are supported by several
Euratom projects (197), where the present thesis has been involved (except for the
last one):

• FP7-PERFORM60 (205) and its predecessor FP6-PERFECT (108; 204), support
multi-scale modelling and irradiation experiments on model alloys for the
purpose of lifetime extension of current LWRs and to qualitatively understand
and quantitatively predict the damage mechanisms governing the degradation
of the reactor pressure vessel and internal structures.

• EFDA (European Fusion Development Agreement) (194) and FP7- GETMAT
(56; 200) support multi-scale modelling and irradiation experiments on model
alloys for the purpose of the design of structural materials for advanced
nuclear applications, namely fusion and Generation IV fission reactors, respec-
tively.

• FP7-FBridge (198) supports multi-scale modelling to develop advanced fuel
systems to be used in Generation IV fission reactors.
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Figure 1.1: Schematic representation of the multi-scale modelling scheme of the effects of
neutron irradiation in metals. Models ranging from the subatomic level ("ab initio" on the
figure) to the macroscopic scale ("Finite elements" on the figure) are interconnected, receiving
as inputs informations from the previous level and providing data used as inputs by the next
level.

The development of a fully integrated suite of models encompassing different length
and time scales is a long-term approach, that can be regarded as fundamental
research that combines many different disciplines of physics and also of computing
science. However, the multiscale modelling approach is the only one the can be
applied in order to address the problem of irradiation effects based on physical con-
siderations. Intermediate results obtained along the path of building fully integrated
platforms of models are often extremely useful in practice to streamline experimental
activities and to provide qualitative interpretations to involved experimental results.
A complete description of the multiscale modelling scheme is outside the scope of
the present document. In this section, we focuss on the scales near the atomic one as
depicted in Fig. 1.2, because it is the level of interest for the thesis:

• At the electronic level, matter is modelled as ions and electrons. This is the
range of ab initio methods, for example in the Density functional theory (DFT)
formulation, where the equations of Schrödinger are solved focusing on the
electronic fundamental state.

• At the atomic level, atoms are considered as entities that only have a chemical
nature: the latter is defined by electrons and nuclei, but no details about
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Figure 1.2: Schematic representation of the multi-scale modelling scheme of the effects of
neutron irradiation in metals.

these are explicitly included in the models. This is the domain of molecular
Dynamics (MD) simulations, where the Newtonian equations of motion are
solved for every individual atom of the system, based on the knowledge of the
classical interatomic potential that governs the interaction between atoms of
same or different species.

• At the coarse-grained level, such as for example in object kinetic Monte Carlo
(OKMC) models (Fig. 1.2), the atomic level description is made implicit,
and the simulation considers objects (formed by atoms or point-defects) that
are mobile and can interact with each other, such as clusters of point-defects
and/or solute atoms, dislocations,... Continuum models based on similar
levels of abstraction also exist, such as those based on rate equations.

Bridges are necessary between the different levels of approximations represented in
Fig. 1.2:

• The atomic level requires a cohesive model in order to describe the system
from the energy point of view. This can in principle directly be done with
the resolution of the Schrödinger equations, but this is far too complex to be
undertaken in practice. For this reason, interatomic potentials are developed
instead, as will be discussed further in chapter 2.

• The coarse-grained level requires a large number of parameters as inputs, in
order to quantify the motion and interactions of the objects included in the
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simulation. These numbers, only very rarely derivable from experiments, can
be obtained from simulations at the atomic level. However, even remaining
at the atomic length-scale, the time-scale encompassed by e.g. molecular
dynamics techniques remains too limited to allow these quantities to be
properly assessed. Thus, atomic-level models capable of extending the time-
frame of MD simulations are needed. This is where and why atomistic kinetic
Monte Carlo (AKMC) models are used, as discussed later in chapter 2.

The effect of Neutron irradiation is introduced in most models in terms of collections
of Frenkel pairs and point-defect clusters that appear at the correct rate, at either
the atomic or the coarse-grained level. For this purpose, displacements cascades
induced by impinging neutrons can be modelled by molecular dynamics simulations
(8; 9), or also in the framework of the binary collision approximation (152; 159). The
debris of these cascades are used as "damage source terms" in other models.

The nanostructural evolution induced by irradiation is a very complex phenomenon
that involves interactions among many different actors: point-defects and different
chemical species, forming clusters and re-distributing themselves according to often
complex and mutually interfering mechanisms. The development of detailed phys-
ical models including all these ingredients is therefore an objective that can only be
reached by proceeding step by step. A nanostructural and microchemical evolution
problem which is somewhat simpler to model is that of thermal ageing. When a
material is kept for a long time at high temperature, the equilibrium concentration of
vacancies increases and the diffusivity of chemical species is accordingly enhanced.
In addition, specific new phases may become stable. This leads to changes in the
distribution of chemical species that are to a certain extent similar to those induced
by irradiation. As a matter of act, in many instances irradiation merely acts as
a way to accelerate thermal diffusion processes, allowing them to occur also at
temperatures at which, without supersaturation of point-defects, no microchemical
evolution would be detected within reasonable observation times. One important
example of a thermal ageing process accelerated by irradiation is Cu precipitation
in RPV steels. Another one is the formation of Cr-rich precipitates in high-Cr
ferritic/martensitic steels. Because of this close connection between thermal ageing
and irradiation effects, thermal ageing experiments are very often performed before
irradiation experiments, in order to gather information of thermodynamic and
kinetic type on the physical processes of interest. Often, thermal ageing experiments
are performed in parallel with irradiation experiments, in order to assess which
part of the degradation has to be ascribed to irradiation, and what is merely the
effect of prolonged exposure to high temperature. Likewise, it is common and
recommended practice that the development of physical models for irradiation
processes are developed by addressing first thermal ageing problems. It is indeed
unlikely that a model will describe correctly irradiation processes, if it does not
describe correctly thermal ageing processes. In addition, since the latter involve
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less mechanisms, they represent an ideal intermediate step for the development of
models, for which experimental results are available in large quantity for a step-by-
step validation. This approach is used in the present thesis as well.

1.3 Objective and organisation of the thesis

In this thesis, a bridge between atomic-level and coarse-grained models is pro-
posed, via the development of a novel and innovative AKMC algorithm. The
objective is to model the thermally activated migration of point-defects with the
least approximation possible, thereby ultimately allowing for accurate modelling
of the effects of neutron irradiation in metals. This is achieved with the use of
a virtually approximation-free method for the calculation of the corresponding
migration energies, taking into account all the effects of long-range atomic relaxation
and long-range chemical interactions. An important requirement, however, is to
reduce as much as possible the complexity of the model, in order to allow also
the simulation of long and complex processes, where millions or even billions of
migration events are involved, within an affordable CPU time. For this reason, the
proposed AKMC algorithm relies on the use of artificial neural networks (ANN),
that, after being trained on the basis of relevant examples of energy data, can provide
fast and on-the-fly predictions of the required migration energies. The obtained
algorithm is, eventually, a physical model that requires as only input a relevant
interatomic potential, which is thereby exploited in the most complete possible
way. The simulated processes are thus decomposed in series of elementary point-
defects migration events that are described in a fundamental way, without involving
empirical parameters that must for example be fitted to experimental data.

In chapter 2, the theoretical background of AKMC models is summarized, and
the different existing approaches are presented to fix the ideas and discuss the
objectives that the new algorithm has to aim at. The latter is then completely
described at the end of the chapter. Next, chapter 3 gives a brief overview of the
artificial neural network technique, for the design of numerical predicting tools
used during the thesis. The new ANN-based AKMC algorithm is then applied,
in chapter 4, to the simulation of thermal ageing experiments. Comparison with
experimentally obtained data (found in the literature) allows full validation of the
developed physical model to be achieved. Finally, the AKMC method is, in chapter
5, generalized to allow for the introduction in the simulated volume of (ideally)
any number of point-defects, i.e. the basis are set to simulate irradiation processes.
In addition, the model is used to estimate diffusion coefficients and lifetimes of
complex clusters containing chemical species and point-defects: these data cannot,
in any conceivable way, be deduced from experiments, while being of fundamental
importance to parametrise coarse-grained models of irradiation processes.
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2
Constructing a
bridge between
the atomic level
and coarser-grained
models

In the general multi-scale modelling scene, a link between atomic and coarse-grained
levels must be established. Models such as object kinetic Monte Carlo (OKMC) or
rate equations need a quantity of input parameters in order to properly describe
the mobility of various objects (e.g. clusters involving atoms of different chemical
species, as well as vacancies or self-interstitials) and their mutual interaction. These
parameters are generally inaccessible to experiments. One possible approach is to
obtain these input parameters from simulations conducted at the atomic level. Many
mechanisms such as migration, dissociation and interactions can, in this way, be
qualitatively and quantitatively studied with little approximations, given as input a
cohesive energy model.

In this chapter, we describe a widespread model that can be used to provide the
link between atomic- and coarse-grained levels, often named atomistic kinetic Monte
Carlo (AKMC). The fundamentals of this approach, that will be described later, can
be briefly summarized as follows:

• The system being studied is described at the atomic level, and evolves via
the migration of point-defects: vacancies and/or self-interstitial atoms (SIAs).
Only very few approximations or assumptions are therefore made, in principle,
because the processes being studied are naturally decomposed in series of
elementary events that are permanently in competition with each other. In
the algorithm, events are not chosen following a predefined sequence, but
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according to the corresponding migration frequencies, that vary with the local
energy landscape.

• The major drawback of this generality lies in the computing time required. As
the system is described at the atomic level, one can easily imagine that any
of the processes studied will be the result of a huge number of elementary
migration events.

The development of promising AKMC models is thus essentially connected to the
problem of finding the correct balance between two antagonistic effects. On the
one hand, because they directly drive the evolution of the system, the migration
frequencies of point-defects should be calculated as rigorously as possible, taking
into account all effects of chemical interactions, static relaxation, and also ideally
dynamical contributions (such as vibrational entropy). Unfortunately, a rigorous
calculation is inevitably synonymous with time-consuming operations, and the
global speed of the simulation is in consequence tremendously reduced. On the
other hand, oppositely, the migration frequencies should be calculated in the most
simple possible way, or at least in the fastest possible way, for reasons of computing
time limitations. The objective of this thesis is to develop a new AKMC algorithm
that achieves a good compromise between these two antagonistic requirements.

The chapter is organized in the following way. In section 2.1, methods for modelling
at the atomic level are briefly described to fix the ideas, and provide a comprehensive
explanation of the limitations of these approaches. Next, section 2.2 introduces
AKMC algorithms, and tells how these models can create a link between the atomic
level and coarser-grained models. The new algorithm developed in the thesis is fully
described in section 2.3.

Without loss of generality, the chapter focusses the discussions on the case of bulk
materials, with a perfect bcc crystallographic structure, except for the presence of a
single vacancy, because AKMC methods have been mainly used in this framework in
the past. The application to the simulation of thermal ageing and irradiation damage
is described later in chapters 4 and 5.

2.1 Atomic-level modelling

"Certainly no subject is making more progress on so many fronts than
biology, and if we were to name the most powerful assumption of all,
which leads one on and on in an attempt to understand life, it is that all
things are made of atoms, and that everything that living things do can
be understood in terms of the jigglings and wigglings of atoms."

Richard Feynmann, Lectures on Physics, vol. 1, p. 3-6 (1963)
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Figure 2.1: Two-dimensional example of an atomic system. Atoms are considered as a
spherical and elementary entity, assigned with a given chemical species. In this example,
the atoms are arranged in space according to an equilibrium crystallographic structure. A
crystallographic site, however, is vacant. Periodic boundary conditions are applied to emulate
the infinity of the crystal. Different colours denote different chemical species.

Atomistic simulations describe the material being studied as a set of atoms, located
in a three-dimensional and periodic box (or other boundary conditions if necessary),
as depicted in Fig. 2.1. In this example, the material is a bcc single-crystal without
crystallographic defects, except for the presence of a vacancy. The objective of
multiscale modelling is to describe phenomena with macroscopic consequences (for
example disappearance of the protective oxide layer and therefore corrosion) in
terms of the atomic-level phenomenon that induced this (segregation of chemical
species at the surface) and also of the physical mechanism producing it, i.e. the
migration of the vacancy, that induces mass transport in the material. For this
purpose, the interactions between the atoms of the system, that govern the diffusion
of the vacancy, must be modelled.

Ideally, all atomic interactions can be described exactly by solving the equation of
Schrödinger for the material, thereby avoiding the use of empirically or arbitrarily
chosen parameters, but instead relying directly on the first principles of physics.
The resolution of these equations, which in principle include a huge amount of
unknowns (three for every electron in the framework of the Born-Oppenheimer
approximation), is impossible. They are therefore in practice solved by reducing
drastically the amount of variables. A tremendously easier way to do so is the use
of the density functional theory (DFT), laid out by Hohenberg and Kohn in 1964
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Figure 2.2: Evolution with the distance between two atoms of the energy contribution of their
interaction to the total energy of the system. For short distances, the energy is large, and
atomic forces are repulsive. Forces are attractive for longer distances than the equilibrium
position, but vanish beyond the cut-off range.

(76). To summarize, they demonstrated that an exact solution of the Schrödinger
equation can be found searching for an electronic density, that has only three spatial
variables, in replacement of the position of all electrons of the system (3N variables).
This theory, however, is limited to ground states, and cannot address excited states
of matter. If this limitation is not a problem for the physical issue at hand, then
DFT enormously reduces the complexity of many first principles calculations, and
is consequently very popular nowadays. The interested reader can find more
information about DFT in Ref. (166).

Unfortunately, DFT methods, in spite of their relative simplicity compared to the
3N variables problem, remain very complex and heavy to conduct in practice, for
reasons of both required memory and, especially, required computing time. Even
with supercomputers available nowadays, DFT methods can, in the best case, only
handle a few thousands of atoms at the very most. The development of simplified
cohesive models to describe atomic interactions, taking a higher level of abstraction
where electrons are not included, is thus a necessary work to extend the range of
action of atomistic simulations. In this thesis, interatomic potentials (IAP) are used
for this purpose. In these potentials, the energy associated with the interaction of
atoms varies in magnitude with their respective chemical natures and with their
mutual distance only. Fig. 2.2 depicts the classical evolution of that energy function,
for an isolated pair of atoms, with the mutual distance. Atomic forces are calculated
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as the first order derivative of the energy. Forces are repulsive if the atoms are too
close to each other, and oppositely are attractive is their are far from each other. They
vanish if the distance is larger than a certain cut-off, denoted henceforth as rco. The
energy function depicted in Fig. 2.2 changes quantitatively if chemical species are
changed, but remains qualitatively the same.

Several forms of IAPs exist. They can, first of all, be classified in different families,
namely central force potentials, local concentration dependent potentials, angle-
dependent potentials, and also cluster expansions. The families, also, count several
different models. The work in this thesis is based on central force potentials, in
particular in the embedded atom method (EAM) formalism. For more information
about IAP, the interested reader is referred to G. Bonny’s PhD dissertation (27). For
the present thesis, it is useful to keep the following points in mind:

• IAPs are not intended to be a perfect substitute to ab initio methods. Results of
modelling obtained using an IAP are only the reflection of the reality that stems
out of the potential. In that respect, IAP are in any case designed to fulfil certain
objectives, for example a good description of the interaction between point-
defects, correct formation energies for some defects,... But, and it is in fact
unfortunate, IAP can probably not reflect the complete complexity of atomic
interactions, and eventually can never lead to a rigorously correct prediction of
nature under all conditions. Nevertheless, if well fitted they can be sufficiently
accurate for a range of properties and are certainly capable of providing at least
correct trends as functions of local concentrations or other variables. It should
also be noted that to date, and certainly in the future as well, they represent the
only affordable way of simulating systems containing up to tens of millions
of atoms, a goal very far to be reachable in DFT. Finally, DFT itself contains
approximations that may affect the quantitative reliability of the results.

• IAP can be fitted on the basis of data from various origins: ab initio data, of
course, but also experimental data, for example to achieve the reproduction of
diffusion coefficients that can be measured experimentally. Also, innovative
techniques have been recently developed to design potentials that lead to a
correct reproduction of experimental phase diagrams (27; 140).

Given the IAP, the evolution with time of the atomic system depicted in Fig. 2.1
can be modelled with the resolution of Newton’s equations for motion. Without
temperature, the atoms are timesteply displaced to reach a final equilibrium position
that is the closest from the initial state of the system. This operation can be named
static relaxation, because only the atomic forces stemming out of the potential energy
vanish, and the effects of external contributions such as temperature are disregarded.
In this thesis, this operation is performed using the conjugate gradients method
(141).
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Figure 2.3: Simple example of MD simulation for a monocrystal with one vacancy. After short
simulation times, all atoms remain in the vicinity of their static equilibrium position. After
longer times, one atom manages to escape, and find another stable position that was vacant.
The vacancy has in turn migrated.

Temperature can be introduced in the system by stochastically increasing the kinetic
energy of the atoms, with a random direction and a magnitude that respect a
Boltzmann distribution. The simulation is then called Molecular Dynamics (MD).
In this case, the atomic system do not stay in a static equilibrium, because atoms
are continuously moving, as depicted in Fig. 2.3. The motion of the atoms, even
tough stochastic, does not provoke significant changes in the system, at least at
the beginning of the simulation: the free motion is constrained by the increase of
the total energy, and forces derived from the potential tend to pull all atoms back
to their respective static equilibrium positions. If the simulation is continued for a
(much) longer time, some atoms have more and more serious occasions to attempt
escaping from their present static equilibrium positions. Those situated close to
the vacant site, for instance, have a chance to escape, and find a new equilibrium
position somewhere in the vacant site, as depicted in Fig. 2.3. When this happens,
the vacancy is displaced to another position, and other atoms have the chance, later
in time, to achieve a similar migration. For convenience, the phenomenon here
described is called vacancy migration, even if in reality a vacancy is not an object
properly speaking, but rather the absence of an object. Vacancies are nevertheless
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regarded as objects in crystallography. A succession of simple migration events, such
as the vacancy migration depicted in Fig. 2.3, have the effect of transporting atoms,
and eventually rearrange the atomic system. The simulation of such processes,
driven by thermally activated migration of point-defects, is part of the ingredients
necessary to simulate, in the general multiscale modelling scheme, the effects of
neutron irradiation in steels, as well as thermal ageing processes where irradiation is
not involved. It is clear, unfortunately, that this cannot practically be achieved with
MD, for the obvious reason that a huge number of timesteps are necessary. Most
of these time steps correspond to stochastic events that are relatively uninteresting
to consider: only the atoms are oscillating under the effect of temperature, but the
system remains, essentially, identical. For this reason, a more promising approach is
to describe the events taking place in the material with a higher level of abstraction,
that should, ideally, be a correct approximation of the complete process simulated
with MD. The atomistic kinetic Monte Carlo approach (AKMC), described in the
next section, is in this respect a possibility.

2.2 Atomistic kinetic Monte Carlo

"I am convinced God does not play dice"
Albert Einstein, in a private letter to Max Born, 4 December 1926.

"Einstein, don’t tell God what he should do !"
Niels Bohr

The Atomistic kinetic Monte Carlo (AKMC) model is a widespread tool to study
diffusion-controlled microstructural and microchemical evolution in alloys during
thermal ageing and under irradiation: see e.g. (13; 14; 21; 23; 41; 91; 97; 158; 162–
164; 176–178; 180). It creates a link between the atomic level and coarse-grained
models, because the most important features of the atomic-level are retained, while
the time and length scales reachable by the model are largely extended by several
orders of magnitude thanks to the MC approach.

The theoretical foundations of the method have been known for a long time, having
been rigorously laid out by Fichthorn and Weinberg in 1991 (57), who denoted it as
dynamical Monte Carlo. The residence time algorithm, which is at the core of the
method, was developed even before, in a first average version by Young and Elcock
(190) and in a more precise way by Bortz et al. (28).

This section is intended to provide a comprehensive overview of the AKMC method,
and how it has been used in the past. It is organized in the following way. In section
2.2.2, the algorithm of the AKMC method is described and discussed. Without
loss of generality, discussions focus on the simple case already used as example
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in the previous sections, i.e. a bulk material with solute atoms and one single
vacancy as mobile point-defect. The reason is that AKMC methods have been used
previously most of the time exclusively in this framework. Next, in section 2.2.3,
existing methods for the calculation of the vacancy migration frequencies are listed
and discussed. The objective of the thesis, by developing a new approach, are
thereby introduced. Lastly, section 2.3.3 discusses how AKMC algorithms can be
parallelized.

2.2.1 General ideas

As anticipated in section 2.1, the main objective of AKMC is to describe the evolution
of an atomic system, driven by the thermally activated migration of point-defects,
avoiding the consideration of events that do not produce any recognisable change in
the material, such as thermal vibrations around static equilibrium positions. This is
achieved by taking a higher level of abstraction compared to MD:

• The material is no longer described as a group of atoms that can be positioned
at any place in the volume. Instead, the volume is partitioned into sub-
volumes, for which the only available information is the chemical nature of
the atom present there, if any. Partitioning into sub-volumes is a relatively
obvious matter for single-crystals, such as the one depicted in Fig. 2.3. As
atoms remain essentially near their equilibrium positions, the obvious choice
is to partition the volume with Wigner-Seitz cells, centred around the perfect
lattice positions, as depicted in Fig. 2.4.

• Migration events are defined at every step, and a frequency Γ is assigned to
each of them. For the example depicted in Fig. 2.4, an obvious choice of events
is the migration of the vacancy to any of its nearest-neighbour positions.

• One event is stochastically chosen according to the MC algorithm described in
what follows, and applied.

The AKMC is therefore said to be a rigid lattice model, because information about
static or dynamic relaxation is not available in the way the system is described. Off-
lattice AKMC concepts also exist from a recent time (106), but are quite naturally
more complex and require longer CPU times. We thus remain in a rigid-lattice
framework in the thesis. Equivalence with MD, for long processes, depends on
several conditions:

• One necessary condition is the existence of a unique relation between the same
system, described in the AKMC rigid lattice world, and described in a the non-
rigid lattice world of MD. This unicity depends entirely on the system being
studied, and must be therefore evaluated case-by-case.

18



2.2. Atomistic kinetic Monte Carlo

Figure 2.4: Vacancy migration event described in a non rigid lattice world (top part), such
as for example in a MD simulation, or in a rigid lattice world (bottom part), such as for
example the AKMC simulation. In the latter, the exact atomic positions are not given, only the
chemical nature of the atom sitting in predefined volumes, often taken to be the Wigner-Seitz
cells delimiting atomic volumes around the perfect lattice positions of the crystallographic
structure.

• For some systems, the respect of this unicity can depend on the advancement
of the simulated process. A good example is the simulation of thermal
ageing of dilute Fe-Cu alloys, as will be discussed later in section 4.3, because
crystallographic changes occur in the bulk of big clusters of Cu atoms, if they
are formed.

• The last condition is that the migration events are properly defined. The
example depicted in Fig. 2.4 is, again, obvious because the only relevant events
are the migration of the vacancy to a 1nn position. In other cases the definition
of the migration events is not equally straightforward.
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Figure 2.5: Wigner-Seitz cells for the bcc crystallographic structure.

Regarding the discussions above, it is clear that AKMC is an obvious model to
describe simple systems such as bulk materials with only one vacancy. For more
complex systems, however, the definition of a proper algorithm is far less obvious,
such as for example in presence of interfaces like grain boundaries, dislocations,
systems were crystallographic changes occur,... In these cases, a proper partitioning
of the space, and a relevant definition of migration events, are not straightforward at
all. Similar problems occur for the simulation of the effects of neutron irradiation in
steels, even if the attention is focussed on bulk materials, because of the presence of
many vacancies and self-interstitial atoms, as will be discussed later. This explains
why AKMC methods have been especially popular only for the simulation of
processes where only one vacancy must be included in the box, such as thermal
ageing, or a number of cases when attempting to simulate irradiation effects.

2.2.2 Algorithm

Fig. 2.5 shows the Wigner-Seitz cells that correspond to the case of bcc bulk materials.
If one vacancy is introduced in the simulation box, the only relevant migration events
to be defined are the migration of the vacancy to one of its eight 1nn positions, as
depicted in Fig. 2.6.

After the list of N possible migration events is made, the next step is to assign a
frequency of occurrence Γi for all of them (i = 1, . . . , N). One event is then chosen
with a simple Russian roulette algorithm1: a random number R is first chosen:

R = rand (0, 1) (2.1)
1The name "Monte Carlo" comes in fact exactly from the association of the method with the gambling

games in Monte Carlo’s casino.
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Figure 2.6: Eight migration events defined in the AKMC simulation for the single-vacancy
case in bulk bcc materials: jump of the vacancy to one of its 1nn.

The event k to apply is the only one that fulfils the condition:

k−1

∑
i=1

Γi < R
N

∑
i=1

Γi <
k

∑
i=1

Γi (2.2)

Finally, time is incremented following the mean residence time principle:

r = rand(0, 1) (2.3)

∆t =
−ln(r)
∑N

i=1 Γi
(2.4)

Asides from the relevance of how the volume has been partitioned in sub-volumes,
and how migration events were defined, the quality of the AKMC algorithm
depends entirely on how the migration frequencies Γi are calculated.

2.2.3 Calculation of point-defects jump frequencies

As explained in the previous section, frequencies of occurrence must be assigned
to all events that are encountered during the AKMC simulation. These events
correspond to the migration of point-defects to a nearest-neighbouring position, that
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2.2. Atomistic kinetic Monte Carlo

Figure 2.7: Schematic illustration of the minimum energy path followed by the system during
a vacancy migration event. The migration energy is denoted as Em, and the energy difference
between the final and the initial state is denoted as ∆E.

are thermally activated. The frequency of occurrence can therefore be expressed as:

Γ = Γ0 · exp
(
−Em

kB · T

)
(2.5)

Here, kB is Boltzmann’s constant and T is the absolute temperature in Kelvin. The
prefactor Γ0 is an attempt frequency, and Em is the migration energy, assumed
to be independent of temperature, as shown in Fig. 2.2. Such a description is
derived from the theory of thermally activated processes, and is justified when the
thermal oscillations of atoms around their equilibrium positions are smaller than the
activation energies, i.e. if kBT � Em.

The migration energy Em is the energy barrier that the migrating atom must
overcome to escape from its present equilibrium position to another one found in the
lattice site occupied by the vacancy. Because of the exponential function in Eq. 2.5, a
proper calculation of Em is unquestionably the most important requirement to ensure
that the migration frequency is accurately calculated. The attempt frequency Γ0 is
potentially less influencing the migration frequency, because it is usually expected
to vary from one case to another by one order of magnitude at the most. Many
authors of AKMC algorithms therefore consider it as a constant, and all the efforts
are devoted to a proper calculation of the migration energy.

Kang and Weinberg (87) proposed that the energy barrier for the migration of a
point-defect can be decomposed as:

Em = ε + ∆E (2.6)

Here ∆E is the total energy change associated with the change of thermodynamic
state between after and before the jump, and ε is the excess energy, to be added to
obtain the complete barrier, whose value is a priori unknown and will also be, in
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principle, a function of the local atomic environment (LAE) (97). Based on these
premises, they proposed a recipe to ’properly’ assess the energy barrier, given a
harmonic potential for the atoms at equilibrium (87). In practice, however, such
a decomposition has been later most often used assuming ε = constant (e.g. FISE
method in (178), see also (13; 21; 23; 164; 176; 177)). Somewhat more sophisticated
methods, based on broken-bond considerations (13; 14; 158; 164) extended also to
the saddle point (97), have been used as well. In recent times, in addition, attempts
at increasing the reliability of these heuristic methods have been made, by fitting the
pair energy parameters of the model directly to DFT calculations (13; 163; 164; 176–
178). These heuristic methods do take into account the influence of the chemical
environment on the energy barrier, but they do so in an oversimplified manner and
totally disregard the effect of faraway atoms.

At the other end of the spectrum of possible AKMC models, Henkelman and Jónsson
(75) envisaged a way to eliminate not only the rigid lattice approximation, but also
the predefined list of possible migration events. In their scheme, the choice of the
migration events, together with the calculation of their corresponding migration
barriers, is made on-the-fly by applying the dimer method (72). The latter is a
numerical method that allows, given the initial state, all possible transition paths
to another nearby local minimum in the potential energy surface to be found. The
advantage of such an approach is clearly its flexibility with respect to systems
where the rigid lattice approximation would no longer be valid, such as at free
surfaces and grain boundaries, or in the bulk of materials containing dislocations
or nanostructural features such as nano-voids and dislocation loops. In addition, the
dimer-method-calculated migration energy will always take into account all effects,
chemical and due to strain fields (at zero Kelvin). The main drawbacks of this
method are its complexity and its high computational cost. Similar ideas were also
explored by other authors, such as for example Trushin et al in Ref. (172) or Mellouhi
et al. in Ref. (113).

Recently, methods using sophisticated mathematical techniques to regress energy
barriers as functions of the LAE, such as cluster expansion (155; 173), or genetic pro-
gramming (157), have been proposed for use in AKMC models. These approaches
keep a rigid lattice description of the system, but calculate a number of examples
of energy barriers between two given states on a non-rigid lattice, i.e. allowing
for relaxation effects, using nudged elastic bands (see below) or other methods.
These sets of examples are then employed to fit mathematical expressions to them.
However, so far these approaches have been based on a limited number of examples
(that can practically be calculated with DFT methods) and, either little importance
has been given to verifying the capability of the obtained mathematical expression
to predict never seen cases (local environments) (173), or the total amount of possible
cases was any way relatively small (157).
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2.3 New algorithm, based on artificial neural networks

In this section, a new approach is proposed for the calculation of the point-defect
migration energy. As already discussed, AKMC algorithms are faced with a dual
challenge: the point-defect migration frequencies should be calculated with as little
approximations as possible in order to respect the physics of the process being
studied; On the other hand, the complexity should be reduced as much as possible,
in order to allow the simulation of long and complex processes in an affordable CPU
time.

The new methodology proposed here happens to be a reasonable compromise
between these antagonistic requirements:

• The migration energy (Em in Eq. 2.5) is calculated with the nudged elastic band
(NEB) method (74; 84). The latter takes into account the effects of long-range
chemical interactions and static relaxation, and can therefore be regarded as
very rigorous. The migration attempt frequency (Γ0 in Eq. 2.5), that in fact
also varies with the LAE like the migration energy, is, in first approximation,
considered as a constant, similarly to the work performed by mist authors
working with AKMC methods (see discussion in section 2.2.3). It could be
calculated using the Vineyard method (179), that requires, to summarize, the
CPU-time-consuming calculation of the vibrational modes of the system at the
initial state and at the saddle point.

• The use of the NEB method on-the-fly during the simulation cannot practically
be performed, because of the relatively high number of operations that are
necessary to accomplish such calculation. An artificial neural network (ANN)
is therefore trained to replace NEB, by providing an estimation of the migration
energy, given as input a description of the local atomic environment (LAE) of
the migrating point-defect.

• The ANN is therefore used as a powerful and general numerical method, that is
trained on the basis of examples, calculated with the NEB method. A successful
design of the ANN regression, however, inevitably requires a certain number
of these examples, that cannot be easily obtained with ab initio methods. For
this reason, the work performed in the thesis is entirely based on the use of
IAP. The methodology proposed in this section can, however, be applied using
ab initio calculations in the future.

Early attempts at developing this new approach were first published in 2007 by
Djurabekova et al. in Ref. (46). At that time, the bottleneck was mostly the efficiency
of the ANN regression, and the potential applicability of the method was, globally,
limited to simple cases. Later, in 2008, improvements to the ANN techniques gave
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more satisfactory results, and the feasibility was demonstrated in a more convincing
way in Ref. (32) (Paper I in appendix B). A detailed description of the approach was
finally published in Ref. (35) (Paper IV in appendix E).

In this section, the fundamentals of the proposed algorithm are described, to provide
the reader with a concise overview of the different aspects necessary to implement
the method. In section 2.3.2, the exact procedure followed to calculate migration
energies with the NEB method is summarized. Next, section 2.3.2 explains how an
ANN can be trained to replace NEB. Lastly, section 2.3.3 discusses how the AKMC
algorithm can be parallelised.

2.3.1 Calculation of the point-defects migration energies with the
nudged elastic band method

Several methods exist for the calculation of migration energies. The interested reader
can find a general overview in a publication by Henkelman et al. in Ref. (73).
Existing methods can, roughly, be divided in two categories:

1. In the first category, the initial and the final states of the system are given. In
this case, the method searches for the minimum energy barrier that must be
overcome, at zero Kelvins, for a transition from the initial metastable state
to the final one. One example is the drag method: the migrating atom is
gradually pushed in the direction of its final position, and the whole system is
completely relaxed at every step. The migrating atom is of course constrained
in the normal plane to its trajectory, to prevent it from going back to the initial
position. This approach can be practically implemented in several different
ways, that vary in the way the drag direction is defined, and the migrating
atom is constrained. A drag method was used at the beginning of the thesis
(see Ref. (32), Paper I in appendix B), for reasons of simplicity, but was later on
abandoned for the NEB, because the latter finds usually lower energy barriers.

2. In the second category, the final state is unknown. The methods are therefore
not only intended to calculate migration energies, but more generally to make
a list of possible state transitions from a given metastable state. A popular
example is Henkelman’s dimer method (72) as already discussed before. An
ameliorated version of the dimer, named monomer, was later proposed by
Ramunni et al. (148). Another example of transition search methods is the
activation-relaxation technique (ART), proposed by Barkema and Moussaud
in Ref. (11; 12; 119).

In the framework of the AKMC algorithm that we use, where possible migration
events are explicitly pre-defined, the first category of methods is a natural choice,
and the NEB is, amongst the other possibilities, probably the most appropriate.
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The NEB method, applied to the calculation of vacancy migration energies in AKMC
simulations, proceeds in 5 steps:

1. The initial and final states, defined in a rigid lattice way in the AKMC
simulation box, are copied in two other boxes for a future use with molecular
statics methods. The atomic coordinates of the atoms, that are unknown in the
AKMC, are chosen to correspond to the regular lattice positions. To limit the
calculation complexity, only portions of the AKMC boxes are in reality copied:
all positions that are situated within a given range RLAE from the migrating
vacancy and the migrating atom. The latter are henceforth called the "local
atomic environment" (LAE). The size of the new box, with non-rigid lattice, is
chosen to be much smaller than the AKMC box. The missing sites, that are not
copied from the AKMC box, are filled with matrix atoms, i.e. Fe.

2. The initial and final states are both statically relaxed (see discussion in section
2.1). In this work, this operation is performed with a conjugate gradients
method (141).

3. A chain of intermediate states is constructed. They are initially taken to be
a linear interpolation, for all atomic coordinates, between the initial and final
positions.

4. All intermediate states are step-wisely relaxed. During this operation, at every
step, the component of atomic forces tangent to the trajectory are modified to
keep the intermediate images at a constant distance (from the advancement
coordinate point of view) from each other: virtual tangent spring forces are
defined for this purpose.

5. Last, the migration energy is computed as the difference between the total
energy at the saddle point, and the total energy of the initial state.

This method is in practice easily applied automatically without any human inter-
vention. A detailed analysis, afterwards, of the calculated energy paths is most of
the times unnecessary. Parameters such as the size of the box, and the appropriate
value for spring forces constant are easily optimized. The only practical problem is,
as already discussed, the CPU time necessary to perform the complete calculation.

A necessary discussion, however, is the determination of the number of atomic
neighbours of the vacancy and of the migrating atoms that should be copied from
the AKMC simulation. The safest choice is to take the range RLAE defined above
very large, for example 3 or 4 times the cut-off of the potential, to ensure that the
effects of further away atoms on the migration event, via atomic relaxations, vanish.
But such a high precision is in practice not necessary. A discussion in this respect
is given in Ref. (35) (Paper IV in appendix E, section II). In the case of the single
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Figure 2.8: Coding of the local atomic environment describing a vacancy migration event as a
string of integers.

vacancy in Fe-Cr or Fe-Cu alloys, the energy barrier is influenced by neighbours up
to, roughly, a distance equal to 1.5 times the IAP cut-off. This range of sensitivity can
be a priori much larger for more complex cases, such as the migration of SIA. For
this reason, an appropriate study must be performed for every new application to
determine RLAE, following a similar procedure as described in Ref. (35) (Paper IV in
appendix E, section II).

2.3.2 Prediction of the migration energies with artificial neural
networks

"C’est ici que les romains s’empoignèrent !"

Captain Haddock, in "the adventures of Tintin", Hergé.

It was explained in the previous section that the vacancy migration energy can
be automatically calculated with the NEB method. The simulation with AKMC
algorithms of any physical process (such as segregation and precipitation) requires
more than billions of events, and multiple migration energies must be calculated for
everyone of them. The systematic use of NEB is, therefore, too prohibitive. In this
section, a predicting tool is designed to replace NEB, for practical use at every step
of the AKMC simulation.

The migration energy Em depends entirely on the LAE. In the rigid lattice world of
the AKMC simulation, the only available information about the LAE is the chemical
species of the atoms sitting in the neighbouring positions of the migrating vacancy
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1nn 2nn 3nn Em (eV)
1 2 1 1 . . . 1 1 1 1 1 1 1 1 . . . 1 2 1 1 1 1 1 1 . . . 1 2 1 1 0.594
1 1 2 1 . . . 1 2 1 1 1 1 2 1 . . . 1 1 1 1 1 2 1 1 . . . 1 1 1 1 0.671
2 1 1 1 . . . 1 1 1 1 1 1 1 1 . . . 1 1 2 1 1 1 1 1 . . . 1 1 2 1 0.668
1 1 2 1 . . . 1 2 1 1 1 2 1 1 . . . 1 1 1 1 1 1 2 1 . . . 1 1 1 1 0.525
1 1 2 2 . . . 1 1 1 1 1 1 1 1 . . . 2 1 1 1 1 2 1 1 . . . 1 1 1 1 0.993
2 2 2 1 . . . 2 1 2 1 1 1 2 1 . . . 1 1 1 1 1 2 1 1 . . . 1 1 2 1 0.479
1 1 1 1 . . . 1 1 1 1 1 1 1 1 . . . 2 1 1 1 1 1 2 1 . . . 1 2 1 1 0.653
2 1 1 1 . . . 1 2 1 1 1 1 1 1 . . . 1 1 2 1 1 1 1 1 . . . 1 1 2 1 0.098
1 2 1 1 . . . 1 1 1 1 1 2 1 1 . . . 1 1 1 1 1 1 1 1 . . . 1 1 1 1 0.798
2 2 2 2 . . . 1 2 1 2 1 1 2 1 . . . 1 2 1 1 2 1 1 2 . . . 1 2 1 1 0.865

Table 2.1: Table of examples of migration energy Em versus LAE, for a binary alloy, that
includes the 1nn, 2nn and 3nn of the migrating vacancy and migrating atom.

and of the migrating atom. An obvious and simple choice of input variables for the
predicting tool is thus to represent the LAE as a string of integers, as depicted in
Fig. 2.8: every integer of the string represent one atomic site of the LAE, and the
value it takes describes the chemical species, e.g. 1 stands for Fe, 2 stands for Cu,
2 stands for Cr,... These integers are of a categorical type, meaning that the value
of the integer is arbitrarily chosen. The generation of large tables of examples of Em
versus LAE, for varying LAE, is relatively straightforward to perform in practice, the
only bottleneck being the limited CPU time. Table 2.1 shows an example of such a
table. For convenience, the LAE is sorted by groups of atomic sites that correspond
to the same shell of close neighbours of either the vacancy or the migrating atom.
The groups are denoted 1nn, 2nn,..., Xnn. Fig. 2.9 shows the evolution with Xnn
of the distance from the vacancy or migrating atom, and the corresponding number
of atomic sites (cumulated with all previous shells). The order of the LAE entries,
within the same Xnn group, is of course not important, as long as it remains the
same for the whole table.

As an order of magnitude, the vacancy migration energy is, according to the IAP
used in the thesis, sensitive to the LAE up to a distance as large as, roughly, 1.5 · rco,
where rco is the cut-off of the IAP. This will be discussed later in chapter 4. For the
potentials used on the thesis, rco encompasses the 5nn. As a consequence, a number
as large as 300 to 400 atomic sites should be taken into account by the predictive tool
!

The objective to design the predicting tool can be regarded as the design of a mere
numerical regression, though, perhaps, a bit ambitious considering the number of
input variables involved, and the fact that these variables are categorical integers.
The numerical regression should have the following qualities:

28



2.3. New algorithm, based on artificial neural networks

Figure 2.9: Evolution with the number Xnn of shells of close neighbours defining the LAE,
for bcc single-crystals, of (left) the distance from the migrating vacancy of the migrating atom;
(right) the total number of atomic sites concerned.

• Ideally, the regression should be expressed in a way that ’makes sense’ from
the physical point of view, i.e. it should be written in a form where all terms
stand for a given contribution from the environment to the energy barrier. This
quality would give a certain confidence that the regression, that could in that
case be called a model, is capable to make relevant predictions of Em for new
cases that were never encountered before.

• The average error of prediction should the the smallest possible, ideally of the
order of the NEB accuracy, in which case the regression could be considered as
perfect.

• Lastly, the number of computing operations required to calculate Em should
be the smallest possible. This requirement is obvious, since the objective is the
avoid the use of NEB for the only reason of CPU time limitations.

The development of a predicting tool with all these qualities is not at all an easy
task. The first point above is, for instance, particularly idealistic, or at least very
ambitious. Energy formalisms like the broken-bond can be regarded as an attempt
to accomplish it: the migration energy is, there, expressed as the consequence of
the breaking of atomic bonds while the migrating atom is attempting to escape
from its equilibrium position towards another one. This kind of formalism can
give satisfactory results, especially if the number of atomic sites to take into account
is limited, but is in the end a simplified description of the real complexity of the
interactions between the migrating atom and the LAE. Nothing therefore guarantees
that the formalism is including all important contributions. Another problem that
occurs with this kind of approaches is that the number of degrees of freedom
explodes if more neighbouring sites are taken into account. This last point is
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particularly limiting in practice, because any model or numerical regression must
be fitted using at least a number of examples of I/O that is larger than the number
of degrees of freedom.

The use of artificial neural networks as predicting tool follows a totally different
philosophy. As will be discussed later in chapter 3, ANNs can be regarded as a
general regression method, that is not at all intended to implement a description of
the physical phenomenon being fitted: if written down, the expression of the output,
giving the inputs, is a mixture of arbitrarily chosen non-linear functions, that are
embedded in each others. Individual terms with a physical interpretation of the role
they play on the final output cannot be identified in practice. This disadvantage is,
however, compensated by a number of qualities:

• The application of ANNs to any problem, for instance finding a numerical logic
between the LAE and the corresponding Em, is completely automatised, and
self-constructed. The user of ANN must therefore not make any assumption at
all concerning the mathematical form of the relation.

• More importantly, the flexibility of the ANN is such that complex regression
problems, such as the one we have here, can be efficiently solved with a rather
simple expression that does not contain a huge number of degrees of freedom.
In other words, ANNs can, in practice, be trained on the basis of a limited
amount of examples, and this number does not explode if the complexity of
the problem is increased.

The drawback of this generality is that the logic constructed during ANN training
can, eventually, be out of control from the user’s point of view. The choice of
the examples constituting the training table can, consequently, make that logic
unsuitable for a general use after training. Overspecialisation, for instance, is the
extreme pathology where the network commits a very small prediction error on the
particular list of examples used for training, but very large errors for other cases.

A more detailed description and discussion of the ANN technique is reserved for
chapter 3. The questions addressed there are:

• How should the table of examples of Em versus LAE be designed ? Should we
take examples of LAE at random, or are other choices more suitable ?

• After training is completed, how confident can we be in the ANN ability to
make relevant predictions for new cases ?

What is already clear at this point, is that the ANN qualities are entirely depending
on the quality of the table used to train it. A necessary condition, or at least a wise
precaution, is to design the table of example in such a way that it contains examples
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that are reasonably representative of the different situations that the vacancy can
encounter during the simulation in our specific case. This consideration will be
discussed also in chapter 3, but in reality is more a problem of application than a
problem of ANN technique. The definition of "reasonably representative" is to be
debated before every application, and is therefore discussed in chapters 4 and 5.

2.3.3 Parallelization

Aside from designing a fast predictive tool for the vacancy migration energy, AKMC
simulations can be speeded up with parallelisation techniques too. Parallelisation
consists in defining, or re-defining, an algorithm is such a way that the whole calcu-
lation can be divided in parts that are independent of each other. If such a division is
possible, it becomes possible to execute them separately, but simultaneously, using
different processors. The total CPU time required to perform the calculation is,
obviously, identical, but the real (wall) time to do so is divided by the number of
processors used (assuming a perfect efficiency).

The AKMC algorithm can be parallelised in two different ways, that are not mutually
excluding:

1. The simulation box can be partitioned in equal pieces, and each of them
managed by one processor. This kind of approach has been successfully taken
for MD simulations for example. Unfortunately, the AKMC algorithm is far
less easy to parallelise in that way, for the simple reason that the simulated time
is a consequence of the events that are encountered and chosen, differently
from MD where, like in real life, events are a consequence of time. In other
words, if the AKMC box is partitioned and if each pieces are dealt with a
separate processor, the simulated time is going to be heterogeneous from one
box to another. A possibility to annihilate this effect is to introduce null events
in the simulation, that can be defined in such a way that all partitions advance
at the same pace. This approach was proposed in Ref. (105).

2. The most time consuming operation in the AKMC algorithm is, clearly, the
calculation of the point-defects migration frequencies. This is especially true
for the ANN-based AKMC, because the calculation is performed with ANN
that are fast in absolute basis but nonetheless represent a certain amount of
elementary operations. In addition, the time required to read in the simulation
box the necessary information to generate the ANN input variables (the LAE
coded as a string of integers) is a somehow complex operation, too. These
operations must be repeated for all possible events, 8 in the case of single-
vacancy in bulk bcc materials, and are completely independent of each other.
To share them between several processors is therefore relatively easy. The
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disadvantage is that the maximum number of processors is limited to the
maximum number of events encountered at every steps of the simulation,
i.e. 8, which is not very large. Parallelisation can thus only speed-up the
simulation by less than an order of magnitude.

Only the second approach has been used in the thesis, using the open-MPI library
(202; 203). As an order of magnitude, a simulation for a single-vacancy problem
could be speeded up by a factor 6 on a 8-processors personal computer.

2.4 Conclusion

In this chapter, the different tools of the multiscale modelling scheme linking the
electronic level (ab initio) to the coarse-grained models have been briefly described.
A new atomistic kinetic Monte Carlo (AKMC) algorithm has been proposed, where
the vacancy migration energy is calculated with little approximations, taking all
effects of long-ranged atomic relaxations and chemical interactions into account. The
algorithm relies on the use of artificial neural networks (ANN) to allow for faster on-
the-fly calculation, thereby making the simulation of long processes possible. The
chapter focussed on the single-vacancy case, for reasons of simplicity, but also for
reasons of traditions, because AKMC algorithms have been hitherto mostly used in
that framework. Applications of the new algorithm to such problems are presented
in chapter 4. Before, in chapter 3, the ANN technique is described and discussed in
details, to provide all the necessary theoretical background. In particular, the exact
procedure that is followed for the design of suitable ANN for the application of
concern is described.
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3
Artificial neural
networks: a practical
form of
artificial intelligence

In chapter 2, a new AKMC algorithm was proposed, where migration energies
associated with vacancy migration events are first rigorously calculated with a CPU-
time consuming method, the NEB, and then, to speed-up the simulation and make
it applicable to real problems within an affordable computing time, a predicting
tool was designed to replace NEB for fast on-the-fly calculations. Artificial neural
networks (ANN), that belong to the artificial intelligence family, were chosen to build
this predicting tool, in consideration of their high flexibility and, more importantly,
their ability to solve complex numerical problems.

ANNs are a concept of weak artificial intelligence, that more precisely belong to the
branch of machine learning or computational intelligence. The objective that is followed
is therefore not to create paradigms that exhibit real intelligence like human beings,
but, in a pragmatic approach proper to engineers and also to many scientists, rather
to propose systems, in our case here computer programs, that are more autonomous.
ANNs, in this respect, are self-learning systems that extract hidden knowledge from
their environment and manage to take relevant actions when entirely new situations
are encountered. For the particular application to the design of numerical predicting
tools, which is the major interest for the thesis, ANNs are surrogate models that
present the advantage to spare to the user the need to formulate knowledge about the
problem at hand explicitly. This is the reason why, despite the fact that the inexpert
eye could qualify ANN as mere regression tools, just like polynomial functions for
example, the words "artificial intelligence" do have both philosophical and practical
meanings.

A complete description of the theoretical and mathematical frameworks of ANN’s



3.1. The multi-layer perceptron: a universal approximation machine

Figure 3.1: Example of feed-forwards multilayer perceptron with 4 input variables (x1, x2,x3
and x4), one hidden layer with H = 6 nodes and one output (O). The right part of the figure
shows the detail inside a node of the hidden layer. The signal is propagated from the left to
the right of the network, in a layer-by-layer fashion.

is far beyond the scope of this document. For a complete and detailed reference
textbook, the author recommends Bishop’s book (16) to the interested reader, which
is one of the most popular in this field. A quick and more general overview of
the subject can also be found in Ref. (15) by the same author. Several other
websites proposing answers to FAQ’s such as the one in (156) also provide many
useful information. The chapter starts in section 3.1 by a detailed description
of the implementation of ANN that is used in the thesis, namely the multilayer
perceptron, and summarizes its fundamental theoretical and practical aspects. Next,
the application of ANNs to two sensibly different problems, both connected to
nuclear materials science, is presented. In section 3.3, ANNs are used to extract
knowledge from a limited amount of experimental data that are very expensive to
generate, by predicting the radiation induced hardening of reactor pressure vessel
steels. Finally, the application to the prediction of point-defects migration energies
in AKMC simulations, which is the objective of the present thesis, is described in
detail in section 3.4.

3.1 The multi-layer perceptron: a universal approxima-
tion machine

Several types of ANN exist, and each of them is best suited for a particular type
of application. The so-called multilayer perceptron depicted in Fig. 3.1, for instance,
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3.1. The multi-layer perceptron: a universal approximation machine

provides appropriate solutions for the design of general numerical regressions:

• The network is constituted of several layers of nodes. Each node is a simple
processing unit that takes, alone, a simple behaviour. A unique output signal
results from the passing through of input signals.

• On the left side of the figure, the input layer is the collection of the raw input
signals of the whole network. On the right side, the last layer of nodes is
called the output layer. In the middle, several intermediate layers of nodes
can be introduced. They are called hidden layers, for the reason that they are, in
practice, invisible to the user. The network depicted in the figure counts four
input signals, one single hidden layer with H nodes, and, finally, one single
node in the output layer.

• There is in theory no restriction about how nodes of different layers can
be connected to each other. For simplicity, many networks do not allow
for backwards connections: a given node never receives as input output
signals coming from nodes of either the same layer, or from the next layers
(see e.g. Ref. (54)). Such a network is qualified as feedforwards, and
present the advantage that the calculation of the output is, as the name tells,
straightforward, because no iteration due to backwards propagation of the
signal is necessary.

• Last, the network shown in the figure is said to be fully connected, because all
nodes in a given layer receive as input all output signals coming from the
immediately preceding layer, and no layer bypass is allowed. The inputs for
the first (and only) hidden layer are the raw input signals of the network.

The output yj of a hidden node j reads:

yj = φ(vj) (3.1)

vj = wj0 +
N

∑
i=1

wji · xi (3.2)

Here, vj is the internal activity of the node. Function φ can, in principle, be any non-
linear function. For convenience, to prevent large magnitudes of the signal, function
φ is almost always taken to be bounded, most of the time a hyperbollic tangent or
sigmoid function such as depicted in Fig. 3.1. Abnormally large internal activities
are therefore blocked by node saturation, and the impact on the rest of the network is
limited. The internal activity is calculated as a weighted sum of the input signals to
the node, i.e. the input signals of the network. The output zO of the only node in the
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output layer is calculated in the same way:

zO = φ(vO) (3.3)

vO = wO0 +
H

∑
j=1

wOj · yj (3.4)

In Eq. 3.2 and 3.4, the weights w0j, wji, wO and wOj monitor the strength of
interaction between the nodes, often denoted as neurons, and are therefore called
synaptic weights, or also synapses, in analogy to the role of real synapses in biological
neural networks.

The interest of the feed-forwards multilayer perceptron, in its simplest form as
depicted in Fig. 3.1, is that it fulfils the universal approximation theorem (78): For
any continuous function F(x1, . . . , xn), there exist an ANN with a finite number of
hidden nodes that fulfils the following condition, for all set of inputs xi and all ε:

|F(x1, . . . , xn)−O(x1, . . . , xn)| < ε (3.5)

Here, O(x1, . . . , xn) is the output of the ANN. The multilayer perceptron can
therefore be regarded as a universal approximation machine that can, in theory,
perfectly solve any problem of numerical regression1. The problem of designing
such a network is discussed in the next section.

3.2 Practical application of ANN to a given problem

In the thesis, ANNs are designed to implement numerical regression tools. This
is therefore a supervised training problem, meaning that the ANN is trained to
"understand" and reproduce at best the logic between input and output, on the basis
of a finite number of examples provided by the user. Unfortunately, the universal
approximation theorem only demonstrates the existence of a perfect ANN to solve
the problem a hand, but does not give any indication about how it can be found
in practice, and more importantly, if it can be obtained by training on the basis of
a finite number of examples. For this reason, ANN training, that can be regarded
as the problem of determining the ideal architecture of the network, and also the
ideal numerical value for the synaptic weights, is, in the absence of an appropriate
theoretical framework, solved as a mere optimization problem that consists in the
minimization of the objective function:

f =
N

∑
i=1

(oi − di)2 (3.6)

1The interested reader can find a general discussion about that theoretical ability, for any problem other
than numerical regressions, for example in the section "What can you do with an NN and what not?" in
(156).
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3.2. Practical application of ANN to a given problem

Here N is the number of available examples of I/O, di is the desired output for the
example i, and finally oi is the corresponding actual output of the network.

3.2.1 Training the ANN, given the architecture

Let’s assume for the moment that the ANN architecture is fixed, i.e. that the number
H of nodes in the hidden layer is chosen. The minimization of function f is thus the
problem of determining the optimal numerical value of the synaptic weights, and
can be undertaken by a number of different algorithms that cannot be exhaustively
listed here. All these algorithms are iterative, meaning that synapses are first
randomly initialized, and then iteratively updated following a given algorithm.
These iterations are called epochs in ANN jargon. To the author’s opinion, only
algorithms based on the use of the analytical expression of the first order derivatives
of f with respect to the synapses, that can be obtained using the so-called back-
propagation algorithm (153), are really promising in general. Four algorithms were
used during the thesis:

• The so-called Delta-bar-delta (DBD), described for example in Ref. (70), based
on a mere "steepest descent" principle, with a fixed update factor of the
synapses. For this reason, it is often wrongly denoted as back-propagation
in old articles or books. This algorithm presents the advantage of being simple
of use, because only the gradients must be calculated at every epoch, but gives
in practice poor results, at least for the problems of interest in this thesis.

• A much more efficient algorithm named resilient propagation (RPROP), that
is in fact almost equally simple of use, was proposed by Riedmiller and
Braun in Ref. (151). In simple words, it is based on the idea that the
magnitude of update of synapses should be decoupled from the magnitude
of the gradients. Quite satisfactory results were obtained using this algorithm,
but it still presents limitations of slow convergence, as probably unavoidable
for first order optimization methods.

• Faster convergence is achieved with a more sophisticated algorithm, qualified
in the field of optimization as a "1.5 order method", that is the conjugate
gradients (CG). The application of CG to ANN training proceeds as for any
non-linear minimization problem. The complexity is higher compared to the
DBD and RPROP algorithm, mainly because a one-dimensional optimization
must be performed at every epoch.

• In general, significantly better results were obtained during the thesis using
an even more sophisticated approach, proposed by Levenberg (98) and Mar-
quardt (103) (LM). In simple words, this is an exact approximation of the
second order Newton method if the crossed second order derivatives are nil.
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3.2. Practical application of ANN to a given problem

The major drawback of LM is the relatively high complexity, mainly because
a system of linear equations, one per synapse in the network, must be solved.
It is thus a priori best suited for small size problems. Despite this drawback,
LM is by far the most successful training algorithm used in the thesis, and all
results shown in this document were exclusively obtained using it, or more
complex algorithms based on it.

• In addition, other algorithms were explored for the sake of completeness.
Methods for improving back-propagation algorithms can for example be found
in Ref. (191). Other algorithms such as Fahlman’s Quick-prop in Ref. (53),
a training algorithm utilizing multiple sets of linear equations proposed by Chen
et al. in Ref. (42), and last a modification of the LM algorithm to reduce its
complexity in Ref. (184), were tried.

All these algorithms are starting point dependent, meaning that there is a problem
of decision of the initial values for the network synapses before training is started.
This question is somehow long-debated in reference textbooks on ANN (16), for
example in the book of Bishop, but also in the book of Haykin (70). Several strategies
are proposed in the later, and were all investigated during the thesis. No major
difference in the final quality of the network is, finally, observed if the LM training
algorithm is used, contrary to the other ones listed above, which is another indication
of the superiority of this algorithm. Random initialization between -1 and 1 is proved
to be good enough in the framework of this thesis. It however does not mean
that improvement, in the future, or for totally different applications, could not be
achieved if a more appropriate initialization method is found. Other authors propose
different methods, such as for example genetic algorithms in Ref. (2), or the method
proposed by Nguyen and Widrow in Ref. (123) that has some popularity.

Finally, a major concern while training ANNs is to guarantee, or at least provide
good indication, that the predictions for new sets of inputs are equally accurate
compared to predictions on the available set of examples used for training. This
concern actually translates the major drawback of the generality of ANN, and of
the fact that no knowledge about the problem at hand is explicitly formulated by
the user. In other words, the risk that the ANN, during training, does not develop a
general logic but in reality, somehow, merely memorizes the complete set of available
examples, is real. An example with one input variable is illustrated in the left part
of Fig. 3.2. We see that reasonable interpolation is achieved by the ANN if the
latter is not too complex, i.e. if not too many nodes are included in the hidden
layer. Predictions are however not equally accurate for all training examples. If the
number of hidden nodes is increased, the ANN manages more accurate predictions
for all known points, but clearly looses generality, and is in fact merely reproducing
the training data without being able to make any sensible interpolation. This
pathology can rather easily be detected for one-dimensional problems, especially
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such as depicted in Fig. 3.2 that is of a simple kind, but in general, however, over-
specialization cannot be easily identified only on the basis of a limited amount
of examples of I/O, especially if the dimensionality of the problem at hand is
large. ANN training must therefore be regularized, to favour the development of
extrapolation or interpolation skills. The most common regularization approach is
called early stopping, and is based on the idea that memorization of the provided
example, or more generally can we say network overspecialisation, develops only at a
certain moment of training, i.e. after a certain number of training epochs. The most
natural way to prevent it is therefore to divide the available table of examples of I/O
into two different and non overlapping sets:

• The training set is used to minimize function f in Eq. 3.6. Only these
examples are thus used to calculate the gradients with the backpropagation
algorithm, and the synapses are updated during each epoch taking only them
into account.

• The reference set is used to measure, after every epoch, the average error of
prediction on new cases.

Fig. 3.2 shows the typical evolution of the average error of prediction on both
sets during the training epochs. The error committed on the training set always
decreases, or can in the worst case remain constant. The error on the reference set,
however, ceases to decrease from a certain epoch, and then starts to increase, as a
clear sign of the onset of overspecialisation. Training is therefore interrupted at that
moment.

3.2.2 Determination of the optimal ANN architecture

In section 3.2.1, algorithms to find the optimal numerical value for the network
synapses were listed and discussed. The next concern for the user of ANN is thus
to determine the optimal architecture of the network. Assuming that networks with
one hidden layer are enough, the problem can therefore be tackled by a mere mono-
parametric study: networks with increasing number H of hidden nodes are trained
separately, and the one committing the lowest error on the training set is finally
retained. The typical evolution of this error with H is depicted in Fig. 3.2. Too small
a H naturally leads to higher errors of prediction, for the reason that not enough
degrees of freedom are available in the network. Oppositely, too high a H increases
the risk of overspecialisation, and the error can increase as well.

This approach presents the major drawback that, in practice, many independent
trainings must be performed: several H must be explored, but also trainings for a
given H must be repeated several times because of variance of the trained network
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Figure 3.2: (left) Schematic illustration of ANN over-specialization problem for a simple
problem with one variable x and one output y. Blue points represent data in the training
set. The dashed line shows predictions by an ANN with a small number H of hidden nodes,
whereas the plain line shows predictions of another ANN where too many hidden nodes were
introduced. (right) Typical evolution of the average error committed on the training set (TSet)
and reference set (RSet) with: (a) the number of training epochs, the number of hidden nodes
being fixed; (b) the number of of hidden nodes, at at end of training.

with respect to synapse initialization. Many authors therefore proposed more
involved approaches. The interested reader can find general overviews and critical
reviews of many existing approaches in Ref. (39; 94; 135), that can, roughly, be
classified in two categories:

• Pruning approaches (149) start from deliberately too big networks and itera-
tively remove nodes from the network2. The drawback is, a priori, that these
approaches require as a first step the training of big networks, and is therefore
probably not efficient from the computing time point of view.

• Oppositely, constructive approaches start from small networks and add new
nodes iteratively. Two different popular algorithms were considered during
the thesis:

– The dynamic node creation of Ash (4), in which hidden nodes are added one
by one in the sole hidden layer of the network.

– The cascade correlation of Fahlman and Lebiere (55), in which hidden
layers with one single node each, fully connected to all preceding nodes
(therefore allowing for layer bypass), are iteratively added.

2Philosophically speaking, pruning approaches, to the author’s experience, are a bit like writing a
scientific paper or a thesis: in a first stage, too much details are written, and then the text is shortened to
retain only the essential.
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Both approaches gave satisfactory results, but the dynamic node creation was
retained for reasons of simplicity, and was modified according to the topology
of the problem at hand, as discussed in section 3.4.

These algorithms are aimed at automatizing the process of ANN training, avoiding
manual parameter studies, but are in fact generally not necessarily expected to
lead to more accurate networks. Nothing, indeed, guarantees that constructive or
pruning algorithms are optimal training procedures because of, again, the absence
of an appropriate theoretical framework.

3.3 Application to the prediction of radiation induced
reactor pressure vessel steel hardening

As a spin-off application of the thesis, at least for the sake of curiosity and of
making a broader use of the experience that was learned in the field, ANNs have
been applied to a problem of sensibly different topology compared to the major
problem of concern described in the next section. Namely, the ANN was used for
the prediction of neutron irradiation induced hardening, a subject of interest in the
field of nuclear material science. This work is completely described in a full length
paper (37) (Paper VI in appendix G), but is here briefly summarized.

It is well known that reactor pressure vessel (RPV) steels used in light water
nuclear reactors harden and embrittle under neutron irradiation (79). Hardening is
customarily measured as the increase of the yield stress, with tensile tests performed
on samples of the RPV steel. Nuclear regulations impose safety margins on this
increase3, according to rules that may somewhat change depending on the country,
as safeguard against RPV failure in both service and accidental conditions. In
the absence of a complete physical model, from the atomic to the macroscopic
level, that can describe with accuracy the relevant processes taking place under
irradiation, hardening and embrittlement are predicted by semi-empirical, or totally
empirical models that are mostly based on numerical fittings using experimental
data (20; 143). Although inadequate to cover all possible conditions, a large
amount of data from surveillance capsules and from material test reactors does
exist. One of the most important goals for utilities and other nuclear stakeholders
is the development, based on "clever" interpolations and extrapolations of the
available data, of reliable trend curves, providing estimates of steel embrittlement
as a function of the most important influencing variables. ANN are therefore a
potentially interesting candidate to achieve adequate predictions, because on the one

3All safety authorities actually impose a limitation in the shift of the ductile-to-brittle transition
temperature, but in the case of RPV steels a strong correlation, generally linear, exists between this increase
and the yield strength increase.
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Figure 3.3: ANN quality of prediction of the neutron irradiation induced increase ∆σY in the
yield stress of RPV steels. The number of input variables is 4, and the number of hidden
nodes is 4. Error bars show the standard deviation of predictions made by 25 different ANN,
trained with the same training and reference sets. (left) Prediction on the reference set. (right)
Prediction on a separate set that corresponds to higher neutron fluences, that was not used for
training.

hand, as already discussed, of their abilities to extract hidden knowledge from data,
and on the other hand thanks to the fact that knowledge about the physical process
must not be explicitly formulated.

In Ref. (37), ANN was trained to predict the increase ∆σY of the yield stress
taking four inputs into account: the Cu content of the steel, the Ni content, the
neutron fluence and finally the irradiation temperature. The RADAMO database
(40) was used as set of 346 examples of I/O. For this application, the definition of a
training and a reference set from the complete database is a delicate exercise, mainly
because of the limited number of available examples, but also because of their sparse
distribution in the space of the input variables and output. Two different algorithms
to define the sets were proposed and compared. The achieved ANN quality of
predictions on the reference set is shown in Fig. 3.3. Predictions on a separate set
that corresponds to higher neutron fluences are also shown.

The conclusions in Ref. (37) were that ANNs can accurately predict hardening, and
that the algorithm followed to define training and reference sets have an impact
on the skills of extrapolation for higher neutron fluences. In a future work, the
extrapolation skills for other steels chemical compositions will be evaluated, by
using other databases of I/O in addition to RADAMO.
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3.4 Application to the prediction of the vacancy migra-
tion energy in AKMC simulations

The problem of designing an ANN to predict the migration energy Em associated
with a vacancy migration event, using as examples of I/O tables similar to the one
shown in Tab. 2.1, has a sensibly different topology compared to the application
discussed in section 3.3. The number of input variables is rather large, as discussed
in section 2.3.2, and is of the order of several hundreds. The number of available
examples of I/O, however, is virtually infinite, meaning that tables as large as
required can be produced4, with the only limitation of computing time. Fortunately,
larger amounts than 100 times the number of input variables can be produced.

In this section, the application of ANNs to this problem is discussed for the
prediction of the single-vacancy migration energy in binary or ternary alloys. The
trained networks are used later in chapter 4 for the simulation of thermal annealing
experiments.

3.4.1 Design of training and reference sets to ensure high extrapo-
lation and interpolation skills

The notion of extrapolation or interpolation for new cases has here no real meaning
from the numerical point of view, because the inputs are categorical integers. New
cases therefore correspond to a never seen combination of these integers. The only
required precaution, when designing a training and reference set, is therefore to
ensure that every category is, ideally, equally represented for every input variables.

Oppositely, extrapolation and interpolation do have a meaning from a physical
point of view, because new cases can correspond to never seen categories of
atomic configurations that exhibit new features of, for example, stress field or
chemical interactions. The design of proper table of I/O is therefore mainly a
problem of gathering a set of LAE’s that are representative of all situations that
can be encountered during the AKMC simulation. Discussions in Ref. (35)
(Paper IV in appendix E) lead to the conclusion that, for the simulation of thermal
annealing experiments, two kinds of random examples should be generated in equal
proportion, to represent extreme situations that can be encountered by the vacancy:

1. Solute atoms are randomly distributed around the migrating vacancy, with a
homogeneous spatial distribution. These cases correspond to the beginning of
the experiment, when the alloy is still a solid solution, while at equilibrium

4In reality the number of possible LAE’s is countable, but is so large that it can be considered as infinite
from any practical point of view.
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they are representative of alloy compositions below the solubility limit. The
local concentration of solute atoms should not, however, be constrained to
respect the solubility limit value, because the local concentration around the
migrating pair in the course of the AKMC simulation changes and can in
fact take any value in principle. So, different local concentrations should be
explored.

2. Clusters of solute atoms are created and the vacancy is randomly located
around them, or inside them. ANN trained with such tables of I/O is,
therefore, a priori able to make relevant predictions in any encountered
configurations. Training can thus be performed on the basis of randomly
generated examples, and the obtained ANN can be used during the complete
AKMC simulation without restriction.

Last, the definition of training and reference sets from the table of I/O, is for this
application relatively easy. Regarding the fact that the number of examples is large,
and that they can be considered as independent of each others, a simple shuffle-and-
cut procedure is totally appropriate.

3.4.2 Specialized training algorithm

ANN trainings on fixed architectures, using the LM algorithm, require in practice
rather long computing times, because of the large number of input variables, and
the large number of examples of I/O used. The number of training epochs before
the onset of overspecialisation is not properly speaking large (typically around 150
or 200 at the most), but the time required to compute each epochs is. Constructive
approaches, in particular the dynamic node creation of Ash, are thus a priori the only
viable approach.

As discussed in section 2.3.2, energy barriers are calculated taking within long-range
LAE’s, that is beyond two times the cut-off of the used IAP. Including all these
neighbouring atomic sites corresponds to a number of several hundreds of input
variables. It is therefore reasonable to anticipate the fact that ANN can probably not
efficiently take into account all these inputs, especially considering the fact that they
do not all have the same degree of influence on the migration energy. ANN training
is thus, a priori, equally efficient if the LAE is redefined to a shorter range, i.e. if the
information about the furthest away atomic sites is discarded.

In order to propose a totally automatized training procedure, that not only adds
nodes in the hidden layer similarly to the dynamic node creation, but also self-
determines the maximum range of the LAE that can efficiently be taken into account,
an original training algorithm, named gradually improving accuracy constructive
algorithm (GIACA) was elaborated and completely described in Ref. (35) (Paper

44



3.4. Application to the prediction of the vacancy migration energy in AKMC simulations

IV in appendix E). Training proceeds in several stages, were entries of the LAE
that correspond to increasing shells of close neighbours of the migrating pair are
gradually connected to the network. The computing time spent for training is thus
mainly focussed on the most influencing input variables, and training is interrupted
when no further progress is achieved.

Finally, the LM algorithm, on which the GIACA is based, could be efficiently
parallelized using the open-MPI library (202; 203), achieving a speed-up factor of
6 on a 8-processors personal computer.

3.4.3 Application to binary problems

Fig. 3.4 shows the quality of prediction, after training with the GIACA algorithm, for
the vacancy migration energy in binary alloys. For the Fe-Cu system, 60000 examples
of I/O were calculated with the NEB method, using Pasianot’s IAP as cohesive
model (140). The same amount of examples was calculated for the Fe-Cr system
using Olsson’s IAP (128). In both cases, a separate ANN was trained depending
on the chemical nature of the migrating atom. The average error of prediction was
calculated as:

ē =
1
R

R

∑
i=1
|di − oi| (3.7)

Here, R is the number of examples in the reference set, di is the desired ANN output
for the example i, i.e. the NEB calculated energy barrier, and oi is the actual ANN
output. We see that the ANN predictions are, in general, very accurate, especially
for the Fe-Cu system. The error is somehow larger for the Fe-Cr system, which is
explainable by the fact that Olsson’s IAP is more complex compared to Pasianot’s,
because of the presence of an extra embedding function accounting for the s band
of electrons. Predictions are in any case not only highly correlated with the NEB
values (R2 > 0.98), but are in fact accurate for all individual cases. Thus, ANNs can
be considered, in fact, as near-perfect substitutes to NEB, in these cases.

3.4.4 Application to ternary or more complex problems

Fig. 3.5 shows the quality of prediction, after training with the GIACA algorithm,
for the vacancy migration energy in the ternary Fe-Ni-Cu alloy. Migration energies
were calculated using the potential developed by Bonny et al. in Ref. (25). In this
case, less atomic sites were efficiently connected to the network, and the final error
of prediction committed on the reference is larger compared to the achievements
for binary alloys. This is explained by the increased complexity of the regression
problem from a numerical point of view, because each entries of the LAE can take
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Figure 3.4: ANN quality of prediction of the vacancy migration energy in binary Fe-Cu and
Fe-Cr alloys. In both cases, the GIACA algorithm converged after connection to the network
of the LAE entries encompassing the 11nn of the vacancy and migrating atom (223 atomic
sites), and the addition of 20 to 25 nodes in the hidden layer.

three different integers: "1" for Fe, "2" for Ni and "3" for Cu. One can imagine that the
development of a relevant behaviour in nodes of the network is less easy, because a
clear distinction between the different categories of atoms is not straightforward to
make. For this reason, it is recommended (see for example (16)) to reformulate the
input variables in a different way, using bits instead of integers. This formulation is
named 1-of-c coding, and requires a number of bits that is equal to the number of
categories minus one. For our example here, each entry of the LAE is thus coded
with two bits: Fe is coded with "00", Ni with "10" and finally Cu with "01". We see, in
the right part of Fig. 3.5, that the global quality of predictions is improved, despite
the fact that the number of input variables is doubled.
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Figure 3.5: ANN quality of prediction of the vacancy migration energy in ternary Fe-Ni-Cu
alloys. The GIACA algorithm converged after connection to the network of the LAE entries
encompassing the 6nn of the vacancy and migrating atom (83 atomic sites), and the addition
of 30 nodes in the hidden layer.
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4
Simulation of
thermal ageing
experiments

Thermal annealing experiments (TAE) are typically conducted on binary or ternary
alloys to study their thermodynamic properties: to identify the phases that appear
at equilibrium, and also to study the kinetics of the relevant thermodynamic
transformations. Thermal ageing experiments are often also conducted on complex
alloys and steels used as structural materials, to study their thermal stability under
conditions that either mimic or accelerate operational conditions. A thermodynamic
process that is of special concern for applications is the precipitation of new phases
during prolonged exposure to high temperature, because these precipitates will
generally make the material harder and less ductile. Here we are specifically
interested in steels used or to be used as structural materials in nuclear installations,
which will be exposed during operation to both high temperature and neutron
irradiation fields. The behaviour of these steels will be studied by choosing suitable
model alloys. Therefore, two model alloys are considered:

• Fe-Ni-Cu, as model alloy for bainitic ferritic reactor pressure vessel steels. In
these steels, the formation of Cu-rich precipitates is one of the most important
reasons for the deterioration of their mechanical properties (5; 77; 126), causing
hardening and embrittlement. Copper, therefore, is unquestionably the most
influencing chemical element in this process, and its precipitation in α-Fe has
been intensively studied during the last decades, both experimentally (7; 30;
66; 67; 86; 101; 109; 114; 115; 142; 178; 189), and using theoretical models (43;
44; 64; 65; 109; 131; 132) or computer simulations (13; 14; 18; 34; 48; 91; 97; 158;
160; 162–164; 176–178). Nickel is considered as the second most influencing
elements by many specialists (5; 126).

• Fe-Cr, as model alloy for high Cr (9-12 at.% Cr) ferritic-martensitic stainless
steels, that are candidate structural materials for many concepts of new



generation nuclear reactors. The presence of Cr has many positive effects,
amongst which the reduction of radiation-induced swelling (63; 90; 99; 100;
146) and possibly even reduction of irradiation embrittlement (88; 89). Steels
of this type containing more than 14at%Cr undergo phase separation after
thermal annealing at about 475◦C (19; 51; 59; 68; 71; 82; 95; 111; 122; 168;
185; 186), with the formation of finely dispersed nano-metric nearly pure Cr
precipitates coherent with the matrix. The latter cause hardening and provoke
embrittlement of these steels. Irradiation accelerates this process and makes
precipitates appear also at concentrations well below 14%Cr.

The TAE proceeds as follows: (1) Samples of the material are annealed at high
temperature, in the region of complete solubility, in such a way that the insoluble
alloying elements are distributed as a random solid solution; (2) the material is
cooled down to room temperature, where diffusion is too slow to produce any
redistribution of atoms towards the thermodynamic equilibrium and therefore
remains a random solid solution; (3) the actual thermal ageing experiment consists
in exposing the material at a higher temperature, that is kept constant for a long time
(hours, days, even months or years). Samples are taken out of the oven at different
times, then examined with an appropriate technique to look at the advancement of
precipitation, typically in terms of average cluster radius, clusters density, and also
content of insoluble species in the matrix. Several measurement techniques exist,
amongst which, atom probe tomography, small angle neutron scattering, small angle
X-rays scattering, electron transmission microscopy, resistivity measurements,...

The simulation of TAE is an interesting exercise for the multi-scale modelling
community. At least three reasons could be evoked, that are equally important and
in fact intimately linked with each others:

• The simulation of these processes can provide us with a better understanding
of the clustering and precipitation mechanisms. The essential difference
is that, in computer simulations, a very precise description of the system
being studied is naturally available. A quantity of detailed information, that
is normally inaccessible experimentally, can be collected, being obviously
limited, however, by the realism of the simulation method.

• TAE are a relatively simple problem to model, because, differently for example
from irradiation experiments, only one point-defect is introduced in the
materials to be studied. This is therefore a first test case for tools developed
with the purpose of simulating the effects of irradiation. In particular, this test
allows the energy models used as physical input to be tested: for methods
based on ab initio data, the formalism used to calculate the vacancy migration
energy, and in our ANN-based AKMC, the quality of the interatomic potential
used.
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• Last, but not least, TAE are considerably less expensive to conduct than
irradiation experiments: more data are therefore available in the literature.
Direct comparison of results of the simulation with larger amounts of exper-
imental data becomes then possible, concerning the kinetics of precipitation of
insoluble species.

The ANN-based AKMC described in section 2.3 has been successfully applied to
simulate TAE experiments for Fe-Cr alloys and Fe-Cu alloys. This work has been
published in full length papers: Ref. (35; 36) (Papers IV and V in Appendix E
and F) and Ref. (38) (Paper VII in Appendix H), respectively. In this chapter, the
methodology that was used and the obtained results are summarized. The interested
reader is referred to the corresponding papers for a more detailed discussion.
Simulations conducted in Fe-Cr alloys are the subject of section 4.2, while section
4.3 concerns Fe-Cu alloys. The chapter starts with a first section, 4.1, describing in
detail the general methodology used for the simulation of TAEs.

4.1 Simulation details

The process of clustering and precipitation of insoluble species can occur in different
places of the material: in the bulk, at grain boundaries, at interfaces between
different materials, in the vicinity of dislocations,... Depending on the chemical
composition of the system being studied, some of these places can be more or less
interesting to study. In this chapter, only bulk materials are considered, without
extended defects such as dislocations or grain boundaries. The simulation by AKMC
of systems containing extended defects is more delicate, because of the loss of
periodicity of the atomic structure, which complicates the definition of the algorithm
in many ways: mainly the definition of atomic volumes and of migration events, as
discussed in section 2.2.

Bulk materials are modelled as infinite grids of atoms, arranged in space according
to an appropriate crystallographic structure (bcc in this work): the simulation
is conducted on a cubic sample of the infinite material, and periodic boundary
conditions are applied to emulate infinity of the volume. As the material being
studied is unirradiated, the only mobile point-defects introduced in the simulation
box are vacancies. The equilibrium concentration of vacancies in real materials,
however, is not accurately know, neither experimentally, nor by first principles
calculations. In theory, this concentration is given by:

Creal
v = A · exp

(
−H f

v
kB · T

)
(4.1)
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Here, H f
v is the vacancy formation enthalpy, kB is Boltzmann’s constant, T is

the absolute temperature and A is a constant. Both A and H f
v depend on the

alloy composition. The exact value of the vacancy formation enthalpy is delicate
to estimate, either experimentally or theoretically. For pure Fe, first principle
calculations situate it between 1.9 eV and 2.2 eV, while experimental measurements
suggest values around 1.6-1.7 eV. Assuming for the sake of simplicity A = 1 and
T = 773 K, we find that Creal

v ' 10−15 · · · 10−11. In other words, the AKMC
simulation box should be large enough to contain from 1011 to 1015 atoms if only one
vacancy was introduced. Simulations, however, cannot practically be performed
in such a huge box, mainly for reasons of CPU time limitations. So, the box is
always much smaller, and one vacancy is introduced anyway. Thus, the effective
concentration of vacancies in the simulation is orders of magnitude higher than the
real one and the atomic redistribution processes will proportionally occur much
faster. As a compensation, the time of the simulation must be rescaled, as will
be discussed in the end of this section. Optimal choice of the box size is a trade-
off between affordable CPU time and statistics that can be eventually achieved
concerning precipitate size distributions.

The alloy is initially a random solid solution: all positions in the box are occupied
by matrix atoms (Fe in this chapter), and solute atoms are placed at random, with
the appropriate number to respect the alloy composition, as well as one vacancy.
The only event is the migration of the vacancy to one of its eight 1nn, as depicted
in Fig. 2.6. Other migration events could be imagined, for example the migration
to a further away distance than the 1nn position. This and other possibilities have
been considered, but they have been found not relevant, because of the significantly
higher migration energies associated with these jumps. The jump frequencies are
calculated using Eq. 2.5. The jump attempt frequency is taken to be a constant,
in first approximation, and an ANN is trained to predict the migration energy that
would be calculated with the NEB band method, using the relevant IAP as cohesive
model.

The simulation time tMC must be rescaled into the real time treal , to take into account
the difference between the vacancy concentration in the simulation box C(MC)

v and
the concentration in the real material given in Eq. 4.1. The simplest way to do so
is to consider that the vacancy concentration in the box is simply given by the ratio
between the number of vacancies in the box (one) and the number Nat of atomic sites
in the box:

C(MC)
v =

1
Nat

(4.2)

This simple relation, however, does not take into account the fact that the vacancy
formation energy, in principle, varies during the evolution of the system, as
discussed by Le Bouar and Soisson in Ref. (97). These authors calculated C(MC)

v
in a different way for the simulation of TAE in Fe-Cu alloys: they suggested that the
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vacancy concentration in the box, C(MC)
v , should be calculated taking into account

the evolution of the formation energy during the experiment:

C(MC)
v =

fv

Nat · XFe
(4.3)

Here, fv is the fraction of time spent by the vacancy in a pure Fe environment (up
to the 2nn distance), and XFe is the proportion of Fe atoms in the box: XFe ' 1. fv
is directly measured during the simulation: in the beginning, when the alloy is still
a random solid solution, fv ' 0.5 . . . 1, but rapidly decreases by several orders of
magnitude as soon as clusters of Cu atoms are formed.

Other authors didn’t obtain satisfactory results using this relation. The most
probable reason is the relative uncertainty on several parameters involved at
different levels of the simulation. One example is, as mentioned, the exact numerical
value of the vacancy formation enthalpy H f

v , but also the exponential prefactor A in
Eq 4.1. Another uncertainty concerns the exact value of the vacancy jump attempt
frequency Γ0 in Eq. 2.5, that acts as a global time scaling factor if assumed to be
constant. For these reasons, some authors such as Vincent et al. in Ref. (178) or
Bonny et al. in Ref. (23), choose the value of H f

v in such a way that the results of their
simulation fit at best data obtained experimentally. This is equivalent to choosing a
priori one value of H f

v , for example the one predicted by ab initio or by the IAP used,
and apply a global correction factor fg on the simulation time. Time is thus, finally,
rescaled as:

treal = tMC ·
C(MC)

v

C(real)
v

· fg (4.4)

The AKMC model is considered as globally correct and consistent if, for given
experimental conditions, a unique value of fg can be found, in such a way that the
AKMC predictions are superposed with all the different experimental data, and the
value of fg should, ideally, be as close as possible to 1.

4.2 Results for Fe-Cr alloys

The simulation of TAE in the Fe-Cr system is especially suitable to be performed
with the ANN-based AKMC, for two reasons:

• Clusters of Cr atoms are coherent with the bcc matrix, so the description of the
system as a bcc rigid lattice is always consistent with the real crystallographic
structure of the material.
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Figure 4.1: Snapshots of the AKMC simulation box for the simulation of a TAE with an Fe-
20%Cr alloy at 500◦C. Black dots, in these images, represent the Cr atoms. The left image is
the initial state, that corresponds to a random solid solution, and the other images represent
later stages of the simulation in a chronological order.

• The vacancy is not strongly attracted by Cr, or Cr clusters once they are formed.
The simulation is thus never slowed down by the occurrence of vacancy
migration events that do not contribute to the re-distribution of atoms in the
system, typical of situations in which the vacancy is trapped by clusters of
solute atoms..

A TAE in a Fe-20%Cr alloy at 500◦C was simulated in a cubic box composed of
40x40x40 unit cells (128,000 atoms). The vacancy migration energies were calculated
using the ANN shown in Fig. 3.4, trained on the basis of NEB calculated barriers
using Olsson’s IAP (128). A number of 1.3 · 1010 AKMC events were computed
in, roughly, 2 CPU months with a standard workstation. Fig. 4.1 shows a couple
of snapshots of the simulation box. For this concentrated alloy, where the formed
clusters are not compact and not pure (29; 50; 59; 71; 82; 93; 95; 110–112; 185; 186),
and finally are surrounded by a depleted matrix that keeps a relatively high
concentration of Cr (3; 21; 92; 107; 122) ,the identification of clusters of Cr atoms
was performed with the algorithm proposed by Bonny et al. in Ref. (21): an atomic
site is considered to belong to a cluster if the local concentration of Cr is larger than
95%. At the peak of clusters density, the box contained 60 Cr-rich clusters, whereas
only 3 clusters remained when the simulation was stopped. Enough statistics were
thus collected for the nucleation and growth stages of the TAE, as well as for the first
phase of coarsening, whereas the simulation should be continued in a larger box to
properly account for the final phase of coarsening.

Results obtained with the AKMC simulation are compared with experimental data in
Fig. 4.2. The ANN-based approach is also compared with another AKMC algorithm,
where the vacancy migration energy is calculated with a Kang-Weinberg (KW)
approach (see Eq. 2.6). This simulation was also performed by Bonny et al. in Ref.
(23; 26), though in slightly different conditions, but results are almost identical. The
comparison between the results obtained with the two different AKMC algorithms
allows an evaluation of the effects of static atomic relations on the global process of
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Figure 4.2: Comparison of experimental average cluster radius (left) and cluster density
(right) with the results from Fe-Cr thermal annealing simulations with AKMC, using two
different migration energy calculation methods: Kang-Weinberg decomposition (above) and
ANN (below). The time on the top figures has been rescaled using H f

v =1.68 eV, whereas H f
v

=1.80 eV has been used for the bottom ones. The experimental values are taken from Refs.
(19; 81; 122)

precipitation, that are completely neglected in the KW approach (see section 2.2.3).
In Ref. (36), these results are also compared with an AKMC model where the vacancy
migration energy is calculated with a cluster expansion model (96), fitted using ab
initio data. The results shown in Fig. 4.2 can be so summarized:

• When using the KW driven AKMC, the choice of H f
v ' 1.5 eV fits Jacquet’s

experiments (81), but H f
v ' 1.68 eV is required to fit Bley’s (19) and Novy’s

(122) (this is the case shown in the upper panel of Fig. 4.2). However, for either
choice, while the predicted average cluster radius is in very good agreement
with the experiments, the final cluster density is overestimated by almost an
order of magnitude.

• When using the ANN-based AKMC, H f
v ' 1.8 eV fits the first point of
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all experimental works. It is very close to the numerical value predicted
by the potential: H f

v ' 1.81 eV for Fe-20%Cr alloys, using the method
described in Ref. (170). The rate of increase of the average cluster radius is
somewhat larger than in the experiments, but the results can be considered
in very good agreement with the experiments, especially considering the
discrepancy existing between experimental data-sets. In addition, the cluster
density is in much better agreement with the experiments than using the KW
decomposition. Note that the AKMC curves exhibit a jerky shape, because the
number of clusters is very small, varying between 3, 4 and 5, at the end of the
simulation. To have better statistics and a smoother curve, a larger simulation
box should be used, but the computational cost associated with an increased
size becomes prohibitive.

Nevertheless, not all results of the simulation compare one-to-one with the experi-
ments. Fig. 4.3 shows for example the evolution versus time of the Cr concentration
in the matrix and in the clusters from experiments and according to the ANN-based
AKMC. We see that Cr depletion in the matrix is faster in the simulation than in the
experiment (81; 122). Consistently, the build up of the equilibrium concentration of
Cr in the precipitates in the simulation is totally different from the experimentally
observed one and much faster. Essentially, in the simulation Cr clusters are created
in thermodynamic equilibrium since the beginning, this implying that the matrix is
rapidly depleted and the only re-adjustement is the emission of some Cr atoms. On
the contrary, the experiments suggest that precipitates are initially diffuse and only
at the end approach the equilibrium concentration. However, this discrepancy may
also partly be due to different definitions of clusters in the experimental analysis
as compared to the simulation, as well as to limitations in the precision of the
experimental technique (atom probe tomography in this case).

Finally, Fig. 4.4 shows data points for the Cr solubility limit in Fe, as predicted
by various MC schemes, all based on the use of Olsson’s interatomic potential as
Hamiltonian. The experimental phase boundary, as reviewed by Bonny et al. in
Ref. (22), is also shown. Metropolis MC methods (17; 192) are unable to provide the
kinetics of the diffusion process leading to precipitation. However, they can correctly
account for all contributions to the free energy of the system, as stemming from the
used Hamiltonian, including the vibrational contribution. They are therefore more
suitable and reliable to trace the phase diagram embodied by a given Hamiltonian
than AKMC models. In addition, if the possibility of displacing atoms off lattice
is switched off in the Metropolis MC, the vibrational and strain-field contributions
to the free energy are switched off too, and the "rigid lattice phase diagram" can
be thereby obtained. Both Metropolis MC options have been used to compute the
points in Fig. 4.4. It can be seen that the solubility limit data points that were
predicted by the ANN-based AKMC simulations are consistent with the Metropolis
MC results. This shows that the good thermodynamic description of the Fe–Cr
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Figure 4.3: Comparison of atom probe tomography (122) and small angle neutron scattering
(81) study of the experimental Cr concentration in the matrix and in the clusters with the Fe-Cr
thermal annealing simulations performed with the ANN-based AKMC.

system provided by Olsson’s potential is transferred almost untouched, via ANN
regression of migration energy barriers, to the AKMC model. The fact that the ANN-
based AKMC data points lie between those obtained by Metropolis MC in a rigid
lattice and in an off-lattice approximation can be explained because the ANN-based
AKMC allows for relaxation effects, but cannot allow for vibrational entropy effects,
visible especially at high temperature. We therefore conclude that our AKMC model
reproduces well the thermodynamic properties of the Fe–Cr system.

4.3 Fe-Cu alloy

The simulation of TAE in Fe-Cu alloys have represented and still represent a
challenge that many authors have tried to face, with different degrees of success.
One of the origins of the difficulty of simulating Cu precipitation in iron, especially
when using AKMC methods, is that pure Cu has an fcc crystallographic structure,
whereas ferritic Fe has a bcc structure. It is experimentally found (130) (145) that Cu
clusters are, at the beginning of the experiment, coherent with the Fe matrix, up to
a diameter between 4nm and 5nm. Assuming spherical clusters, this corresponds
to, roughly, 6000 atoms at the most. The lattice parameter of these clusters is also
almost identical to the one of Fe: about 2.86-2.87 Å. Growing further, they first
take intermediate structures (9R, then 3R), to finally become fcc from about 12nm
(142). This finding was also confirmed using molecular dynamics simulations, which
moreover suggested that the stability of Cu precipitates is enhanced by the presence
of vacancies inside (18). As a consequence, in the framework of the rigid lattice
description of the system proper to AKMC, only the coherent stage of precipitation
can be simulated, i.e. as long as Cu clusters are smaller than 5nm. The next stages
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Figure 4.4: Fe-Cr phase diagram, in the low Cr concentrations range, as predicted with
different atomistic Monte Carlo methods: rigid lattice Metropolis Monte Carlo (RL-MMC),
off-lattice Metropolis Monte Carlo (OL-MMC), and ANN-based AKMC. The method followed
to generate this diagram, as well as the MMC predicted phase diagrams, are described in Ref.
(192). The dashed line is a recent revision of the experimental diagram (22).

can only be simulated if the AKMC algorithm is modified to take crystallographic
changes into account, but this is not straightfoward, as discussed in section 2.2.

The interested reader can find a critical review of most of previous attempts to
simulate TAE with AKMC methods in the paper of Vincent et al. (178). In these
approaches, the vacancy migration energy was always calculated on a rigid lattice,
using a KW or broken-bonds formalism, generally fitted on the basis of energy data
calculated with ab initio. The conclusion by Vincent et al. is, however, that none of
the models reviewed can consistently predict Cu precipitation in Fe: depending on
the parametrization, either the average precipitate radius, or the precipitate density
is correctly predicted, but hardly ever both. In particular, most models tend to
overestimate the density.

Soisson and Fu (163) achieved a more satisfactory and consistent prediction. In
their AKMC model, the vacancy migration energy was also calculated using a
broken-bonds formalism, fitted to energy data calculated by density functional
theory methods. However, they were able to predict accurately the evolution with
annealing time of both the average precipitate radius and the precipitate density.
The main reason for their success is probably that their model, by incorporating a
very strong interaction between vacancies and Cu clusters, predicted that Cu clusters
of all sizes, including large ones (i.e. full coherent precipitates), were mobile, as a
consequence of complex series of vacancy hops at their surface or near the surface.
They also observed direct coalescence of clusters, as the result of migration. Their
results therefore suggested that the mobility of Cu clusters, as a consequence of
strong interactions with vacancies, can play a non-negligible role in the kinetics of
Cu precipitation in Fe. Mobility of clusters was also observed in previous AKMC
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simulations, though limited to the smallest clusters (97; 160). The diffusion of Cu
clusters, on the other hand, had never been considered as mechanism in classical
diffusion theory models for Cu precipitation (43; 64; 65; 109). The main limitation
of Soisson and Fu’s model was a "collateral effect" of the strong binding between Cu
clusters and vacancy: the latter remained trapped in the bulk of these clusters for a
very large fraction of the simulation time, thereby increasing enormously the CPU
cost and therefore limiting drastically the reach of the simulation, which had to be
stopped at a very early stage of the coherent precipitation.

In this thesis, TAE were simulated using the ANN-based AKMC algorithm described
in section 2.3. The essential differences with previous works is therefore that an
IAP is used as cohesive model, but the vacancy migration energy is not calculated
on a rigid lattice. The IAP used was developed by Pasianot et al. in Ref. (140).
This potential was designed to fulfil two major objectives: (1) to be consistent with
thermodynamics, by providing a correct prediction of the experimental Fe-Cu phase
diagram; (2) to provide an accurate description of the interaction between point-
defects and solute atoms, which is a necessary quality for the simulation of neutron
irradiation effects in steels. The potential has been proven to be able to predict the
correct final equilibrium for a thermal annealing experiment (34; 140), although its
ability to fully predict the kinetic path from a random solid solution has not been
evaluated yet. This was done in the work described in this section.

A first attempt to simulate TAE experiments on Fe-Cu alloys with the ANN-based
AKMC was published in Ref. (34) (Paper III in Appendix D). Due to the negligible
solubility of Fe in Cu, which is properly reflected by the interatomic potential used,
the Cu clusters formed during the simulation are from the beginning completely
pure and compact, similarly to the findings by other authors in previous AKMC
simulations (97; 163; 178). Note that the validity of this finding is still a debate
in the community, because Cu clusters are experimentally found to contain non-
negligible amounts of Fe, also without neutron irradiation (see e.g. Ref. (58; 117)).
Also consistently with previous work, in a full AKMC simulation with this method,
the vacancy is strongly attracted by Cu clusters, and remains trapped inside them for
a very large fraction of the AKMC events. The speed of the simulation is, therefore,
significantly slowed down (6; 34; 163; 178). For this reason, the ANN-based AKMC
algorithm has been modified to allow explicitly for the mobility of Cu clusters of all
sizes, while reducing drastically the CPU cost of the simulation, as compared to a
full AKMC simulation. This was achieved by combining the AKMC approach with
a coarse-grained approach, of object kinetic Monte Carlo (OKMC) type (48). As a
matter of fact, the AKMC is a priori the ideal approach, to describe atomic diffusion-
driven processes, because this algorithm does not make any assumption on the
coarser-scale mechanisms that determine the phenomenon that is being simulated:
these stem spontaneously from the physical approximation used to calculate the
migration energies and the underlying thermodynamic description of the system. As
mentioned, however, in a fully atomistic model the simulation can be tremendously

59



4.3. Fe-Cu alloy

slowed down, in terms of CPU time, in case of trapping of vacancies. We therefore
treated Cu clusters above a certain size as objects, defined by size and centre-of-
mass position, neglecting the details of their atomic configuration and therefore of
the hops performed by the single vacancy on their surface. Instead, these objects
are allowed to diffuse, or dissociate by emission of a single vacancy or a Cu-vacancy
pair, based on specific, size-dependent and thermally-activated frequencies, in much
the same way as in OKMC models (48). Also similarly to OKMC, Cu clusters
are allowed to coalesce if two of them meet during migration. Seamless matching
between the fully-atomistic model used to describe small Cu clusters and the coarser-
grain model used to describe larger Cu clusters is guaranteed by calculating the
diffusion coefficients and emission probabilities for the object-like clusters based on
specific, full AKMC simulations, on which another ANN has been trained. In this
way, the parameters of the model for large clusters are calculated in a way that is
fully consistent with the atomistic description. We show in what follows that this
"hybrid" AKMC approach proves both computationally efficient and physically very
accurate, thanks also to the high quality of the interatomic potential, which is here
exploited in the most complete way possible.

The remaining part of the section is organized in the following way. In section
4.3.1, the fundamentals of the hybrid AKMC are briefly described. In section 4.3.2,
this original algorithm is applied to the simulation of several TAE in Fe-Cu, for
different alloy compositions and temperatures. Results are compared with sets of
experimental data. Finally, in section 4.3.3, the mechanism of Cu precipitation that
stems out of the model is analysed, and compared with mechanisms observed by
other authors.

4.3.1 Hybrid atomistic kinetic Monte Carlo algorithm

A complete description of the hybrid AKMC algorithm has been published in a full
length paper: Ref. (38) (Paper VII in Appendix H). Here, only the fundamentals of
this new algorithm are briefly summarized:

• At the beginning of the simulation, the alloy is a random solid solution, and no
Cu objects are defined. The regular ANN-based AKMC algorithm is applied
without modification. The ANN quality of prediction is shown in Fig. 3.4.

• At regular steps, the simulation box is analysed, and the list of clusters of Cu
atoms is made. Clusters are defined as groups of atoms that are linked by 1nn
or 2nn bonds. Clusters bigger than a predefined minimum size are re-shaped
into a perfect sphere, and considered as objects for the rest of the simulation.

• The minimum size to define cluster objects was chosen to be a number of 15
atoms, because it corresponds, in bcc, to a central atom surrounded by other
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atoms filling completely its first and second shells of close neighbours (so it is
very stable), thereby being the smallest size describable as a sphere, and it is
larger than the critical size for nucleation of Cu clusters in our AKMC, at least
for temperatures lower than 700◦C.

• Once the vacancy enters in contact with one atom of a cluster object, new events
are defined in replacement of the vacancy migration events. These events are
briefly described below. The speed of the algorithm is tremendously enhanced,
because the new defined events are very simple to apply, and are defined in
such a way that they approximate at best the complex series of events that
would, in regular AKMC, take place.

• This algorithm is therefore named hybrid AKMC, because the rigorousness
of the AKMC algorithm is globally kept, except for events concerning big Cu
clusters.

The new events defined for Cu clusters, are the following:

Dissociation: The cluster dissociates most of the time by the emission of the sole
vacancy. In accordance to existing OKMC algorithms, a second dissociation
mechanism, via the emission of a VCu pair, was also defined, as a simpli-
fication of the Ostwald ripening mechanism for coarsening: It is the only
mechanism that can result to a complete dissolution of the cluster.

Migration: The whole cluster migrates to a 1nn position. This process is observed
in the ANN-based AKMC, as the consequence of complex series of vacancy
jumps at the surface of the clusters, similarly to Soisson and Fu findings with
their own model (163).

Frequencies were calculated for the two events, for all coherent clusters sizes (up to
a diameter of 5nm), with series of independent AKMC simulations. Following the
procedure described in Ref. (138) and Ref. (139) (Paper VIII in Appendix I), diffusion
coefficients and lifetimes of VCuN clusters where calculated for N = 15, . . . , 6000.
These calculations had to be performed, most of the times, at high temperature, to
avoid too strong trapping of the vacancy in the bulk of the cluster that would make
the calculation prohibitive in term of CPU time. Extrapolation with Arrhenius plots
was therefore necessary to obtain the required values at the desired temperature.
Extrapolation was improved, in practice, with the help of artificial neural networks.

4.3.2 Simulation of thermal annealing experiments

Several TAE’s could be simulated, up to the end of the coherent stage, with the
hybrid AKMC algorithm described in section 4.3.1. Fig. 4.5 shows snapshots of
the simulation box for one experiment. All results obtained are shown in Fig. 4.6.
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Figure 4.5: Snapshots of the hybrid AKMC simulation box for the simulation of a TAE with an
Fe-1.34%Cu alloy at 500◦C. Red dots, in these images, represent the Cu atoms. The left image
is the initial state, that corresponds to a random solid solution, and the other images represent
later stages of the simulation in a chronological order.

Cu content T Ref. box Nbr. AKMC fv fg
(at%) (◦C) size (l.u.) events Eq. 4.3 Eq. 4.4
1.34 500 (66; 67; 86; 109; 142) 64 1.4E9 1.5E-5 0.60
1.34 500 (66; 67; 86; 109; 142) 128 4.2E9 1.5E-5 0.60
1.34 600 (142) 64 3.5E9 1E-4 0.60
1.34 700 (142) 64 6.3E9 8E-4 0.60
1.1 550 (30) 128 15.3E9 4E-5 1.30
0.6 500 (178) 128 30.2 2.7E-5 0.10

Table 4.1: Summary of TAE for Fe-Cu that were simulated with the hybrid AKMC, and of the
sets of experimental data used as comparison reference.

Fig. 4.6 shows at a glance that the predictions of the hybrid AKMC model are in very
good agreement with experimental data. For example, the increase of the average
precipitate radius versus time in Fe-1.34at%Cu is very closely reproduced at all
three temperatures investigated (500, 600 and 700◦C). In the case of the experiment
at 500◦C the measured evolution of the density of precipitates is also provided
and the model very nicely predicts nucleation (density increases), growth (density
reaches a peak and remains temporarily constant while the radius keeps increasing)
and coarsening (density decreases while the radius keeps increasing, because large
precipitates grow at the expense of smaller ones). The curves obtained in the
simulation box with sides of 64 lattice parameters are jerky because, especially when
the coarsening stage is reached, only a few precipitates remain in the box and the
disappearance of a small one to make a big one produces significant oscillations in
the overall density. In particular, step-like increases/decreases are observed: this is
a clear indication that the predicted mechanism leading to the density decrease and
radius increase is the coalescence of mobile precipitates. Simulations conducted in
the larger box (side of 128 lattice parameters) allow the jerks to be damped, thanks to
better statistics (larger number of precipitates in the box). In all cases, the simulations
finished with one single cluster in the box, of varying size, consistently with the
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Figure 4.6: Comparison of the experimental average cluster radius (left) and cluster density
(right) with the results from Fe-Cu thermal annealing simulations with the hybrid AKMC
algorithm. Dots are experimental values taken from Ref. (30; 66; 67; 86; 109; 142; 178). For the
case Fe-1.34%Cu at 500◦C, the (X) mark indicates the simulation conducted in a 128x128x128
box.

increasing solubility limit with temperature.

The annealing of Fe-0.6at%Cu at 500◦C leads to a precipitate density significantly
smaller than in the above case, at all stages, consistently with the halved solute con-
centration: the simulation could only be meaningfully performed in a 128x128x128
unit cells box with 4 million atoms. These simulations were particularly demanding
in terms of CPU time, also because the Cu concentration is lower and the acting
thermodynamic force correspondingly weaker. Nonetheless, good agreement with
experimental data is achieved.

Finally, in the simulation of the annealing of a Fe-1.1at%Cu alloy at 550◦C we
observe that the first two experimental points are not predicted by our model. The
good agreement with experiments obtained in all other cases, however, gives us
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sufficient confidence to believe that those two experimental points are probably
affected by large uncertainty, possibly as a consequence of the limited resolution
of the experimental technique used, i.e. small angle neutron scattering, which is not
sensitive to precipitates below 1nm in diameter and therefore can be supposed to
have overestimated the average size at the early stage of the precipitation, especially
because in the experiment there was no support from any other complementary
technique. This is confirmed by the fact that the third experimental point, still within
the limit of coherent precipitation, is correctly reached by the model, and that a visual
extrapolation of the curve will lead to reach the fourth point as well, even though this
lies well into the regime where crystallographic transformation must have started,
i.e. strictly speaking outside the range of validity of the model. Our model, as most
experimental data, is roughly consistent with a dependence of the radius on a 1/2
power of time during growth that decreases to a dependence on a 1/3 power of
time during coarsening, as should be expected (142; 178) (in logarithmic scale this
is a roughly linear dependence, though with gradual change of slope), while no
regression interpolating the four experimental points from (30) will respect such a
law.

4.3.3 Analysis of the mechanism of Cu precipitation in Fe

An analysis of the results presented in section 4.3.2 strongly supports the idea
that the mobility of Cu clusters and even precipitates plays a significant role in
the process of precipitation in Fe, similarly to the conclusion of Soisson and Fu
in Ref. (163). To highlight this conclusion, two extra simulations were conducted
for a Fe-1.34at%Cu alloy at 500◦C, as shown in Fig. 4.7, in which some events
where deliberately prohibited, namely: in one, the emission of VCu pairs from
Cu clusters was suppressed; in the other, the migration frequency was artificially
modified in order to progressively inhibit the migration of the biggest clusters (more
than 100 atoms). Compared to Fig. 4.6, in the former case the average precipitate
radius is unsurprisingly somewhat larger and the average precipitate density almost
unaltered, the results remaining in good agreement with experiments. In the
latter, however, the results deviate significantly from the experimental data: from
a certain annealing time on, the average precipitate radius ceases to increase, and
the clusters density ceases to decrease, thus remaining higher than the experimental
one. Therefore, it is only by allowing large clusters to be mobile that experimental
results can be matched by the model. The one-by-one emission of VCu pairs, on the
contrary, is not a sufficiently efficient mechanism to enable coarsening as observed
in experiments.
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Figure 4.7: Thermal annealing experiment on a Fe-1.34at%Cu alloy at 500◦C. Parameters in the
model were changed compared to Fig. 4.6: (a) the probability for clusters objects to dissolve
by the emission of a CuV pair is set to 0; (b) The Cu clusters migration frequency is modified
to inhibit the migration of clusters bigger than 100 atoms.

4.4 Conclusions

In this chapter, the ANN-based AKMC algorithm was successfully applied to the
simulation of TAEs for two representative alloys of importance for the field of
nuclear material science. In both cases, good comparison with different sets of
experimental data was achieved, which shows that this physical model is globally
satisfactory, and that the most important mechanisms are properly taken into
account. This can be attributed to two reasons: (i) the IAP used, that are the only
physical input in the model, are correct from the thermodynamic viewpoint and,
clearly, also adequate to describe the kinetics of precipitation processes (ii) the "filter"
introduced by NEB and ANN between the predictions of the potential and those of
the model is not such that the good qualities of the former are lost.

For the case of Fe-Cr alloys, a comparison with results obtained using a Kang-
Weinberg approach, where relaxation effects are disregarded, highlighted for in-
stance the importance of calculating the vacancy migration energy rigorously, that
is achieved thanks to the use of artificial neural networks trained on the basis of
relevant energy data.

The special case of Fe-Cu alloys was successfully tackled thanks to a "hybridization"
of the AKMC algorithm with a coarse-grained model, which allowed thermal ageing
experiments to be simulated in an appreciatively better way than the existing
approaches used by other authors. The obtained results allowed, also, to shed some
light on the mechanism of Cu precipitation in Fe, by suggesting that the mobility
of Cu clusters containing one vacancy plays a central role in the precipitation
mechanism, confirming the speculations put forward by other authors. This feature
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of the process was so far never included in theoretical models, thereby possibly
explaining why no fully satisfactory prediction of the kinetics of Cu precipitation
in Fe could be achieved in the past.

The results obtained and presented in the chapter therefore open the way for the
modelling, in the future, of either more realistic systems, or taking the effects
of neutron irradiation into account. In the next chapter, the ANN-based AKMC
algorithm is generalized to allow several point-defects to be introduced in the
simulation, which is the necessary condition for the modelling of the effects of
neutron irradiation in metals.
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5
Simulations
with interacting
point-defects

The previous chapters focussed mainly on AKMC algorithms where only one
vacancy is introduced in the system, an approach that is only applicable to the
simulation of thermal annealing experiments, as in chapter 4. The simulation of
irradiation damage in metals, however, requires simultaneous treatment of several
interacting vacancies, as well as their counterpart, i.e. self-interstitial atoms (SIA).
These point-defects and their clusters are created for example as debris after atomic
collision cascades, initiated by impinging high energy neutrons or ions, in much
larger quantity than the equilibrium concentration dictated by thermodynamics.
In these conditions, the ageing of the material does not correspond to equilibrium
states; instead, it corresponds to a non-equilibrium steady state, driven by external
forces (104). SIA move very quickly, compared to vacancies, and recombine with
the latter when they meet at a close enough distance, thereby decreasing the amount
of mobile defects. In addition, these defects affect the diffusion of chemical species.
For Fe-based metals, ab initio results indicate that P (49), Mn (175) or Cr (129) are
very likely to diffuse via both SIA and vacancy migration mechanisms. On the
contrary, elements such as Cu, Ni and Si, that are not strongly bound to SIA’s, are
likely to diffuse via vacancy migration mechanisms only, as under thermal ageing
(174; 175). It is vital, if irradiation processes are to be described, that a correct
treatment of both point-defects is introduced in AKMC simulations, including an
acceptable description of their mutual interactions and of their individual or clusters
migration properties. Since AKMC models are inherently rigid lattice approaches,
however, this poses a number of methodological and practical problems that will be
discussed and partially tackled in this chapter.

Section 5.1 considers the problem of the introduction of multiple vacancies, more
precisely of the study of their clusters, with the purpose of calculating their diffusion
properties that are a required input for OKMC simulations. In that section, the
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general methodological and practical problems are discussed, and the AKMC
algorithm presented in sections 2.2 and 2.3 is successfully generalized, allowing for
the introduction of any number of vacancies.

The problem of SIA is discussed in section 5.2. The complexity of full generalization
of the AKMC in this case is first discussed and evaluated. Then, a simplified
approach to simulate isochronal annealing experiments, with a reasonably accurate
description of vacancy-SIA recombination, is finally proposed.

5.1 Study of vacancy clusters using AKMC simulations

Parameters such as diffusion coefficients and lifetimes of point-defect clusters are
a necessary input for OKMC simulations of irradiation processes in metals. As
already discussed in section 4.3, AKMC methods are a priori the ideal approach to
determine these parameters, especially in the case of vacancy clusters, the diffusivity
of which cannot be studied using molecular dynamics tools. In general, they
are ideal to describe atomic diffusion-driven processes. As a metter of fact, this
algorithm does not make any assumption on the coarser-scale mechanisms that
determine the phenomenon that is being simulated: these stem spontaneously
from the physical approximation used to calculate the migration energies and the
underlying thermodynamic description of the system.

The AKMC algorithm presented in chapter 2 must, however, be generalized, to allow
the introduction of several vacancies in the simulated volume. Early attempts in this
direction were already achieved by Pascuet et al. in Ref. (138) and Ref. (139) (Paper
VIII in Appendix I), though limited to a small number of vacancies, as a first "careful"
step not too far from the single-vacancy case. The methodological and practical
problems encountered with the introduction of more vacancies, ideally up to any
number, are discussed where the ANN-based AKMC algorithm is generalized. Next,
the competitiveness of envisaged migration mechanisms is analysed in section 5.1.2,
in order to determine the most important events that should be defined in the
generalized AKMC algorithm. Finally, diffusion coefficients for vacancy or vacancy-
copper clusters are calculated in sections 5.1.3 and 5.1.4, while section 5.1.5 shows
how nickel, i.e. a third chemical element, in addition to vacancies, can also be
introduced in the system.

5.1.1 AKMC Methodology

The simplest, and also most natural, way to generalize the AKMC algorithm,
described in section 2.2 for the single-vacancy case, is to consider vacancies as
an additional chemical species. As depicted in Fig. 5.1, the LAE associated to a
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Figure 5.1: Coding of the local atomic environment (LAE) describing a vacancy migration
event as a string of integers. Other vacancies in the LAE are described by an integer, and are
therefore considered as another alloying element.

vacancy migration event is then calculated describing the other vacant sites with
an integer that is not already attributed to a chemical element of the alloy ("0" in
the figure). As discussed in section 2.2.2, the AKMC algorithm inherently makes
the assumption that all states of the system that can be encountered are stable: any
state of the system, after relaxation with a CG method, remains identical in the rigid
lattice world. This condition was in practice always fulfilled for single-vacancy cases
(according to the IAP used in the thesis). In principle, the introduction of several
vacancies in the AKMC simulation box is straightforward as long as this condition
remains fulfilled:

• Possible migration events are pre-defined, similarly to the single-vacancy
case. The envisaged examples are depicted in Fig. 5.2. The migration
to a first nearest neighbour (1nn) position of one individual vacancy, the
others remaining immobile, is the natural extension of the single-vacancy case.
Because here many vacancies are close to each others, the migration to a further
away distance (2nn distance on the figure) is also possible a priori, as well as
the joint migration of several vacancies at the same time: these types of event
should be evaluated to decide if they must be taken into account or not.

• The NEB method can be used without modification to calculate the migration
energies associated with any of the jumps depicted in Fig. 5.2. The presence of
other vacancies within a close distance makes, however, the calculation more
delicate in some cases, because of additional deformations of the lattice.

• An ANN can be trained to predict the migration energy, given as input the
description of the LAE as a string of integers. The additional difficulty here,
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Figure 5.2: Examples of migration events defined in the AKMC simulation, for a bcc
crystallographic structure. (a) Migration of a vacancy to a 1nn position. (b) Migration of a
vacancy to a 2nn position. The condition to consider this event is that at least two atomic sites
within those denoted at 1,2,3 and 4 on the figure are occupied by a vacancy. (c) Joint migration
of two close vacancies to respective 1nn positions.

compared to the single-vacancy case, is that the relationship between the LAE
and the migration energy is a priori harder to fit numerically, because of the
stronger deformations of the lattice provoked by the vacancies. In addition, the
LAE contains an additional integer, "0" in Fig. 5.1, i.e. an additional possible
value for the configurational variables, which makes the problem even harder
from the numerical point of view.

The possible occurrence of unstable states can be taken into account in the algorithm,
at the cost of a redefinition of some migration events, as depicted in Fig. 5.3. In this
example, starting from a stable state, the final state associated with a migration event
is in reality unstable: with CG relaxation, one atom, that can be a priori anywhere
in the volume, spontaneously migrates to a vacant site. Ideally, these non-physical
transitions should be removed from the list of events, and redefined as depicted in
Fig. 5.3. One practical condition to achieve this redefinition is to detect, one way or
another, during the AKMC simulation, spontaneous transitions. Preliminary studies
have shown that ANNs can be efficiently trained for this purpose: these ANNs,
given the LAE associated to a migration event, returns as output either the integer
"1" or "0", telling if the migration is spontaneous or not, respectively. The second
practical requirement is to train another ANN to predict the migration energies
associated with the redefined events.

5.1.2 Competition between migration events

The following study was performed in order to evaluate the probability of complex
migration events such as 2nn jumps (b) or simultaneous jumps (c), in addition to
simple 1nn jumps (a). In the simulations of Cu-vacancy clusters (see section 5.1.4)
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Figure 5.3: Example of redefinition of migration event in the AKMC simulation, because of
the instability of states that can be encountered. State A is the initial one, assumed to be
stable. Migration from state A to state B is one of the events defined during the simulation,
following the pre-defined procedure. If state B is actually unstable, because for example of the
spontaneous migration of one vacancy to a close neighbouring position, this migration from
state A to state B does not correspond to a physical path followed by the system. It should
therefore be removed from the list of events, and replaced by the migration from state A to
state C.

100 configurations were randomly extracted, for 30 different cluster compositions
(3000 configurations were thus studied). For each configuration, the complete list of
possible events of type (a), (b) and (c) was generated and the corresponding energy
barriers were calculated with the NEB method. Type (a) and type (b) events are easily
defined, and the maximum numbers of these events, removing irrelevant events
were vacancies exchange their position with another vacancy, is equal to 8 times or
6 times the number of vacancies in the cluster at the most. Type (c) events, however,
are tremendously more numerous, because the number of possible joint migrations
of vacancies explodes if the number of vacancies increases. For this reason, the study
has been limited to a few examples of possible events of this type:

• Only jumps of two vacancies to 1nn positions were considered;

• The distance between the migrating vacancies was limited to the 2nn distance;

• The distance between the migrating atoms was, also, limited to the 2nn
distance.

In total, roughly 50000 energy barriers were calculated and the corresponding
relative probability for events type (a), type (b) or type (c) could thus be evaluated,
at different temperatures, in terms of jump frequencies (Eq. 2.5). The conclusion
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was that type (a) events are clearly dominating the other events. Type (b) events
have a probability to take place that varies between 2.5% and 15%, depending on
temperature and cluster composition, whereas type (c) events are extremely rare,
with a probability between 0.001% and 0.01%. It is therefore clear that the migration
of Cu-vacancy clusters is mainly driven by the migration of individual vacancies
to a 1nn position and therefore only these types of events where retained in the
calculations reported in what follows. Migration jumps to a 2nn position can in
some cases play a minor role, but are very unlikely to change the global migration
properties in a significant way. Note also that these probabilities were computed
assuming a constant attempt frequency in Eq. 2.5. Jumps to a 2nn position likely
have a lower attempt frequency than jumps to a 1nn position. As a consequence, the
real probability for these jumps is likely to be even smaller than 15%.

For the sake of completeness, this study has been complemented by one with a
different approach. A few configurations were also used as input for the monomer
method proposed by Ramunni et al. in Ref. (148), that can be regarded as an
ameliorated version of Henkelman’s dimer (72). As already discussed in section
2.2.3, these methods allow the energy landscape to be explored, searching for
possible transitions from a given initial state. No other migration events than type
(a) were found, consistently with our conclusions.

5.1.3 Vacancy clusters

In this section, we present the results of using the algorithm described in section
5.1.1 to calculate diffusion properties and lifetime of vacancy clusters in pure Fe.
The first step is to generate a table of examples of vacancy migration energies versus
the corresponding LAE’s, that will be used to train the ANN. In this case, the
only species other than Fe defining the LAE of the migrating vacancies are other
vacancies. The interatomic potential for Fe used for the NEB calculations was the
one proposed by Ackland et al. in Ref. (1). Two categories of LAEs were generated
at random, in equal proportion, as suggested in Ref. (35) for the single-vacancy case:
(i) LAEs corresponding to vacancies dispersed in the volume as a random solution;
and (ii) LAEs corresponding to vacancies in clusters. This ensures that the ANN is
not specialized for a specific category of configurations, and therefore develops an
ability to make accurate predictions for never-seen LAE’s. Two different ANNs were
trained: one on LAEs containing from 3 to 21 vacancies; another on LAEs containing
from 15 to 60 vacancies.

The quality of the prediction, after training using the GIACA algorithm described
in section 3.4.2, is shown in Fig. 5.4. Predictions are shown for cases where
vacancies are either dispersed in the volume, or in cluster. We see that ANN
predictions are in general very accurate, showing that the methodology described
in section 5.1.1 is applicable, even when large vacancy clusters are introduced in
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Figure 5.4: ANN quality of prediction for the vacancy migration energy in pure Fe. The ANN
was trained with a database of 50,000 examples containing an equal number of configuration
where vacancies are dispersed in the volume and where vacancies are in cluster. Predictions
are shown for the separate cases, for clarity. The GIACA algorithm converged after connection
to the ANN of the 9th nearest neighbours (173 atomic sites), and the addition of 16 hidden
nodes.

the AKMC simulation. Predictions for the case of dispersed vacancies, however,
are less accurate when the number of vacancies is large. This is not attributed
to a failure of the methodology, but rather to two facts: (i) configurations with
vacancies in clusters tend to be more easily classified into a limited number of
similar families, as compared to the combinatorial number of possibilities given
by random vacancy distributions; (ii) randomly generated configurations with
vacancies randomly distributed are likely to correspond to very unrealistic cases,
in which odd lattice distortions are produced. One example is the artificial creation
of branches of atoms floating in a vacant environment. Such configurations in reality
are extremely unlikely to be encountered during an AKMC simulation, because
thermodynamic driving forces, correctly embedded in the model, will make nearby
vacancies cluster and will give these clusters a compact shape.

In the case of clustered configurations, even for large numbers of vacancies, unstable
configurations were very occasionally observed. As an order of magnitude, the
proportion of unstable states, for clusters of 60 vacancies in pure Fe, was observed to
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Figure 5.5: Evolution with the number of vacancies in the clusters of the diffusion coefficient
calculated with AKMC simulations, at three different temperatures. Dashed lines show cluster
radii that correspond to shells of neighbours (first nearest neighbours 1nn, 2nn and 5nn) that
are completely filled by vacancies if the shape of the cluster is spherical. Values for clusters of
2, 3, 4, 5 or 6 vacancies are taken from Ref. (138; 139)

be around 5% at the most. These configurations, if encountered, were discarded from
the ANN training table, and the occurrence of spontaneous migration events, that in
principle requires the redefinition of the pre-defined migration events as depicted
in Fig. 5.3 can thereby be ignored. Ideally, a post-analysis should be performed
after every AKMC simulation to verify the validity of this hypothesis: states of the
simulation box are randomly extracted and relaxed with CG, to compute statistics
about the occurrence of unstable states. Regarding the fact that unstable states are
not often observed for randomly generated clusters, and that these configurations
are the most representative of AKMC simulations aimed at calculating diffusion
coefficients of clusters, no such post analysis was performed.

As an application of the AKMC model described above, diffusion coefficients of
clusters of 3 to 60 vacancies were calculated with series of 100 independent AKMC
simulations, at different temperatures, following the procedure described in Ref.
(138) and Ref. (139) (Paper VIII in Appendix I). The complete series of data obtained
can be found in Appendix A. Fig. 5.5 shows the evolution of the diffusion coefficient
with the number of vacancies in the cluster, at three different temperatures. We
see that the diffusion coefficient is not continuously decreasing for increasing size.
Two local minima, for instance, are visible on the figure. They translate the fact that
some clusters are more stable than others, and are consequently less mobile. The
increased stability of these clusters is explained by the fact that they correspond to
numbers of vacancies that form a compact structure, filling completely some shells
of close neighbors around the geometrical centre of the cluster. We see on the figure
that the most stable clusters are close to the perfect sphere on the 1nn (first nearest
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Figure 5.6: ANN quality of prediction for the vacancy migration energy in the Fe-Cu system.
The ANN was trained with a database of 50,000 examples containing an equal number of
configuration were vacancies and Cu atoms are dispersed in the volume and were vacancies
are in clusters. Predictions for both types of configurations are mixed on the figure. The
GIACA algorithm converged after connection to the ANN of the 9th nearest neighbours (173
atomic sites), and the addition of 12 hidden nodes.

neighbours), 2nn and 5nn sense, at all temperatures. As a consequence, clusters of
60 vacancies are found to be almost equally mobile as clusters of 15 vacancies, and
clusters of intermediate sizes are more mobile, by up to two orders of magnitude
(depending on temperature). During the AKMC simulation, all clusters larger than
6 vacancies were found to be very long-lived, and did not dissolve until after long
series of AKMC events. A proper calculation of the lifetime therefore requires longer
simulations to be conducted, and at high temperatures, in order to have enough
statistics. For the moment, therefore, there are no results concerning the stability of
vacancy clusters larger than size 6.

5.1.4 Cu-vacancy clusters

The same procedure as in section 5.1.3 was followed to calculate diffusion coeffi-
cients of Cu-vacancy clusters in an otherwise pure Fe matrix environment. The
potential used for the NEB calculations was taken from (140). The ANN was trained,
similarly to section 5.1.3, on the basis of examples where vacancies and Cu atoms are
either dispersed in the volume or in cluster. The number of vacancies in this case was
limited to 12, and the composition of the clusters was restricted to NCu/NVac = 1/3
to 3, where NCu is the number of Cu atoms in the cluster and NVac is the number of
vacancies.

The quality of the prediction, after training, is shown in Fig. 5.6. As discussed
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Figure 5.7: Diffusion coefficients calculated with 100 independent AKMC simulations, at
900K, for Cu-Vac clusters in a pure Fe matrix.

in section 3.4.4, the "1-of-c coding" convention is more appropriate to formulate
the LAE as ANN input variables, because the configurational variables can take 3
different values. Here, 2 bits are necessary, and the number of input variables is thus
two times as large as the number of atomic sites included in the LAE. We see that the
predictions are very accurate in all cases, independently of the spatial arrangement
of the vacancies. Diffusion coefficients and lifetimes were also calculated with series
of 100 independent AKMC simulations for copper-vacancy clusters. The complete
series of data obtained can be found in Appendix A, and are summarized in Fig.
5.7 for one temperature. We see that, the number of vacancies being constant,
the diffusion coefficient is generally decreasing if more Cu atoms are added to the
cluster. Also, the number of Cu atoms being constant, the diffusion coefficient
generally decreases if more vacancies are added. These trends, however, are not
always respected. This can be explained by two facts: (i) similarly to vacancies in
pure Fe, "magic" numbers of vacancies and Cu atoms correspond to more stable
configurations (these are, however, more difficult to identify than in the case of only
vacancies); (ii) the global migration mechanism of the cluster is the consequence of
a sequence of elementary migration events, that can either be added or removed
if a couple of elements of the cluster are either added or removed. We therefore
expect the dependence of migration properties to deviate from general trends for
small sizes, but to become more self-consistent if the size of the cluster is increased.

The complete tabulation of all possible clusters compositions is a computationally
extremely demanding work, although of little conceptual difficulty, and interpola-
tion/extrapolation from the data for other compositions can be delicate, because
of the non-respect of general trends in particular cases. For this reason, a more
convenient approach is to design a general numerical regression of the diffusion
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Figure 5.8: prediction of the diffusion coefficient of Cu-Vac clusters using function f1 in Eq.
5.2, implemented by an artificial neural network. (left) For small clusters with 3 to 9 vacancies.
The average error of prediction, in the natural logarithm space, is 0.197, and R2 = 0.987. (right)
For big Cu clusters with one vacancy. The average error of prediction, in the natural logarithm
space, is 0.106, and R2 = 0.998.

coefficient D and lifetime ν based on the following choice of variables:

ln(D) = f1(NVac, NCu, 1/kBT) (5.1)
ln(ν) = f2(NVac, NCu, 1/kBT) (5.2)

Such functions are fitted on large sets of data and therefore potentially more accurate
than extrapolations/interpolations with simple functions based on subset of the
available data. For example, using the Arrhenius functions (ln(D) versus 1/kBT)
fitted on data concerning only one cluster at a time, and only varying temperature,
the error bar associated with each regression is likely to be larger than for a function
such as those in eqs. 5.2 and 5.2, fitted to all data. The functions f1 and f2 need,
however, to be determined, using a sufficiently powerful and general regression
technique. ANNs are again amongst the best candidate. An example of f1 fitting
using an ANN is shown in Fig. 5.8, obtained by training on the data of Tab. A.1
and Tab. A.2 and Tab. A.3 for NVac < 10. We see that the predictions are accurate
on the average, although not satisfactory for all individual cases. Better accuracy
can be probably achieved with a larger training dataset. More accurate fitting was
already obtained in Ref. (35) (Paper IV in Appendix E), as shown in Fig. 5.8, for the
simulation of thermal annealing experiments in the Fe-Cu system: there, function
f1 was designed to predict the diffusion coefficients of VCu clusters, with only one
vacancy.

5.1.5 Fe-Ni-Cu alloy

A similar procedure as followed in sections 5.1.3 and 5.1.4 can in principle be
followed for this ternary alloy, using the IAP developed by Bonny et al. (24; 25),
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Figure 5.9: Generation of LAEs for the training of ANN in the Fe-Cu-Ni system. Red circles
are Cu atoms, and green circles are Ni atoms. (a) configurations without Ni are taken from
the table used for the Fe-Cu system; (b) Ni atoms are randomly included in the same LAE’s,
but never in positions already occupied by either vacancies or Cu atoms; (c) Ni atoms are
randomly included in the same LAE’s, but never in positions already occupied by vacancies.

which extends to the Fe-Ni-Cu system the Fe-Cu potential developed in (140):
the presence of an additional chemical species can straightforwardly be taken into
account in the model. The design of an accurate ANN to predict the vacancy
migration energy, however, is more delicate because the numerical complexity of the
problem increases. The ultimate objective when considering this alloy is to evaluate
the effect of Ni on Cu precipitation in Fe, enhanced by neutron irradiation. It is
therefore important to ensure that the influence of Ni on the migration energies
is properly understood by the ANN, but at the same time that the ANN remains
accurate if, as a limiting case, no Ni is found in the LAE. To provide direct ways
to evaluate this ability, a different procedure was followed to generate the training
table. The latter was composed of three different parts, in equal proportion:

• The first part is a collection of examples taken at random from the table
generated for the Fe-Cu system. These LAE’s, therefore, do not contain Ni
atoms.

• For the second part, the same examples chosen in the first part were used, but
a small number of Ni atoms were added at random positions of the LAE, as
depicted in Fig. 5.9b. Ni atoms were however not placed at positions already
occupied by either a vacancy or a Cu atom. These new configurations therefore
correspond to Cu-vacancy clusters migrating in a dilute Fe-Ni environment.

• For the last part, the same procedure as for the second part is followed, but
Ni atoms are not forbidden to replace Cu atoms. The formation of Cu-Ni-Vac
clusters is therefore allowed, as shown in Fig. 5.9c.
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Figure 5.10: ANN quality of prediction for the vacancy migration energy in the Fe-Cu-Ni
system. Predictions are also shown for Fe-Cu configurations, i.e. without Ni, for comparison.
Using as training set a database of 75,000 examples, the GIACA algorithm converged after
connection to the ANN of the 5th nearest neighbours (77 atomic sites), and the addition of 14
hidden nodes.

The quality of prediction, after training, is shown in Fig. 5.10. Again, the "1-
of-c coding" convention is more appropriate to formulate the LAE as ANN input
variables: here, 3 bits are necessary, and the number of input variables is thus three
times as large as the number of atomic sites included in the LAE. The mean error of
prediction is somewhat larger compared to the Fe-Cu case, but remains reasonably
acceptable. Predictions for Fe-Cu configurations are also shown. The mean error
of prediction, for these cases, is comparable to the specialized ANN shown before
in Fig. 5.6. It is therefore clear that predictions are less accurate for the Fe-Cu-Ni
system because of the higher complexity from the numerical point of view, due to
an additional chemical species that must be taken into account. As an additional
test, Fig. 5.11 shows the comparison of the difference in the migration energy due
to the presence of Ni atoms in the LAE, replacing Fe atoms. This comparison can be
performed by computing the difference between the energy barriers from the second
and first parts of the table of examples. This difference is predicted with the same
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Figure 5.11: ANN quality of predictions of the change in energy barrier caused by the presence
of Ni atoms.

accuracy, globally, as migration energies themselves, which shows that the effect of
Ni on the energy barrier is globally understood by the ANN. From a physical, rather
than numerical, point of view, it is difficult to draw any conclusion from just these
numbers on the effect of Ni on the diffusion coefficients of Cu-vacancy clusters and
on Cu precipitation in general, because positive and negative differences seem to
compensate. So, whether or not Ni influence Cu precipitation in the model and how
will depend on the detail of which jumps are affected in one sense or another. Only
a full simulation can tell whether such effects exist and in which sense it goes.

Diffusion coefficients and lifetimes of Vac-Cu-Ni clusters can thus be calculated
following the same method as described in the previous sections. For convenience,
numerical regressions similar to f1 in Eq. 5.2 and f2 in Eq. 5.2 can be designed: only
a new variable, the number NNi must be added.

5.2 Introduction of self-interstitial atoms and their clus-
ters in the AKMC simulation

The last necessary ingredient to simulate the effects of irradiation in metals is
to allow for the presence of self-interstitial atoms (SIA). This point-defect is the
counterpart of the vacancy, because a self-interstitial atom corresponds to an
additional atom as compared to the number of available lattice positions. In metals,
this extra atom is accommodated by sharing lattice site with another atom, i.e. two
atoms are found in the atomic volume associated with only one atom in the perfect
lattice. Very few attempts have been made in the past to include SIAs in AKMC
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models, for example in Ref. (13; 91; 162; 176; 177). This can be easily explained
by the fact that SIAs, and especially their clusters, induce significant perturbations
in the lattice, and a rigid-lattice-like description of their migration and interactions
with vacancies is therefore not realistic.

Soisson, in Ref. (161; 162), introduced large amounts of SIAs and vacancies in generic
A-B alloys. The migration energies were calculated on a rigid lattice with a simplified
cohesive model based on pair interactions (up to the 1nn distance only), fitted to ab
initio energy data. Opposite point-defects, in his approach, are blind to each other,
i.e. the migration energy of vacancies is not influenced by the presence of nearby
SIAs, but only by other vacancies, and conversely for SIAs. Recombination of point-
defects, also, was treated in a simplified manner, occurring as soon as they are closer
to each other than a predefined spherical range. Radiation induced segregation and
precipitation was, in spite of these simplifications, satisfactorily predicted. Later,
Vincent et al. (176; 177) conducted similar simulations in a Fe-Cu-Ni-Mn-Si alloy,
which is in fact only possible with ab initio energy data up to now, because of the
absence of a corresponding IAP.

In the framework of the general methodology developed in this thesis, attempts
have been made to introduce SIAs in the most rigorous possible way, using the
ANN-based AKMC algorithm proposed in section 2.3. Ideally, the goal would be to
avoid the assumptions made by previous authors, by calculating the point-defects
migration energies in a non-rigid lattice (using the NEB method), thereby taking
into account the complete effects of atomic relaxation up to the convergence range
for the LAE. In addition, point-defect recombinations should be described without
approximation, i.e. not assuming a constant spherical range of recombination,
but instead taking the decision of whether to apply recombination or not in a
more realistic way. Artificial neural networks, for instance, can eventually succeed
in providing the relevant information about the migration of SIA, in a similar
way as was achieved in the case of vacancies. The methodological and practical
limitations of the ANN-based AKMC algorithm proposed in section 2.3, and later
on generalized in section 5.1.1, are in fact identical if SIAs are included, except that
they are more intense in magnitude and pose more difficult problems:

• The number of migration events that should be considered, i.e. that correspond
to migration energies that are in balanced competition with each other, is
sensibly larger compared to the case of vacancies. As a matter of fact, SIAs
can take several different orientations after the migration, and migration can
occur a priori to various distances: 0nn migration events correspond to a
change of orientation without migration to another lattice site, next the same
reorientation can be accompanied by a migration to a 1nn or 2nn distance.
Migrations to farther away distances are also not to be neglected, particularly
in the case of crowdions (additional atoms on a close-packed atomic direction)
and their clusters. Finally, the simultaneous migration of two or more dumbells
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is, contrary to the case of vacancies, often favourable in terms of energy barriers
(see for example ab initio barriers in (61)).

• The relation of unicity between a given state of the system in the rigid lattice
world of the AKMC and in the off-lattice world is not at all guaranteed. SIAs
can often, depending on the LAE, take several different equilibrium positions,
all of them corresponding to the exact same state in the rigid lattice world,
because of two degrees of liberty: the distance between the atoms of the
dumbell and also the orientation of the vector joining them, that defines the
type of dumbell.

• The occurrence of spontaneous migration events is not at all negligible in
general, especially when SIA’s are close to each others.

• Last, but certainly not least, the computation of the migration energy between
two given (stable) states using NEB is in general not a routine operation
in the case of SIAs. The calculation is first of all delicate because of the
large deformations of the lattice, and the obtained migration path with NEB
may sometimes not converge to a physically acceptable transition because
of numerical problems. Secondly, several transition paths can, a priori, exist
between two given metastable states. In practice, it has been observed that the
migration path found by NEB can differ if the initial guess, usually calculated
as a linear interpolation (see discussions in section 2.3.2), is calculated with
another method, such as a drag for example.

In short, it is clear that a completely rigorous treatment of SIAs in AKMC simulations
is probably unrealistic in practice, because no approach could on the one hand
account for all states of the systems and all transitions between them, and on the
other, be fast to compute at the same time. The key point for the development of a
physically acceptable and numerically affordable model is, therefore, to search for
the most important mechanisms to be allowed for, while limiting simplifications as
much as possible.

Two different approaches were used in this thesis, and are described in the following
two sections. In section 5.2.1, an attempt is made to include several SIAs in a pure Fe
matrix, without restrictions on the elementary migration mechanisms that could be
defined in the AKMC simulation. Next, in section 5.2.2, a possible simplification of
the problem is proposed, going along the same line as Soisson and Vincent et al. in
Ref. (162; 177). Vacancies and self-interstitials are introduced together in the system,
but their interactions is treated in a simplified way, as well as the formation and
migration of SIA clusters.
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Figure 5.12: Six possible Dumbell orientations in bcc crystallographic structures.

5.2.1 Clusters of dumbells in pure Fe

As a preliminary study, to evaluate the complexity of the problem and fix the ideas,
attempts have been made to consider in a general way the migration of several SIAs
in pure Fe. For simplicity, the study was limited to dumbells orientated in <110>
directions, which correspond to the stable SIA configuration in pure Fe, even in the
presence of nearby solute atoms (175). Taking a given crystal, with a fixed origin
and xyz axis, a total of six different <110> dumbell orientations can be found, as
depicted in Fig. 5.12. To improve the stability of these orientations, independently
of the spatial arrangement of SIAs in the volume, the total number of dumbells was
limited to 5, because bigger clusters take stable configurations in <111> crowdion
orientations. If successfully generalized, the AKMC would then be able to model
the formation and migration of small clusters of interstitials, without assumptions
on the migration mechanism. This is however known to be a delicate task in a rigid
lattice framework, because for example the configuration of even small clusters of
only three dumbells was observed in Ref. (167) to be difficult to describe if they are
not aligned. The approach that was attempted can be so summarized:

• Many possible migration events were defined. In a first step, only the
migration of one <110> SIA to a 1nn position was considered, as depicted in
Fig. 5.13, limited to the case in which the final orientation after migration is
<011>, as this could be easily extended to the other two possibilities.
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Figure 5.13: Three migration events to a 1nn position considered for a dumbell. The position
of the destination is the same, but the dumbell can take, after migration, three different
orientations.

• Similarly to the introduction of several vacancies in the AKMC, as discussed
in section 5.1.1, the most natural way to define the LAE of the migrating SIA is
to consider neighbouring SIA’s as additional chemical species of the alloy, and
different integers are assigned to describe every possible orientations they can
take. The problem is thus unquestionably sensibly harder from the numerical
point of view, because of the large number of categories of entries that the LAE
contains, but also because of the stronger deformations of the rigid lattice that
make the relationship between the LAE and the migration energy harder to
describe with a simple ANN.

• As a first step, no migration energies were calculated with the NEB method,
but only the initial and final states were relaxed with CG. The ANN was then
trained to predict the difference between the relaxed energy of the final state
of the migration event and the total energy of the initial state. This energy
difference is the input for a Kang-Weinberg formalism, as already discussed in
section 2.2.3.

• The existence of several metastable states corresponding to the same rigid
lattice description was confirmed for a non-negligible proportion of the ex-
plored configurations. To get round this problem, every state was relaxed
several times with CG, each of them starting from the rigid lattice configuration
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Figure 5.14: ANN quality of prediction for the migration energy associated with the migration
to a 1nn position of the <110> dumbell in pure Fe, taking a final <110> orientation, allowing
for the presence of up to 4 other dumbells in its vicinity. (left) The 76 input variables are
a description of the LAE up to the 5nn distance, coded as integers that can take 7 different
values. (right) The 456 input variables are a description of the LAE up to the 5nn distance,
coded with the 1-of-c convention with 6 bits. The network counts 9 hidden nodes.

slightly perturbed by random atomic displacements of small magnitude. In
some cases, it was observed that the variation of the energy of the system, after
relaxation, can be as large as several tens of meV. Only the state corresponding
to the lowest energy was retained, the other ones were discarded.

• A number of 90000 examples of LAEs versus relaxed energy difference were
calculated. Up to 4 dumbells of random orientations were placed in random
positions within the 5nn distance from the migrating one. If encountered,
unstable states were discarded from the table.

• Some positions of the LAE are situated in regions of large strain caused by the
migrating dumbell. In these areas, some dumbell orientations are almost never
found to be stable, especially of course if their strain fields are pointing in the
direction of the migrating dumbell. These entries of the LAE have therefore
been restricted in such a way that the concerned dumbell orientations are
forbidden. In total, the number of restrictions was 31.

The quality of ANN predictions, after training, is shown in Fig. 5.14. For the sake of
comparison, two different networks were trained: The first one receives as inputs the
LAE coded as 76 integers that can take 7 different values, whereas for the second one
the LAE is coded using the 1-of-c convention (see section 3.4.4). In the latter case, the
input variables are thus a number as large as 456 bits. We see that predictions of the
ANN with 76 input variables is poor compared to the accuracy that was achieved, in
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general, in the case of vacancies. This, shows the relative difficulty of treating SIAs
compared to vacancies. The quality of predictions, however, is sensibly improved
if the LAE is coded using the 1-of-c convention, despite the fact that the number of
input variables is multiplied by 6. This interesting observation can be ascribed to
two different reasons:

• Training the ANN that receives as input variables integers that can take 7
different values is, unquestionably, a challenge. From a purely numerical
point of view, the difference between the two networks shown in Fig. 5.14
can thus be explained by the fact that bitwise variables more easily express,
in the nodes of the ANN, a clear and distinguishable difference between the
different dumbell orientations. Nothing, therefore, tells that an equal quality
of prediction for both ANN’s could not be achieved if the number of hidden
nodes was increased, and if the initial synapses in the ANN were chosen,
before training is started, with a more appropriate procedure. This kind of
uncertainty is proper to the ANN technique, and not specific of this particular
application.

• From the physical point of view, the 1-of-c coding convention is, in this case,
equivalent to a re-partitioning of the simulated volume. Each Wigner-Seitz cell
is effectively divided in 6 sub-cells, each encompassing the volume than can be
occupied by the atoms of the SIA if they take one of the 6 possible orientations.
This point of view is interesting, because it suggest that, after all, one should
not be surprised that the ANN manages a better understanding of the physics
of the problem at hand if the latter is described in a more "explicit" way.

As a conclusion, the results discussed in this section suggest that the definition of a
fully atomistic description of SIAs in an AKMC is apparently feasible. The problem
is, however, numerically very demanding and delicate, with the consequence that
a successful extension to more realistic and complex cases would probably not give
sufficiently satisfactory results. Simplified approaches, such as the one proposed in
the next section, must therefore be found.

5.2.2 Simplified model for the simulation of isochronal annealing
experiments with Fe-Cr alloys

As discussed in the previous section, the complete and rigorous modelling of
SIA migration in AKMC, describing properly the formation and migration of
clusters and their interactions or recombination with vacancies, is probably an
utopian objective. One alternative is thus to elaborate less complete models,
embedding different levels of approximations, somehow similarly to the hybrid
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AKMC algorithm that was proposed and applied for the simulation of TAE in Fe-
Cu alloys in Ref. (38) (Paper VII in Appendix H) and section 4.3.1. In this respect,
for instance, the migration of clusters of SIAs can be hybridized in a similar way, to
avoid the considerations of many complex elementary transitions where problems of
temporary configurational instability would be encountered. The biggest challenge,
in reality, is probably to find an adequate, if simplified, way to describe the
recombination of SIAs with vacancies, while possibly accounting for chemical effects
due to different atomic species present in the LAE of the migrating SIA. As a first
step in this direction, the case of only single SIAs was considered. Such a model can
be used to simulate isochronal annealing experiments following low temperature
electron irradiation (generally monitoring electrical resistivity recovery), for the sake
of validation by allowing comparison with experimental data, as introduced in Ref.
(169) (Paper IX in Appendix J).

The case of the migration of a single SIA in Fe-Cr alloys was considered, because
Cr atoms interact fairly strongly with SIAs and therefore their effect is worth being
taken into account. In pure bcc Fe, the ground state for SIA is a <110> dumbbell
(124), and the most probable migration mechanism suggested by Johnson is a single
hop to a 1nn position (83), as depicted in Fig. 5.13. On the contrary, in pure bcc
Cr, the ground state of the SIA is the <111> crowdion: consequently, the migration
mechanism in Fe-Cr alloys with high Cr content changes from Johnson’s to the
crowdion’s glide. As a consequence, Cr influences also the configuration of the SIA
and, for concentrated alloys containing more than 25% of Cr, it was observed that
<110> dumbells are often unstable, and tend to glide for long distances (sometimes
several lattice units !) to reach a stable position as a <111> crowdion with Cr atoms.
The frequency of occurrence of such spontaneous migrations, however, becomes
negligible for lower Cr concentrations. Thus, to start with, the case of alloys of
not too high concentration was considered and, an ANN was trained to predict the
migration energies associated only with the three jumps depicted in Fig. 5.13:

• A number of 27500 examples of dumbbell migration jumps in changing
chemical environments were calculated with the NEB method, for the three
types of events.

• The LAE was extended up to the 9nn (173 atomic sites), and the Cr concen-
tration was randomly chosen between 5% and 25%. Cr atoms were placed in
dispersed configurations only.

• The problem of the existence of multiple metastable states corresponding to the
same rigid lattice description was confirmed for a non-negligible proportion
of the explored configurations. To get round this problem, every state was
relaxed several times with CG, each of them starting from the rigid lattice
configuration, slightly perturbed by random atomic displacements of small
magnitude. In some cases, the difference in energy of the system, after
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Figure 5.15: ANN quality of prediction for the migration to a 1nn position of the <110>
dumbell in Fe-Cr alloys. The input variables are a description of the LAE up to the 9th shell
of close neighbours (173 atomic sites), and the network counts 10 hidden nodes.

relaxation, can be as large as several tens of meV. Only the state corresponding
to the lowest energy was retained, and the other ones were discarded.

The ANN quality of prediction, after training with the GIACA algorithm for each of
the three types of jump individually, is shown in Fig. 5.15. We see that predictions are
less accurate than achieved in general for the migration of vacancies, but are in any
case highly correlated with the values calculated with NEB (R2 > 0.95). The average
error committed is here probably higher than the accuracy of the NEB, especially if
the final dumbell orientation is <110>. This is attributed to the numerical difficulty
of constructing an accurate regression of the relation between the LAE and and the
migration energy.

AKMC simulations were performed to evaluate de diffusion properties of dumbells
in Fe-Cr alloys, as predicted by the model. The migration energies were, however,
estimated with a Kang-Weinberg formula, using the ANN shown in Fig. 5.16 to
predict the relaxed energy difference associated with the jumps. This work will be
repeated in a near future using the ANN shown in Fig. 5.15 instead. Two different
studies were performed:
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• In the first one, the SIA diffusion coefficient was calculated in Fe-Cr alloys,
for temperatures in the range between 500 K and 1200 K, in a box composed
of 20x20x20 lattice units (i.e. 16 000 atoms). As a benchmark, the same
calculations were also performed with MD (this is possible, at least in the range
of high temperatures, because the simulation box was deliberately chosen to be
small). Results are compared in Fig. 5.17. We can see that migration energies,
fitted in Arrhenius plots, are not rigorously identical, but the curves shown in
the figure are reasonably similar: these curves are not strictly parallel, as would
be the case if the migration energies were the same, but the degree of non-
parallelism visible on the figure does not significantly change the evolution
with temperature of the diffusion coefficient, at least in the range of diffusion
coefficients covered by the figure. Last, the (nearly constant) distance between
the curves in the figure is due to the choice of the jump attempt frequency in
the AKMC simulation (exponential prefactor in Equ. 2.5), that was taken to be
ν0 = 1013 s−1. A higher value, by roughly one order of magnitude, would have
been more appropriate, apparently.

• In the second one, AKMC simulations were performed in much bigger boxes
composed of 100x100x100 lattice units (i.e. 2 million atoms), to obtain better
statistics, in Fe-Cr alloys with varying Cr content. The obtained values of the
SIA diffusion coefficient are shown in Fig. 5.18, as well as the correlation factor.
The latter is the ratio between the frequency of jump (to a given distance,
for example 1nn) calculated on the basis of the diffusion coefficient, and the
one directly measured from the results of the simulation. In other words,
if the correlation factor equals to 1, the SIA migration is "uncorrelated", i.e.
completely random in the space, whereas a smaller value reveals that series
of migration jumps are correlated to each other and do not contribute to the
value of the diffusion coefficient. We see in Fig. 5.18 that such a correlation
is observed for all alloy compositions at low temperature, implying that SIAs
can be locally trapped in low energy state configurations. This result is in good
agreement with experimental evidences, for example the work of Dimitrov et
al. in Ref. (45) and the work of Nikolaev et al. in Ref. (121).

The next step to be taken in the future is to attempt the design of ANNs that could
predict not only the SIA migration energy (as in Fig. 5.15), taking the LAE of Cr
atoms into account, but also the possible presence of a vacancy. In addition, another
ANN can be trained to predict, given the respective positions of the point-defects
as input, whether immediate recombination should take place or not. This work
requires the generation of databases of examples that are, each, rather CPU-time
demanding, mainly because the presence of close antagonist point-defects increases
the complexity of states relaxations with CG. This work is currently in course.
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Figure 5.16: ANN quality of prediction of the relaxed energy difference, calculated with CG,
for the migration to a 1nn position of the <110> dumbell in Fe-Cr alloys. The input variables
are a description of the LAE up to the 9th shell of close neighbours.

5.3 Conclusions

In this chapter, the new atomistic kinetic Monte Carlo (AKMC) scheme proposed
in this thesis, based on the use of artificial neural networks (ANN), and originally
developed in chapter 2 for the single-vacancy case, has been successfully generalized
to allow for the presence of several point-defects in the simulated volume.

The case of vacancies, without self-interstitial atoms (SIA), was relatively straight-
forward thanks to the fact that spontaneous migration events can be neglected, and
that the migration mechanism of their clusters was observed to be dominated by
simple elementary events. As an application, Diffusion coefficients and lifetimes
of Cu-vacancy clusters, that are necessary input values for the simulation with
coarse-grained models of the effects of irradiation in steels, have been calculated
and tabulated in Appendix. The calculation of more data, for larger numbers
of vacancies and Cu atoms, is however necessary to complete the database and
allow for simulations in more general conditions. One possible way to reduce the
amount of AKMC simulations is to design general regression methods, for example
implemented with ANN, fitted on the basis of a limited amount of examples, to
predict these parameters for any case. The bases to do so have been set.

The case of SIAs, however, turned out to be sensibly more delicate. It has been shown
that they can be introduced in the ANN-based AKMC model, at the price of simpli-
fications of the possible states of the systems, and of the possible transition paths
between them. As a next step to investigate the feasibility of simulating neutron

90



5.3. Conclusions

Figure 5.17: Diffusion coefficients for a single SIA in Fe-10%Cr alloys, versus the reciprocal
temperature (1/kBT), calculated using AKMC and MD simulations. The corresponding
migration energies Em, fitted with Arrhenius plots are also reported.

irradiation damage, attempts to describe rigorously the immediate recombination
between SIAs and vacancies will soon be made, relying again on ANN. In a longer
term perspective, hybrid approaches such as the one proposed for thermal ageing
simulations in FeCu (see chapter 4) can be devised to allow the model to treat
SIA clusters in a physically acceptable way, without the need of retaining the full
atomistic description.
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Figure 5.18: (left) SIA diffusion coefficients calculated with the AKMC method at T = 400-900
K in different Fe-Cr alloys. (right) Correlation factors between the SIA diffusion coefficient
and the jump frequency, in the same conditions.
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6 Conclusions and
future perspectives

6.1 Summary and conclusions

In this thesis, a novel and innovative atomistic kinetic Monte Carlo (AKMC) model,
based on artificial neural networks (ANN) has been proposed in chapter 2 to
perform a link, in the general multiscale modelling scheme, between the atomic
level and coarse-grained models. The simulated process is naturally decomposed
in elementary thermally activated migration events involving point-defects, i.e.
vacancies or self-interstitial atoms (SIA), that are in competition with each other
according to their respective frequencies of occurrence. The latter are calculated on
the basis of the migration energies, that are calculated with minimal approximations
using a method that takes into account all the effects of long-range static atomic
relaxation and chemical interactions. The proposed AKMC algorithm is therefore a
physical model, entirely based on a given interatomic potential which is exploited
in the most complete possible way, without the need to define arbitrary parameters
that should be, for example, fitted to experimental data.

The model was first applied, in chapter 4, to the simulation of thermal annealing
experiments, for the main purpose of validation by comparison of the obtained
results with experimental data. Very satisfying comparison was achieved for
two model alloys of interest for nuclear materials science: (i) Fe-Cu, which is a
model alloy for bainitic reactor pressure vessel steels of western light-water nuclear
reactors: (ii) Fe-Cr, which is a model alloy for high Cr ferritic-martensitic stainless
steels, that are candidates for many concepts of new generation nuclear reactors. In
both cases, the evolution with annealing time of the average clusters radius and the
clusters density were in excellent agreement with experimental data, more closely,
or up to longer simulated times, than previously obtained by other authors. This
showed that the model is globally correct, and that all important mechanisms are
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included with the relevant accuracy, a result which can be ascribed to two reasons:
(i) the interatomic potentials used are correct from the thermodynamic viewpoint
and, clearly, also adequate to describe the kinetics of precipitation processes (ii) the
"filter" introduced by the artificial neural network between the predictions of the
potential and those of the model is not such that the good qualities of the former
are lost. In addition, this showed that the modelling technique developed here is
particularly efficient (affordable computing time while retaining high accuracy) and
versatile (the method is suitable to be generalised to more complex problems).

Indeed, in chapter 5, the ANN-based AKMC algorithm was successfully generalized
to treat any number of vacancies, which is one of the two necessary ingredients for
the simulation of neutron irradiation damage in metals. The methodology could be
generalized without fundamentally changing the way the system is described, i.e.
inherently as a rigid lattice as in most of the existing AKMC models, thereby limiting
the complexity of the simulation by keeping all advantages of simplicity of the
definition of migration events, and the simplicity of calculating their corresponding
frequencies of occurrence. This allows for the simulation of long and complex
processes, for example the calculation and tabulation of diffusion coefficients and
lifetimes of Cu-vacancy clusters, that are necessary input values for coarse-grained
models. The calculation of these parameters by molecular dynamics would be
simply unaffordable; the technique developed here is almost equivalent in terms of
physical information to using MD, but makes these calculations possible in a routine
way.

Last, convincing evidence has been given that the ANN-based AKMC algorithm can
be generalized to the introduction of SIAs as well. Simplifications must however
be made, as it has been shown that all possible states of the system and all
possible migration mechanisms could not be practically included in the model.
A possible approach, for the simulation of radiation processes under simplifying
assumptions, i.e. involving simultaneously SIAs and vacancies and including a
rigorous description of recombination processes, almost as detailed as in an MD
simulation, has been proposed, and its feasibility has been demonstrated.

6.2 Future perspectives

In this thesis, the newly developed ANN-based AKMC algorithm was mainly
applied to binary systems. In chapter 4, thermal annealing experiments were
simulated for the Fe-Cu and Fe-Cr systems, that are model alloys for steels. More
realistic simulations require the introduction of additional chemical species. It has
been demonstrated, in sections 3.4.4 and 5.1.5, that this is possible in the case of Fe-
Cu-Ni systems (The potential was developed by Bonny et al. in Ref. (25)), despite
the somewhat less satisfactory numerical precision that is achieved by ANNs for
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the prediction of point-defects migration energies. Our future objective will be to
simulate thermal ageing experiments in Fe-Ni-Cu alloys, taking a hybrid approach
similar to the work described in section 4.3, as a first step before diffusion coefficients
and lifetimes of Cu-vacancy clusters, including also Ni atoms, are calculated, as a
natural continuation of the work presented in section 5.1.5. The main bottleneck for
other systems is in fact the development of the corresponding interatomic potentials,
that is a more delicate task for ternary or more complex alloys compared to binary
systems. Yet, new ternary potentials are under development and will soon be
available, such as for example:

• A potential for the Fe-Cr-Ni system, model alloy for austenitic steels. In this
case, the phenomenon to be studied is radiation-induced depletion of Cr at
surfaces or grain boundaries, accompanied by Ni enrichment, that is known
to increase susceptibility to stress corrosion cracking. This process can be
simulated using the algorithm proposed in section 5.2.2.

• A potential for the Fe-Ni-Mn system, which is a model alloys for low-Cu
RPV steels, of relevance for western Europe reactors. In this case, the first
objective will be the study of the formation of so-called "late blooming phases",
that are Ni-Mn precipitates, containing little or no Cu, that are believed to
be an important origin of hardening and embrittlement. Their formation
is, nowadays, presumed to be linked to small interstitials loops. This is
therefore likely to be a radiation-induced phenomena, that cannot be studied
as a thermal annealing process in the absence of irradiation. Its simulation
represents a challenge as it implies being able to treat both types of point-
defects and their clusters, as well as three chemical species.

Even remaining in the framework of binary alloys such as Fe-Cr or Fe-Cu, the
next challenge to adequately complete the achievements of this thesis will be to
develop methods providing an accurate description of the recombination between
SIA and vacancies and, next, of SIA clusters (including of course recombination
processes). Concerning recombination, the purpose is to overcome simplified
descriptions of this process, for example by simply defining a constant range
from which recombination is assumed to take place immediately, disregarding the
influence of the local chemical environment. This can probably be achieved using,
again, several ANNs: One ANN that predicts, given as input the relative positions
of the SIA and the vacancy, as well as the distribution of solute atoms, whether
recombination takes place or not; if not, a second ANN is used to predict the SIA
migration energy, taking into account the presence of the near-by vacancy. This work
requires the generation of databases of examples that are, each, rather CPU-time
demanding, mainly because the presence of close antagonist point-defects increases
the complexity of relaxation of metastable states with CG. Concerning SIA clusters,
the exploratory work performed in the framework of this thesis showed that, while
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6.2. Future perspectives

a fully atomistic KMC description is probably feasible within certain boundaries (a
few SIAs, limited amount of migration mechanisms, ...), its generalization beyond
those boundaries is likely to be hopeless. Thus, in this case appropriate hybrid
methods inspired to the one developed for Cu precipitation will have to be identified
and applied.
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A Diffusion coefficients
and lifetimes for Cu-
Vac clusters

This section gives the complete sets of diffusion coefficients and lifetimes that were
calculated for vacancy clusters and Cu-Vac clusters in pure Fe matrices. From
the diffusion coefficients D. fits with Arrhenius functions provide a value for
exponential prefactor D0 and the migration energy ED

m :

D(T) = D0 · exp
(
−ED

m
kBT

)
(A.1)

From the lifetimes ν. fits with Arrhenius functions provide a value for the dissolution
attempt frequency ν0 and the dissociation energy Eν

m:

ν(T) = ν0 · exp
(
−Eν

m
kBT

)
(A.2)



N M 500K 560K 640K 750K 900K D0 ED
m

3 1 7.00E-11 3.50E-10 2.00E-09 1.00E-08 8.00E-08 4.07E-04 0.76
3 2 1.00E-11 7.00E-11 4.00E-10 2.50E-09 3.00E-08 4.06E-04 0.81
3 3 3.00E-12 2.00E-11 1.40E-10 1.30E-09 1.35E-08 1.23E-04 0.79
3 4 1.50E-12 9.00E-12 7.00E-11 6.00E-10 5.00E-09 5.70E-05 0.78
3 5 1.00E-12 5.00E-12 4.00E-11 3.00E-10 3.00E-09 6.50E-05 0.81
3 6 5.36E-13 3.00E-12 3.00E-11 2.50E-10 2.00E-09 2.95E-05 0.79
3 7 3.52E-13 2.40E-12 1.60E-11 1.30E-10 1.30E-09 2.96E-05 0.82
3 8 1.70E-13 1.50E-12 1.00E-11 1.00E-10 8.00E-10 5.50E-05 0.87
3 9 9.00E-14 9.00E-13 7.00E-12 7.00E-11 8.00E-10 4.07E-04 0.76
4 1 5.00E-12 7.00E-11 5.00E-10 4.50E-09 3.20E-08 1.82E-03 0.84
4 2 2.00E-12 1.60E-11 1.60E-10 1.60E-09 2.50E-08 2.44E-03 0.91
4 3 1.50E-12 7.00E-12 5.00E-11 4.00E-10 6.00E-09 1.22E-04 0.80
4 4 9.00E-13 4.50E-12 3.70E-11 4.00E-10 6.00E-09 2.65E-04 0.85
4 5 5.00E-13 3.00E-12 2.00E-11 2.50E-10 3.50E-09 1.60E-04 0.86
4 6 2.72E-13 2.50E-12 2.50E-11 1.50E-10 1.40E-09 5.47E-05 0.82
4 7 2.00E-13 1.10E-12 9.00E-12 1.00E-10 1.50E-09 7.65E-05 0.86
4 8 8.00E-14 8.00E-13 6.00E-12 7.00E-11 1.00E-09 9.33E-05 0.90
4 9 4.50E-14 5.00E-13 5.00E-12 4.00E-11 6.00E-10 6.02E-05 0.90
4 12 1.50E-13 1.75E-12 2.30E-11 2.80E-10 6.82E-05 0.96

Table A.1: Diffusion coefficients in cm2/s calculated with 100 independent AKMC simulations
for varying number N of vacancies and number M of Cu atoms in the clusters and varying
temperature. The two last columns show the exponential prefactor D0 (in cm2/s) and the
migration energy Em (eV) fitted in Arrhenius plots.
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N M 640K 750K 900K 1125K 1500K D0 ED
m

5 2 3.50E-11 4.30E-10 7.00E-09 1.12E-06 1.96E-03 0.98
5 3 1.75E-11 2.25E-10 3.50E-09 6.80E-07 1.26E-03 0.99
5 4 1.75E-11 1.60E-10 2.50E-09 4.00E-07 4.92E-04 0.95
5 6 6.00E-12 8.00E-11 1.00E-09 2.00E-08 1.70E-07 4.63E-04 1.00
5 9 2.00E-12 2.75E-11 4.00E-10 5.00E-09 7.40E-08 1.79E-04 1.01
5 12 8.00E-13 1.30E-11 2.30E-10 2.00E-09 3.00E-08 7.44E-05 1.01
5 15 3.44E-13 8.00E-12 1.20E-10 1.40E-09 2.30E-08 8.39E-05 1.06
6 2 1.20E-11 8.00E-11 1.20E-09 3.30E-08 9.00E-07 2.85E-03 1.10
6 6 3.00E-12 3.50E-11 4.50E-10 7.50E-09 1.70E-07 4.40E-04 1.05
6 10 3.70E-13 8.16E-12 1.70E-10 2.30E-09 5.30E-08 3.23E-04 1.13
6 14 1.30E-13 4.00E-12 9.00E-11 1.50E-09 3.00E-08 3.04E-04 1.18
6 18 5.25E-14 1.50E-12 3.50E-11 1.00E-09 1.70E-08 2.65E-04 1.23
7 2 1.00E-11 1.00E-10 1.00E-09 1.80E-08 5.00E-07 9.69E-04 1.03
7 6 2.00E-12 2.50E-11 3.00E-10 5.50E-09 1.00E-07 2.65E-04 1.04
7 11 1.50E-13 1.00E-11 8.00E-11 2.30E-09 4.50E-08 4.43E-04 1.18
7 16 1.50E-13 3.50E-12 3.00E-11 8.00E-10 1.80E-08 7.91E-05 1.11
7 21 1.00E-12 2.50E-11 5.00E-10 1.20E-08 1.37E-04 1.21
8 3 3.30E-12 3.75E-11 5.25E-10 9.00E-09 2.00E-07 5.69E-04 1.06
8 8 6.00E-13 9.00E-12 1.50E-10 2.40E-09 4.00E-08 1.53E-04 1.07
8 14 1.25E-13 3.11E-12 5.00E-11 9.00E-10 1.50E-08 9.19E-05 1.12
8 19 1.00E-12 2.50E-11 4.00E-10 1.00E-08 8.75E-05 1.18
8 24 5.80E-13 1.30E-11 4.00E-10 7.30E-09 1.10E-04 1.23

Table A.2: Diffusion coefficients in cm2/s calculated with 100 independent AKMC simulations
for varying number N of vacancies and number M of Cu atoms in the clusters and varying
temperature. The two last columns show the exponential prefactor D0 (in cm2/s) and the
migration energy Em (eV) fitted in Arrhenius plots.
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N M 640K 750K 900K 1125K 1500K D0 ED
m

9 3 3.40E-12 4.40E-11 4.70E-10 6.00E-09 1.00E-07 1.71E-04 0.98
9 7 8.00E-13 1.50E-11 1.50E-10 2.25E-09 4.50E-08 1.15E-04 1.04
9 12 2.70E-13 3.20E-12 5.80E-11 1.10E-09 2.00E-08 8.21E-05 1.09
9 17 1.30E-12 3.00E-11 6.00E-10 1.00E-08 8.39E-05 1.16
9 22 9.00E-13 1.50E-11 3.10E-10 7.00E-09 5.14E-05 1.16
9 27 4.00E-13 1.50E-11 2.50E-10 5.00E-09 6.30E-05 1.21

10 3 2.00E-12 3.00E-11 1.00E-09 4.40E-09 1.00E-07 2.75E-04 1.03
10 4 1.40E-12 2.00E-11 2.90E-10 4.10E-09 7.00E-08 1.99E-04 1.04
10 6 8.10E-13 1.10E-11 1.60E-10 2.50E-09 5.00E-08 1.54E-04 1.06
10 8 3.80E-13 6.80E-12 1.10E-10 1.20E-09 2.40E-08 7.53E-05 1.05
10 10 3.45E-13 4.92E-12 7.91E-11 1.13E-09 1.92E-08 6.14E-05 1.05
10 15 9.10E-14 1.78E-12 3.01E-11 6.59E-10 1.26E-08 8.22E-05 1.14
10 20 1.10E-12 1.88E-11 3.62E-10 7.79E-09 5.24E-05 1.15
10 25 5.33E-13 1.08E-11 2.29E-10 5.84E-09 5.91E-05 1.20
10 30 4.37E-13 8.38E-12 1.78E-10 2.44E-09 1.62E-05 1.12
11 4 1.06E-11 1.06E-11 1.66E-10 2.89E-09 5.20E-08 2.33E-05 0.87
11 5 8.74E-12 1.30E-10 1.82E-09 3.02E-08 9.80E-05 1.05
11 7 4.14E-12 8.15E-11 1.58E-09 2.83E-08 2.00E-04 1.14
11 9 3.33E-12 5.45E-11 9.89E-10 2.00E-08 1.14E-04 1.12
11 11 2.58E-12 5.39E-11 9.39E-10 1.65E-08 1.07E-04 1.13
11 17 1.00E-12 2.12E-11 4.32E-10 8.89E-09 7.88E-05 1.17
11 22 5.93E-13 1.78E-11 3.26E-10 7.47E-09 9.05E-05 1.21
11 28 3.96E-13 9.22E-12 1.58E-10 3.70E-09 3.14E-05 1.17
11 33 6.19E-12 1.44E-10 5.03E-09 1.09E-04 1.30

Table A.3: Diffusion coefficients in cm2/s calculated with 100 independent AKMC simulations
for varying number N of vacancies and number M of Cu atoms in the clusters and varying
temperature. The two last columns show the exponential prefactor D0 (in cm2/s) and the
migration energy Em (eV) fitted in Arrhenius plots.
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N M 500K 560K 640K 750K 900K ν0 Eν
m

3 1 1.41E-05 2.21E-06 3.25E-07 3.98E-08 4.49E-09 2.21E-13 0.78
3 2 1.26E-04 1.11E-05 1.35E-06 1.14E-07 8.53E-09 6.78E-14 0.92
3 3 4.88E-04 4.08E-05 3.34E-06 2.08E-07 2.01E-08 5.72E-14 0.98
3 4 1.47E-03 1.26E-04 6.48E-06 4.95E-07 2.29E-08 2.65E-14 1.07
3 5 2.56E-03 1.88E-04 1.47E-05 5.84E-07 3.83E-08 3.48E-14 1.08
3 6 4.33E-03 2.68E-04 1.98E-05 8.47E-07 5.53E-08 4.16E-14 1.09
3 7 5.98E-03 4.51E-04 2.61E-05 1.51E-06 6.12E-08 4.55E-14 1.11
3 8 5.70E-03 6.75E-04 2.93E-05 1.76E-06 1.02E-07 1.04E-13 1.08
3 9 5.86E-03 7.24E-04 4.54E-05 2.16E-06 1.03E-07 1.29E-13 1.07
4 1 3.76E-04 3.76E-05 1.97E-06 1.39E-07 1.34E-08 2.67E-14 1.01
4 2 1.94E-03 1.17E-04 5.95E-06 4.28E-07 2.31E-08 1.74E-14 1.09
4 3 5.06E-03 3.28E-04 1.57E-05 9.58E-07 3.61E-08 1.68E-14 1.14
4 4 6.51E-03 4.95E-04 2.64E-05 1.01E-06 4.36E-08 1.58E-14 1.16
4 5 1.28E-02 5.99E-04 4.48E-05 1.65E-06 7.54E-08 2.67E-14 1.16
4 6 1.42E-02 1.00E-03 5.89E-05 1.99E-06 8.63E-08 2.81E-14 1.17
4 7 2.19E-02 1.11E-03 8.22E-05 2.46E-06 1.06E-07 2.86E-14 1.18
4 8 2.31E-02 1.92E-03 9.57E-05 3.35E-06 1.34E-07 4.02E-14 1.18
4 9 2.79E-02 1.99E-03 1.41E-04 4.57E-06 1.51E-07 5.46E-14 1.17
4 12 6.00E-03 2.13E-04 7.84E-06 2.68E-07 1.98E-14 1.28

Table A.4: Lifetimes in s calculated with 100 independent AKMC simulations for varying
number N of vacancies and number M of Cu atoms in the clusters and varying temperature.
The two last columns show the lifetime prefactor ν0 (in s) and the dissociation energy Eν

m (eV)
obtained to by fitting data to Arrhenius plots.
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N M 640K 750K 900K 1125K 1500K ν0 Eν
m

5 2 4.62E-05 1.84E-06 6.91E-08 3.60E-15 1.30
5 3 9.59E-05 3.92E-06 1.13E-07 1.15E-10 8.53E-15 1.27
5 4 9.94E-05 4.17E-06 1.17E-07 1.31E-10 8.04E-15 1.28
5 6 1.44E-04 6.40E-06 2.31E-07 6.52E-09 2.53E-10 1.24E-14 1.29
5 9 3.47E-04 1.15E-05 3.73E-07 9.98E-09 3.23E-10 1.03E-14 1.34
5 12 5.51E-04 1.87E-05 4.26E-07 1.38E-08 4.58E-10 1.20E-14 1.36
5 15 1.07E-03 2.03E-05 7.16E-07 1.56E-08 3.85E-10 6.80E-15 1.42
6 2 5.87E-04 1.92E-05 3.74E-07 6.47E-09 1.39E-10 1.57E-15 1.48
6 6 9.20E-04 2.75E-05 5.43E-07 1.42E-08 2.84E-10 4.34E-15 1.45
6 10 2.75E-03 5.32E-05 1.03E-06 1.90E-08 4.33E-10 3.43E-15 1.51
6 14 4.85E-03 7.45E-05 1.43E-06 2.52E-08 5.79E-10 3.63E-15 1.54
6 18 4.39E-03 1.07E-04 1.73E-06 2.65E-08 5.73E-10 3.76E-15 1.54
7 2 7.63E-04 1.83E-05 4.81E-07 9.54E-09 2.00E-10 2.75E-15 1.46
7 6 2.01E-03 6.61E-05 1.27E-06 3.25E-08 5.21E-10 7.80E-15 1.46
7 11 1.02E-03 3.40E-05 6.81E-07 2.07E-08 3.63E-10 6.82E-15 1.43
7 16 3.48E-03 1.04E-04 2.25E-06 4.57E-08 7.08E-10 9.07E-15 1.49
7 21 2.03E-04 2.35E-06 4.85E-08 8.57E-10 3.64E-15 1.59
8 3 1.29E-03 4.04E-05 8.56E-07 1.39E-08 3.51E-10 4.11E-15 1.47
8 8 2.69E-03 6.80E-05 1.49E-06 2.91E-08 5.70E-10 6.54E-15 1.48
8 14 4.48E-03 1.30E-04 2.30E-06 4.57E-08 9.60E-10 1.00E-14 1.49
8 19 1.96E-04 3.31E-06 5.70E-08 1.04E-09 5.35E-15 1.57
8 24 2.04E-04 4.72E-06 6.57E-08 1.04E-09 5.28E-15 1.58

Table A.5: Lifetimes in s calculated with 100 independent AKMC simulations for varying
number N of vacancies and number M of Cu atoms in the clusters and varying temperature.
The two last columns show the lifetime prefactor ν0 (in s) and the dissociation energy Eν

m (eV)
obtained to by fitting data to Arrhenius plots.
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N M 640K 750K 900K 1125K 1500K ν0 Eν
m

9 3 1.89E-03 3.77E-05 9.27E-07 2.73E-08 5.17E-10 7.96E-15 1.44
9 7 2.87E-03 7.11E-05 1.95E-06 2.28E-08 6.84E-10 6.80E-15 1.49
9 12 3.67E-03 1.10E-04 2.53E-06 5.19E-08 8.08E-10 1.12E-14 1.48
9 17 1.45E-04 2.84E-06 6.12E-08 1.06E-09 8.37E-15 1.52
9 22 1.96E-04 3.68E-06 6.73E-08 1.14E-09 6.84E-15 1.56
9 27 5.09E-06 1.02E-07 1.21E-09 4.85E-15 1.62

10 3 2.93E-03 8.25E-05 1.73E-06 3.02E-08 5.89E-10 6.33E-15 1.49
10 4 3.87E-03 8.16E-05 1.52E-06 3.73E-08 5.93E-10 5.80E-15 1.51
10 6 4.34E-03 9.51E-05 2.21E-06 4.07E-08 8.18E-10 8.51E-15 1.49
10 8 7.05E-03 1.27E-04 2.09E-06 4.49E-08 8.78E-10 6.10E-15 1.53
10 10 7.40E-03 1.58E-04 2.25E-06 5.06E-08 9.35E-10 6.56E-15 1.53
10 15 1.29E-02 1.94E-04 3.73E-06 7.48E-08 1.24E-09 8.09E-15 1.55
10 20 2.84E-04 3.97E-06 7.42E-08 1.13E-09 4.72E-15 1.60
10 25 2.94E-04 5.80E-06 8.74E-08 1.40E-09 6.66E-15 1.59
10 30 5.13E-04 7.80E-06 1.29E-07 1.76E-09 6.47E-15 1.62
11 4 1.43E-04 1.43E-04 2.33E-06 5.68E-08 7.46E-10 1.33E-13 1.24
11 5 1.59E-04 2.46E-06 5.76E-08 8.25E-10 5.01E-15 1.56
11 7 1.95E-04 3.60E-06 5.14E-08 8.35E-10 3.49E-15 1.60
11 9 2.29E-04 3.10E-06 6.97E-08 1.13E-09 6.03E-15 1.57
11 11 2.30E-04 4.32E-06 7.75E-08 1.18E-09 6.47E-15 1.57
11 17 2.11E-04 5.06E-06 7.54E-08 1.14E-09 6.38E-15 1.57
11 22 2.43E-04 6.14E-06 1.03E-07 1.44E-09 9.56E-15 1.56
11 28 2.10E-04 8.65E-06 1.51E-07 1.56E-09 1.56E-14 1.53
11 33 1.03E-05 1.38E-07 1.58E-09 3.10E-15 1.70

Table A.6: Lifetimes in s calculated with 100 independent AKMC simulations for varying
number N of vacancies and number M of Cu atoms in the clusters and varying temperature.
The two last columns show the lifetime prefactor ν0 (in s) and the dissociation energy Eν

m (eV)
obtained to by fitting data to Arrhenius plots.
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Abstract 

In this work, we try to build a regression tool to partially replace the use of CPU-time consuming atomic-level 
procedures for the calculation of point-defect migration energies in Atomistic Kinetic Monte Carlo (AKMC) 
simulations, as functions of the Local Atomic Configuration (LAC). Two approaches are considered: the Cluster 
Expansion (CE) and the Artificial Neural Network (ANN). The first is found to be unpromising because of its high 
computational complexity. On the contrary, the second provides very encouraging results and is found to be very 
well behaved. 

Keywords: Neural Networks, Fuzzy Logic, Cluster Expansion, Vacancy Migration Energy

                                                
*Contact address : Studie Centrum voor KerneEnergie•Centre d’études de l’énergie nucléaire (SCK•CEN), Boeretang 200, B2400, Mol, Belgium. 
ncastin@sckcen.be 

1. Introduction 

Phase transformation in general, and solute precipitation 
in particular, are spontaneous physical phenomena that 
may occur during operation in structural materials, e.g. 
steels, and dramatically modify their mechanical 
properties, thereby threatening the safety of the affected 
component. Models reliably describing the kinetics of 
these phenomena are therefore of importance for the 
safe exploitation of industrial nuclear power plants. For 
example, the formation of copper-rich precipitates and 
nanovoids under neutron irradiation is widely accepted 

to be the main cause of hardening and embrittlement of 
nuclear Reactor Pressure Vessel (RPV) steels during 
operation1, as a consequence of their acting as obstacles 
to dislocation motion. Experimental evidences (see e.g. 
Refs. 2-4) have highlighted that any model for the 
prediction of RPV steel hardening versus radiation dose 
(which is the basic requirement for the RPV lifetime 
assessment) needs to be able to account as correctly as 
possible for the build-up of Cu precipitate and Cu-
vacancy complex density.  
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Atomistic Kinetic Monte Carlo (AKMC) simulations5-11 

are among the best suited tools for studying the 
precipitation of Cu in Fe via a vacancy migration 
mechanism, as a subpart of the general study of RPV 
steels long-term evolution after decades of operation. 
AKMC is a compromise between Molecular Dynamics 
(MD), that considers events at the atomic time and 
length scale, and coarse-grained tools, such as Object 
KMC12 and rate theory13-14, that are necessary to extend 
the simulation to the macroscopic scale. AKMC 
techniques retain the atomic level description, but 
reduce the number of possible events to the very basic 
mechanisms of single-defect diffusion and can thus 
encompass a timeframe (much) larger than MD. 
 
Figure 1 shows an example of AKMC simulation. The 
cubic box is filled with matrix Fe atoms, and contains a 
small percentage of Cu. The atoms are arranged in a 3D 
rigid grid of coordinates that corresponds to the Body 
Centred Cubic (BCC) crystallographic structure. Several 
sites are however empty, corresponding to vacancies. At 
each step of the calculation, one of them is moved as 
shown on figure 2. Each vacancy has eight possible 
destinations, corresponding to the eight corners of the 
BCC cells. One of all candidate jumps, whose number is 
eight times the number of vacancies present in the 
system, is selected according to its probability, using the 
Monte Carlo sampling method15.  
 
 
The vacancy jump probability, pj, is calculated using the 
classical transition rate theory, i.e. using an Arrhenius-
like expression for the jump frequency, that describes 
the jump as a thermally activated process: 
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Here ν0,j is a prefactor that is assumed to be constant 
and of the order of the Debye frequency for Fe (in the 
present case), kB is Boltzmann’s constant, T is the 
absolute temperature and E is the Vacancy Migration 
Energy (VME), which is the key parameter to be 
assessed and the focus of the present work. A precise 
definition and description of the latter are given in 
section 2. For the moment, it is important to know that 
the VME depends on the Local Atomic Configuration 
(LAC) and that it can be rigorously calculated with MD-
type tools.† This is, however, a very time-consuming 
operation, that cannot possibly be undertaken at every 
AKMC step. Our project is thus aimed at partially 
replacing this rigorous calculation by a regression tool, 
trained to predict the VME on the basis of a limited 
number of MD calculated examples. Two possibilities 
have been envisaged and are reported in sections 3 and 
4. The objective is to be able to calculate the VME 
hundreds of billions of times within a reasonable time 

                                                
† Note that, technically speaking, it is not full MD that is used for the 
VME calculation, but algorithms based on the use of an interatomic 
potential that are easily implemented in an MD code. There exist a 
number of them (see Ref. 9), but here we shall not enter the detail of 
these algorithms and will generically speak, for simplicity, of MD 
calculations. Note also that calculations of the same type, more 
reliable although much more expensive in terms of CPU-time, can 
also be performed using ab initio, i.e. quantum-mechanics-based, 
methods. 

 
 

Fig. 1. AKMC simulation box with about 700,000 atoms (1.4% 
Cu). (left) Initial state with the copper atoms randomly distributed. 
(right) An intermediate state (after billions of AKMC steps). 

 
Fig. 2. One AKMC step corresponding to the migration of one 
vacancy (in reality, it is rather one of its neighbouring atoms that 
migrates to it). The figure shows the migration of the hatched 
atom to the vacancy, situated on the front bottom left corner of its 
BCC cubic cell, in plain lines. The dashed line shows the BCC 
cell of destination. 
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frame, with as few simplifications as possible, because 
of the crucial role that the VME plays in the time 
increment of the AKMC, and thus on the prediction of 
the kinetics of the simulated process. 
 
 

 
 
In order to keep the approximation tool qualities into 
control, a Fuzzy Logic (FL) based risk assessment 
method has been developed, too, to determine the 
probability that a VME prediction is subjected to an 
unreasonably high error. Such a tool allows the 
construction of the evolutionary system shown on figure 
3. The rejected VME are MD calculated, before adding 
this new information in the existing database. Once the 
latter has been filled with a certain amount of new 
entries, both the approximation tool and its FL risk 
assessment module can be automatically re-trained. 
Such a strategy is promising to enhance the VME 
prediction qualities during the AKMC. The FL module 
is described in section 5. 
 
Physical considerations suggesting the convenience of 
this scheme and a few preliminary results, obtained with 
first rudimentary algorithms, with only a few hints 
about the architecture of the numerical tools, have been 
already reported in Ref. 16. Here we focus on the 

detailed description and discussion of the algorithmic 
part, presented in its latest form. 

2. The Vacancy Migration Energy 

The VME is the difference between the largest energy 
encountered during the process leading to the exchange 
between a vacancy and a nearby atom (saddle point) and 
the initial energy of the system, as illustrated on figure 
4. The VME can be estimated in a number of ways. 
Empirical formulas based on the total energy difference 
(∆E) (see Ref. 5, 6, 9-11, 17.) are the simplest to apply, 
but also the most approximate ones, as discussed also in 
Ref. 16. Rigorous calculations can be undertaken with 
methods such as “drag”, “dimmer” or “Nudged Elastic 
Band” ones. The interested reader can find a general 
survey on that topic in Ref. 18. The method we used 
was a drag refined with cubic splines interpolation. The 
total energy of the system is calculated with MD 
performing a quench of the crystal.  
 
The VME varies with the Local Atomic Configuration 
(LAC), as illustrated on figure 2. The A, B1, … , F 
atoms shown in addition to the migrating one are the 
first nearest neighbors (1nn) of both its initial and final 
positions. They can be of several chemical types, or 
even be another vacancy. Depending on their nature, the 
corresponding VME will be different. The LAC can 
thus be coded under the form of an array of integers :  
 
1nn LAC = [ J  A  B1  B2  …  E2  E3  F ]                (2) 

 

 
Fig. 3. The evolutionary VME prediction system. 

! 

Em  is the 
MD calculated VME, whereas 

! 

Em
*  is the prediction made by 

the approximation tool. The pre-buffer and the VME 
database are implemented under the form of a binary tree. 

 

 
Fig. 4.  Vacancy Migration Energy (VME). x is the 
dimensionless advancement coordinate along the atom 
displacement path. The y-axis of the figure is the total 
energy of the system in electron volts. EM is a cubic spline 
interpolation of the saddle point in the minimum energy path 
found by the drag method. 
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Each entry corresponds to one particular site around the 
jump and the value it takes depends on the nature of the 

object found therein. The length of the LAC string 
depends on the accuracy of the correlation. For 
example, the 1nn approximation shown on figure 2 
considers 15 atomic sites. Taking further nearest 
neighbors into account makes this number increase. The 
list of possible values that the integers may take 
depends on the physical problem at hand. We talk about 
the FeAB_Xnn problem when, in addition to the Fe 
matrix and 1 migrating vacancy, both the A and B 
species may be encountered and participate in defining 
the LAC and when the Xnn approximation is used, i.e. 
the LAC is extended to include the Xth shell of 
neighboring sites. 
 
Table 1 summarizes the problems of interest for the 
study of the FeCu binary alloy.  It is clear that the 
number of possible LACs explodes quickly and that a 
full calculation with MD is totally unfeasible. Note that, 
in practice, the inherent symmetries of the BCC 
configuration allow the total number of LACs to be 
reduced by a factor 6 at the most. This “trick”, however, 
obviously does not remove the underlying complexity 
mentioned earlier.  
 
Our problem is consequently to correlate the VME with 
respect to 15 to 39 integer (categorical) type input 
variables. The output is a smooth real type function that 
takes values from 0.0‡ to, say, 1.5 eV, with the largest 
accuracy possible. The parameters of the drag and 

                                                
‡ Negative values are meaningless as when introduced in (1) they may 
lead to unreasonably large jump probabilities. Physically, negative 
values would imply that the transition is not thermally activated, but 
spontaneous, which means that the initial state is ill-chosen. 

quenching methods have been selected as a compromise 
between speed and accuracy.  
 

3. Cluster Expansion 

 
A cluster expansion for an alloy can be viewed as a 
generalized Ising Model19. Any property of the alloy 
that only depends on the atomic configuration, the total 
energy in particular, may be expressed by means of such 
an expansion. Its application to energy barriers (VMEs) 
has been proposed e.g. in Ref. 20. More precisely, the 
occupation variables of the LAC allow a description of 
the energy barrier as an expansion in terms of 
polynomials : 
 

! 

ECE = J0 + J iSi + J ijSiS jpairs"sites" + J ijkSiS jSk + ...
triplets"   (3) 

 
where Si are the LAC entries and Jij are the coefficients 
of the basis functions that can be fitted e.g. to the MD 
calculated VME’s for a variety of different LAC’s. 
Figure 5 shows the types of many-body interactions 
considered in an expansion, up to the 3nn. The Jij 
coefficients thus represent the contribution of each of 
these interactions to the VME. 
 
 
 
Of course, only a finite number of interactions can be 
involved in the expansion. The choice of which 

 
Fig. 5.  Types of many-body interactions considered for the 3nn 
approximation. 

 

Table. 1.  Problems of interest for our application. 
The bold values in the last column are those for 
which a full calculation with MD and tabulation is 
feasible. As an order of magnitude, one VME 
calculation with MD takes about one minute on 
modern personal computers. 

Problem Num sites Num LACs 

FeCu1nn ; FeVac1nn 15 215 = 32768 

FeCu2nn ; FeVac2nn 21 221 = 2097152 

FeCu3nn ; FeVac3nn 39 239 = 5.50e+11 

FeCuVac1nn 15 315 = 1.43e+7 

FeCuVac2nn 21 321 = 1.05e+10 

FeCuVac3nn 39 339 = 4.05e+18 
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interaction is more essential to a particular expansion is 
an open question. 
 
The fit of the expansion of each LAC to the 
corresponding MD calculated VME is performed by 
adjusting the coefficient Jij, minimizing the least-square 
error between the calculated energy and the predicted 
energy proposed by the expansion.  This minimization 
can be undertaken with a traditional optimization 
method like Single Value Decomposition21 (SVD) based 
on pseudo-inverse matrix, stochastic methods like 
Genetic Algorithms22 (GA), or non-linear parameter 
fitting like Levenberg-Marquardt23 (LM). 
 
It was decided, as a first approach, to study the 
performance of the cluster expansion method for the 
simple binary 1nn problems. Even for this simple 
situation it was necessary to impose a truncation on the 
expansion by considering only many body interaction 
consisted of pairs or triplets of atoms, in order to avoid 
the number of terms to explode. 
 

3.1 Binary problems 

 
This section presents our results with the FeCu1nn and 
FeVac1nn problems (see Table 1), where the Si 
occupation variables may thus take only two different 
values. The number of free parameters to be optimized 
was 

! 

15 +C15
2

+C15
3  = 575. The percentage of points used 

for training was 20%. The optimization method applied 
in this work was GA (SVD and LM gave similar 
results). 
 
Figure 6 shows the results obtained with the only 
consideration of pairs. The cluster expansion VME 
predictions are clearly well behaved for the FeCu1nn 
problem, even with such a simple model. The additional 
consideration of triplet interaction, however, allows to 
reduce the average error committed, as shown on figure 
7. On the contrary, the cluster expansion predictions 
quality is much less satisfying for the FeVac1nn 
problem. 
 
 
 
 

 

 
 

 
Fig. 6.  Cluster expansion VME predictions for 
the FeCu1nn (up) and FeVac1nn problems 
(down), with only pair interactions taken into 
consideration. The average errors are respectively 
0.53% and 7.12%. 

  

 
 

 
Fig. 7. Cluster expansion VME predictions for 
the FeCu1nn (up) and FeVac1nn problems 
(down), with pair and triplet interactions taken 
into consideration. The average errors are 
respectively 0.29% and 3.61%. 

 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               344

122



B. Paper I

N. Castin et al. 
 

3.2. Ternary problem 

 
The problem considered here is the more general and 
more complicated FeCuVac1nn (see Table 1), where 
both copper atoms and vacancies may be encountered in 
the LAC.  
 
A solution was imagined to find a way to take into 
account the possibility for some interactions, in the 
cluster expansion formulation, to be more important 
than others24. Of course there is no way to identify these 
interactions on-the-fly during the optimization process, 
so it was decided to design a GA based intelligent 
system, depicted on figure 8, in order to identify the 
relevant many-body interactions of a given problem and 
to obtain the adjustment of the coefficients for these 
interactions. 
 
The individuals of the GA population represent different 
ways to construct a cluster expansion, or different many 
body interactions to consider. A population of different 
templates, or possible cluster expansions, is created in 
the first generation. A training set consisting of local 
atomic configurations is presented to each individual 
(training set 1), and these configurations are “translated” 

to a cluster expansion according to the scheme of this 
individual. A SVD algorithm finds the appropriate 
coefficients, minimizing the least square error on the 
training set 1. With the adjusted coefficients, a second 
training set (training set 2) is translated as the cluster 
expansion proposed by the individual, the least square 
error is calculated and used as a measure of how good 
this individual, or this particular set of many-body 
interactions, is able to produce a good prediction. As the 
genetic algorithm evolves, only individuals that 
represent suitable expansions would survive. 
 
The results obtained with the FeCuVac1nn problem are 
shown on figure 9. The performance of the GA based 
model is surprisingly good compared to the preliminary 
results we obtained with the traditional model. 
 

3.3. Conclusion on CE 

 
The Cluster expansion approximation tool has been 
successfully applied to simple VME prediction 
problems. A GA-based model has been devised to 

 
Fig. 8. GA based Cluster Expansion optimization.  

 

 
 

 
Fig. 9. Cluster expansion VME predictions for 
the FeCuVac1nn with pairs interactions (up) and 
with triplets interactions (down). The average 
errors are respectively 15.72% and 11.74%. 

 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               345

123



B. Paper I

 Artificial Intelligence applied to AKMC 
 

determine the most important interactions to be taken 
into account, enabling the number of terms in the 
expansion to be limited. 
 
However, the potential of the cluster expansion seems 
limited because of the high complexity that the 
optimization problem takes when the number of atomic 
sites to be considered is increased. For example, the 
consideration of the 2nn problems (21 sites in the LAC) 
requires the determination of around 10,000 free 
parameters if triplet interactions are introduced in the 
expansion. An optimization problem of this size is 
known in GA terminology as Large Parameter 
Optimization Problem (LPOP) and requires a large 
population size and many generations to converge. The 
computational complexity, therefore, quickly explodes. 
For this reason and considering that, at the same time, 
we were obtaining better results with a hybrid fuzzy – 
neural network framework (see following sections), it 
was decided to abandon this model in favor of a more 
efficient and robust approach. 
 
 

4. Artificial Neural Networks 

 
Artificial Intelligence (AI) is the combination of 
algorithms, data and software used to develop computer 
systems that can be said to be intelligent. Here, the 
defining feature of intelligence is the capability of 
learning from past experience and solving problems 
when important information is missing, so as to be able 
to handle complex situations and to react correctly to 
new ones. There are many different computational 
models that are considered branches of the artificial 
intelligence field, each one suitable to a different kind of 
problem. For our particular application, the feed-
forwards Artificial Neural Network (ANN) is 
particularly well suited, as it provides a general 
framework for representing non-linear functional 
mappings between a set of input variables and a set of 
output functions25. It is a universal approximator in the 
sense that a Multi-Layer Perceptron (MLP) can 
approximate any continuous multivariate function to 
any desired degree of accuracy, provided that a 
sufficiently large number of hidden neurons are 
available26-27. 
 

4.1. Predictions quality 

 
Figure 10 shows the ANN prediction qualities for binary 
and ternary 3nn problems. The average error committed 
is 0.51% for FeCu3nn and 3.37% for FeCuVac3nn (with 
maximum 7 vacancies in the LAC). The correlation 
coefficient r2 is larger than 0.99 in both cases. The ANN 
is thus clearly outperforming the cluster expansion, not 
only because the error committed is much smaller, but 
also because the training procedure is much less 
computational time demanding. 
 
The next sections present the experiments we made to 
study different ANN architectures and training 
algorithms. 
 

4.2. Experimental conditions 

 
Two MLP architectures have been considered. The first 
is the classical fully interconnected mono-hidden layer 
network without bypass connections, using sigmoid 

 
 

 
 

Fig. 10. ANN Prediction qualities for the 
FeCu3nn (left) and for the FeCuVac3nn (right) 
(maximum 7 vacancies) problems.  
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activation functions, as widely described in Ref. 25-26 
and by many others. It will be denoted as Fixed 
Architecture MLP (FAMLP) from now on. The second 
is Fahlman-Lebiere’s Cascade Correlation Network 
(CNN) as described in Ref. 28. It is, contrary to the 
FAMLP, a constructive algorithm where hidden units 
are added in successive layers. 
 
Two algorithms have been considered for the FAMLP 
training. The first one is the steepest-descent Resilient 
Propagation (RPROP) used in batch mode, as described 
in Ref. 29. The second one is the Levenberg-Marquardt 
(LM), described for example in Ref. 25, which is an 
approximation of the second order Newton method and 
that does not require the computation of the Hessian 
matrix. The synaptic connections where initialized at 
random between ±2.4/F (F is the node fan-inn26 as 
recommended in Ref. 26).  
 
The CCN training algorithm was changed compared to 
the original Fahlman-Lebiere’s. Instead of proceeding to 
the addition of a new hidden node in two phases, all 
synapses linked to it are trained all together with the 
output ones, with a classical training algorithm (chosen 
to be LM). The reason is that is seems to us that the 
original Fahlman-Lebiere training scheme is best suited 
for classification problems using the 1-of-c coding for 
the output signal. Furthemore, the QuickProp30 
algorithm originally proposed for CCN training28 didn’t 
give more satisfactory results than RPROP and LM and 
is therefore not considered in the present paper. 20 
candidate nodes where considered before any new 
hidden unit addition. The synapses initialization strategy 
was the same as for FAMLP training, and the activation 
functions where chosen at random amongst the sigmoid, 
Gaussian and hyperbolic tangent.  
 
 

4.3. Experiment 1 

 
All architectures and training algorithms have been 
tested on the FeCu1nn and FeCu2nn problems. The 
FAMLP was trained with several numbers of hidden 
nodes. The experiments were run 20 times. 
 
Figure 11 shows the experiments for the FeCu2nn 
problem. Figure 12 summarizes the results for both the 

FeCu1nn and the FeCu2nn problems. The following 
observations can be made : 
• The best-suited number of hidden nodes for the 

FAMLP is not easy to determine, because of the 
substantial variance of the final MRE. In fact, it is 
absolutely necessary to run all experiments several 
times, which is bad news from the computational 
point of view. 

 

 
 

 
 

 
 

Fig. 11. FeCu2nn trained with FAMLP and CCN. 
The error bars show the max observed MRE over the 
20 trainings performed. T is the number of training 
examples. 
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• For FAMLP, the RPROP algorithm does not reach 
as low MRE as LM, except if the training set is 
large enough. LM is thus always preferable§.  

• The final MRE variance is unsurprisingly lower for 
CCN than FAMLP. 

• The CCN architecture is in general not capable of 
reaching the same MRE as the FAMLP, despite its 
advantage to construct the network automatically. 
In-depth architectures are thus apparently less 
appropriate to the VME correlation problem than 
the use of one single hidden layer. 

 
 
 
It is thus clear that reaching a reasonably low MRE is 
rather easy, whereas fine-tuning is not conceivable 
without quite a number of training experiments.  
 

4.4. Experiment 2 

 
Figure 13 shows the experiments performed with the 
3nn problems. Only the CNN architecture was tested. 
The experiments were run 20 times. 
 
The comparison of figure 12 and 13 shows clearly that 
the ANN need in training examples to converge to the 
lowest possible MRE behaves well with the problem 
complexity. Shifting from 1nn to 2nn or 3nn has not 
made this number explode. The same observation holds 
for the comparison of the FeVac and FeCuVac problems 
to the FeCu one. This is a very important point vis-à-vis 
the extension of the methodology to more complex 
problems. 
 

4.5. Conclusion on ANN 

 
The ANN is clearly a very promising tool for the VME 
regression versus LAC. Low mean residual errors of 
predictions and very good correlation coefficients are 
indeed very easily obtained. However, ANN fine-tuning 
is not an easy issue, because quite a lot of training 

                                                
§ In practice, LM requires much less training epochs to converge than 
RPROP or other first order methods. However, The actual training 
time can be reversed for large systems because of the complexity of 
the LM : 

! 

" (W3+TW2) where W is the number of synapses and T the 
number of training examples. Anyway, LM was by far the fastest for 
our application. 

 
 

 
Fig. 12. Minimum MRE observed amongst all 
training experiments performed. 

 

 
 

 
Fig. 13. Experiments with the 3nn problems. 
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experiments are in practice necessary before the best 
possible ANN performance can be reached. 
 
Consequently, it seems to us that the CCN training 
scheme is a good starting point to make the first NN 
training trials on a new problem, in order to determine 
the number of training points required to reach the 
lowest possible MRE. Then a long series of FAMLP 
trainings, with the LM algorithm applied on different 
network architectures, are to be performed as a second 
step for fine-tuning. 
 
 
 

5. Risk assessment on the VME approximation 

As already mentioned, a Fuzzy Logic31 (FL) system has 
been designed to assess the uncertainty32 inherent to the 
use of the ANN and to evaluate the "risk"33 associated 
with its use instead of the full calculation, so as to be 
able to build an integrated system, capable of feedback. 
Figure 14 shows an example of ANN trained for the 
FeCu1nn problem and of associated risk assessment 
scheme. Despite the reasonably low MRE, the error 
committed for some cases may be rather large, up to 
17.5% for this particular example. The objective of the 
FL would then be to identify, on the basis of both the 
LAC and the corresponding predicted VME, whether 
the correlation error is probably larger than a certain 
Error Rejection Threshold (ERT).  
 
 
The FL system we developed follows a Sugeno model34-

35 and produces an output that is either 0 or 1, 
respectively meaning “acceptance” or “rejection” of the 
ANN predicted VME. The FL inputs are various 
information extracted from the LAC. For example, the 
variables for the FeCu1nn problem were :  
• The total number 

! 

NCu  of copper atoms in the LAC. 
• The difference 

! 

"CCubetween the number of Cu 
atoms that are 1nn of the jumping atom and the 
number of Cu atoms that are 1nn of the jumping 
vacancy. 

• The ANN prediction 

! 

Em
*  of the migration energy. 

Triangular-shaped sets are used for the fuzzification part 
of the Sugeno model. 
 

An automated Genetic Algorithm (GA) based learning 
scheme has been developed in order to generate the FL 
system definition on the basis of the full VME available 
database. The GA optimization variables are the central 
coordinates of the triangular sets on the FL inputs, as 
shown on figure 15. The rules’ conclusions are 
determined after a passage in the VME database. If at 
least one point that has an unacceptable error fulfils a 
certain rule, its conclusion is automatically chosen to be 
1 (“rejection”). The conclusion is 0 (“acceptance”) 
otherwise.  The GA objective function is :  
 

! 

f = (1+R1) " (1+R2 ) +1 (4) 
 
Where R1 is the proportion of acceptable ANN 
predictions wrongly rejected by the FL and R2 is the 
proportion of unacceptable predictions wrongly 

 
 

Fig. 14. ANN trained for the FeCu1nn problem. The 
MRE is 1.06%. The ERT is set at 6%. 

 
 

Fig. 15. FL sets and rules determination by the 
GA. 

! 

µ is the relevancy to belong to a certain 
FL set. 
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accepted. The GA task is thus to select the fuzzy sets as 
properly as possible, so as to isolate in what conditions 
precisely is the ANN failing at producing a good VME 
prediction. 
 
The classical Sugeno inference scheme has been 
modified in order to improve the FL performance. The 
FL output O is calculated by : 
 

! 

O = round(o) ; o =

Hr "Cr "Tr
r

#

Hr "Tr
r

#
 (5) 

 
Where Hr is the rule relevancy and Cr is its conclusion. 
The Tr coefficient (named trust index) has been added. 
It is the maximum relevancy observed by the GA that 
has led to the conclusion Cr for the rule r. For example, 
on figure 15, the conclusion Cr of all rules involving the 
set number 3 on the FL input considered is “rejection”. 
Only one observation leads to that conclusion, but it was 
lying very close to the set peak. In that case, the 
“rejection” conclusion for the rule r can be used with a 
high degree of trust, and so 

! 

Tr = µa
 is very close to 1. 

On the other hand, the conclusion of all rules r* 
involving the set number 2 are also “rejection”, but with 
a much lower level of confidence. In this case, 

! 

Tr* = µC  
is close to 0. The r* rule has, consequently, fewer 
chances to induce wrong rejections of acceptable VME 
predictions. 
 
The complexity of the GA objective function is rather 
large. Two passages in the overall VME database are 
indeed required : the first serves to determine the rules’ 
conclusions (as depicted on figure 15) and the second 
serves to calculate the function f. The application of 
such a method is very time-consuming if the database is 
large, which is the case in practice for the 2nn and 3nn 
problems. In order to reduce that complexity, we have 
introduced a clustering operation on the FL learning 
data, depicted on figure 16. Points having a similar 
value for all FL inputs are removed, as long as they lie 
on the same side of the ERT. Only one point is left, and 
is assigned with a weight factor that corresponds to the 

number of points removed plus one. This factor is then 
taken into account when the R1 and R2 members of the f 
function are calculated. In practice, points above the 
ERT are not clustered (it is affordable since they are not 
very numerous) and the clustering operation is very fast 
thanks to the help of a binary tree. The size of the FL 
learning table is in turn tremendously reduced and the 
GA optimization is consequently much faster. An 
appropriate choice of the selection tolerances shown on 
figure 16 allows the effect of clustering to be made 
negligible on the real FL abilities to isolate the 
unacceptable ANN predictions. 
 

 
Figure 17 : Evolution with he ERT of the best-
obtained R1 for the problem of Fe-Cu 1nn . R2 has 
immediately vanished during the GA optimization 
in all cases. 

 

 

 
 
Fig. 16. Clustering operation on the FL learning data, around 
the two circled points, with respect to 1 FL input. In practice, 
points are removed only if the illustrated condition is fulfilled 
for all the FL inputs.  
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The last undefined feature of the FL system is the 
appropriate selection of the ERT. In fact, we can see it 
as a compromise between ANN accuracy and AKMC 
speed. The ERT is actually not a priori chosen, but 
rather determined as low as possible with the constrain 
to keep R1 reasonably limited, as shown on figure 17. 
The choice of a large ERT is consequently less rigorous 
in the ANN risk assessment but summons MD 
calculations less often, and reversely.  
 

6. Example of AKMC results with the use of ANN 

 
Figure 18 shows the results of thermal annealing 
experiments computed with a small AKMC box 
containing 1.4% of Cu and 1 single vacancy. The VME 
was correlated with an MLP having a MRE of 0.5%. No 
FL Risk assessment was applied. Satisfactory 
predictions of the Cu solubility limit in Fe were 
obtained at different temperatures. 
 

7. Conclusion and outlook 

 
In this work, we have reported about our effort to 
develop a regression tool to partially replace a costly 
“molecular-dynamics” calculation of the local-atomic-
configuration-dependent vacancy migration energy in 
an atomistic kinetic Monte Carlo scheme, where the 
local atomic configuration is presented under the form 
of an array of tens of categorical integers. We have in 
the first place envisaged a cluster expansion approach. 

The latter has however been abandoned for an artificial 
neural network, that has been proven to be more robust, 
well behaved and promising for future developments of 
the project. 
 
Our future objective is to continue the application of 
this method to more complicated situations. First, the 
number of atomic sites taken into consideration must be 
increased for a better description of the physics, and 
more chemical species are to be included in the model. 
Secondly, in order to tackle irradiation problems, the 
atomistic kinetic Monte Carlo model must be able to 
consider the migration of another type of point-defect, 
i.e. the self-interstitial. It is a more complicated event 
than the vacancy migration, mainly because of the more 
extended and anisotropic strain-field than for a vacancy, 
which enhances and complicates its interaction with 
neighboring atoms. 
 
Our future work will thus have to face not only a larger 
number of artificial-neural-network input variables, but 
also a more complicated mapping between these inputs 
and the point defects migration energies that have to be 
predicted. 
 

Acknowlegments 

 
This work was performed in the framework of the FP6 
PERFECT project, partially funded by the European 
Commission under contract FI6O-CT-2003-508840. 
The authors wish to acknowledge F. Djurabekova and 
G. Cerchiara, who valuably contributed to the present 
work in its early stage. 
 

References 

1. G.R. Odette and G.E. Lucas, JOM 53 (7) (2001) 8-22. 
Mater. Sci. Eng. 6 (1998) 19-28. 

2. J.T. Buswell, W.J. Phythian, R.J. McElroy, S. Dumbill, 
P.H.N. Ray, J. Mace and R.N. Sinclair, J. Nucl. Mater. 
225 (1995) 196-214. 

3. K. Fukuya, K. Ohno, H. Nakata, S. Dumbill and J.M. 
Hyde, J. Nucl. Mater. 312 (2003) 163-173. 

4. Y. Nagai, Z. Tang, M. Hasegawa, T. Kanai and M. 
Saneyasu, Phys. Rev. B 63 (2001) 134110. 

5. B.D. Wirth and G.R. Odette, "Kinetic lattice Monte Carlo 
simulations of cascade aging in iron and dilute iron-
copper alloys", Mat. Res. Soc. Symp. Proc. 540 (1999) 
637-642. 

 
 

Fig. 18. AKMC results obtained with the use of the FeCu3nn 
trained MLP. The CO5 curve shows the Cu solubility limit of 
the inter-atomic potential used for the energy calculations. 
 
 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               351

129



B. Paper I

 Artificial Intelligence applied to AKMC 
 

6. C. Domain, C.S. Becquart and J.-C. van Duysen, 
Microstructural Processes in Irradiated Materials, 
Materials Research Society Symposium Proceedings, 
Vol. 650, edited by G.E. Lucas, L.L. Snead, M.A. Kirk 
Jr. et al. (Materials Research Society, Warrendale, PA, 
2000), p. R3.25. 

7. S. Schmauder and P. Binkele, Comp. Mater. Sci. 25 
(2002) 174. 

8. Y. LeBouar and F. Soisson, "Kinetic pathway from EAM 
potentials: influence of the activation barriers" Phys. Rev. 
B 65 (2002) 094103. 

9. E. Vincent, C.S. Becquart and C. Domain, J. Nucl. Mater. 
351 (2006) 88. 

10. E. Vincent, C.S. Becquart and C. Domain, Nucl. Instr. & 
Meth. in Phys. Res. B 255 (2007) 78. 

11. E. Vincent, C.S. Becquart, C. Pareige, P. Pareige and C. 
Domain, J. Nucl. Mater. 373 (2008) 387. 

12. C. Domain, C.S. Becquart and L. Malerba, J. Nucl. 
Mater. 335 (2004) 121. 

13. C. Ortiz, M.-J. Caturla, C.-C. Fu and F. Willaime, Phys. 
Rev. B 75, 100102(R) (2007). 

14. C. Ortiz and M.-J. Caturla, Phys. Rev. B 75, 184101 
(2007). 

15. K. Binder (Ed.), “Monte Carlo Methods in Statistical 
Physics”, Springer-Verlag, Berlin (1979). 

16. F. Djurabekova, R. Domingos, G. Cerchiara, N. Castin, 
E. Vincent and L. Malerba, Nucl. Instr. & Meth. In Phys. 
Res. B, 255 (2007) 8. 

17. Young66: W.M. Young and E.W. Elcock, Proc. Phys. 
Soc. 89 (1966) 735; Kang89: H.C. Kang and W.H. 
Weinberg, J. Chem. Phys. 90(5), 2824 (1989). 

18. G. Henkelman, G. Jóhannesson, and H. Jónsson, 
“Methods for Finding Saddle Points and Minimum 
Energy Paths”, in Progress on Theoretical Chemistry and 
Physics, 269-300, Ed. S. D. Schwartz (Kluwer Academic 
Publishers, 2000). 

19. J.M. Sanchez, F. Ducastelle and D. Gratias, Pysica 128A 
(1984) 334-350. 

20. Van der Ven, A; Ceder, G, "Vacancies In Ordered And 
Disordered Binary Alloy Treated With The Cluster 
Expansion," Physical Review B, Vol. 71, Issue 5, (2005). 

21. Trefethen, L. N., & Bau, D. (1997). Numerical linear 
algebra. Philadelphia: Society for Industrial and Applied 
Mathematics 

22. D. E. Goldberg, Genetic Algorithms in Search, 
Optimization, and machine learning, Addisson-Wesley, 
Reading, Mass., 1989. 

23. Gill, P. E. and Murray, W. "Algorithms for the solution 
of the nonlinear least-squares problem", SIAM J. Numer. 
Anal. 15 [5] 977-992, 1978. 

24. G. L. W. Hart, Volker Blum, Michael J. Walorski, and A. 
Zunger, "Evolutionary Approach for Determination of 
First-Principles Hamiltonians," Nature Materials 4, 391-
394 (01 May 2005). 

25. C.M. Bishop, “Neural Networks for pattern recognition”, 
Clarendon press, Oxford, 1995. 

26. S. Haykin, "Neural Networks: A Comprehensive 
Foundation", New York: MacMillian (1994). 

27. K. Hornik, M. Stinchcombe and H. White, "Multilayer 
feedforward networks are universal approximators", 
Neural Networks, 2 (1989) 359-366. 

28. Scott E. Fahlman and C. Lebiere, “The Cascade-
Correlation Learning Architecture”, in Advances in 
Neural Information Processing Systems, volume 2, pages 
524-532, 1990. 

29. M. Riedmiller and H. Braun, “A Direct Adaptive Method 
for Faster Backpropagation Learning: The RPROP 
Algorithm”, Proc. of the IEEE Intl. Conf. on Neural 
Networks, pages 586-591, 1993. 

30. Scott E. Fahlman, “An Empirical Study of Learning 
Speed in Back-Propagation Networks”, Computer 
Science Technical Report, Carnegie-Mellon University, 
1988. 

31. L.A. Zadeh, Fuzzy Sets & Systems 100 (1999) 9. 
32. D. Dubois and H. Prade, "Unfair Coins and Necessity 

Measures: Towards a Possibilistic interpretation of 
Histograms", Fuzzy Sets & Systems 10 (1983) 15. 

 

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 340-352

Published by Atlantis Press 
  Copyright: the authors 
               352

130



C Paper II



C. Paper II

Prediction of point-defect migration energy barriers in alloys using artificial
intelligence for atomistic kinetic Monte Carlo applications

N. Castin a,b, L. Malerba a,*

a Structural Materials Group, Nuclear Materials Science Institute, Studiecentrum voor Kerneenergie Centre d’étude de l’énergie nucléaire (SCK CEN),
Boeretang 200, B-2400 Mol, Belgium
b Université Libre de Bruxelles (ULB), Physique des Solides Irradiés et Nanostructures (PSIN), CP234 Boulevard du triomphe, Brussels, Belgium

a r t i c l e i n f o

Article history:
Available online xxxx

PACS:
66.30.Fq
66.30.Lw
05.10.Ln
02.60.Ed

Keywords:
Artificial intelligence
Atomistic kinetic Monte Carlo
Chemical and relaxation effects

a b s t r a c t

We significantly improved a previously proposed method to take into account chemical and also relax-
ation effects on point-defect migration energy barriers, as predicted by an interatomic potential, in a rigid
lattice atomistic kinetic Monte Carlo simulation. Examples of energy barriers are rigorously calculated,
including chemical and relaxation effects, as functions of the local atomic configuration, using a nudged
elastic bands technique. These examples are then used to train an artificial neural network that provides
the barriers on-demand during the simulation for each configuration encountered by the migrating
defect. Thanks to a newly developed training method, the configuration can include a large number of
neighbour shells, thereby properly including also strain effects. Satisfactory results have been obtained
when the configuration includes different chemical species only. The problems encountered in the exten-
sion of the method to configurations including any number of point-defects are stated and solutions to
tackle them are sketched.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The presence of neutron-irradiation-created point-defects en-
hances mass transport in alloys and accelerates possible phase
changes, which result in material property modifications. The
development of predictive tools to model the kinetics of such pro-
cesses is of great importance, especially for the nuclear sector.

Molecular dynamics (MD) is a reliable tool to study atomic-level
processes involving radiation-produced point-defects, their mutual
interaction and their interplay with solute atoms, provided that a
suitable interatomic potential is available for the material of inter-
est [1]. The timeframe is, however, limited to a few tens of nano-
seconds at the most and cannot encompass slow diffusion
processes involving vacancies, such as solute precipitation and seg-
regation. Kinetic Monte Carlo (KMC) tools, particularly object [2] or
event [3] KMC, where atoms are not explicitly treated and only the
kinetics of defects is included, are suitable to extend the timeframe
of an atomic-level simulation up to years and to simulate an irra-
diation process in a realistic way. However, using these methods
all the mechanisms involved must be quantitatively known in ad-
vance. In addition, the application of these techniques to concen-
trated alloys is not straightforward. Atomistic kinetic Monte

Carlo (AKMC) techniques on rigid lattice are in-between these
two extremes [4,5]: they retain the atomic-level description and
reduce the number of possible events to the very basic mecha-
nisms of single-defect diffusion, but they can encompass a time-
frame (much) larger than MD.

This paper summarises the current state of advancement in the
development of a new approach to describe point-defect migration
in an alloy, as well as the microchemical evolution it brings about,
in an AKMC framework. The approach is based on the idea of
exploiting artificial intelligence techniques, namely artificial neural
networks (ANN), as advanced regression tools to predict energy
migration barriers as functions of the local atomic configuration
(LAC), thereby substituting computationally prohibitive on-the-
fly calculations. A first attempt, with LACs limited to first and sec-
ond nearest neighbour shells, had already been reported in [6].
Here we describe how the ANN efficiency and flexibility has been
significantly improved, so as to allow the extension to large LAC
volumes, thanks to a newly developed ANN training strategy,
which is explained in some detail. We show that the achieved
regression capability is satisfactory when the LAC is defined by dif-
ferent chemical species only, even for large LAC volumes, thereby
including also the effect of strain fields. We also address the more
difficult problem of LACs defined by a number of point-defects,
sketching possible solutions. The application of the methodology
for AKMC simulations of thermal ageing in FeCu and FeCuNi alloys
is reported in a more extended companion paper [7].

0168-583X/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.nimb.2009.06.041
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2. Atomistic kinetic Monte Carlo simulations

The AKMC algorithm models stochastically point-defect
migration events as thermally activated processes. The probability
for the event i is proportional to the jump frequency
Ci = m0exp(�Ei

m/kBT), where m0 is the attempt frequency, Ei
m the

migration energy barrier (MEB), kB Boltzmann’s constant and T
the absolute temperature. The simulation time is then incremented
using a mean residence time algorithm [8]. If the pre-exponential
factor m0 is assumed to be constant, the only unknown is Ei

m. The
latter depends strongly on the LAC, defined by the presence of
atoms of different chemical species and also, a priori, of other
point-defects, each time distributed in different ways around the
migrating point-defect.

Ideally, Ei
m should be properly calculated on-the-fly for each

event. In practice, this on-the-fly calculation is generally per-
formed using heuristic approaches, compromise between compu-
tational feasibility and physical acceptability [4,5]. Often, the
MEB is calculated as a constant barrier, depending only on the
chemical nature of the atom exchanged with the point-defect,
corrected by the total energy variation due to the migration event,
calculated without allowing for relaxation effects, using either pair
energies or an interatomic potential [5]. Alternatively, broken-
bond methods extended to a few nearest neighbour shells are used
for the calculation of both saddle point energy and initial energy,
estimating the MEB as difference between the two [4,5]. Either
method essentially disregards relaxation effects on the MEB and
is limited to small LAC volumes (second nearest neighbour shell).
In addition, the former method artificially links a kinetic quantity
(the energy barrier) to a thermodynamic quantity (the energy
variation).

3. Artificial intelligence approach

Given a LAC, we rigorously calculate the corresponding MEB,
using an interatomic potential, with the nudged elastic band
(NEB) method [9], thereby including all chemistry and relaxation
effects, as much as they can be reproduced by the potential.
However, the migration events and the configuration of the AKMC
box are still described in a rigid lattice framework, in order to keep
the advantageous simplicity of such a model.

Since the systematic on-the-fly use of NEB in the course of an
AKMC simulation is unfeasible in practice, because of its inherently
huge computing time cost, we rely on an artificial neural network
(ANN) [10] as partial replacement of it [11]. Once trained, the latter
provides MEB values as functions of the LAC essentially coincident
with the NEB calculations, at much lower computational cost. The

LAC is described as a string of integers, i.e. by on-site variables tak-
ing different values depending on the chemical species sitting in
the corresponding lattice site.

The success of this approach relies completely on the ANN abil-
ity to reproduce, with reasonable accuracy and using only on-site
variables as input, the result of the NEB calculation tool, even when
large LAC volumes are considered. Fig. 1(a) shows one example of
satisfactory correlation, including a very large number of atoms in
the LAC: although not all ANN predictions are equally accurate, the
average error is small and the correlation coefficient is close to 1.
The second example (Fig. 1(b)) is less satisfactory from the point
of view of the correlation, despite including less lattice sites in
the LAC. The reasons for this are discussed in Section 5. Other
examples of good correlation are provided in [7].

4. General procedure for the use of ANN in AKMC

The general procedure to be followed to properly train the ANN
to calculate the MEB is described in logical order in the next
subsections.

4.1. Evaluation of the number of neighbours in the LAC

The number of atomic sites to be included in the LAC for MEB
calculation depends on the problem at hand. It must be chosen
big enough, so that the MEB does not vary too much if the con-
figuration changes at far enough sites. But it must not be chosen
too large, to avoid unnecessary complications and minimise the
computational cost. One way to establish the optimal LAC volume
is the following: the point-defect is followed in the simulation
box in a first AKMC test simulation (for example conducted with
a first ANN, preliminarily trained on randomly generated LACs –
see Section 4.2) and the encountered LACs (expressed in terms
of on-site variables [6]) are listed. For each migration jump, the
MEB is then calculated by NEB for increasing LAC volumes. The
value corresponding to the largest size is taken as reference to de-
cide starting from which LAC volume the MEB value converges to
an essentially constant value: this LAC volume will be the best
choice.

4.2. Random databases generation

A reference database of NEB-calculated MEBs, for a first-esti-
mate LAC volume, is generated before the ANN can be trained. In
the initial absence of AKMC results, it can be randomly generated.
LACs are thus randomly chosen and the MEBs are calculated for all
of them. Two types of randomization are possible:

Fig. 1. Quality of ANN predictions of MEBs of a single vacancy (a) in FeCr without and (b) in FeCu with other vacancies (7 max.) in the LAC. The number of LAC atomic sites
taken into account are 399 (a), and 143 (b). The mean errors/correlation factor (R2) are 4.97%/0.99 (a) and 3.5%/0.94 (b).
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1. The LAC volume is randomly filled with foreign solute atoms
(and/or other point-defects), without any preferential spatial
distribution. This corresponds to sampling different configura-
tions in a solid solution.

2. Clusters of foreign solute atoms (and/or point-defects) are ran-
domly created at various distances from the migrating point-
defect, and the LAC is generated accordingly. This situation
must be included in order to properly describe precipitation
(and/or clustering), but it is the result of a priori arbitrary
choices concerning the size, geometry and composition of the
clusters.

The random database must ideally contain examples of both
types, in order to be representative of all possible situations that
can be encountered during the AKMC simulation where precipita-
tion/clustering is expected. This first training set can be later on
complemented by other LACs encountered during further test sim-
ulations, if deemed necessary.

4.3. ANN training

ANN training for the regression of MEBs is a computing time
consuming operation, especially for large LAC volumes, i.e. with a
large number of on-site variables as input [11]. A special ANN
training algorithm, shown on Fig. 2, has been developed to allevi-
ate this problem. The algorithm is twice constructive: (i) the input
variables are gradually connected to the network, layer of atomic
neighbours by layer; (ii) within a level of approximation, nodes
are gradually added in the only hidden layer with a constructive
algorithm. The fixed architecture training phases use the Leven-
berg – Marquardt (LM) algorithm, as its superior qualities for this
application have been demonstrated [11]. (Further details, includ-
ing the mathematical aspects, will be published elsewhere.)

The practical interest of this algorithm is manifold: the best net-
work architecture is automatically determined, the algorithm
makes good use of multi-processor environments and, finally, most
of the training time is spent on the most influencing variables, i.e.
the closest neighbouring sites: improving the regression for larger
LAC volumes becomes increasingly faster when smaller volumes
are already correctly regressed. The use of this LM based training
scheme has allowed to take many more atomic neighbours into ac-

count in the regression compared to our first work, as the ANN
trained with classical back-propagation didn’t give satisfactory re-
sults when more than 21 input variables were taken into account
[6].

Note that the complete MEB database is not identically utilized.
In practice, less than half of it is used for training, i.e. to adapt the
degrees of freedom of the ANN, whereas the remaining part serves
as validation set, to measure the actual extrapolation skill on never
seen cases.

4.4. Assessment of the ANN predictions in the AKMC

The preliminary ANN is trained on the basis of randomly gener-
ated examples. It is thus advisable to verify a posteriori that its pre-
dictions are close enough to the actual MEB for the cases that are
encountered in the course of a simulation, sampled as described
in Section 4.1. The error of the ANN on those cases is then mea-
sured, while the optimal LAC volume is assessed. The ANN is even-
tually re-trained if necessary, for a larger LAC volume if needed,
including in the training set the newly sampled LACs. This assess-
ment (and re-training, if needed) procedure should be in principle
performed after each long AKMC simulation, so that the accuracy
of the regression improves with time.

5. Application of the method to the general problem of many
point-defects

When the LAC includes not only changing chemical species, but
also other point-defects, the problem becomes more involved,
because the appearance of significant strain effects must be ac-
counted for by the ANN. This corresponds to higher mathematical
complexity and larger number of variables. In this case, in addition,
the rigid lattice description of the atomic system implicit in the
AKMC scheme is pushed to its limits of validity, since many
close-by point-defects, possibly forming a cluster in a fully relaxed
configuration, may not be straightforwardly associated with pre-
cise rigid lattice sites. Thus, for the moment we restricted ourselves
to a limited number of point-defects (e.g. a maximum of seven
vacancies, as in Fig. 1). To add complications, it turns out that some
AKMC events, although hypothetically possible within the rigid lat-
tice description of the system, lead to unstable final states and
should therefore not be considered. Fig. 3 shows an example
involving self-interstitials. The problem is that a priory no obvious
means exist to identify these events on the sole basis of the LAC,
without relaxing the crystal to verify the stability. The ANN
predictions of the MEBs for these events are thus out of control,
since no NEB-calculated value can be provided as example. More-
over, in the presence of point-defects causing important strain

Fig. 2. Constructive ANN training algorithm. The ANN variables that correspond to
the second nearest neighbours (2 nn) were already connected in previous steps of
the algorithm. The variables of the third level are currently being connected.
Subsequently, the effect of further neighbour shells will be included.

Fig. 3. Example of AKMC event that leads to an unstable final state (at least one of
the SIA shown on the figure changes if it is relaxed with quenching or conjugate
gradients).
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effects (self-interstitials), the NEB method itself becomes less reli-
able: we have observed cases in which the choice of the first guess
migration energy path influences the result, thereby determining a
situation where more than one MEB value corresponds to the same
LAC. Supposing that the latter problem can be solved by devising a
procedure to properly choose the initial guess migration energy
path, three strategies are currently considered to tackle the prob-
lem of many defects in the LAC:

1. A classification ANN can be trained to decide, on the basis of the
LAC, whether an AKMC event is to be considered or not.

2. The migration energy ANN can be trained to produce very large
barriers for the unacceptable events. It therefore becomes pos-
sible to avoid them, by ignoring all events for which the MEB is
predicted to be above a certain threshold.

3. It may be possible to associate a reference NEB-calculated MEB
with all events if the unstable states are constrained. This
method is, however, delicate and risky to apply in practice,
because the constraints must be chosen so that they do not sig-
nificantly alter the MEBs corresponding to non-problematic
events.

6. Conclusion

We have presented the advances made in a new approach to
predict the migration barriers of point-defects in alloys as func-
tions of the local atomic environment, as described by an inter-
atomic potential, properly allowing for chemical and relaxation
effects, of use in atomistic kinetic Monte Carlo simulations on rigid
lattice. The main improvements concern the training strategy and
the possibility the new strategy offers of taking into account the
influence of a large number of neighbouring atoms on the energy
barrier, thereby also allowing for strain effects. Satisfactory results

have been obtained when the local environment influencing the
migration barrier is only determined by the presence of different
chemical species. The extension of the method to the general prob-
lem of many point-defects requires care, because strain effects be-
come so important that the rigid lattice description is pushed to its
limits of validity. Possible solutions have been sketched and will be
further investigated in the near future.
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a b s t r a c t

We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation
effects when assessing the migration energy barriers of point defects, to the study of the microchemical
evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for
nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes
of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants.
Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a
conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies
as functions of the local atomic configuration. We prove, through a number of results, that the use of
the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using com-
putationally expensive methods such as nudged elastic bands with an interatomic potential. The use of
the neural network makes the computational cost affordable, so that simulations of the same type as
those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now
be performed, at the same computational cost, using more rigorously calculated barriers. This method
opens the way to properly treating more complex problems, such as the case of self-interstitial cluster
formation, in an atomistic kinetic Monte Carlo framework.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The formation of copper-rich precipitates under neutron irradi-
ation is widely accepted to be one of the main causes of hardening
and embrittlement in nuclear reactor pressure vessel (RPV) steels
during operation [1]. The development of physical models describ-
ing the kinetics of this microchemical process is therefore a contri-
bution of primary importance towards the overall goal of
producing, in a multiscale simulation framework, tools capable of
assessing the service lifetime of nuclear components [2].

In this paper we apply a novel, artificial intelligence based,
atomistic kinetic Monte Carlo (AKMC) approach [3–6] to model
the microchemical evolution in binary FeCu and ternary FeCuNi al-
loys driven by vacancy migration. The latter alloy is of particular
interest because Cu and Ni are so far considered to be the two ele-
ments mainly determining the onset of embrittlement in RPV
steels [7]. The novelty of the approach, whose technical details
are provided in [6], is that the vacancy migration energy barrier

in the alloy is rigorously calculated allowing for the effects of local
chemistry and relaxation, using a reliable interatomic potential
and the nudged elastic band (NEB) method [8]. Since the latter is
computationally too expensive to be used on-the-fly, it is partially
replaced by an artificial neural network (ANN), trained to repro-
duce, as accurately as possible, the NEB-calculated energy barriers.
During the AKMC simulation, at each Monte Carlo step, the ANN
provides on-the-fly and on-demand the correct energy barriers
for the local atomic configuration (LAC) seen by the vacancy at that
step. We prove that the use of ANN-generated energy barriers is in-
deed totally equivalent to the use of NEB-calculated ones. Thus,
AKMC studies can now be conducted, at affordable computational
cost, with more rigorously calculated energy barriers than hitherto
done by means of heuristic formulas [9,10].

2. Methodology

2.1. The AKMC algorithm

In the AKMC algorithm [9,10], point-defect migration events on
a rigid atomic lattice, leading to phase changes such as segregation
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and precipitation, are described as thermally activated processes.
The probability for the event i is proportional to the jump fre-
quency Ci = m0exp(�Em

i /kBT), where m0 is the attempt frequency,
Em

i the energy barrier, kB Boltzmann’s constant and T the absolute
temperature. One out of all possible events is chosen, at each
Monte Carlo step, by extracting a random number. The simulation
time tMC is then incremented, according to a mean residence time
algorithm [11], by a quantity Dt = 1/RiCi. If the pre-exponential
factor m0 is assumed to be constant (as is usually done [9,10]: here
it is set to 6 � 1012 s�1), the only unknown is Em

i . The latter depends
strongly on the local atomic configuration (LAC), defined by the
presence of atoms of different chemical species, each time distrib-
uted in different ways, around the migrating point-defect and also,
a priori, of other point-defects.

2.2. NEB calculation of migration energy barriers

The application of the NEB method [8] to calculate the energy
barriers requires first of all an atomic cohesive model (here an
interatomic potential is used) and then a good initial guess for
the minimum energy path followed by the atom exchanging its po-
sition with the vacancy. This is provided for example by the drag
[12] method, i.e. by moving the atom towards the vacancy along
a straight line. The NEB is then applied to optimize this initial guess
for the minimum energy path. In practice, the improvement is gen-
erally negligible as compared to the simple drag method, used e.g.
in [4]. We opted, however, for the NEB method because of its wider
generality and more reliable applicability also for the study of the
migration path of other point defects (e.g. self-interstitials [6]) and
in the presence of important strain field effects. For example,
whenever other point-defects are present and participate in defin-
ing the LAC, the correction that the NEB introduces compared to
the drag is appreciable.

2.3. ANN training and use

A database of NEB-calculated energy barriers must be generated
in order to train the ANN. The ANN ‘learns’ from the examples that
are provided (about 105 examples are needed, independently of
how many lattice sites are included in the LAC) and ‘finds the logic’
connecting the input variables (the LAC, expressed in terms of on-
site variables, i.e. integers indicating which chemical species or de-
fect occupies a given lattice site within the LAC volume) with the
output (the corresponding energy barrier). The underlying criteria
applied to build the databases used as training and validation sets
for the ANN and to choose how many atomic sites should be in-
cluded in the LAC (LAC volume) are discussed in [6]. Examples of
the application of such criteria are provided in the present work,
in Sections 3–5. The details of how the ANN is internally con-
structed while trained and how its accuracy is tested, are provided
in [6].

When the training and validation procedure is completed, the
ANN is simply a piece of software that provides the AKMC code, gi-
ven a LAC, with the corresponding energy barrier, requiring for this
operation the time that the computer needs to calculate the value
of a mathematical function, which is orders of magnitude shorter
than the time required for a NEB calculation.

3. Application to the FeCu system

3.1. Preliminary studies

The interatomic potential used to calculate the energy barriers
in the FeCu system is the CO5.20 [13], specifically designed to pro-
vide a good description of the thermodynamic properties of FeCu

(phase diagram), as well as a prediction consistent with ab initio
indications for a few key vacancy migration energy barriers.

In order to define the number of sites to be included in the LAC,
and the type of LACs to be used as examples to train the ANN, the
specific features of the problem at hand were taken into account.
Namely, the FeCu alloys of interest for nuclear applications are
fairly dilute. Thus, except nearby precipitates, the probability to
encounter Cu atoms near a particular site is on average corre-
spondingly small and, in this situation, the LACs can be randomly
generated, without any loss of generality. When Cu clusters or pre-
cipitates form, these are essentially pure Cu and take near-spheri-
cal shapes already for small sizes. The situation of a vacancy in the
matrix nearby a precipitate is therefore the most critical one, but
realistic configurations can be easily anticipated. The convergence
of the NEB calculation towards a certain value for growing LAC vol-
umes has therefore been evaluated by considering cases of the lat-
ter type, with vacancies close to spherical Cu clusters of increasing
size, as pictorially shown in Fig. 1. The migrating vacancy was
placed at random positions around and also inside it and the cor-
responding energy barrier was calculated for increasing LAC vol-
umes. The largest size was taken as the reference to define the
error committed by taking LACs of smaller sizes. Fig. 1 shows that
the LAC should ideally include more than 500 lattice sites, to en-
sure a good precision if clusters of 300 atoms (0.94 nm), or more,
are expected to be formed during the AKMC simulation. It is rea-
sonable, however, to limit the LAC to about 150 neighbours, if
the expected precipitate size does not exceed 150 atoms
(0.75 nm), i.e. to study the early stages of the precipitation process.
Two hundred and twenty five atoms are expected to provide suffi-
cient accuracy also for larger precipitate sizes.

For the present application, the ANN has been trained taking
143 atomic sites into account, which corresponds, in a body-
centred cubic (bcc) lattice, to including all atoms up to the 8th
nearest neighbours (8nn) of both the initial and the final position
of the migrating vacancy. Fig. 2 shows the final quality of the pre-
dictions of the trained ANN, as compared to NEB-calculated values,
for cases that were never seen before by the ANN. It can be appre-
ciated that the precision of the ANN is very high: the ANN error is
much smaller than the error due to the choice of the LAC volume
(Fig. 1). Thus, we can consider the use of the ANN as totally equiv-
alent to the use of the NEB method itself.

Fig. 1. Evolution of the NEB barrier accuracy with the size of the LAC, for increasing
Cu precipitate size (S), expressed in terms of number of Cu atoms.
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3.2. FeCu phase diagram according to the model

The CO5.20 interatomic potential has the outstanding feature of
reproducing the correct solubility limit of Cu in Fe as a function of
temperature, thereby providing a phase diagram comparable with
the experimental one [13], at least in the region of low Cu concen-
tration, below the temperature at which Fe undergoes the transfor-
mation to the face-centred-cubic (fcc) c phase. The phase diagram
according to the potential has been evaluated using different
methods, as shown in Fig. 3.

By using the ATAT code [14,15] for the evaluation of the phase
diagram, the solubility limit predicted by the potential in the case
of equilibrium between bcc Fe and fcc Cu is in good agreement
with the experimental points. ATAT allows also the hypothetical
case of equilibrium between bcc-Fe and bcc-Cu to be evaluated.
This case cannot be compared to any experimental phase diagram,
because bcc Cu is not a stable phase. However, this equilibrium is
the one of relevance during the early stages of Cu precipitation,
when precipitates are known, also experimentally, to keep a bcc
structure [16]. The ATAT calculation reveals that, according to
the potential, the solubility limit in the case of bcc-Fe/bcc-Cu equi-
librium is higher than in the former case. Metropolis Monte Carlo
(MMC) [17] studies with the potential, in which the final configu-
ration is characterised by a certain density of bcc Cu precipitates,
confirm this result. Since the AKMC simulations are performed
on a rigid bcc lattice (i.e. only coherent precipitation is possible),
the bcc-Fe/bcc-Cu solubility limit must be used as reference to

evaluate the performance of the ANN based AKMC model. It can
be seen in Fig. 3 that, indeed, the two points hitherto obtained as
a result of ANN-driven AKMC simulations fall close to the MMC
points, thereby proving that no significant thermodynamic infor-
mation is lost when using ANN-generated barriers, instead of those
calculated by NEB. To this regard, it should be noted that the ther-
modynamic information is ‘‘hidden” in the barriers in terms of dif-
ference between direct and inverse process. A priori, large errors in
the prediction of the barrier for the two processes may lead to lar-
gely different thermodynamic properties predicted embodied by
the kinetic model. Fig. 3 shows that this is not that case and that
using ANN-generated barriers is in fact equivalent to using barriers
generated directly from the interatomic potential, employing the
NEB method for their calculation. It is instructive to note that, if
the ANN is trained to LACs extended up to the 3nn shell only, then
the solubility limit predicted by the model changes dramatically.
This is most likely a chemical effect, because the 3nn approxima-
tion ignores the contribution of the 4nn and 5nn that are still in
the range of the interatomic potential cut-off. It is however neces-
sary to take even more neighbours than the 5nn into account, in or-
der to provide a proper thermodynamic description, if relaxation
effects are to be correctly included.

3.3. Diffusion of small Cu-vacancy clusters

In order to further establish the equivalence between ANN-dri-
ven AKMC simulations and the use of NEB-calculated energy barri-
ers, the diffusion coefficient of small Cu-vacancy clusters has been
studied. Similar calculations had already been performed in [18],
where the method employed to assess the diffusion coefficient is
described. The advantage of these simulations is that the possible
LACs are limited in number. It is therefore possible to perform
the AKMC simulation by taking the energy barriers both from a
trained ANN and from tables of NEB-calculated values. Fig. 4 shows
the result of the calculation of the diffusion coefficients of two
small Cu-vacancy clusters, namely CuV2 and CuV3 (V stands here
for ‘vacancy’) using both methods. It can be seen that the ANN er-
ror has only very limited influence on the final result.

3.4. Simulation of thermal ageing experiments

A thermal ageing experiment in an Fe–1.34 at% Cu alloy has
been simulated at a temperature of 773 K, in a box of
64 � 64 � 64 bcc cells (524, 288 atoms). 5 � 1010 Monte Carlo
steps have been performed in about 1.5 CPU-months, using mod-
ern mono-processor computers. The simulation has been con-
ducted using energy barriers calculated in three different ways:
(a) using the ANN trained for LACs extended up to 8nn, thereby
predicting the correct Cu solubility limit in Fe according to the po-
tential and providing an accuracy in the energy barriers acceptable
to treat precipitates of up to 200 Cu atoms; (b) using the ANN
trained for LACs extended up to 3nn only, known to change the sol-
ubility limit in a non negligible way; (c) using for comparison pur-
poses the heuristic formula Em

i = E0 + DE/2 [10], where DE is the
total energy difference between after and before the vacancy jump,
calculated on the rigid lattice with the potential. It should be noted
that the CPU time required by the three methods is of the same
order.

Fig. 5 shows snapshots of the AKMC boxes. Qualitatively, both
simulations using the ANN predict a slower coarsening of the ini-
tially nucleated clusters than the heuristic formula, after the same
number of Monte Carlo steps. In turn, the cluster density is larger
with the 3nn ANN, and the clusters are bigger, when compared to
the 8nn ANN.

The biggest Cu cluster observed in the 8nn ANN AKMC box
counts 204 atoms. Coming back to Fig. 1, we see that the NEB

Fig. 2. Quality of the ANN prediction of vacancy energy barriers in the FeCu alloy:
the average error is 1.10% and the correlation, R2, is 0.999.

Fig. 3. Fe–Cu phase diagram according to the interatomic potential, obtained using
different models and for different equilibria, compared with experimental points
from [26]. See text for details.

N. Castin et al. / Nuclear Instruments and Methods in Physics Research B xxx (2009) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: N. Castin et al., Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial
intelligence-based atomistic kinetic Monte Carlo approach, Nucl. Instr. and Meth. B (2009), doi:10.1016/j.nimb.2009.06.092

140



D. Paper III

accuracy starts to decrease quickly if this cluster grows further and
no more than 150 neighbors are taken into account in the LAC. The
ANN should therefore be in principle re-trained to take more
neighbours into account, before the simulation is continued, in
order to maintain the same accuracy level.

The AKMC time tMC must be rescaled before any comparison
with experimental measurements is possible, because the vacancy
concentration in the simulation, CMC

V , is in general much larger than
the (estimated) real one, Creal

V . We have applied the rescaling meth-
od proposed in [9]:

treal ¼ tMC � CMC
V

.
Creal

V : ð1Þ

The real concentration of vacancies is calculated on the basis of
the vacancy formation enthalpy, Hf

V (1.71 eV for the potential
used):

Creal
V ¼ exp

�Hf
V

kBT

 !
: ð2Þ

The vacancy concentration in the box is 1/N, N being the total
number of atomic sites in the box. It is however proposed in [9]
to correct it with the fraction of time (Monte Carlo steps) that
the vacancy spends surrounded by Fe atoms only (up to 2nn), f:

CMC
V ¼ 1=N � f=xFe; ð3Þ

where xFe is the fraction of Fe atoms. In our simulations, on average,
f � 10�4 when the energy barriers are provided by the ANN, while f
� 10�2 when the heuristic formula is used.

Fig. 6 shows the comparison with experimental data from [19–
22] of our AKMC results, with the three methods, after time re-
scaling according to Eqs. (1)–(3). It is clear that, despite the long
CPU time and large number of Monte Carlo steps, the simulation
did not go far enough to allow a full comparison with the experi-
mental data points. These correspond already to the coarsening
stage and more or less start where the simulation, mainly repro-
ducing nucleation and growth stages, stops. It is difficult to decide
whether the decrease of the precipitate density and the increase of
the precipitate radius in the simulation are going to show similar
trends as the experimental curves. The simulation should be con-
tinued for much longer times to draw definitive conclusions. In
addition, a bigger simulation box should ideally be considered in
order to follow completely the experimental curves. For example,
the average precipitate radii reach eventually, in the experiment,
a size of 8 nm. Aside from the fact that, when such a size is reached,
the precipitates are most certainly incoherent with the matrix [16],
and therefore irreproducible with a rigid lattice simulation meth-
od, with a Cu concentration of 1.34 at% it also would be necessary
to run the simulation in a 190 � 190 � 190 cubic cell box (about 14
million atoms) just to provide enough Cu atoms to create only one
8 nm-size precipitate! This emphasises the need to develop paral-
lel AKMC paradigms and also highlights the inherent limitations of
the method. It is important to note, at any rate, that the kinetics
predicted with the use of the heuristic formula is, as expected, sig-
nificantly different from the prediction made with ANN-generated
energy barriers. Conversely, the overall difference between using
an 8nn or a 3nn trained ANN is negligible, thereby suggesting that,

Fig. 4. Determination of the diffusion coefficient versus temperature of two small Cu-vacancy clusters using energy barriers calculated with the ANN or with NEB directly.
Top figures: ANN prediction versus the full NEB-calculated table of possible cases (mean errors: 1.77% for CuV2, and 2.81% for CuV3). Figures below: comparison of the
diffusion coefficient data points obtained with both methods.
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probably, at the end of the day the loss of accuracy associated with
the smaller LAC volumes is less important than other factors.

4. Application to the FeCuNi system

The same methodology as for FeCu has been applied to develop
a model for FeCuNi alloys. In this case, a ternary interatomic poten-
tial [23] has been used, constructed by coupling the CO5.20 for
FeCu to a new FeNi potential, equivalently performant from the
thermodynamic point of view and capable of reproducing also
the CuNi experimental phase diagram [24].

Fig. 7 shows the quality of the ANN predictions with 8nn LACs.
The mean error committed is larger than in the FeCu case, most
likely because the correlation problem is now more complicated,
as a third atomic species must be taken into account.

Preliminary thermal ageing simulations have been conducted at
a temperature of 823 K, in a 40 � 40 � 40 bcc cell box containing
1.13% Cu and the 1.36% Ni. For this conditions reference experi-
mental data exist [25]. However, the simulation results here re-
ported concern only the very early stage of the precipitation
process, so a direct comparison, such as in Fig. 6 for FeCu, is mean-
ingless. Fig. 8 shows the initial and final snapshots of the AKMC
box. A comparison with simulations conducted in FeCu at the same
conditions revealed that the cluster density is larger, and the aver-
age cluster size smaller, in presence of Ni, thereby suggesting that
Ni somewhat enhances Cu cluster nucleation, in qualitative agree-
ment with experimental observations [25]. In addition, an analysis
of the precipitate profiles clearly indicated that Ni tends to gather
at their periphery, again in qualitative agreements with experi-
ments conducted using atom probe techniques.

Fig. 5. Initial and final snapshots in the AKMC thermal ageing simulation performed using two different ANN (trained to 8nn and 3nn LACs) and using the heuristic formula
linking the energy barrier with the energy difference between after and before the vacancy jump.

Fig. 6. Comparison of the thermal ageing AKMC simulation results with experi-
mental data, similarly to the comparison performed in [9].
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5. Discussion

The examples provided in the previous sections show clearly
that, thanks to artificial intelligence techniques such as ANNs, it
is possible to introduce, at least partially, the effect of relaxation
and local chemistry in AKMC rigid lattice frameworks, at affordable
computational cost. As a matter of fact, the use of a conveniently
trained and constructed ANN proves largely equivalent to perform-
ing on-the-fly, at each Monte Carlo step, multiple NEB calculations
of energy barriers using an interatomic potential and taking into
account the effect of the local environment up to distances of

8nn and beyond. Performing on-the-fly such kind of calculations
would be computationally prohibitive.

We have shown that a priori the energy barriers are so sensitive
to the environment that convergence to a constant value is
achieved only if the effect of about 500 atoms is taken into account,
the optimal choice being largely dependent on the problem at hand.
The overall effect is a combination of chemical and strain field con-
tributions that are difficult to distinguish in a clearcut way. This
casts a priori serious doubts on the acceptability of models where
the effect of local chemistry is reduced to two or three neighbour
shells only [9,10]. At the same time, we have seen that, when ap-
plied to simulating situations comparable with experiments (e.g.
thermal ageing in FeCu alloys), the difference between including
the effect of many or only a few neighbour shells is not overwhelm-
ingly important, thereby suggesting that, in general, we are author-
ised to limit ourselves to small relaxation volumes, without
significant loss of information. This is somehow good news, as it
certainly simplifies the task, independently of which technique is
used to estimate the energy barriers in AKMC simulations.

Nonetheless, limiting the LAC to too small volumes may indeed
be misleading. One example has been already provided in Section
3.2, in the case of the ANN trained to 3nn LACs, which gave only
apparently correct results in terms of predicted phase diagram. An-
other example is cited here. In the first training of the ANN for the
FeCuNi alloys, limited to the 3nn level of approximation, a ran-
domly generated energy barrier database was initially used.
Fig. 9(a) shows the corresponding ANN performance, which ap-
pears to be fully satisfactory. However, in AKMC simulations using
this ANN, Cu precipitation did not occur at all, at any temperature,
for Cu contents well above the solubility limit. An appropriate
analysis revealed that the ANN predictions were actually good on
average for the LACs encountered during the simulation, except
some cases, especially when the vacancy was surrounded by a
large or small number of Cu and Ni atoms, e.g. in the vicinity of a
precipitate (Fig. 9(b)). This suggested the systematic application
of a more careful procedure for the choice of the LACs to be used
as examples for the training, as discussed in [6], as well as the need
to consider larger LAC volumes.

Preliminary attempts at extending the application of the meth-
od to LACs including several point-defects have been made. As dis-
cussed in [6], this represents a more difficult problem. As a first
exercise, we tried to predict with an ANN the energy changes after
migration jumps performed by self-interstitials surrounded by
other self-interstitials. We limited ourselves to the migration event
of a h110i dumbbell that jumps to one of its 1nn positions and be-
comes oriented h011i, including up to five other dumbbells in the
LAC. Fig. 10 shows the quality of the ANN prediction of the relaxed
energy difference, in the presence of 3–5 dumbbells in the LAC.
Clearly, the ANN did, globally, understand the logic between the
LAC and the corresponding energy difference. The predictions
are, however, sometimes very far from the desired value. Although

Fig. 7. ANN quality of energy barrier prediction for the FeCuNi system. The mean
errors are 4.38% (jumping Fe atom); 4.94% (jumping Cu atom) and 8.17% (jumping
Ni atom). The R2 are all about 0.95.

Fig. 8. AKMC initial and final snapshots in a thermal ageing simulation of an FeNiCu
alloy (Cu atoms in red, Ni atoms in green). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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the result is encouraging, it points to the need of more elaborate
strategies in order to reach performances comparable to those ob-
tained for LACs defined by chemical species only.

6. Conclusion

We have shown that artificial intelligence techniques, such as
neural networks, can be valuable tools to introduce relaxation

and local chemistry effects in atomistic kinetic Monte Carlo mod-
els, even remaining formally in a rigid lattice approximation. They
can indeed reliably provide the same result as on-the-fly calcula-
tions of energy barriers, using the nudged elastic band method
with an interatomic potential, at a much lower computational cost.
The availability of good interatomic potentials for FeCu and FeCuNi
alloys allowed the application of the method with results that are
consistent with experimental data concerning thermodynamic
properties and thermal ageing processes. The extension of the
method to simulate irradiation processes requires, however, the ef-
fect of many point-defects to be accounted for. Preliminary efforts
in this direction provided encouraging results.
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Calculation of proper energy barriers for atomistic kinetic Monte Carlo
simulations on rigid lattice with chemical and strain field long-range
effects using artificial neural networks
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In this paper we take a few steps further in the development of an approach based on the use of an
artificial neural network �ANN� to introduce long-range chemical effects and zero temperature
relaxation �elastic strain� effects in a rigid lattice atomistic kinetic Monte Carlo �AKMC� model. The
ANN is trained to predict the vacancy migration energies as calculated given an interatomic
potential with the nudged elastic band method, as functions of the local atomic environment. The
kinetics of a single-vacancy migration is thus predicted as accurately as possible, within the limits
of the given interatomic potential. The detailed procedure to apply this method is described and
analyzed in detail. A novel ANN training algorithm is proposed to deal with the necessarily large
number of input variables to be taken into account in the mathematical regression of the migration
energies. The application of the ANN-based AKMC method to the simulation of a thermal annealing
experiment in Fe–20%Cr alloy is reported. The results obtained are found to be in better agreement
with experiments, as compared to already published simulations, where no atomic relaxation was
taken into account and chemical effects were only heuristically allowed for. © 2010 American
Institute of Physics. �doi:10.1063/1.3298990�

I. INTRODUCTION

Atomistic kinetic Monte Carlo �AKMC� methods are
widespread tools to study diffusion-controlled microstruc-
tural and microchemical evolution in alloys during thermal
aging and under irradiation �see, e.g., Refs. 1–14�. In these
models, the atoms of the alloy are located on the positions
corresponding to the crystallographic structure of interest,
generally on a rigid lattice. The evolution of the system is
driven by the migration of point defects, generally
vacancies1–14 and recently also self-interstitials,8,9,13 whose
position is exchanged with nearest neighbor atoms �migra-
tion jump�.9,14 The jump to occur is each time selected sto-
chastically, based on the Monte Carlo method.

Simulations conducted with these methods can poten-
tially predict in detail, and with high accuracy, phenomena
such as precipitation or segregation,1–14 which are known to
affect the mechanical and chemical behaviors of materials,
thereby determining their aging when in use. There are two
main limitations to the application of AKMC tools: the first
one is their still high computing cost;5,12 the second one is
the physical reliability of the method itself. AKMC models
are indeed of straightforward implementation and use, but it
is not easy to make them computationally faster; on the other
hand most of the physics is contained in the energy barriers
associated with the migration jumps of the point defects, Em,
which must embody both the thermodynamics and the kinet-

ics of the system being studied. The accuracy and precision
with which these migration energies are determined repre-
sent therefore a key issue. AKMC simulations will be the
more reliable, the better the influence of the local atomic
environment �LAE� on Em is included in the model in terms
of chemistry and strain field. Generally, however, improving
the reliability of Em calculations entails a significant increase
in the computational cost of the algorithm. In this paper we
describe a method that improves Em calculation reliability at
affordable comptuational cost.

Kang and Weinberg15 proposed that the energy barrier
can be decomposed as Em=�+�E /2, where �E is the energy
change associated with the change in thermodynamic state
between after and before the jump, and � is the excess energy
to be added to obtain the complete barrier, whose value is a
priori unknown and will also be, in principle, a function of
the LAE. Based on these premises, they also proposed a
recipe to assess the energy barrier, given a harmonic poten-
tial for the atoms at equilibrium.15 In practice, such a decom-
position has been later most often used assuming �
=constant �e.g., final-initial system energy method in Ref.
10, see also Refs. 6, 9, and 11–14�. Somewhat more sophis-
ticated methods, based on broken-bond considerations1,3,13,14

extended also to the saddle point,2 have been used as well. In
recent times, attempts at increasing the reliability of these
heuristic methods have been made, by fitting the pair energy
parameters of the model directly to density functional theory
�DFT� calculations.5,6,9,10,13,14 These methods do take explic-
itly into account the influence of the chemical environment
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on the energy barrier, but they do so in an oversimplified
manner and totally disregard the effect of faraway atoms.

At the other end of the spectrum of possible AKMC
models, Henkelman and Jonsson16 envisaged a way to elimi-
nate not only the rigid lattice approximation, but also the
predefined sequence of migration events, given for example
an interatomic potential as Hamiltonian. In their scheme, the
choice of the migration events, together with the calculation
of their corresponding migration barriers, is made on the fly
by applying the dimer method,17 which allows, given the
initial state, all possible transition paths to other nearby local
minima in the potential energy surface to be found. The ad-
vantage of such a method is clearly its flexibility with respect
to systems where the rigid lattice approximation would no
longer be valid, such as at free surfaces and grain boundaries,
or in the bulk of materials containing dislocations or nano-
structural features such as nanovoids and dislocation loops.
The main drawback is the complexity and high computa-
tional cost of such a method, which requires systematic use
of the dimer search for possible system transitions.

Recently, methods using sophisticated mathematical
techniques to calculate energy barriers, such as cluster
expansion,18 or genetic programming,19 have been proposed.
These approaches keep a rigid lattice description of the sys-
tem, but calculate the energy barriers between two given
states on a nonrigid lattice, then fitting reliable expressions to
them with appropriate regression methods. However, so far
these approaches have been used based on a limited number
of examples �that can practically be calculated with DFT
methods� and either little importance has been given to veri-
fying the capability of the obtained mathematical expression
to predict never seen cases �local environments�,18 or the
total amount of possible cases was any way relatively
small.19

Along similar ideas, we have proposed in Refs. 20 and
21 a method that constructs a mathematical regression of the
energy barrier vs the LAE. Energy barriers are calculated
with the nudged elastic band method �NEB� �Refs. 22 and
23�, using an interatomic potential as Hamiltonian. The
mathematical regression is implemented with an artificial
neural network �ANN�.24 All the necessary atomic neighbors
are taken into account, as outlined in Sec. II. Our method is
not limited to a small amount of possible cases and is inher-
ently fully validated on never seen cases. Once calibrated, it
allows fast on-demand and on-the-fly calculation of the mi-
gration energies, without the need for a systematic use of the
NEB method �that would be unfeasible in practice�. In this
paper, we take a few steps further in the development of this
ANN-based approach compared to Ref. 21, where the funda-
mental ideas were only shortly explained. Section II supports
the importance of using an approach such as ours, by show-
ing that Em is indeed influenced by the chemical nature of
faraway atoms, via not only chemical interactions, but also
the strain field that they create. The ANN development and
training technique, especially designed for this application,
are presented in full detail in Sec. III. The ANN extrapolation
skills are then carefully evaluated in Sec. IV. Finally, a few
case studies are presented in Sec. V to show that the AKMC
simulations performed with our methodology manage to re-

produce available experimental results satisfactorily, in the
especially delicate case of concentrated alloys. We consider
here only the case of single vacancies migrating in a chemi-
cally changing environment, but the methodology can, at
least in principle, be generalized to more complex cases.

II. INFLUENCE OF LONG-RANGE INTERACTIONS
ON ENERGY BARRIERS

In the specific AKMC model that we use here, the evo-
lution of the system of atoms is solely driven by the ther-
mally activated migration jumps that a single vacancy takes.
The probability associated with the vacancy migration event
i is calculated on the basis of the jump frequency, �i, ex-
pressed according to the standard transition state theory as

�i = �0 exp�− Em,i/kBT� . �1�

Here, v0 is an attempt frequency �considered as a constant in
first approximation: v0=6�1012 s−1�, kB is Boltzmann’s
constant, T is the absolute temperature, and Em,i is the point-
defect migration energy corresponding to jump i. Figure 1�a�
illustrates schematically the vacancy migration event in a
two-dimensional �2D� representation of the rigid lattice of an
AKMC model. The actual jump that the vacancy takes at a
given point in the simulation time t is chosen stochastically
according to the MC algorithm; subsequently, the clock is
updated by adding a �t which is calculated applying the
residence time algorithm.25–27

For the NEB calculation of Em, the migrating pair �atom
and vacancy with which it exchanges position� is placed at
the center of a separate box of atoms, together with its LAE,
defined by the xth closest neighbors in the AKMC simulation
box. The rest of the box is filled with matrix atoms—Fe
atoms in the present study— and periodic boundary condi-
tions are applied. Given the atomic coordinates, the total
energy and the atomic forces are calculated with a central
force many-body interatomic potential, e.g., Olsson’s Fe–Cr
potential28 or Pasianot’s Fe–Cu potential.29 The rigid lattice
atomic coordinates corresponding to the initial and final
states, before and after the vacancy jump, are first relaxed
with the conjugate gradient method30 to find the nearest local
minima in the potential energy surfaces. The problem of cal-
culating Em is then to find the minimum energy path that the
atom exchanging position with the vacancy follows between
the relaxed initial and final states, allowing also for relax-
ation of all the atoms of the box during the migration event

FIG. 1. �a� 2D representation of a vacancy migration event in an AKMC
simulation. Different colors denote different chemical species. The LAE
considered for the Em calculation is enclosed by the thick line. �b� Em is the
difference between the saddle point along the minimum energy path fol-
lowed by the migrating atom and the initial energy of the system.
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itself. A first approximation of this minimum energy path can
be calculated with the classical drag method,31 i.e., by simply
“pushing” the atom along a straight line between initial and
final positions. Then, the NEB algorithm22,23 is applied to
optimize this first guess. The energy barrier Em is finally
obtained by identifying the saddle point along the minimum
energy path, as depicted on Fig. 1�b�.

Central force many-body interatomic potentials for me-
tallic systems are built with a cutoff �about 5.3 Å for the ones
used in this work�. Such a cutoff, in body-centered-cubic
iron-based alloys, encloses 77 atoms, the neighbors to the
migrating pair. These neighbors must thus imperatively be
taken into account in the Em calculation, as they interact
chemically directly with the migrating atom before or after
its jump. As shown in Ref. 32 as well, however, in reality Em

is sensitive also to the chemical nature of atoms located far
beyond the potential cutoff, due to strain field effects. Figure
2�a� shows how the average error committed on Em, averag-
ing on different LAEs in the Fe–Cr system, scales with the
number of atoms defining the LAE, NLAE, while remaining
smaller than a reference max�NLAE�. This average error is
defined as

ēx = � �Em
x − Em

� �
Em

� 	 . �2�

Here, Em
x are the migration energies calculated when x neigh-

bor atoms are included in the LAE, and Em
� are the reference

barriers calculated taking max�NLAE� neighbors into account.
The interatomic potential used for NEB calculations was

Olsson’s.28 Figure 2�b� shows how the mean residual bias,
defined as

b̄x = 
Em
x − Em

� � , �3�

scales with NLAE. We see that at least 200 neighbor atoms
should ideally be included in the LAE, in order to acceptably
converge to the reference value �error �1%�, obtained for
615 neighbors.

The Fe–Cr system corresponds to a case of large solu-
bility limit for Cr in Fe,33 so it makes sense to consider high
local concentrations of Cr, even at thermodynamic equilib-
rium. In the Fe–Cu system, on the other hand, the solubility
limit of Cu in Fe is very low and high local concentrations of
Cu correspond in practice to the presence of large Cu clusters
in a Cu depleted matrix. The difference between the two
cases �large number of solute atoms dispersed in the matrix
and formation of large clusters� is pictorially illustrated in
Figs. 3�a� and 3�b�. Figures 4�a� and 4�b� show, respectively,
the average errors �Eq. �2�� and the average biases �Eq. �3��
for the Em calculated for vacancies migrating in the Fe–Cu
system nearby a precipitate, as compared to the reference Em

�

value, not only for different numbers of neighbor atoms in
the LAE �NLAE� but also for different sizes of the nearby
precipitate �Ns�. The potential used for the NEB calculations
is Pasianot’s.29 It can be seen that, for large Cu clusters, the
error committed by not including a sufficiently large number
of atoms in the LAE for the NEB calculation is even larger
than in the dispersed Fe–Cr system and grows with the size
of the precipitate.

We have therefore shown that an accurate calculation of
Em requires that the effect of an extended environment
should be taken into account. This cannot be done using
heuristic approaches based on broken bonds or on pair inter-
action energies, not even when the relevant parameters are
fitted to highly reliable DFT results as in Refs. 5, 6, 9, 10, 13,
and 14.

For this reason, we want to develop a methodology in
which a set of NEB calculated values, obtained with the
highest accuracy reasonably possible, i.e., for large numbers
of atoms in the LAE, is used to produce an equivalent math-
ematical expression fitted to them. This expression should
allow a prediction of Em values corresponding to LAEs not
included in the set of examples, with reasonably small error,

FIG. 2. �a� Average error �Eq. �2�� committed by accepting the NEB calcu-
lated Em value in Fe–Cr alloys corresponding to a given number of atoms in
the LAE �NLAE�, as compared to a reference value obtained for a very large
amount of atoms �615 atoms� in the LAE; �b� Average bias �Eq. �3�� as a
function of the same variable. The averages are taken on 2500 randomly
selected LAEs.

FIG. 3. Generation of LAEs around vacancy migration events. The square
represents the migrating vacancy. The circles represent the solute atoms and
different colors denote different chemical species. �a� Dispersed distribution
of solute atoms. �b� Presence of solute atom clusters.
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so that it can be used as a reliable �and fast� replacement of
on-the-fly NEB calculations. This is achieved using the
ANN, as is described in the next section.

III. REGRESSION OF THE VACANCY MIGRATION
ENERGIES IN ALLOYS WITH ANNs

As stated, in this work we limit ourselves to single-
vacancy jumps in chemically changing local environments.
The LAE can therefore be always entirely defined by atoms
occupying rigid lattice positions and can be coded by assign-
ing an on-site variable to each lattice position included in it.
The value of the on-site variable changes depending on the
chemical/defect species sitting there, e.g., 0 for vacancies, 1
for Fe atoms, 2 for Cu or Cr atoms, etc. Thus, the indepen-
dent variables of the function to be fitted are represented by
strings of integer numbers, each of them corresponding to
the chemical species sitting in the associated lattice position
included in the LAE. This definition of the variables is con-
ceptually coincident with the choice that has been made
when applying the cluster expansion method for regression.18

This section describes the problem of training an ANN
to predict, given as input the mentioned strings, the value of
Em that would be obtained by a full NEB calculation. As
explained in the previous section, the contribution of many
atomic neighbors to the migrating pair �on the order of 200
or more� should ideally be taken into account because of
long-range chemical and strain field effects.

To develop the ANN we take the following steps. First, a
large table of examples of LAEs is generated at random, and
the corresponding Em are calculated by NEB using the rel-
evant interatomic potential. This table can be as large as
computing time allows and is not limited by the nature of the
problem �the total number of logically possible LAE, even
though countable, can be considered as infinite in practical
terms�. Next, the table of examples is split up into two non-
overlapping sets, called training and validation sets, respec-
tively. At this point, the ANN is trained to minimize the
mean square error between its predictions and the actual
NEB energy barriers, using only the examples of the training
set for this purpose. The validation set is finally used to
measure the network extrapolation skills on never-seen
cases, and therefore to stop training when no further progress
is made. For a successful outcome, the key issue is the
choice of the architecture of the ANN and the training strat-
egy, discussed in Sec. III B. In what follows, we spend a few
words to explain how the sets of examples are generated.

A. Generation of training and validation sets

For the generation of the databases of examples of Em, a
procedure for the choice of random LAEs must be defined.
Such a procedure must ensure that a varied enough spectrum
of possible local configurations is explored. Two strategies
have been considered, aimed at being representative of any
situation that may be encountered:

• Strategy A: Solute atoms are randomly distributed
around the migrating pair, with a homogeneous spatial
distribution, as depicted on Fig. 3�a�. These cases cor-
respond, for example, to the beginning of a thermal an-
nealing experiment, when the alloy is still a solid solu-
tion, while at equilibrium they are representative of
alloy compositions below the solubility limit. The local
concentration of solute atoms should not, however, be
constrained to respect the solubility limit value, because
the local concentration around the migrating pair in the
course of the AKMC simulation changes and can in fact
take any value in principle. So, different local concen-
trations should be explored.

• Strategy B: Clusters of solute atoms are created and the
migrating pair is randomly located around them, as il-
lustrated in Fig. 3�b�. According to the nature of the
studied alloy, if the outcome of the AKMC simulation
can be qualitatively predicted, the size and the compo-
sition of the clusters, as well as the concentration of
solute atoms in the matrix, can be optimized. These
parameters can, if needed, be revised later, after some
AKMC simulations have been performed.

The database of examples should ideally be created with
cases randomly generated following both A and B strategies.
The training and validation sets are finally defined by arbi-
trarily splitting up the table into two subsets. The validation
set should be at least as large as the training set, as it is
devoted to measuring the ANN error for cases that were not
seen during training. The order of magnitudes of these is tens
of thousands of examples.

FIG. 4. �a� Average error �Eq. �2�� committed by accepting the NEB calcu-
lated Em value in Fe–Cu alloys corresponding to a given number of atoms in
the LAE �NLAE� as compared to a reference value obtained for a very large
amount of atoms �615 atoms� in the LAE; �b� Average bias �Eq. �3�� as a
function of the same variable. The vacancy migrates around or inside iso-
lated spherical clusters composed of NS Cu atoms. The averages are taken
over 1000 randomly selected cases.
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B. Neural network training algorithm

The general issue of training an ANN to solve a given
problem exhibits different facets of complexity. Not only the
best network architecture is a priori unknown, but also,
given the architecture, the optimal numerical values for its
Nw degrees of freedom �synaptic weights or synapses in
ANN jargon� are to be determined.

In Ref. 20, we compared two types of ANN: the classical
single-hidden-layer network, with sigmoid activation func-
tions, and Fahlman–Lebiere’s cascade correlation network34

where, starting from an empty network, nodes are progres-
sively added in successive hidden layers during the training.
We found that the quality of the prediction of the former type
was generally better than the latter.

If we thus limit ourselves to single-hidden-layer net-
works, the parameters to be optimized are the number NH of
hidden nodes and the number of examples in the training set,
S. In this case, the simplest strategy to develop an optimal
ANN is to train different networks independently, with vary-
ing NH, selecting eventually the best one on the basis of the
final mean residual error, measured on the validation set. In
Ref. 20 we recognized the Levenberg–Marquardt training
scheme35,36 as suitable, in a single-hidden-layer architecture,
for a relatively simple 39-variable problem. However, the
training time required by this method scales as ��NW

3

+S ·NW
2 �. This approach is therefore unsuitable for problems

involving many variables, such as those that we intend to
tackle here, especially if different trainings must be per-
formed independently, to be able to choose the best one at
the end.

In this context, constructive algorithms37,38 offer a prom-
ising solution. The idea is to construct the ANN progres-
sively, by dividing up the overall training problem into suc-
cessive subtrainings, on reduced numbers of network
synapses. For this purpose, as we focus on single-hidden-
layer networks, we modified and generalized the dynamic
node creation by Ash.39 Starting from an empty hidden layer,
nodes are added progressively, in an iterative way. The de-
grees of freedom �connections or synapses� associated with
the new nodes, together with the output node, are initially
trained while keeping frozen the rest of the already existing
network �greedy manner�. This is schematically illustrated in
Fig. 5�a�. Several independent trainings are performed,
changing the initial synapses values, limited to the newly
added group of nodes, using the Levenberg–Marquardt algo-
rithm. Then, the whole network is retrained one single time,
using the best synapses that were found in the previous step
as starting point �Fig. 5�b��. The number Nn of nodes added
at a time should not be too large, to avoid the insertion of
unnecessary hidden nodes. At the same time, it should not be
too small, to speed up the algorithm. �Nn=1 in the original
Ash’s algorithm.39� Trials have highlighted that this dynamic
node creation produces networks that are as accurate as if
they had been globally trained with the Levenberg–
Marquardt algorithm on fixed architectures, but the CPU
time is reduced by more than one order of magnitude.

This training algorithm can be further improved. In the
scheme just described, all input variables are simultaneously

connected to the newly added nodes. Thus, this algorithm
inherently assumes that all the atoms included in the LAE of
the migrating pair have the same weight to determine the
migration energy. This is clearly untrue because the closest
neighbor shells for sure will have a stronger influence on the
migration energy than the farthest ones. The training algo-
rithm can thus be improved by taking this information into
account. The way to do so is illustrated in Fig. 6. Here, only
the input variables corresponding to the first nearest neighbor
shell of atoms �denoted as the I1 group� are first connected
and the network is trained without using the other ones.
Next, the group of variables I2 �corresponding to the second
nearest neighbor shell� is connected to the network. And so
on. We called this training scheme gradually improving ac-
curacy constructive algorithm �GIACA�. In the GIACA, the
connection of each group of variables �say, I2� proceeds in
three phases:

• Phase 1: The new variables are progressively connected
to the existing hidden layer, Nn nodes at a time, as in the

FIG. 5. Node additions to the hidden layer in the dynamic node creation
algorithm. The arrows symbolize a whole set of connections �synapses�
between groups of nodes. In �a� the black nodes in group HA are frozen. Nn

new hidden nodes �HB group on the figure� are added and trained together
with the output node, using the Levenberg–Marquardt algorithm. The train-
ing is repeated several times, with different initial synapses, but only for this
group. In �b� the whole network is retrained one single time, using its
present synapses as starting point for the Levenberg–Marquardt algorithm.
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dynamic node creation. Only the synapses associated
with the currently connected group of variables, in the
newly connected hidden nodes, are trained, together
with the output ones �Fig. 7�a��, in a greedy manner
�i.e., keeping the rest of the network frozen�. Several
independent trainings are required, with random initial-
ization of the new synapses. Then, all the nodes that
receive a signal influenced by the I1 and I2 variables are
fully retrained one single time, starting from the present
network state �Fig. 7�b��. This procedure is iteratively

repeated until the whole hidden layer has been con-
nected with the I2 inputs �Figs. 7�c� and 7�d��, or is
prematurely stopped if no progress is made.

• Phase 2: New hidden nodes are added using the dy-
namic node creation algorithm, considering together
both I1 and I2 input variables sets. The existing hidden
layer of the network is then totally frozen, even during
the dynamic node creation full training phases, in order
to limit the number of synapses, as much as possible.
The dynamic node creation is again stopped when no
further progress is possible.

• Phase 3: The complete network is retrained one single
time, using the present synapses as starting point.

Phases 2 and 3 are skipped if not all hidden nodes are
connected during phase 1. Training is stopped when the con-
nection of a new group of variables provides no further im-
provement in the mean error during the first phase.

The main interest of the GIACA, compared to standard
dynamic node creation, is that the final complexity of the
ANN is limited, while ensuring the highest accuracy of pre-
dictions reasonably achievable. This happens because �a� the
less influencing input variables, whose connection to the net-
work is not practically desirable with a view to reducing
complexity, are spontaneously determined; �b� in the first
phase, the connection between the input variables and the
hidden layer may remain incomplete, again avoiding the in-
troduction of unnecessary synapses in the network.

The only remaining problem is the determination of the
best-suited size of the training set. The latter is a trade-off
between having enough learning material for the ANN and
avoiding unreasonably long training. However, since there is
no a priori criterion to choose the training set size, several
trials must be made, with increasing training set size, until
convergence.

IV. APPLICATION TO BINARY AND TERNARY ALLOYS

The GIACA has been applied to predict with an ANN
the Em of single vacancies in 615 atom LAEs containing both
Fe and either Cu or Cr atoms �binary alloys�, or simulta-
neously Cu and Ni atoms. The training and validation sets
were built using the NEB method with Pasianot’s potential
for Fe–Cu,29 Olsson’s two-band model potential �fitted to
projector augmented wave PAW� data� for Fe–Cr,28 and Bon-
ny’s potential for the Fe–Cu–Ni ternary alloy.40,41 �All these
potentials have the quality of providing a good reproduction
of the thermodynamic properties—phase diagram—of the
concerned alloys, as well as a good description of the inter-
action between point defects and solute atoms in ferritic al-
loys.� The quality of the ANN prediction is shown in Fig. 8.

The average errors ē and the average biases b̄, obtained
by comparing the ANN predictions, oi, with the correspond-
ing NEB values from the validation set, di, are reported on
Fig. 8. They were calculated as

ē =
100

N

i=1

N �di − oi�
di

, �4�

FIG. 6. Initial network state before the computation of a GIACA step. The
variables in the I1 group have already been connected. The variables in the
I2 group are candidates to be connected to the network.

FIG. 7. First phase for the connection of new input variables in the GIACA.
�a� The new inputs �I2 group� are connected to the Nn first hidden nodes that
are not already connected to them. Only the newly created synapses are then
trained, together with the output ones, using Levenberg–Marquardt, keeping
the rest of the network frozen. �b� All the hidden nodes connected with the
inputs of the I1 and I2 groups are trained, together with the output node,
keeping the rest of the network frozen. �c� The two first steps are iteratively
repeated until all I2 variables are connected to the hidden layer, or until no
progress is made. �d� The whole network is retrained one single time.
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b̄ =
1

N

i=1

N

�di − oi� , �5�

where N is the number of examples in the validation set. The
ANN predictions for the binary Fe–Cu and Fe–Cr alloys are
particularly satisfactory �small error, small bias, and high
correlation�, so the ANN can clearly be considered as a very
good and much faster substitute to the NEB method. The
quality of the predictions somewhat decreases with the intro-
duction of a third chemical species in the alloy. However, the
ANN error remains unbiased and the correlation coefficient
remains close to 1, although the error committed on certain
migration barriers is very large �up to 150%�.

Figure 9 shows the evolution during training of the mean
error committed on the validation set, versus the number of
input variables connected to the hidden layer. The number of
variables that must be connected in order to have conver-
gence is similar in all cases �about 100�, but the final average
error depends on the problem. The number of synapses cre-
ated by the GIACA is similar for both binary alloys, while it
is significantly lower in the case of the ternary alloy. As an
order of magnitude, training was about 150 CPU h long for
all cases, on modern monoprocessor machines.

The final test for the ANN predictive capability is ob-
tained by checking how it handles situations significantly
different from those contained in the training set. The follow-
ing computer experiment has been therefore performed, in
the case of the Fe–Cu system. The ANN has been trained
either only on configurations with solute atoms dispersed in

FIG. 8. Quality of the ANN predictions of the vacancy migration energies obtained with the NEB method in three different alloys. The number of examples

in the training and reference sets was 30 000 for the Fe–Cu and Fe–Cr alloys; 60 000 for the Fe–Ni–Cu alloy. The average error, ē, and average bias, b̄, are
calculated using Eqs. �4� and �5�, respectively. R2 is Pearson’s product-moment correlation coefficient.

FIG. 9. Evolution of �above� the mean residual error �Eq. �4�� and �below�
the number of synapses created in the network during the GIACA training.
The number of training examples was 30 000 for the Fe–Cu and Fe–Cr
problems; 60 000 for the Fe–Ni–Cu problem.
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the matrix �Fig. 3�a��, or only on configurations with solute
atoms forming clusters �Fig. 3�b��. The two differently
trained ANNs have been then contrasted versus validation
sets containing configuration of either the same type as in the
training set, or different. The results are shown in Fig. 10: �b�
and �c� correspond, respectively, to the case in which the
“dispersed configurations” network is validated on “clustered
configurations,” and vice versa, the clustered configurations
are used to make predictions for dispersed configurations. It
can be seen that the predictions of the ANN remain reason-
ably accurate, even though the average error and bias are
higher as compared to �a� and �d�, where the ANN is vali-
dated on cases homogeneous with those of the training set.
This test proves the robustness of the developed methodol-
ogy.

V. SIMULATIONS OF THE THERMAL ANNEALING
OF FE–CR ALLOYS

AKMC methods are often used to simulate thermal an-
nealing processes.1,2,5,10–12 In these simulations, the alloy
studied is initially a random solid solution. Only one vacancy
is introduced in the system and periodic boundary conditions
are applied. With time, the atoms are progressively rear-
ranged by the diffusing vacancy toward the final equilibrium

for the working temperature. If the model is thermodynami-
cally correct, solute atoms such as Cu and Cr will cluster and
eventually precipitate in Fe, if present in concentrations
above their solubility limit, in accordance with the corre-
sponding phase diagrams.42 The ambition of AKMC models
is to predict correctly also the kinetics of the precipitation
process, which is an important issue in metallurgy, as it plays
a role in determining mechanical property changes in the
material,43 e.g., 475 °C embrittlement in high-Cr steels.44,45

The ANN-based methodology detailed above has already
produced results in qualitative, and partially also quantita-
tive, agreement with experiments in the case of Fe–Cu and
Fe–Cu–Ni alloys, that contain relatively small concentrations
of solute atoms.32 Here we apply it to concentrated Fe–Cr
alloys, after having trained the ANN to vacancy migration
energies obtained by NEB with Olsson’s two-band model
potential �fitted to PAW data�.28 We conducted simulations at
773 K, for 20% Cr, in boxes of 128 000 atoms. About 1.30
�1010 AKMC events were computed in approximately
2 CPU months. The quality of the ANN prediction for this
problem can be assessed from Fig. 8 �right side� and is very
high. However, two aspects that cannot be deduced from Fig.
8 need to be assessed by carrying out the simulation. On the
one hand, we need to verify that the accuracy of the Em

FIG. 10. Quality of the ANN prediction of vacancy migration energies when validated on homogeneous, �a� and �d�, and heterogenous, �b� and �c�, classes
of local atomic configurations, as compared to the training set �dispersed vs clustered configurations�. The NEB barriers are in abscissas; the ANN-predicted

barriers are in ordinates. The number of training examples was 30 000. The average error, ē, and average bias, b̄, are calculated using Eqs. �4� and �5�,
respectively. R2 is Pearson’s product-moment correlation coefficient.
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prediction by the ANN is sufficient to maintain a correct
description of the thermodynamic properties of, in the
present case, the Fe–Cr system, which the interatomic poten-
tial is known to provide. Second, we want to show that the
use of a more accurate evaluation of the migration energies
in the AKMC simulation actually improves the description of
the kinetics of the process. In order to highlight the latter
aspect, the simulation has also been carried out using a
Kang–Weinberg-type heuristic formula to calculate Em as

Em = � + �E/2. �6�

Here �E is the rigid lattice total energy change between
before and after the jump and � is the excess migration en-
ergy. Olsson’s interatomic potential28 was used for the calcu-
lation of �E, by taking into account the interaction of the
migrating pair with all the 77 neighbors encompassed by the
potential cutoff �only 39 nearest neighbors were included in
Ref. 12�. The excess energy � has been considered constant,
equal to 0.65 eV in the case of a migrating Fe atom and to
0.56 eV in the case of a migrating Cr atom, as in Ref. 12.
Clusters have been identified and counted by searching for
the lattice sites where the local Cr concentration is larger
than a given threshold concentration, as proposed in Ref. 11.

Their average radius R̄ was subsequently calculated on the

basis of the average number N̄ of atoms in the clusters, as-
suming spherical shapes

R̄ =�3 3N̄

8�
. �7�

The local concentration was measured taking all neighboring
sites encompassed by the potential cutoff into account. The
threshold used was 90%Cr.

A. Thermodynamic consistency

Figure 11 shows data points for the Cr solubility limit in
Fe, as predicted by various MC schemes, all based on the use
of Olsson’s interatomic potential28 as Hamiltonian. The ex-
perimental phase boundary, as reviewed by Bonny et al. in

Ref. 33, is also shown. Metropolis MC methods46,47 are un-
able to provide the kinetics of the diffusion process leading
to precipitation. However, they can correctly account for all
contributions to the free energy of the system, as stemming
from the used Hamiltonian, including the vibrational contri-
bution. They are therefore more suitable and reliable to trace
the phase diagram embodied by a given Hamiltonian than
AKMC models. In addition, if the possibility of displacing
atoms off lattice is switched off in the Metropolis MC, the
vibrational and strain-field contributions to the free energy
are switched off too, and the “rigid lattice phase diagram”
can be thereby obtained. Both Metropolis MC options have
been used to compute the points in Fig. 11.47 It can be seen
that the solubility limit data points that were predicted by the
ANN-based AKMC simulations are consistent with the Me-
tropolis MC results. This shows that the good thermody-
namic description of the Fe–Cr system provided by Olsson’s
potential is transferred almost untouched, via ANN regres-
sion of migration energy barriers, to the AKMC model. The
fact that the ANN-based AKMC data points lie between
those obtained by Metropolis MC in a rigid lattice and in an
off-lattice approximation can be explained because the ANN-
based AKMC allows for relaxation effects, but cannot allow
for vibrational entropy effects, visible especially at high tem-
perature. We therefore conclude that our AKMC model re-
produces well the thermodynamic properties of the Fe–Cr
system.

B. Description of the kinetics of the precipitation
process

The kinetics of the precipitation process in Fe–Cr as pre-
dicted by the AKMC model is compared to experimental
measurements by Jacquet,48 Novy et al.,49 and Bley50 in Fig.
12. For the comparison, the simulation time had to be cor-
rected, to take into account the fact that, due to the smallness
of the simulation volume, the concentration of vacancies in
the simulation is larger than in reality.10,51 Thus, the Monte
Carlo time tMC should be rescaled proportionally to the ratio
between the vacancy concentration in the simulation, Cv

MC,
and the real vacancy concentration, Cv

real, at the considered
temperature, namely,

treal = tMCCv
MC

Cv
real �8�

with

Cv
MC = 1/Nb, �9�

Cv
real = 3 exp�− Hv

f

kBT
� . �10�

In these equations, Nb is the total number of atomic sites in
the simulation box and Hv

f is the vacancy formation enthalpy.
The numerical value of the latter predicted by the potential
has been estimated, using the method described in Ref. 51, to
be Hv

f �1.81 eV for Fe–20%Cr alloys. However, the experi-
mental value is unfortunately not precisely known �Hv

f

�1.6, . . . ,2.0 eV�. Since a small change in Hv
f compresses

or dilates significantly the rescaled time, because of the ex-

FIG. 11. Fe–Cr phase diagram, in the low Cr concentrations range, as pre-
dicted with different atomistic MC methods: rigid lattice Metropolis Monte
Carlo �RL-MMC�, off-lattice Metropolis Monte Carlo �OL-MMC�, and
ANN-based AKMC. The method followed to generate this diagram, as well
as the MMC predicted phase diagrams, are described in Ref. 47. The dashed
line is a recent revision of the experimental diagram �Ref. 33�,
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ponential function in Eq. �10�, following Ref. 10, Hv
f has

therefore been fitted in such a way that the first experimental
value for the average cluster radius coincides with the first
simulation point reaching the same radius. If the model is
consistent and correct, this operation should lead to a super-
position of all other experimental points with the simulation
points, for a reasonable Hv

f value. In practice, the difficulty is
also that the experimental data sets are not fully consistent
with each other, so different choices are possible. In addition,
we have produced two simulation data sets: those obtained
with the Kang–Weinberg-type decomposition and those ob-
tained with the ANN method. All the results are given in Fig.
12 and can be so summarized:

�i� For the Kang–Weinberg driven AKMC, Hv
f �1.5 to fit

Jacquet’s experiments,48 but Hv
f �1.68 eV to fit

Bley’s50 and Novy’s49 �this is the case shown in the
upper panel of Fig. 12�. However, for either choice,
while the predicted average cluster radius is in very
good agreement with the experiments, the final cluster
density is overestimated by almost an order of mag-
nitude.

�ii� For the ANN-based AKMC, Hv
f �1.80 fits the first

point of all experimental works. The rate of increase
in the average cluster radius is somewhat larger than
in the experiments, but the results can be considered
very good, especially considering the discrepancy ex-
isting between experimental data sets. In addition, the
cluster density is in much better agreement with the
experiments than using the Kang-Weinberg-type de-
composition. �Note that the AKMC curves exhibit a
jerky shape because the number of clusters is very
small, varying between 3, 4, and 5, at the end of the

simulation. To have better statistics and a smoother
curve, a larger simulation box should be used, but the
computational cost associated with an increased size
becomes prohibitive.�

The improved quality of the ANN-based AKMC results
versus experiments, compared to using the Kang–Weinberg
decomposition, stems from the combination of two factors:
on the one hand, it is the result of the high quality of the
two-band model interatomic potential developed by Olsson
et al.;28 on the other, it is the result of having used a meth-
odology, the coupling of ANN to the AKMC simulation, that
allows all features of the potential to be exploited and trans-
ferred to the AKMC model, including long-range chemical
and strain-field effects, neglected in rigid lattice simulation
using e.g., a Kang–Weinberg-like decomposition.

Nevertheless, not all results of the simulation compare
one-to-one with the experiments. Figure 13 shows for ex-
ample the evolution versus time of the Cr concentration in
the matrix and in the clusters from experiments and accord-
ing to the ANN-based AKMC. We see that Cr depletion in
the matrix is faster in the simulation than in the
experiment.48,49 Consistently, the build up of the equilibrium
concentration of Cr in the precipitates in the simulation is
totally different from the experimentally observed one and
much faster. Essentially, in the simulation Cr clusters are
created in thermodynamic equilibrium since the beginning,
this implying that the matrix is rapidly depleted and the only
readjustement is the emission of some Cr atoms. On the con-
trary, the experiments suggest that precipitates are initially
diffuse and only at the end approach the equilibrium concen-
tration. However, this discrepancy may also partly be due to

FIG. 12. Comparison of experimental average cluster radius �left� and cluster density �right� with the results from Fe–Cr thermal annealing simulations with
AKMC, using two different migration energy calculation methods: Kang–Weinberg decomposition �above� and ANN �below�. The time on the top figures has
been rescaled using HVf =1.68 eV, whereas HVf =1.80 eV has been used for the bottom ones. The experimental values are taken from Refs. 48–50.
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different definitions of clusters in the experimental analysis
as compared to the simulation, as well as to limitations in the
precision of the experimental technique �atom probe tomog-
raphy in this case�.

VI. CONCLUDING REMARKS

In this paper we have described in detail how an artificial
neural network can be trained to calculate on-the-fly accurate
values for vacancy migration energies as functions of the
local environment in atomistic kinetic Monte Carlo simula-
tions, used to model the microchemical processes induced by
single-vacancy migration in concentrated alloys. We have
shown that the vacancy migration energy is determined not
only by the chemical nature of close-by atoms, but also by
relatively faraway atoms, mainly due to strain-field effects.
This obliges, for accurate calculations using, e.g., the nudged
elastic band method, large local atomic environments �up to
hundreds of atoms� to be taken into account, something that
heuristic methods based on the use of broken-bond approxi-
mations cannot do and that is often disregarded also in meth-
ods based on the Kang–Weinberg decomposition. The proce-
dure to train the artificial neural network to predict the values
of energy barriers calculated using the nudged elastic band
method has been described and analyzed in detail. A gradu-
ally improving accuracy constructive algorithm has been
specifically developed for this purpose, as the appropriate
tool to handle such a large-size mathematical regression
problem. Moreover, the neural network extrapolation skills
have been shown to be trustable, even when the network has

been trained on examples of significant qualitative difference
from those used for the validation. Thus, the methodology
we have developed is equivalent to performing an on-the-fly
nudged elastic band calculation to determine the frequency
of the possible vacancy jumps for use in the atomistic kinetic
Monte Carlo, at the same computational cost as using far less
precise and reliable heuristic approaches. In particular, the
effects of zero temperature relaxation on the migration ener-
gies are properly taken into account in our model, despite
keeping a rigid lattice description of the system. Thermal
annealing simulations in a binary Fe–20%Cr alloy have pro-
duced results in better agreement with experiments than
those obtained with a Kang–Weinberg-type heuristic ap-
proach, while using the same interatomic potential for energy
calculations. We therefore believe that the methodology pre-
sented here is promising and suitable to be extended to more
complex cases. In particular, this methodology is now being
extended to the more general problem of point-defect migra-
tion, by allowing for more than one vacancy in the atomistic
kinetic Monte Carlo box and by introducing self-interstitials.
This is not straightforward, as anticipated in Ref. 21, mainly
because in these cases not all the logically possible system
configurations are stable, but work in this direction is cur-
rently in progress.
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15Atomistic kinetic Monte Carlo (AKMC) simulations were carried out to study the a–a0 phase separation in
16Fe–Cr alloys. Two different energy models and two approaches to estimate the local vacancy migration
17barriers were used. The energy models considered are a two-band model Fe–Cr potential and a cluster
18expansion, both fitted to ab initio data. The classical Kang–Weinberg decomposition, based on the total
19energy change of the system, and an Artificial Neural Network (ANN), employed as a regression tool were
20used to predict the local vacancy migration barriers ‘on the fly’. The results are compared with experi-
21mental thermal annealing data and differences between the applied AKMC approaches are discussed.
22The ability of the ANN regression method to accurately predict migration barriers not present in the
23training list is also addressed by performing cross-check calculations using the nudged elastic band
24method.
25� 2010 Published by Elsevier B.V.

26

27 1. Introduction

28 Conventional and newly developed high-Cr ferritic martensitic
29 steels are promising candidate structural materials for future nu-
30 clear power systems. These steels as well as binary Fe–Cr alloys un-
31 dergo phase separation after thermal annealing (e.g. [1–4]) with
32 the formation of finely dispersed nano-metric nearly-pure-Cr pre-
33 cipitates (a0 phase) coherent with the matrix. The latter cause
34 hardening and provoke embrittlement of these steels containing
35 more than 14 at.% Cr after thermal annealing at about 475 �C
36 [1,2,5], as well as, at lower temperature and Cr content, under irra-
37 diation, found to accelerate or possibly induce the phase separation
38 [5,6]. Therefore, the development of models to predict quantita-
39 tively the kinetics of phase separation is of great importance for
40 the design of complex structural materials relevant to the nuclear
41 sector.
42 Tracing the kinetics of precipitation in concentrated alloys from
43 its very first stage is not trivial due to the small size and high den-
44 sity of the formed precipitates. Thermal annealing experiments,
45 where nano-metric coherent precipitates can be identified, are
46 complicated and time consuming (years), especially in active spec-
47 imens. In the literature, only few experimental works providing de-
48 tailed information about size and density distribution for the a0

49 precipitation in Fe–Cr alloys (containing 20 at.% Cr) are available

50up to now [3,4]. Computer simulations seem therefore to be an
51attractive solution to complement the available experimental data,
52especially for alloys containing <20 at.% Cr annealed at a tempera-
53ture below 800 K, where little or no experimental data so far exist.
54From the point of view of modelling, the consideration of the
55diffusion-mediated phase separation requires a description of the
56system at the atomic level, from which the precipitate composi-
57tion, its morphology and rearrangement of solutes in the depleted
58matrix follows naturally. Here, we carried out atomistic kinetic
59Monte Carlo (AKMC) simulations to study the kinetics of the phase
60separation in the Fe–20Cr alloy at 773 K, which can be compared to
61the available experimental data. To model the thermal annealing,
62two different algorithms to estimate the vacancy migration energy
63determined by a local atomic environment (LAE) were applied.
64These are (i) a regression algorithm based on an artificial neural
65network (ANN) and (ii) the classical Kang–Weinberg (KW) decom-
66position [7] based on the total energy change due to the vacancy
67migration. For our simulations, we also considered two different
68energy models, namely: (i) a cluster expansion (CE) [8] fitted to
69the formation energy of ab initio calculated intermetallic com-
70pounds and (ii) a two-band model interatomic potential (2BMP)
71from [9]. During our simulations we tracked the average precipi-
72tate size and density as a function of simulation time and com-
73pared the obtained results between the different methods and
74energy models and also to experimental data. Based on these com-
75parisons, we discuss the impact of the choice of the energy model
76and algorithm to estimate the local vacancy migration barrier on
77the simulation results.
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78 2. Description of the used techniques

79 Rigid lattice AKMC simulations [10] were performed in a cubic
80 box containing 0.128 � 106 atoms with an initial random distribu-
81 tion of 20% Cr atoms in the Fe matrix at 773 K. The evolution of the
82 system leading to the atomic redistribution is driven by a single va-
83 cancy, jumping at a rate evaluated as, v = v0 � exp(�Em/kBT), where

84 m0 is an attempt frequency (set to 1013 and 6 � 1012 s�1 using the
85 CE and 2BMP models, respectively), kB is Boltzmann’s constant, T
86 is the absolute temperature and Em is the LAE-dependent vacancy
87 migration energy. Each vacancy jump corresponds to one MC step.
88 The jump to be performed is chosen based on its probability, eval-
89 uated in terms of the corresponding jump frequency v. The time
90 between two jumps is calculated according to the mean residence
91 time algorithm i.e. by taking the inverse of the sum of the eight
92 (only 1st nearest neighbour jumps are considered) possible jump
93 frequencies [10]. Therefore, Em is estimated ‘on the fly’ during the
94 AKMC run at each step. Accurate methods, such as the drag method
95 [11] or nudged elastic band (NEB) method [12] are time consuming
96 and cannot be effectively used in long-term AKMC simulations.
97 The Kang–Weinberg decomposition [7] is one of simplest
98 approximations to estimate the LAE-dependent Em as E0þ
99 DEf�i=2, where DEf�i is the total energy change due to the vacancy

100 jump and E0 is the excess migration energy. DE is calculated on-
101 the-fly according to the applied cohesive model. E0 is taken as
102 the migration barrier of the atomic species exchanging its position
103 with the vacancy (Fe or Cr in our case), in the limit of infinitely di-
104 lute solution, as obtained from DFT calculations, namely for the CE
105 E0(Fe) = 0.64 eV and E0(Cr) = 0.57 eV [13] and for the 2BMP
106 E0(Fe) = 0.65 eV and E0(Cr) = 0.56 eV, according to the prediction
107 of the potential. In this simplified scheme, E0 is determined only
108 by the migrating species, assuming that it has negligible depen-
109 dence on the LAE, accounted for only in the DEf�i term. It is there-
110 fore the total energy difference between equilibrium states that
111 directly influences the kinetics of the phase separation, rather than
112 the actual local vacancy migration barrier.
113 The ANN regression scheme is trained using an extended data-
114 set of local vacancy migration barriers, calculated with the NEB
115 method for a variety of LAEs. Once trained and provided with a
116 LAE around a vacancy (up to 11th nearest neighbour distance),
117 the ANN can predict the local vacancy migration barrier accurately
118 and with the same speed as the KW decomposition. The only re-
119 quired input is consequently the training data set that could be ob-
120 tained by applying interatomic potentials or ab initio techniques. A
121 detailed description of the method, can be found in [14,15], and is
122 briefly described here. The regression is built using an adequate
123 amount (�105) of NEB-obtained migration barriers generated for
124 randomly chosen LAEs around a vacancy. The latter inherently in-
125 cludes 0 K relaxation effects and is thus a priory more accurate than
126 the KW approach. Given that a database must contain a significant
127 number of barriers, we used the 2BMP to generate it, although ab
128 initio methods could also be used for this purpose. The accuracy
129 of the 2BMP to predict Em for a vacancy in concentrated Fe–Cr al-
130 loys was validated by a cross-check comparison with density func-
131 tional theory (DFT) calculations, as presented in the upper part of
132 Fig. 1, where the migration energies calculated using the NEB
133 method are shown. The 2BMP quite accurately reproduces the
134 DFT data in the Fe-rich region, where Em is rather low, which is
135 of primary importance for kinetic problem. In the Cr-rich alloys,
136 however, the 2BM values deviate significantly (up to 30%) from
137 the corresponding DFT value. The reason for the discrepancy at
138 high Cr content is most likely related to the complex magnetic
139 behaviour of anti-ferromagnetic Cr atoms embedded in Fe
140 matrix, responsible for the Cr–Cr repulsion and multiple Cr–Cr
141 interaction.

142The performance of both the ANN approach and KW decompo-
143sition is also compared in Fig. 1 (see downer part). There, Em ob-
144tained with the latter methods is compared to the NEB obtained
145values. The mean error (e) and correlation factor (f) between the
146NEB and ANN values were calculated to be 3.8% and 0.99, respec-
147tively, whereas e = 26.6% and f = 0.06 when comparing NEB and
148KW methods. Clearly, the ANN approach outperforms the KW
149decomposition in reproducing the NEB values and for the simula-
150tions performed here the ANN approach is equivalent to NEB.

1513. Results, discussion and conclusive remarks

152The thermal annealing of Fe–20Cr at 773 K was simulated by
153three AKMC runs. Two runs involved the 2BMP where both the
154KW decomposition and ANN approach were applied, while the
155third run used the CE in combination with the KW decomposition.
156The CE model does not include atomic relaxation and therefore the
157ANN was not constructed for the CE. The KW–2BMP simulation is
158fully described in [16], and the ANN–2BMP simulation is fully de-
159scribed in [15]. Precipitates were identified during the runs follow-
160ing the method proposed in [17], specifically developed to identify
161non-pure coherent precipitates in a concentrated alloy. The ob-
162tained size and density distributions of Cr precipitates versus
163AKMC time are shown in Fig. 2. From these plots it follows that
164in all three runs the precipitation process goes via three overlap-
165ping stages: nucleation, growth and coarsening. While the three
166approaches provide a very similar evolution of the precipitate size
167and density distributions, they give essentially different kinetics.
168For example, the time evolution with the ANN approach is an order
169of magnitude faster than with the KW decomposition applied using
170the 2BMP.
171An adequate comparison of the AKMC results with experimen-
172tal data requires renormalization of the AKMC time (tMC) to ac-
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173 count for the discrepancy between the vacancy concentration in
174 the modelled crystal ðCMC

V ¼ 1=128;000Þ and in the real specimen
175 during annealing ðCreal

V Þ. As recently suggested in [16,18], we re-
176 scaled MC time separately for each run so as to fit the first exper-
177 imental data point for the average precipitate size. The comparison
178 of the obtained size and density distributions with experiment is
179 presented in Fig. 3, which shows that the best overall agreement
180 for both size and density evolution is achieved when using the
181 ANN approach.
182 Considering the ambiguity of the applied time rescaling proce-
183 dure, we estimated the vacancy formation energy ðEV

f Þ correspond-
184 ing to the obtained time rescaling factors in all three runs. The
185 MC time is related to experimental annealing time as treal ¼
186 CMC

V =Creal
V � tMC and the thermal equilibrium vacancy concentration

187 is K � expð�EV
f =kBTÞ, here K is a constant factor approximately equal

188 to 3, due to the configurational entropy [19]. The application of the
189 above-used conversion factors allows to estimate EV

f to be 1.80 eV
190 and 1.67 eV and 1.92 eV for the ANN–2BMP, KW–2BMP and KW–
191 CE runs, respectively. Thus, in all the cases the calculated EV

f stays
192 in the narrow range of 1.8 ± 0.2 eV. Note that in pure Fe, different
193 DFT approximations provide a spread for the vacancy formation
194 energy of ±0.2 eV with the mean value of �2.05 [20]. Similar
195 spread exists for the vacancy formation in pure Cr, but the average
196 value is about 2.7 eV [20]. The 2BMP, predicts EV

f in both Fe and Cr
197 metals to be lower by about 0.2 eV. The vacancy formation energy
198 calculated from independent static simulations performed in ran-

199dom Fe–20Cr and Fe–10Cr alloys with the 2BMP is 1.88 eV and
2001.76 eV, respectively, consistent with the numbers deduced from
201the time renormalization factors.
202Finally, given that the ANN regression was obtained from the
203database of Em values calculated in the random alloys, it is impor-
204tant to clarify that it also possesses good accuracy in the alloy that
205has already undergone the phase separation. Hence, we extracted a
206set of configurations encountered during the AKMC runs (on the
207coarsening stage), corresponding to outstandingly high (�1 eV)
208or low (�0.3 eV) values. For these configurations, the barriers were
209correspondingly recalculated using the NEB method applied with
210the 2BMP, and the results are shown in Fig. 4. A good correspon-
211dence between the ANN and NEB–2BM data can be clearly seen.
212Thus, all high and low migration barriers spotted in the ANN ap-
213proach are confirmed by independent NEB calculations.
214To conclude, the three different simulations provide qualita-
215tively similar curves for the precipitate size and density distribu-
216tion, but essentially differ in their time evolution. Comparisons
217suggest that these results, obtained using the ANN approach (based
218on the 2BMP), are the most consistent with experimental data
219compared to KW–CE and KW–2BMP. Additional cross-checks using
220the NEB method for extreme values of Em encountered during the
221simulation, has proven the reliability of the ANN approach. A pos-
222sible improvement for the AKMC simulation is to apply the ANN
223approach using a DFT calculated database of migration energies,
224therefore avoiding the use of a simplified energy model such as
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225 CE or 2BMP, and naturally taking zero temperature relaxation ef-
226 fects into account. This is however not easy, because the automatic
227 calculation of energy barriers with DFT for any LAE is delicate to
228 settle in practice, and finally the amount of examples required to
229 train the ANN (�105) is such that computing time is hardly afford-
230 able. The ANN–2BMP approach therefore remains an interesting
231 alternative to it.
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a b s t r a c t

In this paper, we use an artificial neural network approach to obtain predictions of neutron irradiation
induced hardening, more precisely of the change in the yield stress, for reactor pressure vessel steels
of pressurized water nuclear reactors. Different training algorithms are proposed and compared, with
the goal of identifying the best procedure to follow depending on the needs of the user. The numerical
importance of some input variables is also studied. Very accurate numerical regressions are obtained,
by taking only four input variables into account: neutron fluence, irradiation temperature, and chemical
composition (Cu and Ni content). Accurate extrapolations in term of neutron fluence are obtained.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that reactor pressure vessel (RPV) steels used in
light water nuclear reactors harden and embrittle under neutron
irradiation. Embrittlement is customarily measured in terms of in-
crease of the ductile-to-brittle transition temperature (DBTT),
measured by means of Charpy tests. Nuclear regulations impose
safety margins on this increase, according to rules that may some-
what change depending on the country, as safeguard against RPV
failure in both service and accidental conditions [1,2]. Radiation
embrittlement of materials depends a priori on many variables:
not only neutron fluence, flux, and energy spectrum, but also irra-
diation temperature, chemical composition, and pre-irradiation
material history [3]. All these variables must be simultaneously
considered to reliably predict pressure vessel embrittlement. How-
ever, in order to be able to assess the effect of the different vari-
ables on the mechanical response of the steels, each of them
should be varied independently of the others in a sufficiently wide
range. Such an approach is clearly unrealistic.

Although inadequate to cover all possible conditions, a large
amount of data from surveillance capsules and from material test
reactors does exist. One of the most important goals for utilities
and other nuclear stakeholders is the development, based on
‘‘clever’’ interpolations and extrapolations of the available data,
of reliable trend curves, providing estimates of steel embrittlement
as a function of the most important among the above-mentioned
variables [2].

Artificial intelligence is the combination of algorithms, data and
software used to develop computer systems that can be defined
intelligent. One defining feature of intelligence is the capability of
learning from past experience and solving problems when impor-
tant information is missing, so as to be able to handle complex sit-
uations and to correctly react to new circumstances. There are
many different computational models which are considered
branches of the artificial intelligence field, each one suited to a dif-
ferent kind of problem. Artificial neural networks (ANN), for in-
stance, provide a general framework for representing non-linear
functional mappings between a set of input variables and a set of
output functions [4]. The list of successful applications of ANN to
real-life problems is endless, in sundry domains of interests, e.g.
character and image recognition, image compression, stock market
prediction, tumor detection in medical image analysis, vehicle
piloting, etc. The interested reader can find general information
for example in [5,6].

In the field of nuclear materials, ANN have been applied by
Kemp et al. [7] to the analysis and prediction of the yield strength
increase (DrY) induced by irradiation in low activation ferritic/
martensitic steels, which are candidate structural materials for fu-
ture nuclear fusion reactors. Their conclusion was very encourag-
ing concerning the ANN capability of analyzing irradiation
damage, at least within the range of irradiation parameters and
steel composition that are covered in the database used for train-
ing. Later on, Windsor et al. [8] have shown that the network can
also be used for extrapolating to fluences higher than those in-
cluded in the training database. In this work, we use a different
ANN approach to construct a mathematical regression of the radi-
ation-induced DrY, as a function of irradiation parameters and
steel composition. Differently from [7,8], we compare two different
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ANN training approaches (classical and Bayesian), and try to iden-
tify the most suitable, depending on the purpose of the trained
ANN. Moreover, we define and compare two different algorithms
to split the available data in training and validation sets, because
this aspect of the ANN training problem is very important for appli-
cations where the available amount of training data is limited.

The objectives of this work are manifold:

1. To exploit, as effectively as possible, the information contained
in the available databases from surveillance and material test
reactors irradiations, for both steels and alloys.

2. To identify in a systematic way the variables that appear to be
of higher or lesser importance, based on the available data,
within the ranges covered, i.e. based on interpolations. For
example, the possible existence of a flux effect is addressed.

3. To attempt an extrapolation outside the ranges covered by the
databases and evaluate the reliability of these extrapolations,
by assessing the capability of the ANN to predict a certain cat-
egory of data when trained on a different category. For example,
prediction of the evolution of hardening for higher fluences will
be attempted.

4. To provide a guide to design future irradiation experiments on
steels and alloys, in order to better understand specific effects
and dependencies.

Fully reliable predictions will only be possible once the impor-
tant physical mechanisms acting during irradiation have been
identified, understood and quantified at all relevant scales, from
the atomic scale to the component scale. However, an empirical
approach based on advanced regression techniques, such as ANN,
can be beneficial for industrial applications within a shorter delay
and can even be useful to guide the longer term development of
physical models.

In Section 2, we describe in detail the different ANN training ap-
proaches that we propose, and provide some theoretical back-
ground for the reader unfamiliar with these techniques. Then, we
briefly describe, in Section 3, the RADAMO database that is used
throughout this paper. In Section 4, training experiments are re-
ported, aimed at identifying which, according to our ANN, are the
most influential factors for hardening. Finally, in Section 5 we com-
pare the different algorithms proposed in Section 2 in order to
establish which combination is the most suitable for extrapolation
under given conditions.

2. Methodology

Artificial neural networks (ANN) are powerful computational
models, capable of providing efficient numerical regressions even

when many input variables are involved. In this work, we use
the classical feed-forwards multi-layer perception [4] with one
hidden layer, linear combination functions and hyperbolic tangent
activation functions, as depicted in Fig. 1. It is a universal approxi-
mator in the sense that it can approximate any continuous multi-
variate function to any desired degree of accuracy, provided that
enough hidden nodes are available [9,10]. The universal approxima-
tion theorem, however, does not provide a theoretical framework
for training ANN, but only demonstrates the existence of at least
one ideal architecture for any regression problem, without guaran-
teeing that it can be found by training, and without giving an esti-
mate of the number of training examples that must be provided.

The output of the ANN shown in Fig. 1 can be written as:

DrY ¼ tanh wO0 þ
XH

j¼1

wOj tanh wj0 þ
X4

k¼1

wjk � ik

 ! !
ð1Þ

where H is the number of hidden nodes, i are the input variables.
The fixed coefficients wO0, wOj, wjO and wjk are the synaptic weights
(also often called synapses). The advantage of the ANN method is
that this generic expression does not require the user to explicitly
state how input variables and outputs are related to each others,
unlike the usual trend curves [11,12]. All input variables are con-
nected to all hidden nodes, and these play the role of simple pro-
cessing units that, connected in network, can reproduce complex
mappings that are not necessarily visible to the user. The drawback,
however, is that no reasonable physical interpretation of the indi-
vidual terms in Eq. (1) can be given.

ANN training, i.e. the problem of determining the optimal num-
ber H of hidden nodes and the optimal numerical value for the syn-
aptic weights in Eq. (1), is in practice solved as a non-linear
optimization problem and has many empirical aspects. A database
of input/output examples – for this application exclusively coming
from either neutron irradiation experiments or nuclear power
plants surveillance programs – is used as target for fitting. A good
practice is to separate this database into a training and a reference
set; the training set is only used to optimize the ANN, and the ref-
erence set is used to assess the accuracy of its predictions for new
cases. The problem of how to define such sets is addressed in the
next section.

2.1. Algorithms for the definition of training and reference sets

A good practice, before training the ANN, is to define training
and reference sets from the available database. It is essential to
make sure that both sets are equally representative of the domains
in the input and output spaces, without overlap, in order to provide
a rich training set that contains enough learning material. On the
other hand, it is also important to keep enough pertinent and, most

Fig. 1. Schematic representation of an artificial neural network (ANN) with four input variables (i1–i4), one hidden layer with six hidden nodes and one output (O). The input
signals are propagated from left to right, in a layer-by-layer fashion, without feedback connection and without layer by-pass. The right part of the figure shows how a node
processes its input signals into its own output.
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importantly, independent examples for the validation of the
trained ANN.

In some applications, the database can simply be split by ‘‘shuf-
fling and cutting’’, like one would do with playing cards. This sim-
ple algorithm is, however, unsuitable for this application, for the
following reasons:

(A) The distribution of points in the database input/output space
is generally non-homogenous, as illustrated in Fig. 2. In par-
ticular, some regions are very sparsely populated, usually by
just a couple of points. A completely random ‘‘shuffle-and-
cut’’ algorithm could therefore lead to a poor sampling of
these regions. Measures should be taken to avoid this.

(B) The ‘‘shuffle-and-cut’’ algorithm, even if biased to ensure
proper representativity of both sets, inherently assumes that
data points are sufficiently independent from each other,
under the condition that at least one input variable assumes
a different value. For this application, however, the input
variables describing the chemical composition of a given
steel are likely to operate in synergy and to have a dominant
influence on the corresponding ANN output, DrY. It might
thus be preferable to group the data points by steels and
build training and reference sets operating on the data taken
steel by steel, i.e. without separating data points referring to
the same steel.

Based on these considerations, we have used two different algo-
rithms to build training and reference sets from a given database:

� Algorithm ‘‘by independent points’’: Here, we ignore the possibil-
ity of dominance of the input variables describing the chemical
composition of a given steel and simply apply the ‘‘shuffle-and-
cut’’ algorithm. However, we do not apply it in a completely
blind (random) way. Instead, we impose the condition that all
data points belonging to the sparsely populated regions of the
input/output space (Fig. 2), should be equally distributed within
the two sets.
� Algorithm ‘‘by steel’’: The data points are grouped depending on

the steel they belong to and these groups are then assigned to
one or the other set, trying to share equally the distributions
of chemical compositions. This is not straightforward because
of the nature of the databases.

The former algorithm has the advantage of being simpler and of
creating training and reference sets in which all input variables
(and corresponding output values) are more equally distributed.
The latter algorithm is of more convoluted application, but takes

into account the fact that the examples used as reference for the
ANN are steels and not independent concentrations of chemical
elements.

2.2. Training algorithms

In this section, we describe the problem of training the ANN to
reproduce as closely as possible the output data (DrY in the pres-
ent application), as a function of the input variables listed in the
introduction.

We use the Levenberg–Marquardt (LM) training algorithm
[13,14], regularized by early stopping [4]. The training set is used
to update the synaptic weights in an iterative way, whereas the
reference set is used to decide when training should be stopped,
by assessing the actual ANN extrapolation skills on ‘‘never-seen’’
cases. In addition to the classical training scheme based on early
stopping, we also considered the possibility of applying node decay,
under a Bayesian training scheme [4], in order to compare the per-
formance of the correspondingly obtained ANNs. The complete
objective function f, to be minimized on the training set, is:

f ¼ b
XT

t¼1

ðdt � OtÞ2 þ a
XW
i¼1

w2
i ð2Þ

Here, dt is the desired ANN output for the training example number
t out of T training examples and Ot is the corresponding network
prediction. wi is synapse i out of W. a and b are the Bayesian hyper-
parameters. The second term in Eq. (2) allows node decay to be
introduced: it encourages the network to develop small value syn-
apses connections, so as to yield the simplest possible regression. If
this term is kept, the application of early stopping becomes theoret-
ically unnecessary. In a classical LM training, with early stopping,
we impose a = 0 and b = 1, to turn off node decay. On the contrary,
in a Bayesian training, a and b are not imposed, but are iteratively
fitted. In this case, a variance on the ANN outputs can be theoreti-
cally calculated, to be later used as error bar:

r2 ¼ 1
b
þ gT � A�1 � g ð3Þ

Here A is the matrix of the second order derivatives of the function f
(see Eq. (2)) with respect to the synapses and g is the vector of the
first order derivatives of the ANN output with respect to the
synapses.

The reason for comparing the two training schemes is that the
Bayesian scheme is expected to create a less complex and therefore
more general ANN, presumably more suitable for extrapolation
purposes. On the other hand, Bayesian trained networks generally
commit larger errors on the reference set compared to networks
trained with a classical algorithm, as a consequence of the right-
hand side term of Eq. (2).

The input variables are linearly normalized between �0.150
and +0.150 as is common practice in ANN training. Flux and flu-
ences, however, are linearly normalized on a logarithmic scale
(i.e. we take their logarithms as input variables and normalize
them between �0.150 and +0.150 afterwards), because they vary
by several orders of magnitude in the range covered by the data-
base used in this work. This normalization in log-space homoge-
nizes well the distribution of flux and fluences in the database.
The output is linearly normalized between �1 and +1, because
the output of the ANN is bound to this range, due to the hyperbolic
tangent activation function of the output node. The synaptic
weights are randomly initialized between �1 and +1. Fig. 3 illus-
trates how the average error committed on the training and refer-
ence sets, after training, evolves with the number H of hidden
nodes. The error on the training set always decreases with the
addition of new nodes, because: (1) the function f is optimized

Fig. 2. Typical distribution of values for a given input variable in databases of
irradiated steels. The variable in question can be for example the content of a
certain chemical element or the irradiation temperature; the only output of interest
for the RADAMO database is DrY.
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on this set; (2) the ANN output derived from Eq. (2) is so general
that the addition of new degrees of freedom helps improving the
accuracy of the prediction. On the contrary, the error committed
on the reference set stops decreasing after a certain optimal num-
ber Hopt of hidden nodes, because the ANN becomes more special-
ized for the list of examples used for training.

2.3. Use of network committees

A properly trained ANN is expected to provide good predictions
for any new set of input variables, at least in the ranges covered by
the training and reference sets. However, in practice no single ANN
can be fully trusted because the mapping between input variables
and output that is constructed during training is fitted ‘‘in a mean
square sense’’. The network may have poorly learned the real effect
of some input variables under particular sets of conditions that are
insufficiently represented in the database. In other words, one
should not expect an ANN to be able to predict physical phenom-
ena that are not sufficiently represented in the database of exam-
ples used for training: the predictions made in partitions of the
input space that are not properly covered by the training database
are very likely to vary significantly from network to network, even
if trained on the same database. For this reason, it is generally wi-
ser to make predictions using a committee of networks, all trained
on the basis of the same training and reference sets, rather than
using individual networks. The final prediction of a committee of
ANN, given a set of input variables, will be the average O of the pre-
dictions of the individual networks in the committee. In this way, a
variance can be calculated:

r2 ¼ 1
N

XN

i¼1

rðiÞ
2 þ 1

N

XN

i¼1

ðOðiÞ � OÞ2 ð4Þ

Here, N is the number of networks in the committee, r(i) is the stan-
dard deviation for the prediction of network i (calculated using Eq.
(3)), and O(i) is the prediction of network i. Note that all r(i) are 0 if
the networks have been trained with the classical LM algorithm,
without Bayesian node decay.

3. The RADAMO database

The RADAMO experimental program [15–18] was conducted at
SCK�CEN to generate an experimental database covering a large
spectrum of irradiation conditions. RADAMO was specifically ori-
ented to measure irradiation effects on the tensile properties of
RPV materials. Pressurized water reactor (PWR) and VVER1 materi-
als (plates, forgings and welds) with various chemical compositions

were irradiated in the BR2 material test reactor under well con-
trolled conditions at two temperatures, T = 300 �C and T = 265 �C in
a large neutron fluence range from low (U < 1023 n/m2) to high
(U > 1.5 � 1024 n/m2, energy > 1 MeV) and various flux levels
(u = 0.2–8 � 1017 n/m2/s, energy > 1 MeV).

The database contains 346 entries related to PWR materials
(nine different steels) and 63 entries related to VVER materials
(four different steels). The input variables are: neutron flux, neu-
tron fluence, irradiation temperature, chemical content with re-
spect to several elements (Cu, Ni, P, Mn, Si, etc.) and also the
product form (plate, forging or weld). The output is the variation
DrY of the yield stress measured by tensile tests at room temper-
ature. Fig. 4 depicts the distribution of the 13 different steels in
terms of Cu and Ni contents. We see that VVER materials are signif-
icantly different from PWR steels, especially in terms of Ni content.
At this stage, in this work, we only use the PWR data to train the
ANN. VVER data are kept in a separate database, to be used at a la-
ter stage to assess the performance of the trained ANNs, when em-
ployed to extrapolate to compositions significantly different from
those represented in training and reference sets.

Before defining training and reference sets from the PWR data,
we also separate a set corresponding to the highest neutron flu-
ences: set PWR_HF, which contains 20 data points, all with neutron
fluence higher than, or equal to 1.5 � 1024 n/m2. As in the case of
the VVER data, this set will be used at a later stage to test the per-
formance of the trained ANNs, when employed to extrapolate to
high fluence.

In conclusion, only the 326 remaining data points were used to
build training and reference sets. These, as explained in Section 2.1,
where defined in two different ways:

(A) by independent points, with 162 data points in the training
set (PWR_TA) and 164 in the reference set (PWR_RA);

(B) by steels, with 174 data points in the training set (PWR_TB),
corresponding to five different steels, and 152 in the refer-
ence set (PWR_RB), corresponding to four steels.

4. Results

4.1. Identification of the most influential input variables

In this section we describe the differences between ANN com-
mittees trained on different sets of input variables, in order to

Fig. 3. Illustration of the usual dependence on the number of hidden nodes of the
average error committed by the ANN, on the training set (TSet) and reference set
(RSet). The dashed line shows the optimal number Hopt to retain, for the sake of
generality.

1 VVER is the abbreviation used to denote Russian-type light water reactors.

Fig. 4. Distribution of points in the Cu–Ni content space for the nine PWR steels and
the four VVER steels contained in the RADAMO database. The PWR points are
separated in training and reference sets, defined ‘‘by steels’’.
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identify which are the dominant ones determining the output, DrY.
Neutron fluence and irradiation temperature are unquestionably
important and were therefore always included. The training exper-
iments presented here concern the effect of the following vari-
ables: neutron flux, product form, and chemical composition.

For these experiments, we exclusively used the training and ref-
erence sets defined with the algorithm ‘‘by steel’’, in order to min-
imize the risk of specializing the ANN for all nine RPV steels of the
database. The classical LM training algorithm is the most appropri-
ate, because it allows more precision to be achieved within the gi-
ven database, as will be clearly shown later.

In order to evaluate the performance of the ANN, we compared
the predicted values with the values in the reference set. Better
performance corresponds to better correlation between the two
values, assessed using Pearson’s product-moment correlation coef-
ficient, R2, as well as by calculating the average error, �e, defined as:

�e ¼ 1
R

XR

r¼1

jdr � Orj ð5Þ

Here dr is the desired ANN output for the reference example r out of
R, and Or is the actual ANN output for the same input variables.

Extensive studies led us to the following conclusions:

� Product form and neutron flux are apparently variables that do
not influence the output DrY, because, all other input variables
being identical, their inclusion or exclusion does not change the
ANN quality of prediction. Therefore, we conclude that no sig-
nificant product form or flux effect is numerically discernable,
at least in the range of irradiation conditions and chemical com-
positions covered by the RADAMO database.
� Amongst the chemical composition input variables, Cu content

is unquestionably (and unsurprisingly) the dominant one. Fig. 5
shows that, even by considering only the Cu content as
chemical composition variable, the correlation between pre-
dicted and reference data is very strong.

� The addition of the content of a second chemical element as
input variable improved the correlation. However, the improve-
ment achieved is almost the same independently of the choice
of the second element (Ni, Mn and Si).

This last point is illustrated in Fig. 5, which shows ANN predic-
tions obtained when neutron fluence, irradiation temperature and
contents of two chemical elements are taken into account. We see
first of all that the accuracy of the predictions is, in general, very
high, and is, on average, of the same order as the experimental
uncertainty. We also see that the difference in the quality of the
prediction when considering Ni, Si, or Mn content as second chem-
ical composition variable, is almost indiscernible. Taking any of
them into account, in addition to Cu, hardly makes any difference
in the final ANN accuracy.

We can suggest several explanations for this interesting result:

� Copper has a clear and distinguishable effect on the output DrY,
which is very easily learned by the ANN. The other elements
also have a distinguishable influence, separate from the copper
effect, but there is a synergy between them, so that it is hard to
isolate the individual effects of Ni, Mn and Si. So, the ANN
understands the synergic effect without distinguishing the
actual role of each element, possibly because of the limited
number of steels compositions in the database.
� The ANN is not learning a general logic, but is in fact construct-

ing a non-physical artifact that minimizes the function f in Eq.
(2), by somehow ‘‘memorizing’’ the steels of the database,
therefore making predictions that are only sound for them. This
is however unlikely, because the algorithm ‘‘by steel’’ to define
the training and reference sets is specifically aimed at avoiding
this.
� The ANN manages to find a correlation between Ni, Mn and Si

contents that is not immediately visible to us, but does exist.
Such a correlation may exist and be found because the steels

Fig. 5. Comparison of ANN predictions, measured on the reference set by committees of 30 networks (four hidden nodes), obtained when different series of input variables
are taken into account. Training and reference sets were defined with the algorithm ‘‘by steel’’ and the ANN’s were trained with the classical LM algorithm. In all cases, the
input variables are: neutron fluence, irradiation temperature, and the content of the chemical elements indicated on the graphs. Error bars were calculated with Eq. (4), �e was
calculated with Eq. (5), and R2 is Pearson’s product-moment correlation coefficient.
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of the database are not sampled in such a way that the chemical
content of each element varies independently. On the contrary,
the nine steels in the RADAMO database set can uniquely be
labeled by just looking at the content of two chemical elements.

A way to differentiate between the importance of Ni, Si and Mn
content as variables determining irradiation hardening is to inves-
tigate how the ANN is accurate for other steels, whose composition
is far from the ranges covered by the training and reference sets.
Fig. 6 shows the accuracy of the predictions on the VVER database,
obtained by using the same committees of networks as in Fig. 5.
We clearly see that: (1) the Cu content variable alone is not enough
to ensure accurate extrapolations; (2) in this case Ni content ap-
pears the best one to retain, as the second most influential chem-
ical element after Cu, and the one that provides the best
extrapolation capabilities.

Finally, our attempt to improve the correlation by taking more
than two chemical elements into account failed, because the
ANN accuracy was never better than that shown in Figs. 5 and 6.
This can either be explained by the fact that a hypothetical syner-
gic effect of Si, Mn and Ni on hardening, plus the effect of Cu, re-
moves the need to take all chemical elements into account, or,
more simply, that the database does not contain enough training
examples to correctly deal with such a regression problem, if more
than four input variables are involved.

To summarize, we have shown in this section that the highest
quality ANN predictions can be obtained by taking just four input
variables into account: neutron fluence, irradiation temperature,
Cu and Ni content. Neutron flux and product form have no signif-
icant influence on the RADAMO DrY output.

4.2. Comparison between the proposed training schemes

In this section, we retain the four input variables that were se-
lected based on the study reported in the previous section (neutron
fluence, irradiation temperature, Cu and Ni contents) and compare

the ANN accuracy of predictions after training with either the clas-
sical or the Bayesian LM algorithm, as well as defining training and
reference sets either ‘‘by independent points’’ or ‘‘by steel’’ (see
Section 2.1).

4.2.1. Comparison of the set definition algorithms
In Fig. 7, the performance of ANN committees trained with the

classical LM algorithm is shown, defining the training and refer-
ence sets either ‘‘by independent points’’ (left side) or ‘‘by steel’’
(right side). In the same figure (lower part), the ANN committee
is also tested on the high fluence set, PWR_HF. The biases �b, when
shown, were calculated as:

�b ¼ 1
N

XN

i¼1

ðOi � diÞ ð6Þ

where di is the desired ANN output for the high neutron fluence
example i out of N, and Oi is the actual ANN output for the same in-
put variables. We see that the predictions on the reference sets
(upper part of the figure) are slightly more accurate when the algo-
rithm ‘‘by independent points’’ is used. The predictions on the high
fluence set (lower part) are slightly more biased when the algo-
rithm ‘‘by steel’’ is used. This can be explained by the fact that the
ANN, in the first case, is more specialized for the particular steels
represented in the database, and therefore manages to perform a
more accurate extrapolation on the neutron fluence variable. As
an additional illustration, the performance of the same ANN com-
mittees is illustrated, in Fig. 8, where predictions are obtained for
the steels of the VVER database, i.e. with chemical compositions
that are far from those used during training, either in the training
or reference sets. We can see that the committee of networks yields
slightly better extrapolations when training and reference sets were
defined ‘‘by steel’’.

It therefore appears that the use of the algorithm ‘‘by indepen-
dent points’’ to define the training and reference sets is preferable
for the purpose of extrapolation on the neutron fluence variable,

Fig. 6. ANN quality of prediction for the VVER database, using the same committees of networks as in Fig. 5, i.e. trained using the PWR data. (See Fig. 5 caption for the
definition of �e and R2).
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considering a steel that is already represented in the database.
Otherwise, the use of the algorithm ‘‘by steel’’ is recommended,
in order to predict the hardening of steels not included in the ref-
erence database.

4.2.2. Comparison between classical and Bayesian training algorithms
Fig. 9 is the equivalent of Fig. 7, for ANN committees trained

with the Bayesian LM algorithm, defining training and reference
sets either ‘‘by independent points’’ (right side) or ‘‘by steel’’ (left
side). In comparison to Fig. 7, we see that the general accuracy of
prediction is significantly lower than when classical LM training
is used. In particular, the biases of the predictions on the high flu-
ence set are much larger. This can be explained by the introduction
of node decay in Eq. (2) (Section 2.2).

The predicted dependence of hardening on fluence for different
temperatures, for two steels of the reference database, is shown in

Fig. 10. We see that the Bayesian trained network is accurate for
the higher temperature (300 �C), and is in fact closer to experimen-
tal data than the other network (trained in a classical way), be-
cause the average prediction line touches the bulk of
experimental points and the error bands calculated with Eq. (4)
encompass all of them. The quality of the predictions for the lower
temperature (265 �C), however, is poor compared to the classically
trained network. This can be explained by the fact that this tem-
perature is poorly represented in the RADAMO database: only
48 data points, i.e. less than 15% of the database. As the minimiza-
tion of the function f, in Eq. (2), is solved as a mean-square optimi-
zation problem, and as node decay prevents the network from
developing a complex structure, the ANN became specialized for
the higher temperature, that largely dominates the database.

One possible way to improve the generality of the Bayesian
trained ANN, for the irradiation temperature variable, could

Fig. 7. Quality of prediction for committees of 30 networks (four hidden nodes), trained with the classical algorithm. Training and reference sets were either defined ‘‘by
independent points’’ (left side) or ‘‘by steel’’ (right side). Error bars were calculated with Eq. (4), �e with Eq. (5), �b with Eq. (6), and R2 is Pearson’s product-moment correlation
coefficient. Upper part: predictions for the reference set; lower part: predictions for the high neutron fluence set.

Fig. 8. ANN quality of prediction measured on the VVER database, using the same committees of networks as in Fig. 7, i.e. trained using the PWR data. (See Fig. 6 caption for
the definition of �e and R2).
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Fig. 9. Quality of prediction for committees of 30 networks (four hidden nodes), trained with the Bayesian algorithm. Training and reference sets were either defined ‘‘by
independent points’’ (left side) or ‘‘by steel’’ (right side). Error bars were calculated with Eq. (4), �e was calculated with Eq. (5), �b was calculated with Eq. (6), and R2 is Pearson’s
product-moment correlation coefficient. Top: predictions for the reference set; bottom: predictions for the high neutron fluence set.

Fig. 10. Evolution with neutron fluence of the ANN-predicted DrY, versus experimental measurements, for two steels. Predictions are obtained using a committee of
30 networks (four hidden nodes). The training and reference sets were generated ‘‘on independent points’’. Dashed lines show the error bands calculated with Eq. (4). Left
side: classical training; right side: Bayesian training.
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therefore be to homogenize the database, by removing several
points corresponding to 300 �C, so that each temperature (265 �C
and 300 �C) represents about 50% of the database. We thus tried
re-training with only 108 data points of the database: nine steels
times two temperatures times six data points per steel and per
temperature. Unfortunately, even after this homogenization the
Bayesian trained ANN accuracy is not improved for both tempera-
tures. This could be the consequence of the limited amount of
steels in the database, which makes the application of Bayesian
training inappropriate: node decay is apparently too strong a con-
straint that inhibits the ANN quality of prediction, despite its the-
oretically higher extrapolation skills. In other words, Bayesian
training seems to express its full potential only if a sufficiently
homogeneous and large database is available for training.

To conclude this study, Fig. 11 compares the accuracy of the
predictions provided by the classically trained or by the Bayesian
trained ANN committee on the VVER database. Only data points
corresponding to 300 �C are shown, since we have already ob-
served that the Bayesian network is inappropriate for the lower
temperature. We can see that the accuracy, estimated on the basis
of mean error and correlation, is very similar in both cases,
although slightly lower for the Bayesian trained ANN committee.
We may summarize that, if trained on a database larger than
RADAMO, the accuracy achieved with Bayesian training would be
higher than with classical training. However, in this specific case,
very similar results are obtained in both cases when extrapolating
to the different chemical compositions found in VVER steels.

5. Concluding remarks

In this paper, we have shown that artificial neural networks can
be used to accurately predict neutron irradiation induced harden-
ing of reactor pressure vessel steels, by taking into account the
neutron fluence, irradiation temperature, Cu and Ni contents. The
advantage of this numerical regression technique is that no
hypothesis about how exactly these input variables influence hard-
ening needs to be explicitly formulated, as the artificial intelligence
approach itself takes care of finding non-evident relationships be-
tween the input variables and the output. This allowed us to point
out the apparently negligible influence of the neutron flux, as well
as of the product form, as input variables determining hardening,
at least within the range of chemical composition and irradiation
temperatures covered by the RADAMO database. At the same time,
we have shown that the determination of the most influential
chemical elements for hardening based on purely empirical consid-
erations is not straightforward.

We have compared two training algorithms, as well as two
methods for defining training and reference sets from the available

database. We concluded that training the artificial neural network
with an early stopping regularized algorithm, without the applica-
tion of node decay, and defining training and reference sets ‘‘by
independent points’’, can be recommended in order to train
networks that can be accurately extrapolated from an existing
database to high neutron fluences.

However, the accuracy in the extrapolation to different chemi-
cal compositions (VVER) is not fully satisfactory. In particular,
the application of Bayesian node decay as a way to construct better
networks provided no significant improvement, probably because
of the limited amount of examples in the RADAMO database. In fu-
ture work, we will further investigate the possibility of extrapolat-
ing to different chemical compositions, by extending the database
and/or combining several databases of irradiated steels. The appli-
cation to surveillance data will be our ultimate objective.
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Abstract 
 
We simulate the coherent stage of Cu precipitation in α-Fe with an atomistic kinetic Monte 
Carlo (AKMC) model. The vacancy migration energy as a function of the local chemical 
environment is provided on-the-fly by a neural network, trained with high precision on values 
calculated with the nudged elastic band method, using a suitable interatomic potential. To 
speed up the simulation, however, we modify the standard AKMC algorithm by treating large 
Cu clusters as objects, similarly to object kinetic Monte Carlo (OKMC) approaches. Seamless 
matching between the fully-atomistic and the coarse-grained approach is achieved again by 
using a neural network, that provides all stability and mobility parameters for large Cu 
clusters, after training on atomistically-informed results. The resulting hybrid algorithm 
allows long thermal annealing experiments to be simulated, within a reasonable CPU time. 
The results obtained are in very good agreement with several series of experimental data 
available from the literature, spanning over different conditions of temperature and alloy 
composition. We deduce from these results and relevant parametric studies, that the mobility 
of Cu clusters containing one vacancy plays a central role in the precipitation mechanism. 
 
 

1  Introduction 
 
Copper was inadvertently included as alloying element in nuclear reactor pressure vessel 

steels of second generation. Later, the formation of Cu-rich precipitates revealed itself as one 

of the major causes of degradation of mechanical properties in ferritic steels under neutron 

irradiation [1] (mainly hardening and embrittlement), which is nowadays an important factor 

limiting the lifetime of nuclear power plants. For this reason, Cu precipitation in α-Fe has 

been intensively studied during the last decades, both experimentally [2-7], and using 

theoretical models [8-12] or computer simulations [7, 13-27]. In particular, several attempts 

have been made in the last couple of decades to simulate Cu precipitation in α-Fe using 
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atomistic kinetic Monte Carlo (AKMC) techniques [7, 13-25]. In these simulations, a single 

vacancy is introduced in a volume filled with atoms of different chemical species, located on 

perfect crystal lattice positions. The vacancy acts as vehicle for atomic species re-distribution, 

via thermally activated diffusion jumps, i.e. exchanges of position between the vacancy and 

an atom nearby. The physics of the model is contained in the activation energies of the 

diffusion jumps (migration energies of the vacancy), which vary significantly depending on 

the local chemical, or atomic, environment. 

 

Generally AKMC models are subsumed as rigid lattice models, i.e. crystallographic changes 

cannot be described. This seems to rule out their use to describe precipitation of face-centred-

cubic (fcc) Cu in body-centered-cubic (bcc) α-Fe. However, Cu precipitates in α-Fe are 

experimentally found to be coherent with the bcc-Fe matrix, up to a diameter between 4 and 

5 nm [28,29]. Growing further, they first take intermediate crystallographic structures (first 

9R, then 3R), and finally become fcc when they reach diameters above 12 nm [6]. This 

finding was also confirmed using molecular dynamics simulations, which moreover suggested 

that the stability of Cu precipitates is enhanced by the presence of vacancies inside [27]. Thus, 

it makes sense to simulate by AKMC the coherent stage of Cu precipitation in Fe, as long as 

Cu precipitates remain smaller than ~5 nm.  

 

AKMC models differ from each other essentially by the methodology employed to calculate 

the vacancy migration energies. In most models, they are calculated without allowing for 

atomic relaxation, using an interatomic potential or fitted pair interaction energies, for 

example in a broken-bonds formalism, within a range of interaction of first or second nearest 

neighbour distance. In some cases, the pair interaction energies are fitted to data calculated 

with first principles methods. For a critical review of most existing approaches, the interested 

reader is referred to Vincent et al. [7]. The conclusion by Vincent et al. is, however, that none 

of the models reviewed can consistently predict Cu precipitation in Fe: depending on the 

parameterization, either the average precipitate radius, or the precipitate density is correctly 

predicted, but hardly ever both. In particular, most models tend to overestimate the density. 

 

Soisson and Fu [18] achieved a more satisfactory and consistent prediction. In their AKMC 

model, the vacancy migration energy was also calculated using a broken-bonds formalism, 

fitted to energy data calculated by density functional theory methods. However, they were 

able to predict accurately the evolution with annealing time of both the average precipitate 
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radius and the precipitate density. The main reason for their success is probably that their 

model, by incorporating a very strong interaction between vacancies and Cu clusters, 

predicted that Cu clusters of all sizes were mobile, as a consequence of complex series of 

vacancy hops at their surface or near the surface. They also observed direct coalescence of 

clusters, as the result of migration. Their results therefore suggested that the mobility of Cu 

clusters, as a consequence of strong interactions with vacancies, can play a non-negligible 

role in the kinetics of Cu precipitation in Fe. Mobility of clusters was also observed in 

previous AKMC simulations, though limited to the smallest clusters [13, 15]. The diffusion of 

Cu clusters, on the other hand, had never been considered as mechanism in classical diffusion 

theory models for Cu precipitation [9-12]. 

 
The main limitation of Soisson and Fu's model was a "collateral effect" of the strong binding 

between Cu clusters and vacancy: the latter remained trapped in the bulk of these clusters for 

a very large fraction of the simulation time, thereby increasing enormously the CPU cost and 

therefore limiting drastically the reach of the simulation, which had to be stopped at a very 

early stage of the coherent precipitation. 

 

In this work, we simulate Cu precipitation in α-Fe with an AKMC computer simulation 

approach already described in ample detail elsewhere [30]. To summarize briefly, we 

calculate the vacancy migration energies with the nudged elastic band (NEB) method [31,32], 

using an interatomic potential, thereby fully allowing for effects of long-range chemical 

interaction and static relaxation. However, to allow fast estimation of the migration energies 

during the simulation, the NEB values are in fact provided by a properly trained artificial 

neural network (ANN) [33]. Key for the physical reliability of the model is the quality of the 

interatomic potential. The Fe-Cu potential we use here was developed in [34] specifically to 

fulfill two major objectives: (1) be consistent with thermodynamics, by providing a correct 

prediction of the experimental Fe-Cu phase diagram; (2) provide an accurate description of 

the interaction between point-defects in α-Fe and Cu atoms. The potential has been proven to 

be able to predict the correct final equilibrium for a thermal annealing experiment [23,34], 

although its ability to fully predict the kinetic path from a random solid solution has not been 

evaluated yet. This is done in the present work. 

 

In addition, we designed our model to allow explicitly for the mobility of Cu clusters of all 

sizes, while reducing drastically the CPU cost of the simulation, as compared to a full AKMC 
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simulation. This was achieved by combining the AKMC approach with a coarse-grained 

approach, of object kinetic Monte Carlo (OKMC) type [26]. Clusters of Cu atoms above a 

certain size are considered as objects, for which migration and dissociation events are 

defined, based on specific, size-dependent and thermally-activated frequencies. Seamless 

matching between the fully-atomistic model used to describe small Cu clusters and the 

coarser-grain model used to describe larger Cu clusters is guaranteed by calculating the 

diffusion coefficients and emission probabilities for the object-like clusters based on specific, 

full AKMC simulations, on which another ANN has been trained. We show in what follows 

that this "hybrid" AKMC approach proves both computationally efficient and physically very 

accurate, thanks also to the high quality of the interatomic potential, which is here exploited 

in the most complete way possible. 

 
The paper is organized as follows. In section 2, we summarize the fundamentals of our ANN-

based AKMC algorithm, reporting in detail on the modifications introduced to "hybridize" it 

with an OKMC approach. In section 3, the hybrid AKMC is used to simulate several thermal 

annealing experiments in Fe-Cu, for different Cu contents and at different temperatures. 

Finally, we analyze in section 4 the mechanism of Cu precipitation that stems from our 

simulations, emphasizing in particular the influence of the diffusion of Cu clusters and 

precipitates. 

 
 

2   Hybrid atomistic kinetic Monte Carlo approach 
 

As anticipated in the introduction, in AKMC models atoms are located on the positions 

corresponding to the crystallographic structure of interest, generally on a rigid lattice. The 

evolution of the system is driven by the diffusion jumps of vacancies. The jump to occur is 

each time selected stochastically, according to the jump frequencies: 

 

! 

" ="0# exp
$Em

kB # T
% 
& 
' 

( 
) 
*               (1) 

 

Here Γ0 is the attempt frequency, Em is the migration energy calculated at zero temperature, kB 

is Boltzmann's constant and T is the absolute temperature. The Monte Carlo time increment is 

then obtained using the standard residence time algorithm [35-37].  

181



H. Paper VII

 5 

 

(Fig. 1 about here) 

 

The simulation volume is a cubic and periodic bcc monocrystal, with Fe as matrix. A number 

of Cu atoms are introduced, according to the alloy composition, as well as one vacant site. An 

ANN was trained to predict the vacancy migration energy, as calculated with NEB using the 

potential from [34], given as input a description of the vacancy local chemical environment 

(i.e. how Cu atoms are distributed around it). The methodology we followed to train the ANN 

is described in Ref. [30]. Fig. 1 shows that the predictions are very accurate, therefore the 

ANN can be considered as an adequate substitute of the computation on-the-fly of energy 

barriers with NEB. The attempt frequency in Eq. (1) is considered constant and taken to be of 

the order of Debye’s frequency: Γ0 = 6⋅1012 (s-1). 

 

Due to the negligible solubility of Fe in Cu, the clusters formed during the simulation are 

from the beginning completely pure and compact, similarly to the findings by other authors in 

previous AKMC simulations [7,15,18]. Also consistently with previous work, in a full 

AKMC simulation with this method, the vacancy is strongly attracted by Cu clusters, and 

remains trapped inside them for a very large fraction of the AKMC events. The simulation is, 

therefore, significantly slowed down [7, 18, 23]. To speed-up the calculation, clusters of Cu 

atoms (henceforth denoted has CuN, N being the number of atoms in the cluster) above a 

certain size (N ≥ Nmin) are defined as objects, using the approximations described in what 

follows. Clusters are defined by groups of atoms that are linked by 1nn or 2nn bonds. 

 

When the vacancy approaches a CuN cluster object, as depicted in Fig. 2, the full AKMC 

algorithm is still applied: possible events are only the migration of the vacancy to a first 

nearest neighbor position, and the corresponding migration energies are calculated using the 

ANN shown in Fig. 1. We therefore do not introduce any coarse-grain approximation for the 

migration path followed by the vacancy in the vicinity of a CuN cluster, and – most 

importantly – for the mechanisms of dragging individual Cu atoms, or small Cu clusters, in 

the direction of the large cluster.  

 

(Fig. 2 about here) 
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When the vacancy enters in contact with a cluster, many events that would take place in a full 

AKMC simulation are ignored and replaced by coarse-grain approximations, as shown in Fig. 

2. In particular, the most probable outcome of the capture of a vacancy by the cluster is the 

subsequent inclusion in the cluster of all Cu atoms that are in solution in the matrix, but 

sufficiently close to the interface with the precipitate to be dragged inside by the vacancy 

hopping at this interface. To allow for this atomic-level process, we define a spherical 

absorption radius (radius of the cluster augmented by the 2nn distance) and make the 

assumption that all Cu atoms within this radius are immediately absorbed by the cluster.  

 

(Fig. 3 about here) 

 

After the vacancy (V) has been absorbed by a CuN cluster object, the latter becomes a VCuN 

object, and new events are defined in replacement of the vacancy migration in the regular 

AKMC algorithm: 

• Dissociation of the cluster, with a frequency denoted as 

! 

"N
(diss) , as depicted in Fig. 3. Two 

dissociation mechanisms are possible: (i) emission of the vacancy from the cluster, or (ii) 

emission of a VCu1 pair, as in OKMC simulations [26]. A single frequency for the 

dissociation is assigned, and the emission of a VCu1 pair occurs with a probability pN.  

• Migration of the cluster, with a frequency denoted as 

! 

"N
(mig ) . For convenience, we only 

consider jumps of the central atom of the cluster (dragging the whole cluster) to any of the 

eight possible 1nn lattice sites (in bcc).  After the migration is completed, Cu atoms within 

the absorption range are added to the cluster. 

• Coalescence of clusters, when, after a migration event is chosen, the absorption range of 

the VCuN cluster overlaps with the absorption range of another CuM cluster. 

 

To summarize, the hybrid AKMC algorithm is a compromise between AKMC and OKMC: 

the description at the atomic level of the system is retained as long as the vacancy is not 

trapped in CuN clusters. In the latter case, VCuN clusters are defined as objects, and treated in 

a similar way as in OKMC methods. Clearly, the application of this algorithm requires the 

pre-definition of values for 

! 

"N
(diss) , 

! 

"N
(mig )  and pN as functions of the size, N, and temperature, 

T. These values must guarantee seamless matching with the atomistic description. The 

procedure to obtain this parameterization is described in the next section.  
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2.2  Parameterization 
 

First of all, an appropriate threshold value, Nmin, above which clusters are considered as 

objects must be chosen. A sensible choice is e.g. Nmin = 15, because it corresponds, in bcc, to 

a central atom surrounded by other atoms filling completely its first and second shells of close 

neighbors (so it is very stable), and it is larger than the critical size for nucleation of Cu 

clusters in our AKMC. It is also useful to define the maximum allowed size for CuN clusters, 

Nmax, to remain in a framework of coherent precipitation: R = 2.5 nm [28,29] corresponds to 

Nmax ≈  6000. 

 

Migration and dissociation of Cu clusters are complex processes that are not easily described 

with simple formalisms, because they are the consequence of a succession of many vacancy 

jumps at their surface. We therefore use again a numerical approach: cluster migration and 

dissociation frequencies are estimated with series of independent full AKMC simulations, 

using the ANN of Fig. 1. The VCuN cluster is introduced alone in an otherwise pure Fe 

matrix. The full AKMC algorithm is applied until the vacancy, or a VCu1 pair, is emitted 

from the cluster. Repeating this simulation a large number of times, enough statistics can be 

collected to calculate the cluster diffusion coefficient DN, and the average lifetime τN, 

following the procedure described in Ref. [38]. The dissociation frequency is the inverse of 

the lifetime: 

 

! 

"N
(diss) = 1

#N               (2) 

 

Neglecting correlations, the migration frequency can be derived from the diffusion coefficient 

using the relationship: 

 

! 

"N
(mig ) =

6# DN

$2
#
1
8                    (3) 

 

where Δ2 is the square of the jump distance, i.e. of the 1nn distance, equal to ¾a0
2 (a0 is the 

lattice parameter, 2.86 Å for dilute Fe-based alloys). The factor 1/8 in is introduced to account 

for the eight possible destinations of migration.  
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DN and τN are calculated at several very high temperatures (up to 4000 K) and linearly 

extrapolated to the temperatures of interest via Arrhenius plots: ln(DN) or ln(τN) versus the 

reciprocal temperature 1/kBT. As a matter of fact, high temperatures make the lifetime, and 

therefore the simulation time, shorter, thereby enabling the collection of statistically relevant 

quantities of data points, also for very large cluster sizes. A few sets of data points are 

represented as Arrhenius plots in Fig. 4 and Fig. 5. Fig. 6 shows an example of diffusion 

coefficient DN for T = 773K versus size. We see that for N > 1000, the value is not 

monotonously decreasing with N: these oscillations are entirely attributed to extrapolation 

errors from high temperature, as indicated by the error bars. In order to fit a function 

providing diffusion coefficients and lifetime of clusters as functions of both cluster size and 

temperature, we sought for smooth mathematical expressions to these relationships: 

 

(Fig. 4 about here) 

(Fig. 5 about here) 

(Fig. 6 about here) 

 

 

! 

ln DN (T )( ) = f1 N,1 kBT( )          (4) 

! 

ln "N (T )( ) = f2 (N,1 kBT )                     (5) 

 
These functions were constructed by fitting to the data points shown in Fig. 4 and Fig. 5, 

using ANNs again. In the case of DN at 773K, Fig. 6 shows both reference data points and the 

regression obtained using the ANN. 

 
(Fig. 7 about here) 

 
Finally, the probability pN that the VCuN cluster dissociates by the emission of a VCu1 pair is 

simply calculated as the ratio between the number of times the clusters dissolved by this 

mechanism, and the number of times the vacancy alone was emitted. To obtain enough 

statistics, a number of simulations as large as 100 000 was necessary. These calculations 

could therefore only be performed at high temperature (T ≥ 1125 K). The values we 

calculated are shown in Fig 7. Similarly to the above case, we designed a general fitting 

function based on ANN to extrapolate pN to lower temperatures and to any size N: 
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! 

pN (T ) = f3 (N ,1 kBT )                (6) 

 
Fig. 7 shows the regression for 2000 K and its extrapolation to 773 K. 

 

2.2  Time rescaling 
 
Simulations of thermal annealing experiments with AKMC are conducted with the 

introduction of one vacancy in the simulation volume. The equilibrium vacancy concentration 

in real materials is, however, much smaller, by several orders of magnitude. For this reason, 

the Monte Carlo time tMC must be rescaled before a comparison with experimental results is 

possible. The vacancy concentration in the real material can be calculated from the vacancy 

enthalpy of formation, 

! 

hv
f : 

 

! 

Cv
(real ) = A" exp #hv

f

kB " T
$ 

% 
& 

' 

( 
)             (7) 

 

Here, A is a constant number that depends on the alloy composition (A ≈ 1 for dilute Fe-based 

alloys). The enthalpy of formation 

! 

hv
f  also depends on the alloy composition, and is not 

accurately known, either experimentally, or by first principle calculations. In this work, we 

use the value predicted by the interatomic potential used for pure Fe, namely, 

! 

hv
f  = 1.7 eV. 

The vacancy concentration in the simulation box is given by the ratio between the number of 

vacancies (1 in our case) and the number of atoms Nat in the volume. Le Bouar and Soisson 

proposed in Ref. [15] to correct this concentration, while rescaling time, to take into account 

the evolution of the local vacancy formation energies during the process of Cu precipitation. 

The vacancy concentration in the box is then calculated as: 

 

! 

Cv
(MC ) =

fV
Nat " XFe

               (8) 

 
Here, XFe is the proportion of Fe atoms in the box (XFe ≈ 1), and fV is the fraction of time spent 

by the vacancy in a pure Fe environment (up to the 2nn distance).  

 

Not all authors obtained satisfactory results using this procedure for rescaling time [7]. This 

can be attributed to the uncertainty on the exact value of the formation enthalpy 

! 

hv
f , the 
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consequences of which are exacerbated by its appearing in an exponential function in Eq. (7). 

Other uncertainties can also have significant effect, such as for example the value of the 

vacancy jump attempt frequency Γ0 in Eq. (1), or the concentration-dependent constant A in 

Eq. (7). For these reasons, other authors choose the value of 

! 

hv
f  in order to obtain the best 

possible fit between the results of the simulation and the experimental data [7]. This approach 

can be considered equivalent to applying a global correction factor fg, and the real time is thus 

calculated as: 

 

! 

treal = tMC "
Cv
(MC )

Cv
(real ) " fg                  (9) 

 
If the model is globally consistent and correct, given a Cu content in the alloy, a single value 

of fg can be found that leads to a complete superposition of the predictions of the model with 

all experimental data. Ideally, the value of fg should be as close as possible to 1. We fitted 

values that vary between 0.1 and 1.30 (see next section). This limited variation no doubt 

accounts for all uncertainties regarding the concentration dependence of the parameters 

entering the above equations. It is important to emphasize, however, that for a given Cu 

content in the alloy, a unique factor is fitted under the game rule that this unique value must 

allow reproduction of all experimental data at all temperatures for that alloy (average 

precipitate size, but also density).  

 
 

3 Simulation of thermal annealing experiments 
 
In this section, we report on the use of the hybrid AKMC approach described in section 2 to 

simulate several thermal annealing experiments in Fe-Cu, as summarized in Tab. 1. The 

results of our simulations are summarized in Tab. 2 and Fig. 8.  

 

(Tab. 1 about here) 

(Tab. 2 about here) 

(Fig. 8 about here) 

 

In order to choose the most appropriate simulation volume, as a trade-off between reasonable 

CPU time and statistical accuracy of the prediction, we consider that the peak of precipitate 

density is, at 773K with 1.34%Cu, of the order of 4x1024 m-3. The density then decreases to 
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1023 m-3 at the end of coherent precipitation stage. A sufficient size for the AKMC simulation 

box is thus 64x64x64 units cells (524 288 atoms), similarly to other authors’ choices [7, 18]. 

The peak of density, if correctly predicted by the model, would then be reached by a number 

of 24 precipitates in the box, whereas if only one large precipitate remains at the end of the 

coherent stage the density will be correctly sampled. Nonetheless, to obtain more statistics 

some simulations were also conducted in a bigger 128x128x128 unit cells box (4 194 304 

atoms). Another strategy adopted to optimize the CPU time has been to start the simulation 

with a smaller box and continue the same simulation in a box eight times bigger when the 

densities become too low for the small box to provide enough statistics: this was achieved by 

duplicating the small box before restarting the simulation, an operation consistent with the use 

of periodic boundary conditions.  

 

Fig. 8 shows at a glance that the predictions of the hybrid AKMC model are in very good 

agreement with experimental data. For example, the increase of the average precipitate radius 

versus time in Fe-1.34at%Cu is very closely reproduced at all three temperatures investigated 

(773K, 873K and 973K). In the case of the experiment at 773K the measured evolution of the 

density of precipitates is also provided and the model very nicely predicts nucleation (density 

increases), growth (density reaches a peak and remains temporarily constant while the radius 

keeps increasing) and coarsening (density decreases while the radius keeps increasing, 

because large precipitates grow at the expense of smaller ones). The curves obtained in the 

simulation box with sides of 64 lattice parameters are jerky because, especially when the 

coarsening stage is reached, only a few precipitates remain in the box and the disappearance 

of a small one to make a big one produces significant oscillations in the overall density. In 

particular, step-like increases/decreases are observed: this is a clear indication of the fact that 

the mechanism leading to the density decrease and radius increase is the coalescence of two 

mobile precipitates. Simulations conducted in the larger box (side of 128 lattice parameters) 

allow the jerks to be damped, thanks to better statistics (larger number of precipitates in the 

box). In all cases, the simulations finished with one single cluster in the box, of varying size, 

consistently with the increasing solubility limit with temperature. Finally, time was rescaled 

using the same factor fg in Eq. (9) for all temperatures: fg = 0.60. 

 

In the simulation of the annealing of a Fe-1.1at%Cu alloy at 823K we observe that the first 

two experimental points are not predicted by our model. The good agreement with 

experiments obtained in all other cases, however, gives us sufficient confidence to believe 
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that those two experimental points are probably affected by large uncertainty, possibly as a 

consequence of the limited resolution of the experimental technique used, i.e. small angle 

neutron scattering, which is not sensitive to precipitates below 1 nm in diameter and therefore 

can be supposed to have overestimated the average size at the early stage of the precipitation, 

especially because in the experiment there was no support from any other complementary 

technique. This is confirmed by the fact that the third experimental point, still within the limit 

of coherent precipitation, is correctly reached by the model, and that a visual extrapolation of 

the curve will lead to reach the fourth point as well, even though this lies well into the regime 

where crystallographic transformation must have started, i.e. strictly speaking outside the 

range of validity of the model. Our model, as most experimental data, is roughly consistent 

with a dependence of the radius on a ½ power of time during growth that decreases to a 

dependence on a 1/3 power of time during coarsening, as should be expected [6,7] (in 

logarithmic scale this is a roughly linear dependence, though with gradual change of slope), 

while no regression interpolating the four experimental points from [4] will respect such a 

law. Finally, time was rescaled using a different factor compared to the Fe-1.34%Cu alloy: fg 

= 1.3 in Eq. (9). This can be explained by the fact that comparison is here made with a single 

set of experimental data. The difference in the optimal fg factor can thus be attributed to the 

usual scatter between sets of experimental data, as one can see in the top panel in Fig. 8. 

  

Finally, the annealing of Fe-0.6at%Cu at 773K leads to a precipitate density significantly 

smaller than in the above case, at all stages, consistently with the halved solute concentration: 

the simulation could only be meaningfully performed in a 128x128x128 unit cells box with 

~4 million atoms. These simulations were particularly demanding in terms of CPU time, also 

because the Cu concentration is lower and the acting thermodynamic force correspondingly 

weaker. Nonetheless, good agreement with experimental data is achieved. The optimal time 

rescaling factor (fg = 0.1), however, is significantly smaller compared to the other alloys, 

because the MC time went too fast compared to the experimental one by about a factor 5. 

Scatter in experimental data cannot explain such a large difference; neither can an eventual 

change in the vacancy formation energy 

! 

hv
f  due to the decrease of the Cu content. Instead, a 

possible explanation could be the incorrectness of the assumption that the attempt frequency 

Γ0 in Eq. (1) can be considered as strictly constant. For example, Soisson and Fu used 

constant values in [18], but varying with the chemical nature of the jumping atom, being large 

for Fe. Such a difference in the attempt frequency could have compensated the sudden 
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decrease of fg, because the proportion of Fe-vacancy exchanges is logically expected to 

increase if the Cu content is reduced.   

 

To summarize, the hybrid AKMC model proposed here is able to make relevant predictions of 

the kinetics of Cu precipitation in α-Fe, in an affordable CPU time on standard work-stations. 

We thus believe that our model includes all important mechanisms of the investigated 

physical-chemical process and that these are satisfactorily parameterized. This achievement is 

of course also closely connected to the quality of the interatomic potential used, from which 

all parameters are obtained, either directly or indirectly.  

 
 

4   Analysis of the Cu precipitation mechanism 
 

(Fig. 9 about here) 

 

Our results of the previous section strongly support the idea that the mobility of Cu clusters 

and even precipitates plays a significant role in the process of precipitation in Fe, similarly to 

the conclusion of Soisson and Fu [18]. Fig. 9 shows the evolution with annealing time, in our 

simulations of Fe-1.34%Cu at 773K, of: (1) the ratio between the number of Cu atoms 

absorbed in big clusters after their migration, and the number of Cu atoms dragged to the 

cluster absorption range by the vacancy; (2) the ratio between the number of times clusters 

density was reduced because of big clusters merging and because of clusters dissociation by 

the emission of CuV1 pairs. These ratios are significantly larger than 1, and constantly 

increasing with time, confirming that indeed Cu clusters, in our simulations, grew mainly as a 

consequence of their migration and subsequent inclusion of Cu atoms, and that the clusters 

density grows mainly due to the coalescence of mobile clusters. To further highlight this 

conclusion, we have conducted additional simulations (Fig. 10), in which some events where 

deliberately prohibited, namely: in one, the emission of VCu1 pairs from VCuN clusters was 

suppressed (pN = 0); in the other, the migration frequency 

! 

"N
(mig )  was artificially modified in 

order to progressively inhibit the migration of the biggest VCuN clusters (for N > 100). 

Compared to Fig. 8, in the former case the average precipitate radius is unsurprisingly 

somewhat larger and the average precipitate density almost unaltered, the results remaining in 

good agreement with experiments. In the latter, however, the results deviate significantly 
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from the experimental data: from a certain annealing time on, the average precipitate radius 

ceases to increase, and the clusters density ceases to decrease, thus remaining higher than the 

experimental one. Therefore, it is only by allowing large clusters to be mobile that 

experimental results can be matched by the model. The one-by-one emission of VCu1 pairs, 

on the contrary, is not a sufficiently efficient mechanism to enable coarsening as observed in 

experiments. 

 
(Fig. 10 about here) 
 

5   Conclusion 
 
We have simulated the coherent stage of Cu precipitation in α-Fe during thermal annealing 

with a novel hybrid atomistic kinetic Monte Carlo simulations. The vacancy migration 

energies used to parameterize the model were calculated using a suitable interatomic 

potential, taking into account long-range chemical interactions and static relaxation, by 

exploiting the capabilities of artificial neural networks to interpolate and extrapolate the 

results of nudged elastic band calculations. This algorithm was hybridized with an object 

kinetic Monte Carlo approach, by treating Cu precipitates as objects above a certain size. The 

seamless matching between the atomistic and the coarse-grain approximation was ensured by 

calculating all parameters governing object behavior from atomistic simulations and again by 

exploiting the regression capability of artificial neural networks for extrapolation. This 

allowed the simulation CPU time to be reduced by orders of magnitude and enabled complete 

thermal annealing experiments to be simulated, up to the end of the coherent precipitation 

stage, finding in addition very good agreement with experimental data, both in terms of mean 

size and density of precipitates. This achievement proves: (1) the suitability of the interatomic 

potential used, which describes correctly not only the thermodynamic properties of the Fe-Cu 

system (phase diagram), but also the kinetics of precipitation; (2) that the model includes all 

important mechanisms driving the precipitation of Cu in iron. In particular, the mobility of Cu 

precipitates containing even several thousands of atoms turns out to be the dominant 

mechanism leading to growth and coarsening. This is consistent with what was proposed by 

Soisson and Fu, though could not be fully proven because of the lesser numerical efficiency 

of their model [18].  Our hybrid model paves the way to addressing more complex 

phenomena, such as radiation-enhanced, or even induced, precipitation, in Fe-Cu and also in 

more complex alloys. 
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Figures and tables caption 
 
 
Fig. 1 – Quality of the ANN predictions of the vacancy migration energies obtained with the 

NEB method in Fe-Cu alloys. The input variables are a description of the vacancy local 

atomic environment up to the 11th nearest neighbors. The average error of predictions is 2.0%, 

and Pearson’s product-moment correlation coefficient R2 is 0.998. 

 

Fig. 2 – Schematic representation of the absorption of a vacancy in a CuN cluster in the hybrid 

AKMC algorithm. Dashed lines represent the radius of the cluster, and the absorption radius. 

On the left side, the vacancy is approaching the cluster, and is considered absorbed when a 

migration event is chosen involving one atom of the cluster. After absorption of the vacancy, 

Cu atoms situated within the absorption range are immediately absorbed in the cluster, and 

the new radiuses are increased accordingly, as shown on the right side.  

 

Fig. 3 – Schematic representation of the dissociation event for a VCuN cluster in the hybrid 

AKMC algorithm. The frequency of occurrence is denoted 

! 

"N
(diss) . When applied, the vacancy 

alone is emitted outside the absorption range (delimited by the dashed lines on the figure). A 

Cu atom is occasionally also emitted, with a probability denoted as pN. 

 

Fig 4 – Diffusion coefficients DN of different VCuN clusters, versus reciprocal temperature 

(1/kBT), measured with AKMC simulations. Plain lines show interpolation and extrapolation 

on the reciprocal temperature using f1 defined in Eq. (4). 

 

Fig. 5 – Lifetimes τN of different VCuN clusters, versus reciprocal temperature (1/kBT), 

measured with AKMC simulations. Plain lines show interpolation and extrapolation on the 

reciprocal temperature using f2 defined in Eq. (5). 

 

Fig. 6 – Evolution of the diffusion coefficient DN of VCuN clusters with the number N of Cu 

atoms, at 773K. Dots show interpolation/extrapolation from AKMC data (Table 1) achieved 

with Arrhenius plots. The plain line show interpolation/extrapolation achieved using function 

f1 (Eq. 4).  
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Fig. 7 – Probability pN for a VCuN cluster to dissociate by the emission of a VCu1 pair. Dots 

show the values calculated with 100 000 independent AKMC simulations, at different 

temperatures. The dashed line show interpolation using function f3 (Eq. 6) at 2000 K, and the 

plain line shows extrapolation using function f3  at 773K. 

 

Fig. 8 – Comparison of the results of our hybrid AKMC simulations (plain lines) with 

experimental data (diamonds, squares, triangles and circles) described in Tab. 1. For the Fe-

1.34%Cu case at 773K, the (x) mark indicates the results obtained in a 128x128x128 unit 

cells box, whereas the unmarked one was obtained in a 64x64x64 box. 

 

Fig. 9 – Evolution with annealing time, during simulation with the hybrid AKMC, for a Fe-

1.34at%Cu alloy at 773K, of (1) the ratio between the total number of Cu atoms admitted in 

Cu clusters after their migration and the number of Cu atoms dragged by the vacancy from the 

matrix to the clusters vicinity; (2) the ratio between the number of VCuN clusters objects 

merging and dissolutions. 

 

Fig. 10 – Thermal annealing experiment for a Fe-1.34at%Cu alloy at 773K. Parameters in the 

model were changed compared to Fig. 8: (a) the probability pN for VCuN clusters objects to 

dissolve by the emission of a VCu1 pair is set to 0; (b) The VCuN migration frequency 

! 

"N
(mig )  

is  modified to inhibit the migration of clusters bigger than 100 atoms.  

 

Tab. 1 – Summary of the sets of experimental data used in this work, focusing on the coherent 

stage of precipitation (the average clusters radius 

! 

R  < 3 nm). In the experimental technique 

column, APT stands for atom probe tomography, SANS for small angle neutron scattering 

and SAXS for small angle X-rays scattering.  

 

Tab. 2 – Summary of the results obtained with the hybrid AKMC simulations performed in 

this work. NCl denotes the number of Cu clusters, and 

! 

R  the average cluster radius. The last 

simulation (Fe-1.1%Cu at 823K) was first started in a 64x64x64 unit cells box, then 

interrupted and continued in a 128x128x128 when the number of clusters was lower than 10. 

The number of AKMC events is proportional to the CPU time. 
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Table 1 
 
 
 

Cu 
content 
[at%] 

T 
[K] 

Number 
of points 

Max. 
clusters 
density 

[m-3] 

Clusters 
density 
[m-3] at 

! 

R  = 3 
nm  

Exp. 
technique 

Reference 

1.34 773 3 1E24 ~ 1E23 APT Goodman et 
al. [2] 

1.34 773 6 4E24 ~ 1E23 SANS Kampmann 
et al. [3] 

1.34 773 3 2.5E24 ~ 2E23 SANS Mathon et 
al. [5] 

1.34 773 > 10 - - 
1.34 873 > 10 - - 
1.34 973 > 10 - - 

SAXS Perez et al. 
[6] 

1.1 823 4 ~ 1.5E23 ~ 1E23 SANS J.T. Buswell 
et al. [4] 

0.6 773 6 2.7E23 ~ 7E22 APT Vincent et 
al. [7] 
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Table 2 
 
 

Cu 
content 
[at%] 

T [K] AKMC 
box size 
(lattice 
units) 

Num 
AKMC 
events 
(*1E9) 

NCl  at 
peak of 
density 

NCl 

! 

R  [nm]  fV  
Eq. (8) 

fg  
Eq. 
(9) 

1.34 773 64 1.4 47 1 2.55 1.5E-5 0.60 
1.34 773 128 4.2 375 11 1.76 1.5E-5 0.60 
1.34 873 64 3.5 27 1 2.32 1.0E-4 0.60 
1.34 973 64 6.3 9 1 1.9 8.1E-4 0.60 
1.1 823 64 /128 1.5 / 15.3 22  

(in box 64) 
6 2.17 4.4E-5 1.30 

0.6 773 128 30.2 26 4 1.81 2.7E-5 0.10 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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a b s t r a c t

An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of
copper–vacancy clusters in Fe. This information, which cannot be obtained directly from experimental
measurements, is needed to parameterise models describing the nanostructure evolution under irradia-
tion of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC
method has been improved by employing artificial intelligence techniques for the regression of the acti-
vation energies required by the model as input. These energies are calculated allowing for the effects of
local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as
possible and the nudged-elastic-band method. The model validation was based on comparison with
available ab initio calculations for verification of the used cohesive model, as well as with other models
and theories.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The formation of copper-rich precipitates under irradiation is
accepted to be among the main causes of hardening and embrittle-
ment of reactor pressure vessel (RPV) steels during operation,
because they act as obstacles to the motion of the dislocations
[1]. Positron annihilation studies on FeCu model alloys show that
these precipitates are likely to contain a considerable amount of
vacancies and to be formed as a result of the diffusion of mobile
complexes containing both Cu atoms and vacancies [2–4] (hence-
forth Cu–vacancy clusters). Consistently, Cu–vacancy clusters are
predicted to be relatively stable by ab initio calculations [5],
supporting the idea that these clusters should be able to migrate
as a whole. This contention has been also qualitatively proven by
performing high temperature molecular dynamics studies [6].
Thus, models describing Cu precipitation under irradiation should
explicitly include a mechanism of formation based on the diffusion
of Cu–vacancy clusters.

Kinetic Monte Carlo (KMC) models based on the residence time
algorithm [7,8] are suitable to simulate precipitation and also seg-
regation processes [9,10], in acceptable trade-off between accuracy
and computing time [11]. Two main classes of KMC models have

been used to describe Cu precipitation under thermal ageing and
irradiation: ‘‘atomistic’’ KMC (AKMC) models [12–20] and ‘‘object’’
KMC (OKMC) models [14,21]. In OKMC simulations point-defects,
point-defect clusters and mixed clusters are treated without
including the detail of their atomic-level configuration and the
technique is suitable to simulate irradiation processes in a fairly
realistic way, up to a timeframe of years. However, an OKMC model
requires as an input the knowledge of all the parameters defining
the mobility and stability of the objects included in it. Notably, in
order to introduce the mechanism of formation of Cu precipitates
via migration of small Cu–vacancy clusters, the diffusion coeffi-
cients of these clusters must be known in advance. These are not
quantities that can be experimentally measured, though. Obtaining
them from ab initio calculations, although a priori possible by cal-
culating all migration energies for all relevant migration paths, is
a very heavy task, which can only be applied in a few simple cases.
Molecular dynamics simulations with interatomic potentials could
in principle be a solution, but are in practice not applicable, be-
cause of the relatively slow migration of vacancies. Either very high
temperatures must be simulated (e.g. [6]), thereby making the tra-
jectory of the clusters too short to be statistically significant with a
view to deriving their diffusion coefficient from standard tech-
niques [22], or unaffordably long simulations would be required.
In contrast, AKMC models spontaneously treat the diffusion of
clusters containing solute atoms and point-defects in terms of

0022-3115/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnucmat.2011.02.038
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migration jumps of single point-defects on an atomic lattice. In
these models each timestep corresponds to a point-defect jump,
so the calculation becomes computationally affordable, allowing
a precise determination of trajectories and extraction of diffusivity
data, with very good statistics. Given the migration energies and
the diffusion mechanism, the model automatically explores all
possible migration paths. Thus, the AKMC method is the most suit-
able to estimate the diffusion coefficients of Cu–vacancy clusters,
thereby allowing the parameters for OKMC simulations to be
produced. The main shortcoming resides in the fact that entropic
effects on the migration barriers are not taken into account,
although other entropic contributions, such as configurational
entropy, are inherently included in the model.

The application of the AKMC algorithm requires the a priori
knowledge of the migration energies of, in this case, a vacancy,
as a function of the local atomic environment (LAE), which varies
because Cu atoms and other vacancies are in each case differently
distributed around it. These energies are customarily estimated
using heuristic approaches, such as linear relationships with the
total energy variation between before and after the jump
[12–14,17,18,20], or broken bond methods limited to bonds with
the first and second nearest neighbour shell [9,10,15–16,19].
However, these approaches are insufficient to describe reliably
the complexity of the dependence of the activation energies for a
vacancy jump on the LAE, as shown for example in [23].

In [24] the problem was solved by pre-calculating, with a suit-
able interatomic potential [25,26], all the energy barriers corre-
sponding to all possible LAEs encountered during migration by
the vacancies in the Cu–vacancy cluster (limited, however, to the
3rd nearest neighbour shell) and by storing them in tables. This
is indeed doable if the LAEs are limited to a sufficiently small
amount of atoms and, in general, if the total number of LAEs re-
mains reasonably small. In such a case, the production of the tables
requires a long, though still affordable, amount of computing time,
but then fast search algorithms can find rapidly the proper value in
the tables during the AKMC simulations.

In this work, we want to improve the reliability of the same
type of calculations performed in [24], by taking into account the
effect on the migration energy of a LAE more extended than the
3rd nearest neighbour (3nn) shell. We also want to study larger
clusters, for which the tabulation of all possible barriers for all pos-
sible LAEs is unfeasible. In order to do this, we resort to the method
developed in [23,27], in which a properly trained artificial neural
network (ANN) is used to calculate, on-demand and on-the-fly,
during the AKMC simulation, the migration energies as functions
of the LAEs.

The paper is organised as follows. In Section 2 we summarise
the fundamentals of our artificial neural network-based AKMC
simulation. In Section 3 we present our results for a number of
Cu–vacancy clusters. In the first place, we provide the statically-
calculated formation and binding energies, as these are the quanti-
ties traditionally used in OKMC simulations to estimate stability
parameters [21]. The calculations are performed using the same
interatomic potential as employed for the energy barrier calcula-
tions and the results are compared with ab initio calculations, in or-
der to assess the reliability of the potential. Then we apply the
previously-sketched AKMC method to study mobility and stability
of small clusters (up to six elements) versus temperature. When-
ever possible, we compare our results with previous ones, obtained
in [24]. Subsequently, we present some results on the diffusivity of
large copper clusters, containing up to 150 atoms and only one va-
cancy, and compare the diffusion coefficients obtained with those
estimated with other methods. Finally, in Section 4 we analyse
and discuss the reliability of the use of the ANN to replace a tabu-
lation of rigorously calculated migration energy values, as well as,
more generally, the reliability of the results obtained.

2. Computational model

2.1. The AKMC algorithm and the problem of the evaluation of energy
barriers

According to standard transition state theory, the frequency of a
thermally activated event, such as a vacancy jump j in an alloy, can
be expressed as:

Cj ¼ m expð�Ej=kBTÞ ð1Þ
where m is an attempt frequency, that can be considered constant in
first approximation (on the order of the Debye frequency; here
m = 6 � 1012 s�1), kB is Boltzmann’s constant, T the absolute temper-
ature and Ej the LAE-dependent activation energy of the jump (de-
noted here as energy barrier, or migration energy). These
frequencies are used in an AKMC framework to assign a probability
to all possible vacancy migration events: the 1nn migration of
vacancies, one at a time. The simulation time is incremented follow-
ing the mean residence time algorithm [7,8].

Given a suitable interatomic potential (e.g. [25,26] for the Fe–Cu
alloy), the energy barriers can be rigorously calculated, for any LAE,
using the nudged-elastic-band (NEB) method [28]. Atomic-level
techniques of this type take implicitly into consideration the influ-
ence of the nature of the surrounding atoms on the vacancy jump
barrier, as well as strain field effects. However, the use of a NEB cal-
culation at each AKMC timestep to evaluate all Cj from Eq. (1)
would require a prohibitively long CPU time. As anticipated in the
introduction, when the total number of LAEs to be considered is re-
duced, the production of tables of energy barriers for all possible
cases, to be fed to the AKMC code, is possible (e.g. [24]). However,
if the clusters to be studied are not-so-small, the size of the table
to be constructed grows very fast. In these cases, the only alterna-
tive to tabulating is to find patterns in the dependence of the energy
barriers on the LAE and use a model instead of tables. For this pur-
pose, we resorted to an artificial intelligence method [27].

2.2. Artificial neural network as regression tool for energy barrier
calculation

ANNs are considered as universal approximation tools, capable
of learning from experience and to find non-evident dependencies
between data. In this work, they are used as a very fast and pow-
erful numerical regression method that can reproduce the complex
relation existing between the vacancy migration energy and the
LAE. We use ANN of the feed-forward multilayer perceptron type,
with one hidden layer, using linear combination functions and sig-
moidal non-linear activation functions [27].

The development of an ANN requires first the production of
examples, i.e. a table of LAEs and corresponding migration energies
calculated with the NEB method. This table must be divided into
two non-overlapping sets: a training set and a validation set. The
ANN is trained to reproduce the former and validated on the latter,
by definition made of examples never seen before by the ANN, i.e.
not included in the training set. Given these sets, a complete
description of the methodology that is followed in order to design
the ANN can be found in [27].

Fig. 1 shows the accuracy reached by the ANN after training,
when up to seven Cu atoms and seven vacancies are included in
the LAE (FeCuVac system). The LAE encompasses the 5th shell of
nearest neighbours around the migrating vacancy and its destina-
tion (5nn approximation). The mean relative error is in this case
5.67%, and the correlation factor R2 is 0.95. The mean bias,P

(O � d)/N, is 0.0024 eV and the mean error,
P

|O � d|/N, is
0.033 eV (O is the ANN output, d the desired target, and N the
number of points). The correlation is globally good, although not
perfect, because ANN predictions and NEB calculated barriers do
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not always compare one-to-one. As discussed in Section 4, the
quality of the performance of this ANN was a posteriori observed
to vary significantly from cluster to cluster, so that in principle,
via proper retraining, its improvement is possible. Nevertheless,
in Section 4 it is also shown that, probably due to the absence of
significant biases in the error committed by the ANN, the results
are globally acceptable when compared with results obtained
directly from tabulations.

In the case of the FeCu system (no extra vacancies in the LAE),
two separate ANNs were developed, namely, one for cases when

the vacancy exchanges its position with a Cu atom, and another
one for exchanges with Fe atoms. The LAE included up to the 8th
nearest neighbour shell (8nn approximation). Fig. 2 shows that in
this case the ANN accuracy is extremely good for both Cu and Fe
migrating atoms. The mean relative error in the migrating Cu case
is 1.13% and 1.10% in the migrating Fe case. The correlation factor
R2 and the mean bias are in both cases 0.99 and 0.001 eV, respec-
tively. The mean error is 0.0051 eV for the migrating Cu case and
0.007 eV for the migrating Fe case.

The ANNs of Figs. 1 and 2 were used to assess Ej in Eq. (1) at
each timestep in the AKMC simulations performed to study the dif-
fusivity of, respectively, small Cu–vacancy clusters (FeCuVac sys-
tem) and Cu clusters containing only one vacancy (FeCu system).
The methodology used to extract information from the simulations
for the estimation of the diffusion coefficients is described together
with the results in the next section.

3. Results

3.1. Formation and binding energies of small clusters

The nanostructural features of main interest for the present
investigation are the small Cu–vacancy clusters. As a first charac-
terisation of their stability, static calculations of the relevant
formation and binding energies have been performed, using the
Fe–Cu interatomic potential developed in [25,26]. The latter has
been fitted taking care for a correct description of both the thermo-
dynamic properties of the FeCu system (phase diagram, solubility
limit especially) and the interaction between Cu atoms and vacan-
cies in Fe. In particular, migration energies of vacancies in presence
of Cu atoms were fitted following indications from available ab ini-
tio calculations, which suggested that Cu atoms would be dragged
by vacancies, as a consequence of the formation of Cu–vacancy
pairs migrating together as a whole, as observed also in molecular
dynamics simulations [6]. The binding energies between Cu atoms
and vacancies were fitted targeting the values that were found to
provide the best agreement between experiments and AKMC sim-
ulations in [17,29]. Here we calculate the formation and binding
energies obtained with this Fe–Cu potential and compare them
with ab initio calculations. The latter were performed with the den-
sity functional theory (DFT) code (VASP) [30], within the General-
ised Gradient Approximation (GGA) of Perdew and Wang, PW91
[31] and using fully non-local ultra-soft pseudo-potentials (USPP)
of the Vanderbilt type [32] to describe electron–ion interaction.
The pseudo-potentials were taken from the code library. The
supercell approach with periodic boundary conditions was used
to simulate point-defects as well as pure phases. Brillouin zone
sampling was performed using the Monkhorst and Pack scheme
[33]. The plane wave cut-off energy was 240 eV in order to get
converged results. 54 atom supercells with 125 k-points as well
as 128 atoms with 27 k-points were used to check the convergence
of the calculations with supercell size. Only 128 atom results are
reported, which are known from previous experience to be already
size-converged (i.e. calculations with more atoms would provide
the same results).

Formation energies of vacancy clusters, copper clusters and
copper–vacancy clusters, respectively, are obtained using the fol-
lowing formulae:

Ef ðNV Þ ¼ ðN0 � NV Þ � ½EcðNV inbcc FeÞ � Ecðbcc FeÞ�
Ef ðNCuÞ ¼ N0 � EcðNCuinbcc FeÞ � ½ðN0 � NCuÞ � Ecðbcc FeÞ

þ NCu � Ecðfcc CuÞ�
Ef ðNV þ NCuÞ ¼ ðN0 � NV Þ � EcðNV þ NCuinbcc FeÞ

� ½ðN0 � NCu � NV Þ � Ecðbcc FeÞ þ NCu � Ecðfcc CuÞ�
ð2Þ

Fig. 1. Predictive capability of the ANN developed for the FeCuVac system (seven
Cu atoms and seven vacancies max.), with the LAE extended to 5nn shell, as
compared with NEB calculated values from the validation set.

Fig. 2. Predictive capability of the ANN developed for the FeCu system, with LAE
extended up to 8nn shell: upper panel, case of a migrating Cu atom; lower panel,
case of migrating Fe atom.
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Here, N0 is the total amount of atomic lattice sites in the box, NV

is the number of vacancies in the cluster, and NCu is the number of
copper atoms in the cluster; Ec(NV in bcc Fe) is the relaxed energy

per atom of a bcc Fe matrix containing a cluster of NV vacancies in
its lowest energy configuration, Ec(NCu in bcc Fe) is the same energy
for a system containing a cluster of NCu copper atoms, and
Ec(NV + NCu in bcc Fe) is again the same energy containing a cluster
of NV vacancies and NCu copper atoms; finally, Ec(bcc Fe) is the
cohesive energy of pure bcc Fe and Ec(fcc Cu) is the cohesive energy
of pure fcc Cu. It should be noted that the formation energies in Eq.
(2) are independent of the choice of N0, provided that the energies
per atom of the defective system used in such equation to calculate
them correspond to the value of N0 used in the same equation.

Once the formation energies are known, the binding energy of a
vacancy (V) to a cluster of certain size can be obtained according to
the following expression:

EbðVÞ ¼ Ef ðclusterÞ þ Ef ðVÞ � Ef ðcluster þ VÞ ð3Þ

where Ef(cluster) is the formation energy of the cluster, Ef(V) is the
formation energy of the vacancy alone, and Ef(cluster + V) is the for-
mation energy of the cluster plus the vacancy.

The results from the interatomic potential and from ab initio
calculations, for a number of cluster configurations, are given in
Tables 1 and 2. In particular, Table 1 shows the formation and
binding energies for the Cu–vacancy, Cu–Cu and vacancy–vacancy
pairs. Table 2 lists the same quantities for a number of clusters
(results obtained with the interatomic potential for more clusters,
up to six elements, are reported in [34]). It can be seen that the po-
tential generally underestimates the strength of the Cu–vacancy
binding, as compared to DFT data. At the same time, DFT binding
energy values for Cu–vacancy pairs could not be used as they were
in [17,20,29] in order to provide acceptable results in AKMC

Table 1
Formation (Ef) and binding (Eb) energies of vacancy–vacancy, Cu–Cu and Cu–vacancy
pairs at different mutual distances: interatomic potential (IAP) and ab initio (DFT-
USPP) calculations using 128 atom supercells.

Ef (eV) Eb (eV)

IAP DFT-USPP IAP DFT-USPP

V 1.71 2.00 – –
V–V (1nn) 3.30 3.84 0.13 0.16
V–V (2nn) 3.19 3.70 0.24 0.30
V–V (3nn) 3.45 �0.02 �0.02
V–V (4nn) 3.39 0.03 0.09
Cu 0.43 0.55 – –
Cu–Cu (1nn) 0.79 0.94 0.08 0.16
Cu–Cu (2nn) 0.79 1.05 0.08 0.05
Cu–Cu (3nn) 0.87 �0 �0
Cu–Cu (4nn) 0.87 �0
Cu–V (1nn) 2.05 2.39 0.10 0.16
Cu–V (2nn) 2.06 2.34 0.09 0.21
Cu–V (3nn) 2.15 �0

Table 2
Formation and binding energies (eV) for some small Cu–vacancy clusters, as
calculated with the interatomic potential and using ab initio methods. The enclosed
element is the one for whose removal the binding energy is evaluated.

Ef (eV) Eb (eV)

IAP IAP DFT-USPP

1 

4.62 0.28 0.52

2 

5.78 0.57 0.70

  3 

6.09 0.24 0.31

4 

2.31 0.19 0.36

5 

2.40 0.10 0.22

6 

2.40 0.10 0.18

7 

2.31 0.18 0.35

8 

2.37 0.21 0.42

9 

2.39 0.19 0.33

  10 

2.69 0.08 0.19

11 

2.49 0.28 0.46
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Fig. 3. Jump frequencies of Cu–vacancy clusters with six elements (above) and of
vacancy clusters (below).
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simulations of Cu precipitation in Fe. The potential provides pair
binding energies very close to those chosen for the AKMC model
we refer to. Thus, the overall performance of the potential can be
judged acceptable, although probably biased on the side of under-
estimating the strength of the Cu–vacancy interaction in Fe. This
possible bias will have to be taken into account when discussing
the results.

3.2. Mobility and stability of small clusters

The mobility and stability of small clusters were investigated
using the AKMC model driven by the ANN, described in Section
2. The clusters studied were complexes formed by Cu atoms (Cu)
and vacancies (V) up to six elements, namely CuV, CuV2, Cu2V,
Cu2V2, CuV3, Cu3V, CuV4, Cu2V3, Cu3V2, Cu4V, CuV5, Cu2V4, Cu3V3,
Cu4V2 and Cu5V, as well as vacancy clusters of up to six elements:
V2, V3, V4, V5 and V6. The clusters were created in their expected
lowest energy configuration at the centre of a box containing an
otherwise pure bcc Fe matrix and the system was let to evolve
according to the AKMC scheme. The energy barriers were provided
in all cases by the FeCuVac ANN, except for the Cu5V cluster, for
which the FeCu ANNs were used instead. The simulation box con-
tained 20 � 20 � 20 cubic cells, i.e. 16,000 atoms. Following the
methodology applied in [24], the mobility was studied at different
temperatures, between 400 K and 700 K, by tracing the successive
positions of the centre-of-mass of the cluster (arbitrarily and con-
veniently assigning the same mass to Cu and V). The latter was
considered to be a cluster so long as all elements forming it re-
mained at a mutual distance shorter than the 2nn distance: as soon
as this condition was not fulfilled any more, the simulation was
stopped and the cluster lifetime in the specific simulation was
recorded. For each temperature and cluster, 100–300 simulations
were performed, in order to have enough statistics (see Fig. 3).

3.2.1. Jump frequencies
From the analysis of the successive positions and the corre-

sponding time, in each series of simulations for a given cluster at
temperature T, the jump frequency could be deduced, using the
equation:

mðTÞ ¼ 1

Nsim

XNsim

i¼1

ni
jumps

si
life

ðTÞ ð4Þ

Here, ni
jumps is the number of jumps equal to, or larger than, 1nn

distance, performed by the centre-of-mass during the lifetime of
the cluster, si

life. The migration energies of the clusters were ob-
tained using classical Arrhenius exponential functions to interpo-
late the data-points obtained for the different temperatures:

mðTÞ ¼ m0 expð�Em
m=kBTÞ ð5Þ

The resulting m0 and Em
m for all studied clusters are given in Table

3. For complexes of up to four elements, our results could be com-
pared with those obtained in [24], where energy barriers were cal-
culated with the same interatomic potential as here, but limited to
LAEs extended only to the 3nn distance. For visual illustration, the
corresponding Arrhenius plots for six element Cu–vacancy clusters
and for all vacancy clusters studied are given in Fig. 3 (all plots for
all Cu–vacancy clusters can be found in [34]). In Table 3 we provide
also the actual average jump distance for each cluster, in units of
lattice parameters. In all cases this distance is longer than the
1nn distance and is as large as the 2nn distance for the CuV cluster.

3.2.2. Diffusion coefficients
The diffusion coefficient can be estimated similarly to the jump

frequency using the following equation [24]:

DðTÞ ¼ 1

Nsim

XNsim

i¼1

R2
i

6si
life

ðTÞ ð6Þ

where R2
i is the square of the total displacement of defect i during

its lifetime. This scheme is similar to the one originally applied by
Guinan et al. for the study of the diffusivity of self-interstitials
[35] and amply discussed in [22]. The sampled time, however, is
here in each case dictated by the cluster lifetime and is therefore
not the same for each run. Eq. (6) corresponds in fact to an adapta-
tion of the general Einstein equation [22,36]:

DðTÞ ¼ hR
2iðTÞ
6Dt

ð7Þ

where hR2i is the mean square displacement within the time inter-
val Dt of a population of random walkers. However, as discussed in
[22], the accuracy of the estimated diffusivity with adaptations of
Eq. (7) is sensitive to the choice of the time interval length. To ana-
lyse in each case (each cluster and temperature) the dependence of
the diffusion coefficient and its variance versus isochronal se-
quences, all trajectories that were independently simulated were

Table 3
Attempt frequency (in units of 1013 s�1), migration energy (eV) and 1nn average
distance for cluster centre-of-mass jumps (in units of lattice parameter, a0), for all
small clusters studied, as obtained from the jump frequency study. For prefactor and
migration energies the error bar is also given.

N Complex m0 Em
m Dist

2 V2 1.14 ±0.18 2.12⁄ 0.62 ±0.005 0.62⁄ 0.92
3 V3 0.14 ±0.01 0.2⁄ 0.43 ±0.001 0.49⁄ 0.92
4 V4 0.89 ±0.05 2.7⁄ 0.62 ±0.003 0.72⁄ 0.92
5 V5 1.25 ±0.08 4.4⁄ 0.72 ±0.003 0.88⁄ 0.90
6 V6 3.43 ±0.04 62.8⁄ 0.94 ±0.005 1.11⁄ 0.89
2 CuV 0.61 ±0.26 0.95⁄ 0.67 ±0.019 0.65⁄ 1.00
3 CuV2 0.68 ±0.13 1.55⁄ 0.65 ±0.008 0.68⁄ 0.94
3 Cu2V 0.36 ±0.05 1.19⁄ 0.65 ±0.007 0.68⁄ 0.94
4 CuV3 0.52 ±0.10 0.17⁄ 0.64 ±0.008 0.55⁄ 0.92
4 Cu2V2 0.65 ±0.05 72.9⁄ 0.69 ±0.003 0.86⁄ 0.92
4 Cu3V 0.41 ±0.01 8.53⁄ 0.71 ±0.012 0.78⁄ 0.92
5 CuV4 0.601 ±0.09 0.71 ±0.007 0.90
5 Cu2V3 0.181 ±0.04 0.65 ±0.011 0.90
5 Cu3V2 0.103 ±0.03 0.68 ±0.012 0.90
5 Cu4V 0.007 ±0.01 0.67 ±0.018 0.90
6 CuV5 0.502 ±0.06 0.75 ±0.005 0.89
6 Cu2V4 0.367 ±0.04 0.73 ±0.005 0.89
6 Cu3V3 0.078 ±0.01 0.66 ±0.008 0.90
6 Cu4V2 0.023 ±0.01 0.66 ±0.015 0.89
6 Cu5V 0.011 ±0.01 0.72 ±0.022 0.90

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Fig. 4. Example of convergence of the diffusion coefficient as a function of the
length of the time interval Dt chosen when applying Eq. (7) (T = 700 K, cluster
Cu4V).
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eventually chained to one another. The long trajectory thereby ob-
tained was then decomposed into time segments of (approxi-
mately) equal length, Dt. The average of the square distances
covered by the defect within each interval of length Dt was used

to estimate the mean square displacement, which corresponds to
the (almost) exact application of the method originally proposed
in [35]. By varying Dt in a significantly large interval (possible after
chaining trajectories), the converged asymptotical value of the dif-
fusion coefficient is found, as described in what follows.

One example of plot of D(Dt) for T = 740 K and its variance (er-
ror bar) is shown in Fig. 4, for the Cu4V cluster. It can be seen that
indeed they depend on the choice of Dt. Short time intervals pro-
vide larger statistics, but also larger errors bars, because correla-
tion effects are not correctly sampled. For longer time intervals a
convergence to an (almost) Dt-independent D value is observed,
due to a more correct sampling of correlation effects in each inter-
val. However, by choosing too long time intervals, the error bars in-
crease again, because the number of intervals over which the
average is taken decreases. Hence, the D value cannot be simply
obtained as the asymptot for large Dt. Instead, it must be a
trade-off between correctness of the sampling and accuracy. For
each cluster and temperature, therefore, the diffusion coefficient
was estimated as the average between the maximum and the min-
imum value in the convergence zone. The uncertainty in the calcu-
lation of the diffusion coefficient was accordingly estimated as the
difference between this average and the largest value in this zone.

Finally, in order to estimate the migration energy and the diffu-
sivity prefactor for each cluster, the data-points for different tem-
peratures were interpolated using the Arrhenius expression:

DðTÞ ¼ D0 expð�ED
m=kBTÞ ð8Þ

The resulting D0 and ED
m for all studied clusters are provided in

Table 4. For complexes up to four elements, the results obtained
in [24] are added for comparison. For visual illustration, the corre-
sponding Arrhenius plots for six element Cu–vacancy clusters and
for all vacancy clusters studied are given in Fig. 5 (all plots for all
Cu–vacancy clusters can be found in [34]).

3.2.3. Correlation factors and cluster lifetimes
The migration energy obtained from the diffusion coefficient,

ED
m, may differ from the homologous value obtained from the jump

frequency, Em
m, because in the former case correlation effects are

naturally allowed for, but not in the latter. These effects are related
to jumps or series of jumps that, while accounted for in the deter-
mination of the jump frequency via Eq. (4), do not contribute to the
diffusion coefficient (e.g. back and forth jumps, or loops in the tra-
jectory). In general, the relationship between diffusion coefficient
and jump frequency for three-dimensionally migrating species
can be expressed as:

DðTÞ ¼ fcðTÞ
mjðTÞD2

6
ð9Þ

where D is the jump distance (between 1nn and 2nn distance in the
present case) and fc is the correlation factor, that carries the above-
mentioned effects. This factor can be temperature dependent. In the
case of all clusters studied in this work, at any rate, and for all tem-
peratures, the correlation factors are always close to unity [34].
Consistently, the migration energies obtained with the two interpo-
lations are extremely similar.

The dissociation energy, Edis, and the lifetime prefactor, s0, were
estimated from the temperature dependence of the average life-
time, using the equation:

slifeðTÞ ¼ s0 expðEdis=kBTÞ ð10Þ

The results for all clusters studied are provided in Table 5. For
visual illustration, the corresponding Arrhenius plots for six ele-
ment Cu–vacancy clusters and for all vacancy clusters studied are
given in Fig. 6 (all plots for all Cu–vacancy clusters can be found in
[34]).

Table 4
Diffusivity prefactor (in units of 10�8 m2/s) and migration energy (eV) for all small
clusters studied, including uncertainties, as obtained from the diffusion coefficient
study.

N Complex D0 ED
m

2 V2 22.60 ±6.24 29.8⁄ 0.63 ±0.012 0.63⁄
3 V3 0.21 ±0.07 1.11⁄ 0.44 ±0.015 0.46⁄
4 V4 9.77 ±2.51 27⁄ 0.62 ±0.011 0.71⁄
5 V5 9.76 ±1.80 45.5⁄ 0.71 ±0.009 0.88⁄
6 V6 46.30 ±5.16 21.6⁄ 0.95 ±0.005 1.06⁄
2 CuV 2.78 ±0.73 4.67⁄ 0.64 ±0.012 0.63⁄
3 CuV2 8.59 ±4.74 9.76⁄ 0.69 ±0.025 0.67⁄
3 Cu2V 5.20 ±1.77 6.7⁄ 0.72 ±0.015 0.66⁄
4 CuV3 2.59 ±0.85 1.78⁄ 0.65 ±0.015 0.56⁄
4 Cu2V2 2.05 ±0.66 2200⁄ 0.68 ±0.014 0.89⁄
4 Cu3V 1.89 ±0.96 65.8⁄ 0.74 ±0.023 0.77⁄
5 CuV4 1.44 ±0.78 0.67 ±0.024
5 Cu2V3 0.69 ±0.36 0.63 ±0.024
5 Cu3V2 0.49 ±0.20 0.66 ±0.018
5 Cu4V 0.75 ±0.42 0.75 ±0.025
6 CuV5 2.08 ±0.82 0.72 ±0.018
6 Cu2V4 0.98 ±0.49 0.68 ±0.022
6 Cu3V3 0.36 ±0.20 0.64 ±0.024
6 Cu4V2 1.09 ±0.38 0.72 ±0.015
6 Cu5V 0.71 ±0.45 0.79 ±0.028

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Fig. 5. Diffusion coefficients of Cu–vacancy clusters with six elements (above) and
of vacancy clusters (below).
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3.3. Mobility of large Cu clusters

Large clusters of 15, 25, 65 and 150 Cu atoms and only one
vacancy were created in a 30 � 30 � 30 cell simulation box, with

a pure bcc Fe matrix. The FeCu-8nn ANNs were used for the calcu-
lation of the energy barriers. The mobility was studied by tracing
the successive positions of the centre-of-mass of the cluster at
three temperatures: 400 K, 500 K and 600 K. The diffusion coeffi-
cients were studied in the same way as for small clusters (Section
3.2.2). The results are given in Fig. 7, where the diffusion coefficient
versus the number of Cu atoms in the cluster is shown for the three
different temperatures studied. Results by Soisson and Fu obtained
from similar studies conducted with a different AKMC model [19],
and according to a mean-field Binder–Stauffer model [37–39], are
shown for comparison on the same graph, after renormalisation.
The latter was necessary because the raw diffusion coefficients ob-
tained in the present study differed by several orders of magnitude
from those obtained in [19]. One reason is that the diffusivity pre-
factor values bear a relationship with the chosen constant attempt
frequency in Eq. (1): mFe = 5 � 1015 s�1 and mCu = 2 � 1015 s�1 in
[19], while here mFe = mCu = 6 � 1012 s�1. Moreover, in [19] time
had been rescaled following the equation:

t ¼ tMC
CMC

V ðFeÞ
Ceq

V ðFeÞ
ð11Þ

where CMC
V ðFeÞ is the vacancy concentration at the simulation box

and Ceq
V ðFeÞ is the vacancy concentration at equilibrium, exponen-

tially proportional to the vacancy formation energy. We empirically
determined that, by using 0.84 eV as ‘‘effective’’ vacancy formation
energy, by applying Eq. (11) we could get values of the same order
of magnitude as in [19], and therefore directly comparable, at least
in terms of trends.

Qualitatively, the AKMC results from [19] exhibit the peculiarity
that the mobility increases with size, instead of decreasing, as
would seem more intuitive and logical, and as consistent with
the mean-field Binder–Stauffer model [37]. According to our AKMC
model the mobility of the Cu precipitates decreases with size, fol-
lowing closely the classical Binder–Stauffer trend. This different
behaviour can most likely be rationalised in terms of difference be-
tween the vacancy formation energy in bcc Cu and bcc Fe. This dif-
ference is much more pronounced in the AKMC model from [19]
than in our model (Ef

V ðCuÞ = 0.82 eV and Ef
V ðFeÞ = 2.20 eV in [19],

while in our case Ef
V ðCuÞ=1.26 eV and Ef

V ðFeÞ=1.71 eV, [26]). This
makes it possible that in Soisson and Fu’s model the vacancy
spends a significantly larger fraction of time inside the precipitate:
the larger the precipitate, the longer. So, the possibility that the
cluster migrates via surface or sub-surface hopping of the vacancy
is higher than in our model.

Table 5
Lifetime prefactor (in units of 10�14 s) and dissociation energy (eV) for all small
clusters studied, specifying error bars, too.

N Complex s0 Edis

2 V2 0.99 ±0.12 0.75⁄ 0.81 ±0.007 0.81⁄
3 V3 1.48 ±0.19 0.98⁄ 0.82 ±0.006 0.91⁄
4 V4 0.39 ±0.07 0.3⁄ 0.97 ±0.008 1.08⁄
5 V5 0.36 ±0.08 0.9⁄ 1.10 ±0.010 1.2⁄
6 V6 0.17 ±0.07 0.04⁄ 1.30 ±0.019 1.45⁄
2 CuV 8.26 ±0.12 8.3⁄ 0.69 ±0.007 0.71⁄
3 CuV2 0.70 ±0.23 2.45⁄ 0.83 ±0.015 0.81⁄
3 Cu2V 6.53 ±0.16 432⁄ 0.72 ±0.011 0.70⁄
4 CuV3 5.18 ±0.78 2.14⁄ 0.80 ±0.007 0.88⁄
4 Cu2V2 1.10 ±0.16 0.65⁄ 0.88 ±0.006 0.96⁄
4 Cu3V 3.16 ±0.91 68.6⁄ 0.83 ±0.013 0.81⁄
5 CuV4 2.65 ±1.24 0.90 ±0.021
5 Cu2V3 4.37 ±0.95 0.84 ±0.009
5 Cu3V2 1.76 ±0.50 0.90 ±0.012
5 Cu4V 3.45 ±0.92 0.88 ±0.011
6 CuV5 3.21 ±1.43 0.96 ±0.020
6 Cu2V4 3.34 ±0.97 0.92 ±0.013
6 Cu3V3 5.86 ±2.02 0.86 ±0.015
6 Cu4V2 3.02 ±0.57 0.90 ±0.006
6 Cu5V 0.38 ±0.11 0.98 ±0.013

Data denoted by � correspond to calculations from [24] and are added for
comparison.
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Finally, the results shown in Fig. 7 were also obtained introduc-
ing the solubility limit of Cu atoms in the matrix. The diffusion
coefficients obtained were essentially the same, except for the
smaller clusters (15 and 25 atoms) at high temperature: in this
case the introduction of Cu in the matrix reduced the mobility by
about one order of magnitude.

4. Discussion

In this section, the reliability of the above results is discussed
from two viewpoints: firstly, we analyse the capability of the arti-
ficial neural network to transfer the physical information that
stems out of the interatomic potential to the AKMC model without
significant loss; secondly, we shortly discuss the accuracy and the
limitation of the interatomic potential, necessarily taking ab initio
data as a reference.

4.1. Comparison between diffusivity results from ANN and tabulated
barriers

Figs. 8 compare the dissociation energies obtained in the pres-
ent work and in [24], for clusters of vacancies (upper panel) and
mixed (lower panel). It can be seen that, despite the somewhat dif-
ferent methodology used in the two cases, the two sets of results
are acceptably correlated. This suggests that, given an interatomic
potential, the results are relatively robust versus the details of the
way in which the energy barriers are actually estimated in the
AKMC simulation.

Next, the capability of the ANN (FeCuVac-5nn ANN) to repro-
duce the migration energies corresponding to the configurations
encountered by the different clusters during the simulation was
further tested, in the following way. A number of LAEs among
those encountered were randomly extracted and the correspond-
ing energy barrier rigorously calculated, using the NEB method.
The values thereby obtained were then compared, for each cluster,
with the prediction made by the ANN. The results of this compar-
ison for all clusters are reported in [34]. Here a couple of examples
of comparisons are given in Fig. 9 (upper panel), while the worst
case of all is illustrated by Fig. 10. Clearly, the performance of the
ANN is not the same for all clusters. This study suggests that the
origin of the possible unreliability of a given ANN does not stem
from the presence of a large number of defects in the LAC. Instead,
it must be considered strictly as a solvable mathematical problem,
related with the kind of examples (initially randomly chosen) on
which the ANN is trained. Most likely, for the clusters whose en-
ergy barriers are less accurately predicted, the training set con-
tained very few (too few) examples. The reliability of the ANN
could therefore be no doubt further improved by retraining with
a better selection of examples.

In order to quantify even better up to what extent errors com-
mitted by the ANN affect the prediction of the diffusion coefficient,
the latter was calculated both using the ANN and the complete tab-
ulation of NEB energy barriers, in the case of CuV2 and CuV3 (these
clusters are small enough to allow the energy barriers for all pos-
sible 5nn LAEs to be calculated by NEB and tabulated; they repre-
sent average cases in terms of ANN accuracy). The results are
shown in the lower panel of Fig. 9. It can be seen that the ANN error
has only a negligible influence on the final result. It is thus con-
cluded that, with the possible exception of extreme cases (such
as Cu3V3, Fig. 10), the use of the ANN is essentially equivalent to
the use of tabulations of NEB calculated barriers.

4.2. Limits of the obtained values

The previous section proves that the ‘filter’ introduced by the
ANN between the properties of the interatomic potential used for
energy barrier calculations and the AKMC model is generally ‘per-
meable’ and that using the ANN is equivalent to calculating by NEB
all migration energies on-the-fly, though at a greatly reduced com-
putational cost. There are, however, two caveats.

The first one is that in our AKMC model a constant attempt fre-
quency is assumed (m = 6 � 1012 s�1). In principle, this quantity is
LAE-dependent, too. Given an interatomic potential the attempt
frequency can be rigorously calculated for a given LAE, applying
Vineyard’s equation [40] and examples of calculations could be
also used to train a separate ANN, specialised on attempt frequen-
cies. The main reason to avoid this additional procedure is that
small changes in the values of the migration energies, by entering
an exponential function, will certainly have a much stronger im-
pact than equally small changes in the attempt frequency (so long
as these are not systematic). On the other hand, clearly the values
for the jump frequencies and diffusion coefficients obtained in this
work are scaled by the choice of the value of m.

The second caveat concerns the reliability of the interatomic po-
tential versus the only set of data we can use for validation, i.e. ab
initio data, given that experimental data on binding and migration
energies of Cu–vacancy clusters cannot exist. The migration ener-
gies are well reproduced by the potential when compared to the
ab initio data available at the time of the fitting [26]. In particular,
the potential we used has been demonstrated to be suitable to de-
scribe the dragging of Cu atoms by migrating vacancies, contrary to
other potentials [26]. However, also ab initio data are affected by
uncertainties. Most notably, the reference ab initio values of bind-
ing energies used to fit the potential were different from the most
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recent ones reported here. As anticipated, the comparison made in
Tables 1 and 2 suggests that the Cu–vacancy binding energies are
systematically underestimated by the potential. (At the same time,
it should be remembered that lower binding energy values than
DFT ones were needed to properly model Cu precipitation in Fe
with an AKMC model, as shown in [17,20,29].) If the potential
underestimates the Cu–vacancy binding energies, of all quantities
calculated here, the dissociation energy and the lifetime of the
clusters are the most affected and are, therefore, probably underes-
timated by our results. Thus, in reality these clusters might be

more strongly bound and survive for exponentially larger times be-
fore dissolving. We are any way confident that at least the trends
should remain largely acceptable.

5. Concluding remarks

We have shown here how it is possible to rely on atomistic ki-
netic Monte Carlo tools, exploiting advanced computational tech-
niques such as artificial neural networks for the prediction of
vacancy migration energies as functions of the local atomic envi-
ronment, to provide an assessment of the stability and mobility
of mixed copper–vacancy clusters in iron. These quantities are in
practice inaccessible to experiments or to molecular dynamics
simulations and can alternatively be obtained only by heavy ab ini-
tio calculations, for a limited number of cases. The reason for
studying these clusters is that they are expected to play a key role
in the process of copper precipitation in iron alloys under irradia-
tion. The mobility and stability parameters deduced in this work
can so now be used to parameterize models, such as object kinetic
Monte Carlo, describing the nanostructure evolution of these alloys
under irradiation.

The reliability of the artificial neural network to predict the
migration energy of a vacancy as a function of the local atomic
environment was generally good and in some cases excellent. It
has been seen that relatively poor performances are not due to
inherent problems of the method, but only to the lack of proper
examples on which the neural network is trained. The main limita-
tion of the method is that, clearly, it cannot do better than the po-
tential used to produce the examples that are provided and the

Fig. 9. Upper panel: Correlation between the migration energies predicted by the ANN and those calculated by NEB, for the two clusters CuV2 and CuV3 (mean errors: 1.77%
for CuV2, 2.81% for CuV3). Lower panel: corresponding diffusion coefficient calculated from the complete tabulation of all possible migration energies and from the ANN.

Fig. 10. Correlation between the migration energies predicted by the ANN and
those calculated by NEB, in the case of the Cu3V3 cluster (worst case): mean
error = 11.79%, Pearson’s correlation index = 0.78.
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number of examples that are required is fairly large. So, at the mo-
ment, it does not seem possible to train the neural network directly
on ab initio results, although in principle this is a possible route to
follow.
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a b s t r a c t

27Atomistic simulations have been used to characterize the interaction and mobility of small clusters of
28self-interstitial atoms (SIAs) in dilute Fe–Cr alloys. The variety of migration mechanisms for Di- and
29Tri-SIA clusters in the bcc Fe matrix were studied using the nudged elastic band method. The correspond-
30ing binding and migration energies for the SIA clusters interacting with isolated Cr atoms and Cr–Cr close
31pairs were calculated using the two-band model interatomic potential. The obtained results are discussed
32in the light of available experimental data for dilute Fe–Cr alloys and are compared with results obtained
33using ab initio calculations.
34� 2009 Elsevier B.V. All rights reserved.

35

36

37

38 1. Introduction

39 The mobility and stability of point defect clusters that are
40 formed under irradiation essentially determine the evolution of
41 the microstructure. This work is devoted to the study of the mobil-
42 ity of self-interstitial atom (SIA) defects in Fe in the presence of Cr
43 solutes. Here, we apply atomistic calculations to consider proper-
44 ties of small SIA clusters in dilute Fe–Cr alloys.
45 Resistivity recovery experiments suggest that in electron-irradi-
46 ated Fe–Cr alloys containing less than 1%Cr, self-interstitial atoms
47 in the form of stable mixed Fe–Cr dumbbells are created and mi-
48 grate slightly faster than Fe–Fe dumbbells in pure Fe [1,2]. This
49 was confirmed by recent ab initio calculations, which have shown
50 that an Fe–Cr h1 1 0i dumbbell is stable and its migration energy
51 (via movement of Cr) is lower than that of the Fe–Fe dumbbell
52 by �0.1 eV [3]. In dilute alloys no significant shift of the position
53 of the peak corresponding to stage II (attributed to the long-range
54 migration of small interstitial clusters) was observed in Fe–Cr
55 alloys containing up to �0.1%Cr [1,2], even though the total resis-
56 tivity recovered during stage II was slightly higher in Fe [2]. By
57 increasing the Cr concentration up to 3%, the damage retained

58above stage IE (attributed to the onset of long-range migration of
59self-interstitial atoms) up to the beginning of stage III (associated
60with free migration of vacancies) is observed to be higher than in
61pure Fe and dilute alloys [1]. This effect was ascribed to the trap-
62ping of self-interstitials in specific atomic configurations involving
63more than one Cr atom, which prevents recombination with vacan-
64cies [1]. In the concentrated alloys, the features of the stage II (i.e.
65number of peaks, their amplitudes and positions) strongly depend
66on the Cr content [4]. Whereas in pure Fe, the onset of Di-SIA
67migration is believed to determine the stage II [5]. The strength
68and concentration of traps for single SIAs is believed to be different
69in concentrated Fe–Cr alloys containing at least up to 16%Cr [4],
70which is in line with the atomistic calculations presently available
71[6]. It is therefore clear that the mobility and clustering of small
72self-interstitial defects differ significantly in dilute and concen-
73trated alloys. In our previous work [7] we have carried out a set
74of atomistic calculations to validate the ability of the existing
75two-band model Fe–Cr empirical potential (EP) [8] to predict some
76important features of self-interstitial – Cr interaction. EP results
77were compared to data obtained by density functional theory
78(DFT) and were discussed in accordance with experimental indica-
79tions. The applied EP was found to provide reasonable and some-
80times unexpectedly good agreement with DFT data, we therefore
81use it in the present work to study the stability and mobility of
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82 small interstitial clusters interacting with Cr atoms. The main goal
83 of this work is to see up to what extent the presence of Cr in dilute
84 solution may affect the mobility of Di- and Tri-interstitial clusters
85 that are believed to be responsible for the appearance of stage II, at
86 least in Fe.
87 According to the atomic-level studies of self–interstitial defects
88 in a-Fe performed up today [9–13], it is recognized that: (i) the
89 migration of a single SIA in its ground state (i.e. h1 1 0i dumbbell)
90 occurs via translation–rotation mechanism and the corresponding
91 migration energy (Em) is 0.34–0.37 eV; (ii) Di-SIA (I2), which is a
92 set of two parallel h1 1 0i dumbbells situated as first nearest neigh-
93 bours, migrates via the same mechanism with Em = 0.42 eV [10]. In
94 a recent work, focused on the simulation of resistivity recovery
95 during isochronal annealing of electron-irradiated Fe, a combina-
96 tion of event kinetic Monte Carlo and DFT calculations was applied
97 [13]. According to that work, the migration energy and migration
98 mechanisms of the Tri-SIA cluster (I3) are essentially the same as
99 for the I2. Larger clusters were assumed to be immobile in this

100 work, which was essential for the reproduction of the stages III
101 and V. Later on it has been shown that this assumption is not
102 unreasonable because I3, I4, I5 and probably larger clusters may
103 occupy practically immobile configurations [14]. With the help of
104 molecular dynamics simulations, later on confirmed by more accu-
105 rate DFT calculations, it was found that except for the high symme-
106 try configurations of SIA clusters, some low symmetry (so-called
107 ‘non-parallel’) configurations for I2, I3, I4 and probably larger clus-
108 ters may also exist. The formation energy of the low symmetry
109 configurations can be even lower than that of the canonical config-
110 urations [14]. In addition, the ‘non-parallel’ configurations are fur-
111 thermore stabilized at finite temperature due to the excess of the
112 vibration entropy [14].
113 Given that the occurrence of stage II in Fe can be explained by
114 the onset of the long-range migration of the I2 clusters, we do
115 not consider the above-mentioned unusual SIA clusters for the mo-
116 ment. Here, we study the effect Cr atoms on the migration mecha-
117 nism and corresponding migration energy of single SIA and small
118 ‘canonical’ SIA clusters (shown in the upper row of Fig. 1 in [14])
119 containing up to three self-interstitial defects. The main focus of
120 this work is put on dilute Fe–Cr alloys, therefore we do not con-
121 sider the interaction of SIA clusters with Cr clusters and include
122 only pairs of Cr that might be formed while the Fe–Cr dumbbell,
123 capable of dragging Cr [3], is migrating in the lattice. To do so we

124carry out a set of molecular static (MS) calculations to identify
125ground states and to estimate their migration energy and path
126applying the nudged elastic band method. In this work, calcula-
127tions were performed using the two-band model EP from [8], as
128the number of configurations to be explored is significant and
129therefore the performance of this parametric study with DFT
130would be a heavily time consuming task. Some important configu-
131rations were however cross-checked against DFT calculations. The
132EP applied here was already extensively tested in terms of the
133description of different SIA-Cr and SIA-Cr–Cr configurations [7]
134and fitted to a number of key properties of the Fe–Cr system ob-
135tained from DFT calculations [8].

1362. Simulation technique

137The present MS calculations were carried out using the EP of
138embedded atom method type from [15] and [8] for Fe–Fe and
139Fe–Cr, Cr–Cr interactions, respectively. The calculation of migra-
140tion paths was performed at constant volume (the lattice unit of
141Fe crystal was set to 2.8553 A) in supercells originally containing
1421024 Fe atoms. The size of the supercells was varied to establish
143the convergence of the obtained migration energies, that in turn
144were calculated using the nudged elastic band (NEB) method [16].
145The initial and final states of the system are first energy opti-
146mized with a conjugate gradient (CG) method [17], using an
147unconstrained static relaxation of all atomic positions. An SIA or
148SIA cluster initially introduced in the box may therefore change
149both its position and orientation during the relaxation. As we in-
150tend to calculate the transition barrier between two given config-
151urations, described in a rigid lattice way, a subsequent analysis
152of the two relaxed states is necessary to check if they can still be
153considered as identical to those that were introduced in the unre-
154laxed box. The SIA central position and orientation are determined
155using the Wigner Seitz (WS) cell method and then compared with
156the desired ones. The relaxed SIA is considered to be identical to
157the desired one if: (i) its central position belongs to the same WS
158cell; (ii) the angle between its new orientation (obtained after
159relaxation) and desired one is smaller than between any other pos-
160sible h1 1 1i, h1 1 0i or h1 0 0i orientations. When finding the
161migration path for an SIA cluster, the same procedure is applied
162to each SIA in it.
163Once the initial and final states (in terms of exact atomic posi-
164tions) are determined, the NEB method finds the Minimum Energy
165Path (MEP) between them, starting from an initial guess calculated
166with a classical drag method [18]. Experience shows that the MEP
167found is rather sensitive to the following parameters:

168(i) The choice of the atoms involved in the drag and NEB rou-
169tines. In the present calculations, the best strategy was
170found to involve the most migrating (i.e. ones that show
171maximum displacement) atoms only, all the others were
172free of any constraints during the system relaxations. This
173way, we avoid freezing too many degrees of freedom in
174the system, allowing for an efficient energy optimization
175when calculating the transition images.
176(ii) The exact definition of the drag algorithm applied to find the
177initial MEP. The migrating atoms, once dragged, can either
178be frozen or constrained in a plane perpendicular to the drag
179direction. The latter choice seems to be inappropriate in gen-
180eral because the ‘system’ may escape from the unstable
181states, created while atoms are dragged. Hence, the corre-
182sponding MEP may exhibit an unsmooth kinky shape, which
183is not a physical result but an artefact of the calculations.
184The best choice seems therefore to fix the migrating atoms
185and unconstraint all the others while applying the CG
186method.

j0

j1

j2

j3

Fig. 1. Schematic representation of the detrapping of a h1 1 0i SIA from an isolated
Cr atom. The following migration barriers are to be overcome: Em(j1) = 0.22 eV,
Em(j2) = 0.32 eV, Em(j3) = 0.36 eV. The migration energy of a mixed dumbbell
moving via displacement of a Cr atom is Em(j0) = 0.21 eV. A Cr atom is shown by
the filled circle.
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187 (iii) The convergence criterion deciding when to stop the NEB
188 iterations. The energy integral under the MEP very quickly
189 reduces within first few iterations but the rate of decrease
190 becomes very slow later on. The decision to stop the calcula-
191 tion is taken if only a small change in the saddle point
192 energy over a significant number of iterations occurs. In this
193 work the change in the saddle point energy should not
194 exceed 0.01 eV over 500 iterations.
195

196 The following nomenclature will be used throughout the paper.
197 Et – absolute value of the total energy of the relaxed atomic config-
198 uration. Em – migration energy of a defect. Er – energy barrier for an
199 SIA or SIA cluster to perform an on-site rotation from h1 1 0i into
200 h1 0 1i or h0 1 1i configuration. Eu – energy barrier for an SIA or
201 SIA cluster to perform an on-site rotation from h1 1 0i into h1 1 1i
202 configuration. Eb – binding energy of an SIA or SIA cluster to an-
203 other defect that could be a Cr solute atom, Cr–Cr pair and another
204 SIA defect. Eb was calculated as a difference between the total en-
205 ergy of the crystals containing the two defects located apart from
206 and next to each other. A positive value of the binding energy
207 points at an attractive interaction between two considered defects.

208 3. Results

209 3.1. Single SIA

210 3.1.1. Properties in pure Fe
211 Following the investigation carried out in [9], where a similar
212 potential [19] to the one used here was applied, the migration
213 mode found for a single SIA in Fe is a translation–rotation jump
214 proposed by Johnson [20]. The corresponding size-independent
215 migration energy calculated here using constant volume relaxation
216 conditions is 0.36 eV, in a close agreement with the DFT value (see
217 introduction). The on-site rotation energy from the h1 1 0i state
218 into h1 0 1i/h0 1 1i or h1 1 1i orientation is Er = 0.41 eV and
219 Eu = 0.48 eV, respectively. Since the stability of the h1 1 0i versus
220 h1 1 1i configuration is underestimated with the potential [9], Eu

221 is underestimated as well.

222 3.1.2. Interaction with an isolated Cr atom
223 A single SIA is attracted to an isolated Cr atom and forms a
224 mixed Fe–Cr dumbbell with a binding energy of 0.11 eV as already
225 reported in [7]. The optimum migration path for the mixed Fe–Cr
226 dumbbell (ICr) also corresponds to Johnson’s mechanism [20] i.e.
227 translation–rotation jump to the first nearest neighbour with
228 Em = 0.21 eV. The latter is only 0.02 eV lower than the DFT calcu-
229 lated value [3]. The second easiest migration mode for the ICr is
230 the Johnson’s jump of an Fe atom with Em = 0.22 eV, the migration
231 energy obtained with DFT is 0.07 eV higher [3]. The on-site rotation
232 of the ICr complex into an equivalent h1 1 0i state has a barrier of
233 Er = 0.41 eV, which is higher than the DFT result by 0.05 eV [3]. The
234 1st nearest neighbour translation jump of Cr (without change of
235 orientation) occurs via passing the h1 1 1i configuration with an
236 energy barrier of 0.4 eV, while the DFT value is 0.42 eV [3]. Consid-
237 ering the Fe–Cr h1 1 0i dumbbell, we see that the energy barriers
238 corresponding to different migration modes are reproduced with
239 the applied potential in a good agreement with available DFT data.
240 The average discrepancy for the migration barrier is about 0.05 eV.
241 The most energetically favourable migration event for the ICr is
242 Johnson’s jump via movement of a Cr atom, exactly as suggested
243 by a previous DFT study [3].
244 The attractive interaction between an isolated solute Cr atom
245 and a h1 1 0i Fe–Fe dumbbell extends up to the 5th nearest neigh-
246 bour distance (0.495 nm). The dissociation of the SIA from a Cr
247 atom requires at least two successive migration jumps, shown in
248 Fig. 1 as j1 and j2. The corresponding migrations energies for these

249two jumps are 0.22 eV and 0.32 eV. 3D migration of the ICr via
250movement of a Cr atom occurs with Em = 0.21 eV. Hence, the ICr
251defect is expected to diffusive much faster than a Fe–Fe dumbbell
252and to cover substantial distance before the mixed dumbbell
253decays.

2543.1.3. Interaction with Cr–Cr pairs
255A moving Fe–Cr dumbbell may meet another Cr atom or Cr–Cr
256pair that a priori could act as a trap for an SIA defect as suggested in
257[1,2]. In our previous work [7] a number of SIA-Cr and SIA-Cr–Cr
258configurations were considered to identify the low energy states
259that could be associated with traps. The binding energies reported
260in [7] correspond to the interaction between an Fe–Fe h1 1 0i
261dumbbell and a Cr or Cr–Cr pair. When recalculating the corre-
262sponding binding energy for an Fe–Cr h1 1 0i dumbbell interacting
263with another Cr atom, we came to the conclusion that the maxi-
264mum Eb is 0.08 and 0.05 eV according to the DFT and EP, respec-
265tively. Using the EP, we searched for other possible Cr
266arrangements (including configurations containing up to three Cr
267atoms) surrounding the ICr defect but no configuration with Eb lar-
268ger than 0.1 eV was found. Thus, we estimate the dissociation en-
269ergy of an Fe–Cr mixed dumbbell from another Cr atom to be
2700.31 eV at most. Hence, a moving Fe–Cr dumbbell cannot be
271strongly trapped by isolated Cr atoms to form a complex involving
272a pair of Cr atoms and an SIA (ICr2). The latter will, however, be
273formed if a freely migrating Fe–Fe dumbbell meets a Cr–Cr close
274pair, as the biding energy can be as high as 0.19 and 0.15 eV,
275according to the data obtained with the potential, which is also
276well agrees with DFT [7]. The most probable pathway for dissocia-
277tion of the ICr2 complex should occur via the escape of the ICr from
278the second Cr atom forming a pair. Thus, Cr–Cr close pairs (up to
2793rd nn distance) present in the system can be broken apart after
280interaction with Fe–Fe dumbbells that will drag one Cr atom away.
281Whereas an isolated Cr atom is a weak trap (Eb = 0.1 eV) for an Fe–
282Cr mixed dumbbell.

2833.2. Di-SIA

2843.2.1. Properties in pure Fe
285The lowest energy configuration for a Di-SIA cluster in alpha Fe
286is a pair of h1 1 0i dumbbells situated as 1st nearest neighbours,
287being parallel to each other, in such a way that the vector connect-
288ing the center mass of the dumbbells (RCM) is perpendicular to the
289cluster orientation, as shown in Fig. 2. DFT studies suggest that the
290lowest MEP is the successive translation–rotation jump of the two
291dumbbells changing their orientations from [1 1 0] into [1 0 1] con-
292figuration [10]. The cluster experiences an intermediate (metasta-
293ble) state after dumbbell A (see Fig. 2, jump j1) has jumped.
294Another energetically equivalent jump that the cluster may per-
295form is to a [0 1 1] configuration (the intermediate state for this
296jump is shown in Fig. 2 by j2). Careful inspection of all possible
297migration events corresponding to this migration mechanism al-
298lows us to formulate three rules determining the final configura-
299tion of the cluster after every possible jump and the
300displacement of the cluster center mass. These are: (i) the orienta-
301tion of RCM must be preserved for all ground states that the cluster
302undergoes while migrating; (ii) at the intermediate state, the two
303dumbbells must be separated by the distance equal to the third
304nearest neighbour distance; (iii) the vector corresponding to the
305orientation of the dumbbells must be orthogonal to RCM for all sta-
306ble states (i.e. the dumbbells are first nearest neighbours to each
307other) that the cluster undergoes while migrating.
308For each particular configuration of a Di-SIA cluster only three
309energetically equivalent configurations (i.e. defining cluster orien-
310tation) may occur while the cluster migrates. For the Di-SIA cluster,
311shown in Fig. 2, they are: [1 1 0], [1 0 1] and [0 1 1] (here and
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312 further we do not mention the mirror jumps resulting in the for-
313 mation of [1 1 0], [1 0 1] and [0 1 1] configurations, since they are
314 identical to the above-mentioned ones). Let us call these configura-
315 tions A, B and C, respectively. Following the rules, defined above, it
316 is easy to show that the vector corresponding to the displacement
317 of the center mass of the cluster (VDCM) determined by a particular
318 transition can be: [1 1 1] (from A to B and back), [1 1 1] (from A to C
319 and back) and [1 1 1] (from B to C and back). Given that in a perfect
320 bcc lattice the Di-SIA cluster should move by performing uncorre-
321 lated jumps (i.e. all transition states realize with the same proba-
322 bility) VDCM will undergo the three possible displacements:
323 [1 1 1], [1 1 1 ] and [1 1 1]. Since in the bcc lattice there is no com-
324 mon plain containing all of these vectors, the movement of the I2
325 (according to the considered mechanism) is not confined in a spe-
326 cific crystallographic plane and thus the I2 should move three-
327 dimensionally via the mechanism explored in [10]. In the latter
328 work, two possible migration paths were suggested, namely: (i)
329 the simultaneous translation–rotation jump of the two dumbbells
330 changing their orientation from [1 1 0] into the [1 0 1] configura-
331 tion (henceforth this type of jump will be referred to as [1 1 0]/
332 [1 0 1]); (ii) a sequence of successive [1 1 0]/[1 0 1] jumps. Remark-
333 ably, both of these paths result in the same saddle point energy,
334 estimated to be 0.42 eV [10]. The same calculations repeated with
335 the potential from [18] applying constant pressure relaxation re-
336 vealed that the path for the simultaneous migration event is unsta-
337 ble. The migration energy via two successive jumps was estimated
338 to be 0.31 eV, according to the potential from [18].
339 Note that the I2 cluster can, in principle, perform the [1 1 0]/
340 [0 1 1] jump as well. This jump brings the I2 cluster in the non-
341 equivalent metastable energy state (even though the two dumb-
342 bells are situated as first nearest neighbours). According to the cal-
343 culations done here with the EP (at fixed volume) both successive
344 and simultaneous pathways exist for the translation–rotation
345 [1 1 0]/[1 0 1] and [1 1 0]/[0 1 1] jumps. The calculated saddle
346 point energies together with the on-site rotation energies are sum-
347 marized in Table 1. As one can see, the lowest migration path cor-
348 responds to the mechanism suggested in [10] for the sequence of

349successive jumps. The estimated energy barrier is, however, lower
350than the one reported in [10] by 0.03 eV. The above-mentioned
351second migration mode ([1 1 0]/[0 1 1] jump) occurs with the en-
352ergy barrier of 0.48 eV. The energy barriers for the simultaneous
353jumps and on-site rotation movements are distinctively higher.
354Thus, the migration via the rotation of the I2 into the h1 1 1i con-
355figuration, its glide and rotation back into the h1 1 0i configuration
356is unlikely to occur.

3573.2.2. Interaction with an isolated Cr atom
358An isolated Cr atom attractively interacts with the I2 cluster and
359occupies an interstitial position forming a mixed dumbbell at-
360tached to the Fe–Fe dumbbell, forming a configuration that we
361shall call the I2Cr complex. The binding energy is 0.11 eV and
3620.2 eV in the h1 1 0i ground and h0 1 1i excited states, respectively.
363The Cr-I2 interaction range is 0.75 nm. The easiest migration mode
364for the I2Cr is the [1 1 0]/[1 0 1] jump (Em = 0.31 eV), when the Cr
365atom is moving. The second lowest MEP (with Em = 0.38 eV) corre-
366sponds to the [1 0 1]/[ 1 1] migration jump that again requires
367movement of the Cr atom. The h1 1 1i configuration of the I2Cr
368was found to be unstable (the cluster rotates back in the h1 1 0i
369configuration during CG relaxation) and therefore Eu could not be
370estimated. Migration barriers for other possible movements such
371as a simultaneous jump and on-site rotation movement are given
372in Table 1. The translation–rotation jumps corresponding to the
373displacement of the Fe–Fe dumbbell at the first place resulted in
374the unstable configurations.
375Using the rules formulated above for the movement of the I2
376cluster via [1 1 0]/[1 0 1] type of jumps, it can be shown that the
377I2Cr will be trapped by a single Cr atom if it would move only
378via [1 1 0]/[1 0 1] jumps accompanied by the displacement of the
379Cr atom. A sort of cage effect (well known in the case of face cen-
380tered cubic lattice) would occur, so that the I2 cluster will perform
381A–B–A and A–C–A jumps only. Thus, the movement of the I2Cr
382cluster may occur via a sequence of [1 1 0]/[1 0 1] and [1 1 0]/
383[0 1 1] jumps (via displacement of the Cr atom), and the highest
384migration energy barrier is 0.38 eV (see Table 1). Detrapping of
385the I2 from a single Cr atom requires a dissociation energy of
3860.5 eV, calculated as a sum of the Cr-I2 binding energy and Em

387for the I2. We see that the activation energy for the movement of
388the I2Cr complex is lower than its dissociation energy and hence
389the I2Cr cluster is expected to be mobile.

3903.2.3. Interaction with Cr–Cr pairs
391As for a single SIA, the presence of the I2 cluster in the vicinity
392of a Cr–Cr close pair compensates the Cr–Cr repulsion. Some

j1

j2

A

B

R CM

x
y

z

Fig. 2. ‘Parallel’ configuration of the I2 cluster that can migrate into two
energetically equivalent states via successive movement of the two dumbbells
following two different paths, namely, j1: dumbbell A migrates into the [1 0 1]
orientation in the [1 1 1] direction (Em = 0.39 eV), dumbbell B follows
(Em = 0.14 eV). j2: Dumbbell B migrates into the [0 1 �1] orientation in the [1 1 �1]
direction, dumbbell A follows. A migration jump into a non-equivalent metastable
state occurs if dumbbell B makes a jump into the [0 1 1] orientation in the [1 1 1]
direction (Em = 0.48 eV), then dumbbell A follows it (Em = 0.23 eV). Axes x, y and z
are oriented along [1 0 0], [0 1 0] and [0 0 1] directions, respectively.

Table 1
Activation energy for different migration modes for the I2, I2Cr and I2Cr2 clusters. All
values are given in eV. In the column ‘successive jump’, A and B indicate a particular
dumbbell that performs a jump, as shown in Fig. 2.

Initial/final state Simultaneous jump Successive jump On-site rotation

I2
[1 1 0]/[1 0 1] 0.53 A = 0.39, B = 0.14 0.65
[1 1 0]/[0 1 1] 0.83 B = 0.48, A = 0.23 0.78
[1 1 0]/[1 1 1] 0.67

I2Cr
[1 1 0]/[1 0 1] 0.47 (0.48)a A = 0.31, B = 0.12 0.49
[1 1 0]/[0 1 1] 0.65 (0.7)a B = 0.38, A = 0.26 0.68
[1 1 0]/[1 1 1] Unstable

I2Cr2
[1 1 0]/[1 0 1] 0.35 Unstable 0.37
[1 1 0]/[0 1 1] 0.47 Unstable 0.51
[1 1 0]/[1 1 1] 0.45

a The value in brackets is given for the case when the Cr atom is bound to the B
dumbbell.

4 D. Terentyev, N. Castin / Computational Materials Science xxx (2009) xxx–xxx

COMMAT 3149 No. of Pages 9, Model 5G

22 June 2009 Disk Used
ARTICLE IN PRESS

Please cite this article in press as: D. Terentyev, N. Castin, Comput. Mater. Sci. (2009), doi:10.1016/j.commatsci.2009.06.004

225



J. Paper IX

U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

393 important configurations involving the I2 cluster and Cr–Cr pairs
394 are shown in Fig. 3. The configurations 1a–c occupy lower energy
395 states than when a Cr–Cr pair is located far away from the I2 clus-
396 ter (i.e. configuration 2a). The binding energy between the Cr–Cr
397 pair and the I2 varies from 0.1 up to 0.15 eV, depending on the par-
398 ticular arrangement of Cr atoms in the cluster, see Fig. 3. The most
399 energetically favourable configuration of the I2Cr2 complex is
400 shown in Fig. 3 1c, for which the migration barriers are calculated
401 and reported in Table 1. We see that the I2Cr2 can migrate faster
402 than the I2Cr cluster. Note however, that the breakup of the
403 I2Cr2 complex into I2Cr and an isolated Cr atom is an energetically
404 favourable reaction, as can be seen comparing the total energy of
405 the configurations 2c and 1c shown in Fig. 3. Thus, the freely
406 migrating I2 cluster should break up Cr–Cr close pairs by dragging
407 away one Cr atom. The I2Cr on the other hand should avoid the
408 interaction with other Cr or Cr–Cr pairs, thus their presence is
409 not expected to affect the mobility of the I2Cr complex. However,
410 given that the I2Cr cluster will try to avoid interacting with an-
411 other Cr atom(s) (to prevent the formation of the I2Cr2), its diffu-
412 sion path towards a sink or vacancy available for recombination
413 may be longer than in pure Fe.
414 To sum up the properties of the I2 cluster we may draw the fol-
415 lowing: (i) I2 exhibits attractive interaction with an isolated Cr and
416 Cr–Cr close pairs (Eb = 0.1–0.2 eV), (ii) I2 can break up Cr–Cr close
417 pairs and drag a single Cr forming the stable mobile I2Cr complex
418 (with Eb = 0.1 eV); (iii) the migration energy of the latter is
419 Em = 0.38 eV i.e similar to that of the I2 in Fe (Em = 0.39 eV); (iv)
420 the freely migrating I2Cr should not be trapped by other isolated
421 Cr atoms or by Cr–Cr close pairs. In the case of relatively high Cr
422 concentration the movement of the I2Cr, avoiding interaction with
423 Cr, can be significantly reduced; (v) the presence of Cr atom(s) in
424 the I2 strongly reduces both Er and Eu values.

425 3.3. Tri-SIA

426 3.3.1. Mobility in pure Fe
427 According to the EP, the lowest energy configuration of a tri-SIA
428 cluster (I3) is a triplet of h1 1 0i dumbbells, located in the same

429(1 1 0) plane, as shown in Fig. 4a. The dumbbells in this configura-
430tion form a triangle with sides oriented along [1 1 0], [1 1 1] and
431[1 1 1] directions. The central dumbbell (top of the triangle in
432Fig. 4a) connects two dumbbells (side dumbbells) separated by
433the third nearest neighbour distance. Exactly the same ground
434state for the parallel I3 clusters was identified by the DFT calcula-
435tions using both S‘STA and VASP codes in [14]. In contrast to this, a
436linear configuration (all three [1 1 0] dumbbells aligned along
437[1 1 1] line) was claimed to be the ground state according to earlier
438DFT calculations done with the SIESTA code [10,13]. The latter re-
439sult eventually proved a mistake. The difference in the energy be-
440tween these two states is about 0.2 eV according to the EP and DFT.
441The I3 in the ‘linear’ configuration can be translated in the
442equivalent position via the simultaneous or successive (if the inter-
443mediate states are metastable) translation–ration jump of all the
444dumbbells. The I3 in the ‘triangle’ configuration, on the other hand,
445does not have an equivalent state if each SIA forming the cluster
446would perform the [1 1 0]/[1 0 1] or [1 1 0]/[0 1 1] translation–
447rotation jump simultaneously. The configuration resulting from
448such a macro jump is not energetically equivalent and not even a
449metastable one, according to both EP and DFT calculations. There-
450fore, the I3 in its ground state cannot migrate by performing simul-
451taneous translation–rotation jumps, neither can the barrier for the
452on-site rotation be calculated. We have performed a set of NEB cal-
453culations to estimate the path and corresponding energy barrier for
454the transition of the I3 cluster from a ‘triangle’ into a ‘linear’ con-
455figuration. That transition may have an activation energy compara-
456ble to the activation energy of the I2 cluster. Among a sequence of
457jumps (not presented here) the highest saddle point energy was
458determined to be 0.64 eV. The unfaulting energy was calculated
459to be 0.67 eV which is comparable with the vacancy migration en-
460ergy. If one neglects the possible effects of vibration entropy, the
461movement of the I3 cluster via unfaulting into the h1 1 1i configu-
462ration and its glide along h1 1 1i direction should occur at a tem-
463perature when vacancies are already mobile. The contribution of
464the I3 to the stage II recovery therefore needs to be clarified.
465Exploring different pathways that would include successive
466jumps of the dumbbells, we revealed that the movement of the

Et = 4111.15 Et = 4111.15 Et = 4111.22

(1)

(2)

E t = 4111.04(05) Et = 4110.5 Et = 4111.4

1 st /2 nd nn

far away

far away

a b c

Fig. 3. Different arrangements of the I2 cluster interacting with a Cr–Cr close pair (1a–c), situated far away from the pair (2a), two mixed dumbbells situated far from each
other (2b), I2Cr complex situated far from an isolated Cr (2c). The corresponding total energy of the fully relaxed crystal containing 1026 atoms is shown below each
configuration. The filled circles represent Cr atoms.
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F467 I3 between the two ground states occurs via a set of independent
468 jumps of the dumbbells. The cluster correspondingly undergoes a
469 transition over a number of metastable states that are shown in
470 Fig. 4. Details of the migration mechanism are described in the fol-
471 lowing. First, one of the side dumbbells performs the translation–
472 rotation jump in the [1 1 1] direction to occupy a [1 0 1] configura-
473 tion (see Fig. 4 b), overcoming the barrier of 0.44 eV. Then the other
474 side dumbbell jumps in the [1 1 1] direction and ends up in the
475 [0 1 1] configuration (see Fig. 4c), the corresponding barrier is
476 0.18 eV. At this point, all dumbbells have different orientations
477 but their central positions lie in the same (0 0 1) plane. The migra-
478 tion of the central dumbbell in the [1 1 1] direction results in the
479 unstable state that decays into the configuration shown in
480 Fig. 4d. There the central positions of the three dumbbells (with
481 different orientations) belong to the same (111) plane. The migra-
482 tion energy between states C and D, shown in Fig. 4, is extremely
483 small (�0.05 eV) and close to that of the h1 1 1i crowdion in Fe.
484 The next metastable state, shown in Fig. 4e, is obtained by the
485 migration of the side dumbbell. This state can be viewed as the
486 complex made by the I2 and a single [0 1 1] dumbbell located in
487 the tensile region of the cluster. The translation–rotation jump in
488 the [1 1 1] direction completes the migration process and brings
489 the I3 cluster in the ground state. The described ‘macro jump’
490 (since it is composed of a set of elementary jumps) between the
491 two energetically equivalent states has a length of 5th nearest
492 neighbour distance.
493 The migration barriers and excess formation energies for the
494 above described metastable states are shown in Fig. 5. The max-
495 imum migration barrier among those corresponding to the ele-
496 mentary jumps is 0.44 eV, while the highest energy state with
497 respect to the ground state is 0.53 eV. None of these values

498can be attributed to the migration energy of the I3 performing
499the macrojump. However, the lowest bound for the effective
500migration energy of the I3 can probably be characterized by
501the configuration corresponding to the highest energy excess
502(i.e. saddle point). In general, the assignment of the average time
503needed to accomplish the macrojump is more appropriate than
504the concept of the effective migration energy. The average time
505can be analytically or numerically estimated for a given temper-
506ature if the set of migration barriers for all elementary jumps is
507known. At this, one needs to consider the possibility for both
508forward and backward transitions between the metastable states
509and correctly account for the effect of vibration entropy contrib-
510uting to the free energy of the metastable states shown in Fig. 5.
511Here we do not perform these calculations. We restrict ourselves
512to stating that in the low temperature range where the vibration
513entropy contribution is expected to be small, the effective migra-
514tion energy for the I3 cluster is higher than the migration energy
515of the I2 cluster (0.39 eV according to the EP, 0.42 according to
516DFT). Yet, according to the EP, the I3 clusters might contribute
517to stage II, but the onset of its migration should occur only after
518the I2 cluster moves, with a shift of �20–40 K on the tempera-
519ture scale.

5203.3.2. Interaction with an isolated Cr atom and Cr–Cr pairs
521The I3 was also found to exhibit attractive interaction with a
522single Cr atom that enters the cluster by forming a mixed dumb-
523bell. The maximum binding energy is 0.11 eV and it does not de-
524pend on the position of Cr in the cluster. Given that the macro
525jump of the I3 requires two successive translation–rotation jumps
526of each dumbbell forming the cluster, a Cr atom can not be dragged
527by the cluster. Therefore, we did not consider the migration energy
528landscape in the presence of Cr and simply state that Cr should act
529as a trap for the I3. Correspondingly, the I3Cr complex is stable but
530immobile. However, we point out that the stability of the I3Cr
531against unfaulting is enhanced in comparison with the I3. The cor-
532responding rotation energy is 0.75 eV. We also note that the pres-
533ence of Cr in the I3 cluster does not change the fact that the
534‘triangle’ configuration is more stable than the ‘linear’ one. The ex-
535cess formation energy is 0.25 eV, which is even slightly higher than
536in pure Fe.
537As in the case of a single SIA and I2 cluster, the I3 can reduce Cr–
538Cr repulsion (see Fig. 6 configurations 1a–c vs. 2d). Thus, the I3 can
539be bound to a Cr–Cr pair with Eb up to 0.3 eV, depending on the
540particular arrangement of the Cr atoms in the cluster. Note that
541the gathering of the I2Cr and ICr mobile complexes also results
542in the formation of the I3Cr2 immobile cluster. The unfaulting en-
543ergy of the latter is only 0.46 eV. Therefore, a competition between
544the two following detrapping mechanisms is expected. On the one
545hand, the cluster can jump away from the Cr–Cr pair via unfaulting
546and consequent h1 1 1i glide. On the other hand, it can also per-
547form the macro jump already described. Given that the I3Cr com-
548plex is immobile, the freely moving I3 cluster can not break up the
549Cr–Cr close pairs, moving via translation–rotation jumps.
550To sum up the most essential features of the I3 cluster we can
551outline the following: (i) the I3 cluster has distinctively higher

Fig. 4. Sequence of the metastable states that the I3 cluster undergoes while performing the migration jump between the two ground states. Red balls show the relaxed
positions of self-interstitial atoms. Green balls show the lattice site positions which the SIAs belong to. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 5. The energy landscape for the I3 performing the macro jump migrating
between the two ground states. M_XY refers to the saddle point energy from state X
to Y.
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552 migration energy than the I2; (ii) the I3 exhibits attractive interac-
553 tion with Cr–Cr close pairs and isolated Cr atoms; (iii) the I3 can
554 not drag a single Cr atom or Cr–Cr pair.

555 4. Summary and conclusive remarks

556 The stability of the Fe–Cr mixed dumbbell and saddle point en-
557 ergy for different migration modes predicted by the used EP are
558 clearly in line with DFT calculations [3] and with the interpretation
559 given for resistivity recovery experiments in dilute Fe–Cr alloys
560 [1,2], where the shift of stage IE to a lower temperature has been
561 observed. It is important to note that according to the obtained re-
562 sults, the effective energy characterizing the stage IE is the migra-
563 tion energy of an Fe–Fe dumbbell, but the position of stage is
564 determined by Cr content and dissociation energy of the ICr–Cr
565 complex (Ed = 0.31 eV). The dissociation of the ICr–Cr complexes
566 in Fe–2Cr alloy at �110K was discussed in [4] and this temperature
567 agrees well with the obtained dissociation energy. The obtained re-
568 sults also point out that the configurations involving Cr–Cr pairs
569 can not essentially hinder fast migration of the Fe–Cr dumbbell
570 and therefore cannot be considered as strong traps, which dis-
571 agrees with suggestions from [1], implied to explain a global
572 reduction of stage I in Fe–1Cr and Fe–3Cr alloys. The difference be-
573 tween the resistivity retained during stage II at 150–180 K in Fe–
574 1,3Cr alloys and in pure Fe, can not be explained by the weak
575 Cr–ICr interaction reported here. In principle, few recovery stages
576 observed in [1] may occur due to the rearrangement of complexes
577 of self-interstitials interacting with Cr atoms, resulting in the resis-
578 tivity change rather than SIA-vacancy annihilation. Anyway, prior
579 to draw any conclusion, the possible effect the Cr background on
580 the Cr-SIA binding energy, long-range Cr–Cr interaction, and Cr–
581 ICr detrapping mechanism should be validated by performing
582 accurate DFT calculations.
583 According to the EP, the I2 cluster also exhibits attractive inter-
584 action with a single Cr atom and Eb = 0.11 eV is the same as for the
585 I-Cr complex. Whereas the binding energy of the I2Cr2 complex
586 depends essentially on the arrangement of Cr atoms in the cluster.
587 The most striking observation we made is that according to the EP,
588 the I2Cr2 cluster should break up into I2Cr and an isolated Cr atom
589 spontaneously. Based on this result, we have made an essential
590 conclusion stating that the mobility of the I2Cr complex should
591 not be affected by the presence of other Cr atoms (i.e. the I2Cr will

592not be trapped by another Cr). To validate the predictions of the EP
593concerning I2-Cr interaction we will compare them with some
594available (though not published yet) DFT results taken from [24].
595All details on the DFT parameterization and settings used in [24]
596are exactly the same as in [14], where study of SIA clusters in pure
597Fe was performed. Briefly, DFT calculations were performed with
598the with VASP [21], a plane-wave code employing the Projector
599Augmented Wave (PAW) method [22]. Standard VASP potentials
600were used, with the Perdew–Wang parameterisation in the GGA.
601The plane-wave energy cut-off was set to 300 eV and the calcula-
602tions were performed with spin polarization, the Brillouin zone
603being sampled by meshes of 3 � 3 � 3 k – points, using the Monk-
604horst–Pack scheme. The Di-SIA clusters interacting with Cr atoms
605were relaxed in 252 atom supercells at constant volume.
606The obtained DFT results from [24] can be summarized as fol-
607lows: (i) there is the weak positive binding energy of 0.02 eV for
608the I2-Cr complex; (ii) there is relatively strong binding energy be-
609tween the I2 and Cr–Cr close pair, which varies from 0.23 (for con-
610figuration shown in Fig. 3 1c) up to 0.32 eV (for configuration
611shown in Fig. 3 1b); the interaction energy of the ICr and isolated
612Cr atom is negative (i.e. it is repulsive) for all configurations shown
613in Fig. 3 row 1, except for the configuration 1b (Eb = 0.062 eV). The
614latter is the only case where the EP incorrectly predicts the sign of
615the binding energy. However, given that the DFT obtained positive
616binding energy is extremely small, one may consider the interac-
617tion to be negligible. Overall, we see that the EP correctly repro-
618duces the trends in the Cr–Cr-I2 binding energy depending on
619the arrangement of Cr atoms in the cluster, such as: positive inter-
620action between the I2 and isolated Cr, positive interaction of the I2
621with a Cr–Cr close pair and very weak or even repulsive interaction
622of the I2Cr with an isolated Cr atom. We are therefore confident
623that the calculations done for the I2 with the EP are qualitatively
624consistent with the DFT data in most cases.
625The reassessment of the migration properties of the I3 cluster in
626pure Fe, performed here, has revealed new features. The I3 cluster
627cannot perform a simultaneous jump when it is in its ‘triangular’
628ground state. The obtained migration path suggests that the cluster
629can move via a series of dumbbell jumps and its lower bound
630migration energy is higher than that of the I2 cluster by at least
6310.1 eV. According to the results obtained with the potential, the
632I2 and I3 clusters do not start to move simultaneously during
633annealing, so the recovery curve at the stage II peak should be

(1)

(2)

far away far away

Et=4112.4(41) Et=4112.44 Et=4112.65

Et=4112.54 Et=4112.65 Et=4112.76 Et=4112.73

Et=4111.94

1st/2nd nn 3rd nn far away

far away

1st nn

a b c d

Fig. 6. Different arrangements of the I3 cluster interacting with an single Cr atom and Cr–Cr close pairs. Arrangements shown in figures correspond to the case when: (1a–b)
the I3 cluster is situated far away from Cr–Cr close pairs; (1c) the I3 is situated far away from two isolated Cr atoms; (1d) the I2Cr and ICr are situated far away from each
other; (2a) the 3I is situated far away from an isolated Cr atom; the I3Cr cluster is formed; (2b) the I3Cr cluster is situated far away from an isolated Cr atom; (2d) the I3Cr2
cluster is formed. The filled circles represent Cr atoms.
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634 somewhat more complex than just a single peak. The shape of the
635 recovery peak obtained in pure Fe in [1,2] in the temperature range
636 of 160–200 K is in favour of the above argument. The occurrence of
637 the two distinctive peaks or their partial/complete overlap should
638 depend on the concentration of the I2 and I3 complexes formed up
639 to the beginning of stage II and the concentration of vacant recom-
640 bination sites and traps for the I2 and I3 clusters (possibly carbon).
641 Clearly, deeper investigations applying DFT and lattice dynamics
642 calculations to estimate the 0 K activation energy for the I3 and
643 the effect of vibration entropy respectively are needed.
644 In this respect we note that up to this moment two types of DFT
645 calculations on SIA properties in iron exist. These were performed
646 using the SIESTA [10,13] and VASP [11,12] codes. The VASP results
647 are obtained using constant volume calculations whereas the other
648 ones are obtained by relaxing the atomic positions and by optimiz-
649 ing the box shape simultaneously, following the so-called ‘constant
650 volume per atom’ method [23]. Since the strain field of the SIA and
651 SIA clusters is strongly anisotropic, constant pressure calculations
652 should be taken with great care especially when they are per-
653 formed in small supercells (such as 128 atoms) [9,10,13] for rela-
654 tively large SIA clusters (size 3 and higher). It is reasonable to
655 expect that the migration energy could be underestimated due to
656 the flexibility of the crystal shape, which compensates high atomic
657 strain localized near the migrating atom(s). The underestimation
658 should be directly related to the crystal size and number of simul-
659 taneously migrating defects. At the same time, the ‘constant vol-
660 ume’ calculations are expected to provide the convergence in a
661 smaller supercell than one needs in fixed volume calculations. Be-
662 cause of the box shape optimization, the effect of self interaction
663 (due to the imposed periodicity of a supercell) can be cancelled
664 out by the release of the lattice strain. However, there is no guar-
665 antee that the seemingly converged value may essentially differ
666 if recalculated but without crystal shape optimization. According
667 to the potential, the migration energy for the I2 cluster, calculated
668 using constant volume relaxation, converges when the MD box
669 reaches size of 432 atoms. The higher energy migration path (i.e.
670 the case of the [1 1 0]/[0 1 1] jump) can not be established in a
671 box containing less than 250 atoms in the constant pressure simu-
672 lations. The migration energy path for the I3 cluster, shown in
673 Fig. 5, becomes independent on crystal size if the number of atoms
674 exceeds 686. Some of the metastable states for the I3 cluster be-
675 come unstable when calculated in the smaller crystals and/or
676 applying volume optimization.
677 The migration energy of the I2 cluster according the present cal-
678 culations is 0.39 eV (for the successive jumps) i.e. it is underesti-
679 mated by 0.03 eV compared to the value obtained using DFT
680 calculations (0.42 eV [10]). The migration energy of a single SIA
681 is overestimated by 0.02 eV, on the other hand. This interplay can-
682 not be explained directly by the box-size or volume optimization
683 effects mentioned previously. The origin of the discrepancy be-
684 tween DFT and EP calculations is therefore most likely related to
685 the explicit treatment of magnetism, naturally present in DFT
686 and absent in the central force model calculations. For example,
687 an atom migrating according to Johnson’s mechanism exhibits a
688 transformation from a ferro- to antiferromagnetic state near the
689 saddle point configuration [10]. This magnetic transition of course
690 affects the total configuration energy of the system and its exis-
691 tence can be put forward to explain why the Em for the I2 cluster
692 depends essentially on the migration path if calculations are done
693 with the EP and does not depend on the migration path in DFT. In-
694 deed, if the magnetic transition of the atom located in the com-
695 pressed region results in the decrease of the configuration energy
696 of the system, one understands why there is an essential overesti-
697 mation of the Em with the potential when the two dumbbells are
698 displaced simultaneously (Em = 0.53 eV). The clarification of the
699 role of magnetism is highly desirable and in principle can be real-

700ized in the framework of DFT by applying certain constraints on
701the atomic spins while dragging atoms. Even though the discrep-
702ancy between the EP and DFT calculated migration energies is very
703small (0.03 eV) and can be compared with the uncertainty of DFT
704calculations, the absolute difference between the Em for a single
705SIA and I2 cluster is 0.03 eV and 0.09 eV according to the EP and
706DFT, respectively. The latter discrepancy is essential, since accurate
707reproduction of the temperature interval between the positions of
708peaks corresponding to the recovery stages IE and II in Fe requires a
709difference in the activation energy of about 0.1 eV [5]. Hence, if one
710would redo calculations such as done in [13] using the migration
711barriers from the EP, the position of the stage II would be found
712at lower temperature and would not coincide with experimental
713data. Keeping in mind this essential remark, we provide a summary
714in the following paragraph and then give some implications of the
715obtained results.
716Based on the results presented in Sections 3.1, 3.2 and 3.3 one
717can summarize the properties of SIAs and their small clusters (I2
718and I3) with respect to their mobility and trapping by isolated Cr
719atoms and Cr–Cr close pairs. The compilation of the obtained
720numerical data is presented in Table 2. All SIA defects considered
721here were found to exhibit attractive interaction with isolated Cr
722atoms and Cr–Cr close pairs. The binding energy of a single Cr atom
723with either of the defects is 0.11 eV. Single SIA, I2 and I3 clusters
724can also be bound to a Cr–Cr close pairs with Eb = 0.2–0.3 eV,
725depending on the particular arrangement of solutes in the cluster.
726However, the I2Cr2 complex is unstable and should break up into
727the mobile I2Cr complex and isolated Cr atom which is left behind.
728Therefore, the presence of Cr–Cr close pairs should not affect the
729mobility of stable I2Cr complexes. On the other hand, Cr–Cr close
730pairs can be destroyed due to the interaction with freely moving
731single SIAs and Di-SIA clusters. The migration energy of the ICr
732and I2Cr complexes, capable of dragging one Cr atom, is 0.21 and
7330.38 eV, respectively. Thus, the mobility of the I2Cr is comparable
734to that of the I2 (Em = 0.39 eV). The mobility of the I3 cluster, not
735capable of dragging Cr atoms, should be reduced due to the inter-
736action with both isolated Cr atoms and Cr–Cr close pairs. The most
737important is that the I3Cr and I3Cr2 clusters can be formed in a
738number of reactions involving I, ICr, I2 and I2Cr mobile complexes.
739Hence, the concentration of the I3Cr and I3Cr2 clusters should in-
740crease drastically during stage II with increasing Cr content in the
741alloy. Finally, we note that the presence of Cr atom(s) in the I2 and
742I3 clusters strongly reduces the energy barrier for the on-site rota-
743tion into the h1 1 1i configuration. Thus, the presence of Cr may
744activate another migration mechanism associated with glide along
745a h1 1 1i direction.
746Based on the above-presented summary we can propose possi-
747ble scenarios for the defect evolution during isochronal annealing
748performed up to the temperature corresponding to stage III in Fe.
749For the sake of simplicity and in the spirit of work by Fu et al.
750[13] and following the conclusions drawn in [14], we assume that
751SIA clusters containing more than three self-interstitials are immo-
752bile at least up to the temperature corresponding to the onset of
753vacancy migration. Trying to elucidate possible effects of Cr on
754the deviation of the damage recovery during annealing, we con-
755sider the following situations determined by the ratio of the con-
756centration of Cr atoms and Frenkel pairs generated by irradiation,
757which are:

7581. The concentration of radiation-induced Frenkel pairs is much
759lower than the Cr concentration, so that most of the interstitials
760are h1 1 0i Fe–Fe dumbbells. Stage IE will be determined by the
761migration of Fe–Fe interstitials and should be the same as in
762pure Fe or slightly shifted towards lower temperature. The main
763reactions occurring at stage IE will be: I + Cr ? ICr; ICr + I-
764Cr ? I2Cr2 ? I2Cr + Cr; ICr + V = Cr. The intensity of stage IE
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765 should be governed by the dissociation of ICr–Cr complexes but
766 redistribution of Cr atoms may also occur during this stage. The
767 onset of stage II will be mainly determined by the movement of
768 the I2Cr complexes and therefore should not differ from that in
769 Fe, since the migration energy for the I2 and I2Cr are compara-
770 ble, according to the results obtained here. The intensity of
771 stage II and the total defect recovery up to stage III will depend
772 on the ratio of the concentrations of the I3 and I3Cr (I3Cr2) clus-
773 ters formed during stage II. If the fraction of the I3Cr complexes
774 is substantial, a visible decrease of the intensity of the stage
775 should be observed.
776 2. The fraction of Fe–Cr mixed dumbbells that were formed after
777 irradiation and that have survived the spontaneous and corre-
778 lated recombination stages is significant or even overwhelming
779 compared to the a number of Fe–Fe dumbbells. Since the migra-
780 tion energy for the ICr complex to moves is much lower than for
781 a h1 1 0i Fe–Fe dumbbell the position of stage IE should shift sig-
782 nificantly towards lower temperature or even merge with the
783 correlated recombination stage ID. Again, the main complex sur-
784 viving up to the onset of stage II will be the I2Cr cluster and
785 hence the onset of stage II should not be affected. This time,
786 however, most of the I3 and larger SIA clusters will contain Cr
787 atoms. So that, the intensity of stage II should be strongly
788 reduced.
789

790 Regarding the available experimental studies of dilute FeCr al-
791 loys, it seems that the alloys studied in [2] suit the first scenario
792 suggested above, since both a progressive shift of stage IE and a de-
793 crease of the recovery (by �30%) at stage II were observed in the
794 alloys (with h0.1%Cr) as compared to pure Fe. Whereas the recovery
795 curves obtained in irradiated Fe-1%Cr and -3%Cr in [1] can be ratio-
796 nalized within by the second case scenario. In a forthcoming work,
797 we will use kinetic Monte Carlo and rate equation modeling tools
798 to study the defect recovery corresponding to irradiation and
799 annealing conditions from [1,2], and try to reveal the range of Fren-
800 kel pair and Cr concentration wherein both suggested scenarios
801 can be distinctively realized.
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Table 2
Properties of small interstitial clusters with respect to their mobility and trapping by isolated Cr atoms and Cr–Cr close pairs calculated in this work using the EP. Available DFT
data is given in brackets.

Specie(s) Name Migration (Em), binding (Eb) and dissociation (Ed) energy

Fe–Fe dumbbell I Em = 0.36 (0.34–0.37 [10,11]) eV
Clusters of parallel Fe–Fe dumbbells I2, I3 Em(I2) = 0.39 (0.43 [10]) eV; Em(I3) P 0.53 eV
Mixed FeCr dumbbell ICr Em = 0.21 (0.23 [3]) eV; Eb = 0.11 (0.08 [7]) eV; Ed = 0.47 (0.42, given that Eb = 0.08 and Em = 0.34)

eV
Mixed Fe–Cr dumbbell trapped at another neighbouring Cr

atom (not entering the dumbbell)
ICr2 Immobile, Eb(ICr–Cr) = 0.1 (0.08 eV [7]) eV; Eb(I-Cr2) = 0.19 (0.15 [7]) eV

Dissociation reaction occurs via the release of the ICr complex, Ed = 0.31 (0.31) eV
Di-SIA formed by Fe–Fe and Fe–Cr dumbbells I2Cr Em = 0.38 eV; Eb(I2-Cr) = 0.11 (0.02 [24]) eV; Ed = 0.5 (0.45, given that Eb = 0.02 [24] + Em = 0.43

[13]) eV.
Di-SIA formed by two Fe–Cr dumbbells I2Cr2 Immobile, Eb(I2-Cr2) = 0.1–0.2 (0.23–0.32 [24]) eV; Eb(I2 Cr–Cr) = from �0.43 to �0.1 (�0.495–

+0.062 [24]) eV
Dissociation results in the formation of the I2Cr and isolated Cr atom, Ed = 0.21 eV

Tri-SIA formed by two Fe–Fe and one Fe–Cr dumbbells I3Cr Immobile, Eb(I3-Cr) = 0.11 eV, Ed = 0.63 eV
Tri-SIA formed by two Fe–Cr and one Fe–Fe dumbbells I3Cr2 Immobile, Eb(I3-Cr2) = 0.2–0.3 eV (depending on the position of Cr in the cluster), Ed = 0.73–

0.83 eV; Dissociation occurs via the release of the I3.
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