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Abstract

Today's computerized processes generate massive amounts of streaming data. In many 
applications, data is collected for modeling the processes. The process model is hoped 
to drive objectives such as decision support, data visualization, business intelligence, 
automation and control, pattern récognition and classification, etc. However, we face 
significant challenges in data-driven modeling of processes. Apart from the errors, 
outliers and noise in the data measurements, the main challenge is due to a large 
dimensionality, which is the number of variables each data sample measures. The 
samples often form a long temporal sequence called a multivariate time sériés \where 
any one sample is influenced by the others. We wish to build a model that will ensure 
robust génération, reviewing, and représentation of new multivariate time sériés that 
are consistent with the underlying process.

In this thesis, we adopt a modeling framework to extract characteristics from mul­
tivariate time sériés that correspond to dynamic variation-covariation common to the 
measured variables across ail the samples. Those characteristics of a multivariate time 
sériés are named its ‘commonalities’ and a suitable measure for them is defined. What 
makes the multivariate time sériés model versatile is the assumption regarding the ex­
istence of a latent time sériés of known or presumed characteristics and much lower di­
mensionality than the measured time sériés; the resuit is the well-known ‘dynamic factor 
model’. Original variants of existing methods for estimating the dynamic factor model 
are developed: The estimation is performed using the frequency-domain équivalent of 
the dynamic factor model named the ‘spectral factor model'. To estimate the spectral 
factor model, ideas are sought from the asymptotic theory of spectral estimâtes. This 
theory is used to attain a probabilistic formulation, which provides maximum likelihood 
estimâtes for the spectral factor model parameters. Then, maximum likelihood param- 
eters are developed with ail the analysis entirely in the spectral-domain such that the 
dynamically transformed latent time sériés inherits the commonalities maximally.

The main contribution of this thesis is a learning framework using the spectral 
factor model. We term learning as the ability of a computational model of a process to 
robustly characterize the data the process generates for purposes of pattern matching, 
classification and prédiction. Hence, the spectral factor model could be claimed to hâve 
learned a multivariate time sériés if the latent time sériés when dynamically transformed 
extracts the commonalities reliably and maximally. The spectral factor model will be 
used for mainly two multivariate time sériés learning applications: First, real-world 
streaming datasets obtained from varions processes are to be classified; in this exercise, 
human brain magnetoencephalography signais obtained during varions cognitive and 
physical tasks are classified. Second, the commonalities are put to test by asking for 
reliable prédiction of a multivariate time sériés given its past évolution; share prices in 
a portfolio are forecasted as part of this challenge.
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For both spectral factor modeling and learning, an analytical solution as well as 
an itérative solution are developed. While the analytical solution is based on low-rank 
approximation of the spectral density fonction, the itérative solution is based on the 
expectation-maximization algorithm. For the human brain signal classification exercise, 
a strategy for comparing similarities between the commonalities for varions classes of 
multivariate time sériés processes is developed. For the share price prédiction problem, 
a vector autoregressive model whose parameters are enriched with the maximum like- 
lihood commonalities is designed. In both these learning problems, the spectral factor 
model gives commendable performance with respect to competing approaches.



Résumé

Les processus informatisés actuels génèrent des quantités massives de flux de données. 
Dans nombre d'applications, ces flux de données sont collectées en vue de modéliser 
les processus. Les modèles de processus obtenus ont pour but la réalisation d’objectifs 
tels que l'aide à la décision, la visualisation de données, l’informatique décisionnelle, 
l’automatisation et le contrôle, la reconnaissance de formes et la classification, etc. La 
modélisation de processus sur la base de données implique cependant de faire face à 
d’importants défis. Outre les erreurs, les données aberrantes et le bruit, le principal défi 
provient de la large dimensionnalité, i.e. du nombre de variables dans chaque échantillon 
de données mesurées. Les échantillons forment souvent une longue séquence temporelle 
appelée série temporelle multivariée, où chaque échantillon est influencé par les autres. 
Notre objectif est de construire un modèle robuste qui garantisse la génération, la 
révision et la représentation de nouvelles séries temporelles multivariées cohérentes 
avec le processus sous-jacent.

Dans cette thèse, nous adoptons un cadre de modélisation capable d’extraire, à par­
tir de séries temporelles multivariées, des caractéristiques correspondant à des variations 
- covariations dynamiques communes aux variables mesurées dans tous les échantillons. 
Ces caractéristiques sont appelées «points communs» et une mesure qui leur est ap­
propriée est définie. Ce qui rend le modèle de séries temporelles multivariées polyvalent 
est l’hypothèse relative à l’existence de séries temporelles latentes de caractéristiques 
connues ou présumées et de dimensionnalité beaucoup plus faible que les séries tem­
porelles mesurées; le résultat est le bien connu «modèle factoriel dynamique». Des 
variantes originales de méthodes existantes pour estimer le modèle factoriel dynamique 
sont développées : l’estimation est réalisée en utilisant l’équivalent du modèle factoriel 
dynamique au niveau du domaine de fréquence, désigné comme le «modèle factoriel 
spectral». Pour estimer le modèle factoriel spectral, nous nous basons sur des idées 
relatives à la théorie des estimations spectrales. Cette théorie est utilisée pour aboutir à 
une formulation probabiliste, qui fournit des estimations de probabilité maximale pour 
les paramètres du modèle factoriel spectral. Des paramètres de probabilité maximale 
sont alors développés, en plaçant notre analyse entièrement dans le domaine spectral, 
de façon à ce que les séries temporelles latentes transformées dynamiquement héritent 
au maximum des points communs.

La principale contribution de cette thèse consiste en un cadre d’apprentissage util­
isant le modèle factoriel spectral. Nous désignons par apprentissage la capacité d’un 
modèle de processus à caractériser de façon robuste les données générées par le pro­
cessus à des fins de filtrage par motif, classification et prédiction. Dans ce contexte, 
le modèle factoriel spectral est considéré comme ayant appris une série temporelle 
multivariée si la série temporelle latente, une fois dynamiquement transformée, permet 
d’extraire les points communs de façon fiable et maximale. Le modèle factoriel spectral
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sera utilisé principalement pour deux applications d'apprentissage de séries multivariées 
: en premier lieu, des ensembles de données sous forme de flux venant de différents 
processus du monde réel doivent être classifiés; lors de cet exercice, la classification 
porte sur des signaux magnétoencéphalographiques obtenus chez l'homme au cours de 
différentes tâches physiques et cognitives; en second lieu, les points communs obtenus 
sont testés en demandant une prédiction fiable d'une série temporelle multivariée étant 
donnée l'évolution passée; les prix d'un portefeuille d'actions sont prédits dans le cadre 
de ce défi.

À la fois pour la modélisation et pour l'apprentissage factoriel spectral, une solution 
analytique aussi bien qu'une solution itérative sont développées. Tandis que la solution 
analytique est basée sur une approximation de rang inférieur de la fonction de densité 
spectrale, la solution itérative est basée, quant à elle, sur l'algorithme de maximisation 
des attentes. Pour l'exercice de classification des signaux magnétoencéphalographiques 
humains, une stratégie de comparaison des similitudes entre les points communs des 
différentes classes de processus de séries temporelles multivariées est développée. Pour 
le problème de prédiction des prix des actions, un modèle vectoriel autorégressif dont 
les paramètres sont enrichis avec les points communs de probabilité maximale est 
conçu. Dans ces deux problèmes d'apprentissage, le modèle factoriel spectral atteint 
des performances louables en regard d'approches concurrentes.
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Chapter 1

Introduction

The yearning to master a complicated process often prompts us to build its model. We 
wish to hâve a model that is simple but consistent with the characteristics of volumes 
of data obtained from the process. A model might serve several purposes: it could 
aid in representing and reviewing available data and to generate more data of similar 
characteristics. We aiso prefer the flexibility to evaluate the loyalty of the model to 
the characteristics of the given data and subsequently alter it if need be. Such a 
well-founded model should ultimately enable us to rein on the process.

The data typically cornes as a set of samples and each sample is constituted by a 
set of measured variables. The characteristics of the measured variables might not 
be simple to comprehend. Hence, we wish the model to hâve a latent simplicity. To 
that end, we might conveniently demand the model to use a lower number of latent 
variables than the number of measured variables. Such a simplified interprétation of 
the process with a fewer number of underlying unobserved latent variables than the 
number of measured variables is called a latent variable model [11]. It is hoped that 
the data could be represented and reviewed with ease in terms of the latent variables.

In many applications, the set of measured variables of a sample is dépendent on 
those of its preceding samples. The resuit is variation for a measured variable and 
covariation between the measured variables with respect to time and such data is 
called a multivariate time sériés [102]. The temporal variation-covariation across the 
measured variables of a multivariate time sériés is termed its dynamic characteristics.

measured 
time sériés

Figure 1.1: Three latent time sériés are dynamically transformed to five measured time sériés.
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A model built on the dynamic characteristics of a time sériés is a reasonably flexible 
and accurate depiction of the underlying process.

Figure 1.1 illustrâtes a number of measured time sériés variables being generated 
by a transformation of a lower number of variables of the latent time sériés. It is this, 
possibly complicated, transformation that is to be modeled using the simplicity of the 
lower number of latent variables. Obviousiy, in doing so, we ought to be aware of the 
challenge that neither the transformation nor the number and characteristics of the 
latent variables are known. The modeling challenge is even greater because the lower 
number of variables might not be able to inherit the entire dynamic characteristics of 
the measured time sériés.

The scope of the problem of latent variable modeling of the dynamic characteristics 
of a multivariate time sériés is wide. It is natural, then, to restrict its scope as well 
as make it practically interesting. To this end, the dynamic characteristics common 
to any two measured variables [117] is deemed interesting for the modeling problem; 
those characteristics are termed the commonalities. In this thesis, commonalities will 
be defined in Définition 4.1 as the component cross-covariance functions of a weakiy 
stationary multivariate time sériés.

For the still unknown model and latent time sériés, it is assumed that the latent 
variables are dynamically transformed to maximally inherit the commonalities of the 
measured time sériés according to some suitable metric. Thus, first we seek a modeling 
framework that defines the ingrédients and scope of the latent variable model. The 
framework develops solutions for data-driven estimation of the parameters that control 
the transformation.

Apart from confirming our understanding of the process which generated the time 
sériés used to build the model, what could we do with a data-driven model? Suppose 
a model represents a collection of time sériés with similar commonalities. Then, the 
model could be used for classification of any new time sériés as belonging to that 
collection or not. This will be done based on similarities and dissimilarities of the 
commonalities of the new time sériés with those of the time sériés aiready available. 
Another utility could be in consistently generating future time sériés samples that bear 
characteristics similar to the time sériés we had used to build the model. Such a 
prospect might allow prédiction of the time sériés gfven its past samples. It should 
be noticed that both of these applications involve applying the latent variable model 
towards unseen time sériés suggesting its ability to learn. Enabling the parameters 
of the transformation to predict and classify multivariate time sériés based on their 
commonalities implies a learning framework which is the main broad contribution of 
this thesis.

In Section 1.1 of this introductory chapter, a brief overview of the latent variable 
model with relevant references is given.

In Section 1.2, two practical examples to emphasize the motivation for a latent 
variable model with dynamic transformation are animated; these examples aiso form 
the experiments of the thesis. By these examples, interprétation of the commonalities 
in a multivariate time sériés as well as the learnability of a dynamic factor model are 
attempted. The basic assumptions that hold the latent variable model together and the 
basic strategy to arrive at a suitable model are listed. The technique of independent 
component analysis is complementary to the factor modeling pursued in this thesis; it 
is reviewed briefly.

In Section 1.3, the motivation for choosing the dynamic factor model as the latent
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variable model is stated. Its structure, it is discussed there, will transform the latent 
time sériés to measured time sériés dynamically while the transformation maximally 
inherits the commonalities from the measured time sériés according to some suitable 
metric. Using its frequency-domain counterpart called the spectral factor model for 
modeling and learning purposes is then vouched for.

In Section 1.4, the modus-operandii of learning a multivariate time sériés based 
on the commonalities is elaborated in layman terms. The modeling framework is in- 
troduced there; it is mentioned there how it is intended to bin discrète frequencies in 
subbands and maximize the inheritance via dynamic transformation of the measured 
commonalities within each of those subbands. The learning framework is aiso intro- 
duced there; the strategies for prédiction and classification of multivariate time sériés 
using the spectral factor model are illustrated.

In Section 1.5, a brief review of existing works eisewhere in the growing literature 
of multivariate time sériés analysis that hâve similar objectives as that of the spectral 
factor model is conducted. Existing méthodologies from diverse fields such as control 
Systems, econometrics, biomédical signal processing, geology, etc., that are related to 
the ones used during varions stages in the development of spectral factor model in this 
thesis are recapped there.

In Section 1.6, a pithy statement of objectives and in Section 1.7 a summary list 
of the main and supporting contributions of the thesis are provided. In Section 1.8, 
the organization of the thesis is outlined while in Section 1.9 a list of publications that 
motivated and aided this thesis are listed. In Section 1.10, a very essential summary 
of this notation-rich thesis is presented.

1.1 Latent variable model: An overview

A model of a process with a set of underlying variables held responsible for generating 
or representing a set of measured variables is the basic notion behind the latent variable 
model. Among the premiers to voice this notion loudly was Spearman in [114] and 
a sériés of works that followed. His research in psychology argued that there exists 
a statistical quantity called the ‘general factor’ that remains same in the scores of ail 
mental tests on humans; whereas there is a ‘unique factor' that varies with the tests. 
This idea has evolved over a century. Today it is ail too common to conduct such 
tests where discrète responses to questions in the form of personality statements are 
assumed to be expressions of latent personality traits [121]. There aIso exist problems 
pursued in the sciences where it is necessary to assume that latent variables are not 
a continuum but discrète or categorical in nature. They are mainly of two types: 
First, the mixture model involves associating measured samples to a finite set of latent 
variables by estimating probabilities of the associations [82]. And the second type 
is the latent class model which pursues discrète latent variables that when presumed 
known or available amounts to locally independent measured variables [81]; this could 
be treated as a spécial case of the mixture model.

What qualifies as a latent variable model in this thesis in light of the above pos- 
sibilities is the one which maps continuons latent variables to continuons measured 
variables. However, the important requirement stipulated is that there ought to be 
very few of the former in comparison to the latter. By this requirement, as envisioned 
by [55], the hope is "to attain scientific parsimony or economy of description." Con­
sidérable research has progressed in this arena known as factor modeling with an aim
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to expiait! corrélations in the measured variables by a much lower number of latent 
variables: It was shown in [107] that three latent factors are generally sufFicient in ac- 
counting for voltage variations, especially those relevant to electrocardiogram, recorded 
on the surface of a human body. In [69], yield rates of a large portfolio of stocks were 
shown to hâve a fewer number of latent factors corresponding to industry-wide com- 
mon activities; whereas there were market factors unique to each of stock. Via factor 
analysis, six latent features out of twelve standard measured features were extracted 
for forecasting weather phenomenon in [9]. Factor models will be explored further in 
Chapter 3.

It will not escape our notice that in the séminal applications of factor models 
reviewed above, time dependency of the data was ignored for latent variable analysis. 
But this thesis focuses on the type of continuons latent variables that are to be modeled 
based on correlated samples in a multivariate time sériés. For the purpose of learning 
from such data, the classical factor model above will be insufficient and, instead, a 
dynamic factor model is required. Before entering into a detailed discussion on the 
dynamic factor model and its salient features in Section 1.3, the next section serves 
practical motivations for it.

1.2 Latent variable model: Two examples

In order to assert the context for a latent variable model for multivariate time sériés 
we discuss two practical examples below.

Classification of brain activities

Figure 1.2: Illustration of the measuring of MEG signais via sensors positioned around the 
head [5].

Consider the scénario of a comfortably chaired computer gamer who makes smooth 
movements of a joystick by moving one of her wrists depending on the demands of a
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game. Under same experimental conditions, it might be assumed that activities in her 
brain are similar every time she makes the same wrist movement. Suppose we wish 
to do some experiments to know what could be going on in her brain for every wrist 
movement she makes. Remember that such experiments are very common these days 
and international conférences and compétitions are conducted to learn more about brain 
activities [3]. The biggest beneficiaries of such studies include patients of neurological 
disorders [105, 115].

For the experiments, magnetoencephalography (MEG) signais from a human brain 
could be measured. These signais are based on magnetic fields induced by currents 
due to synchronized neuronal activities. Their recording is non-invasively performed via 
extremely sensitive magnetic sensors, as depicted in Figure 1.2; in reality, the sensors 
of an MEG scanner are encased in a well-isolated cavity in which the head is positioned 
comfortably. The signais hâve a temporal resolution of under a millisecond [42] and 
methods are available to attribute the readings from the sensors to designated spatial 
spots of the brain. Suppose ten signais attributed to ten spatial spots of the brain are 
measured. We know that these signais dépend on one another mutually, i.e., activities 
in one part of the brain are influenced by activities in other parts. Figure 1.3 shows 
real signais from one such experiment [1]. We could perhaps observe various types of 
similar characteristics among any two measured MEG signais, i.e., delayed or inverted 
patterns, similar peaks and troughs but with one signal more fluctuating than other, etc. 
As a resuit, these signais could be considered temporally dépendent on one another,
i.e., current brain activity at a spot is influenced by current and previous activities at 
ail spots.

For making a wrist movement based on some prompt, hypothesize the existence 
of only two latent activities in the brain of the gamer. This hypothesis could be 
based on a subjective opinion of an expert or mere guess. What they neurologically 
are is not relevant here. Nevertheless, assume that these two latent activities to be, 
e.g., (i) her cognition of the demands of the game and (ii) her reactions to move her 
wrist. In addition, suppose the general characteristics, e.g., averages, ranges, and other 
statistics, of these two fictitious latent signais of cognition and reaction are known.

The assumptions made so far are, firstly, the existence of a set of low-dimensional 
latent signais and, secondly, that their statistical characteristics are known. In addition, 
thirdiy, assume that when the gamer has to make a particular wrist movement, the 
presumed latent cognition and reaction sequences undergo a particular transformation 
that gets expressed as mutual and temporal dependence seen in the ten measured 
signais. Although this assumption compounds to limiting the characteristics of the 
measured sequences as well. But it is a fair assumption because there ought to be 
a number of time dépendent characteristics common to the ten MEG signais which 
are part of the same brain that collectively results in her making a particular type of 
movement of the Joystick or another. For this reason, it is opined that the latent sig­
nais of cognition and reaction manifest themselves as the ten measured MEG signais 
consisting of a large amount of common variation-covariation, i.e., commonalities, 
corresponding to her brain activities. Then, essentially, cross-correlations between 
the measured variables equals commonalities. Obviousiy, there will be variations 
of the signais unaccounted by the commonalities, which will be unique or idiosyn- 
cratic characteristics pertaining to each of the measured signais and independent of 
the commonalities. Hence, the gamer making a wrist movement may be regarded as, 
the fourth in the list of model assumptions, that the latent signais transforming them-
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selves maximally imparting desired commonalities to the measured signais according to 
some suitable metric; whereas, the fifth assumption is that any unaccounted variations 
of the measured signais are just undesired and independent noise.

Note 1.1. From a data génération perspective, transformation of latent variables 
imparts commonalities to measured variables. From a modeling perspective, trans­
formation of latent variables inherits commonalities from measured variables.

To summarize, the model assumptions are

1. there exist generative latent variables of lower-dimensionality than the measured 
variables,

2. the statistical characteristics of the latent variables are known,

3. the transformation of the latent signais limit the modeled characteristics of the 
measured variables,

4. the transformation should maximally impart measured cross-correlation charac­
teristics, and

5. the non-transformable characteristics are independent noise unique to each mea­
sured variable.

The presumed characteristics of the cognition and reaction latent variables stay 
same throughout the game; the gaming conditions will stay the same but challenges 
will differ. Then, it could be inferred that the common characteristics of the MEG 
signais during one wrist movement switch to a different class if and only if she changes 
the w/rist movement to another class. This is a valid inference because one part of the 
brain behaves differently from another to varions cognition and reaction challenges of 
the game she is playing. As a resuit, any class différences of the movement will manifest 
in the dynamic characteristics of the measured MEG signais. So a particular class of 
characteristics of the measured signais during a particular class of wrist movements is 
attributed to a corresponding class of transformation the latent variables undergo in 
imparting the commonalities.

The objective of this experiment is modeling multivariate time sériés for classifi­
cation of wrist movements. Transformations corresponding to each cognition-reaction 
challenge are to be estimated and one class of transformations from another are to be 
distinguished. An approach could be to estimate, from ail possible transformations, 
one that maximizes the likelihood to hâve generated the measured signais. Then, the 
estimate could be constrained further by requiring the presumed latent signais to max­
imally inherit, according to some suitable metric, the commonalities of the measured 
signais upon their transformation. It is now clear that the two steps:

1. estimate a maximum likelihood transformation based on model assumptions and

2. estimate the maximum likelihood transformation that inherits commonalities 
maximally as per a suitable metric.

6



Suppose we estimate the optimal latent variable model of the cognition-reaction 
process corresponding to each classified example of wrist movements. Then, as shown 
in Figure 1.4, for two classes of example measured MEG signais, we should be able to 
classify a test measured signal as belonging to a class of movements by computing 
how similar the commonalities of the test measured signal are to those in the classi­
fied examples. Obviousiy, the intrigue lies in classifying the measured signais without 
actually knowing or seeing the particular wrist movement she had performed.

Prédiction of share prices

We take financial market as our next example where, suppose, the interest is in investing 
in a portfolio of shares of six companies, e.g., as shown in Figure 1.5, from various 
sectors of économie activities in a country. Suppose we know a successfui investor 
who believes that investors are driven to purchase or sell shares based on perceived 
values of three underlying latent variables, viz., general political climate, consumer 
sentiments, and investor confidence. Of course, none of these fictitious latent variables 
could be metered objectively in practice. We wish to validate this belief before buying 
his advice. Note that as in the previous example, it is the number of latent variables 
and their presumed characteristics that is our concern and not their real physical or 
financial interprétations. If the investor’s belief has merit, we could think of those 
latent variables to transform investment activities in the share market that manifest as 
changes in the share prices. AIso, the latent variables when transformed must impart 
as much of the common dynamic characteristics, i.e., commonalities, demonstrated by 
the measured share prices.

In practice, even the best investors cannot consistently outsmart the market. And, 
our investor acquaintance above could blâme any unexplainable fluctuations in the share 
prices on the dynamic characteristics of the share prices that the latent variables cannot 
inherit. These fluctuations could be idiosyncratic characteristics unique to each of 
those shares. However, if the transformation of the latent variable to the commonalities 
as we envisaged is true, we might be able to explain evolving tendencies of share prices. 
Therefore, in order to validate existence and influence of the commonalities, we could 
go by traditional investor wisdom to assess past behavior to bet on future: We could 
gather a training set of share prices of a sufficiently long évolution of various shares of 
the portfolio. We could then then estimate a dynamic transformation that is optimal 
in the sense of having the maximum likelihood to hâve generated the training sériés. 
Subsequently, we could search among the maximum likelihood transformations one 
that will maximally inherit, according to some suitable metric, the commonalities of 
the share price évolution process. We could use a predictor that is based on minimizing 
temporal tendencies to err in predicting the training sériés. The set of parameters of 
such a predictor will be a function of the optimal dynamic transformation. Then, given 
a current évolution of the share prices, it should be possible to predict their future 
évolution with a reasonable accuracy.

Independent components versus latent factors

The thesis, as discussed so far, involves estimating a generative model where a set of 
latent variables are transformed to a larger number of measured variables based on 
the latter’s characteristics. To estimate the transformation matrix, the maximal inher-
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itance of the mutually dépendent variation-covariation characteristics was the criterion 
considered.

In a complementary setting, there exists a wide body of literature called indepen- 
dent components analysis or blind source séparation [27, 24], Independent component 
analysis is often called ‘non-Gaussian factor analysis' [61]. In contrast to the objec­
tive of factor analysis, the objective in independent components analysis is to identify 
mutually ‘independent' latent variables.

One of its working philosophy is due to the central limit theorem whereby any 
transformation of the latent variables will be maximally non-Gaussian if it equals one 
of the independent latent variables; hence, latent variables are considered non-Gaussian 
[60]. In contrast, factor analysis stresses on dependencies and Gaussians are readily 
accepted as the latent variables.

In another working philosophy of the independent components analysis, higher pre- 
dictability of a latent sériés component than that of any dynamic transformation of the 
latent sériés components is exploited to sequentially identify the latent variables [26]. 
In dynamic factor analysis as presented in this thesis, higher cross-correlations via com- 
monalities aid predictability. On the other hand, in this thesis, the variation-covariation 
characteristics of the latent variables, their mutual dependence or independence, will 
be assumed known.

Moreover, in this thesis, the transformation of the latent variables will be assumed 
a linear process; therefore, the measured variables are aiso assumed linear processes. 
The focus in this thesis is in estimating a transformation for the latent variables rather 
than identifying the latent variables themselves as done in a blind source séparation 
problem.

1.3 Dynamic and spectral factor models

As the two examples above highiight, the processes that are of our interest generate 
data samples such that each measured variable is free to influence the preceding sam- 
ples of itself and other variables. This emphasizes that the order in the sequence of 
occurrences of the measured samples is rather important and it must be indexed appro- 
priately. It is convenient to attribute the index of the sequence to discrète instants of 
time. This is the reason we call such a sequential collection of correlated data samples 
a time sériés.

In many processes we measure a set of variables at the same instant. This implies 
that every sample of the data is formed by the same ordered set of multiple variables. 
Such a collection of samples is referred to as multivariate data.

This thesis focuses on learning from multivariate time sériés where any measured 
variable in a data sample is influenced by, in general, the rest of the variables in the 
sample and ail the variables of ail the preceding samples. Such an influence could be 
quantified as a function of the lag, which is the number of time instants by which 
two samples differ. So, when a multivariate time sériés is said to display dynamic 
characteristics, the term dynamic attributes its characteristics to be lag-dependent.

In the context of multivariate time sériés, the driving assumption is that a lower 
number of latent variables are transformed to a number of measured variables resulting 
in a latent variable model as illustrated in Figure 1.1. A practical motivation for that 
assumption is that a fewer number of variables will aid simplicity in interprétation, mod-
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eling, and computation. Note, however, that the true latent variable transformation is 
unknown and estimating it is part of the objective of this thesis.

Recall that the characteristics of a measured time sériés are to be modeled. But 
how could simplicity in modeling be aided when unknowns such as latent time sériés 
and variable transformation are injected into the model? In that respect, either or both 
the transformation and the characteristics of the latent time sériés could be assumed 
unknown. Remember, we wish to strictiy control the underlying process which the 
latent time sériés represents and prefer it to hâve characteristics not as complicated 
as those of the measured time sériés. Moreover, if possible, expert opinion on the 
latent time sériés could be invited. Hence, it will be assumed that the latent variable 
characteristics are known and the transformation is unknown.

To enhance simplicity even further, the latent variables will be assumed a multi- 
variate time sériés with lag-independent characteristics whereas it is the transformation 
that is dynamic and unknown. The challenge then is to estimate the dynamic trans­
formation that best generates the measured time sériés from the latent time sériés. In 
this framework, the latent variables upon transformation are assumed to impart the dy­
namic characteristics to the measured time sériés. Hence, given a dataset of measured 
time sériés, such a framework implies estimating the idéal transformation that could 
yield the desired dynamic characteristics. This is illustrated in Figure 1.6, where the 
'desired time sériés’ is enabled to capture the desired dynamic characteristics pertain- 
ing to the measured time sériés; whereas the ‘undesired time sériés' is the différence 
between the measured time sériés and the desired time sériés. The set of parameters 
6 of the dynamic transformation are retained for reference.

Note 1.2. Figure 1.1 depicts the unknown true transformation that generates the 
measured time sériés from a latent time sériés of unknown characteristics. Whereas 
an appropriate dynamic transformation of Figure 1.6 has to be estimated based on 
the measured time sériés and the presumed characteristics ofthe latent time sériés.

Remember that the desired dynamic characteristics of the measured time sériés are 
its commonalities. As introduced earlier and through the examples, maximally captur- 
ing the commonalities is tantamount to learning. It has been decided to keep the latent 
time sériés characteristics known, lag-independent, and simple; they are the underlying 
factors ofthe model. The model which consults the measured time sériés to dynamically 
transform the factors to maximize the commonalities is named the dynamic factor 
model. This concept is illustrated in Figure 1.7, where the term idiosyncrasies refers 
to the undesired time sériés that retains no commonalities. Hence, a dynamic factor 
model is a multivariate time sériés model which dynamically transforms a latent time 
sériés of predetermined characteristics to maximally, in some suitable metric sense, in- 
herit the common dynamic characteristics of a set of measured multivariate time sériés. 
It accepts measured time sériés as input and outputs commonalities, idiosyncrasies, and 
the optimal model parameters.

One possible dynamic characteristic ofthe measured variables is periodicity. There 
could be many periodic dynamic characteristics in the measured time sériés. A period­
icity corresponds to a frequency, which is associated with the number of time sériés 
samples that constitutes the period. Decomposing the measured time sériés into com- 
ponent frequencies is intuitively simple, analytically rich, and practically useful. Such 
a décomposition of a time sériés across ail possible frequencies is called the spectral
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analysis [99]. An inverse synthesis of frequency components to time-domain is aiso 
possible through spectral analysis. This is a motivation to understand the influence of 
various frequencies in the dynamic characteristics of the measured time sériés. As de- 
picted in Figure 1.8, such a frequency spectral analysis of dynamic factor model would 
require analyzing measured and latent time sériés, commonalities and idiosyncrasies, 
and dynamic transformation ail in the spectral or frequency-domain. It will be called 
the spectral factor model, which may be contrasted with the time-domain équivalent 
in Figure 1.7. In that respect. Figure 1.9 depicts the frequency spectral équivalent of 
the dynamic factor model. Note that Figure 1.9 has the same input and outputs as 
the dynamic factor model in Figure 1.7 for they are subjected to spectral analysis and 
its inverse, respectively.

1.4 Learning by maximizing spectral commonalities

The appeal of the frequency-domain approach in many fields of study are mainly due to 
the computational advantages and the physical interprétation it offers [97, 23]. Many 
time-domain processing requirements of a time sériés may be easily realized in the 
frequency-domain; the software and hardware implémentation of such processing is 
widely available [63]. These further motivate, in addition to the theoretical appeal, the 
development of a spectral factor model for learning from multivariate time sériés.

The spectral components correspond to an infinité continuum of frequencies, but 
samples from a discrète time sériés are practically limited. This limits and motivâtes 
targeting just a set of discrète frequencies. But uncertainty is encountered in balancing 
resolution and précision of the spectral components at these discrète frequencies. To 
tackie the challenge, spectral components in small non-overlapping bands of frequen­
cies may be considered. In these frequency subbands, spectral factor modeling might 
be performed by assigning probabilities to various discrète spectral components of the 
measured time sériés. The aim is to estimate a probabilistic spectral factor model that 
is the most likely to affiliate the measured spectral components. For this purpose, 
model parameters that will maximize the likelihood of simultaneous occurrences of ail 
the measured spectral components within a subband will be probed. From ail possible 
maximum likelihood spectral factor models, the one which maximally, in some suitable 
metric sense, inherits the measured commonalities on the dynamically transformed fac­
tors could be chosen. Recall that commonalities are cross-correlations of the measured 
variables. Later in the thesis, their inheritance by the dynamic factor transformation 
will be defined as a very simple and intuitive function of ail cross-correlations of the 
measured variables over ail lags.

Figure 1.10 illustrâtes the strategy for maximum likelihood maximum common­
alities spectral factor model estimation. The spectral components of the presumed 
latent spectra and the given measured spectra are divided into frequency subbands. 
For each subband, maximum likelihood estimation of parameters of the spectral factor 
model will be performed. Two distinct maximum likelihood estimation methods will be 
demonstrated: The first method is an analytical estimation which gives an explicit 
formula for the optimal parameters. The second method is an itérative estimation 
starting with initial guesses of the model parameters that are updated till they con­
verge to possible optimal parameters. Further, for each of those methods, techniques 
to extract those parameters that will maximize the commonalities are devised.

Commonalities of the measured time sériés maximally inherited in some suitable
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metric sense by the dynamic factors allow the model to learn a process. Classification 
of multivariate time sériés measured from various distinct processes is the first of 
our two learning applications. In Section 1.2, the example of classification of MEG 
signais involved in maneuvering a joystick via wrist movements was discussed in detail. 
The various classes there could be regarded as dynamically transformed latent signais 
corresponding to various visual prompts on a computer monitor. There will be several 
example time sériés in a class. For each such example dataset obtained from any two 
processes deemed to be distinct by an expert, two classes of spectral factor model 
examples are built. The models are considered to hâve learned the example processes 
upon maximally inheriting their commonalities on their respective maximum likelihood 
parameters according to some suitable metric. Then, in order to décidé which of 
any two possible processes a new unclassified measured time sériés belongs to, the 
commonalities of the new dataset need to compared with those of the two classes 
of spectral factor models. Based on the discussions so far, the commonalities will 
détermine the dynamic transformation. In that regard, the new test measured time 
sériés will be assigned to the class to which its estimated dynamic transformation 
has the most proximity to. Such a strategy for the classification exercise requires a 
comparator of the dynamic transformations as shown in Figure 1.11. This method 
could be extended to associate a time sériés as belonging to one of any number of 
identified classes of processes.

Prédiction of multivariate time sériés is chosen as the other learning application. 
Once knowledge of the characteristics and the number of latent time sériés variables 
are presumed, a spectral factor model based on a training set of measured time sériés 
could be estimated. Based on the optimal dynamic transformation that maximally, 
according to some suitable metric, inherits commonalities of the measured time sériés, 
a multivariate time sériés predictor could be built . The example of a portfolio of share 
prices that was discussed in Section 1.2 is used for prédiction experiments later in the 
thesis. For a given length of training time sériés, a number of latent time sériés less than 
the number of the measured time sériés are experimented with to build the spectral 
factor models. Using their parameters, a prédiction framework based on minimizing 
the prédiction error given past samples is built. As shown in Figure 1.12, a future 
évolution could be charted for a given current évolution. The prédiction accuracy will 
be validated using the true share prices whenever it becomes available.

1.5 Dynamic and spectral factor models in literature: A 
brief review

It must be mentioned at this juncture that the concept of commonalities and dynamic 
factor model is not very new. In one of the earliest formai studies about dynamic fac­
tor model, its estimation in the Fourier domain was famousiy attempted by [100] for 
advanced control Systems and [104] for macroeconomic forecasting. An idea similar to 
commonalities was promoted by [104] in econometrics literature as "common shocks." 
Like in this thesis, they too state the relation between the spectral density functions 
via a likelihood fonction of the discrète Fourier transform components within disjoint 
frequency subbands. Then, they obtain maximum likelihood parameter estimâtes via 
Fletcher-Powell optimizations and standard hypothesis testing procedures. Flowever, 
they stop short of going much farther than the possibility of infinitely many uncon-
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strained solutions for the spectral factor transformation matrix.
Another line of approach is an approximate dynamic factor model with finite lags as 
was developed in [118]. There, the estimation was performed as the principal compo- 
nents of an expanded set of static factors; their aim was prédiction of macroeconomic 
variables. Their prédiction équations take the form of vector autoregression where the 
estimated static factor components may be directiy plugged in without having to esti- 
mate the Fourier domain parameters as in fully dynamic models.
Recently, [36] changed the landscape of research in this domain substantially with 
their generalized dynamic factor model, e.g., they spell out the extent of flexibility 
allowed for idiosyncrasies and derived the convergence properties of the model parame­
ters as the number of samples and measured variables grow. They focus on forecasting 
macroeconomic variables and the work forms a sériés of highiy acclaimed and rigorous 
treatment of the subject. There are agreements between the parts of the approach to 
the problem in this thesis and theirs in (i) concluding that the principal components of 
the spectral density matrix gives the analytical solution (ii) the idiosyncrasies could be 
mildiy cross-correlated. However, the ideas introduced in this thesis are quite different 
from theirs: e.g., an itérative estimation procedure and a time sériés classification strat- 
egy are provided. Moreover, while this thesis focuses in the multivariate time sériés 
modeling and learning frameworks, they focus on prédiction of latent commonalities. 
In §7.8 of [111] a maximum likelihood estimation estimation of dynamic factor model 
in the spectral domain much like in this thesis is pursued. They use it for analyzing 
fonction magnetic résonance imaging data. Their final analytical solution overlaps with 
the one developed in this thesis and in [36]. But they seem not to share any qualms 
regarding the non-analytical nature of the log-likelihood fonction and does not see 
such a model from the classification or prédiction perspectives. They do not provide 
an itérative solution strategy either.
Among the front-runners of the dynamic factor model was [90] who wanted to estimate 
the latent trajectory of a patient’s State based on vital signais. He rewrote the dynamic 
factor model parameters as a Markovian State model whose estimation was carried out 
via Kalman filter principles.
Now, let us divert the attention to a spectral domain method whose priority was multi­
variate time sériés classification rather than prédiction. In [66], sample spectral densities 
are compared for classifying and clustering épisodes of multivariate time sériés. Their 
experiments involved discriminating between time sériés generated by earthquakes and 
those by explosions. However, they do not consider existence of a low-dimensional 
latent time sériés and, as a resuit, were able to design disparity measures that work by 
comparing the full-rank sample spectral densities. This thesis uses the information con- 
tained in a rank-deficient maximum-likelihood maximum-commonalities spectral factor 
transformation matrix to perform classification.

1.6 Objectives

Based on discussions on the motivation and the premise of this thesis so far, its objec­
tives are broadly divided into developing

1. a multivariate time sériés laterjt variable modeling framework
To meet this objective, dynamic and spectral factor models as well as commonal­
ities are formally introduced and defined in Chapter 4. The maximum likelihood
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maximum commonalities spectral factor model is derived in Chapter 5. An ana- 
lytical form as well as an itérative procedure for estimating such a spectral factor 
model are developed.

2. a multivariate time sériés maximum commonalities learning framework
This objective is achieved by providing multivariate time sériés classification and 
prédiction algorithms in Chapter 6, which exploit the maximum commonalities 
parameters of the spectral factor model.

1.7 Contributions

The following is the list of main contributions of this thesis:

> The most original contribution of this thesis is the development of a commonalities- 
based classification metric in (6.4) that compares overlap of spectral factor model 
subspaces to distinguish multivariate time sériés processes.

> The second most important contribution is the utilization of the estimated com­
monalities in developing a multivariate time sériés prédiction strategy via classical 
vector autoregression on current and past samples; it is detailed in Section 6.3.

The following is the list of supporting contributions of this thesis, which are im- 
provements, interprétations, or alternatives to existing work in the literature:

> Derived an analytical solution for spectral factor model in (5.10) using low-rank 
approximation theorem.

c> Derived an itérative solution for spectral factor model in Section 5.2 using the 
Expectation - Maximization algorithm whose converged parameters that maxi- 
mally inherit the commonalities are extracted by applying the Gauss - Markov 
theorem in Section 5.2.3.

> Obtained the mild cross-correlation property of the idiosyncrasies in Property 5.1 
via Weyl’s theorem.

> Used Wirtinger relaxations for maximizing log-likelihood in Chapter 5.

1.8 Organization

A non-technical overview of the thesis was presented so far. In the two chapters that 
follow, the basics on which this thesis is built is presented.

• In Chapter 2, an essential overview of multivariate time sériés analysis is provided; 
very essential time-domain and frequency-domain analyses are presented there.

• In Chapter 3, parametric estimation methods for probabilistic models concisely 
and as required is discussed.

With much groundwork done with the aforementioned chapters, the two chapters 
that follow introduce and develop the dynamic factor model framework to suit the 
learning framework objective of this thesis.
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• In Chapter 4, a technical introduction and motivation for the concepts of dynamic 
and spectral factor models as well as commonalities and their maximization are 
provided.

• In Chapter 5. an analytical method and an itérative method for maximum likeli- 
hood maximum commonalities spectral factor model are derived.

Subséquent to the development of the dynamic factor model, the learning frame- 
work is provided.

• In Chapter 6, a time sériés learning framework is built using the inherited com­
monalities by explicitly stating algorithms for classification and prédiction of mul- 
tivariate time sériés analysis.

The contributions are tested and possible extensions are discussed in the last two 
chapters:

• In Chapter 7, the methodology and results of multivariate time sériés classification 
and prédiction experiments are presented.

• In Chapter 8, improvements and plans for further research and applications are 
mentioned.
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classification problem.
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207, Springer, 2008.
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in the paper.

(V) Miranda, A. A., Whelan, P. F.: Fukunaga-Koontz transform for small sample 
size problems, Proceedings ofthe lEE Irish Signais and Systems Conférence, pp. 
156-161, Dublin (2005)
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rank space. The features of this paper such as real-valued projections, euclidean 
distance measures, binary classification, etc., are serions shortcomings for com­
paring multiple spectral factor subspaces and to overcome them the classification 
metric in (6.4) was developed.
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1.10 Notations

Herein, notations and conventions used in this thesis are introduced. Unfortunatelely, 
terms whose proper définitions will show up in later chapters only will be mentioned 
here. Nevertheless, it is important to read this section carefully for grasping the treat- 
ment of technical aspects later.

The following convention of using Latin characters is adhered to: Incrémental vari­
ables such as indices are denoted using i, j, k, and l.

Note 1.3. From Chapter 4 onwards, certain alphabets are appointer! to impiy the 
same variable for the rest of the thesis. These are, respectively q and r for the 
latent dimensionality and observed dimensionality. The letters v, x, y, and z are 
used for transformed, latent, measured, and idiosyncratic variables; but they will 
hâve an appropriate meaning depending on whether it appears in Roman, sans-serif 
or boldface fonts.

Use of t for time indices and h for time delays are reserved throughout. The afore- 
mentioned conventions impiy that both scalars and vectors are denoted in small-case. 
Linear algebra drives much of the contributions and a rectangular matrix is aiways in 
capital-case as in X.

Ideas from the basics of probability and stochastic processes are used liberally. A 
sans-serif font such as in x is used to dénoté a random variable and its realization will 
be in Roman font as in x.

Note 1.4. Random variables and vector random variables, either real-valued or 
'complex-valued', will be denoted in the same fashion using a sans-serif font; the 
context will make their distinction clear.

AIso, the sans-serif font will be used to dénoté common mathematical operations or 
fonctions such as log for natural logarithm, p for a probability density fonction, S for 
spectral density fonction, etc.

The standard practice of using a blackboard bold font to dénoté number sets, e.g. 
set of complex numbers C, set of integers Z, etc. are followed. However, a calligraphie 
font will be used to dénoté a group of items such as two classes Ci and C2 and the 
Gaussian family of probability densities A/".

Certain Greek alphabets will dénoté the same variable, fonction, or metric through­
out, e.g., P for mean and T for autocovariance fonction matrix.

Subscripts are used for indices in two capacities: First, they dénoté indices as in 
Xt for the t-th time sample of x. Second, they dénoté a component of a vector or 
a matrix. E.g., xjt is the /c-th component of random variable x and Xij is the f, j-th 
element of matrix X. This gives the possibility to interpret nested subscripts appropri- 
ately. E.g., Xfc, is the t-th time sample of and the inner subscript, i.e., k in will 
be aiways interpreted as the component index and the outer subscript, i.e., t in x^^, as 
the sequence index.

Note 1.5. Other than its usual interprétation as scalar exponent, superscript on 
a fonction or an operator will dénoté the operand, e.g., dénotés mean of the 
random variable y.
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Fourier analysis is a persistent theme in this thesis and boldface, e.g., x(u;fc), implies 
discrète Fourier transform components.

^resented below is a table of certain frequently used symbols and notations:
u\ U' transpose of vector u or matrix U
û, U complex conjugate of scalar or vector u or matrix U
U*, U* complex conjugate transpose of scalar or vector u or matrix U
lîxl, lui absolute value of scalar u] cardinality of set K
Ui:j matrix formed by columns i,i + l,... ,j — l,j of matrix U
det(C7) déterminant of real or complex-valued square matrix U
{uj time sériés due to sequence of random variables ut Vf € Z
Ut realization of a time sériés {ut} at instant t
u(cjj) discrète Fourier transform due to {ui} at frequency Uj
?{U) probability of the event 7/

probability density of (a possibly vector) random variable u
P order of vector autoregression

expectation with respect to p"
mean of (vector) random variable u

ru variance (covariance matrix) of (vector) random variable u
pu,v cross-covariance (matrix) of (vector) random variables u and v
acvf autocovariance function
'Th acvf of univariate {uj} at lag h

acvf of (univariate or multivariate) {ut} at lag h
i imaginary operator
I, identity matrix of size q x q
diag({7) setting off-diagonal éléments of U to zéro
IIc^IIf Frobenius norm of matrix U
T Fourier transformation; discrète Fourier transform
iid independently and identically distributed
(x) A posteriori mean of x
L log-likelihood function
V a dataset
T length of a time sériés realization
J number of frequency subbands
K number of relevant nearest neighbors
w dynamic factor transformation matrix
w spectral factor transformation matrix
w maximum likelihood W
w maximum commonalities W

spectral density function of {ut}
sample spectral density function of {ut}
maximum likelihood
maximum commonalities S"
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MEG signais

Figure 1.3: MEG signais corresponding to ten spatial spots Vl-VlO of the brain upon a 
particular movement of the wrist.

Figure 1.4: Among the two classes, a test measured signal is associated to the one to which 
its commonalities are closest to.
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Figure 1.5: Daily stock prices in Deutsche Mark of six German companies between 
01/01/1983- 30/12/1993 [6],
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measured
time sériés undesired time sériés

Figure 1.6: Dynamic transformation, whose parameters are summarized by 6, of the latent 
time sériés will consult the measured time sériés to décomposé the latter into 
desired and undesired time sériés.
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measured
time sériés

Figure 1.7: According to some suitable metric, the dynamic factor model allows the dynamic 
transformation to maximally inherit the commonalities from the measured time 
sériés; their différence forms the idiosyncratic time sériés.

measured
spectra

Figure 1.8: The spectral factor model expresses dynamic factor model in frequency-domain.
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measured
time sériés

{time instants)

spectral
analysis

measured
spectra

(frequencies)

Spectral
Factor
Model

parameters
(frequencies)

WW

idiosyncrasies
commonalities

{frequencies)

inverse
spectral
analysis

-► idiosyncrasies 
► commonalities 

{time instants)

^ parameters 
{time lags)

Equivalent of a dynamic factor model

Figure 1.9: An équivalent of the dynamic factor model is built by sandwiching the spectral 
factor model between spectral analysis and its inverse operations.
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Commonality maximizing spectral factor transformation

Figure 1.10: Maximized commonalities for a finite j number of individual frequency bands 
are obtained from amongst the family of maximum likelihood spectral factor 
model parameters analytically and iteratively.

Process 1

Figure 1.11: A test time sériés is associated to a class of time sériés if that class bas the 
closest proximity, in terms of the commonalities of its examples, among ail 
classes to the test time sériés.
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Figure 1.12: A predictor for the measured time sériés is built using parameters pertaining to 
maximally inherited commonalities of a training sériés. Accuracy of prédictions 
based on current samples of the measured time sériés as evidence is compared 
with its future samples.
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Chapter 2

Multivariate time sériés 
analysis: Some essential 
notions

An OverView of a modeling and learning framework for multivariate time sériés was 
presented in Chapter 1. In this chapter, some notions on multivariate time sériés 
analysis in time and frequency domains are succinctiy introduced; tools and conventions 
used herein are essential to appreciate the contributions later in the thesis. Although 
they are widely available in textbooks, they hâve been adapted appropriately to suit 
this thesis.

In Section 2.1, a multivariate time sériés model and the concept of weak sta- 
tionarity are formally defined; only those time sériés that are weakiy stationary are 
considered throughout this thesis. Weak stationarity requires defining the autocovari­
ance fonction of a time sériés. Autocovariance characteristics of a few relevant types 
of stationary multivariate time sériés are presented.

In Section 2.2, frequency or spectral domain concepts belonging to Fourier analysis 
are introduced. The motion of a simple pendulum is used as an example to motivate 
the présentation of Fourier sériés; this is subsequently extended to the Fourier trans- 
form. Clearly, this example to introduce Fourier analysis is a détour to a continuous 
time process; but it will enhance understanding of spectral domain tools, notations, 
and définitions.

In Section 2.3, the discrète time process is introduced as a limiting case of contin­
uous time processes; this leads to discrète time Fourier transform. Discrète time 
Fourier transform gives a periodic and continuous spectrum and it underpins impor­
tant developments in subséquent sections. There, discrète Fourier transform of a 
discrète time process is aiso discussed.

In Section 2.4, after having defined time and spectral domain characteristics of 
a deterministic process, spectral analysis of stationary time sériés is presented. The 
two most important ideas that need to be taken from this chapter are presented next: 
First, the relation between autocovariance function and spectral density fonction 
is simpiy that of a Fourier transform. Second, the probability distribution of discrète 
Fourier transform components of a linear process is complex-Gaussian within small 
subbands of frequencies. The first idea is a direct application of Fourier analysis 
derived in earlier sections. For the second idea, the asymptotic theory of spectral
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estimâtes is involved. In Section 2.5, therefore, the asymptotic probability distribution 
fonction of discrète Fourier transform components is provided without proof.

2.1 Temporal analysis of stationary processes

In this section, an introductory review of the time-domain or temporal analysis of 
time sériés is performed. It starts by adapting some définitions from the literature of 
random processes [29, 68, 86, 47]; the presented définitions might be termed differently 
by various authors eisewhere in the literature.

An infinité sequence of random variables forms a random process. Then, a vector 
random process is defined as an infinité sequence of vector random variables that is a 
set of random variables maintaining the same order of the vector components in every 
realization.

Définition 2.1. A (multivariate) time sériés of a (vector) random process is a 
connected subsequence formed by its constituent (vector) random variables.

A time sériés is called so because the index of the sequence is often attributed to time 
instants. If yt is the random variable at time instant t € Z of a random process of 
interest, then {yt}, t = 1,... ,t shall be called a r-length realization of a time sériés 
whose i-th sample is yt. An r-dimensional vector random process generates an infinité 
sequence {yt} of r-dimensional vector random variables yt = [yij • • •y^t]^ where yi^, 
t = 1,... ,r are the component random variables at time instant t € Z. Figure 2.1 
selects a realization of a r-length r-variate time sériés whose f-th sample is the vector 
yt €W.

It may now be implied that when referring to the term ‘process’ in Chapter 1 in a 
broad sense, it meant the vector random process underlying a multivariate time sériés. 
On similar lines, the term ‘model' there referred to the joint probability distribution 
function of the samples of the time sériés; this is because it is a set of random variables 
that is dealt with. Then, the model of a process corresponding to a r-length r- 
variate time sériés requires evaluating the r x r-dimensional Joint probability distribution 
function P(yi < ci, ..., yr < c,-) any constant vector ct € t — l,...,r, 
where P dénotés probability and the comparison of vectors are component-wise. Of 
course, direct évaluation of such a probability distribution is very unwieidy. Therefore, 
restricting the scope of the studies and bringing forth assumptions to simplify the 
process is inévitable for modeling a process generating a multivariate time sériés.

Let a few usefui terms associated with random variables be first defined [95].

Définition 2.2. The probability density function p" of a random variable u is 
defined as p"(a) = ^P(u < a) Va € M, wherever the dérivative exists.

In the above définition, p"(a) is any positive finite real number wherever the dérivative 
does not exist. Then the joint probability density function Qf ^ random vari­
ables ui,..., Ur may be given by p^^i' -.ur (a^,..., Or) = 5'‘P(ui < ai, ..., Uj. < Or) 
/dai ■■■ dür Va = [ai ••• Or]' € and p‘'i’-’“''(ai,..., a^) is any positive finite 
real number wherever the dérivative does not exist.
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Figure 2.1: The second sample 2/2 of a realization of a r-length r-variate time sériés {yt} is 
highiighted.

Définition 2.3. The multivariate probability density function p“ of an r- 
dimensional vector random variable u = [ui ■ • • is defined as the joint 
probability density function of its r component random variables, i.e., p"(a) = 
pUi,...,Ur(Ql^ . . . , ür) Va = [ai • • • ür]' G M'’.

Définition 2.4. For an r-dimensional vector random variable u whose probability 
density function p"(6) exists V6 6 R'", the expectation of a function g{u) with 
respect to p“ is defined as E‘^[p(u)] = p'^{b) db.

Définition 2.5. The mean 6 R'" of an r-dimensional vector random variable u 
is defined as its expectation with respect to its r-variate probability density function,
i.e.,
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Définition 2.6. The variance (covariance matrix) F" of the (r- dimensional 
vector) random variable u is defined as the expectation, with respect to its (mul- 
tivariate) probability density function p“, of the (outer) product of the (vector) 
random variable with itself about its mean , i.e., F^' = E" [(u — p'^) (u — p'^)'].

Définition 2.7. The cross-covariance between the (vector) random variables 
u and V is defined as the expectation, with respect to their joint (multivariate) 
probability density function of the (outer) product of the random variables 
about their respective means p'^ and p'', i.e., F"’'' = [(u — p^) (v — /x'')'].

Définition 2.8. The cross-covariance between any two constituent (vector) ran­
dom variables of the same (vector) random process is called the autocovariance 
function between the (vector) random variables.

Therefore, the autocovariance function (acvf) between the r- dimensional vector ran­
dom variables yt and y s 'dt,s is

(2.1) Fy^-y» = Ey‘’y^[(yt - py^){y, -

Note 2.1. When it specifically concerns a univariate time sériés {yt} and not a 
multivariate time sériés, its acvf will be denoted by Then, for a multivariate
time sériés {yt} — {[yity2t yrt]^}. tfis element of its acvfVy^’y^ may
be written as 7^** , which according to Définition 2.7, may be interpreted as the
cross-covariance between yt^ and yj^ \/i,j E 1,..., r and Vt, s E Z.

Définition 2.9. A (vector) time sériés {yt} Wt E Z is weakiy stationary if the 
mean /x^* is a constant (vector) py and its acvfVy^’y^ between the (vector) random 
variables yt and y^ Vs € Z dépends on s and t only through s — t.

The variable h = s — t of the acvf will be referred to as the lag. It follows from 
Définition 2.9 that the acvf between yt-^-h and yt of a weakiy stationary time sériés
{yx} is

(2.2) Fy ^ Fy^+'^’y* = Ey'+'^^y* [(yt+^ - P^)ivt - p^Y] vh e z.

It is easy to verify that = T-h^’ which gives rise to the following property of the 
acvf:

Property 2.1. A weakiy stationary acvf is transpose symmetric about h = 0, i.e.,

(2.3) (ry' = rüj.

In this thesis, the focus is on time sériés that are weakiy stationary and the main 
references on that topic are [102, 99, 111, 19, 20]. Now, take a look at a few examples 
of weakiy stationary multivariate time sériés.
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Property 2.2. A weakiy stationary r-variate time sériés {zt} is idiosyncratic if any 
two components and \fh e Z, i ÿf j of its corresponding vector random 
variable zt = [zi^ z^J Vt 6 Z hâve zéro cross-covariance, i.e., 4

G M ;s zéro whenever i ^ j yi,j G 1,..., r and h e Z.

Note 2.2. The diagonal éléments of an acvfT'^ of the vector random variable 
Ut — [ui^ U2t • • • Urt]' will be written simpiy as 7)^’ ^ €. 1,..., r.

The acvf of an r-variate idiosyncratic time sériés {z(} due to vector random variable

A

= 0 Zr,Z2
Ih = 0

Figure 2.2: The structure of the r x r acvf matrix of an r-variate idiosyncratic time sériés 
{zt} shows zéros off-diagonal due to no cross-correlation between its components. 
The plots are hypothetical and interpolated for, an otherwise discrète h, for clarity.

Zt = [zl^ ... Zrt\ has an r X r matrix structure shown in Figure 2.2. Following Note 
2.2, the cross-covariance 7^”^^ of Property 2.2 may be written as the acvf 7^' of Zj 
whenever i — j, whereas 7^'’^'’ = 0 is zéro otherwise. This means that the off-diagonal 
éléments of such an acvf are aiways zéro. Let a spécial case of an idiosyncratic time 
sériés whose each diagonal element of the acvf is an impulse function be now defined.

Définition 2.10. For a weakiy stationary (vector) time sériés {xt}, if (the compo­
nents of) Xt are independently and identically distributed \/t € Z, then {xt} is said 
to be (multivariate) white noise.

Note that the acvf of a ç-variate white noise {xt} is F^ = 0, V/i 7^ 0 and 
det(FQ) 7^ 0. Définition 2.10 implies that mean-subtracted white noise components 
may be defined completely by their component variances — af \/i — l,... ,q 
so that = diag((Ti,..., CTq) V/i E Z, which is said to be isotropie if ai — a,
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i = 1,2,..., g. A spécial case of the zero-mean isotropie white noise is the following: 
If the component random variables of a ç-variate white noise {x<} hâve zéro means 
and unit variances so that = diag(l,..., 1) G G Z, then {xj} is termed
a zero-mean unit-variance white noise. The white noise is used as the ingrédient 
in many weakiy stationary time sériés process models because of the simplicity of its 
aevf. Defined below is one such model; refer §11.1 of [20] or §9.2 of [79] among many 
references for its details.

Définition 2.11. For a q-variate zero-mean white noise {xj} Vf G Z and matrices 
Cj G Vj G Z with absolutely summable éléments, a linear process is defined 
as the q-variate time sériés

(2.4) Ut —
jez

which is weakiy stationary with zéro mean and aevf

(2-5) rï = ^c,.+ftr5c'.
jez

2.2 Spectral analysis of continuons processes

The purpose of this section is to introduce certain Fourier analysis concepts required 
for this thesis.

Note 2.3. This section deviates momentarily to discuss continuons time processes; 
the time index is t G everywhere eise in this thesis t E

Consider the motion of a simple pendulum as an example of a periodic continuons 
process. It is assumed for simplicity that the mass of the string attached to the bob 
of the pendulum is negligible. The oscillation is restricted to a plane so that the 
constant string length and an angle, viz., the instantaneous angle that the string forms 
with respect to its equilibrium position, are sufficient to describe its motion. It is aiso 
assumed that the amplitude a, which is the maximum displacement of the bob from 
its position of equilibrium, is very small relative to the length of the pendulum. Refer 
to Figure 2.3; let r be the time period of oscillation so that is the frequency of 
oscillation. The standard association of 27t radians to be équivalent to one complété 
oscillation may be made. Let 4> radians be the part of 27t radians of an oscillation the 
pendulum has completed at time f = 0; its sign dépends on the choice of direction of 
reference of the bob's trajectory. If it is assumed that the pendulum is undamped by 
any kinds of friction and disturbances, then the pendulum's displacement with respect 
to the equilibrium position of the string at time f 6 M is yt = acos(27r|: -t- ^). Basic 
trigonométrie identities enable writing yt in various combinations of sinusoids, e.g.,

(2.6) yt — acos(27rf/r) -f- 6sin(27rf/T),

where a = acos{^) and b = —asin(</)).
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Figure 2.3: The motion of the simple pendulum registers a continuous fonction based on the 
displacement of its bob.

Just seen is the décomposition of a basic équation of oscillation into two sinusoids 
of frequency . Consider that yt was expressed as a weighted sum of two basis func-

i,-
tions; this is because the sinusoids here are orthogonal functions, i.e., cos(27ri/r)

~2’’^
sin(27rt/r) dt = 0. The necessity of orthogonal functions in many problems is anal- 
ogous to the necessity of orthogonal coordinate axes in expressing the position of a 
point in a Cartesian plane.

The décomposition of a time-domain process to its frequency components is known 
as Fourier (spectral) analysis and the définitions presented in this and Section 2.3 
on this topic can be found in references such as [99, 44, 93, 89]. Fourier analysis is 
based on one of the most important contributions to the sciences originally formalized 
by Joseph Fourier in 1807 that any ‘well-behaved’ deterministic continuous periodic 
function yt could be expressed as a sum of orthogonal functions if and only if the or­
thogonal functions are sinusoids, where a 'well-behaved' function satisfies the following 
condition:

Définition 2.12. A function yt^t eR is said to be absolutely summable if

(2.7) \yt\dt < oo.

The unique décomposition of such a deterministic periodic function yt into a possi- 
bly infinité number of sinusoids is called its Fourier sériés représentation: yt — ^

-T
cos(27rni/r) +bn sin(27rnt/r)), where ^ yt cos{2rmît/t) dt,

2'^
-T

m = 0,1,2,... and bi — ^ f-ir 2/tsin(2Z7rf/r) dt, l = 1,2,3,— It is often con-
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venient to use Euler identity e'^ = cos{0) + isin(0) to reach the following définition 
which holds for complex-valued functions also.

Définition 2.13. The Fourier sériés représentation of a deterministic continuons 
periodic fonction yt G C Vf G M satisfying (2.7) is

OO
(2.8) yt=

m=—oo

where Cm € C Vm eZ is 

(2.9)
T-J-kr

Note that if Cm — 'dm G Z, then the fonction yt G M, eise yt E C.
Involve frequency spacing Au = 27t/t and write the Fourier sériés coefficients as

^ ~ ^ I-l Substituting these coefficients back into the sériés
2'’’

sommation gives yt == Ylm=-oo W /Ji Suppose
2“

f\r
y(nAu) = / yte-'"‘^“df,

then yt = J2m=-oo ^ y(»^Au) As r ^ 00 or Au ^ 0,

1 r°°
yt = 7T y(u)e'^“du.

Ju=—oo

This is regarded as the inverse relation of a very important transform in mathematics 
that is defined below. The term y(u) in the above development is the resuit of limiting 
Au ^ 0 in y(nAu) and acquires the following définition:

Définition 2.14. Fourier transform of a fonction yt Vf G M satisfying (2.7) is

(2.10) yte '*“df.

2.3 Spectral analysis of discrète processes

In the Fourier transform relation of (2.10), a continuons fonction defined for f G R is 
dealt with. Consider the continuons time fonction yt Vf G R such that yt = 0 whenever 
f 7^ mAr Vm G Z for some constant Ar > 0. This is équivalent to sampling the 
continuons fonction yt Vf G R at discrète instants separated by Ar and zéro at ail 
other instants. Since only discrète instants are relevant here from the Fourier transform
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perspective, yt would be called a discrète time function. Therefore, the discrète time 
Fourier transform using (2.10) becomes

OO

T7l= —OO

Dénoté ym — î/mAr 3nd refer to it as the m-th sample. Then a sufficient condition 
for the existence of such a relation is |y(n)l < oo, i.e., | Xlm=-oo <
Ylm=-oo \y^\ < oo. This results in the absolute summability condition

CO

(2.11) \ym\ < oo.
m=—OO

Using angular frequency lj as uAt — 2tîüj in the above development results in the 
following définition of Fourier transform for discrète time functions.

Définition 2.15. The discrète time Fourier transform of a complex-valued dis­
crète function ym ^rn € Z satisfying (2.11) is

OO

(2.12) y{u)= Y yme-''^""^-
m=—cx>

Although real-valued discrète functions were being discussed, the discrète time Fourier 
transform is valid for complex-valued functions also. Furthermore, since = 1 Vfc G 
Z, the following property holds:

Property 2.3. The discrète time Fourier transform has unit periodicity, i.e.,

(2.13) y(u;) = y(A:-F w) Vfc G Z.

Another easily vérifiable property, which holds true for any absolutely summable dis­
crète or continuous function, is due to the following theorem; refer §22.1 of [41] or 
Chapter 3 of [72]:

Theorem 2.1. According to the Plancherel-Parseval theorem for the discrète 
time Fourier transform y (tu) Vu; G [—of the function ym'dm G Z,

(2.14) Y = /" lyMPdu;.
meZ ~2

Just as the discrète time Fourier transform was defined being valid for complex-valued 
discrète functions, the Fourier sériés discussed earlier in (2.8) and (2.9) is applicable 
to any complex valued periodic function defined over any continuous domain. Flence, 
replacing (y,—^) (2.8) makes it équivalent to (2.12). In other words, the
discrète time Fourier transform of a sequence of equally spaced samples of a real func­
tion is also a Fourier sériés whose coefficients form the sequence. Therefore, allowing
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the same replacement in (2.9) gives the differential —do; and the intégral limits
t = ±\t üj = resulting in the following inverse of the relation in (2.12):

Définition 2.16. The inverse discrète time Fourier transform of a complex- 
valued continuons function y(cj) Vu; € M is defined as

(2.15) Vm _ / ^ „i27TTm<j~ J-h y(w)dw.

The Fourier sériés gave discrète frequency components of a continuons time pro- 
cess and the discrète time Fourier transform gave continuons frequency components 
of a discrète time process. On the other hand, the following transform gives discrète 
frequency components of a finite realization of a discrète time process:

Définition 2.17. The discrète Fourier transform of a sériés {y*}, t = 1,... ,r 
is defined as

(2M) =

t=l

at discrète frequencies uj = ^, j = 0,... ,t — 1 and the inverse discrète Fourier 
transform at the discrète instants is defined as

(2.17) =
t=l

The équivalent of Theorem 2.1 for the discrète Fourier transform is as follows [17]:

Property 2.4. According to the Plancherel-Parseval theorem for the discrète 
Fourier transform y{tOj) of the sequence yt'^j,t = 1,..., r,

(2.18) èlytP = èly(‘^j)l^-
t=i j=i

In this thesis, for a given finite length realization of a multivariate time sériés, certain 
asymptotic properties of the discrète Fourier transform will be used to define, dérivé, 
and optimize the dynamic transformation of the latent time sériés into commonalities. 
These asymptotic properties will be discussed in Section 2.5. The Plancherel-Parseval 
theorem will enable measuring and containing the commonalities that are retained 
during the transition between the time-domain and the frequency-domain. In Section
2.4, how the frequency-domain analysis finds utility in a stationary process will be 
discussed. Specifically, in Theorem 2.2, it will be learned how the Fourier transform 
relates two important statistical properties of a time sériés.
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2.4 Spectral analysis of stationary processes

Suppose the pendulum motion expressed in (2.6) is subject to random amplitude a 
and phase cj) disturbances so that (a, 6) become uncorrelated zero-mean unit-variance 
random variables (a, b). Moreover, the discrète time domain is considered so that the 
équation of motion in (2.6) takes the form yj = acos(27ro;t) + bsin(27roji) Vt G Z; 
it \will be called the ‘perturbed pendulum.’ Its mean = E^’*^[yt] = 0. The 
acvf is 7^ = E^’^[yt_|./iyt], \which due to non-correlated a and b takes the form 
7^ = E^’*^[a^ cos(27ro;(t + h)) cos(27ra;i)] + E^’^[b^ sin(27ru;(t + h)) sin(27T6jt)] V/i € Z. 
Since it was assumed that E^[a^] = E*’[b^] = 1, what one gets^ is 7^ = cos(27r6u/i); 
spectral analysis of such an acvf could be found in [111, 19]. Since and 7^ are in- 
dependent of t, it is found that {yj} is weakiy stationary. And, since weakiy stationary 
{yt} does not satisfy (2.11), its Fourier transform simpiy does not exist.
Using Euler's identity, the acvf of the perturbed pendulum is written as a summa- 
tion 7^ = aig{üJi), where g{u) = k = 2, ui = -u, lü2 = w. and
Qi = a2 = ^. But such a summation with a general g{ui) has an intégral repré­
sentation Yli=i = f ff(^) d&y(u;), where 6^(10) = < w) is a
monotonically increasing fonction bounded between ©y(—cxd) = 0 and ©^(oo) = 1, 
and l{u)i < üj) is the step fonction which jumps from zéro to unity at a; = Wj.
However, due to periodicity of g{u>) = in the above example of a perturbed

1

pendulum, the acvf is essentially represented in the intégral form = /îi
2

d©y(u;), where ©^(cj) is a monotonically increasing fonction bounded between 
while ©''(—^) = 0 and ©^(^) = 7q- The reader is referred to [99, 20] for the details 
of this représentation and other properties that ©^(a;) adhères to. The notion carried 
forward is that whenever the derivate sv(a;) = ^©^(w) exists, it is possible to write 
the acvf as

(2.19) gi27ro)/l s^(cu) àu}.

But if there are discontinuities in 6^(0;), e.g., the perturbed pendulum, it will not be 
possible to write the acvf according to (2.19) because sy(u;) does not exist.
Now refer back to (2.15) to see its analogy with (2.19) which requires that a condition

00
(2-20) |7^| < 00,

h=—oo

équivalent to (2.11) be satisfied by 7^. This enables the following theorem and défini­
tion; refer §4.3 of [20]:

"^Using the trigonométrie identity cos(0i — 62) = cos^i cos^2 -I- sinôi sin^2
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Theorem 2.2. For acvf 7^ ofa weakiy stationary time sériés {yt} E Z satisfying
(2.20) , according to Herglotz's theorem, the spectral density function s^{u) at 
the frequency u; G R exists and is defined as the discrète time Fourier transform of 
its acvf, i.e.,

00
(2.21) s’(w)&

/l=—00

In this context, it may be noted that the perturbed pendulum does not satisfy the ab- 
solute sum condition because J2'h=-oo ~ 'Ï2’h=-oo \ cos{2nfh)\ = 00 and it does 
not hâve a spectral density function.
In light of (2.21) and similar to Property 2.3, the following property of the spectral 
density function is arrived at:

Property 2.5. The spectral density function has unit periodicity, i.e., s^{lü) = 
s^k + üj)^k e Z.

For an r-variate time sériés {y^} Vt € Z, where yt = [yi^ y^J', let 7^”^‘’ be the 
(f,j)-th element of its autocovariance matrix F^. Referring to §1.1.2 of [102], the 
condition équivalent to (2.20) for vector random variables becomes

00
(2.22)

h=—oo

which is valid Vf,j G l,...,r in defining the matrix of spectral density function 
S^{lü) g whose (z,j)-th element is Then, due to the development of
Property 2.1 and the relation (2.21), the following is easily got:

Property 2.6. The spectral density function S^(cu) is Hermitian symmetric about 
uj = 0, i.e.,

(2.23) (Sy(w))' = S^-tü) = S^{üo).

Referring to Theorem 2.7.1 of [18], Theorem 4.4.1 of [39], and [92, 34], another im­
portant property of the r-variate time sériés follows:

Property 2.7. If {yt} 'it EÏ is a linear process, then |Sy(a;)| 0 Va; G [0,1].

The above discussion is very relevant to the intention in this thesis to assess the com- 
monalities of a multivariate time sériés via its spectral density function. For the purpose 
of learning multivariate time sériés based on the commonalities, the hope is to take the 
following approaches: Firstly, two multivariate time sériés are compared by evaluating 
how similar the components of their spectral density functions are. Secondly, the fu­
ture évolution of a multivariate time sériés is predicted by estimating the acvf, via its 
spectral density function, that inherits maximum commonalities.
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2.5 Asymptotic properties of linear processes

In practical problems, it is infeasible to bave a dataset consisting of an infinité collection 
of samples to compute true statistical properties such as mean, acvf, variance, etc. 
Characteristics of a time sériés bave to be estimated from a given finite lengtb subset 
of its realization. Witb a limited number of samples, sample estimâtes may be ques- 
tioned for tbeir reliability. Tbe field of study of asymptotic statistics strives to design 
properties, procedures, tests, and estimators in tbe limit tbat tbe sample size becomes 
large [122, 58]. A broad review of tbe asymptotic techniques will not be resorted to; 
bowever, presented below are tbe essentials for tbe tbesis's purposes.

Consider tbe scénario in wbicb, due to computational or limited access to data, time 
sériés characteristics bave to be gleaned from one realization forming a finite lengtb 
data stream. For a weakiy stationary time sériés, these characteristics include its mean 
and acvf for wbicb, first, tbe following asymptotic properties referring to §11.2 of [20] 
are presented:

Theorem 2.3. For a finite T-length realization [yt] t — l,...,r of a weakiy 
stationary time sériés {yt} t E Z whose acvfV}^ satisfies (2.22), the sample mean

(2.24) ÿ = -^y^
^ t=i

converges in a mean square sense to the population mean

Theorem 2.4. For a finite T-length realization [yt] t = l,...,r of a weakiy 
stationary time sériés {yt} f € Z with sample mean y, the r x r sample acvf

fy = / T^t=iiyt+h-y){yt+h-yY o<h<T-i,
^ \ lm=-h+iiyt+h-y){yt-\-h-yï -T + i<h<o

converges in probability to the population acvfV}^.

With the sample acvf for finite lags, the best hope is for estimâtes of the spectral 
density fonction S'^{uJk) at finite discrète frequencies ^ V|A:| = 0, ...,r — 1
via inverse discrète Fourier transform. For an otherwise continuons spectral density 
fonction 8^(0;), 0 < w < 1, those estimâtes at discrète frequencies is an approximation 
of S'^{üJk) dépendent on how good the sample estimation F)^ is. Therefore, in what 
follows, described is the asymptotic property of S^{u>) near any target frequency uj — 
Hj Vj = 0,... J - 1, or 0 < cUj < 1 and j < r.

It starts by splitting a period of cj € [0,1) of the spectral density fonction into j non- 
overlapping frequency bands. Suppose there is a total of r = nj discrète frequencies 
tbat are considered for the splitting so tbat each band will bave n discrète frequencies. 
By the 0-th frequency band represented by the target frequency cvq = 0, implied are 
n discrète frequencies wo.i >0. Z = 1,..., n closest to 0. By the j-th frequency band 
ojjj V/ = 1,... ,n; j — 1,..., J — 1, implied are n frequencies closest to the target 
frequency uij = j/j and between Uj — b and ojj + b, where 26 = n/j is called the
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Figure 2.4: The scheme of splitting the frequency range uj = [0,1) into j non-overlapping 
subbands containing n discrète frequency components each.

bandwidth. Suppose 2b < uj\ — b < + 6 < 1 and n j \s choosen so that the
bandwidth is very low.

For proceeding further, the following définitions are needed; refer to [45];

Définition 2.18. An r-dimensional ‘complex-valued vector random variable' 
^ — [4i • • • ^r-]^ = 3^(4) + '^(0 € defined as the 2r-variate vector random
variable rj = [3î(^i) ^(6) ' ‘ ‘ ^(^r) G formed by its real and imaginary
components.

As established in [45], the covariance matrix of an r-variate complex valued vector 
random variable ^ is isomorphic, i.e., équivalent upto a row and a column permutation, 
to the covariance matrix F'^ of its corresponding 2r component vector random variable 
Tj via

F« « 2F'?; (F^)-i «

whereas the means are isomorphic via ~ pP. AIso, it was shown there that det(F^) = 
2'‘(det(F^))^ and ^*F^^ = rj'r^r). Then, follo\wing the convention of a Gaussian 
distribution of an r-variate random variable u with mean a and covariance matrix B 
denoted by

(2.26) A/’(u|a, B)
exp (—5(u — a)'.B ^(u —a)) 

{2ttY (det(fî))^

the following définition could be arrived at:

38



Définition 2.19. The r-variate ‘complex Gaussian probability density' of a 
complex valued random variable u with mean o € C'" and covariance matrix B € 
(^rxr defined as

(2.27) A/c(u \ a,B) ^
exp(—(u —a)*S ^(u —a)) 

tt'’ det(5)

Now an essential theorem for this thesis is presented; refer Theorem 4.4.1 of [18], §C.2 
of [111], and [53].

Theorem 2.5. The discrète Fourier transform components ofa realization of an r- 
variate linear process at frequenciesujj^i such that lim \u!j—ujj^i\ —> 0 VZ G 1,..., n;

J->oo
Vj = l,...,j » n are iid samples of an r-dimensional ‘complex-valued vector 
random variable' yj at frequency ujj € [0,1] with a probability density

(2.28) A/c(n I 0,Sy(wj)), 
AT(u|0,2Sy(u;,)),

LOj € (0,1)
Uj E {0,1}.

Theorem 2.5 furnishes a probabilistic model for discrète Fourier transform samples 
obtained from a finite realization of a time sériés of a linear process. The theorem simpiy 
recommends that discrète Fourier transform components within a ‘smalT bandwidth 
near a target frequency ujj is Gaussian with the covariance matrix equal to the spectral 
density function at zéro frequency the covariance matrix is twice 5^(0).

In order to use this theorem, the following procedure is adhered to: Given r samples 
of a time sériés realization, first compute the r-length discrète Fourier transform y(cufc), 
A: = 0,..., r — 1. Then, n discrète Fourier transform components y{cüj^i), Z = 1,... ,n; 
j = 0,1,..., j — 1, contained in the j-th subband may be assigned as

(2.29) : \ùjj - Uj^i\ < nr“^; n < j.

For the j-th frequency band, the sample covariance matrix is computed as

(2.30) S^uj) = ^ ^(y(cjj,i) - y(cjj))(y(ijj^i) - y(u;j))*,
” 1=1

and

1=1

is the sample mean of the discrète Fourier transform y(uik) and ujj — b < < vjj + h.
To ensure robustness of the estimate S^(cuj), typically, one would aiso want to maintain

(2.31) n > r^, 

refer [106, 12].
It could be shown, as done in §4.2 of [18] or §12.4 of [25] that for a linear process

(2.32) lim E^[S^ui \ n)] = 5^(0;) Vw € [0,1).
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Hence, while maintaining j » n, a sufficiently large n should provide an unbiased 
estimate of through (2.30). This process is given in Algorithm 1, where care
should be taken to ensure that there are sufFicient subbands as required by Theorem
2.5.

Algorithm 1: Préparé discrète Fourier transform subbands 
Input: î? = {yt},t = l,...,T; yteW;n;j;
Output: {Sy(wj)}; j = 1,... ,j] l = 1,... ,n;

compute yt y(wfc): Wfc = 7.A: = 0, using (2.16);
assign y(wj,/); j = 1,..., j; Z = 1,..., n using (2.29); 
estimate S'^(ujj) using (2.30);

2.6 Summary

This chapter introduced certain frequently sought after notions pertaining to time 
and frequency domain analyses of time sériés. These notions include acvf, spectral 
density fonction, discrète Fourier transform, white noise, etc. The relation between the 
spectral density fonction and the acvf was recapped on. AIso introduced were some 
of the notations adhered to for the remaining chapters. As discussed, the spectral 
density fonction of a stationary time sériés is the Fourier transform of its autocovariance 
fonction. The discrète Fourier transform components of a linear process within a 
small bandwidth around a target frequency is approximately complex-Gaussian with 
mean zéro and covariance matrix equaling the spectral density fonction at the target 
frequency.

Our goal for this thesis is to model and learn a measured multivariate time sé­
riés by dynamically transforming a low-dimensional latent time sériés. The hope is to 
use classical probabilistic modeling concepts introduced in the next chapter to achieve 
this goal. Most of those concepts will be based on fitting popular probability density 
fonction models on time and lag independent data; but it is time sériés data that is 
dealt with. In order to elicit a similar and manageable probability density fonction that 
applies to a wide class of time sériés, the asymptotic theory of discrète Fourier trans­
form components was approached. This is because those components within a small 
bandwidth may be considered as realizations of a complex-valued Gaussian vector ran- 
dom variable. This enables the possibility of applying standard probabilistic modeling 
techniques, as reviewed in the next chapter, to multivariate time sériés modeling.
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Chapter 3

Analytical and itérative factor 
modeling

Modeling a process which generated a given multivariate time sériés dataset for the 
purpose of learning motivâtes this thesis. In Chapter 2, the essential time sériés analysis 
tools that are needed in the modeling were presented; whereas in this chapter the 
éléments of building the model itself will be discussed. Models with parameters that 
could be tuned to fit the statistical characteristics of the dataset at hand will be chosen; 
this tuning is called parametric estimation. It may be seen as a limitation because it 
warrants assumptions on the type of the data génération process involved. However, 
essential précautions will be taken by modeling on a dataset that is représentative 
enough of the process. Moreover, in order to avoid any overfitting, learning methods 
which caution when wide déviations from the assumptions on the model and data are 
detected will be used.

The treatment of this chapter from the rest of the thesis has one main différence; 
here, any temporal corrélation of the data samples in the given dataset is ignored. Yet, 
later on in the thesis, the parametric modeling techniques presented herein with the 
time sériés techniques of Chapter 2 will be utilized to achieve the thesis objectives.

In Section 3.1, a well-founded modeling strategy based on the principle of max­
imum likelihood will be introduced [96]. The principle assumes that the data has 
been generated by a known class of probability distributions whose parameters are to 
be estimated such that the likelihood of observing the data is maximized.

In Section 3.2, the concept of a linear model whose parameters are linear combina­
tions of the data samples will be introduced. The dérivation of the optimal parameters 
will be summarized by the Gauss-Markov theorem. The ideas of unbiased and 
efficient parameters defined there are désirable properties for any parametric model.

In Section 3.3, the factor model is presented. While the linear model of Section 
3.2 utilizes some measured variables of the dataset to explain themselves or other 
measured variables, the factor model is remarkably different. The latter assumes ex­
istence of a fewer number of unmeasured latent variables responsible for generating 
ail measured variables of a given dataset. The transformation from latent variables to 
measured variables is assumed to be non-random but unknown; this transformation will 
account for the covariations in the data. However, in the measured data, there will be 
déviations unexplained by such a generative model. Those déviations will be assumed 
unique to each of the measured variables and the variables that absorb these unique
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déviations will be called unique factors. This characteristic of the factor model is 
actually facilitated by imposing a diagonal structure on the covariance matrix of the 
unique factors; whereas the latent variables are transformed such that they absorb the 
common variation of the measured variables. The transformed latent variables are, 
hence, called common factors.

Note that the parameters of the factor model are (i) transformation matrix of 
the latent variables to the measured variables and (ii) variances of the unique fac­
tors. The principle of maximum likelihood cannot yield these two sets of parameters 
independently. By assuming knowledge or guessing one of them, an estimate for the 
other parameter could be found.

In Section 3.4.1, the principal factor model first estimâtes the covariance ma­
trix of the unique factors in order to estimate the transformation matrix; the reverse 
procedure is followed in principal component factor model of Section 3.4.2.

In Section 3.5, the Expectation - Maximization (EM) algorithm for maximum 
likelihood estimation of the factor model will be first narrated in an original manner. It 
is an itérative scheme established by [33]. The expression for complété log-likelihood 
of the measured variables as well as the latent variables are written out. However, its 
analytical tediousness in direct maximization is realized. This is overcome by probing 
its lower bound. It turns out that the local maximum of the lower bound is attained 
whenever the complété log-likelihood converges to the log-likelihood of the measured 
variables. Hence, starting with a set of guessed parameters, iteratively maximizing 
the complété log-likelihood converges towards the standard log-likelihood. Writing the 
lower bound of the complété log-likelihood scheme in an a posteriori expectation format 
and maximizing it for the optimal parameters is the crux of the EM algorithm.

In Sections 3.6 and 3.7, the scheme for using the EM algorithm for iteratively 
estimating factor model parameters is presented; it is partiy along the lines of [14]. In 
doing so, the expression for the log-likelihood in the complété log-likelihood form is 
first written out; the latter is conducive for use with the algorithm. In the E-step of 
the algorithm presented in Section 3.7.1, the a posteriori mean and covariance of the 
latent variables are derived. In the M-step of Section 3.7.2, a posteriori expectation 
format of the log-likelihood is maximized; the parameters of the factor model, viz., 
transformation matrix of the common factors and covariance matrix of the unique 
factors, are thereby estimated.

3.1 Maximum likelihood model

This section starts by presenting some notions and usages that will help in explaining 
the characteristics of the data to be modeled. The primary assumption is that the 
data is a collection of samples of some relevant variables measured in an experiment; 
this collection will be denoted by V and will be called simpiy the dataset. Let V be 
constituted by n data samples written in the sequence V = {yi}, Z = 1,... ,n and yi 
be called the Z-th sample.

In this chapter, uniike in Chapter 2, any sequential dependence of the value or 
occurrence of a data sample on next or any other sample is ignored. So there is no 
need to sort the data samples based on the time of data acquisition or any other 
criteria. But an index to identify the samples individually may be used.

Let the samples in T> be realizations of the sequence y/ of random variables. Let p^‘ 
dénoté density fonctions of their respective probability distributions. Throughout this
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chapter, it is assumed that the samples encompassing V adhéré to the characteristic 
defined below [108];

Définition 3.1. A dataset {yi}, l = 1,... ,n due to its respective random variables 
yi is said to be independently and identically distributed or iid if its joint 
probability density fonction is n"=i vvhere y is a random variable such that
p^jyi) = = __________________________________________________

Based on Définition 3.1, T> is interpreted as n realizations of a random variable y \whose 
probability density function is p^. Therefore, any realization y of y has a corresponding 
probability density p^(y). Extending p^(y) based on Définition 3.1 to V leads to the 
joint probability density of the dataset, which is simpiy denoted by p^{V), and is given 
by

n

(3^1) =
l = \

In order to maintain simplicity for the model which generated V, a set of parameters 
0 will be introduced for the model. In the context of Définition 3.1, 6 refers to the 
set of parameters of the probability density function of y. However, 6 is unknown and 
has to be estimated. In this setup, \ 6) will be termed as the likelihood of the
dataset whiist the parameters 9 are available. Note that the distribution is over y and 
the likelihood is a function of non-random 9.

At a set of parameters 9, due to (3.1), the likelihood of the dataset V consisting 
of iid samples yi, l = 1,... ,n factorizes as

n

(3.2) py\^{V\9)^Y[p^^^{yi\9).
1=1

In order to find an appropriate model for a given dataset, the intention is to utilize the 

following statistical methodology [96].

Définition 3.2. According to the principle of maximum likelihood, an optimal 
set of parameters 9 for the model corresponding to a dataset V is the set of 
parameters 9 for which the likelihood ofV is maximized, i.e.,

(3.3) 9 = argmax p'^\^{V \ 9).
d

A modification to (3.3) is made now; Since probability density is a non-negative func­
tion, the logarithm of the likelihood is maximized to arrive at the same solution for the 
optimal parameters as per Définition 3.2. Such an analysis of the exponential family 
of probability density functions will lead to substantial simplification [96]. Hence, (3.3) 
may be rewritten equivalently as

(3.4) 9 - argmax L(0), 
e

where

(3.5) L(0) = log, py\^{v 1 9).
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3.2 Linear model

In Section 3.1, an appropriate estimate 9 of 6 \s considérée) as parameter for a model 
given the dataset T>. It is assumed that 9 \s a non-random quantity. Now consider the 
estimator © of 9, i.e., 0 is a random variable. It is hoped that 0 gives a reasonably 
good estimate of the true set of parameters 9 given T>. Denoting mean of 0 by /x® 
and variance by 7®, the following properties indicate the quality of 0; refer §4.4 of 
[70] and §10.3 of [94]:

Property 3.1. An estimator Q of 9 is unbiased if — 9.

Property 3.2. An estimator Q of 9 is efficient if Q = argmin 7®, whereC is the
ëec

class of ail unbiased estimators of9.

A modeling strategy in Section 3.1 with a dataset constituted by iid samples was 
considered. Another popular parametric modeling paradigm called linear model in­
volves treating a set of r-variate iid samples yi,-..,yn as dépendent on a set of 
ç-variate iid samples xj,... ,a;„, where n > q. The simplest of linear models régresses 
xi towards y; VZ = 1,..., n through the relation

(3.6) yi = Wxi + zi,

where W G is a linear function of xi € and zi € R’’ is the error in the
régression [119, 109]. The model parameters 9 discussed above refer to W here. 
Suppose the modeling errors z/ are realizations of the vector random variable z, then 
the measurements yi may aiso be treated as realizations of the vector random variable 
y. The linear model may then be effectively written as

(3.7) y = Wx + Z,

for any x € R^. By restricting the quality of the régression error z, the following 
theorem defines a popular linear model; for details one may refer to §6.2.1 of [62], 
§7.1 of [38] or §8.1 of [51] among plenty of references in the literature: Suppose each 
realization yi € R'’ of the vector random variable y is related to x/ € R^, Z = 1,... ,n 
through (3.6) or (3.7) where zi are due to zéro mean uncorrelated Gaussian vector 
random variable z. According to the Gauss-Markov theorem, an efficient estimator of 
W is given by

(3.8) W=[yi---yn]X'{XX')-\

where X — {xi ■■ ■ x„) € R^^" has rank(X) = q. Then, the error estimate for the Z-th 
sample becomes zi = (zj, ■ • • Zn)' — yi~ Wxi VZ = 1,... ,n. The unbiased estimator 
of the covariance matrix = diag(7^i,... ,7^'') of z is given by

(3.9) 7'Zfc

1=1

Vfc = 1,..., r.
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3.3 Factor model

The linear model reviewed in Section 3.2 could be seen as the g-variables of the iid 
samples xi, l — together explaining the r-variables of each and every iid
sample yi, where both these sets of measured variables are available as part of the 
dataset T>. Suppose yi and xi , Z = 1,... ,n are treated to be due to vector random 
variables y and x, respectively, so that y is the resuit of the transformation Wx, where 
W 6 Then, the challenge is to explain y when x is unavailable or inaccessible
in V. One way to proceed is by assuming latent existence of the q-dimensional vector 
random variable x in generating the r-dimensional vector random variable y. In that 
context, y is named the set of measured variables and x the latent variables.
It is wished to pursue here a parametric model by involving the probability density 
fonction; this will help extract the statistical characteristics of the dataset in a finite 
number of parameters. Hence, if the probability density fonction of x is assumed 
known in the transformation y = Wx, then W serves as the parameter that needs to 
be estimated from the measured y.
However, the model y = Wx is very restrictive because it assumes that any randomness 
in y is due to x whose characteristics are assumed. The model is relaxed by introducing 
an r-dimensional random variable z uncorrelated with x and designated to absorb ail 
déviations in y that cannot be retained by

(3.10) V ^ Wx.

Thus, the measured variables y are split into the common factors v = Wx and unique 
factors z; the following is such a model [80]:

Définition 3.3. A factor model is defined as

(3.11) y = Wx + z,

where y and z are r-dimensional vector random variables, x is a q-dimensional vector 
random variable, W E is a non-random transformation matrix, and

(3.12) y^ = 0, /i^ — 0, y^ = 0,

(3.13) px _ r

(3.14) F^ is diagonal, and

(3.15) F^’^ = 0.

Given a dataset of realizations of y, the parameters of the factor model that need to 
be estimated are W and the covariance matrix of z. The factor model, in contrast 
to the linear model of (3.6), does not observe any realizations of x.
The following essential resuit for the moments of a function of a vector random vari­
able is summarily provided; refer Chapter 6 of [35]: For v = H^x, — Wand
F'' = WWW'. Therefore, applying (3.13) gives

(3.16) F'' = WW'.
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In the factor model, the condition (3.15) of zéro corrélation between x and z is crucial. 
Naturally, it leads to = 0. Therefore, taking the second-order moments on both 
sides of (3.11) gives

(3.17) ry = F''+ F" = iFiF'+ ^^

Due to (3.14), the r components of z are uncorrelated, or, ail cross-covariances between 
the r components of y are inherited by only the covariance matrix F'' = WW of 
V = W-x. and not by F^. This can be seen as each component of z inheriting only a part 
of the variance unique to its corresponding component in y. Hence, the components 
of z are called the unique factors. Since no part of the covariance of y common to 
ail its components are held by z but instead by the transformation v = Wx, v is called 
the common factors.
Note that in the factor model, the rq éléments of W and r diagonal éléments of F^ 
are to be estimated. Since (3.17) is just one équation with two unknowns, i.e., W and 
F^, it cannot be solved uniquely; more conditions and assumptions may be placed to 
restrict possible solutions.

3.4 Maximum likelihood factor model

Well-known is the following assumption towards a proper solution of the factor model 
parameters, e.g., refer §3.5 of [62]: The measured variables follow a Gaussian distribu­
tion with parameters 6 — {/i^jF^}, i.e.,

(3.18) py\^{y\e)=Ar{y\fiy,ry), 

as defined in (2.26).
Given samples yi , l — l,...,n of the measured variables y, the principle of 

maximum likelihood as per Définition 3.2 could be used to estimate an optimal set 
of parameters according to (3.4). The maximum likelihood parameters JP and F^ of 
the mean and covariance matrix of the Gaussian distribution in (3.18) are the sampte 
mean and sample covariance matrix, respectively, i.e.,

(3.19) =
1=1

(3.20) fy = lf^{yi-jîy)iyi-jiyy.
» i - 1=1

Then (3.20) may be substituted in (3.17) to get

(3.21) fy = WW + FT

However, it gives no due regarding the maximum likelihood W and F^, which are the 
parameters of interest to the factor model. In what follows, two relevant methods which 
dérivé appropriate solutions on the basis of the general maximum likelihood solution 
are briefly presented.
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3.4.1 Principal factor model

One of the approaches to finding possible solutions to the maximum likelihood factor 
model of the r-dimensional measured variables y using g-dimensional common factcxs 
X and r-dimensional unique factors z as per Définition 3.3 starts with a good guess 
of r^. The approach is called the principal factor model. One may refer to §10.2 of 
[54] or §6.3 of [46] to know how this guess could be made reliable; the details which 
are unnecessary for the objective of the présent discussion are skipped. Substituting 

in (3.21) gives

(3.22) fy - WW' + FT

The problem then is to estimate a W such that WW' = F^ — F^ subject to some 
g^uality criterion. Suppose columns ui,...,Ur of U € are the eigenvectors of
Fv — F^ whose corresponding eigenvalues df > • • • > > 0 constitute the diagonal
éléments of a diagonal matrix from top-left to bottom-right. If the eigenvalue- 
eigenvector décomposition of WW = UD^U' and the subscript 1 : g is used to refer 
the first q column indices of a matrix, then the optimal transformation matrix of the 
principal factor model is

(3.23) W = Uv.gDi-.g.

If necessary, the estimation between F^ and W may alternate iteratively.

3.4.2 Principal component factor model

Another approach, for which [103] is referred to, involves first estimating W and then 
the covariance matrix F^ of the unique factors. In order to estimate F'' and W, first, it 
has to be reminded that WW' is of rank q. Second, note that the relation (3.21) may 
be thought as WW' approximating the variance-covariance of the measured variables 
y as contained in F^. There could be infinitely many ways WW' could approximate F^ 
and an approximation with respect tothe Frobenius norm HF^ —F''||ir seems reasonable 
and standard practice; refer §10.2 of [54] and and §2.12 of [103]. In that context, the 
following theorem is used; refer Lecture 5 of [120]:

Theorem 3.1. For full rank matrix A 6 with eigej^vectors uj,... ,Ur wjiose 
corresponding eigenvalues are a\ > ■ ■■ > Or, matrix A € with rank(A) = 
q < r defined as

(3.24) Â = [iti ... Uq] diag(û!i,..., a^) [«i ... u,]* 

is such that

(3.25) ||yl —A||ir= inf ||A — = ag+i-
BçCr-Xr

rank(B)=g

Due to Theorem 3.1, the optimal approximation of F^ using WW' in the Frobenius 
norm sense is declared as WW' = E-[.qk\.^E']^.^ where columns of E are eigenvectors 
of F^ whose corresponding eigenvalues in decreasing order form the diagonal of A^.
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Therefore, if the subscript 1 : g to refer to the first q column indices of a matrix, the 
estimate of W sought is given by

(3.26) W = E^,gA,,g.

Since ought to be diagonal due to uncorrelated z, taking into account (3.21), an 
approximate solution for F^ is

(3.27) r « ^(fy - WW'), 

where diag refers to setting the off-diagonal éléments to zéro.

3.5 EM algorithm

Now a présentation of the Expectation-Maximization (EM) algorithm is attempted; as 
stated in the introduction of this chapter, it is a popular itérative method for maximum 
likelihood estimation.

Note 3.1. In this section, x is assumed a discrète and univariate random variable; 
this is to avoid any unnecessary analytical complications otherwise leading to équiv­
alent conclusions. E.g. the sommation over x has to be replaced by an intégration 
for continuons x. And, a sommation or intégration across ail dimensions ofx is to 
be applied had x been a vector random variable.

Note the following lemma (refer §4.5 of [49]);

Lemma 3.1. If a random variable x is marginalized from its joint distribution 
with the random variable y, the resuit is the distribution ofy, i.e.,

(3.28) py(y) = ^p^’y(x,y).
X

The définition of log-likelihood in (3.5) may be rewritten through Lemma 3.1 as

(3.29) l{e)^\og,^p^^'^\\V,x\9);
X

the maximization of this expression for the log-likelihood is intractable due to the 
summation inside the logarithm. In order to évadé this situation, a dummy function 
7j(x) such that

(3.30) T]{x)>0

is introduced and the complété log-likelihood

(3.31) L(6>,77) = \og^'^T]{x)
X

py,x|9(p^3. I g)

T]{x)
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is formed. The purpose in introducing rj{x) is to seek possibilities to maximize \-{0,t]) 
in lieu of L(ô). In that pursuit, as shown in Section B.1.1, the logarithm may be 
brought inside the summation, i.e.,

(3.32) L(6»,77) > ^77(x)logg
X

py’^i^(p,x I 9)
r]{x)

Referring to Section B.1.2, it is possible to décomposé the complété log-likelihood as

(3.33) 

where

(3.34)

l{e,rj)>l{e) + K{9,r)),

X

p>^|y’Q(x I y, 9)
T]{X)

Now think of two itérative steps:

Step 1 — Find optimal t] for a fixed 9: Fora particular^ = 9i, \etfji = argmax
V

L{9i,r]). Since local increase of \-{9,r]) is guaranteed by locally maximizing its 
global lower bound L(0) + K(0, rj), f)i = argmax K{9i,r])-, one may refer [87] for

more details. By differentiating (3.34) with respect to r]{x), it may be found 
that

(3.35) fji = p^\'^'^{x\V,9i).

However, K{9i,rji) — 0 whereby

(3.36) l{9i,fji) = L{9i).

Note that for a Gaussian density for y, the conditional probability for f)i in (3.35) 
is tractable.

Step 2 — Find optimal 9 for a fixed rj: Having found the locally optimal 77 for 
a fixed 9, the locally optimal 9 for a fixed r] = fji \s pursued. Based on (3.33) 
and (3.36), it may be written that

(3.37) 9i+i = argmax l{9,rii)
9

Note that (3.36) ensures that likelihood L(^j) is approached in every z-th itération 
whenever L{9i,rji) is maximized to obtain the i + 1-th estimate 0j+i; in other words, 
the itérations converge to a local maximum of L(0j).

E and M steps

The tw/o steps arrived at above are now compiled. Suppose there is an initial guess 9q 
of 9. Then a local maximization of likelihood may be performed such that, in the f-th 
itération, where i = 1,2,..has the two steps:
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Step 1: estimate fji based on 9i, and

Step 2: locally maximize the likelihood to obtain 6i+i.

These steps of an itération become explicit if we note as shown in Section B.1.3 that

(3.38) - argmax [\ogy’^\^{V, x \ 6i)].
Oi

Hence, the i-th itération involves:

Step 1 (Expectation): Evaluating the expectation E’'ly’^[loggpy’’^l^(X>, x | 6i)], 
and

Step 2 (Maximization): Maximizing \ 9i)] locally with
respect to 9i.

3.6 Basic setup of EM algorithm for factor modeling

The différence between the linear model and the factor model is obvious and wide. 
While access to the samples x„ and in (3.6) of the linear model is available, x in 
(3.11) is assumed inaccessible in the factor model. Hence, for the factor model, the 
conditional distribution pyl** of y given x is of interest.
Firstly, using the properties of the conditional distribution, e.g. refer §8 in Chapter 1 
of [110], it could easily be shown for the factor model that Eyl’'[y|x] = Wx+ E^l’^[z] 
= Wx because z is independent of x and has zéro mean.
Secondly, the conditional variance is Eyl’'[yy'|x] —(Eyl^[y|x]) (Eyl’'[y|x])'. On ex­
pansion based on (3.11), = E^l’' [(ITx -t- z){Wx + z)'|x] —(lTx)(lTx)'. Upon
term-by-term expansion, due to the independence of z and x and since E^[z] = 0, the 
only surviving term will be E^l^[zz' | x], which becomes E^[zz'j = F^.
It is aiso well-known that the distribution of a Gaussian random vector conditioned 
on another is itself Gaussian; one may refer of §4.8 of [48] or Theorem 3.10.1 of [15] 
among many methods to verify it. Therefore, the Gaussian probability density of y | x 
with parameters 9 = {VF,F^} for the factor model may be written as

(3.39) p''l^’®(î/ \x,9)= Àf{y \ Wx, F").

Note that 9 in refers to the availability of the set of parameters; the distribution 
is conditioned only on x. Based on the discussions in Section 3.1, the conditional 
probability density pyl’'’® underpins the likelihood of the factor model. As with (3.1), 
the dataset V is considered to consist of the iid samples yi, l — 1,... ,n of y. The 
likelihood of the dataset is

n

(3.40) P^^^’^i'D\x,9)^Ylpy\-’^im\x,9).
1=1

Using Theorem B.l known as Bayes theorem, py’’'l®(P,x | 9) = \ x,9)p^{x).
If it is assumed that the distribution p^^(x) to be independent of 9, then (3.38) of the 
EM-algorithm reduces to iteratively solving

(3.41) fli+i = argmax [loggpyl"’^P [ x, 9i)].
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From the above three équations, it may be written that

Oi+i = argmax
0i

f(0i,x) = log,pyl"’^(P|x,0i)
n

= X]ioge-^(y/1
1=1

where the parameters

(3.44) 0,^{Wi,rf}

correspond to the i"" itération.

(3.42)

(3.43)

3.7 Two steps of EM algorithm for factor modeling

In light of the discussion in Section 3.5 and the parameter update équations of (3.42), it 
may be stated that the f-th itération of the factor model estimation alternâtes between:

1. Expectation-step Evaluate the expectation E*ly’^[f(0i,x)], and

2. Maximization-step Update di^i 6i by maximizing E’^ly’^[f(0i,x)] with re­
spect to 9i.

To proceed note that in (3.43) that f(0i,x) = —n logg(det(r?))— Yll^=i M(j/h ffiX, F?), 
where for any compatible vectors a, h and matrix C

(3.45) U{a,h,C) = {a-h)'C-\a-b),

whose expansion gives M(?/i, WjX,Ff) = 2y^'(F?)“^ VFjX+ tr((F. )“^ WjXx'W/).

Note the presence of terms with random variables x and xx' in M{yi,WiX,Tf). There- 
fore, the EM algorithm, as a resuit of this expansion of M(j/;, WjX,F?), will involve 
alternating between;

1. Expectation-step Evaluate, for / = 1,... ,n.

(3.46)
{x)i,i 4 E>'ly>"[x 1 yiA],

(xx')i^i â E’'ly’^[xx' 1 yi,6i],

where {x)i^i E and (xx')i^i E and

2. Maximization-step Update 9i+\ E- 9i by maximizing f(0j,x) with respect to 
6i, where x and xx' are replaced by their corresponding a posteriori estimâtes, 
i.e., in (3.43)

(3.47)
X <;= {x)i^i

xx' <J= {xx')i^i.

The following analysis between (3.48) and (3.52) is inspired by [14].

51



3.7.1 E-step

Note that {x)i^i is the mean of the Gaussian distribution I yi,e i), which is
evaluated in Appendix B.2 to be

where fi, G From the classical relation of mean and covariance of any distri­
bution, it is known that (xx')i^i is the sum of {x)i^i{x')i^i and covariance of x | yi,6i, 
i.e.,

(3.49) {xx')i^i = {x)i^i{x')i^i + üi.

This complétés the E-step of the EM Algorithm.

3.7.2 M-step

Towards the M-step of the EM algorithm, the substitutions in (3.47) give

(3.50)
E>^ly>^[f(0i,x)] -nlogjdet(r^)) - ^tr((rf) ^Wi{xx')i,iWl)

1=1

-2y'im)-^Wi{x)i^i + yimr\.

Now E^ly’^[f(0,,x)] may be maximized to update the parameters FF, and Y\\ 

Update Wi : The problem that has to be solved is

W,+i = argmax E’'ly’^[f(0i,x)]

(3.51)
Wi

It is easy to see using matrix différentiation ruies, e.g., refer [98], that 

d

1-1
dW,

E^|y’®[f(^i,x)] =-'£2mr^Wi{xx\i - 2{T^,)-\{x%i,

which when equated to zéro gives 

(3.52)
^1=1 ^ !=1 ^ 

Update r? : The access to the updated Wi^\ is available and if

Vi,i = Wi+i{x)i^u
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then E’‘ly’^[f(0j,x)] = loge(det(rf)) - Xir=i ^(2/^H)- Now, consider 
the update

r;,.=a^g(^E-W[f(«.,x)i = o).

For r? = diag(7?*,..., 7?’’) it can be seen that

E>'ly’^[f(0i,x)] - -n^[logg(7,^'') + ia-1
fc=i '»

where

1=1

Then, aE^ly>^[f(^i,x)]/Ô7,^*= - 0 at 

(3.54) 7-li-a^''.

Factor model estimation via EM algorithm

Given the dataset, in Algorithm 2, the results of the analysis of the itérative parametric 
estimation of the factor model using the EM algorithm are summarized.

Algorithm 2: EM algorithm for the factor model 
Input: V — {yi}, l — 1,.. .n 
Output: = diag(7^i,... ,7^'')
initialize i = 0; 
initialize randomly Wj,rf ; 
do

E-step:
for Z = 1 to n do 

compute
{x)i^i using (3.48);
(xx')i^i using (3.49):

end
M-step: update

Wi+i using (3.52): 
itXi VA: = 1,..., r using (3.54); 

i i— f + 1;
e ^ E’‘ly>®[f(0i,x)] - E’‘ly-^[f(0g_i,x)] using (3.50): 

while e > 10“® and i < 20;
W ^ ^ 7^ VA: = 1, ■ ■ ■ ,r;______________________

A major drawback of the EM algorithm is the possibility that the estimation might 
get trapped in a local maximum of the log-likelihood and hence might require random 
restarts or other heuristic measures to be more certain regarding the estimâtes.
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3.8 Summary

Two possibilities of modeling an r-dimensional measured vector random variable y 
were considered, viz., (i) the linear mode! where a measured variable x G < r is 
transformed to y and (ü) the factor model where a latent g-variate random variable 
X is transformed to y. Essentially, a factor model transforms a latent vector random 
variable of known probability distribution to a measured vector random variable of 
higher dimensionality that is perturbed by independent and uncorrelated noise. For the 
linear model, an efficient estimator of the transformation matrix was presented; whereas 
for the factor model there is no unique transformation. However, by restricting the 
variances unique to each of the measured variable, it is possible to estimate meaningfui 
transformations. Thus, from a parametric modeling perspective, the transformation 
matrix and the unique variances are the parameters of the factor model.
In order to estimate the factor model parameters, two approaches based on the principle 
of maximum likelihood were discussed: The analytical estimation approach involves 
approximating the covariance structure of the measured variables using that of the 
transformed variables. For the itérative approach based on the EM algorithm, the log- 
likelihood fonction being lower bound by the a posteriori expectation of the logarithm 
of the joint probability density of the measured variables and the latent variables was 
exploited. Starting from guesses of the parameters, the EM algorithm maximizes the 
complété log-likelihood fonction of the latent variables and the measured variables by 
iteratively converging to the log-likelihood with every update of the parameters.
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Chapter 4

Dynamic and spectral factor 
models

Recall the linear model y = Wx + z of (3.7). The intention there was to linearly 
relate the set of r-variate independent samples {yi}, l = 1,... ,n, which are thought to 
be realizations of a vector random variable y to the corresponding set of q-variate 
samples {a;;}, l = 1,... ,n. However, both {xJ and {yi} were measured and available 
in a given dataset.

Now, contrast the linear model with the factor model y = Wx + z of (3.11), 
where x is a q-variate hidden or latent vector random variable while y is an r-variate 
measured vector random variable.

The noticeable similarities between the linear model and the factor model are as- 
sumptions that r > q, transformation matrix W is non-random, and z is an r-variate 
vector random variable with uncorrelated components.

In this chapter, the assumption of Chapter 2 that a sequence of vector random 
variables {y*} are temporally correlated is underpinned. Thence, based on the moti­
vations presented in Chapter 1, existence of a g-variate time sériés {x(} which gets 
transformed by a non-stochastic matrix {Wt} to obtain an r-variate time sériés {y<} 
Vf € Z is assumed. The objective of this chapter is to define such a model and enable 
it for learning problems.

In Section 4.1, the time-domain définition of the dynamic factor model and the 
commonalities it represents are defined. In doing so, the assumptions made with 
respect to the model are emphasized and the relations between the parameters of the 
model, viz., the acvfs of the measured, latent, and idiosyncratic time sériés are 
analyzed. Then, the dynamic factor model is defined.

In Section 4.2, the analysis is switched to Fourier-domain: Frequency-domain 
counterparts of the measured, latent, and idiosyncratic time sériés are defined and the 
frequency-domain équivalent of the dynamic factor model called the spectral factor 
model is defined.

The following situâtes the developments in this chapter with respect to the state- 
of-the-art:

D> Définition 4.2 and Définition 4.3 define the dynamic and spectral factor models, 
respectively.
These définitions include ail model assumptions and the model objectives. In 
[100, 104, 43, 36], both time and frequency domain analyses are called "dynamic
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factor model"; for convenience, "spectral factor model" is a term introduced here 
to emphasize the frequency-domain analysis. The properties and assumptions 
of interacting linear processes of the model used here are standard practice in 
literature.

> Définition 4.1 introduces commonalities; relations (4.9) and (4.18) State the cri- 
terion for inheriting them from the measured variables.
Uniike in the existing literature, cross-correlations are emphasized in the défini­
tions here of dynamic and spectral factor models through the concept of com­
monalities. AIso, the existing literature does not specifically relate the dynamic 
transformation to the commonalities nor its maximal inheritance as defined here.

4.1 Dynamic factor model

A multivariate time sériés model is to be designed where a q-variate latent time 
sériés {xt} is transformed by a sequence of r x g non-stochastic transformation 
matrices {Wt} to a measured r-variate time sériés {yt}, \where r > q. Only those 
actions of Wt in transforming xt to yt that is intuitively appealing, theoretically valid, 
practically feasible, and analytically sound will be allowed. In the simplest of forms, 
such a time sériés model may be written as yt == f{Wt,xt) + zt, where / is some linear 
function of {Wt} and {xj} Vf € Z, where {zt} is a vector random variable independent 
of {xt} that offers itself as the error in the transformation.

It is aiso to be ensured that the transformation will take advantage of the frequency- 
based techniques discussed in Chapter 2. In that case, existence of the spectral 
density function of f{Wt,xt) is a necessity. As discussed in Section 2.4, for a 
weakiy stationary vector random variable sequence {xt}, the Fourier transform of 
any linear relation f{Wt,xt) between Wt and xj does not exist for no guarantee of 
Zlfez < oo could be made. But as long as the acvf of f{Wt,Xt) exists and
that acvf is absolutely summable as in (2.20), techniques of Fourier transform could 
be pushed.

Take a look at one of the simplest linear operations for f{Wt,xt) = vt, which is an 
r-variate vector random obtained when Wt is convolved with xj, i.e., Vf € Z,

(4.1)
jez

If both {W(} and the acvf {T^}V/j € Z of xt are absolutely summable, then vj 
according to (4.1) exists; refer Theorem 2.7.1 of [18] for this resuit. Let r-variate 
linear processes {yt}, {v*}, and (zt) be related according to

(4.2) y^=Vt-|-Zt.

Further, if vt and zt are independent, then they hâve their acvfs related as

(4.3) rj = rj + rj,

where VA € Z is the lag parameter of the acvfs. It is further assumed that

(4.4) '■ank(r^) = r.
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Thus, the measured r-variate vector random variable y* is assumed to be obtained 
by adding two independent r-variate vector random variables Vt and Zj. And, V( is a 
dynamic transformation of a latent g-variate vector random variable Xf as per (4.1).

Recall that Chapter 1 hoped to dynamically transform a latent vector random 
variable of known or presumed characteristics and that the dynamic transformation is 
the one that is unknown. The similarity between the form of dynamic transformation 
in (4.1) and the form of linear process defined in Définition 2.11 is évident. This 
similarity entices to assume that {x^} is a g-variate zéro mean white noise and that

(4.5) ^|Wt|<oo ViGZ.
t

It w/ill deliver a {vj} that is a linear process resulting from a linear transformation 
of {xt} by the sequence of parameters {Wt}. Further, to simplify the analysis, it is 
assumed that {xt} is a unit variance white noise process, i.e.,

(4.6) Tl ^Ig V/i G Z.

Such an assumption is admissible because it is not intended to estimate anyway. 
Then, referring back again to Définition 2.11, it is easy to see that

(4.7) = V/rGZ,
jez

and

(4.8) rank(T);) = q.

The objective is to enable {vj} to maximally inherit the commonalities in the mea­
sured time sériés {yt}. And, in Chapter 1, commonalities of the measured time sériés 
{y(} were regarded to be the temporal covariations of the r measured components of 
yj = [yj^ ... yrt]'■ A good measure of the commonalities should be the expected 
value of a suitable fonction combining the r random variables, e.g., their mean product. 
Now, the following définition is arrived at:

Définition 4.1. For a weakiy stationary time sériés {yt}, the commonalities are 
the off-diagonal éléments of its acvfF^.

Appropriateness of Définition 4.1: Cross-covariances describe ail the mutual char­
acteristics of the components of a zero-mean multivariate time sériés linear process. 
The pairwise commonality between any two components and yj, are the off-diagonal 
éléments of the acvf T)^ of the measured time sériés {yt}-

In Chapter 1, it was envisaged to estimate parameters of a model that will maxi- 
mize the measured commonalities. Earlier in this section, the rôle of measured cross- 
covariances as a suitable measure of the commonalities was confirmed. As a resuit, 
the commonalities are retained in the cross-covariance terms of T)^ upon a dynamic 
transformation of {yt} to {vt} as discussed earlier in this section using {Wt}. the
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proposed measure for the inheritance of the commonalities of using F^ is the sum 
of square différences of the covariances across ail measured dimensions and lags, i.e.,

(4^9) 9 = EK-rillf-

Appropriateness of g\ These reason the choice of the quality of approximation of 
the commonalities:

1. Since F^ — F)^ is positive definite and F)^ is of lower rank than positive definite 
F)^, trace of F)^ will aiso be lower than F^, i.e., the unique variance terms of F)^ 
will be aIso affected and has to approximated in a low-rank sense.

2. It has a direct équivalence in the frequency domain; this is through relation
(4.18).

3. It provides the properties of the residual process yt —v< easily; this is due to (5.7) 
enabling (5.12) and (5.13).

4. Its analytical conveniences and properties are well-known; refer [84].

The optimal parameters using the measure in (4.9), with reference to (4.7) and (4.3), 
are given by

(4.10) := argmin g.

Since orthogonal rotations of Wj Vj € Z lead to same F)^V/i € Z in (4.7), there is no 
unique solution to the minimization problem (4.10).

Note 4.1. In this thesis, the choice ofthe latent dimensionality q is made arbitrarily. 
No theoretical effort is spent towards the important problem of determining an 
optimal q. In the experiments, however, performance of the dynamic factor model 
across q will be evaluated. Asymptotic properties of the dynamic factors in the 
latent space with respect to larger measured number of samples and dimensionality 
is available in [37].

The dynamic model defined by (4.1) - (4.8) implies that the measured vector ran- 
dom variable y< is an addition of an independent linear process to another linear process 
formed by the dynamic transformation of a lower dimensional unit variance white noise. 
Apart from the time sériés aspect of the measured variables, the dynamic model bears 
much resemblance to the factor model: In (3.11), a latent vector random variable is 
transformed to an unobserved higher dimensional vector random variable which is per- 
turbed by independent noise resulting in the measured vector random variable. This 
similarity invites the following définition:

Définition 4.2. Let a q-variate latent zéro mean unit variance white noise {xt} 
be dynamically transformed by non-stochastic {Wt} to an r-variate linear process 
{vt}. Suppose an independent r-variate linear process {zj} is added to {vt} to 
obtain an r-variate weakiy stationary measured time sériés {yt}. Such a vector 
time sériés model which satisfies the conditions (4.1) - (4.8) and solves (4.10) is 
called a dynamic factor model.

58



Model assumptions: Recall the original list of model assumptions in Section 1.2. 
With the dynamic factor model as per Définition 4.2, they may be concretely restated 
as follows:

1. the measured time sériés is a linear process,

2. the measured time sériés is a dynamic transformation of a zero-mean unit variance 
white noise of a dimensionality lower than that of the measured time sériés,

3. the acvf of the dynamically transformed process is a low rank approximation in 
a Frobenius norm sense of the measured acvf,

4. the residual time sériés is a linear process independent of the latent time sériés 
and has finite unique variances.

4,2 Spectral factor model

The objective of the dynamic factor model is to estimate the optimal parameters 
that maximize the commonalities of the measured time sériés {yt} inherited by the 
unobserved time sériés {vt}. However, what stands out is the concern regarding how 
to perform such a maximization that adhères to the transformation of to Wt as per 
(4.7).

Motivation for a Fourier-domain approach: It is clear from (4.7) that F)^ is 
the corrélation of the sequence {Wt} in the time domain. According to the autocor­
rélation theorem of Fourier transform, which is aiso known as the Wiener-Khinchin- 
Einstein theorem, the autocorrélation of a function and pow/er spectrum of that function 
are Fourier transform pairs; refer §10.1.1 in [77]. Then, V/i € Z, —^ ^

(4.11) F); As''(w) = W(a;)W*(w),

where Wt W(u;) refers to the discrète time Fourier transform as per Définition 
2.15 and S''(w) is the spectral density function of v whose (f, j)-th matrix element is 

V/i € Z, —^ < cj < ^. Note that applying the définition of the Fourier 
transform to the relation (4.3) gives

(4.12) S^(j) = S''{üj) + S^{u).

It is further assumed that

(4.13) rank(S^(cj)) = r.

Aiso, it emerges from Property 2.7 that |S''(o;)| = |W(cj)W*(a;)| 0 Va; €

(4.14) lW(o;)1^0

For a finite r-length realization of the process, combining (4.1) and (4.2) gives yt = 
WjXt-j + 2f. As per Définition 2.17, the discrète Fourier transform of these

59



realizations are y{u>k) — W(a;fc)x(a;fc) + z{oJk)i at frequencies —^ < \, k =

To proceed, recall Theorem 2.5 where the spectral density function S'^{ujj) becomes 
the covariance matrix of the complex Gaussian distribution of the discrète Fourier 
transform components sufficiently close to ujj so that

(4.15) y(u)j) =

are complex Gaussian vector random variables {x(a;j), y{ujj),z{ujj)}. Then, x(cUj) be­
comes a vector random variable whose complex Gaussian distribution has a covariance 
matrix

(4.16) S^iujj) = Ig.

Note that the équivalent for (4.8) is

(4.17) rank(S''(a;)) = q.

Note that the form in (4.15) is very much reminiscent of the factor model, where 
x(cjj) is a latent factor of known Fourier characteristics transformed by a non-stochastic 
W(cuj) perturbed by independent vector random variable z{ujj). Hence, the motivation 
for pursuing a Fourier domain approach for the solution of the dynamic factor model 
is the possibility that classical factor model methods as reviewed in Chapter 3 might 
be availed to solve for Wt in (4.1).

Dynamic factor model équivalent in the Fourier-domain: Armed with a Gaus­
sian probability distribution for the measured discrète Fourier transform y{uj), the 
maximum likelihood estimation for the factor modeling should follow naturally. In that 
pursuit, the hope is to attain a relation connecting the maximum likelihood spectral 
density function S''(a;j), S^(a)j), and Certainly, their inverse Fourier transform
should yield their unique acvfs of T\, T\, and respectively, which are aiso of in­
terest.
However, some estimate of the parameters of the interest is not satisfactory because 
the objective is to find those that will maximize the commonalities. Next, applying 
Theorem 2.1, the sum in (4.9) may be written as

(4.18) g= I\\\sy{u)-S''{u)\\léj.

Thereafter, in line with the arguments for (4.10), it could be deduced that the optimal 
parameters in the Fourier domain are

(4.19) W(u;),S^(a;) := argmin g.

Since orthogonal rotations of W(o;) lead to same S''(eu) in (4.11), there is no unique 
solution to the minimization problem in (4.19).

Due to the Fourier domain similarities of the dynamic factor model with the clas­
sical factor model, the following définition arrives:
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Définition 4.3. Let a q-variate latent zéro mean unit variance discrète Fourier 
transform vector random variable x{ùjj) be transformed by non-stochastic 'W{uj) 
to an r-variate zéro mean discrète Fourier transform vector random variable 
Suppose an r-variate discrète Fourier transform vector random variable z{ujj) that 
is independent ofx{uij) is added to v{oJj) resulting in an r-variate measured vector 
random variable y{ojj). Such a vector discrète Fourier transform model which 
satisfies the conditions (4.11) - (4.17) and solves (4.19) is called a spectral factor 
model.

Model assumptions: Recall the list of model assumptions in Section 1.2 and 
subséquent to Définition 4.2. With the spectral factor model as per Définition 4.3, 
they may be restated as follows:

1. the measured discrète Fourier transform components ('spectra') are asymptoti- 
cally Gaussian within small subbands,

2. the measured spectra are transformations of a zero-mean unit variance Gaussian 
spectra of lower dimensionality,

3. the spectral density function of the transformed spectra is a low rank approxi­
mation in a Frobenius norm sense of the measured spectra,

4. the residual spectra is a Gaussian independent of the latent spectra and has finite 
unique variances.

Basic goal of the spectral factor model: The dynamic and spectral factor models 
and the accompanying problem of maximization of the commonalities of a measured 
multivariate time sériés w/ere defined in this chapter. The maximum commonalities 
transformation matrix is the best approximation, in a Frobenius norm sense, using a 
lower number of variables of the cross-covariances of the measured time sériés. Since 
there exist problems, as the examples in Section 1.2 show, where commonalities will aid 
learning, the goal is to adapt the transformation matrix for classification and prédiction 
problems. This will be done by deriving the required parameters of the spectral factor 
model in Chapter 5 using the principle of maximum likelihood fostered by the constraint 
of maximum commonalities. Classification and prédiction algorithms will be developed 
in Chapter 6.

4.3 Summary

In this chapter, the dynamic factor model and the spectral factor model were intro- 
duced. Conceptually, the dynamic and spectral factor models transform a latent vector 
random process by maximally inheriting the measured commonalities. It was discussed 
why the cross-covariances could be called as commonalities. A criterion based on 
approximating the acvfs in a Frobenius norm sense such that it will correspond to 
maximizing the commonalities was formulated. It was claimed that the inheritance of 
the commonalities of a vector random process by another increases if the Frobenius 
norm of the différence between their autocovariance fonctions across ail lags decreases; 
an équivalent criterion for the spectral density function was aiso formulated. It was

61



assessed how the spectral factor model for measured discrète Fourier transform com- 
ponents in a ‘smalT bandwidth resembles the classical factor model.
The impediments of complex-valued parametric estimation should be overcame to ex- 
tend the classical factor model estimation techniques reviewed in Chapter 3 to maximize 
the commonalities of the spectral factor model.
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Chapter 5

Maximum likelihood 
commonalities

The objective of this chapter is to solve the maximization problem defined as part 
of the spectral factor model in Section 4.2. That problem refers to maximizing the 
commonalities retained by the latent spectral factor transformation. It will be shown 
that its solution requires estimating the maximum likelihood spectral density func- 
tion. Two methods are developed to arrive at the maximum likelihood spectral density 
fonction estimâtes: The first method is analytical and is the topic of Section 5.1; it 
gains traction from the estimation procedures summarized in Section 3.4. The second 
method discussed in Section 5.2 is itérative; it is along the lines of the EM algorithm 
presented in Section 3.6.

In Section 5.1, as part of the analytical method, optimal parameters of the spectral 
factor model are made available in (5.10) and (5.13). In order to arrive at those results, 
the expression for the log-likelihood fonction of the spectral factor model is written. Due 
to difficulties in maximizing such a real-valued fonction of complex-valued parameters, 
Wirtinger relaxation ruies of complex différentiation are sought. Such an approach 
gives the relation (5.5) connecting the spectral density fonctions of the latent and 
the idiosyncratic processes to the sample measured spectral density fonction. Sadly, it 
évadés delivering a unique solution. Therefore and subsequently, a much restricted class 
of maximum likelihood solutions is pursued where the commonalities will be maximized 
as well. Towards the end of that pursuit, the low-rank approximation technique of 
Section 3.4.2 is used to arrive at a suitable solution.

In Section 5.2, the objective is to iteratively solve the commonality maximization 
problem defined as part of the spectral factor model in Section 4.2. The optimal pa­
rameters of the spectral factor model are made available in (5.33) and (5.34). Just as 
with the analytical method in Section 5.1, first the maximum likelihood parameters of 
the spectral factor model are obtained; here it is done iteratively using the EM algo­
rithm. In doing so, the line of the estimation approach in Section 3.6 for Section 5.2 is 
towed by which the définition of the E’ and ‘M’ steps are laid out. For this purpose, 
the formulae for the a posteriori expectation and the maximum likelihood parameters 
are carried out just as they were derived in Sections 3.7.1 and 3.7.2. However, the 
analysis is tedious because of the non-analytic nature of the real-valued log-likelihood 
fonction of complex-valued parameters. As in Section 5.1, this difficulty is overcame 
by employing Wirtinger relaxations. The équations (5.25) and (5.29) give the maxi­
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mum likelihood parameters of the spectral factor model at each itération of the EM 
algorithm. Once the EM algorithm has converged, the parameters that maximize the 
commonalities are found in Section 5.2.3 using the idea of an efficient unbiased esti- 
mator reviewed in Section 3.2.

Note 5.1. For the analysis in this chapter, the focus is on any one and only one 
target frequency in the set of target frequencies obtained on application of Theorem
2.5. Hence, for brevity of notations in this chapter, the index specifying different 
subbands will be dropped. Therefore, the sans-serif script without any subscripts as 
in y will be used to refer to the discrète Fourier transform vector random variable 
at the target frequency of interest. As a resuit, the spectral density function at the 
target frequency is simpiy S^ and the transformation matrix is W.

Maximum likelihood estimation of linear processes in time-domain

The attempt in this thesis is to use the principle of maximum likelihood to estimate pa­
rameters of the dynamic factor model in the frequency domain. Despite the challenges 
posed by complex-valued parameters of the model, such an approach was motivated 
by the established route of maximum likelihood in factor analysis.
An alternative route that should easily be motivated by the maximum likelihood prin­
ciple is the estimation of the dynamic factor model in the time domain [78]; however, 
it is not pursued in this thesis. It involves expressing the large sample approximation 
of the likelihood function in terms of finite-order vector autoregressive moving average 
process parameters; the maximum likelihood parameters are known to be consistent 
and asymptotically Gaussian. The dérivative ofthe likelihood function with respect to 
the parameters are typically non-linear. Hence, itérative algorithms such as Newton 
- Raphson scoring algorithm [8] or state-space Expectation - Maximization algorithm 
[83] are used to maximize the log-likelihood. These itérative procedures in the time- 
domain for vector autoregressive moving average processes are complicated owing to 
a large set of parameters requiring reliable initial values as well as convergence issues 
requiring robust estimâtes of model orders; refer Chapter 12 of [78]. The efficacy of 
adopting these methods to dynamic factor model estimation in the time-domain is yet 
to be seen.
On the other hand, the frequency-domain method as presented in this thesis exploits 
proven méthodologies to solve the estimation problem. The analytical approach of 
Section 5.1 offers an intuitive computationally stable closed-form solution; it uses low- 
rank approximation theorem and Weyl’s theorem to arrive at maximum commonalities 
parameters. The itérative approach of Section 5.2 uses the EM algorithm for complex- 
Gaussian estimation and Gauss-Markov theorem. Beyond the known-issue of local 
minima, it does not suffer from over-parameterization and, as presented in this thesis, 
is computational stable for Gaussian factor model estimation [14].

The following situâtes the developments in this chapter with respect to the state- 
of-the-art:

> The analytical solution for spectral factor model is derived in (5.10) using low-
rank approximation theorem.
The solution, which involves the principal components of the sample spectral
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density function, coïncides with that of the the projection theorem solution of 
[36]; they hâve a motivation and approach to dynamic factor model not dépen­
dent on commonalities.

> An itérative solution for spectral factor model is derived in Section 5.2 using the 
Expectation - Maximization algorithm. The converged maximum likelihood pa- 
rameters in Section 5.2.3 that maximally inherit the commonalities are extracted 
by applying the Gauss - Markov theorem.
Itérative solutions recommended by [104] and [100] were based on Fletcher- 
Powell-Davidon numerical methods.

> Mild cross-correlation property of the différence between the maximally inherited 
commonalities and the measured variables in Property 5.1 is obtained via Weyl's 
theorem.
In [37], a similar resuit is obtained via "monotone convergence theorem".

> Wirtinger relaxations are used for maximizing log-likelihood.
Relations (5.4) - (5.6) in Section 5.1 States a well-known fact that the sample 
spectral density maximizes the log-likelihood; e.g., [104] calls it the "unobservable 
index model". They are retold here using Wirtinger relaxations to emphasize 
nonexistence, in the Cauchy-Riemann sense, of a non-trivial dérivative of the 
real-valued log-likelihood function of complex-valued variables. The relaxations 
are introduced in the very familiar setting of Section 5.1 in anticipation of its use 
in Section 5.2. An alternative of using the isomorphic relations of a complex- 
Gaussian with that of a real-Gaussian as discussed in Section 2.5 could prove 
tedious for the purposes in Section 5.2.

5.1 Analytical estimation of maximum likelihood com­
monalities

Note 5.2. Since the selected target frequency représenta a subband of frequencies 
near it, the realization ofy corresponding to the l-th frequency sample within the 
subband near the target frequency is referred to by y{oJi).

In Theorem 2.5, an asymptotic property of the discrète Fourier transform was reviewed. 
It involved treating the discrète Fourier transform at a target frequency tu as a com- 
plex vector random variable y whose realizations are asymptotically the discrète Fourier 
transform samples y{uji) 6 C'" at appropriately spaced frequencies uji near uj. It was 
observed there that these samples may be thought to hâve been generated from a 
complex Gaussian probability density

(5.1) P''(y(‘^i)) = 7T“’'(det(Sy))“^ expi-y'iuiXS^y^yiùJi)),

where S^ G is the spectral density function at frequency oj. For n such discrète 
Fourier transform samples y{uji), I = l,...,n, their log-likelihood function may be 
written as —rnlog(7r) — nlog(det(S^)) — The terms which
are independent of S^' may be discarded and the effective log-likelihood is written as

(5.2) L{Sn = -log(det(SV)) - tr((Sy)-'Sy),
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where G is the sample spectral density function as per (2.30). Note that the 
inner product of two vectors is converted to the trace of their outer product.

The log-likelihood function L(S'^) is a real-valued function of complex valued vari­
ables in S^. Hence, it is a non-analytical function and its stationary points hâve to 
be found from its vanishing differential dL(Sy). Presenting the details of deriving the 
differentials of common real-valued functions of complex-valued matrices is skipped. 
A comprehensive treatment starting from the basic idea mentioned in Appendix A.l 
to a full-fledged multivariate complex calculus is beyond the scope of this thesis. In- 
stead, among many good references, the reader is referred to [57]. Referring to Ta­
bles Il and V of [57], it is easy to verify that d log(det(Sy)) = tr((Sy)"'^dS^) and 
d tr((Sy)“^Sy) = —tr((S'')“^Sy(S'')~^dS^), and their sum may be written as

dL(sy) = -tr(((sy)-i - (sy)-isy(sy)-i)dsy).

Based on this differential and from the trace form of the differentials in Table III of 
[57],

(5.3) + (S')-‘S''(S0-‘.

As mentioned in Appendix A.l, the stationary points of 1(5^) occur wherever dL(S'') 
vanishes. Since (S^)“^ = 0 is prohibited for the existence of S'', the maximum likeli- 
hood solution is

(5.4)

wherever ^L(S^) = 0. Now substitute (4.12) in the maximum likelihood solution for 
5^ in (5.4); it follows that

(5.5) S'' + S" = S^,

where the check dénotés the sample estimate of the spectral density function. Based 
on (4.11) the maximum likelihood estimâtes may be further rewritten as

(5.6) WW* + = ST

Since maximum likelihood solution for the parameters W and S^ hâve to be gleaned 
from just one relation in (5.6), there will not be any unique solution.

In order to find the parameters that maximize the commonalities of y amongst the 
maximum likelihood parameters W and S^ of (5.6), further restrictions on the quality 
of the solutions will hâve to be imposed. Recall that Définition 4.1 of the commonalities 
led the formulation of (4.19) which meant v will inherit the covariation in y maximally 
according to relation (4.18).

However, note that the trivial solution that the diagonal matrix S^(a;) = 0 Vcu e 
[—TT, 7t] and Sy(cv) = S''(a;) is forbidden because rank(Sy) = r rank(S'') = q.

Parameters due to commonalities

Note that the function to be minimized in (4.19) is nonnegative for every ui in the 
intégral in (4.18). Hence, ||Sy(a;) — S''(tu)|||^ may be minimized for each uj individually
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and specifying the variable üj may be dropped for brevity. Therefore, the maximum 
commonalities maximum likelihood solution should solve

W = argmin ||S^ — S''|||',
(5.7) w

rank(S'') = q < rank(S^) = r.

Recall that according to Theorem 3.1, for the eigenvalue décomposition

(5.8) Sy = t/diag(Ai,---,A,)C/*,

\where U — [u\ - • • Ur] is unitary and Ai > A^ > 0 are the eigenvalues of S^, the best 
q rank approximation in the Frobenius norm sense is

(5.9) S'' = [ui •••■u,]diag(Ai,--- ,Ag) [ui •••«,]*.

Then it is straightforward to observe that for S'' = WW* in (4.11), a possible 
décomposition for the optimal W is

(5.10) W = [ui---Uç]diag(\/Â7, ••• ,-\/\)-

Comparing the resuit (5.10) with that of classical principal components analysis [88], 
it can be seen that columns of W are seeking directions in which the sample measured 
variances are maximally retained.

Properties of non-commonalities

Note at this juncture from (5.5) that

(5.11) tr(S'') = ^Ai,
i=l

which enables

r

(5.12) tr(S^) = tr($y) - tr(S'') - A^.
i=g+l

For the following lemma, refer Chapter 1 §4.4 of [116]:

Theorem 5.1. (Weyl's theorem) For A,B,C E whose eigenvalues are oi > 
• • • > ür, b\ > ■ • • > br, and ci > • • • > cv, respectively, if A — B + C, then
bi "F Cl ^ Qii ^ bi “F Cy..

Let Sy, S'', correspond to A,B,C, respectively, in Theorem 5.1. Recall that the 
least r — q eigenvalues of S'' are equal to zéro. Then, it follows that any satisfying
(5.12) may be chosen such that

(5.13) t''(S'') > Cl > (r — g)“Hr(S^) > (v > 0.
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This inequality establishes the following property for z while preserving the Frobenius 
norm criterion for the inheritance of commonalities defined through 5.7.

Property 5.1. The variables forming the non-commonalities {zt} of the dynamic 
factor model in (4.2) may be ‘mildiy cross-correlated’ as per (5.12) and (5.13).

Property 5.1 suggests that z need not be strictiy idiosyncratic.

Suppose the discrète Fourier transform components V = {y(‘^i)}> ^ 
within a subband as per Algorithm 1 are obtained. The solution proposed in Algorithm 
3 provides the analytical solution of the spectral factor model within a subband.

Algorithm 3: Analytical solution for the spectral factor
model in a subband________________________________________

Input: T>^{y{cüi)},l^l,...n
Output: W
estimate using (5.4) and (2.30);
compute pairs {Xk, Uk) VA: = 1,..., r using (5.8);
estimate W as in (5.10);

5.2 Itérative estimation of maximum likelihood com­
monalities

In Section 3.6, an itérative solution for the parameters of the classical factor model of 
(3.11) was developed. Based on the EM algorithm presented therein, in this section, 
an itérative procedure for the estimation of the maximum likelihood parameters which 
is aiso enforced to maximally inherit the measured commonalities will be developed. 
Such a motivation to do so is due to the similarity of the relations of the classical 
factor model in (3.11) and the spectral factor model (4.15). This similarity is obvious 
if it is supposed that the parameters of the factor model are 6 = {W, S^} and that 
the random vectors y and z at a target frequency realize y and z at nearby frequencies 
according to Theorem 2.5.

Note 5.3. As in the previous section, the realization of y corresponding to the 
l-th frequency sample within the subband near the target frequency is denoted by 
y{u)i). In addition, in this section, and Wj are used to refer to the i-th itérative 
estimate of the spectral density fonction S^ and the transformation matrix W at 
the target frequency, respectively.

As in Section 3.6, first notice that the spectral factor model équivalent of (3.39) is

(5.14) pyl"’^y I X, 0) = Afciy \ Wx, S^).

Let a dataset V render the discrète Fourier transform samples y{u>i), l = l,...,n 
at frequencies within the subband represented by the random vector y. At the target
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frequency under considération, the likelihood of V to correspond to the spectral factor 
model is

n

(5.15) I X, 0) = n I X, 0).
/=!

Now, in line with (3.41), (3.43), and (3.42), the direct extension of the estimation of 
the spectral factor model parameters in the f-th itération of the EM algorithm gives:

(5.16) - argmax [\ogy\^^\V \ x, 0^)]
0.

and for

êi+i = argmax E*'ly’^[f(6>i,x)],
0i

n

f(0i,x) = ^logeA/'c(y(wi) I WjX,S^).
/=i

Expanding f(0j,x) will lead to terms in x and xx*. So, as with (3.46), first define

(x)i,/= I y(u;i),^i],
(xx*)i,,âE’'ly-^[xx* |y(a;O,0i].

Note that (x)j_/ G C® and (xx*)j_/ 6 whereas their estimation will define the
E-step of the EM-algorithm. Then, as in (3.51), it may be written that

(5.18) = ^g (|^ExM[f(^i,x)] = o).

Similarly, as in (3.53),

(5.19) S|+, = arg AE«l/.»(f(«,,x)| = o) .

These optimizations complété the M-step of the EM-algorithm.

Hence, starting from initial guesses, the f-th itération alternâtes between;

1. Expectation-step Evaluate (x)j/ and (xx*)j/ using (5.17), and

2. Maximization-step Update Wj+i using (5.18) and Si+i using (5.19).

It is clear that the EM algorithm leads to non-unique maximum likelihood solutions 
depending on the starting conditions.
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5.2.1 EM steps and form of the maximum likelihood parameters

As in the previous sections, note that ui corresponds to the l-th frequency sample 
within the subband near the target frequency. AIso, Sj and Wj refer to the f-th 
itérative estimate of the spectral density fonction S^' and the transformation matrix W 
at the target frequency, respectively.

In this section, the solutions encountered in the two steps of the algorithm will 
be analyzed and the usability of an itérative solution in lieu of or complementing an 
analytical solution assessed. In doing so, the dérivations due to Section 3.6 will be of 
sufficient aid and will be the main reference.

First, note from Appendix B.3 and relations (3.48) and (3.49) that the E-step of 
the EM algorithm is simpiy

(5.20) (x),,i = aW*(Sf)-V(o^/)

(5.21) 0,-(J, + W*(Sf)-iW,)-\

(5.22) (xx*)i,i = + Çli,

where the inverse of fij € in general, exists. For evaluating Wj+i according to
(5.18), first Write

n

E><ly’"[f(0i,x)] = E>'ly’"[log,(A/-c(y(u;i) | WiX,SD)]
1=1

= -nloge(IS-l)
n

(5.23) - X^tr((Sn-'W,(xx*),,,W*) +y*(u;,)(Sf)-V(^j)
1=1

-23î(y*(a;i)(Sf)-'W,(x)i,0,

where eliminated are terms independent of Wi or S^. The reader is referred to [57] to 
verify using Wirtinger relaxations that

(5.24) -E>'ly-^[f(0,,x)] = (Sf)-' X^(W,(xx*)'^, -ÿ(a;0(x)',,).
/=!

Then, due to (5.18), 

(5.25)
^1=1 ^ 1=1 ^

Just as in Section 3.7.2, let

(5.26) Vj(u;i) = W,+i(x)i,/.

For = diag(s^*,..., s^’’) it can easily be seen that

(5.27) = -n^(log.(sf) + it;*]
fc=l »
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where

(5.28) è |yfc(^i) -
^ i=i

Note that S\ is a real-valued diagonal matrix and the dérivative with respect to it is 
straightforward. Then 9E’'ly’^[f(0j,x)]/9s^*= = 0 at

(5.29)
5-Zfc — tZfc
=i+l ~ >
Si+1 =diag(s^|i,-- - ,s^;i).

The relations (5.25) and (5.29) stand for the M-step of the EM algorithm for the 
maximum likelihood parameters of the spectral factor model.

5.2.2 EM algorithm for spectral factor model

The following pseudocode of the EM algorithm for the maximum likelihood spectral 
factor model may now be provided; this is in line with Algorithm 2 in Section 3.7.2. 
In Algorithm 2, the input was the dataset V of iid data samples; whereas here it 
is assumed that X> is a set of discrète Fourier transform components near a target 
frequency as recommended by the asymptotic requirements of Theorem 2.5.

Algorithm 4: EM algorithm for the spectral factor model
in a subband______________________________________________

Input: T> ^{y{u}i)},l = l,...n 

Output: W,= diag(s^T• • • jS^’') 
initialize i = 0; 
randomize Wj, Sf; 
do

E-step;
for Z = 1 to n do 

compute
(x)j,/ using (5.20);
(xx*)i,/ using (5.22);

end
M-step: update

Wi+i using (5.25);
Si+i VA: = 1,..., r using (5.29);

i <— f -F 1;
e ^ E’‘ly’^[f(^i,x)] - Ex|y-®[f(^i_i,x)] using (5.23); 

while e > 10“® and i < 20;
W -f— Wi, <— s^'' VA: - 1,... ,r;

Suppose the discrète Fourier transform components T> — {y(wi)}> ^ l,...n
within a subband are obtained as per Algorithm 1. Algorithm 4 demonstrates how the 
E and M steps may be alternated, starting with a random initialization of the parame­
ters corresponding to a target frequency, to output the converged parameters W and 
S^ of the spectral factor model.
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Note 5.4. For EM algorithm in Algorithm 4 converging towards a local maximum 
ofthe log~likelihood is possible, converged parametersO corresponding to the largest 
E’'ly’®[f(0,x)] from a number of random restarts will be chosen.

5.2.3 Maximizing commonalities in spectral factor model

Note 5.5. In this section, it is assumed that the EM steps hâve converged. There- 
fore, for notational brevity, any indexing of the itération is dropped and the updated 
parameters will be denoted by 9 = {W, S^}. /As in the previous sections, uii corre­
sponds to the l-th frequency sample within the subband near the target frequency.

As seen, at the end of the itérations of a converged EM algorithm, access is available 
to the estimate of the transformed factor to get

v{ui) - Wx.{üJi)

corresponding to the /-th realization y{oji) V/ € 1,... ,n, where

(5.30) x(o;/) = E>'ly’"[x|y(c^0,^]

as in (5.17) and computed in (5.20). Thus, in the context of (4.15),

(5.31) y{üüi) = Wx{üJi)VZ = l,...,n

\where z{u>i) is the error in regressing towards y{oJi). The régression errors are due 
to zéro mean isotropie Gaussian vector random variable z; this is not the assumption 
but the resuit of Theorem 2.5.

Now it shall be seen why the same situation as in the linear model of Section 3.2 
persists. From the form of (4.18) for inheritance by S'' of the commonalities of S'', it is 
clear that ||S^(a;) — S''(o;)|||. may be minimized for each üj individually. Then, (4.19) 
implies that the optimal is given by = argmin^ = argmin tr(S^), or for each of

the diagonal éléments s^'' of

(5.32) s^*" ^ min(s^*’) VA: 1,..., r.

But s^*= is the variance ofthe zéro mean Gaussian error in approximating yjt(a;/) using 
Vfc(cuj). Hence, a minimum variance unbiased régression of x(o;/) towards y{ui) is 
sought using v(cui) = Wx(o;;).

As seen, maximizing the commonalities upon convergence of the EM algorithm 
requires an efficient estimator of W. Therefore, if the Gauss-Markov solution of (3.8) 
is used, the efficient estimator got is

(5.33) W = [y(cui) • • • y(a;„)]X* (XX*)-' ,
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where, using :x.{uii) referred to in (5.30 ) and computed via (5.20), the q x n matrix 
X = [x(u;i) • • • x(cj„)] having rank(X) = g is a maximum likelihood 'latent data 
matrix.' And, as per (3.9), an unbiased estimate of is

= diag(s^i,... ,1^’'),

(5.34) s^'' ==-------- V|yfc(wz) - Vfc(cjj)|^, /c =

v(u;i) = Wx(w/),

where x(o;/) referred to in (5.30 ) is computed via (5.20). It is important to un- 
derstand that although the EM algorithm gives the maximum likelihood solution, the 
maximization of the commonalities was achieved through (5.33).

Suppose the discrète Fourier transform components V = {y{ui)},l = l,...n 
within a subband as per Algorithm 1 are obtained. Then, as per Algorithm 5, the 
procedure for estimating the maximum commonalities spectral factor model parameters 
utilizing the EM algorithm developed in Algorithm 4 could be compiled.

Algorithm 5: Maximum commonalities spectral factor 
model via EM algorithm 

Input: V = 1,... n
Output: W^,
estimate {W,S^} with input V to Algorithm 4; 
compute x(o;/) as in (5.30); 
estimate W using (5.33); 
estimate using (5.34);

5.3 Summary

The form of the spectral factor model in (4.15) is similar to the classical factor model 
in (3.11). In this chapter, as reviewed for the classical factor model in Chapter 3, 
two approaches for maximum likelihood estimation of the spectral factor model were 
developed and within each of them the commonality maximization parameters were 
found:

In the analytical approach put forth, the sample spectral density function computed 
from the discrète Fourier transform samples of a measured vector random process 
near a target frequency is the maximum likelihood spectral density function of the 
process. The maximum likelihood maximum commonalities solution provided by (5.10) 
is similar in interprétation to the low-rank approximation of the classical factor model 
solution and (5.13) provides the leverage to choose idiosyncrasies the way the user 
wants without destroying the rank stringencies of the transformation matrix. The 
commonality maximizing maximum likelihood transformation was found to direct the 
latent spectra along the principal components of the measured spectra. This analytical 
solution was presented in Algorithm 3.

Again, as with the classical factor model, Algorithm 4 was designed to estimate the 
maximum likelihood spectral factor model in an itérative fashion. The parameters of 
the model thus estimated were improved in (5.33) and (5.34) by treating the maximum
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likelihood transformation of the a posteriori mean of the latent variables of the spectral 
model as a régression towards the measured spectral components. This enabled the 
transformed latent spectra to maximally inherit the commonalities of the measured 
spectra through the Gauss-Markov theorem.
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Chapter 6

Learning via spectral factor 
model

In Chapter 1, the objective of learning a time sériés process was discussed with ex­
amples. Two challenges to prove the learning worth of the spectral factor model were 
proposed there. Firstly, a given measured time sériés has to be classified as belonging 
to one of the several possible processes that could hâve generated it. In this chapter, 
classification is done based on the proximity of the optimal spectral factor model pa- 
rameters of the unclassified time sériés with that of the time sériés of varions classes of 
possible processes. Secondly, prédiction of the future évolution of a current measured 
time sériés is done. In this chapter, prédiction is performed by enriching classical vector 
autoregression parameters of the measured time sériés in the prédiction équation with 
commonalities.

In Section 6.1, before moving to either of those learning applications, it is necessary 
to consider the computational requirements of the spectral factor model estimation. 
In particular, strategies to choose the best of the two possible estimation procedures 
developed in Chapter 5 are considered from a practical perspective of using them in a 
learning problem.

In Section 6.2, the classification problem is defined concretely. The strategy involves 
comparing projection of the subspace spanned by the transformation matrix of the test 
time sériés épisodes onto those of a number of training time sériés épisodes. An 
approach based on the nearest neighbors in terms of the projection is used to décidé 
whether a test épisode belongs to one class or another; this is made available in 
Algorithm 7.

In Section 6.3, the prédiction problem is taken up. The strategy there is simple: 
The measured acvf is an addition of two acvfs, one of them inheriting the common­
alities and the other not. Ail occurrences of the measured acvf in the classical vector 
autoregression prédiction équations are replaced with the part of the measured acvf 
that inherits the commonalities. This is demonstrated in Algorithm 8.

The following situâtes the developments in this chapter with respect to the state- 
of-the-art:

> Spectral factor model based classification.
The classification metric of (6.4) compares the maximum commonality transfor­
mations of any two multivariate time sériés. The metric quantifies the overlap 
of maximum commonality subspaces despite (i) multiplicity of maximum likeli-
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hood solution due to orthogonal rotations, (ii) the transformation matrices being 
complex-valued, and (iii) the transformations for ail the subbands are to be com- 
pared. The closest work in the literature to this is that of [66] who struggle to 
achieve a proper metric that will compare two classes of spectral densities despite 
working with their full-rank sample estimâtes.

> Commonalities driven multivariate time sériés prédiction.
For predicting measured multivariate time sériés believed to consist of substantial 
commonalities, an estimate of the acvf is obtained by inverting its commonalities 
enriched spectral density function. Classical vector autoregression on current and 
past samples with orthogonal errors, as prévalent in literature [102, 51], is used 
to obtain the prédictions. Except, here, the measured acvf is replaced by that 
of the commonalities estimate.
On the other hand, the focus of eminent works in dynamic factor model liter­
ature such as [36] is in the prédiction of the commonalities, which is typically 
unmeasured. E.g., [104] wants to model business cycles whereas [118] predicts 
diffusion index based on other measurable indicators.

6.1 Practicalities of spectral factor model estimation

It is clear that learning problems would require estimation of the spectral factor model 
parameters that inherit commonalities maximally. Hence, as a préludé to using com­
monalities for learning problems, Algorithm 6 is followed to estimate these parameters 
given a finite r length time sériés {yt}, t — 1,2, The output of the algo­
rithm is the set of spectral model parameters {W(a;j), S^(o;j)} at j target frequencies 
Lüj € [0,1), j =

Algorithm 6: Estimate optimal spectral factor model per subband 
Input: {yt}, t = 1,... ,t] yt € W-,
Output: {W(wj)}; j =
compute {y(o;j,;)}; j = 1,..., j; Z = 1,..., n using Algorithm 1; 
foreach j = 1,..., j do

gather V ^ {y(wjv)|. Z = 1, • • •, n;
estimate {W(wj), S^(u;j)} with input T> to Algorithms 3 or 5;

end

The following observations regarding Algorithm 6 may be noted:

1. The procedures of Chapter 5 estimated the maximum commonalities spectral 
factor model within a spectral subband as per the asymptotic theory discussed 
in Section 2.5. Hence, the discrète Fourier transform components are split into 
j subbands using Algorithm 1.

2. Each subband should hâve a sufficiently large n number of samples for a reliable 
estimation of the spectral factor model parameters; this may typically be set to 
n « to ensure consistency of sample estimâtes without inviting the curse of 
dimensionality issues [106, 12].
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3. Although informative, the parameter is needed for neither the classification 
nor the prédiction exercises because it contains no commonalities which are ail 
available through W.

4. Depending on the computational demands and application, either Algorithms 3 
or 5 may be chosen for computing the optimal parameters of the spectral factor 
model.

The last of the above requires further discussion. Theoretically, the analytical solu­
tion of Algorithm 3 is élégant and unique till orthogonal rotations of the transformation 
matrix. However, in favor of the itérative Algorithm 5 are the follow/ing practical as­
pects:

> For an r-variate measured time sériés, computing its spectral density function as 
well as computing its eigenvalue décomposition are typically O(r^) operations 
[32]. This makes Algorithm 3 very prohibitive as the number r of measured 
variables grows. For g-variate latent time sériés, the intensive operations of the 
EM algorithm-based estimation in Algorithm 5 are gxg matrix inverses; they are 
typically 0{g^) operations and ç -C r is the practical choice. Note that (S^)“^ 
in the EM Algorithm would involve only scalar reciprocals of its diagonal. Hence, 
practically, for online or real-time implémentations where complexity is aiways a 
constraint, spectral factor model updates could be done better using Algorithm
5.
On the down side, as mentioned in Note 5.4, the issue of local minima in the 
EM algorithm poses some risk. Hence, it is désirable to confirm itérative esti­
mâtes with an occasional update via Algorithm 3. Or, the randomization of the 
parameters in the beginning of the EM algorithm might be replaced by analytical 
estimâtes.

O In many time sériés, especially in econometrics, seasonality leads to distinct 
spikes in the spectral components. Their adjusting or correction leads to unde- 
sired conséquences including élimination of true and introduction of misleading 
non-seasonal characteristics as well as distortion of commonalities [91]. Sup­
pose the discrète Fourier transform components of the unadjusted seasonal time 
sériés corresponding to the suspected seasonalities are assumed missing. EM 
algorithm could be extended to impute the missing values using approaches such 
as Monte Carlo EM [123] and Stochastic Approximation EM [31]. This allows 
the possibility to model and learn the commonalities without inviting unnecessary 
pre-processing.

6.2 Multivariate time sériés classification

Let an r-variate measured time sériés be denoted by {yt}. The objective of the clas­
sification problem is to assign {yt} to one and only one of the c exhaustive classes of 
time sériés Ci, i — 1,... ,c. It is necessary to clarify what a class of time sériés means. 
A class of time sériés is a stochastic process, which is distinct from other processes 
according to an expert who has measured the time sériés. Such a distinction might be 
due to some dynamic characteristics of the time sériés the class is associated with that
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is objectively or subjectively obvious to the expert. Or, the expert might believe that 
the physical process that generated a class of time sériés is dissimilar to others.

To ease the discussion on classification of time sériés, revisit the first of the two 
examples in Section 1.2. There, the computer gamer has to make joystick movements 
which require her to position the cursor from the center of the screen to any one of the 
four corners. During the game, the magnetoencephalography sequences corresponding 
to ten spatial spots in the brain were recorded via a magnetoencephalography scanner. 
Existence of a set of two latent signais, viz., her cognition and reaction sequences, of 
known general characteristics which generate the measured time sériés is presumed. 
When a Joystick is moved, these latent signais must undergo a dynamic transformation 
corresponding to that particular class of Joystick movements. In this example, an expert 
might hâve witnessed several épisodes of the gamer making these four movements and 
understood the dynamic characteristics of the measured time sériés. Each épisode is 
a finite length multivariate time sériés realization. Suppose access is available to a 
historical database of many such épisodes which hâve been classified by the expert; 
they may be called the training épisodes. It is wished to classify more épisodes 
without the aid of the expert one by one; each of them will be called a test épisode.

The challenge to reliably classify a test épisode of a multivariate time sériés process 
based on the dynamic characteristics of a given dataset of classified training épisodes 
is the time sériés classification problem. Hence, the classification process will hâve 
two phases: In the training phase, the summary of the dynamic characteristics of many 
training épisodes are extracted. Obviousiy, the summary here implies the parameters 
of the spectral factor model. In the testing phase, the test épisode is fed as input to 
the classification System. Its dynamic characteristics are compared with the dynamic 
characteristics of ail the classes, and the most appropriate class label is given as the 
output of the System. Effectively, the spectral factor model parameters of the test 
épisode is compared with those of the training épisodes.

Such a classification System is indeed a learning System because of two reasons: 
First, the essential dynamic characteristics from ail training épisodes hâve to be ap- 
propriately summarized, which in this thesis’s context will be in model parameters. 
Second, the classification System demonstrates the ability to use past expériences of 
training épisodes to respond to a new test épisode which it has not witnessed earlier.

Proposai for a classification System

The motivation so far has been that, firstly, each of the components of a multivari­
ate measured time sériés contribute towards the commonalities shared amongst them, 
and, secondly, the dynamic transformation should maximally inherit the commonalities. 
Then, the following steps are devised in the time sériés classification strategy:

1. Estimate the optimal dynamic transformation for the test épisode and ail training 
épisodes whereby the latent dimensionality maximally inherits the commonalities. 
From this thesis's perspective, this is équivalent to estimating the maximum 
commonalities spectral factor model as done by Algorithm 6.

2. Create a neighborhood for the test épisode by computing its proximity with each 
of the training épisodes with respect to their optimal dynamic transformation 
parameters.
For this step, the proximity of the test épisode has to be compared to the training
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épisodes with respect to their maximal inheritance of commonalities, which are 
believed to distinguish one class from another. The spectral factor model pa- 
rameters W are known to correspond to maximal inheritance of commonalities. 
Hence, the proximity of the optimal W of the test épisode ought to be compared 
with the optimal W of the training épisodes.

3. Classify test épisode to the class in which majority of the training épisodes in the 
former’s immédiate neighborhood belong to.
For this step, one should be able to design a distance metric between the trans­
formation matrices of any two time sériés. Then, with respect to the distance 
metric, the concepts of ‘neighborhood’ of the transformation matrices as well as 
the ‘closeness’ between them may be used. Specifically, one may décidé in favor 
of the class which has k training épisodes doser to the test épisode than any 
other class: this strategy is generally known as the K-nearest neighbor classifica­
tion [28].

The last two steps above beg élaboration. Suppose access is available to time sériés 
from c classes Ci,i — 1,... ,c each with \Ci\ examples and an unclassified time sériés 
épisode. To proceed further, let the following notations be compiled:

{yt}i@i< ^ — 1) • • • ) |Cî| /-th example time sériés in the class Ci
{W(u;,)}i®i spectral transformation of {yt}im at uj

{yt}? unclassified test épisode
{W{uj)h spectral transformation of {yt}? at u>j

similarity between {W(cjj)}t®j and (W(a;j)}7
proximity between {yt}? and {yt}im

pü decreasing sort of p{l@i, ?) over l

Since the spectral factor models at j target frequencies are independent of one another, 
it is proposed that

(6.1) p{l@i,7) =
j=i

Then, {y<}? may be associated with Cî, if

K
(6.2) î — argmax ^p(| l@i, ?),

’ 1=1

where a tie is broken at random and k is a suitable integer, e.g., /c = 5.

Classification metric

Recall from solution (5.10) that columns of W e form a set of scaled unitary 
vectors which define a g-dimensional space embedded in C'". These vectors carve a 
hyperparallelopiped in C*" whose sides are norms of these columns [112]. Then, a 
possible measure of disparity or similarity between any two transformation matrices is 
to compare the overlap of the volumes.
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What the overlap of volumes really implies is specified now. The overlap for a, 6 G 
is defined as 6{a,b) — |a* b\, which is the absolute 2-norm of the unitary projection 

of a onto the span of b. Consider a set of linearly independent columns vectors of some 
matrix A spanning a subspace Ma C C'”; rank(j\/fA) = Q which is unitarily projected 
onto a subspace Mb C C^; rank(MB) — q of another matrix B. This projection may 
be thought of as carving a volume measured as the absolute déterminant |det(yl*5)| 
of the unitary projection of the vectors spanning Ma onto Mb [75, 84], In [85], it is 
available that

(6.3) |det(A*.B)| = voI(t1)voI(.B) cos{R(^), R{B)}

where vol(A) = det(R(yl)), where R(>1) is the range space of ^ and cos{R(A), R(5)} 
refers to the product of the principal angles between compatible matrices A and B. In 
[40], it is shown that cos{R(A), R(B)} = |aj^ bk\, where afc and bk correspond 
to the fc-th principal singular vector pair of A and B, respectively. For the purposes 
here, it is appropriate to use (6.3) to find

(6.4) <5 {W(a;,)},) 4 |det({W(u;,)}r@, {W(u;,)}?)|.

Salient features of the classification metric: The metric due to (6.1) and 
(6.4) is superior to those proposed by [66] for multivariate time sériés classification 
because (i) it évaluâtes the latent structure (ii) is invariant to orthogonal rotations of 
the transformation matrix, (iii) applicable in rank-deficient spectral density fonctions, 
and (iv) scalable with the number of subbands.

Classification algorithm

It is now ready to classify a test sériés {yt}? based on class affiliations and distances to 
the K-nearest neighbor training sériés from classes Ci,i = 1,... ,c each with \Ci\ train- 
ing sériés whose f-th example is {yt}im< I — l,---î|Ci|. The classification procedure 
is simple and is given in Algorithm 7:

Algorithm 7: Spectral factor model classification

Input: {yt}?. {yt}imÀ = = l,...,|Ci|;
Output: î : {yt}? G Cî

choose Algorithm 3 in Algorithm 6 and for

estimate output (W(a;j)}? with input {yt}?; 
estimate output {W(u;j)}t@j with input {yt}i@i\ 

compute p{l@i,7) using (6.1) and (6.4); 
compute î using (6.2);

Note 6.1. Algorithm 3 was insisted in Algorithm 7 because the solution based 
on EM algorithm of Algorithm 5 does not guarantee orthogonal columns for the 
spectral transformation matrix W for the metric (6.4) to be directiy applicable.

Note 6.2. The optimal parameters of the training épisodes {W(a;j)}/@i, j — 
l = 1,..., |Ci| may be computed offline and only once.
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6.3 Multivariate time sériés prédiction

The prédiction problem, as introduced in Chapter 1, meant reliable estimation of the 
future évolution of a given time sériés realization. Subsequently, through the spectral 
factor model, a parametric time sériés model was developed; it assumes existence of 
latent time sériés that could be dynamically transformed to imitate a higher dimensional 
multivariate measured time sériés by inheriting the commonalities of the measured 
variables. As a solution, it is hoped to drive the future évolution of a given realization 
by using the commonalities and avoiding the idiosyncarsies.

Prédiction methodology

Insofar as to validate the robustness of the spectral factor model and its underlying 
assumptions, the intention is to predict the évolution of the time sériés using the 
commonalities the spectral factor model could extract from the data. In order to 
validate that the prédictions are benchmarked appropriately, it is necessary to compare 
the prédiction accuracy of the spectral factor model with those of the state-of-the-art 
multivariate time sériés models. Then, it seems reasonable to modify the parameters 
of the state-of-the-art models to be dépendent on the commonalities only and assess 
the accuracy upon that modification.

Fortunately, the aforementioned modification of the state-of-the-art model in the 
context of this thesis is easy. This is because the spectral factor model was built on the 
spectral density fonction or equivalently on the acvf of stationary processes; whereas 
the acvf s décomposé into parts which are commonalities-dependent and commonalities- 
independent as per (4.3).

Predicting a multivariate measured time sériés using commonalities dépendent 
state-of-the-art prédiction models accurately should strongly hint that the évolution 
of the time sériés is driven by the commonalities. Then, the assumption regarding a 
latent time sériés will stand vindicated. On the contrary, if the component time sériés 
are ail uncorrelated there will not be much to gain in prédiction through this approach.

Classical vector autoregressive prédiction

One of the most widely used family of équivalent time sériés models based on classical 
vector autoregressive modeling of linear processes will be used [102, 51]. This is 
because the prédiction framework in that model is simple to comprehend, popularly 
tested, and easy to implement. Later, the classical model will be adapted such that its 
parameters are maximal carriers of commonalities.

The basic principle of vector autoregression is to estimate a future sample of a 
given realization as a weighted sum of the current and past samples. One may refer 
[51] among many references to pick from a wide ranging approaches ranging from 
maximum likehihood estimation, Kalman filter, Bayesian analysis, etc. to time sériés 
prédiction; in moving forward, just one of those approaches based on linear projections 
is used. For now, the classical vector autoregressive model may be summarized as 
follows: For an r-variate linear process {yt} up to the current sample yj, a simple and 
valuable version of the prédiction problem involves estimating the s-th next sample
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Vt+s\t a linear function of a finite number p of the présent and past samples as

p-i
(6-5) y(+s|t = et+s +

j=0

where et+i — yt+i — Vt+i\t'^i = 1)2,... is the estimation error and € R^^’'V/ = 
1,2, ...,p are the autoregression coefficient matrices. The condition that ensures 
minimum mean square error are when the errors et+i above are uncorrelated, i.e., 
E[et+iy't_j] = 0 Vj = 0,... ,p— 1; refer, e.g., Theorem 4.5 of [48], for this well-known 
resuit. It gives rise to the relation between the acvfs and the coefficient matrices:

(6.6)

where

(6.7) 

and

(6.8)

$y
P,s

Pj..= [nr;+,---
T /

^ s+p—1 ’

r n rï

1 1 to
 •-*

[1
]

II

•••

In practical problems of interest (Ep) ^ will exist. Therefore, for any given p-length 
subsequence of {yt} written as

(6.9) yt,p = vec(yt) Vt-i, ■■■, Vt-p+i) e R^,

for the classical vector autoregression on past samples as per (6.5), referring to §4.3 
of [51], the minimum mean square error prédiction is

(6.10) ÿt+s\t ^p,s yt<p-

Spectral factor mode! prédiction

Based on the prédiction methodology envisaged in Section 6.3, may be replaced in
(6.7) and (6.8) by the part of the acvf which inherits the commonalities. The spectral 
factor model was developed based on the décomposition of the measured multivariate 
time sériés y* as per (4.2) to and zt, which inherit the commonalities and the 
idiosyncrasies, respectively. The décomposition (4.3) of the acvf of F)^ into F)^ and 
F^ was aiso seen. It was further found out that the best approximation of F)( in the 
sense of inheriting the commonalities is F)^ obtained via the spectral factor model. The 
optimal spectral factor model parameter S'' is related to F)^ through (4.11).
Suppose a maximum commonalities spectral factor model is computed based on a 
training set of measured time sériés either via the analytical approach of Section 5.1 
or the itérative approach of Section 5.2 according to Algorithm 6. As a resuit, the 
optimal transformation matrices {W(cjj)}, j = 1,..., J at j target frequencies may be 
assumed available. Then, given any subsequence yt^p of the measured time sériés, by 
replacing F)^ with F^ in the prédiction équations, prédictions may be performed as per 
Algorithm 8:
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Algorithm 8: Spectral factor model prédiction 
Input: ÿt,p\ {W(wj)},j = 1,... J 
Output: ÿt+s\t 
compote using (4.11); 
compote replacing T); Tl in (6.7);
compote Hp replacing —> F)( in (6.8);
compote = (Hp-Vp,*:
estimate ÿt+s\t = ^,s yt.p>

6.4 Summary

In practical learning problems one is boond to ose spectral factor model with limited 
compotational resoorces. In Section 6.1, choosing the estimation procedore was dis- 
cossed; it was based on either (i) the cheaper EM algorithm bot with necessary caotion 
to évadé local optimom traps or (ii) the accorate bot expensive analytical formolas of 
the low-rank approximation.

For classification of moltivariate time sériés based on the similarities of their com- 
monalities, a metric in (6.1) and a /t-nearest neighbor classification rôle in (6.2) was 
designed. A test moltivariate time sériés may be classified as belonging to the class 
of training moltivariate time sériés for which the sobspaces spanned by their optimal 
spectral factor transformation matrices overlap maximally.

For prédiction of moltivariate time sériés based on the spectral factor model, the 
classical vector aotoregression prédiction models was modified by replacing the mea- 
sored acvf with the acvf corresponding to the optimal commonalities.
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Chapter 7

Experiments

The notion of multivariate time sériés learning was introduced in Chapter 1 using 
two practical example problems. One was classification of human MEG signais and 
the other was prédiction of share prices in a portfolio. It was posited that measured 
multivariate signais in both these problems were generated by dynamic transformation 
of a low-dimensional latent time sériés whose acvf characteristics are assumed known 
or given. For convenience, it was assumed that the latent time sériés is a zero-mean 
unit-variance white noise.
In designing a modeling Framework for multivariate time sériés in Chapter 4, many 
merits and challenges in estimating the dynamic transformation in Fourier spectral 
domain were seen and the modeling Framework was called the spectral factor model. 
In deriving an optimal model in Chapter 5, the following points were considered :

(a) From ail possible spectral factor models, a model that is the most likely to hâve 
generated the available measured time sériés according to the principle of maximum 
likelihood was found. For the maximum likelihood spectral transformation matrix 
W, through (5.5) it was found that a unique analytical solution is infeasible; 
whereas an itérative solution in (5.25) was obtained.

(b) From ail possible maximum likelihood spectral factor models, the one which maxi- 
mizes the commonalities inherited by the dynamic transformation was sought. To 
attain that model, a solution each for the analytical and the itérative procedures 
via Algorithms 3 and 4, respectively, were formulated.

Through the design of a learning Framework in Chapter 6, the following were provided:

(i) A classifier, in Algorithm 7, based on K-nearest neighbor proximity of the projec­
tion cast by the subspace defined by the optimal spectral factor model transfor­
mation of a test time sériés with the training examples from varions classes.

(ii) A vector autoregression prédiction scheme, in Algorithm 8, that replaces the acvf 
of the measured time sériés in the classical prédiction équations with the acvf 
corresponding to the commonalities.

Each of these learning objective, viz., classification and prédiction, will be experimented 
with in Sections 7.1 and 7.2, respectively. In both experiments, their data acquisition 
scheme and the general characteristics of the measured variables will be briefly ex- 
plained. Importantly, limitations and advantages of these experiments with respect to
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the data will be discussed.
One important aspect of a spectral factor model that was taken for granted in the 
theoretical development was the choice of the latent dimensionality. Hence, in the 
experiments, its influence on classification and prédiction accuracies will be tested. 
Another aspect of the modeling framework that will be tested is the optimal number of 
subbands as required by Theorem 2.5 of the asymptotic theory of spectral estimâtes.

Implémentation

In addition tothe practicalities discussed in Section 6.1, certain implémentation aspects 
of the experiments need to be highiighted. In conducting these experiments, the 
learning capabilities of the spectral factor model are to be demonstrated. To allow 
appropriate benchmarking, publicly available data from live fields of study will be used 
without much expert insights on the processes for which the data was collected. Ail 
experiments were conducted using a standard laptop with Intel Dual Core T7200 CPU 
(2.00GHz). Implémentation of the entire estimation and the learning experiments were 
written using the R language [101]; the codes are intended to be made publicly available 
through the Comprehensive R Archive Network [4].

7.1 Classification of magnetoencephalography signais

In the first of the introductory examples in Section 1.2, the problem of dynamic factor 
model using the exercise of classification of wrist movements based on magnetoen- 
cephalogram (MEG) measurements was described. The task was originally part of a 
prestigious international compétition which has concluded; its solutions hâve aiready 
been published and the winners were announced [Ij. The typical approach of par­
ticipants in the compétition involved processing time sériés to extract certain static 
time and frequency domain signatures which are then fed to state-of-the-art classifiers. 
Nevertheless, the compétition is attempted here to demonstrate the capability of the 
spectral factor model in utilizing much of the commonalities captured by the the latent 
time sériés presumed for the measured MEG variables for the purpose of determining 
the particular class of wrist movements responsible for modulating the MEG.
Briefly recap the discussion in Chapter 1 regarding what classification of time sériés 

implies: A class of time sériés may be regarded as an ensemble of finite length time 
sériés épisodes if they are realizations of the same dynamic transformation of the same 
latent time sériés. The dynamic transformation thus represents a class of measured 
time sériés process. But remember that the dynamic transformation is such that it al- 
lows inheritance of the commonalities maximally from the measured time sériés. Hence, 
by comparing the dynamic or spectral transformation matrix of any two measured time 
sériés processes, it should be possible to décidé which among them a new unclassified 
measured time sériés is closest to.

Detailed description and information of the task are available in the compétition 
website of [1]; the data was contributed by [2]. In summary, there are c = 4 classes 
of wrist movements for which 10 MEG time sériés are recorded. Ail movements are 
appropriately resampled to hâve r = 400 samples and hâve similar stimulus eues and 
movement procedures. Independent data sets V\ and X>2 are available for two human 
subjects; each subject produces 40 example movements per class and with 73 and 74 
uniabeled test movements, respectively. The number of test movements per class per
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Figure 7.1: MEG signais of a human subject 2>i corresponding to five brain spots 
(V2, V4, V6, V8, VIO) during four classes of wrist movements.

subject is aiso unknown. For neither learning nor testing, there is a need to mix the 
data from T>i and V2 whereas tests are assessed on their average count of classification 
accuracies, oi and 02, respectively.

Testing latent dimensionality: Since it is a prérogative to estimate an appropriate 
latent dimensionality g for a given measured dimensionality r, the classification accuracy 
on ail possibilities, viz., g = — 1 will be tested. However, as discussed in
Section 6.1, there ought to be sufficient number of samples n within a subband of the 
discrète Fourier transform of the measured factor model for enhancing reliability of the 
estimated parameters W €

Testing number of target frequencies: Yet another constraint that was summa- 
rized in Section 6.1 was the number j of target frequencies; the sampling rate should be 
high enough so that sufficiently large j number of target frequencies may be assigned 
to meet the conditions of the asymptotic theory of spectral estimâtes. Unfortunately,
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Figure 7.2: MEG signais of a human subject corresponding to five brain spots 
iy2,VA^V&,V9>,V\G) d U ring four classes of wrist movements.

the number of samples for the data was just 400.
Balancing asymptotic Gaussanity and curse of dimensionality: A balance 

bas to be struck between the demands for a large number of samples n within a 
subband for estimating the parameters for a latent dimensionality up to g r — 1 while 
ensuring that increasing n would not hamper the large number j of target frequencies 
required. It is not the intention to pre-process the data to increase the sample rate 
or perform other modifications that might lead to explainable bias in comparison of 
spectral factor model performance with others. As a resuit, it was decided to use 
r — 5 measured signais only from among the 10 measured signais. In Figures 7.1 and
7.2, these are marked as {V2,VA,V6,V8,V10) instead of (Fl,..., VIO) of Figure
1.3. The signais Fl,... ,F10 correspond to spatially adjacent parts of the brain; other 
than that no set of signais seem qualitatively more similar to another set of signais 
and no particular criteria was used to select the set (F2, F4, F6, F8, FIO) of five
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measured signais. Obviousiy, using only part of the measured variables for such a 
tedious classification exercise invites the risk of losing information rich data that might 
reflect in poor classification accuracy. As a validation, however, the exercise with the 
other set (Fl, F3, F5, F7, F9) of measured signais will aiso be carried out.

Q
J =

ai
20

02 ai
25

02 Ol
30

02
1 40.54 32.88 40.54 32.88 40.54 26.03
2 40.54 32.88 40.54 32.88 40.54 26.03
3 40.54 32.88 40.54 32.88 39.19 31.51
4 40.54 32.88 40.54 32.88 39.19 30.14

Table 7.1: Percentages of average accuracies ai and ü2 in classitying c = 4 classes of wrist 
movements on two subjects T>i and T>2, respectively, based on their 5-variate MEG 
(F2, F4, F6, F8, FIO). The classifier was based on Algorithm 7 using « = 3 for 
various values for the latent dimensionality q and number of target frequencies j.

9
3 = 

Ol
20

02
3 = 

Ol
25

02 Ol
30

02
1 40.54 32.88 35.14 32.88 40.54 32.88
2 39.19 32.88 36.49 32.88 41.89 26.03
3 39.19 32.88 36.49 32.88 41.89 31.51
4 35.14 32.88 35.14 32.88 40.54 30.14

Table 7.2: Results of the experiments for the 5-variate MEG (Fl, F3, F5, F7, F9) with the 
same setup as in Table 7.1.

The accuracy of the classification are available in Tables 7.1 and 7.2. Note that the 
data obtained for both those tables are from the same set of processes with a different 
set of measured variables. However, within a table there are some accuracies which do 
not seem to change with dimensionality q or number of subbands j. Explaining such 
results is attempted below:

Class imbalance: The number of test épisodes per class was unequal. Note that, 
had the classes were balanced, the classification is considered to be worse than 
random classification if accuracies ai and ü2 were below ^ = 25%; whereas 
perfect classification will impiy 100% in any case.

Nearest neighbours: Tests on k == 5 proved to be not significantly different from 
those presented in Tables 7.1 and 7.2 for k — 3. Whereas for larger k, the 
accuracies were poorer especially for larger q possibly due to the sparsity of 
consistent training samples against a larger set of features.

Asymptotic Gaussanity The subbands tend to lose their distinct Gaussanity with in- 
creasing bandwidth, e.g., j — 25 and j = 20. In such situations, the classification 
accuracy becomes invariant as more Gaussian subbands are merged. Subbands 
could not be increased disproportionately because of the following reason.
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Rank ai 02 Competing methods
1 59.5 34.3 Reported access to ‘bipolar’ time sériés unavailable to others. 

Fourier and wavelet features selected via genetic algorithm. 
Support vector and linear discriminant classifiers.

2 31.1 19.2 0-0.5 s segment with 0.5-8 Hz -|- 20 Hz subsampling 
Principal Fisher discriminant time and Fourier features. 
Fisher discriminant classifiers.

3 16.2 31.5 Fourier, wavelet features selected via genetic algorithm. 
Support vector classifiers.

4 23.0 17.8 0-0.5 s segment with 0.5-8 Hz.
Principal Fisher discriminant time and Fourier features. 
Fisher discriminant classifiers.

Table 7.3: Percentage of average accuracies of the winners published by [1].

Curse of dimensionality: With r = 400 and 20 being the number of transformation 
matrix parameters for q — A, the subbands with n = 20;J = 20; n = 16; J = 20; 
and riK, 13; j = 20 will ail challenge the asymptotic theory and suffer from the 
curse of dimensionality.

Compétition: It is noteworthy that had the spectral factor model competed in [1] 
with any q and j setting, as shown in Table 7.3, the spectral factor model 
would hâve bettered ail reported accuracies except against the topper. The 
topper of the compétition seemingly had an advantage of prior knowledge or 
extra information regarding the time sériés. AIso, no pre-processing of the time 
sériés was done uniike the competitors; this is because expertise on the scientific 
procedure of the data acquisition was lacking nor was it desired to skew the 
benchmarking of the spectral factor model through unexplainable effects of data 
pre-processing. However, a basic Bartiett-Hann windowing [50] is performed. 
This is a standard procedure for discrète Fourier transform techniques to reduce 
the Gibbs phenomenon as the theoretically periodic finite length realization of a 
time sériés is truncated [52].

Moreover, based on available results at [1], the spectral factor model results are 
a clear front runner despite not requiring any of the advanced process knowledge and 
preprocessing of the competitors. AIso, it is very likely that there was a handicap in 
the accuracy of the classification due to the inability to use ail the measured MEG 
variables due to the low data sampling rate as explained earlier. Nevertheless, the 
results obtained demonstrate sufficient classification capabilities of the spectral factor 
model.

7.2 Prédiction of yield rates of shares

In Section 1.2, the discussion on the setup of the prédiction experiments was initiated 
through the example of a portfolio of shares obtained from [6]. The same motivation, 
data and setup are continued here. There is access to a multivariate time sériés 
consisting of synchronousiy sampled daily share prices of 6 German companies over a
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period of 2747 trading days during 01/01/1983 - 30/12/1993. As shown in Figure 1.5, 
the component time sériés demonstrate similar dynamic covariations when they increase 
or decrease with observable patterns which are not necessarily readily quantifiable.

It may be verified from Figure 1.5 that there exist increasing and decreasing general 
trend patterns over a substantial number of samples. Flence, régression detrending on 
the training sériés [22] will be performed. The current test sériés subject to prédiction 
is detrended using the parameters of the régression; the resuit is displayed in Figure
7.3. Despite this detrending, there still exists obvious non-stationarity in the data.

bmw mru

sie bas

Figure 7.3: Original share prices shown in Figure 1.5 are régression detrended and split (by 
the gray vertical line) into the training sériés followed by the test sériés. The test 
sériés is corrected using the régression parameters of the training sériés.

Hence, this prédiction exercise will implicitly aiso test the robustness of the spectral 
factor model in déviations from the assumption of weak stationarity.

Another pre-processing is effected in the frequency-domain for the robustness of 
spectral estimâtes. Prior to estimation of the spectral factor model, windowing of the
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time sériés is performed to reduce the Gibbs phenomenon arising due to disparities 
between the ends of the finite length realization of the time sériés [52]. As with the 
previous experiment, a basic Bartiett-Hann windowing [50] will be performed to the 
measured time sériés.

How hard is this chosen problem of prédiction of multivariate time sériés? To 
answer this question, the predictability of each component sériés of the multivariate 
time sériés has to be checked. In Algorithm 8, the estimate for the time sériés {yt} for 
a horizon s given the current sample yt and the past p — 1 samples of the sériés was 
developed. On the other hand, a very naïve prédiction is to assume that the future 
évolution is held on the current value. Obviousiy, the naïvety will incur errors given the 
stochastic nature of the time sériés. To measure the accuracy of the prédiction, the 
ratio of the mean of the square errors normalized to the variance of the true time sériés, 
called the normalized mean square error (nmse), is used. The sample counterpart of 
the population nmse will be used to assess prédictive performance.

naïve prédiction
s bmw mru vow kar sie bas
1 1.24 0.83 1.33 0.96 1.53 1.8
2 2.84 1.77 2.66 1.97 3.11 3.57
3 4.65 2.78 3.94 2.97 4.8 5.25
4 6.54 3.83 5.24 3.83 6.36 6.66
5 8.58 4.84 6.55 4.72 8.14 8.14
6 10.57 5.97 7.99 5.69 10.04 9.71
7 12.47 7.07 9.35 6.73 11.81 11.12
8 14.37 8.25 10.77 7.75 13.55 12.61
9 16.36 9.48 12.34 8.86 15.40 13.91
10 18.30 10.78 13.90 9.95 17.20 15.09
20 37.09 22.56 30.79 21.08 37.44 31.08

Table 7.4: NMSE% of the naïve prédiction ÿt+s|t = Vt of each component share price of the 
portfolio for various horizons s.

Table 7.4 gives the nmse for the naïve prédiction of each component measured 
time sériés for various horizons s. Note that for s = 1, i.e., for the next trading day, 
the naïve prédiction is reasonable as the nmse registers just about 1% prédiction error 
of the variance of their true évolution. For s = 5, which generally corresponds to a 
week-ahead prédiction records individual prédiction error nmse averaging between 4 - 
9 %, which is neither trivial nor grossly incorrect. For s = 10 and s = 20 in Table 7.4, 
it may be seen that the naïve prédiction deteriorates substantially for larger horizons.

The spectral factor model prédiction methodology is due to Algorithm 8. Following 
the notations in earlier chapters, the measured dimensionality is r = 6 and a latent 
dimensionality g < r for the spectral factor model is presumed. Within the sufficiency 
of the number of samples required for a reliable estimation of transformation matrix 
W € an optimal setting of the spectral factor model was tested in trials using
a part of the time sériés dataset for training and another for testing.

As input to Algorithm 8, the j spectral factor transformation matrices {'W{ujj)},j = 
1,... ,j could be provided via either Algorithms 3 or 5. As mentioned earlier, the EM 
algorithm requires multiple restarts and the parameters that correspond to the maxi­
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mum of the converged likelihood could be chosen for maximizing the commonalities. 
A numerical log-likelihood convergence différence of 10~* and a maximum of 20 itér­
ations were considered appropriate [7]. For the share price portfolio dataset, the EM 
algorithm typically converged in less than 10 itérations and a maximum of 20 restarts 
were typically found appropriate in discovering a transformation matrix that is close to 
to 1% of the log-likelihood of the analytical solution. For the ease of reporting and 
with the focus on the prédiction methodology, the experimental results presented here 
were carried out with Algorithm 3.

The following observations were made on the prédiction accuracy of Algorithm 8 
using the spectral factor model as measured by the nmse on those trials:

(i) an autoregression of order p — 2 performed consistently much better than other 
orders. Flence, p — 2 was chosen for the experiments and presenting the results 
of the tests with orders p ^2\s skipped.

(ii) increasing the number jof subbands of frequencies as stipulated by the asymptotic 
theory enhanced the prédiction accuracy significantly only with q — 1. Hence, 
j = 60 was picked for the experiments; it corresponds to n = 36 discrète frequency 
transform components per subband which is reasonable for the estimation of the 
spectral factor model parameters for r = 6 measured time sériés.

It is wished to do prédictions of the share prices in terms of a number of trading 
days, i.e., for the next day (s = 1), one week ahead (s = 5), a fortnight ahead 
(s = 10), and a month ahead (s = 22). Table 7.5 gives the results of the prédiction 
exercise using the spectral factor model as per Algorithm 8 for horizons s = 1, s = 5, 
and s - 10.

It shows that increasing the latent dimensionality q increases the prédiction accu­
racy with g = 1 substantially worse than others and q = 5 being the best. This is a 
logical progression of accuracy that as you increase the latent dimensionality, the com­
monalities of the measured time sériés that the spectral transformation could inherit is 
larger. Flence, higher the latent dimensionality, higher the accuracy or lower the nmse.

It is the aim to pick a suitable latent dimensionality q by trading accuracy of the 
prédiction nmse for the number of parameters rq. It is numerically obvious from Table 
7.5 that there is a significant advantage in terms of the NMSE in picking q ^ {1,2} but 
q G {3,4,5}. Moreover, picking q> 3 seems not to improve the accuracy much. On 
comparing the NMSE from Table 7.4 for various horizon with Table 7.5, it is évident 
that the spectral factor model for q 6 {3,4,5} is a much more accurate long-term 
predictor than sample acv/"-based classical autoregressive predictor.

Algorithm 8 recommended replacing the acvf T)^ of the measured time sériés {yt} 
with the acvf of the dynamically transformed latent variables obtained through 
the spectral factor model estimation. As a resuit, spectral factor model prédictions 
are assessed with the accuracy of the original prédictions with the sample acvf using 
the classical vector autoregression of (6.10). Table 7.6 gives the nmse% of 
according to (6.10) for various orders p of autoregression. The sharp décliné in the 
prédiction of most of the component time sériés with increasing orders shows that 
the sample acvf estimâtes are very unreliable; the prédictions Table 7.6 aiso
corroborate such a conclusion. Moreover, on comparing Table 7.6 with Table 7.5, it 
is seen that for s = 1 the performance of the spectral factor model with q G {3,4, 5} 
is similar in performance to the classical vector autoregression with p — On the
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spectral factor model-based vector autoregression
q bmw mru vow kar sie bas

s = 1
1 97.79 70.25 73.77 58.32 60.39 12.65
2 5.66 9.78 6.05 6.36 3.12 5.68
3 3.47 3.99 1.60 3.69 1.52 2.36
4 2.45 2.14 1.20 3.41 1.19 1.69
5 2.36 2.05 1.17 3.32 1.17 1.64

s = 5
1 39.75 94.31 205.65 15.35 174.06 15.96
2 29.11 28.55 22.78 26.06 11.10 19.52
3 9.53 9.57 4.26 9.97 4.06 5.40
4 7.36 5.56 3.24 9.42 3.36 4.19
5 7.28 5.44 3.23 9.58 3.36 4.19

s = 10
1 92.17 236.98 143.46 168.84 195.85 29.74
2 52.52 30.86 9.70 63.44 11.35 10.91
3 13.96 10.27 7.05 17.02 7.83 7.95
4 13.96 9.61 6.62 16.81 6.98 7.90
5 13.51 9.43 6.36 16.73 6.74 7.72

s = 22
1 191.34 390.07 213.13 310.42 458.14 96.42
2 89.85 82.62 23.09 112.64 32.94 25.56
3 37.23 24.44 17.46 33.91 23.74 18.37
4 33.37 20.90 15.11 32.29 17.68 18.15
5 32.51 20.47 14.62 33.44 17.02 17.54

Table 7.5: nmse% of the prédictions for the next day (s = 1), one week ahead (s = 5), 
a fortnight ahead (s = 10), and a month ahead (s = 22) for each component 
share price of the portfolio for varions latent dimensions q; j = 60 and p = 2 were 
chosen.

other hand, for s — 5, spectral factor model with q € {3,4,5} is clearly outperforming 
the classical vector autoregression. For even higher horizons of s = 10 and s — 20, 
the classical vector autoregression is immensely worse in performance than the spectral 
factor model and the results are, hence, not presented.
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classical vector autoregression
P bmw mru vow kar sie bas

s — 1
1 1.26 0.88 2.05 1.79 1.83 2.82
2 5.26 0.99 18.32 10.58 23.43 87.87
3 8.83 1.03 35.63 18.58 41.21 183.35
4 12.18 1.10 59.40 30.03 60.94 287.96
5 17.71 1.24 90.14 44.09 85.69 437.76

s — 5
1 9.60 5.75 28.25 30.88 17.35 46.99
2 17.38 5.77 60.54 46.12 50.35 191.55
3 23.60 5.78 91.18 58.54 75.25 323.58
5 38.84 5.89 175.62 89.47 136.50 668.26
10 111.52 7.15 498.85 161.82 330.19 2438.70

Table 7.6: NMSE% of one day ahead (s = 1) and one week ahead (s = 5) prédictions of each 
component share price of the portfolio for various orders p of autoregression.
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Chapter 8

Extensions

We had set out to build a model for multivariate time sériés that will enable developing 
strategies to predict or classify unseen data. In Chapter 4, the spectral factor model 
as the frequency-domain counterpart of the time-domain dynamic factor model was 
proposed. It was argued how dynamic transformation of a latent time sériés to a mul­
tivariate measured time sériés may be modeled to imbibe the characteristics that are 
common to any two measured variables. Those characteristics were called the com- 
monalities. Maximally inheriting the maximum-likelihood cross-covariations was the 
estimation strategy adopted in Chapter 5 to model the commonalities. There, analyt- 
ical formulae as well as an itérative algorithm for estimating the spectral factor model 
parameters corresponding to the optimal commonalities were presented. In Chapter 
6, a classification ruie was derived and a prédiction methodology for multivariate time 
sériés based on the spectral factor model was designed. The experiments presented 
in Chapter 7 validate that the commonalities as defined, designed, and determined for 
the spectral factor model possess substantial classification and prédiction capabilities 
for many real-world multivariate time sériés problems.
This thesis is concluded by highiighting a large number of possibilities that await in 
extending the spectral factor model. As pointed out, there are some improvements to 
the presented work that could be attained by overcoming the limitations and relaxing 
the assumptions.

The spectral factor model was developed aiming for applications involving mul­
tivariate time sériés learning. As seen in earlier chapters, the spectral factor model 
transformation matrix was the parameter that took the most focus in classification and 
prédiction experiments that were carried out. There could be many more other appli­
cations possible through the spectral factor model along the same concepts as were 
presented. However, there are certain strong assumptions the spectral factor model is 
grounded on; they might pose some challenges for its widespread use. Therefore, in 
what follows, possibilities of developing the spectral factor model beyond the current 
design are investigated; some of the essential further investigations that are wished to 
be performed more formally are listed.

8.1 Challenges

Certain aspects that hâve corne across as limitations and annoyances for the spectral 
factor model are as follow:
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Linearity: The spectral factor model is rooted on the assumption that the measured 
multivariate time sériés is a linear weakiy stationary process; this was essential for uti- 
lizing Theorem 2.5. In practice, given the samples of a realization of a time sériés, it 
is not easy to validate its linearity [13, 67]. This important, but broader scoped, issue 
was not addressed much in this thesis. The appropriateness of using Fourier domain 
methods is aiso at the mercy of this assumption. Hence, in using spectral factor model 
for the purposes dealt with in this thesis, it is recommended to tie the prédiction or 
classification results with some appropriate test of nonlinearity of the measured mul­
tivariate time sériés data. Alternatively, lazy learning formalism of the spectral factor 
model could aIso be pursued whereby the model parameters will adapt to reflect the 
locality of the operating régime [16].
Commonalities: In developing the spectral factor model, existence of physically valid 
cross-covariation between the measured variables was naïvely assumed. It should, there- 
fore, be borne in mind that applying it to independent or uncorrelated variables might 
show up numerically non-trivial off-diagonal acvf but whose interprétations might most 
certainly be illogical. In that respect, more robust estimation procedures of the sample 
spectral density of the type in [106] would be a path forward.
Pre-processing: As seen in the experiments, certain pre-processing of the time sériés 
was required to rectify obvious déviations of measured data from the assumption of 
weak stationarity. A rigorous and detailed study is envisaged for assessing the impact 
of the two preprocessing steps that used, viz., detrending and windowing [22, 65]; this 
is beyond the realms of this thesis.
Sample size: It is required a sufficient number of samples within a subband be main- 
tained in order to obtain a reliable estimate of the spectral factor model parameters 
without inviting the curse of dimensionality [12]. Meanwhile, as dealt with in the ex­
periments and in Algorithm 1, a sufficiently large number of subbands as required by 
Theorem 2.5 is to be maintained too. This balancing act was performed by testing 
on an array of choices regarding the number of parameters to be estimated and the 
sample size. This approach is perhaps not suitable when it is not clear whether the 
spectral factor model has learned. E.g., had the future sériés in the prédiction exercise 
or true class labels in the classification experiments were lacking, évaluation of the 
prédiction or classification accuracy, and therefore, the quality of the estimation would 
not hâve been possible. In essence, more theoretical efforts hâve to proceed beyond 
experimental validation and benchmarking towards determining an appropriate latent 
dimensionality q and the j number of target frequencies for learning problems.

8.2 Further work

Certain realistic extensions to the spectral factor model beyond the objectives originally 
meant for it are listed below:
Process understanding: With an agreeable performance in a learning problem, it 
might be inferred that the presumed latent dimensionality q is crédible. This hint re­
garding the dimensionality of the presumed latent process {xi} is a preliminary step 
towards better understanding of a complicated high-dimensional time sériés generating 
System. In addition, there is a possibility to assert any process knowledge gained from 
human expérience through the acvf of the latent linear process. Such an acvf could 
replace the default assumption in (4.6) of {xf} being a zéro mean unit variance white 
noise.
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Two other quantities that certainly will aid better understanding of the process under 
investigation are x(cl)/) as per (5.30) and computed in (5.20) as well as v(u;/) estimated 
in (5.34). An inverse discrète Fourier transform of these quantities should enable now- 
casting [10], which is to provide a better assessment of the présent and the past of the 
latent characteristics of the process.
Clustering: Suppose there are no class labels for an ensemble of various épisodes from 
varions time sériés processes and it is the intention to cluster them based on the char­
acteristics of their commonalities. Then, a scheme similar to K-means clustering [64] 
or any variations thereof might be adopted. Towards such a purpose, p{i,k) —
<5 ({W(u;j)}î, {W(a;j)}fc) may be used as the distance between any two time sériés 
épisodes {yt}i and {yt}k computed across ail the j spectral factor model subbands 
where S ({W(u;j)}i, {W(a;j)}/t) = |det({W(u;j)}* {W(a;j)}fc)| is the overlap for the 
j-th subband according to (6.1).
Real-time implémentation: The computational aspects of a practical implémentation 
of the spectral factor model was discussed in Section 6.1. There exist many multivariate 
monitoring applications, e.g., algorithmic trading [21], industrial plant monitoring [76], 
automated anesthésia [56], where frequent assessment and update of the model are 
necessary but prohibitive. In such problems, it is envisaged to use either the inexpen­
sive EM-algorithm for incrémental updates or approaches such as with online principal 
component analysis [73] for a real-time update to the analytical spectral factor model 
solution.

8.3 Summary

In everyday life, in business, heaith, search engines, etc., we are witnessing an immensely 
increasing demand for robust and efficient models for machine learning. Such models 
are necessary to meet objectives ranging from real-time computational decision support 
to scalable pattern récognition based on the multivariate time sériés they generate. It 
was demonstrated through reviews, contributions, and experiments that the dynamic 
and spectral factor models are live and active fields of research due to the simplified 
understanding of a complicated process they offer. The improvements and extensions 
to the modeling and learning frameworks of this thesis are near and feasible for them 
to deal with more diverse and real-world time sériés challenges. The spectral factor 
model promises to be a viable way forward for mastering the process generating the 
increasing volumes of multivariate streaming data.
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Appendix A

A.l Différentiation of real-valued functions of complex 
variables

Some properties of functions which map complex-valued variables to real-valued images 
is reviewed here. For details and applications of such an analysis, [57] is referred to. 
Suppose ^ C C is an open set and a complex function f{u) : ^ > C is defined. The 
function f{u) is said to be différentiable at û € >1 if its dérivative at û defined as

(A.l) |- f{u) - f{û)lim------------ ::----- ,
U—U — U

exists. The function f{u) is said to be analytical if the dérivative exists for ail û E A. 
For analytical functions, the stationary points are located wherever

(A.2) !;/(“) = »■

The differential of an analytical f{u) is given by
Q r\

(A3) df(u) = —f(u)du + —f(u)dü,

where ü — ui — iit2 is the complex conjugate of u = ui + iu2, where ui, U2 € M and

(A.4)

d 1 / d . d \ 
du 2 \dui 'du2J ’

— = i—^
dû 2 \ dui du2 J

are called Wirtinger dérivatives. AIso, note a direct conséquence of (A.4) that

(A.5) —U = —U 0, 
du du

or ü may be regarded as a constant when differentiating with respect to u, and vice- 
versa.
For any f(u) that is not necessarily analytical, based on the condition (A.2), the 
stationary points may now be found by searching where

(A.6) df(u) = 0.
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Let f{u) = /i(ui,U2) + i/2(ui,U2), where /i,/2 : ^ R. For /(u) to be analytical,
it is necessary that it satisfies the Cauchy-Riemann conditions

(A.7) -^f =-Af 
du2^^ duj^’

Now, focus the situation in which f{u) : ^ ^ R. Firstly, the conditions (A.7) show 
that f{u) is analytical if and only if/(u) is constant. Secondly, d/ = 23î(^/(ii)dit) = 
2^{-^f{u)dü), which vanishes if and only if

(A.8) |/W = 0.

Flence, for finding the stationary points of a non-analytical fonction, the trick involves 
writing the differential in the form of (A.3) and set the term corresponding to ^/(u) 
to zéro.
In the multivariate case [71, 59], for the complex-valued function f{u) : >1 C C with 
^CC^

(A.9) d/= ^/(u)du+^/(îx)d(û),

where u* = û' is the conjugate transpose of u. It then easily follows that the differential 
df of a real-valued function f{u) : >1 —> RVu G ^ C C” vanishes if and only if the 
Wirtinger dérivative is zéro, i.e..

(A.IO) d/(u) = 0 ^/(“) = 0-
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Appendix B

B.l Certain details of the EM Algorithm

To enable a smooth reading of the EM Algorithm developed in Section 3.5, certain 
details are let to résidé separately. They are elucidated here:

B.1.1 Log-likelihood as summation of logarithms

The following lemma is well-known; refer §16.5.4 of [30]:

Lemma B.l. Suppose that are points in the interval U and
Cl,... ,Cm > 0 are such that Q = 1 and f is a concave function in U. Ac- 
cording to Jensen's inequality f{ciUi-\------- \-CmUm) > ci/(ui)H--------\-Cmfium)-

With / ■<- loge, Cl •(- g{xi), and ui \ 0)/g{xi), (3.32) is got.

B.1.2 Décomposition of the complété log-likelihood

Using Theorem B.l, p^'^^^{T>,x \ 6) = \ û) | V,û) is obtained. Hence,
the right side of (3.32) may be factorized so that

L(^,g) > '^g(x)logy'^(V I 0) + J^g(x)log^-------
X X yv /

where the first term reduces to L(0) due to (3.5) and (3.30).

B.1.3 Maximization of an expectation 

If gi of (3.35) is substituted in (3.32)
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where the denominator in the logarithm being independent of 0 may be eliminated. As 
a resuit, (3.37) boils down to

= argmax \-{di,gi)
9i

= argmax ^ \ V,9i) \ogy’^\\V,x \ 9i),
X

— argmax [loggpy’’'l^(D, a; | 9i)].
di

B.2 Posterior density with a Gaussian prior

Refer [113, 74] and §6.2 of [95] for the following theorem:

Theorem B.l. According to the Bayes theorem for continuous probability density 
functions, the conditional distribution of a random variable y with any realization y 
given a set of random variables x with any realization x is related to the conditional 
distribution of x given y according to

p^(a:)pyl^(î/ ] x) = py(y) p^ly(a; j y) = p'^’^{y,x).

Due to Theorem B.l, p^ly(x | y) = - : so, given the parameters 9, it follows

that p^ly’^(x \ y,9) = -■ ■■ • While a Gaussian has been accepted for the

denominator p^{y \ 9) according to (3.18), p^^^{y \ x,9) in the numerator is aiso a 
Gaussian as per (3.39). Assuming yet another Gaussian for

p’'l^(x I 9) = p*'(x) ^Àf{x \ 0,/q).

Therefore,

(B.l) p>^|y’^(x \y,9)^
M{x 1 0,/g)A7(y I lTx,r^)

U{y\py,Ty)

Suppose Cl,... ,C4 are factors independent of x such that

M{x I 0,7g) = Cl exp(—0.5x'x),

N{y I Wx,T^) = C2exp(-0.5x'iy'(r)-Vx + x'TT'(r)-iy),

A7(y ]/iy,ry) = C3,

C4 C\C2
C3

Then, (B.l) may be written as

p’‘l^’®(x ] y, 0) = C4 exp(—0.5x'fi“^x + x'Q~^niT'(r^)~^y),

where
0-1 = +
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The probability density function of a Gaussian ^ with mean a and covariance matrix 
B may be written as jV’(^ \a,B)— cexp(—where c is a factor 
independent of Thus, \ y,d) is a Gaussian with mean ÇlW'{T^)~^y and
covariance matrix O. It can be seen that

I y,d)=M{x I nW'{T^)-^y,n).

B.3 Posterior density with a complex Gaussian prior

The extension of Section B.2 to complex Gaussian densities is straightforward. In that 
order of équations and interprétations therein, the following relations hold:

p^l^(x I e) =A/"c(x I 0,lq)

(B.2) p>^|y’^(x I y,0) =
A/c(x I 0,/ç)A/c(y I Wx,5^)

A/c(y|0,5y)

Suppose Cl,..., C4 are factors independent of x such that

A/c(x 1 0,/q) = Cl exp(-x*x),

^^c{y I Wx,5") = C2exp(-x*W*(5")-^Wx + 23î(x*W*(5")-V)),

A/c(y I 0,5^') = C3,

C4
ÇlC2

C3

Then, (B.2) may be written using

as

p’^ly-^x I y,0) = C4exp(-x*fî-ix + 2 3î(x*f2-inW*(<S^)-V))

The probability density function of a complex Gaussian ( with mean a and covari­
ance matrix B may be written as A/c(^ \ a, B) — cexp{—^*B~^^ + 2^{^*B~^a)), 
where c consists of the normalization factor of the distribution independent of 4- This 
shows that p^ly’^(x [ y,ô) above is a complex Gaussian with mean riW*(5^)“^y and 
covariance matrix fi, i.e.,

p"|y’^(x I y,9)=Mc{xi I
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