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Faculté des Sciences Appliquées

OPERA - Wireless Communications Group

DISTRIBUTED SPECTRUM SENSING

AND INTERFERENCE MANAGEMENT

WITH LOW CAPACITY CONTROL CHANNELS
FOR COOPERATIVE COGNITIVE RADIOS

Dissertation originale présentée en vue de l’obtention du Grade de

Docteur en Sciences de l’Ingénieur
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Abstract

Cognitive radios have been proposed as a new technology to counteract the

spectrum scarcity issue and increase the spectral efficiency. In cognitive ra-

dios, the sparse assigned frequency bands are opened to secondary users, pro-

vided that interference induced on the primary licensees is negligible. Cog-

nitive radios are established in two steps: the radios firstly sense the available

frequency bands by detecting the presence of primary users and secondly com-

municate using the bands that have been identified as not in use by the primary

users. In this thesis we investigate how to improve the efficiency of cognitive

radio networks when multiple cognitive radios cooperate to sense the spectrum

or control their interferences. A major challenge in the design of cooperating

devices lays in the need for exchange of information between these devices.

Therefore, in this thesis we identify three specific types of control information

exchange whose efficiency can be improved. Specifically, we first study how

cognitive radios can efficiently exchange sensing information with a coordina-

tor node when the reporting channels are noisy. Then, we propose distributed

learning algorithms allowing to allocate the primary network sensing times

and the secondary transmission powers within the secondary network. Both

distributed allocation algorithms minimize the need for information exchange

compared to centralized allocation algorithms. In Chapter 2, we study the im-

pact of the noise appearing on the control channels used by the secondary users

to exchange their sensing information with the coordinator node. We model the

control channel noise as noise coming from the two-bits non-uniform quanti-

zation of the energy measure at each node plus noise coming from the non-

uniform bit flipping on the control channel. Using this model, we compute

analytically the probability density functions of the noise, which allows to se-

lect the quantization step as well as the the bit flipping probabilities so as to

reduce the impact of the error. A new optimal fusion rule is proposed for the
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coordinator node, that takes into account the control channel noise distribution.

Numerical simulations show that this new scheme outperforms the Maximum

Ratio Combining scheme when different false alarm probabilities are used by

the nodes. The sensing times, i.e. the number of samples used by the secondary

nodes to sense the primary network, should be chosen high enough to ensure

the correct detection of the primary emitter but low enough so that the nodes

still have enough time to communicate. In Chapter 3, we propose a decentral-

ized Q-Learning algorithm to allocate the sensing times of the cognitive radios

in a way that maximizes the throughputs of the radios while simultaneously

limiting the interference induced on the primary network. A rigorous proof

of the convergence of the proposed algorithm is provided. Numerical results

show that the algorithm converges faster than a reference distributed sensing

time allocation algorithm, with a lower time and memory complexity. The av-

erage throughputs per node achieved with the proposed Q-Learning algorithm

are inferior to those achieved with the optimal centralized sensing time allo-

cation algorithm but superior to those achieved with the reference distributed

allocation algorithm. In Chapter 4, we study how some form of cooperation

between cognitive radios allow to achieve efficient secondary communications.

For this purpose we consider the scenario of an underlay network of multiple

independent secondary cells using the same frequency and time resources as a

primary network made up of one central primary emitter and several passive

primary receivers whose positions are unknown. In order to protect the pri-

mary receivers from receiving harmful interference from the secondary users,

a primary protection countour is defined on which the received primary Signal

on Interference-plus-Noise Ratio (SINR) must be superior to a given threshold.

To satisfy this constraint, the secondary transmission powers are controlled by

the secondary base stations in order to guarentee that no harmful interference

is induced on the primary receivers located inside the protection contour. In

addition, as each secondary cell uses the same primary bandwidth, multiple

secondary users from different cells may be interfering as well. To address this
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issue, we propose in Chapter 4 a new Q-Learning distributed power allocation

algorithm that allows to maintain secondary transmission powers to reason-

able levels in order to limit secondary-to-secondary interference. A rigorous

proof of the convergence of the proposed algorithm is provided. Numerical re-

sults show that the implementation of a cost function that penalizes the actions

leading to a higher than required secondary SINR gives better results than the

implementation of a cost function without such penalty, in terms of level of

harmful interference induced on both the primary and the secondary network.

Keywords

Cognitive Radios, Cooperation, Multi-Agent Q-Learning, Control Informa-
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