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1.1 Context of the research

1.1.1 Historical framing

Structural optimization has emerged as a promi-
nent field of academic study in recent decades.
While the practice is often most associated with
modern computational techniques and hardware,
it can be argued that the concept has been latent
within almost all engineering endeavours and ad-
vances throughout history. Any act of engineer-
ing requires, in the first instance, the solution of
a physical problem, however this solution is al-
most never unique. Decision making is therefore
unavoidable, implying the valuation of distinct so-
lutions, based on criteria (or objectives). For the
longest period of the history of engineering, trial
and error, accumulated knowledge and deductive
reasoning assisted the designer in this decision
making process. Quite separately from engineer-
ing practice, formal recognition of the mathemati-
cal concept of optimization arose from the work of
Leibniz, Newton, Cauchy and others in the latter
quarter of the previous millennium [1]. While the
methods developed by these pioneers opened up
great possibilities for structural designers and en-
gineers, they were not fully embraced at the time.
One reason for this was certainly the lack of com-
putational technology to solve the complex opti-
mization problems posed by structural engineer-
ing. However, another barrier can be found in the
way civil engineering as a discipline has devel-
oped, forced to rely on trial and error for achiev-
ing advances, often with dire consequences. Fur-
thermore there is a perception amongst practising
civil engineers that optimization implies fragility,
a misunderstanding that has arisen from the culture
of safety factors and conservative approximate so-
lutions.
In the past structural optimization theory has
largely focussed on gradient-based algorithms
which are well suited for mathematically well-
defined problems such as compliance minimiza-
tion of continuum structures. This type of problem
is congruent to the needs of the aerospace, automo-
tive and mechanical engineering industries, where
the greatest advances have been achieved. Sec-
ondly, but not unrelated, the definition of cost is
quite problematic to quantify and not the only ob-
jective of importance. A lack of access to high per-
formance computational hardware within the civil
engineering industry has undoubtedly also been a

limiting factor.
In recent years attempts have been made to address
these problems in the civil engineering commu-
nity. Increased performance of small-scale com-
puters, the introduction of gradient-free algorithms
and the increased awareness of the impact struc-
tural engineering can have on the environment,
have all been important to the rising interest in
practical implementation of optimization in civil
engineering. Yet this requires research which
specifically addresses the needs of the civil engi-
neering community. A thorough understanding of
the problems faced by civil engineers and the ob-
jectives they wish to achieve is invaluable for the
task of introducing optimization into the field of
practice.

1.1.2 Structural topology optimiza-
tion in context

The formalized subject of structural optimization
became intensively researched in the latter half
of the 20th century, largely due to developments
in numerical techniques and efficient and power-
ful computational hardware and the needs of the
aerospace and automotive industry. This coincided
largely with the development of numerical analy-
sis methods, most prominently the Finite Element
Method (FEM) [1].
Simply stated, the aim of structural optimization is
to find the layout of structural material with speci-
fied properties that provides optimal structural per-
formance, while satisfying a number of require-
ments of the problem [18]. In mathematical terms
this can be stated as follows:

min
x

f(x)

subject to:

{
g(x)≤ 0
h(x) = 0

x ∈ X

where f is a vector of functions known as objec-
tive functions, x is a vector of variables, called
the design variables, g and h are respectively in-
equality and equality constraints, and X is the de-
sign space. In structural optimization a distinction
is made between optimization of truss-like struc-
tures (trusses, braced frames, etc.) and continuum
structures (such as plates or shells), both of which
can easily be analysed using FEM models. FEM
also lends itself well to parametrization in terms
of various design variables required for structural
optimization. A parametrization is the process
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of defining the parameters to accurately charac-
terize a model mathematically. The parametriza-
tion of the problem to be solved will define the
space within which the search will be carried out.
In order to characterize selection choices accu-
rately this implies the correct classification of pa-
rameters (or variables). Furthermore an effective
parametrization implies a minimal modelling in
terms of the combinatorial possibilities of the cho-
sen variables, while maintaining a rich enough di-
mensionality to enable effective use of an opti-
mization routine. Broadly speaking in engineer-
ing applications parameters are either continuous
or discrete. A third type, categorical parameters
can be seen as a subtype of discrete parameters1.
The type of structural optimization can be catego-
rized in terms of the structural property to be opti-
mized, either sizing, shape or topology2:

1. Sizing optimization considers the cross sec-
tional dimensions as design variables.

2. Shape optimization considers the geometrical
variables related to the shape of the structure.
The topology remains constant.

3. Topology optimization involves defining the
optimal distribution of material, often from
a given initial distribution, called ‘ground
structure’ [5] in truss problems, or a bulk of
material in continuum structures.

Figure 1.1 summarizes these distinctions, show-
ing some of the types of problems which can be
considered. Specifically shape [12] and sizing [8]
optimization have received much attention and are
relatively mature areas of research. These aspects
tend to present fewer challenges with regard to
computational cost [19] than topology optimiza-
tion. The concepts of sizing and shape optimiza-
tion are also much more evident and intuitive than
topology. Topology as a concept has its roots in
geometry, yet has been generalized as a very use-
ful concept in various fields of mathematics. Geo-
metric topology (as we use it in terms of structural
topology optimization) can be most easily defined
as: the study of the properties of geometric fig-
ures or solids that are not changed by homeomor-
phisms, such as stretching or bending [2]. Simply

1The reader is referred to [7] in which some of the specific
issues associated with categorical variables are discussed.

2Other nomenclature exists in the literature, often the result
of combinations of these three subdivisions. An example of this
is layout optimization: concurrent sizing, shape and topology
optimization.

f1(x)

f2(x)

f1(x’)

f2(x’)

Figure 1.3: An example of a continuous (left) and
discrete (right) function space

put, in terms of the structures discussed above, the
connectivity of the bar elements in truss structures,
and the number of voids in continuum structures.
Continuum topology optimization has been exten-
sively developed since the seminal work by Bend-
søe and Kikuchi [6], however over the past three
decades the problem of truss topology optimiza-
tion has also received some attention [9]. Further-
more, problems can either be deterministic (only
the mean values of the structural parameters are
considered) or probabilistic (the variations on the
loading, geometric, and material parameters are
also included in the problem formulation).
Consider figure 1.2 where these distinctions are
made for topology design variables. Truss struc-
tures with continuous cross section area sizes can
have any real value for the area of their cross sec-
tion, between specified bounds. A discrete version
of this function may include only a few possible
cross section values, including 1 and 0. A visual
interpretation of two function spaces with objec-
tive functions f1 and f2, respectively in continu-
ous variables x and discrete variables x′ is given
in figure 1.3. Continuum structures with continu-
ous density function at any point in the bulk may
lead to smooth, organic forms. An example of dis-
crete parameters in a continuum is the existence or
non-existence of a perforation, or a perforation of
a limited number of possible sizes.
As discussed previously, the essence of optimiza-
tion is decision making. Decision making requires
information about the possible choices and how to
compare them. The comparison occurs by means
of an ordering or ranking, a quantitative compar-
ison. Herein lies the difficulty with optimization:
the number of choices is typically too vast to be
able to compare exhaustively. To solve this conun-
drum, the designer uses optimization techniques.
A summary of some of the commonly used opti-
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Truss Continuum

Figure 1.1: Categorization of type of optimization of discrete and continuum structures. Six types of
problems can be distinguished

Figure 1.2: Discrete vs. continuous design variables, for truss and continuum structures
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mization techniques is given in appendix B. 1.2 Thesis objectives and
overview

The goal of this thesis is the development of the-
oretical methods targeting the implementation of
topology optimization in structural engineering ap-
plications. The work is aimed mainly at truss-
like structures in civil engineering applications,
however several of the developments are general
enough to encompass continuum structures and
other areas of engineering research too. As men-
tioned, topology optimization has its roots in the
aerospace and (to a lesser extent) automotive in-
dustries. The immediate, reproducible need to save
mass or maximize stiffness has led to the use of op-
timization methods on components such as plates
and bulk materials. This type of optimization re-
quires continuum methods, where the structural
domain discretization is not critical to the problem
definition. In civil engineering, however, struc-
tures are typically assemblies of many standard-
ized components, such as bars, where the largest
gains can be made during the preliminary design
of the overall structure [11].
The term truss-like is used loosely to describe
structures consisting of elements which are dis-
tinguishable from one another and usually lin-
ear (meaning that one dimension is much greater
than the other(s)). These structures include clas-
sical trusses, frame structures, braced frames, grid
shells, spatial structures, and truss-like continua.
This as opposed to plate-like or massive structures.
Experience suggests that truss-like structures make
up the majority of structural engineering applica-
tions. Given the recent interest in industry [11] for
structural optimization applied to civil engineering
structures, several pertinent challenges have be-
come apparent:

1. Discrete variable optimization, generally nec-
essary for truss problems in civil engineering,
tends to be computationally very expensive,

2. the gap between industrial applications in
civil engineering and optimization research is
quite large, meaning that the developed meth-
ods are currently not fully embraced in prac-
tice, and

3. industrial applications demand robust and re-
liable solutions to the real-world problems
they are faced with in order to be taken se-
riously by the civil engineering profession for
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practical applications.

In order to address some of these issues, the
research carried out in this thesis has followed
several paths in the form of research papers. The
research papers are included as chapters in the
thesis manuscript. An overview of the papers
making up the chapters of this manuscript, and
their relation to one another, is given in figure 1.4.
This thesis aims to address the above points as
follows:

• The absence of function gradient information
at points in the design space has led to the
development of gradient-free methods (such
as population-based methods with randomly
generated initial populations). One of the
main drawbacks of this class of optimization
method is the need to sample many possi-
ble solutions. When discrete variables rep-
resenting presence and absence of elements
are used in structural topology optimization,
many randomly selected sample solutions
will be mechanisms and therefore provide no
information to the heuristic algorithm. This
leads to very large computational cost and
often failure of the algorithm, especially for
large scale (read practical) structures. Chal-
lenge 1 is addressed in chapter 2, where a
novel method is developed for improving the
performance of topology optimization prob-
lems in truss structures with discrete design
variables, using so-called Kinematic Stability
Repair (KSR) [13].

• Many practical problems in civil engineering
require discrete existence/absence (1/0) vari-
ables such as those discussed above. Two
typical examples of this are bracing systems
and steel grid shell structures. The elements
of these structures are almost always selected
from standardized fabricated sections. Only
a limited number of section sizes are avail-
able, so, for practical purposes, an accurate
description of the problem requires discrete
variables. Challenge 2 is addressed in chap-
ters 3 and 4, where important industrial appli-
cations are investigated. In chapter 3 a novel
method is developed for topology optimiza-
tion of grid shells whose global shape has
been determined by form-finding [15]. Chap-
ter 4 illustrates a novel technique for façade

bracing optimization [16]. In this applica-
tion a multiobjective approach was used to
give the designers freedom to make changes
within the optimal set, as the design advanced
at various stages of the design process. The
two publications arising from this research
are shown in figure 1.4 (upper center).

• The application of these two methods to prac-
tical engineering problems, however, inspired
a theoretical development which has wide-
reaching implications for discrete optimiza-
tion: the pitfalls of symmetry reduction [14]
(figure 1.4 upper right). As already alluded
to, optimization techniques in fact amount to
means of search space evaluation of varying
efficiency. One of the most general means of
increasing efficiency of this process is reduc-
tion of the search space size. In a discrete
sense this is formally termed cardinality re-
duction. A very popular and seemingly self-
evident (yet deceptively problematic) method
of cardinality reduction is the use of geomet-
ric symmetry reduction in structures [3, 4,
10]. This idea has its origins in structural
analysis and has been shown to be valid for
continuous variable problems [17]. However,
as demonstrated in chapter 5, is not valid for
discrete variable problems. This issue is for-
mally explained in chapter 5. Despite intu-
ition to the contrary, for symmetric problems,
asymmetric solutions may be more optimal
than their symmetric counterparts. Ideally,
this insight could influence the role of asym-
metry in structural design.

• In order for designs to be implemented in
real-world applications, it is necessary to rec-
ognize some of the fundamental problems
arising from idealization of structural mod-
els. In reality many uncertainties exist on
geometry, loading and material properties in
structural systems. This has an effect on the
safety (reliability) and performance (robust-
ness) of the non-ideal, realized structure com-
pared to the deterministic model. Fortunately
these uncertainties can themselves be mod-
elled mathematically and taken into account
in the optimization process to ensure reliable
and robust solutions to the optimization prob-
lem. Challenge 3 is addressed in chapters
6 and 7. The first of these chapters intro-
duces a general robust topology optimization
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Figure 1.4: Overview of the various publications making up the Ph.D.
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framework for both continuum and truss-like
structures, developing a novel analysis tech-
nique for truss structures under material un-
certainties. Chapter 7 extends this framework
to discrete variable, multiobjective optimiza-
tion problems of truss structures, taking un-
certainties on the material stiffness and the
loading into account. Two papers correspond-
ing to the two chapters were submitted to the
journal Computers and Structures and Struc-
tural and Multidisciplinary Optimization (fig-
ure 1.4 lower left).

Finally, a concluding chapter (Chapter 8) summa-
rizes the main findings of the research. A num-
ber of appendices are included at the end of the
manuscript, clarifying several issues.
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Chapter 2

Algorithm performance in discrete
topology optimization

Truss-like structures are exceedingly common
in engineering applications (for example those in
figures 2.1 and 2.2). Design optimization of these
structures can lead to significant improvement of
structural performance and material savings. Dis-
crete variable topology optimization of truss-like
structures poses a number of distinctive challenges
for optimization algorithms. One very pertinent
issue relates to the computational efficiency of
the algorithms, particularly for large-scale prob-
lems. We are especially interested in large-scale
structural problems, since these are the kind most
commonly encountered in industrial applications
where structural optimization could have the great-
est impact. The inability to solve these problems
with a reasonable computation expense is a barrier
to the use of current optimization methods. To ad-
dress this, the following paper presents a method
for targeting an aspect of discrete topology opti-
mization of truss structures, namely the problem of
kinematic instability in randomly generated truss
topologies. It is shown in the paper that using this
approach, the genetic algorithm used can be sig-
nificantly improved in terms of performance.

Figure 2.1: Numerous truss structures at the New
Galveston Causeway Railroad Lift Bridge. Image
courtesy of Patrick Feller

Figure 2.2: The backplane support structure for
NASA’s James Webb Space Telescope in Magna,
Utah. Image courtesy of NASA
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Multiobjective topology optimization of truss
structures with kinematic stability repair1

Abstract

This paper addresses single and multiobjective
topology optimization of truss-like structures us-
ing genetic algorithms (GA’s). In order to im-
prove the performance of the GA’s (despite the
presence of binary topology variables) a novel ap-
proach based on kinematic stability repair (KSR) is
proposed. The methodology consists of two parts,
namely the creation of a number of kinematically
stable individuals in the initial population (IP) and
a chromosome repair procedure. The proposed
method is developed for both 2D and 3D structures
and is shown to produce (in the single-objective
case) results which are better than, or equal to,
those found in the literature, while significantly in-
creasing the rate of convergence of the algorithm.
In the multiobjective case, the proposed modifica-
tions produce superior results compared to the un-
modified GA. Finally the algorithm is successfully
applied to a cantilevered 3D structure.

2.1 Introduction
Optimization of discrete structures, such as
trusses, grid shells and frames, is of great impor-
tance in structural engineering. While shape and
sizing [14] optimization have received much at-
tention and are relatively mature areas of research,
several challenges still face researchers in the field
of discrete topology optimization:

1. The topology variables considered are dis-
crete, meaning that traditional gradient-based
optimization techniques are not directly ap-
plicable.

2. In general multiple objectives may be of inter-
est to the designer [7]. Multiobjective topol-
ogy optimization increases the complexity of
the problem.

1J.N. Richardson, S. Adriaenssens, Ph. Bouillard, and
R. Filomeno Coelho. Multiobjective topology optimization of
truss structures with kinematic stability repair. Structural and
Multidisciplinary Optimization, 46:513–532, 2012

3. Optimization techniques developed to deal
with discrete variable problems tend to have
poor computational performance as pointed
out by [32]. Large scale structures, with a
large number of variables, such as those typ-
ically encountered in civil engineering prob-
lems, further magnify this problem.

4. Practical design and construction constraints
further exacerbate the difficulties.

The presence of discrete or mixed variables in
optimization problems has led to the successful
development of optimization techniques such as
stochastic search methods, of which genetic algo-
rithms (GA) [15, 17, 22, 25] have become partic-
ularly popular. Population based stochastic meth-
ods, such as GA’s, are also well suited to multiob-
jective problems [26], since a number of individ-
uals may be considered at any given time. This
aspect is consistent with the notion of Pareto op-
timality in which a number of non-dominated (i.e.
’best compromise’) solutions make up an optimal
set (the Pareto optimal set). Much success has
been achieved in the combination of multiobjec-
tive optimization with GA’s in other fields of struc-
tural optimization [5]. However, relatively few pa-
pers [2, 24, 33, 36] on multiobjective topology op-
timization of truss structures are found in the liter-
ature.
The Multiobjective Genetic Algorithm used as a
basis for the proposed method was introduced by
Fonseca and Fleming [13]. The use of a well estab-
lished algorithm such as this allows for the effects
of modifications to the algorithm to become clear.
Nevertheless, in truss topology optimization, GA’s
tend to have poor computational performance in
terms of CPU time [32].
One of the main focuses of current research is im-
proving the cost and efficiency of the GA in dis-
crete topology optimization by reducing the large
number of unnecessary calculations. Two ap-
proaches exist in this context, namely avoiding du-
plicate calculations [32] and avoiding calculation
of non-feasible solutions [8, 18, 22]. The fea-
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sible solutions make up the feasible solution set
Ω of the search space S which is defined by the
constraints on the problem. Much research has
been conducted on other issues relating to the con-
straints of the discrete topology optimization prob-
lem [30, 31], but the kinematic stability of trusses
has been largely overlooked. In discrete design
problems, definition of Ω appears to have been
almost completely neglected, particularly in engi-
neering applications [35]. Several constraints typ-
ically characterize Ω in structural topology opti-
mization (although this list is by no means exhaus-
tive):

1. Stress constraints in the structure.

2. Constraints on local stability of structural el-
ements (such as buckling of elements).

3. Constraints on the stiffness of the structure
(or relating to the overall deflection of the
structure).

4. Constraints on the natural frequencies of the
structure [38].

5. The condition of kinematic stability of the
structure is particularly relevant to discrete
topology optimization.

The kinematic stability of a discrete structure is in-
timately linked to the topology variables. While
virtually all other constraints are present in sizing
and shape optimization, the kinematic stability is
exclusively of interest in topology optimization. In
general, academic research focuses on very sim-
ple, small scale structures in which the problem of
kinematic stability remains manageable. However,
most civil engineering applications deal with large
scale problems with numerous degrees of freedom.
The smaller the relative size of the kinematically
stable subset Ωks ⊆ S with respect to S, the less
likely the population is to contain a significant
number of kinematically stable structures. Simply
identifying unstable structures does not solve this
problem.
The relative number of kinematically stable solu-
tions evaluated by genetic algorithms have in the
past been increased in three ways. Firstly sta-
ble solutions can be introduced as the seed for
the initial population. Hajela & Lee [17] pro-
pose a strategy composed of two successive opti-
mization procedures, first generating a population

of kinematically stable structures, ignoring struc-
tural response constraints. These least weight sta-
ble topologies form the basis for a topology opti-
mization and member resizing optimization stage,
where a lethalization technique is used to eliminate
unstable topologies. The second method involves
targeting the constraints of the solution by iden-
tifying unstable solutions directly. Approaches
to dealing with constraints in evolutionary algo-
rithms are summarized in [6]. In most previous
studies a check on the kinematic stability of the
structure is performed, followed by penalization
of the fitness of unstable structures [32]. [8] sug-
gest first penalizing individuals which do not sat-
isfy the Chebyshev-Grübler-Kutzbach criterion2,
then penalizing individuals with non-positive defi-
nite stiffness matrices.
Though these approaches seem to provide ade-
quate results for small scale problems, they do not
address the problem of scale inherent to the size
of Ωks. As the number of variables increases (for
the same boundary conditions), the relative size of
Ωks decreases dramatically. For larger problems,
penalization may not be effective at all. This prob-
lem has been demonstrated by [22] who adopted a
third approach whereby only stable topologies are
produced by the GA using a novel genome cod-
ing method. However, this approach can limit the
search space too much in large structures.
Based on these considerations the approach pro-
posed in this paper, topology optimization with
kinematic stability repair (or KSR), suggests two
adaptations of the genetic algorithm specifically
developed for truss topology optimization. Firstly,
individuals with guaranteed kinematic stability are
introduced into the initial population. Negligible
computational effort is required for this initial step
and a ’good’ starting point for the algorithm is pro-
duced. Secondly, a chromosome repair operation
is introduced which modifies a class of kinemati-
cally unstable structures produced by the other ge-
netic operations. Chromosome repair in this con-
text refers to mechanisms which alter the chromo-
some after cross-over and mutation in order to at-
tempt to ensure the integrity of the structure. Re-
pair algorithms have been used with success on
problems with discrete design variables in other
fields of optimization [11], and in continuum mul-
tiobjective topology optimization with GA’s [23].

2DOF = dn−m− ns, where d is the dimension, n is the
number of nodes, m the number of bar members and ns the
number of degrees of freedom constrained by the supports. It
should be verified that DOF is not positive.
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Some research has been conducted on the possibil-
ity of improving the performance of GA’s in truss
topology optimization using a genotype refinement
technique [39], however these studies focus on the
stress constraint.
Starting from these considerations, the paper is or-
ganized as follows: after a description of the KSR
approach (§ 2.2), a number of examples illustrate
single-objective (§ 2.3) and multiobjective applica-
tions of the method (§ 2.4), followed by conclud-
ing remarks and future prospects (§ 2.5).

2.2 KSR approach

2.2.1 Parameterization of the struc-
tures

A fixed length vector (or chromosome) is used to
represent the design variables (fig. 2.3): sepa-
rate binary topology variables are concatenated to
sizing variables (where relevant) in the chromo-
some representation. The discrete topology vari-
ables are mapped to 2-tuples of positive integers
representing the coordinate numbering of the end
nodes of the bar elements. These tuples are in
turn mapped to tuples of coordinates in Euclidean
R2 or R3 space depending on the problem dimen-
sion. The ground structure allows for the first map-
ping, while the problem space (the nodal positions)
allows for the second. The ground structure ap-
proach was chosen as it is the most common in the
literature and allows us to more easily compare our
results to the benchmark problems, taking only the
effects of our modifications into account.

2.2.2 Hypotheses
The following hypotheses are assumed:

1. The structures are made up of linear bar ele-
ments, subject only to axial forces.

2. The elements and connections of the trusses
are devoid of imperfections such as eccentric-
ities.

3. The materials under consideration are linear
elastic.

4. The connections between the bars are per-
fectly frictionless, pinned joints.

5. The masses of the joints and members are ne-
glected.

1

2
3 4

5

1 1 0 1 1 2 1 0 1 3

P

Sizing variables

Chromosome

Topology variables

Figure 2.3: Typical parameter representation

6. Uncertainties (on the material properties, the
loading, etc.) are not taken into account.

In future investigations several of these assump-
tions could be relaxed, however these are enforced
here for simplicity.

2.2.3 Optimization framework
The KSR method employs a genetic algorithm op-
timization loop coupled to a finite element analysis
which generates the necessary responses. For this
investigation the finite element code FEAP [37]
was used. The design domain comprises a set of
nodes with fixed spatial coordinates, a set of sup-
ports and a set of loads. The ground structure
defines the upper bound of the topological search
space [9]. Introducing knowledge of the structures
into the GA through a stable initial population and
kinematic stability repair takes the conflicting na-
ture of the objective functions in multiobjective
optimization into account (see § 2.2.3).

Initial population

In multiobjective structural optimization most
studies available in the literature consider two con-
flicting objectives. Therefore, a strategy is pro-
posed in which two additional procedures are used
to generate the initial population for the GA search
procedure. When the general effect of a particular
type of configuration of elements on the objective
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Figure 2.4: Analogy between VEGA (top) and KSR (bottom)
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Node space 

Step 1

Step 2

Figure 2.5: 2D procedure 1

functions is known, procedures may be devised
which tend to generate these types of structures as
members of the initial population. In this inves-
tigation, the procedures are intuitively developed,
but a more rigorous approach is conceivable, (for
example) through criterion selection. In the VEGA
algorithm [34] a criterion selection technique is
used to create sub-populations corresponding to
separate objectives performances. These popula-
tions are then combined to create the entire popu-
lation (fig. 2.4).
Two procedures are used in the multiobjective ex-
amples. The first produces individuals with large
natural frequencies or greater stiffness (procedure
1); the second individuals with low masses (proce-
dure 2). Procedure 1 uses a triangulation (for 2D
problems) or tetrahedron (for 3D problems) mesh-
ing of a region of the space defined by the nodes.
The loaded nodes and support nodes are given spe-
cial precedence and loosely define the area to be
meshed. In the 2D case, a triangle is generated for
each support node or loaded node (fig. 2.5). There-
after, the gaps between these triangles are bridged
by consecutive triangular structures. The proce-
dure in the 3D case is equivalent, using tetrahedron
(fig. 2.6).

Procedure 2 employs a similar approach to that
found in [22]. A stable triangular or tetrahedral
kernel is produced randomly in the design domain.

Node space 

Step 1

Step 2

Figure 2.6: 3D procedure 1

Thereafter, the structure is grown around this ker-
nel by adding two (in the 2D case) respectively
three elements (in the 3D case) attached to nodes
already in the structure, sharing a common node.
This process is continued, encouraging inclusion
of nodes in the direction of unconnected loaded
or supported nodes, until all of these nodes form
part of the connected structure. Figure 2.7 illus-
trates this procedure for a very simple truss prob-
lem in two dimensions. The degree to which these
two methods produce different results depends on
the problem configuration (nodal positions, num-
ber of boundary constrained nodes, density of the
ground structure, etc.). In addition to the kinemati-
cally stable individuals, a certain proportion of the
initial population is randomly seeded to encour-
age diversity. In the VEGA approach the various
sub-populations have the same size. Similarly, the
kinematically stable sub-populations have roughly
the same size.
In multiobjective optimization, a number of mea-
sures, called ’metrics’, can be used to quantify the
performance of a set of solutions. For example, the
generational distance metric (IGD) (see [41] for de-
tails and other metrics) measures the normalized
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Figure 2.7: 2D procedure 2
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Figure 2.9: Average effect of size of stable initial
population on final solution for 54-bar multiobjec-
tive problem

distance between two Pareto fronts. We use IGD
here to evaluate the performance of Pareto fronts
relative to the Pareto optimal solution. IGD = 0
signifies a convergence to the reference Pareto op-
timal solution. The results of a study of the size
and composition of the initial population for the 54
bar example discussed in section 2.4.2 can be seen
in figures 2.8 and 2.9. Note that both the minimum
number of function evaluations required, and the
average accuracy of the calculations coincide with
a stable initial population of 50 to 80%.

Chromosome repair

The first requirement for the repair procedure is the
identification of kinematic instability. Identifica-
tion of unstable structures can be done in several
of ways:
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• Checking the positive definiteness of the
structure’s stiffness matrix K. If K is positive-
definite, the truss is kinematically stable. This
requires the assembly of the stiffness matrix
and generally a numerical procedure to deter-
mine the condition of positive definiteness.

• Checking for satisfaction of the Chebyshev-
Grübler-Kutzbach criterion, a necessary, yet
not sufficient criterion for the kinematic sta-
bility. Instabilities cannot be identified di-
rectly, since the position within the structure
and the nature of the instability is unknown,
making this check unsuitable for repair oper-
ations.

• Checks on the connectivity of specific nodes.
This can provide an indication of instabilities,
yet is also a necessary but not sufficient set
of criteria. Not all mechanisms can be iden-
tified in this way. A check of the positive-
definiteness of K is still necessary.

• The Singular Value Decomposition of the
equilibrium matrix [28] provides detailed in-
formation about instabilities within the struc-
ture. This procedure can be computationally
very expensive and does not necessarily indi-
cate how a repair may take place.

The third approach is adopted here, since it pro-
vides specific structural information on how a re-
pair to the structure can be carried out. The analy-
sis of the stiffness matrix is carried out by default
during the finite element analysis, and so a check
on the instability of the structure is readily avail-
able in the event of instabilities which are not de-
tected using the proposed approach. Two types
of checks are made and repairs carried out prior
to the stiffness matrix assembly (fig. 2.10). These
checks identify several causes of kinematic insta-
bility and structurally undesirable configurations
directly and allow for easy rectification of the de-
tected problems:

1. The connectivity check identifies the nodes
which are insufficiently connected to the rest
of the structure3. The following should be
checked:

(a) The connection of the loaded and sup-
port nodes. These nodes should be con-
nected to the structure by at least one el-
ement.

3This does not include unconnected nodes.

Initiation

End

Generate initial 

population

Evaluate !tness

Selection

Crossover

Mutation Repair
O"spring

Stop?
N

Y

FEM

parameters

responses

Figure 2.10: Modified genetic algorithm

(b) Nodes connected to the structure by
only one element (2D) or either one or
two elements (3D). Isolated elements,
connecting two nodes, but disconnected
from the structure.

2. In the 2D case the linear independence check
identifies all nodes connected to two ele-
ments. If the three nodes concerned are not
linearly independent, the common node is
identified for repair. In the 3D case the planar
check identifies nodes which are connected to
3 elements only. If the 4 nodes are planar, the
common node is identified for repair.

The connectivity check (fig. 2.11(a))4 examines
the connectivity vector of tuples. If, for node i,
(i = 1...ne), 0≤ ni ≤ d a repair is carried out. Here
ne is the total number of nodes and d is the number
of dimension in the problem. The linear/planar in-
dependence check (fig. 2.11(b)) analyses the con-
nectivity of the structure and the geometric rela-
tionships between the nodes connected to common
elements. Two types of operations are performed
on the chromosomes in order to potentially move
the structure into Ωks:

1. Addition of elements.
4Note that the structures conform to the Chebyshev-

Grübler-Kutzbach criterion.
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Figure 2.11: Chromosome repair checks (a) and (b)

2. Elimination of unnecessary elements.

Combinations of these operations are carried out
until the structure is suitably stable from the point
of view of this constraint check. The number of
elements added or removed is chosen with a prob-
ability decided by the user5. The repair algorithm
is shown in figure 2.12. Experience shows the type
of kinematic instabilities identified by these checks
are by far the most common, given the stable ini-
tial population generation and the use of crossover
and mutation genetic operators preceding the re-
pair operation. In fact, when repeating the trials
carried out by [22], we found (fig. 2.13) that all
instabilities (for this type of structure) could be re-
paired using the repair procedure described above.
The repair algorithm, in a sense, decreases the size
of the search space and therefore the size of the
problem. The use of both addition and elimina-
tion of elements aids in preservation of diversity
and preventing convergence towards a single solu-
tion [7], sometimes called genetic drift [4]. Fur-

5During collinear/planar repair, it is ensured that the number
of elements removed does not lead to the node connected to one
or two elements, respectively in 2D and 3D problems. This is
to avoid connectivity violations, while technically satisfying the
collinear/planar check.

thermore, local repair operations do not signifi-
cantly alter the chromosomes of the individuals.
Large scale repairing could negate the stochastic
nature of the genetic algorithm through systematic
repair of large swathes of the chromosome.
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(Kawamura et al. 2002)

Figure 2.13: Proportion of stable structures in the
search space

2.3 Single-objective topology
optimization

The KSR approach suggested in the preceding sec-
tions is implemented in a number of test problems.
The methodology has been developed for multi-
objective problems, however we use a number of
well-known single-objective problems to test the
efficacy of the proposed modifications to the GA.

2.3.1 Problem formulation
A review of the literature reveals the minimization
of the mass of a structure (2.1) to be one of the
most commonly studied objective functions. Four
constraints are considered, namely the maximum
stress in the elements (2.2), local stability of the
individual elements (2.3), the maximum deflection
of the structure (2.4) and kinematic stability. Since
we cannot be certain that all possible types of in-
stability can be detected and repaired structures
still deemed to be kinematically unstable (after re-
pair operations are carried out if any) are penal-
ized, similarly to the method suggested in [8]. The
problem is explicitly formulated as follows:

f = min
ti,Ai

{
W =

M

∑
i=1

ρitiAili

}
(2.1)

subject to:
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1. Stress constraints6:

ti|σi|
σmax

i
≤ 1 (2.2)

2. Buckling constraints:

tiσi

−σ cr
i
≤ 1 (2.3)

where σ cr
i = −π2EiIi

Ail2
i

and all cross-sections are
circular.

3. Vertical deflection constraint:

δz

δ max
z
≤ 1 (2.4)

where δz = max(dz) = max
((

K−1f
)

z

)
where M is the number of bar elements, i = 1...M,
W is the mass of the structure, ρi the density of
material for element i, ti ∈ {0,1} the topological
variable for element i, Ai the cross-section area of
element i, li the length of the bar element i, σi the
stress in element i, Ei the elastic modulus of mate-
rial i, and Ii the area moment of inertia of element
i.

2.3.2 Examples
Three benchmark problems commonly found in
the literature are discussed in this section. For
these calculations the DAKOTA [10] platform was
used, with the single-objective method as the ba-
sis for the optimization scheme. For all single ob-
jective problems, the iterative procedure is stopped
when the best (feasible) fitness values of the pop-
ulation do not improve significantly over 10 gen-
erations, or the limit value of the number of func-
tion evaluation or iterations has been reached. The
built-in DAKOTA ’multi-point binary crossover’
and ’merit function fitness type’, with a ’favor fea-
sible’ replacement scheme were used. Further-
more, constraint penalization and an ’offset nor-
mal’ mutation type were used. Further information
on these genetic operators can be found in the ref-
erence above. In all examples the number of func-
tion evaluations refers to the number of calls to the
FE model. In practice the computational effort re-
quired to produce the initial population is negligi-
ble compared to the total computational cost. In

6Note that the problem of singular topologies is eliminated
through the presence of the topology variable

P

l

P

ll

Figure 2.14: 10 bar truss ground structure

the examples discrete sizing variables were con-
sidered. 10 runs of each problem were made, each
with a different initial population.

10 bar 2D truss: sizing and topology optimiza-
tion

A comparison is made between a single-objective
GA with kinematically stable initial population
(here referred to simply as SOGA) and the results
obtained by Deb & Gulati [8], as well as the results
of Hajela et al. [18]. Next these results are com-
pared to the results of the single-objective KSR al-
gorithm. In this example, the sizing and the topol-
ogy of the structure are optimized concurrently.
The constraints on the problem do not include
the buckling constraint (2.3), in order to conform
to the same problem statement as the reference
works.

Parameters: The ground structure is shown in
figure 2.14. The geometric and material parame-
ters used are found in table 2.1, while the genetic
algorithm parameters are summarized in table 2.2:

Results: The optimal topology for this problem
is well known (fig. 2.15). The SOGA with a
randomly seeded initial population did not con-
verge within a reasonable time (270 iterations).
The SOGA with a kinematically stable initial pop-
ulation did, however, converge after an average
of 215 generations. The results of the best solu-
tions of the 10 runs are shown in table 2.3. The
SOGA with kinematically stable initial population
outperforms the results found in [18], having a
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Table 2.3: 10 bar 2D truss: Comparison of results
Element [8] [18] SOGA KSR

A
[
m2] A

[
m2] A

[
m2] A

[
m2]

0 0.019355 0.01806 0.019355 0.019355
1 0.01548 0.01548 0.01548 0.01548
2 0.0103 0.0103 0.009677 0.0103
3 0.00387 0.00387 0.00387 0.00387
4 0.0129 0.01355 0.012258 0.0129
5 0.01355 0.0142 0.01484 0.01355

Best mass [kg] 2228.44 2241.97 2235.2 2228.44

Table 2.1: Geometric and material parameters
Parameter Value

l 9.144 m
P 448.2 kN
A {6.4516E−4, 1.935E−2} m2

in increments of 6.4516E-4 m2

E 6.895×1010 Pa
ρ 2768 kg.m−3

σmax
i 1.724×108 Pa

δ max
z 0.0508 m

Table 2.2: 10-bar 2D single objective problem:
GA parameters

Parameter Value

Population_size 220
Stable_proportion of IP 60%

Cross-over_rate 0.9
Mutation_rate 0.1

P

1 2

4

0

3
5

P

Figure 2.15: 10 bar problem: Optimized truss
structure
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Figure 2.16: 10 bar 2D problem: convergence of
KSR algorithm

marginally smaller mass by about 0.3 %. However,
it fails to match or surpass the results in [8] who
used a real-coded GA in which individuals are pe-
nalized after the kinematic stability has been eval-
uated.
The KSR algorithm converges on average after
only 89 generations, and finds (in the majority of
cases) the same solution as that found by Deb &
Gulati. In figure 2.16, the maximum, minimum
and average values (including non-feasible solu-
tions) of the objective functions are shown for suc-
cessive generations of the best performing solution
which converges after 70 generations. In figure
2.17, the average function values of the best per-
forming SOGA and KSR runs are shown for the
first 70 generations. During the initial generations
many non-feasible solutions with low mass are re-
tained, leading to lower average masses. A pro-
cess of penalization gradually increases the num-
ber of feasible solutions in the SOGA population
until a peak is reached at which time the average
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Figure 2.17: 10 bar 2D problem: Comparison of
average objective function values (first 70 genera-
tions)

masses decrease once more. This is far less pro-
nounced in the KSR population, with the peak be-
ing reached very early on. Theoretically, the two
algorithms have very similar initial populations.
The repair procedure greatly reduces the amount of
structures penalized for being unfeasible. This ex-
ample demonstrates the advantages of the KSR ap-
proach over the traditional penalization approach.

14 bar 2D truss: sizing and topology optimiza-
tion

In this example a 2D 14 bar truss with the same
parameters as the previous example is investigated.
The ground structure is shown7 in figure 2.18.

Results: For this problem the same topology
found in the previous problem (fig. 2.15) has been
found using a multistage algorithm [17] in the liter-
ature. However using the KSR algorithm (and even
the SOGA with stable initial population) a differ-
ent topology is found (fig. 2.19). A comparison
of the (stress and displacement constrained) prob-
lem solutions is shown in table 2.4. Note that the
mass objective function of this truss optimization
(in all cases) is smaller than in the previous exam-
ple. This is due to the larger search space made
possible by a greater number of variables. The
KSR algorithm finds a smaller mass than found by
Hajela & Lee, by about 4 %. The KSR algorithm

7In the figures one of the two overlapping members is drawn
below or above the other to avoid confusion. These members
are connected to the nodes above or below them at the end
points only.
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Figure 2.18: 14 bar truss ground structure
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Figure 2.19: Solution to the 14 bar sizing and
topology optimization
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Table 2.4: 14 bar 2D truss: Comparison of results

[17] SOGA KSR

Average gener-
ations for stable
topology

14 8 2

Mass [kg] 2241.97 2190.18 2153.56

also finds a lower mass than the SOGA with stable
initial population.

25 bar 3D truss: sizing and topology optimiza-
tion

In this example a benchmark 3D structure is opti-
mized (fig. 2.20). Both sizing and topology vari-
ables are considered. The results are compared
to [21], in which an initial population of good can-
didates is produced, followed by the systematic re-
duction of the search space.

Parameters: The member cross-section areas
are selected from the discrete set {1.255, 2.142,
3.348, 4.065, 4.632, 6.542, 7.742, 9.032, 10.839,
12.671, 14.581, 21.483, 34.839, 44.516, 52.903,
60.258, 65.226}. The Young’s modulus for the
material used is E = 68.97×109 N.m−2 and den-
sity of the material is ρ = 27126.4 N.m−3. Two
load cases are considered (table 2.5). The buckling
data and variable definition can be found in [21].
The maximum deflection of the structure is set at
δmax = 8.89 mm. In this case only chromosome
repair is implemented in the modified GA. A pop-
ulation size of 50 was chosen, however no stable
initial population is created to show the improve-
ment achieved by KSR only.

Results: The solution obtained is shown in fig-
ure 2.21 and the cross-section areas in table 2.7.
This solutions are both identical to that found in
the reference work, finding the same mass, how-
ever with slightly improved performance (table
2.6).

In this example it can be seen that kinematic
stability repair has a positive effect on the effi-
ciency of the algorithm. 81.25% of the possible
topologies are found to be unstable. This struc-
ture only has 8 independent topology variables.
In practice, one topology variable can be elimi-
nated since it is always necessary for the stability
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4 z
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Figure 2.20: 25 bar 3D problem

Table 2.5: 25 bar 3D truss: Loading
Loading case Node Fx (kN) Fy (kN) Fz (kN)

1 1 4.45 44.5 -22.25
1 2 0 44.5 -22.25
1 3 2.225 0 0
1 6 2.225 0 0
2 1 0 89 -22.25
2 2 0 -89 -22.25



39 CHAPTER 2. ALGORITHM PERFORMANCE

Table 2.6: 25 bar 3D truss: Comparison of results
[21] SOGA KSR

Generations 100 82 64
Weight [N] 2517.24 2517.24 2517.24

Table 2.7: 25 bar 3D truss: Topology and cross-section areas obtained
Cross section 1 2 3 4 5 6 7 8

Area (cm2) - 10.839 21.483 - - 6.542 12.671 14.581
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Figure 2.21: 25 bar 3D problem topology after op-
timization

of the structure. Problems such as this are of little
interest as they present few challenges to current
topology optimization algorithms. However this
problem illustrates the efficacy of the method even
on small scale 3D problems, where symmetry has
been taken into account. The key to implementing
the repair procedure is the appropriate parameteri-
zation of the structure so that stability and instabil-
ity can be identified correctly.

Conclusions

In the above examples – using the KSR algorithm –
the optimal topology is found, and begins to dom-
inate the population, after only a few generations.
The remaining iterations are necessary mainly to
refine the sizing of the bars. The sizing optimiza-
tion is not the focus of this investigation, how-
ever to be able to compare results it has been in-
troduced. The algorithm remains valid and ad-
vantageous with this adjustment. It is clear that
the multistage approach is not always beneficial.
Unmodified, randomly seeded GA’s may require
particularly large convergence times compared to
the modified KSR GA. The stable initial popula-
tion improves the performance of the GA signif-
icantly. The advantages of the algorithm are ex-
pected to be greater in larger problems. The repair
approach outperforms the penalization techniques
used in the reference works which do not explic-
itly take structural knowledge into account. If, as
in most studies, the kinematic stability is taken to
be a binary condition, it is not possible to mean-
ingfully penalize kinematically unstable solutions
as a function of the degree to which the constraint
has been violated.
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2.4 Multiobjective topology op-
timization

2.4.1 Problem formulation
The multiobjective problems in this section make
use of the objective function and constraints in
§ 2.3.1. In addition the dynamical objective func-
tion and the maximum deflection objective func-
tion are introduced:

f2 = min
ti,Ai

{
−(ωn,0)

2} (2.5)

f3 = min
ti,Ai

{
δz = max(dz) = max

((
K−1f

)
z

)}
(2.6)

where ωn,0 is the smallest (first) natural frequency
of the structure. The response of a structure to ex-
citation depends largely on the first few natural fre-
quencies [40]. In the literature dynamic aspects
of the structure have been handled as constraints
for discrete structures [16, 20, 38], or explicitly as
an objective function for continuum topology op-
timization [19, 27]. Here we wish to maximize the
smallest (first) natural frequency of the structure.

2.4.2 Examples
Three problems are discussed in this section. For
these calculations the DAKOTA Multiobjective
Genetic Algorithm (MOGA) was used. This
method performs Pareto optimization using a met-
ric tracker to evaluate the convergence of the al-
gorithm. This tracker evaluates three metrics as-
sociated with consecutive Pareto fronts and is de-
scribed in detail in [10]. This method has much in
common with the aforementioned SOGA method
implemented by DAKOTA. Therefore, the modi-
fications to the SOGA and the MOGA algorithms
were not significantly different. The algorithm is
judged to have converged once the value of the
metric tracker does not change significantly for 10
generations. The built-in DAKOTA multi-point bi-
nary crossover and domination count fitness type,
with a ’below limit’ (with a value of 6) replace-
ment scheme were used. Furthermore, constraint
penalization and an ’offset normal’ mutation type
were used.

14 bar 2D truss: topology optimization

The 14 bar truss example with only topology
variables is used to demonstrate the effectiveness

Table 2.8: 14 bar 2D truss multiobjective problem:
GA parameters

Parameter Value

Population_size: 100
Stable_proportion of IP 60%

Crossover_rate: 0.8
mutation_rate: 0.2
Cross-section: 0.01419352 m2

of this algorithm on small-scale examples. The
ground structure and geometry (with the exception
of the cross-section which is constant in this prob-
lem) are identical to that in figure 2.18. The KSR
algorithm is tested against the MOGA algorithm
with a stable initial population.

Parameters: The objective functions considered
are the total mass (2.1) of the structure and the
maximum vertical nodal displacement (2.6). The
structure is subject to constraints on the stresses in
the elements (2.2) only, while only topology vari-
ables are considered. The genetic algorithm pa-
rameters for both algorithms are summarized in ta-
ble 2.8.

Results: A comparison of the two algorithms
performances is shown in table 2.9. The Pareto op-
timal set can be seen in figure 2.22. Clearly there
are advantages in terms of computational perfor-
mance to the modified algorithm. The KSR al-
gorithm converges on average several times faster
than the MOGA. In figure 2.23 the generational
distance metric, relative to the Pareto optimal so-
lution, for successive generations of the best so-
lutions out of the 10 MOGA and KSR runs is
shown. Clearly the KSR algorithm is advanta-
geous in terms of convergence. It is worth noting
that on average, for this problem 3 of the solutions
in the Pareto optimal set were found in the initial
population using procedures 1 and 2. While this
is a relatively large proportion, it is expected that
the likelihood of finding these optimal solutions
simply by generating an initial population will de-
crease as the problem becomes larger.

54 bar 2D truss: topology optimization

The KSR algorithm is specifically aimed at large
scale problems with binary topology variables.
The 54 bar cantilever problem discussed in this
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Table 2.9: 14 bar 2D truss: Comparison of algo-
rithm performance

Algorithm: MOGA KSR

Average generations for convergence 126 47
Average IGD 0.0173 0.0036

Average Pareto set size 14.4 15.6
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Figure 2.23: 14 bar 2D truss: Best solution con-
vergence relative to reference solution

section is of this type. The objective functions
in this problem are the mass and first natural fre-
quency of the structure ωn,0, expressed in equation
(2.5) and the constraints include the stress con-
straint on the members (2.2), the buckling of the
members (2.3) and the deflection constraint (2.4).

Parameters: The ground structure is shown in
figure 2.24. The two nodes on the left of the struc-
ture are restrained in both vertical and horizontal
direction. Four cases are considered. In the first
three cases symmetry considerations are not im-
plemented to reduce the size of the problem, which
consists of a length 54 vector of discrete binary
design variables. A study of the 29 variable sym-
metric problem was also made to show the effects
of forcing symmetry. The geometric and mate-
rial parameters characterizing the problem can be
found in table 2.10 and the GA parameters in table
2.11. The nominal cross-section area is chosen as
Anom = 2×10−3 m2.

Results: The Pareto fronts of the best perform-
ing MOGA with stable initial population, the sym-
metric problem and the multiobjective KSR al-
gorithm can be seen in figure 2.25. Solution of
the symmetric problem relied on the MOGA with

l

P

l

ll ll

Figure 2.24: 54 bar cantilever truss ground struc-
ture

Table 2.10: 54 bar 2D truss: Geometric and mate-
rial parameters

Parameter Value

l 1 m
P 100kN
E 6.9×1010Pa
ρ 2768 kg.m−3

σmax
i 1.724×108Pa

Table 2.11: 54 bar 2D truss: GA parameters
Parameter Value

Population_size 400
Cross-over_rate 0.8
Mutation_rate 0.5

Stable_proportion 0.7

a stable initial population. The generational dis-
tance between the MOGA and KSR Pareto fronts
is found to be IGD = 0.0707. The MOGA algo-
rithm, for all all but one of the runs, reached the
maximum number of iterations (500) before sat-
isfying the convergence criterion. The topologies
in the Pareto optimal sets are also shown in figure
2.25. Note the asymmetry in the topologies where
no symmetry was forced, and their superiority to
the symmetric solutions. While the problem is ge-
ometrically symmetrical, the presence of the buck-
ling constraint introduces asymmetry, namely the
absence of the constraint in tension elements. It
is also noted that the buckling constraint is active
in all of the above topologies. Furthermore, the
use of discrete design variables can have the effect
of producing asymmetric topologies even in sym-
metrical problems [1]. The generational distance
between the KSR and symmetric Pareto fronts is
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Table 2.13: 54 bar 2D truss: Effect of composition of initial population
70% Procedure 1 70% Procedure 1 35% Procedure 1, 35% Procedure 2

Ave. evaluations for convergence 11596 10034 9861
Average IGD 0.0415 0.06725 0.024375

Symmetric Pareto front

Figure 2.25: 54 bar MOGA: Pareto fronts
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Figure 2.26: 54 bar MOGA initial population: Procedure 1, Procedure 2 and randomly seeded individ-
uals

0.1563.
The different methods on average produce varying
numbers of Pareto optimal solutions (table 2.12).
The objective function values of the feasible indi-
viduals in the initial population are shown in figure
2.26. 30 % of the initial population was generated
randomly (in region C), while 35% of the popu-
lation was generated using procedure 1 (in region
B) and the remainder using procedure 2 (in region
A). Furthermore the two procedures tend to pro-
duce individuals with objective function values fa-
voring one or the other objective function, as hy-
pothesized. The combination of procedures allows
for a greater range in the Pareto front and therefore
reduced drift. Table 2.13 shows the results of trials
carried out with various initial population compo-
sitions and demonstrates advantages of using both
procedure 1 and 2. This strategy allows for more
accurate solutions on average, and slightly faster
convergence to these solutions.
The optimization algorithm with chromosome re-
pair is shown to be highly advantageous in terms of
average convergence time and finds a wider range
of solutions in the Pareto optimal set. It is also
clear that the multiobjective KSR algorithm finds
significantly better performing solutions than the
MOGA.

Table 2.12: 54 bar 2D truss: Comparison of per-
formance of algorithms

MOGA stable IP KSR

Average iterations
for convergence 500 + 294

Pareto optimal solu-
tions 13.6 16.2

2.4.3 Cantilevered 3D structure:
topology and sizing optimization

A cantilevered structure, consisting of a steel spa-
cial truss combined with a reinforced concrete
deck, is optimized using the KSR algorithm. The
truss elements are connected at nodes in the deck,
so that the two portions work together to ensure
the strength, stiffness and stability of the structure.
The algorithm was used in an initial design stage
to find a ’good’ configuration for the truss ele-
ments. For architectural reasons the distribution of
the nodes is asymmetrical and irregular (fig. 2.27).
The reinforced concrete deck is taken into account
in the FEM analysis.

Parameters: The loading on the structure can
be seen in figure 2.28. Nodes 1 and 2 are loaded
in the y-direction with 344228 N and are unre-
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Table 2.14: Material parameters and maximum de-
flection

Parameter Value

Esteel 2.1×1011 Pa
Edeck 3×1010 Pa
ρsteel 7.8×103 kg.m−3

ρdeck 2.5×103 kg.m−3

σmax
i,steel 3.55×108 Pa

σmax
i,deck 5×107 Pa

δ max
z 0.015 m

thicknessdeck 0.15 m

strained. Edge A-B of the plate is loaded with
a line load of 237922 N.m−1 in the y-direction,
and 50491 N.m−1 vertically, and is unrestrained.
The deck A-B-C-D is loaded with an evenly dis-
tributed vertical loading of 10200 N.m−2. This
loading is a combination of live loads and the self-
weight of the deck. The self weight of the truss
is neglected in the initial design stage. Edge C-D
is restrained in all degrees of freedom (including
rotationally), with the exception of vertical trans-
lation. Nodes 3 and 4 are translationally restrained
in the three spatial directions, but are free to rotate.
The nodal positions are given in table 2.15. The
ground structure, with 41 topology variables (dark
solid lines) is shown in figure 2.29. For the gener-
ation of the stable initial population and the KSR
procedure the effect of the deck is represented by
a number of (non-variable) connectivities (dashed
lines) lying in the plane of the deck. An initial pop-
ulation consisting of 60% stable structures (using
an equal number of individuals produced by the
3D variations of procedures 1 and 2) was created.
The objectives and constraints considered were the
same as in the previous example. The solid circu-
lar cross sections (all bar elements with the same
section area) were selected from the following set:
{12.5, 15.9, 19.6, 23.8, 28.3, 33.2, 38.5, 44.2,
50.3, 56.7, 63.6, 70.9, 78.5, 86.6, 95.0} ×
10−4 m2. The material parameters and maximum
allowed deflection are found in table 2.14 and the
GA parameters in table 2.16.

Results: Of the 10 runs carried out for this prob-
lem, the best performing Pareto optimal front is
shown in figure 2.30. The average number of gen-
erations required for convergence was 276. The
front, containing 285 solutions, is shown along
with roughly every 20th solution. The cross-

Table 2.15: 3D cantilevered structure: truss nodal
positions (m)

Node number x y z

1 0.825 0 0
2 2.475 0 0
3 0.825 4.5 0
4 2.475 4.5 0
5 1.05 1.05 0.9
6 2.55 0.75 0.9
7 2.55 2.25 0.9
8 0.75 2.85 0.9
9 0.75 4.05 0.9

10 2.55 4.05 0.9
11 0.825 1.5 0
12 0.825 3 0
13 2.475 1.5 0
14 2.475 3 0

Table 2.16: 3D Cantilevered structure: GA param-
eters

Parameter Value

Population_size 400
Cross-over_rate 0.6
Mutation_rate 0.05
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section increases constantly as we move from low
to high mass solutions. The average generational
distance was IGD = 0.0024. In fact the Pareto front
can be broken up into sub-fronts according to the
cross-section size (denoted by varying shades of
grey), without any overlapping. This explains the
corrugated appearance of the front: each corru-
gation is a topology-only Pareto front for a given
cross-section. In our approach all but the lowest
cross-section are presented in the Pareto front. The
spread of solutions along the front and for the var-
ious cross sections, is relatively uniform.
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Figure 2.27: 3D cantilevered structure: nodal po-
sitions

A

1

B

2

344228 N

344228 N

4

C

D

3

Figure 2.28: 3D cantilevered structure: loading
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Figure 2.29: 3D cantilevered structure: ground
structure
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Figure 2.30: 3D cantilevered structure: Pareto front
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2.5 Conclusions and future
prospects

A novel approach to improve the performance of
genetic algorithms in structural optimization with
discrete topology variables has been proposed.
The procedure makes use of multiple methods of
stable initial population generation and chromo-
some repair of a class of kinematically unstable
structures. By implementing these adaptations,
knowledge of structural behavior is added to the
GA. These additions allow for a compromise be-
tween the explorative character of the GA, and
the reduction of the search space through addition
of information. The procedure has been demon-
strated on single-objective academic examples and
compares well to the results in the literature. Fur-
thermore, the method has been demonstrated on
multiobjective problems and the advantages over
unmodified methods shown.
Possible future prospects are listed hereafter:

• It would appear that a thorough study of the
effects of the kinematic stability constraint on
the feasible solution set Ω in discrete struc-
tural problems would be of great interest,
given the lack of attention in the literature.
The use of more advanced methods of detect-
ing instability could be investigated, taking
inspiration from graph theory and computer
science, for example, are a possible future av-
enue of research. The method using the Sin-
gular Value Decomposition of the equilibrium
matrix also appears to hold much promise for
the improvement of the method since all kine-
matic instabilities can be detected in this way.

• Three or more objectives, and, to a lesser
extent, multiple loading cases, present chal-
lenges to the approach. Adaptation of the
method in this way, possibly with an auto-
mated scheme for initial population gener-
ation by criterion selection, can produce a
more general method.

• The integration of shape optimization into the
procedure, which could lead to a complete
multiobjective layout optimization method.
Layout optimization of large scale discrete
structures, such as grid shells, could bene-
fit greatly from the KSR repair procedure,
since kinematic instability is frequently en-
countered in this type of problem.

• There is much scope for investigations into
decision making and user preferences [11] as
well as the handling of uncertainties [12] .

• Global elastic stability of the truss structure
has not been discussed here. Some research
has been done in this area using nonlinear
programming [3]. This is an important con-
straint in practice, which would make the
method more relevant for practical applica-
tion.

• For large scale problems, the ground struc-
ture approach may not be the most efficient.
Making use of other methods of representing
the design domain, for example using a vari-
able chromosome length, may be fruitful as
an adaptation of the KSR method.
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mirovski, and J. Zowe. Optimal design of
trusses under a nonconvex global buckling
constraint. Optim. Eng., 1(2):189–213, 2000.

[4] F.Y. Cheng and D. Li. Multiobjective op-
timization design with pareto genetic algo-
rithm. Journal of Structural Engineering,
123(9):1252–1261, 1997.

[5] C.A. Coello Coello. A comprehensive sur-
vey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Infor-
mation systems, 1(3):129–156, 1999.

[6] C.A. Coello Coello. A survey of constraint
handling techniques used with evolutionary
algorithms. Laboratorio Nacional de Infor-
matica Avanzada, Veracruz, Mexico, Techni-
cal report Lania-RI-99-04, 1999.



49 CHAPTER 2. ALGORITHM PERFORMANCE

[7] C.A. Coello Coello, G.B. Lamont, and D.A.
Van Veldhuizen. Evolutionary algorithms for
solving multi-objective problems. Springer-
Verlag New York Inc, 2002.

[8] K. Deb and S. Gulati. Design of truss-
structures for minimum weight using genetic
algorithms. Finite Elements in Analysis and
Design, 37(5):447–465, 2001.

[9] W.S. Dorn, R.E. Gomory, and H.J. Green-
berg. Automatic design of optimal structures.
Journal de Mécanique, 3:25–52, 1964.

[10] M.S. Eldred, B.M. Adams, K. Haskell, W.J.
Bohnhoff, J.P. Eddy, D.M. Gay, J.D. Grif-
fin, W.E. Hart, P.D. Hough, T.G. Kolda, M.L.
Martinez-Canales, L.P. Swiler, J.P. Watson,
and P.J. Williams. DAKOTA, a multilevel
parallel object-oriented framework for de-
sign optimization, parameter estimation, un-
certainty quantification, and sensitivity anal-
ysis: Version 4.1 reference manual. Tech-
nical Report SAND2006-4055, Sandia Na-
tional Laboratories, Albuquerque, New Mex-
ico, September 2007.

[11] R. Filomeno Coelho and Ph. Bouillard. A
multicriteria evolutionary algorithm for me-
chanical design optimization with expert
rules. International Journal of Numeri-
cal Methods in Engineering, 62(4):516–536,
2005.

[12] R. Filomeno Coelho, J. Lebon, and
Ph. Bouillard. Hierarchical stochastic
metamodels based on moving least squares
and polynomial chaos expansion – Applica-
tion to the multiobjective reliability-based
optimization of 3D truss structures. Struc-
tural and Multidisciplinary Optimization,
2010. In press.

[13] C.M. Fonseca, P.J. Fleming, et al. Genetic
algorithms for multiobjective optimization:
Formulation, discussion and generalization.
In Proceedings of the fifth international con-
ference on genetic algorithms, volume 423,
pages 416–423, 1993.

[14] L. Gil and A. Andreu. Shape and cross-
section optimisation of a truss structure.
Computers & Structures, 79(7):681–689,
2001.

[15] D.E. Goldberg. Genetic algorithms in search,
optimization and machine learning. Read-
ing, MA: Addison-Wesley. XIII, 412 p. DM
104.00 , 1989.

[16] H.M. Gomes. Truss optimization with dy-
namic constraints using a particle swarm al-
gorithm. Expert Systems with Applications,
38:957–968, January 2011.

[17] P. Hajela and E. Lee. Genetic algorithms
in truss topological optimization. Inter-
national Journal of Solids and Structures,
32(22):3341–3357, 1995.

[18] P. Hajela, E. Lee, and C.Y. Lin. Genetic
algorithms in structural topology optimiza-
tion. In M.P. Bendsøe and C.A.M. Soares,
editors, Topology design of structures, pages
117–134. Kluwer Academic Publishers Dor-
drecht/Boston, 1993.

[19] X. Huang, Z.H. Zuo, and Y.M. Xie. Evo-
lutionary topological optimization of vibrat-
ing continuum structures for natural frequen-
cies. Computers & Structures, 88(5-6):357–
364, 2010.

[20] P. Jin and W. De-yu. Topology optimiza-
tion of truss structure with fundamental fre-
quency and frequency domain dynamic re-
sponse constraints. Acta Mechanica Solida
Sinica, 19(3):231–240, 2006.

[21] A. Kaveh and V. Kalatjari. Topology opti-
mization of trusses using genetic algorithm,
force method and graph theory. International
Journal for Numerical Methods in Engineer-
ing, 58(5):771–791, 2003.

[22] H. Kawamura, H. Ohmori, and N. Kito. Truss
topology optimization by a modified genetic
algorithm. Structural and Multidisciplinary
Optimization, 23(6):467–473, 2002.

[23] J.A. Madeira, H.C. Rodrigues, and H. Pina.
Multiobjective topology optimization of
structures using genetic algorithms with
chromosome repairing. Structural and
Multidisciplinary Optimization, 32(1):31–
39, 2006.

[24] S. Mathakari, P. Gardoni, P. Agarwal,
A. Raich, and T. Haukaas. Reliability-
based optimal design of electrical transmis-
sion towers using multi-objective genetic al-



CHAPTER 2. ALGORITHM PERFORMANCE 50

gorithms. Computer-Aided Civil and Infras-
tructure Engineering, 22(4):282–292, 2007.

[25] M. Ohsaki. Genetic algorithm for topology
optimization of trusses. Computers & Struc-
tures, 57(2):219–225, 1995.

[26] M. Papadrakakis, N. Lagaros, and V. Plevris.
Multi-objective optimization of skeletal
structures under static and seismic loading
conditions. Engineering Optimization,
34(6):645–669, 2002.

[27] N.L. Pedersen. Maximization of eigenval-
ues using topology optimization. Structural
and Multidisciplinary Optimization, 20:2–
11, 2000.

[28] S. Pellegrino. Structural computations with
the singular value decomposition of the equi-
librium matrix. International Journal of
Solids and Structures, 30(21):3025–3035,
1993.

[29] J.N. Richardson, S. Adriaenssens, Ph. Bouil-
lard, and R. Filomeno Coelho. Multiobjec-
tive topology optimization of truss structures
with kinematic stability repair. Structural
and Multidisciplinary Optimization, 46:513–
532, 2012.

[30] G.I.N. Rozvany. Difficulties in truss topology
optimization with stress, local buckling and
system stability constraints. Structural and
Multidisciplinary Optimization, 11(3):213–
217, 1996.

[31] G.I.N. Rozvany. On design-dependent con-
straints and singular topologies. Struc-
tural and Multidisciplinary Optimization,
21(2):164–172, 2001.

[32] S. Ruiyi, G. Liangjin, and F. Zijie. Truss
topology optimization using genetic algo-
rithm with individual identification tech-
nique. In S.I. Ao, L. Gelman, DD.W.L.
Hukins, A. Hunter, and A.M. Korsunsky, ed-
itors, Proceedings of the World Congress on
Engineering 2009 Vol II, WCE ’09, July 1 - 3,
2009, London, U.K., Lecture Notes in Engi-
neering and Computer Science, pages 1089–
1093. International Association of Engineers,
Newswood Limited, 2009.

[33] W.S. Ruy, Y.S. Yang, G.H. Kim, and Y.S.
Yeun. Topology design of truss structures

in a multicriteria environment. Computer-
Aided Civil and Infrastructure Engineering,
16(4):246–258, 2001.

[34] J.D. Schaffer. Multiple objective optimiza-
tion with vector evaluated genetic algo-
rithms. In Proceedings of the 1st Inter-
national Conference on Genetic Algorithms,
pages 93–100, 1985.

[35] R. Statnikov, A. Bordetsky, J. Matusov,
I. Sobol, and A. Statnikov. Definition of
the feasible solution set in multicriteria op-
timization problems with continuous, dis-
crete, and mixed design variables. Nonlinear
Analysis: Theory, Methods & Applications,
71(12):e109–e117, 2009.

[36] R. Su, X. Wang, L. Gui, and Z. Fan. Multi-
objective topology and sizing optimization
of truss structures based on adaptive multi-
island search strategy. Structural and Multi-
disciplinary Optimization, pages 1–12, 2011.

[37] R.L. Taylor. FEAP – A Finite Element Anal-
ysis Program, March 2008. Version 8.2 User
Manual.

[38] W.H. Tong and G.R. Liu. An optimiza-
tion procedure for truss structures with dis-
crete design variables and dynamic con-
straints. Computers & Structures, 79(2):155–
162, 2001.

[39] D. Šešok and R. Belevicius. Global opti-
mization of trusses with a modified genetic
algorithm. Journal of Civil Engineering and
Management, 14(3):147–154, 2008.

[40] Y. M. Xie and G. P. Steven. Evolution-
ary structural optimization for dynamic prob-
lems. Computers & Structures, 58(6):1067–
1073, 1996.

[41] E. Zitzler, L. Thiele, M. Laumanns, C.M.
Fonseca, and V.G. Da Fonseca. Performance
assessment of multiobjective optimizers: An
analysis and review. Evolutionary Compu-
tation, IEEE Transactions on, 7(2):117–132,
2003.



Chapter 3

Grid shell topology optimization

Grid shells offer a solution to covering large-
span areas without the need for intermediate inte-
rior supports (figure 3.1). Efficient design of grid
shells is a major challenge for designers due to
requirements such as optimal use of, preferably
renewable, resources. In practice often a regular
triangulation of a predefined global form is used,
such as the welded grid shell shown in figure 3.2,
without regard for the most efficient layout of ma-
terial. This paper focuses on the optimization of
steel grid shells in which the global shape has been
determined using form-finding techniques, where
the objective is to minimize the grid shell’s weight.
For this purpose both the location of the connec-
tions on the predetermined shape, and the connec-
tivity (topology) of the grid shell are optimized
using a Genetic Algorithm. The paper describes
both the method and its application to the design
of several steel grid shells, clearly showing the ad-
vantages of employing optimization techniques for
this type of design.

Figure 3.1: An architectural rendering of grid shell
canopy structures

Figure 3.2: Grid shell roof structure by Buro Hap-
pold at the British Museum, London, UK. Image
courtesy of Travis Simon
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Coupled form-finding and grid optimization
approach for single layer grid shells1

Abstract

This paper demonstrates a novel two-phase ap-
proach to the preliminary structural design of
grid shell structures, with the objective of mate-
rial minimization and improved structural perfor-
mance. The two-phase approach consists of: (i) a
form-finding technique that uses dynamic relax-
ation with kinetic damping to determine the global
grid shell form, (ii) a genetic algorithm optimiza-
tion procedure acting on the grid topology and
nodal positions (together called the ’grid configu-
ration’ in this paper). The methodology is demon-
strated on a case study minimizing the mass of
three 24m×24m grid shells with different bound-
ary conditions. Analysis of the three case stud-
ies clearly indicates the benefits of the coupled
form-finding and grid configuration optimization
approach: material mass reduction of up to 50% is
achieved.

3.1 Introduction

In the last two decades new leisure and trans-
portation facilities have experienced the emer-
gence of free form architecture; complex curved
surfaces are envisaged covering extensive unob-
structed spaces. Grid shells offer a unique solution
to this design challenge. In literature the wording
’reticulated’, ’lattice’ and ’grid’ shell are largely
interchangeable. In this paper, the authors refer to
this type of shell as a ’grid’ shell. A grid shell is
essentially a shell with its structure concentrated
into individual linear elements in a relatively thin
grid compared to the overall dimensions of the grid
shell. The grid may have more than one layer,
but the overall thickness of the shell is small com-
pared to its overall span. The structures consid-
ered in this paper are limited to single layer steel
grid shells. In reviewing the design of recently re-

1J.N. Richardson, S. Adriaenssens, R. Filomeno Coelho,
and Ph. Bouillard. Coupled form-finding and grid optimization
approach for single layer grid shells. Engineering Structures,
52(0):230 – 239, 2013

alized single layer steel grid shells (e.g. Nuovo
Polo Fiera Milano by Massimiliano Fuksas [3, 19],
Mur Island by Vito Acconci [2]) the driving de-
sign factor more often seems to have been archi-
tectural scenographic aesthetics rather than struc-
tural performance [29]. The sculptural design in-
tent in architectural geometric processing can be
appreciated for its inventiveness of plastic forms
and mesh generation but thus far not for its consid-
eration of gravity loads. The integration of struc-
tural considerations in architectural geometry pro-
cessing is considered one of the most important fu-
ture research topics in architectural geometry [33].
Free form shapes more often than not lead to un-
favourable internal forces: under loading they do
not allow membrane stresses to develop within the
surface, while the grid configuration is driven by
visual conventions rather than a clear structural ra-
tionale. These factors often result in structural in-
efficiency and higher associated construction cost.
In the 20th century both architects and engineers
(Gaudi [5, 22], Otto and Isler [7]) experimented
with physical form-finding techniques that, for a
given material, a set of boundary conditions and
gravity loading, found efficient three-dimensional
structural shapes. The importance of finding a fu-
nicular shape for steel grid shells lies in the fact
that the evenly distributed gravity loads contributes
largely to the load to be resisted. The grid ele-
ments need to be loaded axially to make most effi-
cient use of the element cross section. Numerical
form-finding techniques (force density [21], dy-
namic relaxation (DR) [1, 13]) have been success-
fully applied to weightless systems whose shape is
set by the level of internal pre-stress and bound-
ary supports. However when it comes to funicular
systems whose shape is not determined by initial
pre-stress but by gravity loads (such as the case
for masonry, concrete or steel shells) fewer nu-
merical methods have been developed. Kilian and
Ochsendorf [25] presented a shape-finding tool for
statically determinate systems based on particle-
spring system solved with a Runge-Kutta solver.
Block and Ochsendorf [9] published the thrust net-
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Figure 3.3: A configuration of three grids of vary-
ing orientation with common nodes

work analysis to establish the shape of pure com-
pression systems. Once the overall grid shell form
is established the choice of the grid configuration
remains an important, often neglected, question for
the structural designer. Often the grid configura-
tion generated by computer aided design software
is transposed to the structural system. Triangulated
grids are the most basic and intuitive means of con-
figuring the grid on a curved surface. However,
this grid is not necessarily the most structurally
efficient choice for a given global form: triangu-
lated grids tend to be more costly per square me-
ter [33], since not all elements are necessary for
structural stability. Quadrangular grid configura-
tions with planar faces are a good alternative to
triangulated grids. Adriaenssens et al. [2] used a
strain energy origami approach to enforce planar
face constraints in the form-finding of an irregu-
lar configured grid shell to achieve planarity of the
faces. The grid shells considered in the present pa-
per are (conservatively) modelled with negligible
moment stiffness in the connections, so that a de-
gree of triangulation is necessary to brace the shell.
A very general grid can be achieved by combining
quadrilateral grids with varying orientations (fig-
ure 3.3). Starting from a general grid, the configu-
ration of the elements can be optimized to achieve
improved structural behaviour of the shell and re-
duce unnecessary structural elements while adher-
ing to cladding constraints. In order to not be re-

stricted to the standard grid configuration2, the ex-
act nodal positions on the global form of the grid
shell surface can also be varied (referred to here
as "shape optimization") to optimize the distribu-
tion of the nodes, while discrete topology opti-
mization can explore the full search space of possi-
ble connectivities (elements between nodes) of the
grid shell elements. Shape optimization of discrete
structures (such as grid shells) has been carried
out using techniques including linear program-
ming (Pedersen [32]) and conjugate gradient op-
timization (Gil et al. [18]). Discrete truss topology
optimization has also received attention including
research by Beckers and Fleury [4] using a pri-
mal dual approach, Giger et al. [17] using a graph-
based approach, Lamberti [27] using simulated an-
nealing, and Rasmussen and Stolpe [34] using cut-
and-branch method. Genetic algorithms (GA’s) for
topology optimization have been extensively ap-
plied to planar trusses [14, 20, 24, 31, 37]. How-
ever, recently researchers have turned their atten-
tion to the optimization of three-dimensional dis-
crete systems including spatial structures [40] and
grid shells [3]. Saka [38] used GA’s to optimize
the number of rings, element cross sections and
the height of geodesic domes. Lemonge et al. [30],
used GA’s to solve a weight minimization problem
for a dome structure, with variable element sizes.
Kaveh and Talatahari [23] used Charged System
Search to optimize the dome crown height, ele-
ment cross section sizing and, to a lesser extent,
the topology of geodesic domes. Only limited re-
search has focused specifically on grid shell op-
timization, such as a multi-objective optimization
scheme developed by Winslow et al. [41] for free
form (not form found) grid shells, in which the el-
ement orientations are variable.
The present paper represents a novel, more general
approach to preliminary design of grid shell struc-
tures by combining form-finding with grid con-
figuration optimization techniques. The paper is
organized as follows: after formulating the prob-
lem statement, the two-phase design methodology
is outlined with description of the form-finding
and optimization techniques. A case study of
24m×24m grid shells demonstrates the presented
methodology, illustrating its usefulness as a design
tool for the preliminary design of grid shells. The

2In this study ’grid configuration’ refers to the grid shell
topology and nodal positions. ’Configuration optimization’ is
achieved by variation of topology and shape variables in order
to optimize the grid configuration on the global form of the grid
shell.



CHAPTER 3. GRID SHELL OPTIMIZATION 54

paper concludes with a discussion of the results of
the case study and suggestions for future work in
the field of grid shell optimization.

3.2 Problem statement

Of all traditional structural design variables (rang-
ing from material choice, element cross section,
nodal positions, global geometry, topology, sup-
port conditions), the global geometry mostly de-
cides whether the grid shell will be stable, safe
and stiff enough [2]. The shell spans large spaces
with a fine structural network of individual small
elements. Shell bending needs to be avoided by
finding the ’right’ shape so that, under an evenly
distributed gravity load, only membrane action
should result. Once a ’right’ global structural form
is found, the search space of all nodal positions is
established. The exact nodal positions and element
topology can be varied to achieve specific objec-
tives such as minimizing the material mass for a
given global form.
Four structural constraints are considered in this
study: (i) maximum normal stresses, (ii) local el-
ement buckling, (iii) total deflection of the grid
shell, and (iv) global buckling of the structure.
These constraints are chosen because they are the
crucial criteria to be considered at the preliminary
design stage of thin grid shell systems. Other con-
straints (such as dynamic constraints) are relevant
at a later design stage and fall outside the scope of
this paper. All values of the constraint quantities
are obtained using a finite element analysis (FEA)
with linear elastic isotropic truss elements, using
the software package FEAP [39]. As the form-
finding procedure in this paper aims at moment
elimination in the surface under the loadings con-
sidered in the form-finding and optimization, only
axial forces are expected in the elements and con-
nection nodes. The intersection of the central axes
of the elements at a node go through one single
point, eliminating moment caused by element ec-
centricities. Bounds on the shape variables are set
to ensure that maximum cladding dimensions are
respected. The maximum element stress is con-
strained using the relation: σmax−|σi| ≥ 0, where
σmax is the maximum allowable (yield) stress of
steel, and σi is the stress in element i. The lo-
cal Eulerian buckling constraint is σ cr

i − σi ≥ 0,

where σ cr
i = (π2EiIi)

(Ail2
i K2)

. Here Ei is the Young’s mod-
ulus of steel for element i, Ii the area moment of

inertia of the cross section of element i, Ai the area
of the cross section of element i, li the length of
element i and K the effective length factor (here
taken as K = 0.9) associated with the connections
between elements. In the realized structure the
steel elements will be welded to one another at the
nodes offering some moment resistance. The value
chosen for K is thus somewhat conservative. The
total deflection of the grid shell is constrained to
δ max

z = 1
200 of the minimum span, as stipulated by

the Eurocodes. The vertical components of the dis-
placements calculated from the FEA are therefore
limited: δ max

z − δ j,z ≥ 0, where δ j,z is the verti-
cal displacement of the grid shell at node j under
a given load. A simple method for applying the
global bucking constraint is used, as suggested by
Ben-Tal et al. [6]. The reader is referred to this
reference work for a detailed explaination of the
method. Using this method the global buckling
constraint can be stated as K+G � 0, where G
is the geometric stiffness matrix, dependent on the
deformed shape. Finally the nodes are constrained
to a range around their initial position, for both x
and y coordinates of node j: (∆xmax− |∆x j|) ≥ 0
and (∆ymax−|∆y j|)≥ 0, where node j is not on the
fixed boundary of the grid shell and ∆xmax,∆ymax
are limit values selected by the designer, taking the
maximum size of the cladding into account. All
quantities of interest (objectives and constraints)
are output responses that depend on the design
variables. The set of all possible values of com-
binations of design variables forms the ’design
space’ or ’search space’.

3.3 Approach

A two-phase approach for grid shell design is pre-
sented that, for a set of boundary conditions and
constraints, establishes a structurally efficient shell
form and grid configuration. Phase 1 involves a
form-finding technique to achieve a shell shape
that only experiences membrane stresses under an
evenly distributed gravity load, followed by Phase
2, a fine tuning of the local geometry (at nodal and
connectivity level) through a topology and con-
strained shape optimization (figure 3.4).

An important structural design challenge lies in
the determination of a three-dimensional curved
surface that will hold the grid shell. For the form-
finding procedure in this paper the DR method
with kinetic damping usually used for pre-stressed
systems, was adapted to yield 3D funicular sys-
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Figure 3.4: A two-phase approach: (i) A dynamic
relaxation procedure with kinetic damping pro-
vides the grid shell global form input for (ii) the
optimization loop consisting of a genetic algorithm
optimizer coupled to a finite element analysis
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Figure 3.5: Chromosome representation of a 4
node structure. Entries in the chromosome cor-
respond to shape variables (coordinates of nodes)
and topology variables (existence or non-existence
of elements)

tems with tension and compression elements under
gravity loads. The grid configuration optimization
phase occurs based on GA’s. The capability to han-
dle variables of different types (such as both con-
tinuous and discrete) at once is one of the great
strengths of GA’s as an optimization procedure.
Figure 3.5 shows a chromosome representation of
the shape and topology variables for a four node,
two dimensional truss. Each entry in the chromo-
some refers to one of the variables considered. In
the example the first 4 entries correspond to the
shape variables x1, y1, x2 and y2, the coordinates
of nodes 1 and 2 (in 2 dimensions). The remain-
ing entries in the chromosome correspond to the
elements defined by the nodes they connect. The
binary 0/1 topology variables refer to the existence
or non-existence of the element.

An FEA is coupled to the optimization loop and
is called at least once per iteration of the GA.
When implementing discrete topology optimiza-
tion problems one constraint is particularly prob-
lematic. The kinematic stability of a discrete struc-
ture such as a grid shell is intimately linked to the
topology variables. Randomly generated grid shell
topologies are almost always kinematically unsta-
ble [35] since they tend to produce poorly con-
nected structures with mechanisms. Richardson et
al. [35] presented a method for dealing with this
phenomenon by introducing into initial population
of the GA structures with guaranteed kinematic
stability and so-called "kinematic stability repair".
Single layer grid shell systems are large networks,
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(a) The cross section of a single layer grid shell system (b) The cross section of a grid shell system which cannot be
considered as a single layer due to overlapping connectivities

Figure 3.6: Cross sections of single layer and non-single layer grid shell systems

containing many nodes and relatively few elements
between the nodes. Allowed connectivities be-
tween nodes must ensure that the grid shell re-
mains a single layer system (as in figure 3.6(a) as
opposed to figure 3.6(b)), without elements over-
lapping. A randomly generated initial population
may lead to convergence problems: the GA strug-
gles to find solutions which can be suitably evalu-
ated, since they contain mechanisms. By using an
initial population of predominantly kinematically
stable grid shell systems this problem is alleviated.
Figure 3.7 illustrates one algorithm for generating
a stable initial population. Other strategies, such as
grid triangulation schemes, are also possible. For a
detailed description of the initial population gener-
ation schemes the reader is referred to Richardson
et al. [35].
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Figure 3.7: An example of how kinematically stable grid shell designs in the initial population can
be generated. The figure represents a segment of a symmetric grid shell with two planes of mirror
symmetry, one in the x− z and one in the y− z plane. (1) A stable core structure is first produced. (2,
3) Groups of elements are added onto the stable core to incorporate other nodes. (4) Once all nodes are
connected the procedure is stopped. Repeating this topology according to the symmetry of the structure
generally leads to a kinematically stable grid shell
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3.4 Two-phase approach to the
preliminary design of single
layer grid shells

3.4.1 Form-finding of grid shells

The adopted form-finding method, DR with kinetic
damping, is a numerical procedure that solves
a set of nonlinear equations [13]. Summarized,
the technique traces the motion of the structure
through time under applied loading (evenly dis-
tributed gravity load in the case of grid shells). The
technique is effectively the same as the Leapfrog
and Verlet methods which are also used to inte-
grate Newton’s second law through time. The ba-
sis of the method is to trace step-by-step for small
time increments, ∆t, the motion of each intercon-
nected node of the grid until the structure comes
to rest in static equilibrium. The general DR algo-
rithm is shown in figure 3.8. All grid elements i are
assigned values for their axial stiffness EiAi.The
shell edge elements are assigned higher stiffness
values to model the boundary arches. The motion
of the grid is caused by applying a fictitious, neg-
ative gravity load at all the grid nodes. During
the form-finding process the values of all numer-
ical quantities (EA and load) are arbitrary since it
is only their ratios that effect the shape. Other ini-
tial parameters can be manipulated to steer the ini-
tial form-found global form towards an intended
shape. Section 3.5.3 describes how the force-
modelled shape can be controlled by varying spe-
cific parameters. This process is continued itera-
tively to trace the motion of the unbalanced grid
shell. Kinematic damping is introduced to hin-
der oscillations, by setting all the nodal veloci-
ties to zero when a kinetic energy peak is de-
tected. The process will never truly converge, but
once the residual forces are below a certain tol-
erance, convergence has occurred for all practi-
cal purposes. At that point, a shape is achieved
that is in ’static equilibrium’ and the ’correct’ spa-
tial form is found. This form is the basis for
the geometric constraint on the shape variables in
the GA, while the element configuration used in
the form-finding defines the allowed connectivities
(the search space of the topology variables).

3.4.2 Grid configuration optimization
of grid shells

Topology variables

In this study the ’ground structure’ defines the al-
lowable connectivities, i.e. the topological design
search space. The topology variables are treated as
discrete binary variables, selected from the design
set V = {0, 1}. The cross section properties can
in principle be freely chosen, however this choice
should be taken into account in the formulation of
the constraints.

Shape variables

The shape variables relate to two of the three
Cartesian coordinates of the nodes. These shape
variables can be either continuous or discrete as
opposed to the topological which are binary. A ge-
ometric equality constraint is placed on the vertical
coordinate of the nodes, as a function of the two
horizontal coordinates x = [x,y]:

h(x)− z = 0 (3.1)

where h is the expression of a smooth, continuous
surface through the nodal coordinates defined by
the form-finding procedure and x,y are two Carte-
sian coordinates on a horizontal plane. A Moving
Least Squares (MLS) [28] interpolation scheme is
used to approximate h(x) (figure 3.9). Limits are
placed on the shape variables to avoid overlapping
of nodes or nodes switching position. MLS con-
sists in a generalization of the least square tech-
nique. Starting from a set of reference points
{x(i), i = 1, . . . ,N} with the corresponding values
of the scalar outputs z(i) (supervised learning), the
moving least square approximation of the “exact”
function z(x).

Symmetry reduction

Many grid shell forms display, for example radial
or mirror symmetry. This symmetry may be ex-
ploited to reduce the number of topology and shape
variables, by grouping variables which are equiva-
lent with respect to the symmetry of the grid shell.
The variables in these groups are then assumed to
have the same values, effectively reducing the size
of the search space.
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Figure 3.8: Algorithm for DR with kinetic damping used in Phase 1 of the two-phase method
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Figure 3.9: Nodal shape variable interpolation: for a given set of original nodal positions (0), an imag-
inary surface is defined through these points (1). For a change in nodal coordinate ∆x, the z coordinate
is found on the surface (2)
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Nodal loading

Building codes prescribe load cases and combina-
tions that need to be considered in the analysis of
a grid shell. These include evenly distributed load-
ing, asymmetric loading and point loads. From the
point of view of the designer the choice of load-
ing to consider in the optimization process is im-
portant. The form-finding procedure considers a
single load case: an evenly distributed loading.
For the sake of consistency an evenly distributed
loading that would typically represent the domi-
nant load case (in this case an evenly distributed
static load such as snow and an approximation of
the self-weight of the entire canopy) is used. The
cladding transfers the loads to the nodes of the grid
shell. This loading will be proportional to the hor-
izontal projection of the surface area carried by the
node, and is therefore a function of the geometrical
positions of the nodes, which are variable. An au-
tomated scheme, such as a Voronoi decomposition
of the horizontal plane projection of the grid, al-
lows for the calculation of the loading at each point
in the design space. A Voronoi diagram [26] is a
spatial decomposition based on distances between
a set of points (such as the grid nodes). Figure 3.10
demonstrates the relationship between the struc-
tural nodes and the nodal load calculation based on
projection of Voronoi polygons. Once the Voronoi
polygons corresponding to each node have been
assembled, their areas are calculated and the load-
ing transferred to an equivalent point load applied
to the node in the FEA of the grid shell.

Algorithm convergence

In Phase 2 of the procedure, the GA selects a popu-
lation of grid shell designs, each described by a set
of shape and topology variables. After construct-
ing a structural model (including the MLS approxi-
mation of the nodal positions and Voronoi diagram
calculation of the loading), each grid shell design
in the population is evaluated based on the results
of an FEA. Once the GA has assessed the fitness
of all grid shell designs in the population, it con-
siders whether the stopping criterion has been met
(a satisfactory convergence of the algorithm). The
stopping criterion is met when the population size
falls below a certain threshold, or the maximum
number of iterations has been reached. If an un-
satisfactory condition exists, the optimization por-
tion of the algorithm performs another iteration.
Changes are made to the population by selecting

x
y

z

Figure 3.10: The nodes connecting structural ele-
ments (solid black lines), are projected onto a hor-
izontal surface (grey dashed lines). The Voronoi
polygons are calculated based on this projection
and the relative area sizes translated to vertical
point loads on the nodes
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Figure 3.11: A general framework of the GA used
in Phase 2 of the coupled method

grid shell designs to be retained, discarding others,
introducing new individuals, mutation of chromo-
somes and mating of pairs to produce offspring.
The exact mechanism is dependent on the method
selected and the parameter values (such as the mu-
tation rate, cross-over rate, mutation scale, etc.)
chosen. Figure 3.11 shows the general framework
of the algorithm in Phase 2, in the optimization of
the grid shell designs.

3.5 Validation of the two-phase
methodology: preliminary
design of 24m × 24m grid
shells

3.5.1 Description of the case studies
A series of three grid shell canopies, each cover-
ing a surface area of 24m×24m is to be designed.
The initial geometry is a 24m× 24m flat square
grid of nodes with spacing of 4×4m (figure 3.12).
Three grids are overlaid on one another, one in the
node grid direction and two orientated at 45 de-
grees to the node grid direction. This grid is rela-
tively coarse and the initial choice of spacing de-
pends on a number of factors including the load-
ing on the shell and the type of cladding system.
The boundary conditions for the three canopies
differ: the first grid shell is linearly pin supported
on all four sides, the second on two opposite sides
and the third on three sides. The shape variables
are discrete, with possible values taken from the
set {−1.0m,−0.9m . . .0.0m,0.1m,0.2m, . . .1.0m}
(∆xmax and ∆ymax are both equal to 1m). For all
computations hollow, circular steel cross sections,
with an outer diameter of 8.89cm and a wall thick-
ness of 8mm were chosen based on Standard Eu-
ropean manufactured steel sections. The density
of steel is assumed to be ρ = 7850kg.m−3. The
yield stress of the steel, σmax = 355× 106N.m−2,
is assumed, while the Young’s modulus is taken
as E = 2.0× 1011N.m−2. The span of 24m, is
used to calculate the limit value of the deflection
constraint. An evenly distributed vertical gravity
loading of magnitude 3kN.m−2 is considered for
the purposes of the optimization procedure. This
loading represents an estimate of the grid shell self
weight and a static evenly distributed load (such as
snow).

3.5.2 Computation and convergence
Due to varying degrees of symmetry, the size of
the three optimization problems varied, with more
variables needed to describe the problems with two
and three pinned sides. The GA parameters used
for the three computations are summarized in ta-
ble 3.1. The GA parameters are adjusted until, for
10 runs of the problem, a majority of the solutions
converged to the minimum solution. The popula-
tion size parameter represents the number of gen-
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Figure 3.12: The 24m×24m grid shell initial connectivities

Table 3.1: GA parameters for the 24m×24m grid shells
Parameter 4 sides pinned 2 sides pinned 3 sides pinned

Num. topology variables 19 39 70
Num. shape variables 6 14 27

Population size 500 800 1200
Stable initial population size 400 640 960

Crossover rate 0.8 0.8 0.8
Mutation rate 0.4 0.2 0.2

erated designs in the initial population of the GA
which may become smaller after the first iteration
of the GA. The stable initial population size is the
number of grid shell designs in the initial popula-
tion which are generated with kinematic stability
(see section 3.4.2). The crossover rate and muta-
tion rate are defined in [35]. More detailed details
of the genetic algorithm used can be found in [16].

3.5.3 Designs resulting from the two-
phase form-finding and opti-
mization
procedure for the 24m × 24m
grid shells

Phase 1, the form-finding, yields three initial
global forms (figure 3.13) that, under evenly dis-
tributed gravity load, experience only membrane
behaviour, and no bending. A height to span ra-
tio (1 : 5), corresponding to a good arch form, is
sought and achieved for all three grid shells. In
the form-finding process, several input parame-
ters can be manipulated to steer the form-found
shape of the structural surface that will eventu-
ally hold the optimized grid topology. In the pre-
sented form-finding technique, one starts from an

initially two-dimensional (2D) surface that devel-
ops into a three-dimensional (3D) surface. Other
form-finding techniques (e.g. particle spring sys-
tem [25], thrust network analysis [9]) could be
equally used to obtain this initial 3D surface. The
concrete (continuous) shell builder, Isler [12] who
exclusively used physical form-finding techniques,
exploited (i) the initial shape and bias, (ii) the ori-
entation of the fibres (weft and weave) and (iii) the
material properties of his hanging fabrics as tools
to direct the global form towards his initial in-
tended shape. In the presented case studies (1,2,
and 3) the initial 2D grid was chosen to be a
24m× 24m quadrilateral grid that was further tri-
angulated. This grid was positioned flush with the
boundary edges and had identical material and ge-
ometric properties for all grid elements. The ap-
plied loads at the nodes were chosen in function
of the elastic stiffness of the elements to achieve a
shell target height at the free edges between 5 and
6m. This target height fulfills both functional (i.e.
sufficient entrance height) and structural (i.e. suf-
ficient arching action ratio 1/5 to 1/4 height/span
ratio). Alternatively, the applied loads could have
been held constant and the elastic stiffnesses of
the elements adjusted to achieve the desired global
form. The free boundary edges of case study 2
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curve slightly inward in the horizontal projection.
As mentioned in section 3.4.1, different parame-
ters (tools) can be employed to steer the initial
3D shape prior to the topology optimization. To
clearly demonstrate the effects of manipulating the
different parameters in the form-finding process,
an initial 24m×24m quadrilateral orthogonal grid
without triangulation for case study 2 is consid-
ered. The initial 2D grid is a square in plan with
dimensions 24m×24m. Firstly, the initial orienta-
tion of the grid has an important influence on the
global form in the from-finding process. By ori-
enting the initial orthogonal grid parallel with the
boundary edges, the form-finding procedure yields
a singly curved parabolic cylinder as shown in fig-
ure 3.14(a). This obtained shape could be com-
pared to the one obtained in a form-finding pro-
cess for a continuous shell when neglecting the
Poisson’s effect. The plan projections of the two
free boundary edges are straight lines that coin-
cide with the initial 2D grid boundaries. Sec-
ondly by orienting the initial 2D square grid on
the bias of the opposing end supports, the grid is
deformed by shear and results in a doubly curved
surface. Under these conditions, figure 3.14(b)
shows a 3D surface with synclastic curvature. The
horizontal projection of the free boundary edges
is no longer straight but substantially curves in-
wards. Finally, bent-up edges at the free bound-
aries might be structurally desirable as they could
serve as edge stiffeners. To steer the shape of case
study 2 in that direction, the initial free edges in
the 2D grid would have to be extended beyond the
original support line. This manipulation generates
an initial 3D form that has two free edges bending
up normal to the 3D surface. Figure 3.14(c) shows
for an initial orthogonal grid, positioned parallel
with the boundary supports, this approach gener-
ates a shell form that transitions from a cylindri-
cal central shape to an anticlastic surface with bent
up edges. These bent-up edges are oriented nor-
mal to the 3D surface and can act as edge stiffen-
ers to the shell. This parametric study shows that
different form-found grid shell shapes are possi-
ble. The remainder of this study concentrates on
the grid optimisation for the forms shown in fig-
ure 3.13. Figure 3.15 depicts the grid shells ob-
tained after Phase 2 of the procedure, the grid con-
figuration optimization. A comparative study (ta-
ble 3.2) of the steel mass of the grid shells be-
fore and after Phase 2 shows that significant reduc-
tions in the mass of the grid shells can be achieved

(a) Case 1: 4 sides pinned
Total height: 5.0m
Base: 24m×24m
Opening height: -

(b) Case 2: 2 sides pinned
Total height: 5.95m
Base: 24m×24m
Opening height: 4.713m

(c) Case 3: 3 sides pinned
Total height: 5.85m
Base: 24m×24m
Opening height: 4.728m

Figure 3.13: The three grid shell forms obtained
after Phase 1, the form-finding. These topologies
represent the ground structures for Phase 2
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(a) Singly curved parabolic cylinder achieved by orienting the
initial grid parallel with the boundary edges

(b) Synclastic surface achieved by orienting the initial 2D square
grid on the bias of the opposing end supports

(c) Anticlastic surface with bent up edges achieved by extending
initial free edges beyond the original support line

Figure 3.14: Several methods for controlling the
form of the free edges used in form-finding tech-
niques

through grid configuration optimization, while re-
specting the constraints3 on the deflection, local
stress and buckling of the elements and buckling
of the global shape. The form-found grid shell de-
signs, achieved after Phase 1, do not violate any
of the constraints. The local buckling constraint
values (column 4 of table 3.2) are near the limit
permitted in two of the examples. However, these
designs can be vastly improved through grid con-
figuration optimization (column 6 in table 3.2),
as can be seen from the mass reduction achieved
through optimization, in this case between 35 and
50%. After Phase 2 the local buckling constraints
are near their limit values (column 5 in table 3.2),
while the topology and nodal positions of the shell
grid have changed significantly compared to the
initial grid configuration.
Case 1 (figure 3.15(a)) displays a very distinctive
grid configuration: the outer and inner element
tiers have no diagonal bracing, except at the cor-
ners of the outer tier, while the middle tier is trian-
gulated to brace the grid shell. Cases 2 and 3 (fig-
ures 3.15(b) and 3.15(c)) display less intuitive tri-
angulated grid configurations, with the exception
of the unsupported edges. More material is found
at the top of these edges to stiffen them and prevent
violation of the deflection constraint at the edges.

The so-called ’active constraint4’ plays an im-
portant role in the solutions. As a demonstration:
suppose the loading is arbitrarily increased in in-
crementally from 3kN.m−2 to 8kN.m−2. For small
loading (e.g. 3kN.m−2) the limits on the nodal
positions are the active constraints (figure 3.16).
Upon increasing the loading to 5kN.m−2 the local
buckling constraint becomes active. Several of the
nodes shift position relative to the previous case
(from a in figure 3.16(a) to a′ in figure 3.16(b))
to reduce the buckling lengths of critical elements.
However, the topology remains unchanged. For
a loading of 7kN.m−2 the topology changes dra-
matically, forming two bands of material with less
material at the corners, since these represent the
longest load paths. When a loading of 8kN.m−2 is
applied the topology is modified so that this form is
made more prominent with the addition of 4 new
elements. The loads are redistributed so that the
critical elements in the previous case do not buckle
under this higher loading. Due to the curved shell

3The constraint values have been normalized such that their
limit value is 1.

4An active constraint is the inequality constraint g ≤ 1
which approaches its limit value as the optimal solution is ap-
proached (limg→1 ( f → fmin)).
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Table 3.2: Comparison of grid shells after Phase 1 and Phase 2 of the two-phase method. The values in
the table represent the constraint values of the grid shells before Phase 2

Case Mass after
Phase 1

Mass after
Phase 2

Local buck-
ling constr.
after Phase
1

Local buck-
ling constr.
after Phase
2

Mass reduction
Phase 1→ 2

1 9956 kg 5098kg 0.759 0.99 48.8 %
2 11260 kg 7330kg 0.8325 0.99 34.9 %
3 10484 kg 6048kg 0.96 0.99 42.3 %

a

a

a

a

(a) P = 3kN.m−2, m = 5098kg,
Active constraint: nodal position limit

a’

a’

a’

a’

(b) P = 5kN.m−2, m = 5161kg,
Active constraint: local buckling

(c) P = 7kN.m−2, m = 5630kg,
Active constraint: local buckling

(d) P = 8kN.m−2, m = 6393kg,
Active constraint: local buckling

Figure 3.16: Changes in the optimal topology and nodal positions with increasing evenly distributed
loading
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outer tier

middle tier

inner tier

(a) Case 1: m = 5098kg,Active constraint: node position limit

(b) Case 2: m = 7330kg, Active constraint: deflection and local
buckling

(c) Case 3: m = 6048kg Active constraint: local buckling

Figure 3.15: The three grid shells obtained after
Phase 2, the grid configuration optimization

surface, elements crossing one another do not in-
tersect.
Further investigation can carried out on the struc-
tures to assess their feasibility as designs. All three
resulting case study designs (shown in figure 3.15)
were analysed for the serviceability and ultimate
limit states according to EuroCode 3 [11] and Eu-
roCode 1 [10]. The loading combinations included
snow and wind loads. The most relevant load com-
binations contained asymmetric load cases due to
wind and snow. For these purposes commercial fi-
nite element software was employed and several
other load cases and combinations were consid-
ered, including asymmetric snow and wind load-
ing. It was found that the most sensitive structure
to global buckling under asymmetric loading was
Case 2, the barrel vault.

3.6 Conclusions and Future
Prospects

Grid shells have re-emerged as an important struc-
tural typology in recent years. Free form shells
are structurally inefficient and costly, while grid
configurations are often chosen with little consid-
eration of structural and constructional efficiency.
The approach in this paper offers solutions to
these problems by suggesting a two-phase method:
form-finding followed by a refinement of the grid
configuration. The case study of three grid shells
with the same span but different boundary con-
ditions demonstrates the viability of this method
as a preliminary design tool for grid shells. The
configuration of the grid shell elements found in
the case study are dissimilar to the traditional re-
peated pattern of regularly spaced elements for
grid shells. By allowing for an optimization of
the grid shell configuration, very significant reduc-
tions in mass (up to nearly 50%) were realized.
As a further development of this method the siz-
ing variables could be included in the problem for-
mulation. As with the design of the courtyard roof
for Dutch Maritime Museum [2], one cross section
dimension (such as the height of an I-beam ele-
ment) can be constant for all elements, while oth-
ers can vary. This improves ease of connection of
elements, while allowing for sizing optimization.
While only one loading case was considered in this
study and only the mass minimized, the designer
may wish to consider a number of loading cases
and/or objectives within the presented approach.
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This problem can be addressed through multicrite-
ria optimization [35]. Additional constraints (such
as dynamic behavior) could be added into the prob-
lem formulation. Taking these constraints into ac-
count would also increase the applicability of the
presented approach. GA’s, the chosen optimization
technique for this study, can easily be adapted to
consider multiple objectives and constraints. Free
form grid shells have been mentioned several times
in the text. One fruitful avenue for further research
would be to use form-finding as a technique to find
structurally efficient approximate forms for free
form structures. Furthermore, it may be of inter-
est to combine the form-finding and grid configu-
ration optimization into one, concurrent, iterative
optimization process since the grid configuration
effects the global form in a form-finding proce-
dure [8], as discussed and demonstrated in section
3.5.3. This valuable extension is currently under
development [15] however requires the overcom-
ing of significant obstacles. The computational
cost of GA’s for discrete topology problems is rel-
atively high, while large problems tend to expe-
rience convergence problems. One major cause
of this is the kinematic stability constraint which
leads to computational and convergence difficul-
ties in larger problems. One way of dealing with
this could be to integrate Kinematic Stability Re-
pair [35]. It should be noted that many of the form-
finding techniques mentioned in the literature re-
view, could be used as a tool to generate a struc-
tural surface that exhibits only membrane action
under the considered load. Finally, the grid config-
uration of the grid shells in the case study consist
of combinations of triangulated and quadrilateral
facets. To improve constructibility, future develop-
ment of this method may include forced planarity
of the quadrilateral grid facets.
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Chapter 4

Discrete optimization applied to
façade bracing

Façade bracing systems are applied all over the
world in structural design to limit deflections and
guarantee stability, such as the structure shown in
figure 4.1. Efficient distribution of bracing over
a structure is an important concern for structural
design professionals and is often based on intu-
ition and previous experience. Meanwhile the lim-
ited amount of academic research on this topic of-
ten focuses on one aspect of the design, neglect-
ing the practical design process itself. This paper
presents a topology optimization procedure for ca-
ble bracing of the hanging steel façade of a new
museum in the United States (figure 4.2). In this
procedure the use of a multiobjective Genetic Al-
gorithm allows for flexibility during design mod-
ifications and accounts for uncertainty of deflec-
tion constraint values. Since the allowed position
of the cables is limited, and only certain standard
cable sections can be used, the design variables
are discrete, and the cost function is easily defined.
The presented method achieves practical solutions
to a series of cost minimizing problems, giving
the designer a range of optimal bracing configura-
tions which can be selected in response to the con-
tinuously changing structural and architectural re-
quirements throughout the design process. This re-
search aims at stimulating discussion on optimiza-
tion methods which are capable of taking the de-
sign process into account, and the possibility of us-
ing multiobjective optimization to deal with these
practical design uncertainties.

Figure 4.1: Bracing of the façade of a tall build-
ing, New York NY, USA. Image courtesy of Lionel
Ponce

Figure 4.2: National Museum of African Amer-
ican History and Culture, Washington DC, USA.
The façade for the museum is braced with cable
X-bracing. Image courtesy of Adjeye Associates

71
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Flexible optimum design of a bracing system
for façade design using multiobjective Genetic
Algorithms1

Abstract

X-bracing systems are widely applied in structural
design to limit deflections and guarantee stability.
Efficient distribution of bracing over a structure is
an important concern and often based on intuition
and previous experience. This paper presents a
topology optimization procedure for cable bracing
of the hanging steel façade of a new museum in the
United States. In this procedure the use of a multi-
objective Genetic Algorithm allows for flexibility
during design modifications and accounts for un-
certainty of deflection constraint values. The pre-
sented method achieves practical solutions to a se-
ries of cost minimizing problems, giving the de-
signer a range of optimal bracing configurations
which can be selected in response to the contin-
uously changing structural and architectural re-
quirements throughout the design process.

4.1 Introduction

X-bracing systems are some of the most widely ap-
plied structural systems, particularly in steel con-
struction. Schodek [27] and Taranath [28] de-
scribe various bracing systems for frame struc-
tures including X-braced, V-braced, K-braced and
Chevron-braced (inverted V) systems, of which X-
bracing is the most common. One of the main
difficulties when designing braced systems is the
choice of the location of the bracing components.
This selection is often based on intuition and pre-
vious experience. While an approach based on ex-
perience is invaluable, it does not necessarily pro-
duce the best results. The cost associated with
these bracing systems lies primarily in the con-
nections. Reducing unnecessarily large numbers

1J.N. Richardson, G. Nordenson, R. Laberenne,
R. Filomeno Coelho, and S. Adriaenssens. Flexible op-
timum design of a bracing system for façade design using
multiobjective genetic algorithms. Automation in Construction,
32(0):80 – 87, 2013

of bracings is thus of great interest to make a de-
sign cost-effective. The effective placement of the
necessary amount of bracings constitutes a topol-
ogy2 optimization problem. This topology opti-
mization problem is discrete rather than continu-
ous: the possible bracing locations are limited to
a set of predefined positions (such as the openings
between regularly spaced columns and floors) and
predefined cross-sectional profiles usually from
standard catalogues of sections.
Topology optimization methods for discrete struc-
tures usually require metaheuristic approaches
such as Simulated Annealing [13], Ant Colony
Optimization [10] or Genetic Algorithms (GA’s)
[7, 11, 20]. GA’s for façade design have been used
to maximize thermal and lighting performance of
buildings [3]. Only a few researchers have used
topology optimization for braced frame structures.
Mijar et al. [19] developed a continuum topol-
ogy optimization formulation with hybrid Voigt-
Reuss mixing rules for conceptual design of frame
bracing layout. Liang et al. [15] and Liang [14]
presented a performance based optimization tech-
nique with continuum topology optimization to
study optimal designs of bracing systems for steel
building frameworks. However, these methods
can only approximate global optima of discrete
problems. Academic investigations into discrete
bracing topology optimization include Kaveh and
Shahrouzi [9] who combined a graph theory ap-
proach with a discrete optimization procedure to
optimize braced frame systems. Kaveh and Far-
hoodi [8] explored an ant system for layout (siz-
ing and topology) optimization for X-bracing of
steel frames. Baldock and Shea [2] used a ge-
netic programming method for topology optimiza-
tion of bracing for steel frames. The methods men-
tioned above were only applied in a limited aca-
demic sense and do not address the complex, ever
changing requirements during the design process.

2Topology in this context refers to the connectivity of nodes
in the structural model by means of structural components such
as bars and beams.
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For designers it is often unclear at the initial design
stage what structural components will be used in
the final structural system, what their dimensions
will be, and what the constraint values (such as
maximal allowed deflections) will be. However,
the largest gains from structural optimization are
made in the initial design stages, as Luebkeman
and Shea [16] point out, when the greatest uncer-
tainty exists. Therefore, to be effective, the opti-
mization process needs to account for possible de-
sign and constraint changes3. One method of tak-
ing these uncertainties into account is to simplify
the problem’s basic geometry and to define the
uncertain constraints as additional objective func-
tions. The resulting range of solutions allows the
designer to select an appropriate solution as the de-
sign changes over time. This aim can be achieved
by a so-called Multiobjective Topology Optimiza-
tion (MTO) approach.
Population based stochastic methods, such as
GA’s, are also very well suited to multiobjective
problems [21], since a number of individuals (pop-
ulation) is considered at any given point in the opti-
mization procedure. This aspect is consistent with
the notion of Pareto optimality in which a number
of non-dominated (i.e. ’best compromise’) solu-
tions make up an optimal set (the Pareto optimal
set). The combination of multiobjective optimiza-
tion with GA’s has been successfully applied in
other fields of structural optimization (an overview
can be found in [4]), while few papers [18, 23, 26]
present MTO of discrete structures; MTO of brac-
ing systems is not present in the literature.
In this paper MTO will be implemented in the de-
sign of a hanging façade system for a new mu-
seum in the United States. This work is the re-
sult of a scientific and industrial collaboration be-
tween the authors and represents a novel approach
to X-bracing design for steel braced frames. Sev-
eral studies have been carried out comparing the
performance of various Multiobjective algorithms
in structural optimization [30–32].
The remainder of the paper is structured as fol-
lows: following an explanation of the structural
system for the hanging façade (section 4.2), sec-
tions 4.3 and 4.4 respectively define the problem
and present the multiobjective optimization ap-

3Design changes occurring at a later stage can significantly
affect the optimal solution. The optimization procedure should
take this into account. This observation is particularly valuable
for constraints which exclude solutions considered unfeasible
outside the given bounds, yet may be feasible if these bounds
change only slightly.

proach. Next an explanation of the computation
procedure (section 4.5) and the resulting topolog-
ical designs (section 4.6) are presented. The pa-
per concludes with a discussion of the implemen-
tation and future development of the method (sec-
tion 4.7).

4.2 Description of façade struc-
tural system

For the design of the museum, the façade design
posed a major challenge. The structural design
of the façade arose from three primary architec-
tural objectives: to create a three-tiered sawtooth
profile for the façade; to maintain a continuous
atrium between the façade and the interior floors
of the building; and to keep this atrium space free
of structure such that the façade is independent and
free-spanning between the ground and roof.
The structure is a four-sided system consisting of
three levels of horizontal trusses forming the saw-
tooth profile which are hung by vertical cables
from the fifth floor of the building (figure 4.3).
The structure is supported at the base only for lat-
eral loads. A hung system is more efficient than a
bottom-supported system because it reduces dead
load deflections and places the primary support
members in tension rather than compression, al-
lowing them to be slender. It also effectively pre-
tensions the vertical members such that they are
able to support compression loads due to wind and
seismic effects while remaining slender.
While this system relies on pre-tensioning of the
vertical hangers, it is not a cable wall in the sense
that it does not rely on the tension stiffness of the
cables to resist lateral loads. Instead, the horizon-
tal trusses work in combination with the vertical
and bracing cables to resist wind pressures on the
façade. When wind pressure is applied to one face
of the building, steel mullions transfer wind loads
to the three horizontal trusses (figure 4.4). These
horizontal trusses in turn span across the face of
the façade to transfer the wind loads to the orthog-
onal walls of the façade. The vertical cables and
X-bracing in the orthogonal walls act as inverted
braced frames to transfer the wind shears up to the
fifth floor of the building where they are taken into
the concrete cores of the building. In figure 4.5 the
corner detail is shown for the façade structure.
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NON STRUCTURAL SUPPORTNON-STRUCTURAL SUPPORT

FOR CLADDING

Figure 4.3: Hanging façade system

INVERTED BRACE FRAME 

ON SIDEWALLS

HORIZONTAL TRUSS

WIND PRESSURE
ON SIDEWALLS

WIND PRESSURE

Figure 4.4: Façade structure wind loading principle
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Figure 4.5: Isometry detail of corner of hanging
façade system

4.3 Façade bracing problem
definition

The complex 3D problem can be simplified as a
series of four, independent, two dimensional prob-
lems shown in figure 4.6. The main purpose of
the X-bracing is to provide in-plane stiffness un-
der wind loading of the perpendicular façades as
described in the previous section. The braced sys-
tems are supported along the top edge by pinned
supports while each vertical hanger is restrained
horizontally at the bottom end.

The North façade (figure 4.6(a)) layout is sym-
metric, as are the possible X-bracing locations. On
the West façade (figure 4.6(b)) two hangers are in-
terrupted in the middle tier resulting in an open-
ing where no bracing can be located, and must be
braced with two pairs of rigid bars under this open-
ing. In the South and East façades (respectively
figures 4.6(c) and 4.6(d)) the continuity of sev-
eral of the hangers are interrupted, creating open-
ings. The vertical hangers between the tiers are
modelled as compressible (cable) truss elements,
because they are assumed to be pretensioned by
the dead load of the façade. The four horizontal
trusses are modelled as continuous beams. The
number of façade bracings is the greatest factor in-
fluencing the cost of the bracing system, the first
objective function considered. The effectiveness
of a given number of bracings to resist deflections

(a) North façade

(b) West façade

(c) South façade

(d) East façade

Figure 4.6: Simplified models of the four façades:
the grey shaded areas represent zones where no
bracing can be located. The bracing in the West
façade (under the grey zone) are compulsary de-
sign elements

of each tier (the second objective function) is a
function of their positions. Together, these two
factors can be represented using a single type of
variable: the topology variables, and both objec-
tives set for the same problem: a multiobjective
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topology optimization problem.

4.4 Approach: Multiobjective
Topology Optimization us-
ing GA’s

In order to obtain a range of optimal solutions,
a multiobjective approach based on the multiob-
jective GA (MOGA) introduced by Fonseca and
Fleming [6] is proposed. The MOGA optimiza-
tion loop is coupled to a Finite Element Anal-
ysis program which generates the necessary re-
sponses (figure 4.7). The structural domain com-
prised of a set of nodes, a set of supports, a set
of loads, and the non-variable structural compo-
nents. In the three asymmetric problems lateral
loading is applied from both directions consecu-
tively. The worst performing of these two cases is
used to evaluate the fitness of the topology design.
A ground structure approach is used to define the
upper bound of the topological search space.

4.4.1 Multiobjective structural opti-
mization

The optimization problem with k objectives can
be formulated as follows4: Given some perfor-
mance criteria fi(x) (i = 1, . . . ,k) which describe
the performance of a structure, find the vector
x∗ = [x∗1, . . . ,x

∗
n] which minimizes the vector func-

tion:
f(x) = [ f1(x), . . . , fk(x)]

subject to gl
i ≤ gi(x) ≤ gu

i the constraints of the
structural behaviour. x is the vector of design vari-
ables, where gu

i and gl
i represent respectively the

upper and lower bounds of the feasible solution
space. In discrete topology optimization x is the
vector of (discrete) topology design variables. In
the MTO sense optimization is most commonly
described in terms of Pareto optimality.

4.4.2 Pareto optimality
In single objective optimization one solution can
be defined as the ’best’ solution in that it is min-
imal (or maximal) with respect to all other solu-
tions. When multiple objectives are considered,

4for k = 1 the formulation describes a single objective opti-
mization problem. For the case k > 1 the formulation describes
a multiobjective optimization problem.

FEM

Optimizer
(Multiobjective 
Genetic algorithm)

parameters

responses

Figure 4.7: Basic algorithm scheme: a multiobjec-
tive Genetic Algorithm is coupled to a Finite Ele-
ment Analysis (FEA) program

the definition of optimal solutions is less intuitive.
In order to maintain the vector nature of solutions,
the concepts ’Pareto optimal’ and ’Pareto front’ are
used. Pareto optimality of a set of solutions is de-
fined in terms of non-dominance. A design vari-
able vector x∗ dominates x if, for all i:

fi(x∗)≤ fi(x) (4.1)

and there exists a j such that ( f j(x∗)< f j(x)). The
Pareto optimal set Ptrue is then defined as the set of
vectors which are non-dominated and the Pareto
front PF is the set of objective function vectors
corresponding to Ptrue. These notions are illus-
trated in figure 4.8. The concept of Pareto optimal-
ity is used to define solutions which are equivalent,
depending on the importance the designer gives to
each objective function.

4.4.3 Multiobjective Genetic Algo-
rithm

The MOGA is a special class of GA, and as such
use a series of biologically inspired processes ap-
plied to a population of possible solutions, as il-
lustrated in figure 4.9. As a single objective GA,
the MOGA uses a chromosome representation of
the topology variables to define any given design.
The chromosome is a string of concatenated en-
tries from the design variable vector. The initial
population (whose size is controlled by the popu-
lation size parameter) is randomly seeded as a pop-
ulation of strings containing ones and zeros.
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0 1 1 1 0 1 1 1 1 1 ... 1

0 0 1 1 1 0 1 1 1 0 ... 1

1 1 1 0 1 1 0 1 0 1 ... 0

1 1 1 1 0 1

1 0 1 1 ... 01 1 1 1 1 1

0 1 0 0 ... 0

0 1 1 1 0 1 1 1 1 1 ... 1

0 0 1 1 1 0 1 1 1 0 ... 1

1 1 1 0 1 1 0 1 0 1 ... 0

Initiation

Generate/update 
population

Evaluate �tness of 
each individual(FEM)

Selection

Mutation

Crossover

Convergence?

End

0 1 1 1 0 1 1 1 1 1 ... 1

1 1 1 0 1 1 0 1 0 1 ... 0

0 1 1 1 0 1

1 1 1 1 ... 11 1 1 0 1 1

0 1 0 1 ... 0

Y

N

Figure 4.9: MOGA used in the façade bracing topology optimization. Several biologically inspired pro-
cesses are used to optimize a population of structures. The binary string manipulation is demonstrated
next to each operation

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1

Figure 4.10: The relationship between chromosome and the bracing topology
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Figure 4.8: An illustration of the principals of non-
dominance and Pareto front

Each ’1’ in the string indicats the presence of
a pair of bracing cables at a particular location,
shown in figure 4.10 as a vector of design vari-
ables. In this figure the number of design variables
(length of the chromosome) corresponds to the
number of possible positions (size of the ground
structure) for pairs of bracing cables in the façade.
In the design of the structures, symmetry was a de-
sirable feature. As a result the number of design
variables was reduced where symmetry could be
applied. In that case each entry in the chromosome
refers to the presence or absence of two pairs of ca-
bles, located symmetrically about a vertical axis.
The variable values are combined with non-
variable model data in the form of a finite element
model. The finite element package FEAP [29] is
used for a non-linear structural analysis. Upon
evaluating the fitness of the systems, a ranking and
selection of the current population is carried out,
followed by cross-over and mutation of individuals
to produce the next generation in the MOGA. The
MOGA used differs from a single-objective GA in
the way it evaluates the relative fitness of solutions.
The algorithm involves the ranking of individuals
at each iteration, with non-dominated individuals
receiving the highest rank. A complete overview
of the method, can be found in [4]. For these calcu-
lations the DAKOTA MOGA method [5] was used.
This method performs Pareto optimization using a
metric tracker to evaluate the convergence of the
algorithm. This tracker evaluates three metrics as-
sociated with consecutive Pareto fronts, described
in detail in the above reference.

4.5 Calculation procedure and
parameters

In this particular project the designers faced the
challenge of limiting the horizontal deflection rel-
ative to the height of each tier, using a bracing sys-
tem. This problem can be cast as an unconstrained,
bi-objective problem with the following objective
functions:

min
x

f(x) = ( f1, f2)

where f1 =
n

∑
i=1

aixi

f2 = max{ |d1|
h1

,
|d2−d1|

h2
,
|d3−d2|

h3
}

(4.2)

where f1 is the cost objective function, x is the
variable vector of length n, ai is a weighting coeffi-
cient related to the grouping of components based
on symmetry, and xi is the topology variable as-
sociated with bracing(s) i. f2 is the relative tier
deflection objective function, h j is the height of
tier j and d j is the measured deflection of tier j
from rest position (figure 4.11). The algorithm is
judged to have converged once the value of the
metric tracker does not change significantly for 10
generations. The four façade systems each con-
tain varying numbers of design variables and vary-
ing degrees of symmetry. A summary of the ge-
netic algorithm parameters can be found in table
4.1. The MOGA parameters are adjusted until, for
10 runs of the problem, a majority of the solutions
converged to the minimum solution. Due to this
verification process several iterations may be nec-
essary to achieve good results. The population size
parameter represents the number of generated de-
signs in the initial population of the MOGA and
may vary after the first iteration of the MOGA.
The computational expense of the proposed ap-
proach is significant. Depending on the problem
size the number of function evaluations can run
into the tens or even hundreds of thousands. Large
computer clusters are best suited for these com-
putations, since parallel computing options can be
exploited.
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Figure 4.11: Deflected shape in plane

Parameter N façade W façade S façade E façade
Number of variables 24 22 27 26

Population size 800 800 800 800
Cross-over rate 0.9 0.9 0.9 0.9
Mutation rate 0.2 0.2 0.2 0.2
Fitness type domination count*

Replacement scheme below limit* of 6
Cross-over type multi-point binary*
Mutation type offset normal*

Table 4.1: Genetic algorithm parameters. * indicates built in DAKOTA methods

4.6 Results: a catalogue of op-
timal solutions

The combined Pareto fronts PF N , PFW ,
PF S and PF E

5 are shown in figure 4.12. Each
front corresponds to a set of best compromise so-
lutions for a specific façade. Since the four sys-
tems work together in the final design, it is neces-
sary to choose solutions by grouping North, East,
South and West façades to comprise one structural
design. Grouping of the solutions is based on the
worst performing front (façade), in this case the
North façade for most of the solution space. For
each solution on the worst performing front, cor-
responding solutions from the other three fronts
can be found, as demonstrated in the insert for re-
gion IV in figure 4.12. For a given required deflec-
tion, if solution A in PF N meets this constraint
value, it is selected along with B in PFW , C in
PF S and D in PF E , since these are the least
cost solutions with at most as little deflection as
A. Similarly solutions can be grouped for any of
the other regions. For regions V to XI the con-

5the subscripts refer respectively the North, West, South and
East façades.

figuration groupings are shown in table 4.2. The
total cost of each solution is denoted f tot

1 and is
simply the sum of the costs in the group. The rela-
tive deflections are scaled to allow for easy choice
of solutions to meet changing constraint values.
The dominant relative deflection value is denoted
f tot
2 and have been scaled from their original val-

ues. The North and West façades where symme-
try is enforced contrast the South and East façades,
where the solutions display sole asymmetry. Sur-
prisingly, the asymmetric solutions perform better
than the symmetric solutions: Pareto optimal solu-
tions for the South and East façades dominate the
Pareto optimal solutions of their North and West
counterparts. The reason behind this relates to the
binary nature of the variables chosen, and is a re-
markable result, explained in a recent paper by the
authors [24].
Once the catalogue of solutions is compiled the
designers are able to use it throughout the design
process to achieve the most cost-effective bracing
layout for a given set of circumstances. For exam-
ple, consider the hypothetical design adjustments
shown in figure 4.13. Assume the initial design
calls for a maximal tier deflection of h

200 , which,
given some initial design components, can be met
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Figure 4.13: Hypothetical design evaluation based on changes in design requirements
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Soln. N façade W façade S façade E façade

V
f tot
1 = 62 f N

1 = 16 f W
1 = 16 f S

1 = 15 f E
1 = 15

f tot
2 = 11.59 f N

2 = 11.59 f W
2 = 10.3 f S

2 = 10.75 f E
2 = 11.34

VI
f tot
1 = 72 f N

1 = 18 f W
1 = 18 f S

1 = 18 f E
1 = 18

f tot
2 = 9.33 f N

2 = 9.33 f W
2 = 8.79 f S

2 = 9.07 f E
2 = 8.4

VII
f tot
1 = 78 f N

1 = 20 f W
1 = 20 f S

1 = 19 f E
1 = 19

f tot
2 = 8.31 f N

2 = 8.31 f W
2 = 7.76 f S

2 = 8.18 f E
2 = 8.28

VIII
f tot
1 = 86 f N

1 = 22 f W
1 = 22 f S

1 = 21 f E
1 = 21

f tot
2 = 7.35 f N

2 = 7.35 f W
2 = 7.2 f S

2 = 7.2 f E
2 = 7.17

IX
f tot
1 = 92 f N

1 = 24 f W
1 = 24 f S

1 = 22 f E
1 = 22

f tot
2 = 7.14 f N

2 = 7.14 f W
2 = 6.72 f S

2 = 7.06 f E
2 = 6.71

X
f tot
1 = 100 f N

1 = 26 f W
1 = 26 f S

1 = 24 f E
1 = 24

f tot
2 = 6.35 f N

2 = 6.35 f W
2 = 6.04 f S

2 = 6.34 f E
2 = 6.3

XI
f tot
1 = 108 f N

1 = 28 f W
1 = 28 f S

1 = 26 f E
1 = 26

f tot
2 = 6.0 f N

2 = 6.0 f W
2 = 5.58 f S

2 = 5.89 f E
2 = 5.87

Table 4.2: Several solutions in the ’catalogue’

with configuration V. During the initial design so-
lution V, with a cost of 62 units is used. How-
ever, at some point during the design process the
tier deflection constraint is made more stringent so
that f tot

2 = h
400 is required. The designers are faced

with the option of adding additional bracing, or
carrying out another time-consuming optimization
study. With the range of solutions given above,
however, solution XI ( f tot

1,X = 1
2 f tot

1,V ) can be cho-
sen directly, the most cost effective (46 extra units)
way possible to add additional bracing and dou-

ble the stiffness. Further in the design process the
engineers decide to increase the thickness of the
brass cladding panels to improve their dynamic be-
haviour. The increased dead-load on the hanging
façade reduces lateral deflection so that the less X-
bracing is required to meet the tier deflection limit
value. The designers are now able to select solu-
tion IX, costing 92 units, while still meeting the
deflection requirement.
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4.7 Conclusions and further
work

This paper presents the topology optimization
method developed and used for the preliminary de-
sign of the bracing system for the hanging façade
of a new museum in the United States. The ap-
proach uses multiobjective Genetic Algorithms to
find a series of best compromise (Pareto optimal)
solutions. The value of this method lies in its flex-
ibility to provide solutions, allowing the design-
ers to select optimal solutions when constraints
change and modifications to the structural system
occur. Since the main cost of bracing systems lies
in the connections, reducing the number of brac-
ings required results in a significant cost savings.
The presented method could be extended to allow
for greater freedom in the possible bracing loca-
tions. For example, bracing could span multiple
tiers or across multiple columns. Other bracing ty-
pologies, such as V, K or Chevron systems could
be included as design variables. These extensions
would increase the number of topology variables,
but not fundamentally change the problem formu-
lation. This adaptivity is one of the strengths of
MOGA’s. This method could easily be extended to
more than two criteria, making an even more gen-
eral approach possible. Furthermore the method is
general enough to be applied to a full 3D model
of the structure, taking all structural components
of the hanging façade into account. For exam-
ple in the tall building design of the John Han-
cock Center (Chicago, Illinois, 1969) the diago-
nal bracing in one façade tends to reduce the shear
lag in the perpendicular facades [12]. The solu-
tion presented in this paper decouples the struc-
tural behavior of the facades although there is in-
teraction. Bracing in one facade may have benefi-
cial effects on the perpendicular façades. This phe-
nomenon has not been investigated in this paper
and presents an avenue for further research. Other
multiobjective methods such as multiobjective ant
colony optimization [1] and multiobjective particle
swarm [17] (or other classes of solution methods)
may be more efficient than the MOGA to solving
this problem. While these have not been investi-
gated, a comparative study of the efficiency of var-
ious methods may lead to a more practical method
for this problem.
Finally the proposed approach should be inves-
tigated within the broader context of Multidisci-
plinary design optimization and Multidisciplinary

collaborative design [22], both very promising in-
struments for structural design.
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Chapter 5

Symmetry considerations in discrete
optimization

Symmetry as a concept is very broad and intu-
itive, invoking notions of simplicity, purity (for ex-
ample in religious and utopian buildings such as in
figure 5.1) and efficiency. Figure 5.2 shows a tiling
pattern with five-fold rotational geometric symme-
try. In optimization problems geometric symmetry
in the problem formulation is often considered to
be an opportunity to intelligently reduce the prob-
lem size, by recognizing that the solution will nec-
essarily be symmetric. Investigation of solutions
found in chapters 3 and 4, seemed to contradict
this. For example, in the façade bracing prob-
lem, when no symmetry constraint was applied,
asymmetric solutions were found which consis-
tently outperformed the solutions found when the
symmetry of the façade was enforced. This de-
spite the fact that the latter problem reduced the
cardinality of the search space and was a compu-
tationally much less expensive problem to solve.
It became evident that the presence of the discrete
design variables was responsible for this counter-
intuitive behaviour.
The following paper presents a more rigorous ex-
planation of the mathematical underpinning of this
finding. While this theory is applied to structural
topology optimization of trusses, it has direct ap-
plication to all forms of optimization involving ge-
ometric symmetry and discrete design variables.
For this reason, this chapter can be considered the
most fundamental portion of the thesis.

Figure 5.1: Various types of symmetry are present
in the design of the Biosphere by Buckminster
Fuller, Montreal, Canada. Image courtesy of Si-
mon Bonaventure

Figure 5.2: A tiling pattern with five-fold rota-
tional symmetry
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Symmetry and asymmetry of solutions in dis-
crete variable structural optimization1

Abstract

In this paper symmetry and asymmetry of opti-
mal solutions in symmetric structural optimization
problems is investigated, based on the choice of
variables. A group theory approach is used to de-
fine the symmetry of the structural problems in a
general way. This approach allows the set of sym-
metric structures to be described and related to the
entire search space of the problem. A relationship
between the design variables and the likelihood
of finding symmetric or asymmetric solutions to
problems is established. It is shown that an opti-
mal symmetric solution (if any) does not necessar-
ily exist in the case of discrete variable problems,
regardless of the size of the discrete, countable set
from which variables can be chosen. Finally a
number of examples illustrate these principles on
simple truss structures with discrete topology and
sizing variables.

5.1 Introduction

In structural engineering discrete variable opti-
mization is of great interest, given the discrete na-
ture of building components. Symmetry reduc-
tion of structural problems is a well established
technique for structural analysis. In the past sev-
eral decades the mathematical rigour of group the-
ory has been applied to symmetric structural prob-
lems [26], leading to the development of structural
analysis techniques for discrete structures. Bifur-
cation problems [19] of framework and latticed
domes [10, 11] are amongst the most widely stud-
ied of these problems. In static analysis, sym-
metric frame structures [27, 29] have been studied
using group theoretic symmetry reduction tech-
niques. Group theoretic methods combined with
graph products have been developed by [14] and
[13] in order to analyse symmetric-regular struc-

1J.N. Richardson, S. Adriaenssens, Ph. Bouillard, and
R. Filomeno Coelho. Symmetry and asymmetry of solutions in
discrete variable structural optimization. Structural and Multi-
disciplinary Optimization, 47(5):631–643, 2013

tures such as space trusses. [12] and [26] provide
more complete reviews of the applications of sym-
metry tools and group theory in structural mechan-
ics problems.
In numerous studies of symmetric discrete topol-
ogy optimization the approach has been to en-
force symmetry, leading to significant simplifica-
tion of the problem by reducing the number of de-
sign variables [2, 6]. The consequent reduction
in the problem size and hence the computational
costs, are strong motivating factors for this ap-
proach. However, as will be seen, in discrete topol-
ogy optimization this simplification often leads
to suboptimal solutions. The authors were moti-
vated to undertake this research on the basis of ob-
served asymmetric results to (both constrained and
unconstrained) symmetric discrete topology opti-
mization problems [20]. However, a recent paper
by [24] illustrates the attention this subject is now
receiving. Asymmetry in discrete topology opti-
mization was also noted by [1]. In topology op-
timization with continuous design variables [22]
shows the existence of a symmetric solution, and
possible non-uniqueness of the optimal solution,
while [16] attributed asymmetric material layout in
continuum problems to numerical roundoff and lo-
cal asymmetric solutions. [5] demonstrated asym-
metric solutions in frame topology optimization
with non-convex constraints. In a recent paper,
[8] showed the role of convexity in the ensuring
the existence of symmetric solutions in continuous
problems. However, it is shown that the validity
of symmetry reduction in symmetric optimization
problems is also largely dependent on the nature of
the design variables.
Starting from these observations the remainder of
the paper is ordered as follows: After an expla-
nation of the scope and several important defini-
tions (section 5.2), the relation between the search
space and its symmetric subset is discussed (sec-
tion 5.3). Next objective functions (section 5.4)
as well as the existence of optimal solutions, with
discrete variables are investigated (section 5.5). Fi-
nally several examples are presented (section 5.6).
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5.2 Scope and definitions
The investigation focuses on truss-like structures
with discrete variable bar cross section areas. It
is conceivable that the principles developed in
this paper apply to topology optimization prob-
lems other than the structural kind. Such prob-
lems may include thermal, optical and other op-
timization problems. Furthermore the principles
may also apply to discrete sizing and shape vari-
ables. However, the authors are primarily inter-
ested in structural topology optimization problems
and only single objective optimization problems
are considered.

5.2.1 General definitions
The structural topology optimization problem con-
sists of: (i) A set of nodes with fixed spatial coordi-
nates; (ii) a set of boundary conditions correspond-
ing to selected nodes; (iii) a set of loads applied to
selected nodes; and (iv) a set of allowed structural
connectivities between the nodes, called a ground
structure. The nodal connectivity of the ground
structure can be represented by an adjacency ma-
trix AGS. The structure in figure 5.3 has a ground
structure with

AGS =


0 1 1 1

0 1 1

sym. 0 1
0

 .

A design is a particular structure represented by
the problem definition and a specific set of values
for the design variables x. For example, in topol-
ogy optimization, the values of x may represent the
binary existence or non-existence of elements, and
as such correspond directly to AGS. The set of al-
lowable values for the terms in x is referred to as
the design set V . The particular design in figure
5.3 is described by adjacency matrix

A =


0 1 1 1

0 0 1

sym. 0 1
0


and variable vector

x = [1,1,1,0,1,1]> .

Each design corresponds to a value of the objec-
tive function f (x), used to evaluate the structural

10

2
3 P

Figure 5.3: A 6 bar 2D truss design. The dashed
line indicates a possible connection between nodes
1 and 2. This connection forms part of the problem
ground structure, but is absent in this specific de-
sign

performance. The optimization problem is subject
to inequality and equality constraints, respectively
denoted g(x) ≤ 0 and h(x) = 0. Each design is a
member of a set of all possible designs, the prob-
lem search space S . The search space is defined
by the bounds of the design variables. The feasi-
ble subset Ω f ⊆S is the set of values of the vari-
ables for which no constraint on the problem is vi-
olated, i.e. Ω f is bounded by the constraints on
the problem. The symmetric subset Ωsym ⊆ S is
the set of all possible geometrically and mechan-
ically symmetric structures in S . The feasible
symmetric subset Ω f ,sym ⊆S of the search space
is the intersection of the symmetric and feasible
subsets Ω f ,sym = Ω f ∩Ωsym. The optimal subset
Ωopt ⊆Ω f ⊆S is the set of designs corresponding
to the values of x such that the objective function
f (x) is minimized (or maximized) in the global
sense. A schematic representation of the various
sets is summarized in figure 5.4.

5.2.2 Group theory and group repre-
sentation

Geometric symmetry is intuitive and easy to vi-
sualize, however it can be described more rigor-
ously using mathematical operations. Structures
are said to be symmetric with respect to an oper-
ation if that operation maps the structure into co-
incidence with itself while preserving the distance
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Figure 5.4: Sets and subsets of the variable space

between all points in the structure. Symmetry is
studied through algebraic structures called symme-
try groups. Simply stated: a symmetry group G is
formed by the set of possible symmetry operations
that do not result in a change in the structure. The
number of symmetry groups is finite [12] and can
be reduced depending on the type of structures un-
der consideration. In this study we consider only
finite structures which are not symmetric under di-
latation or translation, the so-called point symme-
try groups. Point groups leave at least one point
fixed under all operations in the group [17]. Thirty
two unique point groups exist. In the topology op-
timization problems considered here, the symme-
try group of the structure is defined by the non-
variable aspects of the problem: the boundary con-
ditions (supports) and non-variable structural com-
ponents (such as truss elements, etc.). The load-
ing need not necessarily be symmetric [28], how-
ever for the sake of simplicity symmetric loading is
considered in the examples. Any operation in the
point group G , acting on a vector x ∈ Ωsym, can
be represented by the permutation matrix P such
that P>x = x [3]. We denote the permutation of
x, under symmetry operation ι ∈ G , ι(x) = P>ι x.
The set of permutation matrices P is a representa-
tion of G . Representation theory is used to exploit
symmetry in linear problems allowing for the sep-
aration of solutions into subsets corresponding to
the subspaces of the problem. The reader is re-
ferred to Hamermesh’s excellent book [9] for an
overview of group theoretic concepts.

5.3 Search space and symmet-
ric subset

Using the concepts from section 5.2, Ωsym can be
constructed and related to S in a symmetric topol-
ogy optimization problem. If the structure repre-
sented by a vector x is symmetric with group G , it
can be reduced to a non-unique vector x′ such that:

x =
⋃

ι∈G
ι(x′).

An equivalent algebraic form can be stated as fol-
lows:

x =

n
∑

ι=1

n
∑

κ=ι

(ι(xικ)+κ(xικ))

2
(5.1)

where xικ is such that2:

ι(xικ) = κ(xικ), ι 6= κ (5.2)

and
ι(xιι)

⋂
ι ,κ∈G

κ(xκκ) = 0l (5.3)

where 0l is the null vector of length l. Figure 5.5 il-
lustrates this concept for symmetry operation ι on
a structure with 6-fold symmetry. Since only sym-
metry operations κ and ν have an impact on the
vectors relating to ι (for this choice of x′) the other
4 symmetry operations are not shown. The sym-
metric subset can be mapped to the search space
by means of the reduced permutation matrix P′′,
constructed as follows:

P′ =
⋃

ι∈G
Pι .

All identical rows of P′ can be collapsed, rendering
P′′ with dimension n× l, where n ≤ l. In this way
all symmetric members of S , the m-dimensional
x′′ ∈Ωsym can be constructed as n-dimensional x∈
S :

x = P′′>x′′ (5.4)

In the above example, x′ =
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]>, and
x′′ = [1, 1, 1]>. Noting that both x and x′′
can be represented by binary strings (by concate-
nating the entries), both S and Ωsym are countable
sets which can be mapped to real positive integers.

2The notation xικ refers to the characteristics of the vector
under the symmetry transformations ι and κ .
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x x’

Figure 5.5: Symmetric structure variable vector re-
duction: an illustration

5.4 Objective functions and
constraints

In this paper we consider only mass minimiza-
tion and compliance minimization. No explicit
constraints (such as maximum stress in elements,
buckling of elements, deflection, . . . ) are consid-
ered, with the exception of the kinematic stability
of the structures and a constraint on the volume of
the minimum compliance problem.

5.4.1 Mass objective function
Mass minimization is an important objective in
structural optimization. In the context of truss
structures, the mass objective function is expressed
as follows:

fm(x) =
l

∑
k=1

mk =
l

∑
k=1

ρkAkLkxk

where xk ∈ x, mk, Ak, Lk and ρk are respectively
the mass, cross-section area, length and density of
element k. Since the function fm(x) is linear in
x ∈ Rn, it is a convex function, bounded only by
the kinematic stability of the structure.

5.4.2 Compliance objective function
The compliance energy

fc(x) = f>u = f>K−1f

is one of the most widely studied objective func-
tions in structural topology optimization [4]. Here
f is a vector of external loads, u is the vector of
nodal displacements and K is the stiffness matrix
of the structure. It has been shown that, if a struc-
tural optimization problem is expressed in terms of
variable bar areas, the compliance objective func-
tion is convex [25]. As mentioned an inequality
constraint is placed on the volume of the structure,
usually a maximum volume fraction Vf , the quo-
tient of the volume of the specific design to the
volume of the ground structure.

5.5 Convex combination: exis-
tence of solutions

Existence of solutions in topology optimization
problems has been addressed widely in the liter-
ature, of which [15], [23], [7], and references
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therein are only a few. The convex combination
of designs i represented by variable vectors xi is a
design x, such that:

x = ∑
i

λixi. (5.5)

where λi ∈ [0,1], ∑
i

λi = 1 , Ω is some set of de-

signs and

xi =
[
xi,1, xi,2, . . . , xi,l

]>
.

[22] and [8] have recently demonstrated the nec-
essary existence of symmetric solutions to a class
of problems with continuous design variables. In
what follows we investigate the case where the de-
sign variable vectors have discrete entries.

5.5.1 Convex combination and vari-
able mapping

Given a function f : S → R, any convex combi-
nation of the variables will have a corresponding
value to which the function f can map it. If, in ad-
dition, the function is an affine mapping, the map
of the convex combination of the variables will be
the convex combinations of the mappings

f

(
n

∑
i=1

λixi

)
=

n

∑
i=1

λi f (xi). (5.6)

Therefore any convex combination of variables
will also be a convex combination in the function
space. Therefore if convex combinations of both x
and f (x) are possible, any convex combination of
optimal solutions is also optimal, and the convex
combination of the variables maps to this optimal
function value. Jensen’s inequality states that, for
a convex function

f

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λi f (xi) . (5.7)

In one variable this can be interpreted as say-
ing that the secant line of a convex function lies
"above" the graph. However, since f (xi) = f (x j)
for all xi,x j ∈ Ωopt , on the optimal set, equation
(5.7) becomes equation (5.6). If an asymmetric op-
timal solution can be found, the symmetry group
permutations of this design are also optimal, since
the structures are equivalent according to the prob-
lem statement. The convex combination of the
variables can be mapped to the convex combina-
tion of the objective functions via an affine map-
ping. This combination is therefore also optimal.

5.5.2 Convex combination with dis-
crete variables

Binary variables

In this section, the bar sizing variables are consid-
ered to be discrete, binary variables x j ∈ {0,1}.
The convex combinations of n vectors lead to a
system of equations, where the following holds:

x j ∈ {0,1} iff

(
n

∑
i=1

λixi, j

)
∈ {0,1}.

Two scenarios are possible for any x j:

1. xi, j = xl, j, ∀i, l

2. ∃i, l : xi, j 6= xl, j

In the former case the convex combination can be
constructed, but this is a trivial case where the vec-
tors are identical. In the latter the linear combina-
tion of the vectors, having elements in {0,1}, can
only be constructed if

n

∑
i=1

xi, j =


n
∑

l=1
xl, j

0
∀ j

However this construction would violate the con-
dition that

n
∑

i=1
λi = 1.

Theorem 1. For any set of (non-trivial) binary
variable vectors, no convex combination of these
vectors is possible, unless they are identical.

Proof. If at least n entries in x are non-zero, a sys-

tem of n equations
n
∑

i=1
λixi, j = 1 can be set up. In

the non-trivial case, for some j:
n
∑

i=1
xi, j = r, where

r ∈ {1 . . .(n−1)} and none of the vectors xi is the
trivial null vector, so that 0 < λi ≤ 1. Assume that
the i’s for which xi, j = 0 are in a set A of size

n− r . Then
n
∑

i=1
λixi, j = ∑

i/∈A
λi = 1. Therefore:

∑
i/∈A

λi+ ∑
k∈A

λk > 1 and the linear combination is not

convex.

This automatically leads to the following result:

Corollary 2. In symmetric binary topology opti-
mization problems, if an asymmetric optimal so-
lution exists, no corresponding symmetric solution
can necessarily be constructed.
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Proof. As in section 5.5 the symmetric solution
can be expressed as the convex combination the
permuted asymmetric solution. However it has
been shown that the convex combination of any
binary adjacency matrices cannot be constructed.
Therefore, no corresponding symmetric solution
necessarily exists, and if a symmetric solution does
exist it is unique.

Since no convex mapping is possible between
symmetric and asymmetric solutions, and at most
one optimal symmetric solution exists, the relative
sizes of the symmetric and asymmetric feasible so-
lution sets plays a role in the probability of the ex-
istence of a symmetric solution. Conversely, in the
convex case, since all asymmetric solutions have
corresponding symmetric solutions through con-
vex combination, this does not effect the probabil-
ity.

Discrete variables from finite sets

Let us now consider non-binary discrete sets. Here
variables are taken from sets of the following form:

V = {0, 1, 2, . . . , m}

Consider the simple case with the convex combi-
nation of n vectors such that:

x =
n

∑
i=1

λxi. (5.8)

Then for any n, λ = 1
n , and nx =

n
∑

i=1
xi. The en-

tries of nx can be seen as a series of linear Dio-
phantine equations, with coefficients in the n-tuple
(1,1,1,1 . . .1). For any entry x j in x all entries xi, j
in xi, satisfying the equation

n.x j =
n

∑
i=1

xi, j. (5.9)

will be a valid convex combination. This amounts
to the partition of n.x j into parts (1,1,1,1 . . .1)
and the number of such solutions in x j,1, . . .x j,n is
called the restricted denumerant [18], denoted
DV (n.x j;1,1, . . . ,1). If m→ ∞, V ≡ N, the num-
ber of such tuples satisfying equation (5.9) is(n(a+1)−1

n−1

)
. However, for a restricted design set

V , this does not hold and the number of possible
solutions is reduced for V ⊂ N. In this case the
relation is more complex, however the proportion
of combinations to all perturbations is reliant on

the number of terms in the combination and tends
asymptotically to 1

n . The total probability of form-
ing convex combinations P(x) of the form in (5.8)
can be calculated as follows:

P(x) =
p

∑
h=1

P
(

x(h)
)
=

p

∑
h=1

k

∏
j=1

P(x(h)j ) (5.10)

where x(h) is the hth permutation of possible vec-
tors x and p = km the total number of permuta-
tions. The total number of permutations is simply
nm+1 and so the total probability of combination is
DV (n.a;1,1,...,1)

nm+1 .
Returning to the binary case, it is clear that
D0,1(n.1;1, . . . ,1) = 1, since n.1= 1+1+ · · ·+1 n
times. Similarly D0,1(n.0;1, . . . ,1) = 1. Therefore
only convex combinations of identical, symmetric
structures can be combined. The total probability
of finding symmetric solutions to discrete variable
problems is then:

Ptot(x) =
1

(m+1)l−l′′ +P(x)

where l′ is the length of the vector x′′ in equation
(5.4). Intuitively this probability can be expected
to be low for most discrete problems. In structural
optimization we are interested in comparing dis-
crete sets with the same upper and lower bounds,
for example Va = {0, 0.5, 1} and
Vb = {0, 0.2, 0.4, 0.6, 0.8, 1}. In the combina-
toric context described above, these sets are equiv-
alent to those of the form {0,1, . . . ,m} which can,
for example, be scaled to within the bounds 0 and
1 by multiplying each element by a factor 1

m . In
our case:

Va = {
1
a
.0,

1
a
.1,

1
a
.2}

Vb = {
1
b
.0,

1
b
.1, . . . ,

1
b
.5}

where a = 2 and b = 5. It can easily be seen that
this in no way affects the probabilities discussed
above. To avoid confusion, in the examples we
will refer to design sets using the following nota-
tion:

Vm = { 1
m
.0,

1
m
.1, . . . ,

1
m
.m}

in the knowledge that they are equivalent (in the
combinatoric sense) to a set V ′m = {0,1, . . . ,m}.

5.6 Examples
Several examples illustrate the principles dis-
cussed above. The first is a 2D truss, with point
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group S2, consisting only of the identity operation
and a line of ’mirror symmetry’ through the middle
of the structure. In this example the design vari-
ables are chosen from the binary {0,1} set. Next,
a 9 bar truss with 3-fold rotational symmetry is in-
vestigated. The design variables can take on values
from a larger design set, consisting of 6 discrete
values. The final example is a 3D pylon struc-
ture, with three-fold rotational symmetry about a
central, vertical axis, and three planes of ’mirror
symmetry’, as well as the identity operation. This
structure therefore has dihedral symmetry group
D3. In the first and third examples two possible ob-
jective functions, namely the mass of the structure
and the compliance energy under a given loading,
are investigated. All possible topologies (the en-
tire search space) are evaluated and the symmetric
subset of the search space constructed as described
above. The optimal asymmetric solutions can then
be compared with the best performing symmetric
solutions. Finally, we investigate the effects of in-
creasing the design set size on the 3D pylon exam-
ple.

5.6.1 20 bar 2D truss

Problem

The ground structure of the 20 bar topology opti-
mization problem is shown in figure 5.6. For this
problem the nodes are distributed regularly on a
grid with spacing one unit in the two (Euclidean)
dimensions of the problem. The nodal coordinates,
supports and loading are as follows:

c =



0,0
1,0
2,0
0,1
1,1
2,1
0,2
1,2
2,2


bc =



1,1
0,0
0,0
1,1
0,0
0,0
0,0
0,0
0,0


p =



0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
0,0


.

The symmetry of the structure is expressed by
the amorphism group G of the graph with adja-
cency matrix A, representing the topology of the
structure. The structure has symmetry point group
S2 = {E,σ}, where E is the identity operation and
σ a reflection about a vertical line through nodes 2,
5 and 8. The adjacency matrix and variable vector

1 3

2

4 6

5

7 9
8

1

10

11

4

2 9

18

3

12

8

5

13

19 20

14

15

7

16

17

6

Figure 5.6: 20 bar 2D problem ground structure.
Nodes are labelled with numbers, while the bar
numbering is circled

for the ground structure are as follows:

AGS =



0 1 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0

0 0 1 1 0 0 0
0 1 0 1 1 0

0 1 1 1 1

sym. 0 0 1 1
0 1 0

0 1
0


xGS = e20

where e20 is a 20 dimensional vector of ones.
Keeping the nodal connectivity in mind, it is rel-
atively simple to construct the topological permu-
tation matrix Pσ :
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Pσ =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



.

Furthermore, a decomposition of the vector xGS
can be made

xσσ = xEE = [1, 1, 1, 0,

1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0]>

and

xEσ = xσE = [0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]>.

It can be easily confirmed that, as in equation
(5.1)

2E(xEE)+E(xEσ )+σ(xEσ )+2σ(xσσ )

2
= x.

Ωsym has 211 = 2048 members, while the topo-
logical search space S has 220 members. Since
no mapping through convex combination of asym-
metric solutions is possible, the probability of find-
ing a symmetric optimal solution is will not be in-
creased by convex mapping.

Results

For simplicity sake the variables of each design
have been mapped to natural numbers x→N, since
a one-to-one mapping is possible and this allows
for plotting of the results. To do this the topol-
ogy variables are taken to be the digits of a binary
number, and its equivalent base 10 number plot-
ted to a position on the horizontal axis. All feasi-
ble masses of the structures in S and in Ωsym are

Figure 5.8: 20 bar 2D truss problem: minimum ob-
jective function values, both mass and compliance
(V ≤ 0.4)

shown3 in figure 5.7. Note that the minimum feasi-
ble mass is not symmetric. The two (feasible) min-
imum mass structures are shown in figure 5.8. As
expected the two solutions are asymmetric, mirror
images of one another about a vertical line. For the
compliance objective function, taking the volume
fraction V ≤ 0.4, the same topology is found as in
figure 5.8. The minimum symmetric mass (solu-
tion shown in figure 5.9) is 1.33 times greater than
the asymmetric minimum mass solution.

3The vertical gaps in the graph are a result of groups of bi-
nary numbers whose equivalent structures share common me-
chanical instabilities. These instabilities are considered non-
feasible and therefore not plotted.
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Figure 5.7: 20 bar 2D truss problem: symmetric and asymmetric structure mass objective functions
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Figure 5.9: 20 bar 2D truss problem: minimum
mass stable, symmetric structure

5.6.2 9 bar truss
In this example a 9 bar truss (seen in figures 5.10
and 5.11) is considered with the sizing variables
taken from the design set V5. The truss has 3-fold
rotational symmetry about a central point:

C3 = {E,C3,C2
3}. (5.11)

C3 results in a one third rotation, while C2
3 results

in two thirds of a complete rotation. E is simply
the identity operation. The reduced permutation
matrix is a 3×6 matrix:

P′′ =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


In addition to the probability of finding some sym-
metric solution directly, convex mapping between
asymmetric and equivalent symmetric solutions
also exists. If an asymmetric optimal solution can
be found, a symmetric solution can only be con-
structed of the form:

Figure 5.10: 9 bar 3D structure

5

3

0
1

2

4

a

c

b

1

4

6

5

7

9

8

2

3

Figure 5.11: 9 bar 3D structure plan view and
numbering
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x1
x2
x3
x4
x5
x6
x7
x8
x9


=

1
3

PE



x1,1
x1,2
x1,3
x1,4
x1,5
x1,6
x1,7
x1,8
x1,9


+

1
3

PC3



x1,1
x1,2
x1,3
x1,4
x1,5
x1,6
x1,7
x1,8
x1,9


+

1
3

PC2
3



x1,1
x1,2
x1,3
x1,4
x1,5
x1,6
x1,7
x1,8
x1,9



=
1
3



x1,1
x1,2
x1,3
x1,4
x1,5
x1,6
x1,7
x1,8
x1,9


+

1
3



x1,4
x1,5
x1,6
x1,7
x1,8
x1,9
x1,1
x1,2
x1,3


+

1
3



x1,7
x1,8
x1,9
x1,1
x1,2
x1,3
x1,4
x1,5
x1,6


(5.12)

Equation (5.12) can be reduced and the problem
restated as finding values xi,1 . . .xi,9 in V such that
xi ∈V :

3x′1 = x1,1 + x1,4 + x1,7 (5.13)
3x′2 = x1,2 + x1,5 + x1,8 (5.14)
3x′3 = x1,3 + x1,6 + x1,9 (5.15)

which is equivalent to 3x′ = P′′x1. Using equa-
tion (5.10), the probability that x1 can be combined
in such a way that an equivalent symmetric solu-
tion exists is (0.329)3 ≈ 0.0355. In fact, as m in-
creases (taking design sets Vm), so this probability
asymptotically converges to 1

33 . The asymptotic
behaviour can clearly be seen in figure 5.12 show-
ing the proportion of combinable structures as the
size of V increases from 3 to 21 values. As m in-
creases beyond 10, this proportion remains rela-
tively constant. More generally the proportion is
asymptotic to 1

nl .

5.6.3 24 bar 3D truss

Problem

In this example a 24 bar 3D truss (figure 5.13) is
investigated. The structure has dihedral symmetry
group

D3 =
{

E,C3,C2
3 ,C

a
2 ,C

b
2 ,C

c
2

}
These operations are identical to those in the C3
group in (5.11), with 3 additional mirror symme-
try operations around vertical planes through lines
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Figure 5.12: Probability of symmetry resulting
through convex combination of asymmetric opti-
mal solutions for the 9 bar truss

a, b and c in the plan view of the ground struc-
ture in figure 5.14. Three vertical, unitary point
forces act on the three highest nodes on the struc-
ture. Only binary topology variables are used and
a unit bar section area taken for simplicity sake.
All three supports are pinned, restraining displace-
ments translationally in all three dimensions.

Results

All 224 designs in the search space were calculated.
Only 64 structures in the search space are D3 group
symmetric. The 8 least mass solutions are shown
in figure 5.15. Two distinct solutions can be seen.
Taking structure 1 as one of these, the following
mappings are present:

x2 = σa(x1)

x4 =C2
3(x1)

x5 =Cb
2(x1)

x7 =C3(x1)

x8 =Cb
2(x1).
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1 2 3 4

5 6 7 8

Figure 5.15: 24 bar 3D structure: least mass solutions
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Figure 5.13: 24 bar 3D structure ground structure
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Figure 5.14: 24 bar 3D structure ground structure
plan view

1 2 3

4 5 6

Figure 5.16: 24 bar 3D structure: lowest compli-
ance energy solutions

The second type is structures number 3 and 6. For
this structure the following holds:

x7 =Ca
2(x3) =Cb

2(x3) =Cb
2(x3)

x3 =C3(x3) =C2
3(x3)

x7 =C3(x7) =C2
3(x7).

In figure 5.16 the minimum compliance results are
shown, with volume fraction constraint V ≤ 0.7.
These results demonstrate one single, asymmetric
solution, and the 5 other permutations correspond-
ing to the D3 group. None of the optimal struc-
tures are symmetric with respect to the symmetry
group D3 In the case of the compliance minimiza-
tion problem, the structures do not possess any
of the non-trivial symmetries in this group. The
symmetric minimum mass solution was approxi-
mately 1.2 times the mass of the asymmetric solu-
tion, while for the compliance solutions, this ratio
was approximately 1:1.14.

Larger design sets

Suppose now the size of the design set is increased
from 2 to m + 1 possible values. Following the
method in example 2, the following equations re-
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Figure 5.17: 24 bar 3D truss: contribution of terms
to probability of symmetry resulting through con-
vex combination of asymmetric optimal solutions

sult:

5x′1 = x1,1 +2x1,23 +2x1,15 (5.16)
5x′2 = 2x2,4 +2x2,16 + x2,2 (5.17)
5x′3 = x3,5 + x3,19 + x3,7 + x3,17 + x3,10 (5.18)
5x′4 = x6,6 +2x6,24 +2x6,18 (5.19)
5x′5 = 2x8,11 +2x8,20 + x8,8 (5.20)
5x′6 = x9,12 + x9,22 + x9,13 + x9,21 + x9,14 (5.21)

For equations (5.16), (5.17), (5.19) and (5.20), the
number of possible solutions is now found as the
denumerant DV (5x′i;1,2,2). As seen for m = 1
(Vm = {0,1}), only the number of symmetric so-
lutions contributes to the probability of finding a
symmetric solution to the problem. Taking m = 2,
a significant proportion of the possible solutions
can be mapped to equivalent symmetric solutions.
However, as m increases DV (5x′i;1,2,2) decreases
proportionally to the total number of solutions, de-
ceasing the probability of finding an asymmetric
solution which can be mapped to an equivalent
symmetric solution. This probability can be seen
in figures 5.17 and 5.18. The first of these fig-
ures shows the combination probability for equa-
tions (5.16), (5.17), (5.19) and (5.20), against the
same probability for equations (5.18), (5.21). The
second shows the total probability for all vectors
xi. Note that the asymptotic convergence to 1

nl no
longer occurs.
A surprising result follows: given this type of sym-
metry, the larger the discrete group from which
variables can be taken, the smaller the probability
of being able to find a symmetric solution which is
optimal, however this probability is non-zero.
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Figure 5.18: 24 bar 3D truss: probability of sym-
metry resulting through convex combination of
asymmetric optimal solutions

5.7 Conclusions and discussion

In this paper we have proven and demonstrated in
the examples, that, given a binary topology prob-
lem of the type discussed above, no symmetric so-
lution necessarily exists. The number of design
variables and degree of symmetry play important
parts in the probability of finding symmetric solu-
tions in discrete problems. We have shown that
as the size of the discrete design set increases,
this probability does not tend to 1, but instead to
values related to the group symmetry itself. For
certain types of symmetry the size of the discrete
set is only important for small values of m near
to 1. However, the probability will decrease sig-
nificantly with increasing design set size for cer-
tain types of symmetry. The examples demonstrate
that the probability of achieving symmetric results
to discrete symmetric problems remains very low,
even when the design set is very large.
These conclusions emphasize an important fact: it
is not reasonable to assume that symmetric prob-
lems will lead to symmetric results when the vari-
ables are discrete. This calls into question the
practice of reducing the problem size in discrete
optimization by taking symmetry into account. In
the examples, the asymmetric solutions performed
significantly better compared to the best symmet-
ric solutions. The authors believe that the evidence
suggests that there is some room for discussion on
this front. It is the hope that a relaxing of this as-
sumption may lead to more efficient and elegant
designs in practice. The investigation has focussed
on topology optimization, however, it is easily ex-
tendible to other kinds of discrete optimization.
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Chapter 6

Structural optimization under
uncertainty

Uncertainties play a vital role in engineering
practice and are often accounted for using con-
cepts such as safety factors. While these coeffi-
cients provide a reliable margin, they are gener-
ally overly conservative and do not meet the needs
of optimization procedures, which are also inter-
ested in the sensitivity of optimal solutions to per-
turbation, the robustness of solutions. Determin-
istic structural optimization is a well established
academic field, however, uncertainties on struc-
tural optimization problems are a relatively new
branch of research. In real-world structures un-
certainty exists on material properties, manufactur-
ing tolerances and loading of structures and these
can have significant impact on the performance
of the structures designed using an optimization
procedure. Consider the truss structure in figure
6.1(a) with deterministic loading and accompany-
ing topology optimization solution in figure 6.1(b).
From the point of view of the deterministic loading
this structure may be the optimal solution, however
it is completely unacceptable from a real-world
perspective, since any lateral loading on the node
will result in unacceptably large displacements. If
some uncertainty on the direction of the loading
is introduced (figure 6.1(c)), a completely differ-
ent solution will be found, such as that shown in
figures 6.1(d) or in the bridge structure in figure
6.2. The goal of the paper in this chapter is to ad-
dress robust topology optimization of both contin-
uum and truss-like structures, in a common frame-
work, taking material uncertainties into account.
Derivation of the gradients of the objective func-
tion are given in appendix A.

P

(a) A truss topology op-
timization problem ground
structure with deterministic
loading

P
P

(b) A typical solution to the
deterministic problem

P

(c) The same truss topol-
ogy optimization problem
ground structure, with
some uncertainty on the
direction of the loading

P

(d) A typical solution to the
variable loading problem

Figure 6.1: Truss topology optimization problems
with deterministic and variable loading

Figure 6.2: The Millennium Bridge over the River
Liffey, Dublin, Ireland. Image courtesy of William
Murphy
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A unified stochastic framework for robust
topology optimization of continuum and truss-
like structures1

Abstract

In this paper a framework is introduced for ro-
bust structural topology optimization for 2D and
3D continuum and truss problems. The uncertain
material parameters are modelled using a spatially
correlated random field which is discretized using
the Karhunen-Loève expansion. Spectral stochas-
tic finite element method is used, with a polyno-
mial chaos expansion to propagate uncertainties on
the material characteristics to the response quan-
tities. In continuum structures either 2D or 3D
random fields are modelled across the structural
domain, while representation of the material un-
certainties in linear truss elements is achieved by
expanding 1D random fields along the length of
the elements. Several examples demonstrate the
method on both 2D and 3D continuum and truss
structures, showing that this common framework
provides an interesting insight on robustness vs.
optimality for the test problems considered.

6.1 Introduction
This research focusses on a novel robust structural
topology optimization method for 2D and 3D con-
tinuum and truss problems. Structural optimiza-
tion taking uncertainties into account is of sig-
nificant importance to designers, since real-world
structures require both efficient use of material and
accurate modelling of material properties, man-
ufacturing tolerances and loading of structures.
When considering candidate designs, engineers
are concerned with the sensitivity of the designs to
small variations which can be quantified as uncer-
tainties. Uncertainties play an important role in en-
gineering practice and are often accounted for us-
ing coefficients such as safety factors. While these
coefficients provide a reliable margin, they do not

1J.N. Richardson, R. Filomeno Coelho, and S. Adri-
aenssens. A unified stochastic framework for robust topology
optimization of continuum and truss-like structure. Computers
& Structures, 2013. Submitted for publication

meet the needs of optimization procedures, which
should also account for the sensitivity of optimal
solutions to perturbation, measured via the concept
of robustness. Robust design optimization offers
an approach for taking these uncertainties into ac-
count, and expressing the sensitivity of the struc-
tural responses to variations along with the mean
response.
The limited number of approaches to take these
uncertainties into account in structural optimiza-
tion are summarized in overviews by Tsompanakis
et al. [23] and Schueller and Jensen [16]. To the
authors’ knowledge, no common frameworks ex-
ist for robust optimization of both continuum and
truss structures. The majority of the structural op-
timization studies accounting for uncertainty are
concerned with shape optimization, while only a
few studies deal with uncertainties in topology op-
timization.
The limited number of works on the subject have
been completed in the last decade or so, mostly fo-
cussing on random loading in continuum structural
optimization. De Gournay et al. [5] used a level set
(LS) approach to shape and topology optimization
minimizing the ’worst case’ compliance under per-
turbation of the loading. Kogiso et al. [11] used the
homogenization approach for a sensitivity-based
robust topology optimization (RTO) for compliant
mechanisms, considering random variation on the
loading direction. Conti et al. [4] formulated a LS-
based shape optimization method under stochastic
loading, making use of a two-stage stochastic pro-
gramming approach. Lógó et al. [12] developed
a new loading criterion for compliance minimiza-
tion for probabilistic loading, and extended this to
uncertainties on the loading location [13].
Several works on taking geometric uncertainty
into account in continuum structures have recently
been completed. Seepersad et al. [17] focus on de-
signing mesoscopic material topology, where im-
perfections due to the manufacturing process are
of great importance. Guest and Igusa [8] used a
mean compliance formulation under uncertainties
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on the nodal locations. Wang et al. [24] demon-
strated a method for robust topology optimization
applied to photonic waveguides using SIMP, with
manufacturing uncertainties, by approximation by
the threshold projection method.
The integration of material uncertainties in contin-
uum robust structural optimization has also been
addressed very recently in several publications.
Chen et al. [3] proposed a LS based robust shape
and topology optimization (RSTO) method, tak-
ing material uncertainties into account. Impor-
tant work has very recently been done on robust
shape and topology optimization of two dimen-
sional structures [22] for mass minimization, us-
ing a polynomial chaos approach. 3D structures
appear to have not been dealt with broadly, with
the exception of [3].
The representation of uncertainties in robust opti-
mization of truss structures has also been relatively
neglected and investigations thus far have failed to
take some key features of trusses, such as element
length, into account. Yonekura and Kanno [25]
used semidefinite programming to solve truss ro-
bust topology problems with uncertainties on load-
ing, while Kang and Bai [10] recently considered
bounded uncertainties in truss structures. Asad-
poure et al. [1] developed a robust formulation for
mass minimization of truss structures with uncer-
tainties on the material properties.
All of these methods use an adaptation of a deter-
ministic optimization algorithm to incorporate un-
certainties, either choosing to deal with only con-
tinuum or only truss-like structures.
Starting from these considerations the remainder
of the paper is ordered as follows: modelling of
uncertainties is introduced in section 6.2, with the
adaptation specifically for topology optimization
considered in section 6.3. Computational exam-
ples of this method follow (section 6.4) and a dis-
cussion and suggestions for further work is then
given (section 6.5).

6.2 Modelling of uncertainties
for continuum and truss-
like structures

In this investigation the material uncertainties are
expressed in terms of a spatially varying random
field, which is discretized using a Karhunen-Loève
(KL) expansion. Random fields allow for ex-
pression of spatially correlated random quantities,

while being general enough to model uncorrelated
quantities too. Spectral Stochastic Finite Element
Method (SSFEM) [20] is used to derive the statisti-
cal measures of the response, allowing for a quan-
tification of the terms of the objective function (a
linear combination of the mean and standard devi-
ation of the compliance), for a given volume frac-
tion. Material models are generally expressed in
terms of Gaussian or lognormal probability distri-
butions, both of which can be taken into account in
the SSFEM framework. In continuum structures
the random field may be correlated over the en-
tire domain, while in truss structures this is not the
case; therefore, a novel analysis method for mod-
elling the variation of material properties along the
length of individual truss elements is developed,
based on the SSFEM framework, and used for
topology optimization of truss structures. Deriva-
tions of the objective function and the sensitivi-
ties necessary for the optimization procedure are
demonstrated, making use of the response quanti-
ties. SSFEM discretization consists of series ex-
pansion of realizations of the original random field
H(x,θ) over a complete set of deterministic func-
tions [20], where θ is a vector of random variables.
The obtained series are then truncated after finite
number of terms. Various discretization methods
are available of which the Karhunen-Loève expan-
sion (KL) is the most efficient in terms of the num-
ber of random variables required for a given accu-
racy [20], making it a good candidate for the com-
putationally expensive task of design optimization.
A Gaussian random field H(x,θ) can be expanded
as follows:

H(x,θ) = µ(x)+
∞

∑
i=1

√
λiξi(θ)ϕi(x) (6.1)

where µ(x) is the mean value of the random phe-
nomenon, λi’s and ϕi’s respectively the eigen-
values and eigenfunctions of the covariance ker-
nel, and ξi’s the random variables. The approx-
imated field Ĥ can be found by truncating terms
above some value M, defined for example through
a so-called energy criterion (viz. a minimum per-
centage of the L2-norm of the approximated field
should be preserved):

Ĥ = µ(x)+
M

∑
i=1

√
λiξi(θ)ϕi(x) (6.2)

Truss analysis accounting for material property un-
certainty is often achieved by associating a random
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Figure 6.3: Truss element-level 1D random fields

variable with a the cross section area of each bar el-
ement [1, 15]. This approach has two fundamental
shortcomings:

1. The approach presupposes a small scale for
the problem, while trusses and individual
truss elements are typically large in scale, and

2. the relative lengths of the elements are ne-
glected in the probabilistic model.

At the scale of truss elements, often several me-
ters in length, the variability of material properties
along the length of the element can be very signifi-
cant, spatially correlated quantities. Global 2D and
3D correlated random fields are not appropriate for
modelling this variability, since no correlation ex-
ists between the material properties of separate ele-
ments. The proposed approach constructs individ-
ual 1D random fields across the individual truss el-
ements, subdividing elements into segments. The
compliance analysis and topology variables apply
to the truss scale elements and nodes (figure 6.3).
If each element is substructured as shown in fig-
ure 6.3, a simple expression can be found to ap-
proximate the relative stiffness of the element as a
whole, based on sampling the element-level field:

Ĥe =
1

Nse
∑
j=1

1(
µ j(x j)+

M
∑

i=1

√
λiξi(θ)ϕi(x j)

) (6.3)

where Ĥe is the element-level random field, µ j is
the mean value of the random field for sub-element
j, and Nse is the total number of sub-elements.
Since µ j(x j) is constant for the element e, the fol-
lowing expression results:

Ĥe = µ(x)+
M

∑
i=1

√
λiξi(θ)

Nse
∑
j=1

1
ϕi(x j)

(6.4)

The remainder of the method is analogous to the
continuum case.

6.3 Introducing uncertainties
for robust topology opti-
mization

6.3.1 Deterministic continuum topol-
ogy optimization with the SIMP
method

An important aspect of robust optimization con-
sists in the modelling of the uncertainties to be in-
cluded in the analysis portion of the optimization
process. For this purpose a good understanding
of the deterministic method (in this case SIMP) to
be adapted to account for uncertainties is impera-
tive. A classical way to state the (single objective)
optimization problem is the minimization of some
function f (the objective function) of the design
variables x, subject to some constraints g and h:

min
x

f (x)

subject to:

{
g(x)≤ 0
h(x) = 0

(6.5)

In the case of compliance minimization the objec-
tive function can be written as follows:

f (x) =C = f>u (6.6)

where f is the external loading on the structure and
u the nodal displacements. Typically the volume
of the structure is constrained:

V (x)
V0
− c = 0 (6.7)

where V (x) and V0 are respectively the volume of
a design and the reference volume (the fraction of
these quantities is called the volume fraction), and
c is some constant chosen by the designer. The
design variables x = [x1 x2 . . . xe . . .xN ] are scalers
associated with element e where e = 1 . . .N and
N is the number of elements in the finite element
mesh. For continuum problems xe is a coefficient
of the density of the element such that xe,min≤ xe≤
1. SIMP has been exceedingly successful and im-
plemented in numerous papers [2, 6, 19]. Using
the SIMP formulation, the element stiffness ma-
trix can be written as Ke = xe

pK∗e , where K∗e is the
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stiffness matrix with density equal to the standard
material density, and p is a penalty value chosen
by the user (often taken as 3 for continuum struc-
tures) [19]. When truss structures are considered
this type of penalization can be neglected by set-
ting p = 1. The SIMP compliance objective func-
tion (6.6) and sensitivities are then calculated as
follows:

C(x) =
N

∑
e=1

(xe)
pu>e Keue. (6.8)

∂C
∂xe

=−p(xe)
p−1u>e Keue. (6.9)

Restrictions on the design space for continuum
structures are essential for dealing with questions
of existence of solutions [19]. Sigmund [18] in-
troduced a mesh independency filtering technique
which modifies the element sensitivities. Another
method for ensuring existence of solutions was
introduced by Guest et al. [9] using a minimum
length scale.

6.3.2 Principle of the spectral stochas-
tic finite element method

In the SIMP approach the element stiffness matrix
Ke can then be written as:

Ke(θ) = Ke,0 +
M

∑
i=1

ξi(θ)
√

λi

∫
Ωe

ϕi(x)B>D0BdΩe

(6.10)
where Ke,0 is the deterministic element stiffness
matrix, B is the matrix that relates the components
of strain to the element nodal displacements, and
D0 the deterministic elasticity matrix. Assembling
matrices Ke,i =

√
λi
∫

Ωe

ϕi(x)B>D0BdΩe to their

global form Ki over the structural domain Ωe, the
equilibrium equation becomes:(

K0 +
M

∑
i=1

Kiξi(θ)

)
u(θ) = f (6.11)

Modelling of the response to a random process re-
quires an expansion in which the covariance func-
tion need not be explicitly known [7]. The PCE
assumes the random displacements u(θ) can be ex-
panded as follows:

u(θ) =
P−1

∑
j=0

u jΨ j(θ) (6.12)

where the set {Ψ j}, j = 0 . . .∞, is a set of orthogo-
nal polynomials in ξk, and k = 0 . . .∞. Truncating
terms in equation (6.11) and substituting equation
(6.12):(

M

∑
i=0

Kiξi(θ)

)(
P−1

∑
j=0

u jΨ j(θ)

)
= f (6.13)

A more convenient form of equation (6.13) can be
found by minimizing the residual due to trunca-
tion, arriving at the following form: K0,0 . . . K0,P−1

...
. . .

...
KP−1,0 . . . KP−1,P−1


 u0

...
uP−1

=

 f0
...

fP−1


(6.14)

where Ki, j is an N×N matrix, ui are N×1 vectors
associated with the polynomial expansion of the
response, and fi are N×1 vectors of loading. Note
that the system to be inverted is NP×NP in size,
so that the size of the PCE expansion will have a
significant impact on the computational cost of the
solution. The details of this and other derivations
can be found in [20].

6.3.3 Stochastic finite element method
for uncertainty propagation in
topology optimization

The robust form of the compliance objective func-
tion is commonly expressed as the weighted sum
of the two statistical measures, namely the mean
and standard deviation:

min
x

Ĉ = E[C]+α
√

Var[C] (6.15)

where E[C] is the expected value of the compli-
ance, Var[C] the variance of the compliance and
α is a weighting coefficient chosen by the user.
If the loading is deterministic the mean value (ex-
pectancy) of the compliance is given by:

E[C] = E[f>u] = f>0 E[u] (6.16)

In the case of a PCE of the response E[u] = u0,
where u0 corresponds to the nodal displacements
for polynomial Ψ0. Finally:

E[C] = f>0 u0 (6.17)

Once again considering deterministic loading, the
variance of the compliance can be found:

Var[C] =Var[f>u] = f>0 Cov[u]f0 (6.18)
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where Cov[u] is the covariance matrix of u, and is
found by the expression [20]:

Cov[u] =
P−1

∑
j=1

E[Ψ2
j ]u j.u>j (6.19)

where Ψ j are the components of the polynomial
basis of the displacement field corresponding to
displacement vectors u j. The objective function
can then be expressed simply as:

Ĉ = f>0 u0 +αf>0

(
P−1

∑
j=1

E[Ψ2
i ]u
>
j u j

)
f0 (6.20)

The sensitivities of the objective function with re-
spect to the design variables x are found making
use of the adjoint method, starting from equation
(6.15) and taking the derivative with respect to the
design variables (6.15) as in [1]:

∂Ĉ
∂x

=
∂E[C]

∂x
+α

∂ (
√

Var[C])

∂x
(6.21)

The sensitivities at the element level, as prescribed
by the SIMP method, can then be found as follows:

∂Ĉe

∂xe
=−pxp−1

e

(
P−1

∑
k=0

P−1

∑
l=0

M

∑
i=0

E[ξiΨkΨl ]u>e,kK∗eue,l

)

− α pxp−1
e√

Var[C]

P−1

∑
j=1

(
P−1

∑
k=0

P−1

∑
l=0

M

∑
i=0

E[ξiΨ jΨkΨl ]u>e,k

K∗eue,l)u>j f0

(6.22)

The above expression is very similar to the ex-
pression for the displacement constraints as found
by [22].

6.4 Computational examples
The proposed method is demonstrated on a num-
ber of test problems: a 2D cantilever, a 3D bridge
structure and a 2D truss problem. It should be
noted that a 3D truss example would be almost
equivalent to the 2D case and is therefore omitted
for the sake of brevity.
Recalling the parameters associated with the un-
certainty quantification, results are shown for vary-
ing values of the standard deviation σ and corre-
lation lengths li of the random field in dimension
i, as well as the additive coefficient in the objec-
tive function α . For all computational examples

the order of the polynomial chaos expansion of the
responses is taken to be P = 2. The method of
moving asymptotes [21] was used to solve the op-
timization problem in the computational examples.

6.4.1 2D Continuum cantilever

Problem

In this problem a 2D cantilever structure is consid-
ered. The domain is discretized using 100×30 2D
quad elements, rmin = 1.5, the penalization con-
stant p = 3, and the volume fraction V0 = 0.5. The
problem domain, supports and loading are shown
in figure 6.4(a). A fourth-order (M = 4) KL expan-
sion was used to discretize the lognormal random
field representing the uncertain Young’s modulus
of the material, with unit mean value. The corre-
larion length of this field was taken to be lx = 20
spatial units in the x-direction and ly = 10 in the
y-direction. A vertical unit load was applied at the
tip of the cantilever, and a clamped boundary con-
dition applied at the other edge of the domain.

Results

The deterministic solution to this problem is
shown in figure 6.4(b). In table 6.1 an overview
of the solutions to the problem are given, for val-
ues of σ between 0.2 and 0.4, and α between 3 and
9. The plot showing the objective function values
is given in figure 6.5. Linear regression analysis
shows a perfect linear relation, with R2 = 1, in all
of the optimal solutions α for constant values of
σ . Clear differences in topology can be seen, par-
ticularly for lower values of α . When α increases
above 5, the topology remains similar, although the
shape changes between the various solutions.
The lognormal material uncertainties have intro-
duced an asymmetry in the solutions which is not
observed if the same problem is run with Gaus-
sian random field properties. Similarly, for a small
value of the field expansion (M = 2), this asymme-
try is not observed. Sufficiently high order trun-
cation of the field is necessary to capture the true
behaviour of the randomness. The analysis results
were confirmed using Monte Carlo simulations to
approximate first and second order responses of
the system. The compliance statistics for one of
the problems were calculated, and normalized rela-
tive to the SSFEM results and the results are shown
in table 6.2. The results show good agreement,
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x
y

(a) The domain, boundaries and loading of the 2D can-
tilever problem. The uncertainties on material properties
of the bulk are taken into account

(b) f (x) = 97.06. The deterministic solution to the 2D
cantilever problem

Figure 6.4: 2D cantilever problem. Problem set up and deterministic solution

α σ = 0.2 σ = 0.3 σ = 0.4

3
f (x) = 123.28 f (x) = 138.41 f (x) = 154.81

5
f (x) = 139.34 f (x) = 162.54 f (x) = 187.72

7
f (x) = 155.22 f (x) = 186.86 f (x) = 220.6

9
f (x) = 171.12 f (x) = 211.38 f (x) = 253.82

Table 6.1: 2D cantilever problem. Resulting topologies for various values of the standard deviation σ

and the factor α
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Figure 6.5: 2D cantilever problem. Plot of the objective function values for various values of α and
f (x)

Simulations µ σ

SSFEM 1 1

100 MC 0.9991 1.0094

1000 MC 1.0004 1.0038

Table 6.2: Comparison of SSFEM and Monte
Carlo results for compliance statistics for the 2D
cantilever problem

even for the small number of Monte Carlo simu-
lations considered.

6.4.2 3D Continuum bridge

Problem

In this example the 3D domain is defined as shown
in figure 6.6(a). The structural domain is dis-
cretized using 80×10×20 8-node brick elements,
loaded by a single unit point load in the center of
the top face, and is simply supported at the 4 lower
corners. Symmetry is used to reduce the problem
size. For all of the solutions that follow, the vol-
ume fraction is V0 = 0.2, rmin = 2.5, α = 7, µ = 1,
and p = 3 penalization is used. The standard devi-
ation and correlation lengths are varied.

Results

The deterministic solution is shown in figure
6.6(b), while the resulting topologies for various
values of the parameters σ and l are shown in fig-
ure 6.7. For small values of σ only minor variation
is visible. Note that for all the non-deterministic
solutions the main arch of the structure is split in
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σ [lx, ly, lz] = [20, 2.5, 5] [lx, ly, lz] = [40, 5, 10] [lx, ly, lz] = [80, 10, 2]

0.2

0.3

0.4

0.5

Figure 6.7: 3D bridge problem. Resulting topologies for various values of the standard deviation σ and
the correlation length l
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(a) The domain, boundaries and loading of the 3D
bridge problem. The uncertainties on material prop-
erties of the bulk are taken into account

(b) Deterministic solution to the 3D bridge problem

Figure 6.6: 3D bridge problem. Problem set up
and deterministic solution

two, meeting only at the loading point, while a sin-
gle arch characterizes the deterministic solution.
Another prominent difference is the topology of
the middle struts in the truss-like continua result-
ing from the optimization process. In several of the
structures these struts are separate on either side of
the bridge deck, however, with higher values of σ

the two struts merge into one, splitting apart near
the bottom. In profile it can be seen that the gen-
eral shape of the arch is more rounded for higher
values of l.

6.4.3 2D truss problem

Problem

A 2D truss problem, similar to that found in [8]
is used to demonstrate the method. This problem
consists of 25 nodes, each connected to every other
node by a bar element, 300 elements in total. The
nodes are spaced one unit apart in the x-direction
and 4

3 units apart in the y-direction. The structure
is simply supported at two bottom corner nodes
and loaded along the bottom edge of the structure
by unit vertical loads (figure 6.8(a)). The elements
are subdivided into 5 segments and a volume frac-
tion of V0 = 0.05 is taken as a constraint on the
problem. No filtering or penalization (p = 1) is ap-
plied to truss problems. A 3rd-order KL expansion
is used to discretize the random field.

Results

The deterministic solution to the problem is shown
in figure 6.8(b). The solutions for various values of
the standard deviation and α-coefficient are given
in figure 6.9. The values of the objective functions
are plotted for various values of the α and σ , for
l = 0.5 in figure 6.10(a). A linear relation can be
seen between the various solutions, as expected.
If these solutions are compared to the same plot
for l = 0.1 (figure 6.10(b)), it can clearly be seen
that the value of the correlation length has an effect
on the dispersion of the solutions in the function
space. This demonstrates the importance of con-
sidering this property in truss problems, something
that can only be achieved by including the random
field variations along the length of the elements.
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(a) Solution σ = 0.1, α = 5,
and l = 0.5

(b) Solution σ = 0.1, α = 10,
and l = 0.5

(c) Solution σ = 0.2, α = 5,
and l = 0.5

(d) Solution σ = 0.2, α = 10,
and l = 0.5

(e) Solution σ = 0.4, α = 5,
and l = 0.5

(f) Solution σ = 0.4, α = 10,
and l = 0.5

(g) Solution σ = 0.5, α = 5,
and l = 0.5

(h) Solution σ = 0.5, α = 10,
and l = 0.5

Figure 6.9: 2D truss problem probabilistic solutions
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6.5 Conclusions

This research presents a framework for topol-
ogy optimization of both continuum and truss
structures using spectral stochastic finite element
method. The analysis method is used to quantify
both the material uncertainties, and the variations
of the responses required for the compliance objec-
tive function. Using these quantities, expressions
for both the objective function and the sensitivi-
ties of the objective function with regard to the
design variables are found. A novel approach to
truss analysis is introduced to model material un-
certainties across elements of varying lengths. The
method is demonstrated on both 2D and 3D contin-
uum examples and on a truss example. The exam-
ples clearly show that varying the material parame-
ters has a significant effect on the shape and topol-
ogy of solutions. Even relatively small values of
the standard deviation of the material parameters
can have a significant effect on the optimal topolo-
gies. Robust topologies tend to be topologically
more complex than deterministic ones. Addition-
ally, asymmetries in the robust optimal solutions
may be observed when the material stiffness fol-
lows a lognormal distribution.
The truss example demonstrates the importance of
the correlation length to the solution of the truss
optimization problem. This parameter is indicative
of the effect of modelling the random field across
the entire length of the element. It has been seen
that significantly different results are achieved by
varying this parameter.

(a) 2D truss problem ground structure

(b) 2D truss problem probabilistic solutions

Figure 6.8: 2D truss problem: Problem set up and
deterministic solution
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(b) results for correlation length l = 0.1, for various values of σ

and α

Figure 6.10: Values of the objective function for
various parameters

Observing the form of the equilibrium equation, it
is clear that the introduction of loading uncertain-
ties can be achieved relatively easily, and without
significantly increased computational expense for
the analysis.
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Chapter 7

Truss optimization with discrete
design variables under uncertainty

In the previous chapter, the concept of robust
topology optimization (RTO) was explained. RTO
was applied to structural topology optimization on
structures with continuous design variables and
material stiffness uncertainties. Figure 7.1 shows
a series of test samples used to determine the char-
acteristics of a material. As seen in chapters 2,
3, 4 and 5, discrete design variables are of major
importance to designers of civil engineering truss-
like structures, such as this show in figure 7.2. In
this chapter the RTO approach from chapter 6 is
extended to uncertainties on both the material stiff-
ness (as discussed in chapter 6) and loading un-
certainties, for structures with discrete design vari-
ables. Chapter 2 discusses the necessity of mul-
tiobjective optimization algorithms, applying ge-
netic algorithms to discrete variable optimization
problems of truss-like structures. In this chapter
a multiobjective perspective to RTO is introduced
in order to address several challenges facing opti-
mizers of civil engineering structures. This chap-
ter can be seen as a synthesis of the various meth-
ods discussed in the thesis, containing elements of
each of the previous chapters to a greater or lesser
extent.

Figure 7.1: Test samples from a series of tension
tests to determine the characteristics of the yield
stress of a material

Figure 7.2: A truss pedestrian bridge at the Devos
Hospital in Grand Rapids, MI, USA, undergoing
construction. The loading of the bridge throughout
its lifetime is subject to a large amount of random
variation. Image courtesy of John Eisenschenk
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Robust topology optimization of truss-like
structures with random loading and material
properties: a multi-objective perspective1

Abstract

In this paper an approach to robust topology op-
timization for truss-like structures with material
and loading uncertainties, and discrete design vari-
ables, is investigated. Uncertainties on the loading
direction and magnitude, as well as spatially corre-
lated material stiffness, are included in the problem
formulation using spectral stochastic finite element
analysis, taking truss element length into account
in the uncertainties on the material properties. In
this way a more realistic random field representa-
tion of the material uncertainties can be achieved,
compared to classical scalar random variable ap-
proaches. Additionally, a multiobjective approach
is used to generate Pareto optimal solutions to the
truss optimization problems. In an example it is
shown how the mean and standard deviation of
the compliance can be considered as separate ob-
jectives, avoiding the need for a combination fac-
tor which may be difficult to choose correctly in
the classical single-objective approach. Further
examples considering the mass and deflection of
the structure are solved, showing the effects of the
novel truss-like structure material modelling on the
robust optimal designs.

7.1 Introduction

Structural optimization taking uncertainties into
account is of importance to designers, since real-
world structures require both efficient use of ma-
terial and accurate modelling of material prop-
erties, manufacturing tolerances and loading of
structures. When considering candidate topolog-
ical designs, engineers are concerned with the sen-
sitivity of the designs to small variations which

1J.N. Richardson, R. Filomeno Coelho, and S. Adri-
aenssens. Robust topology optimization of truss-like structures
with random loading and material properties: a multi-objective
perspective. Structural and Multidisciplinary Optimization,
2013. Submitted for publication

can be quantified as uncertainties. In order to ad-
dress this the concept of robust topology optimiza-
tion (RTO) has become increasingly important in
recent years, incorporating the variability of can-
didate solutions when considering the efficiency
of that solution for dealing with a specific struc-
tural problem. In the last decade several important
papers focussing on RTO have appeared. Kogiso
et al. [13] used a sensitivity-based RTO for com-
pliant mechanisms, with random variation on the
loading direction. De Gournay et al. [3] investi-
gated shape and topology optimization for mini-
mal compliance, minimizing the ’worst case’ com-
pliance under perturbation of the loading. Guest
and Igusa [8] used a mean compliance formulation
under uncertainties on the nodal locations, while
Lógó et al. [15] developed a new loading crite-
rion for compliance minimization for probabilis-
tic loading, and extended this to uncertainties on
the loading location [16]. Chen et al. [2] proposed
a robust shape and topology optimization (RSTO)
method, taking material uncertainties into account.
Tootkaboni et al. [28] developed a robust formula-
tion for mass minimization with uncertainties on
the material properties, using a polynomial chaos
approach. Wang et al. [29] demonstrated a method
for robust topology optimization applied to pho-
tonic waveguides, with manufacturing uncertain-
ties. However, in spite of this recent research in-
terest, several issues have been neglected:

1. The representation of random uncertainties in
the literature is not always accurate, leading
to incorrect quantification of the robustness of
solutions.

2. Generally more than one type of uncertainty
needs to be considered: material properties,
loading, nodal positions, etc. The derivatives
required for gradient-based methods become
difficult or extremely complicated to define
analytically in these circumstances.

3. Robust formulations of the topology opti-
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mization problem require a combination of
two distinct quantities: mean and standard de-
viation. Often this is done through a virtually
arbitrary linear combination of these response
quantities.

4. Truss structures contain bar elements in
which the material properties vary along the
length of a single element, and therefore can-
not be dealt with in the same way as contin-
uum structures.

5. Truss topology optimization problems often
require discrete variable formulations [20].
Gradient-based algorithms are often poorly
suited for addressing this class of problems.

6. Increasingly designers wish to take more than
one objective into account in the optimization
of real-world structures.

7. Designers are often concerned with objective
functions which are broader than the classi-
cal compliance or mass functions. Such ob-
jectives generally do not lend themselves to
classical gradient-based solutions and multi-
objective methods of this kind have not been
properly developed.

Starting from these considerations the paper is ar-
ranged as follows: the approach to the uncertainty
modelling and the optimization approach is given
in section 7.2, followed by an explanation of the
multiobjective approach in section 7.3. Finally,
several examples are given in section 7.4 and con-
clusions discussed in section 7.5.

7.2 Uncertainty quantification
and optimization approach

The representation of uncertainties in robust opti-
mization of truss structures has been relatively ne-
glected and investigations thus far have failed to
take some key features of trusses, such as element
length, into account. Asadpoure et al. [1] devel-
oped a method for RTO of truss structures taking
material stiffness uncertainties into account, as-
signing scalar uncertainties to each cross-section.
Yonekura and Kanno [30] used semidefinite pro-
gramming to solve truss robust topology problems
with uncertainties on loading, while Kang and Bai
[11] recently considered bounded uncertainties in
truss structures.

On the other hand random fields allow for the ex-
pression of spatially varying material properties to
be taken into consideration, and the stochastic fi-
nite element framework allows for integration of
these fields into the structural analysis. The mean
and standard deviations of the resulting structural
responses can be extracted from this analysis and
used in the definition of the objective function(s).
Within the robust formulation, it is required to
take both first order (mean) and second (variance
or standard deviation) order statistical moments of
the structural response h into account. Generally a
single-objective approach is adopted, considering
the weighted sum of these two quantities:

min
x

f (x) = E [h(x)]+α.Std [h(x)] (7.1)

However, particularly in the case of discrete vari-
able problems, the choice of α may not be evident.
For this purpose, it is of interest to consider the sta-
tistical moments of the response as separate objec-
tives within a multiobjective framework, as done
by Padovan et al. [18] for example.
In this investigation the uncertainties on the
Young’s modulus are expressed in terms of a spa-
tially varying random field, which is discretized
using a Karhunen-Loève (KL) expansion. Random
fields allow for expression of spatially correlated
random quantities, while being general enough
to model uncorrelated quantities too. A novel
application of Spectral Stochastic Finite Element
Method (SSFEM) [27] is used for truss structures
to derive the statistical measures of the response,
allowing for a quantification of the terms of the
objective functions and constraints. This method
was developed by Richardson et al. [22], in which
it was discussed how the framework could be ex-
tended to allow for introduction of loading uncer-
tainties.

7.2.1 Material uncertainties
Material uncertainties are quantified in terms of
probability distributions on values such as the
Young’s modulus. Material models are generally
expressed in terms of Gaussian or lognormal prob-
ability distributions, both of which can be taken
into account within the SSFEM framework. SS-
FEM discretization generally consists of series ex-
pansion methods, expanding any realization of the
original random field H(x,θ) over a complete set
of deterministic functions [27], where θ is a vector
of random variables. The obtained series are then
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truncated after a finite number of terms. Various
discretization methods are available of which the
KL expansion is the most efficient in terms of the
number of random variables required for a given
accuracy [27]. A Gaussian random field H(x,θ)
can be expanded as follows:

H(x,θ) = µ(x)+
∞

∑
i=1

√
λiξi(θ)ϕi(x) (7.2)

where µ(x) is the mean value of the random phe-
nomenon, λi’s and ϕi’s respectively the eigenval-
ues and eigenfunctions of the covariance kernel,
and ξi’s the random variables. The approximated
field Ĥ can be found by truncating terms above
some value M:

Ĥ = µ(x)+
M

∑
i=1

√
λiξi(θ)ϕi(x) (7.3)

In continuum structures the random field may
be correlated over the entire domain, however in
truss-like structures this is not the case. Truss anal-
ysis accounting for material property uncertainty
is often achieved by associating a random variable
with the cross section area of each bar element.
This approach has two fundamental shortcomings:

1. The approach presupposes a small scale for
the problem, while trusses and individual
truss elements are typically large in scale, and

2. the relative lengths of the elements are ne-
glected in the probabilistic model.

At the scale of truss elements, often several me-
ters in length, the variability of material proper-
ties along the length of the element can be very
significant, spatially correlated quantities. Global
2D and 3D correlated random fields are not appro-
priate for modelling this variability, since no cor-
relation exists between the material properties of
separate elements. The proposed approach con-
structs individual 1D random fields across the in-
dividual truss elements, discretizing elements into
sub-divisions. The analysis and topology variables
apply to the truss scale elements and nodes (figure
7.3(a)). If each element is subdivided as shown in
figure 6.3, a simple expression can be found to ap-
proximate the relative stiffness of the element as a
whole, based on sampling the element-level field:

Ĥe =
1

Nse
∑
j=1

1(
µ j(x j)+

M
∑

i=1

√
λiξi(θ)ϕi(x j)

) (7.4)
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Figure 7.3: Schematic representation of the uncer-
tainties on the material stiffness and loading mag-
nitude and direction
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where Ĥe is the element-level random field, µ j is
the mean value of the random field for sub-division
j, and Nse is the number of sub-divisions. Since
µ j(x j) is constant for the element e, the following
expression results:

Ĥe = µ(x)+
M

∑
i=1

√
λiξi(θ)

Nse
∑
j=1

1
ϕi(x j)

(7.5)

The remainder of the analysis method is analogous
to the continuum case and was introduced in [22].
The reader is referred to this publication for further
details.

7.2.2 Loading uncertainties
It is desirable to quantify the uncertainty on the
magnitude and direction of the load applied to the
structure. The framework described here allows
for loading uncertainties to be introduced directly.
The loading uncertainty can be expanded in the
polynomial basis as follows, as described in [26]:

f =
∞

∑
j=0

f jΨ j (7.6)

Practically the uncertainties on the load magnitude
and direction can be modelled as additional vectors
with random magnitude and fixed direction paral-
lel to the global coordinate system (figure 7.3(b)).

7.2.3 Spectral Stochastic Finite Ele-
ment Method

The above uncertainties can be combined for the
purposes of the analysis, using SSFEM. The ele-
ment stiffness matrix Ke can then be written as:

Ke(θ) = Ke,0 +
M

∑
i=1

ξi(θ)
√

λi

∫
Ωe

ϕi(x)B>D0BdΩe

(7.7)
where Ke,0 is the deterministic element stiffness
matrix, B is the matrix that relates the components
of strain to the element nodal displacements, and
D0 the deterministic elasticity matrix.
Assembling matrices Ke,i =√

λi
∫

Ωe

ϕi(x)B>D0BdΩe to their global form

Ki, the equilibrium equation becomes:(
K0 +

M

∑
i=1

Kiξi(θ)

)
u(θ) = f (7.8)

Modelling of the response to a random process re-
quires an expansion in which the covariance func-
tion need not be explicitly known [7]. The PCE
assumes the random displacements u(θ) can be ex-
panded as follows:

u(θ) =
P−1

∑
j=0

u jΨ j(θ) (7.9)

where the set {Ψ j}, j = 0 . . .∞, is a set of orthog-
onal polynomials in ξk, and k = 0 . . .∞.Truncating
terms in equation (7.8) and substituting equation
(7.9):(

M

∑
i=0

Kiξi(θ)

)(
P−1

∑
j=0

u jΨ j(θ)

)
=

P−1

∑
j=0

f jΨ j

(7.10)
A more convenient form of equation (7.10) can be
found by minimizing the residual due to trunca-
tion, arriving at the following form: K0,0 . . . K0,P−1

...
. . .

...
KP−1,0 . . . KP−1,P−1


 u0

...
uP−1

=

 f0
...

fP−1


(7.11)

where Ki, j is an N×N matrix, ui are N×1 vectors
associated with the polynomial expansion of the
response, and fi are N×1 vectors of loading. Note
that the system to be inverted is NP×NP in size,
so that the size of the PCE expansion will have a
significant impact on the computational cost of the
solution. The details of this and other derivations
can be found in [27] and [26].

7.2.4 Objectives and constraints
Innumerable objective functions can be defined
and implemented in this framework. Here we have
chosen to demonstrate the method using three such
functions, defined in this section.

Compliance

The compliance objective function is the subject
of a large portion of the structural optimization lit-
erature. For the case of deterministic loading the
expression for the expectancy (mean value) of the
compliance can be stated as follows:

E[C] = E[f>u] = f>0 E[u] = f>0 u0, (7.12)

and the variance as:

Var[C] =Var[f>u] = f>0 Cov[u]f0 (7.13)
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where Cov[u] is the covariance matrix of u, and is
found by the expression [27]:

Cov[u] =
P−1

∑
j=1

E[Ψ2
j ]u j.u>j (7.14)

where Ψ j are the components of the polynomial
basis of the displacement field corresponding to
displacement vectors u j. Equation (7.12) relies on
the fact that the PCE of the response is of the form
that E[u] = u0, where u0 corresponds to the nodal
displacements for polynomial Ψ0. The details of
the derivation can be found in [22].

Mass

Perhaps equally as prevalent in the literature is the
mass objective function. This function can be very
simply stated as:

M = ρ

Ne

∑
e=1

xeVe (7.15)

where ρ is the material volumeric mass factor.

Volume fraction constraint

The compliance problem or a deflection minimiza-
tion problem typically requires an upper limit on
the volume (often in the form of a simple con-
straint referred to as the volume fraction in the lit-
erature). The volume fraction constraint can be
written as:

Ne
∑

e=1
xeVe

V0
−1≤ 0 (7.16)

7.3 Multiobjective approach

Metaheuristic algorithms pose solutions to several
of the problems stated in section 7.1. They are gen-
erally gradient free, capable of handling multiple
objectives and well suited to discrete and mixed
variable problems. Due to these characteristics,
they also deal well with the many types of objec-
tive functions and constraints typically arising in
structural optimization applications. While the use
of non-gradient algorithms has been criticised in
the literature [25], these algorithms are very useful
in situations where the lack of gradient informa-
tion is present (due to the non-differentiability of
the objective function, a function of the stochastic

variables in both material and loading uncertain-
ties). Truss problems also do not suffer from issues
of mesh coarseness, since each element represents
a truss bar.
Of the metaheuristic algorithms, genetic algo-
rithms (GAs) (and their multiobjective counter-
parts) are perhaps the most widely applied in struc-
tural optimization [10, 12, 17]. A simple robust
optimization procedure for truss structures using
GA’s has been introduced by [24], only consider-
ing mass minimization. Deb and Gupta [4] inves-
tigated robust Pareto-optimal solutions in multiob-
jective optimization, while Gunawan and Azarm
[9] researched multiobjective robust optimization
using a sensitivity region concept. Quiang et al.
[19] used a GA combined with a dgree of robust-
ness concept to develop a multiobjective robust op-
timization method. A very recent study by Lee and
Kwong [14], considered tolerances of design vari-
ables and variation in the problem parameters for
multiobjective problems.
The general multiobjective optimization problem
can be stated as follows: given some structural per-
formance criteria
fi(x) (i = 1, . . . ,k), find the vector x∗ = [x∗1, . . . ,x

∗
n]

which minimizes the vector function: f(x) =
[ f1(x), . . . , fk(x)], subject to g(x) ≤ 0 and h(x) =
0, the constraints of the structural problem. In the
case of structural optimization problems x is the
vector of design variables, where g(x) and h(x)
represent respectively the inequality and equality
constraints on the problem. Various multiobjec-
tive genetic algorithms are available in the litera-
ture. Among them the Non-dominated Sorting GA
- II (NSGA-II) was introduced by Deb et al. [5]
employs an elitist sorting process, generating new
populations by sorting solutions according to their
rank.
The multiobjective formulation allows for freedom
in the definition of separate objectives. It is possi-
ble to define multiple, separate robust objectives of
the form in equation (7.1) and use these in the op-
timization. It is also possible to decouple each ob-
jective of the form equation (7.1) into two separate
objectives, each consisting of the mean or standard
deviation of the original objective. In this way two
times the number of objectives are considered by
the optimization procedure.
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Figure 7.5: Solutions to the robust compliance problem in mean and standard deviation space

Figure 7.4: 2D cantilever truss-like ground struc-
ture

7.4 Examples

7.4.1 Robustness topology optimiza-
tion for compliance minimiza-
tion as a multiobjective problem

In equation 7.1, a factor α is used to linearly com-
bine the mean and standard deviation into a single
objective function. The choice of the α-factor is a
point of some discussion in the literature. If one
considers the mean and standard deviation as ob-
jective functions within their own right, the single
objective problem becomes a bi-objective prob-
lem, where α reflects the preference of the de-
signer. In this problem the 43-bar truss-like struc-
ture shown in figure 7.4 is considered. The spacing
of the grid is one unit in both the x-direction and
y-direction. The variation on the material prop-
erties is quantified using a Gaussian, 1D random
field with standard deviation of σE = 0.35 times
the mean value of the Young’s modulus and a cor-
relation length of 1 unit, with 5 subdivisions per
truss bar element. Both KL and PC expansions of
order 2 were used. The allowed bar cross section
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area sizes are 0 and a range from 4 to 12 in steps
of 0.8 square units. A volume fraction of 1

6 was
used to constrain the problem. The GA parame-
ters chosen are: crossover = 0.9, mutation = 0.5,
and population size= 400. In this problem, robust
minimization of the compliance was considered.
Using the multiobjective approach, two structures
with very close mean and standard deviations were
found. These two structures are Pareto dominant
with respect to the other possibilities and have the
same topology, shown in figure 7.5, with the label
"α =?". The solutions to the single-objective prob-
lems for α = 0.1, α = 1, α = 10 and α = 100 are
also shown in the figure. The topologies for α = 1
and α = 10 are also given. Note that the optimal
solution for α = 100 is dominated by α = 0.1, but
dominates α = 10. The multiobjective approach
dominates all of the tested single-objective solu-
tions. The solutions found using the multiobjective
approach have a topology which is distinct from
the tested single-objective solutions.

7.4.2 Optimization of a truss-like
structure for minimum mass
and deflection

Many practical optimization problems require the
consideration of objective functions such as mass
and deflection. In this example the same truss-
like cantilever structure (the ground structure is
shown in figure 7.4) consisting of 43 bar elements
is considered. The allowed bar cross section area
sizes are 0 and a range between 8 and 12 in steps
of 0.8 square units. The value of the α-factor
was 5. All GA and geometric parameters are the
same as in the previous example. Two scenarios
are considered: i) the deterministic case, ii) and
variation of both the loading and material prop-
erties (σP = 0.35 and σE = 0.35). The Pareto
fronts of the deterministic and probabilistic solu-
tions are shown in figure 7.6, along with some of
the topologies present in the fronts. In this fig-
ure the mean values of the mass and compliance
functions are shown for the deterministic and prob-
abilistic cases. Clear differences can be seen in
the topologies of the respective fronts, resulting in
greater mean mass and compliance function values
for the probabilistic case. Note that in the proba-
bilistic front, some of the solutions are in fact not
Pareto dominant (they are dominated by other so-
lutions). This is due to the fact that the optimiza-
tion routine was optimizing a combination of mean

and standard deviation.
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7.5 Conclusions and further
work

A method was demonstrated for robust topology
optimization of discrete variable truss-like struc-
tures with material and loading uncertainties. Ran-
dom fields were used to model the variation of
the material stiffness along the bar elements of
the structures. Loading uncertainties were intro-
duced through a simple adaptation of the spectral
stochastic finite element analysis method. A multi-
objective approach was used, taking both the mean
and standard deviation as objectives. In the exam-
ple, this approach eliminates the need to choose the
combinatoric factor which casts the problem as a
single-objective one. The multiobjective approach
outperformed all of the tested single-objective so-
lutions, in which various values of the combina-
toric factor α were used. A slightly surprising re-
sult of the example is the existence of two very
similar optimal solutions. The existence of multi-
ple solutions may be attributable to the presence of
discrete design variables. This phenomenon may
be similar to the discussion on the non-existence
of symmetric optimal solutions in discrete design
variable problems, as discussed in [21].
In the case of the mass and compliance minimiza-
tion problem, both material stiffness uncertainties
and loading uncertainties were considered. The re-
sults demonstrated a number of best trade-off ro-
bust solutions to the problem. As expected the ro-
bust solutions were dominated by the deterministic
Pareto front. In the mean objective value space, not
all solutions to the robust problem were Pareto op-
timal.
As Sigmund points out [25], graph theoretical
approaches such as those used in [6] may be
more useful to solve truss-like problems than non-
gradient approaches. This should be further inves-
tigated.
Including uncertainties on the geometry could be a
final step in the development of a complete method
for robust truss topology optimization. It should be
investigated how this effects the SSFEM approach
proposed in this paper.
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8.1 Main findings of the re-
search

The main focus of the thesis has been on develop-
ing topology optimization methods to be applied to
truss-like structures. A method for improving per-
formance in discrete variable topology optimiza-
tion of these structures has been proposed. Topol-
ogy optimization of a number of important struc-
tural systems, such as grid shells and bracing sys-
tems, has been addressed in detail. A very spe-
cific issue relating to geometric symmetry in dis-
crete variable optimization, which became evident
from the optimization of these special structures,
was also investigated. Methods were developed to
allow for robust optimization of both continuum
and truss-like structures within a common frame-
work, for both single and multiple objectives.
Advancing topology optimization from theory to
practice in civil engineering structures is a chal-
lenge with many facets. While many challenges
remain, in this thesis, several important aspects
have been addressed. The following three subsec-
tions summarize these answers to the challenges
expressed in section 1.2.

8.1.1 Improving genetic-based topol-
ogy optimization by incorporat-
ing kinematic stability consider-
ations

The presence of discrete topological design vari-
ables in the class of problems addressed, leads to
algorithm performance problems. In order to ad-
dress this a novel approach has been proposed. The
procedure makes use of a stable initial population
and chromosome repair of kinematically unstable
structures. By implementing these adaptations,
knowledge of structural behaviour is added to the
optimization algorithm. These additions allow for
a compromise with the explorative character of
the heuristic algorithm, reducing the search space
through addition of information. The procedure
was demonstrated on single-objective academic
examples and compares well to the results in the
literature, demonstrated on multiobjective prob-
lems showing advantages over unmodified meth-
ods. Large scale problems appear to benefit most
from the proposed method, making this method of
practical relevance to designers of civil engineer-
ing structures.

8.1.2 Optimization methods applied
to grid shell and façade bracing
design

Free form shells are structurally inefficient and
costly, while grid configurations are often chosen
with little consideration of structural and construc-
tional efficiency. The approach in chapter 3 offers
solutions to these problems by suggesting a two-
phase method: form-finding followed by a refine-
ment of the grid configuration. The case study of
three grid shells with the same span but different
boundary conditions demonstrates the viability of
this method as a preliminary design tool for grid
shells. The configuration of the grid shell elements
found in the case study are dissimilar to the tra-
ditional repeated pattern of regularly spaced ele-
ments for grid shells. By allowing for an optimiza-
tion of the grid shell configuration, very significant
reductions in mass were realized.
Similarly, a topology optimization method was
developed for the preliminary design of bracing
systems. The approach uses multiobjective Ge-
netic Algorithms to find a series of best compro-
mise (Pareto optimal) solutions. The value of this
method lies in its flexibility to provide solutions,
allowing the designers to select optimal solutions
when constraints change and modifications to the
structural system occur. Since the main cost of
bracing systems lies in the connections, reducing
the number of bracings required results in a signif-
icant cost savings.
Through a detailed investigation of symmetry and
asymmetry in discrete variable optimization it has
been demonstrated that, given a binary topology
problem of the type discussed, no symmetric so-
lution necessarily exists. The number of design
variables and degree of symmetry play important
parts in the probability of finding symmetric solu-
tions in discrete problems. It was shown that as
the size of the discrete design set increases, this
probability does not tend to 1, but instead to val-
ues related to the group symmetry itself. However,
the probability will decrease significantly with in-
creasing design set size for certain types of sym-
metry. The examples demonstrate that the prob-
ability of achieving symmetric results to discrete
symmetric problems remains very low, even when
the design set is very large. This investigation may
have wide-ranging implications to any form of op-
timization with geometric symmetry and discrete
design variables.
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8.1.3 Accounting for random uncer-
tainty in structural optimization

The research on uncertainties in structural opti-
mization presents a framework for topology op-
timization of both continuum and truss structures
using spectral stochastic finite element method.
The analysis method was used to quantify material
uncertainties, loading uncertainties, and the vari-
ations of the responses required for the objective
functions. A novel approach to truss analysis was
introduced to model material uncertainties across
elements of varying lengths. An investigation of
robust topology optimization of discrete variable
truss-like structures was undertaken, using a mul-
tiobjective approach. The methods were demon-
strated on both 2D and 3D continuum and on truss
examples. The examples clearly show that vary-
ing the material parameters has a significant effect
on the shape and topology of solutions. Even rela-
tively small values of the standard deviation of the
material parameters can have a significant effect on
the optimal topologies. Robust topologies tend to
be topologically more complex than deterministic
ones. Additionally, asymmetries in the robust op-
timal solutions may be observed when the material
stiffness follows a lognormal distribution.
The truss examples demonstrate the importance of
the correlation length to the solution of the truss
optimization problems. This parameter is indica-
tive of the effect of modelling the random field
across the entire length of the element. It has been
seen that significantly different results are achieved
by varying this parameter.

8.2 Suggested further work
The research carried out in this thesis has helped
to highlight a number of challenges yet to be ad-
dressed in the theoretical development of methods
for topology optimization in structural applica-
tions. Broadly speaking these challenges relate to
at least on of the following aspects: the nature of
the variables, the problem formulation, the nature
of the objectives, and, finally computational cost.

A number of challenges relating to the vari-
ables used in the optimization procedure are very
pertinent to future research:

• In the above investigation material and load-
ing random uncertainties were included in the
RTO formulation. As an extension, random

uncertainties on the geometry should also be
included [14]. Additionally, knowledge from
experiments could be introduced to more ac-
curately characterize the random uncertain-
ties. For this purpose a Bayesian approach
could be used [10, 11].

• Discrete variable optimization has been a ma-
jor thread throughout this thesis. This type
of optimization is quite distinct from contin-
uous variable optimization. A review of the
literature shows that this fact has been some-
what under appreciated. Further investiga-
tion into the specific difficulties and perhaps
opportunities of this type of optimization is
necessary to be truly rigorous in the under-
standing of structural optimization. Further-
more categorical variables play a major role
for the implementation of optimization meth-
ods in structural engineering. The represen-
tation and handling of these variables in op-
timization algorithms is still an open ques-
tion [8].

Besides the impact of the choice of variables, the
problem formulation itself also presents several
challenges to optimization research:

• In this manuscript, amongst other things, a
common framework was presented for RTO
of both continuum and truss-like structures.
For the purposes of general structural opti-
mization problems, a more general frame-
work is necessary, able to deal with various
types of structures, different types of design
variables, multiple objectives, different types
of uncertainties, topology, shape and sizing
optimization, both robustness and reliability,
etc. For instance, combining robust and reli-
able optimization would be of major impor-
tance, since both of these aspects are incredi-
bly important to real-world design problems.
The method used in chapters 6 and 7 to in-
vestigate RTO, were originally applied to re-
liability analysis [17]. The SSFEM method
is therefore a very promising candidate for
a possible robust and reliable topology opti-
mization framework.

• Multi-objective problems are becoming more
and more relevant to designers. For this pur-
pose novel methods have been proposed to
integrate multi-objective optimization and re-
liability in a common framework, account-
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ing for the specific nature of Pareto optimiza-
tion [3, 7, 15]. The same could be achieved
for RTO and a combined robust and reliable
topology optimization formulation.

• Large scale structural optimization problems
(especially those with discrete design vari-
ables) offer numerous challenges to current
optimization procedures. Not least of these
challenges is the complex nature of large
scale structures such as bridges, in which
many partners work together on integrated
design models. An example of this mul-
tidisciplinary design approach is the use of
Building Information Models in which vari-
ous partners have access to the same design
virtual model, containing information on all
aspects of the design. Combining various op-
timization routines in a single model will be
one of the major challenges facing optimiz-
ers in the future. Multidisciplinary design op-
timization (MDO) may offer a way to deal
with this problem in an efficient way. MDO
can be applied to complex problems, decom-
posing them and optimizing the parts concur-
rently. This method allows for specializations
to work together on one structure, achiev-
ing a more efficient optimization process as
demonstrated by Balling et al. [2]. MDO in-
corporating uncertainty is in its relative in-
fancy, with only some research has been done
on reliability quantification in MDO [9]. Ro-
bust and reliable MDO could be a very fruit-
ful area of research indeed, although presum-
ably extremely complex and computation-
ally expensive. Metamodels could potentially
serve as a way to facilitate this complexity
by reducing the computational cost require-
ments.

The complexities of the problem formulation are
compounded by the nature of the objectives,
which are becoming more and more sophisticated
with the ever changing requirements of designers.
This raises several important challenges:

• Minimization of objectives such as mass and
compliance energy have been studied exten-
sively in the literature and are primarily rele-
vant to the aerospace and automotive indus-
tries. In this context they are synonymous
with the concept of sustainability since they
reduce fuel consumption and cost. In the civil
engineering context, sustainability is instead

associated with concepts such as embodied
energy or maintenance costs [1]. Maximizing
sustainability may require the definition of
complex metrics which are not simply com-
posed. It has been discussed in chapter 7
that metaheuristic algorithms offer the oppor-
tunity to take complex objectives into account
[4, 16].

• Accounting for aspects such as non-linear be-
haviour [12], damage and other physics (heat
exchange for façades, etc.) is important to de-
signers. This avenue of research may be very
useful and important to optimizers of civil en-
gineering structures, in order to establish the
relevance of the discipline both academically
and to industry.

Large, complex simulations to evaluate the ob-
jectives require extensive computational resources.
As one of the main barriers to acceptance of struc-
tural optimization in practice is the feasibility of
optimization methods to the industry.
Computational cost in terms of time and re-
sources remains a serious challenge for develop-
ments in the field of structural optimization. At
this point two prominent avenues exist for possi-
ble improvement:

1. Parallel computing (with the modification in
the algorithms it requires) [1], and

2. model reduction, by Proper Orthogonal De-
composition [5], Proper Generalized Decom-
position [13], Krylov decomposition [5], etc.

Both of these aspects are important for the fur-
ther reduction of the computational cost of struc-
tural optimization methods. An interesting ap-
plication that could benefit from improved com-
putational performance is the simultaneous cou-
pling of form-finding with structural optimization
(as alluded to in chapter 4). Form-finding meth-
ods have been developed somewhat independently
of structural optimization methods, while they are
both of great interest to designers. Combining
form-finding and optimization methods [6] poses a
number of challenges for researchers, not least of
which is the computational cost of truly simultane-
ous form-finding and structural optimization. In-
telligent methods, for example refining the conver-
gence criterion of both form finding and optimiza-
tion algorithms at consecutive iterations, could be
relevant in this regard.
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The SSFEM approach is based on the form of the equilibrium equations in equation (6.13). The error
r in this form can be minimized by requiring it to be orthogonal to the Hilbert space spanned by the
polynomials Ψl in the PCE [1]:

E[r.Ψl ] = E[
P−1

∑
k=0

M

∑
i=0

KiukξiΨkΨl− fΨl ] = 0 (A.1)

It can also be shown that:

u j =
E[uΨ j]

E[Ψ2
j ]

(A.2)

Using the adjoint method we can rewrite equation (6.16) as:

E[C] = f>0 E[u]−
P−1

∑
l=0

λlE[r.Ψl ] (A.3)

Differentiating with respect to the design variables x:

∂E[C]

∂x
= f>0

∂E[u]
∂x

−
P−1

∑
l=0

λl

P−1

∑
k=0

M

∑
i=0

E
[

ξiΨkΨl
∂Ki

∂x
uk +ξiΨkΨlKi

∂uk

∂x

]
(A.4)

We now choose λl = u>l , and recall that Ψ0 = 1:

∂E[C]

∂x
=f>0

∂E[u]
∂x

−
P−1

∑
l=0

P−1

∑
k=0

M

∑
i=0

E
[

ξiΨkΨlu>l
∂Ki

∂x
uk +ξiΨkΨlu>l Ki

∂uk

∂x

]
(A.5)

=f>0
∂E[u]
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∑
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ξiΨkΨlu>l
∂Ki

∂x
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=f>0
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M
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∂Ki
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At the element level this simplifies to:

∂E[C]

∂xe
=−

P−1

∑
l=0
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∑
k=0

M

∑
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=− p(xe)
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M
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∗
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where K∗e is the deterministic element stiffness matrix. The derivative of the standard deviation can be
found in a similar manner.

Var[C] = f>0 Cov[u]f0− term (A.11)

∂
√
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1
2
√

Var[C]

∂

∂x

(
f>0

(
P−1

∑
j=1

E[Ψ2
j ]u j.u>j

)
f0

)
(A.12)
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It can be shown that u>j
∂u j
∂x is symmetric, and therefore:
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The last equation follows since we have seen that:
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At the element level, this reduces to:
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In structural optimization, generally no analyti-
cal solution to the above mentioned problems are
possible. Therefore the search space is navigated
in search of the optimal solution, by means of
a numerical optimization algorithm. These nu-
merical procedures fall into two broad categories:
gradient-based and gradient-free algorithms. Hy-
brid algorithms making use of both gradient and
non-gradient based algorithms are also used. What
follows is a very short overview of the prominent
algorithms used in the field.

B.1 Overview of gradient-
based optimization algo-
rithms in topology opti-
mization

Gradient-based optimization methods have a long
and rich history, arising from the development
of differential calculus by Leibniz and Newton.
Gauss and Newton developed the earliest itera-
tive optimization methods. This class of optimiza-
tion method makes use of the first and second or-
der derivatives of the objective functions and con-
straints, or some approximation of these gradi-
ents. The popularity of these approaches lies in the
mathematical rigour and relative efficiency of the
computations. Several methods have successfully
been applied in the topology optimization litera-
ture. In simple terms gradient-based optimization
algorithms assess the gradient of the constrained
objective function at a given point in the func-
tion space and use this information to advance the
search in the next iteration(s). Some of the most
popular gradient-based algorithms used in struc-
tural optimization are:
Sequential linear programming (SLP) [8] starts
from an estimate of the optimal solution, and
solves a sequence of linearisation of the model.
This is equivalent to solving a series of linear pro-
gramming problems, which is relatively compu-
tationally inexpensive. Due to these advantages,
SLP is used quite widely in structural optimiza-
tion [26, 30].
Sequential quadratic programming (SQP) [21, 27]
requires twice continuous differentiability of both
the objective function and the constraints. The ba-
sis of the SQP method is the solution of a sequence
of optimization subproblems. Each of the sub-
problems is in itself an optimization of a quadratic

model of the objective function, subject to lin-
earised constraints.
Optimality criteria (OC) methods [24] consist of a
combination of a statement governing the state of
the design (the optimality criteria definition) and
an algorithm used to resize the structure to satisfy
the optimality criterion. An example of an opti-
mality criterion is the so-called fully stressed de-
sign state. OC has been applied in some of the fun-
damental works on topology optimization [4, 24]
The method of moving asymptotes (MMA) [5, 25]
uses a strictly convex approximating subproblem
for each step of the iterative procedure. The gen-
eration of the subproblems is dictated by the mov-
ing asymptotes. MMA in particular has become
widely applied in topology optimization literature
[1, 22, 28].

B.2 Overview of gradient-free
optimization algorithms in
topology optimization

Gradient-free algorithms are widely applied in
structural optimization problems where gradient-
based methods cannot be applied1. In simple
terms, gradient-free algorithms make use of a sam-
pling of the search space to make inferences about
the optimality of solutions. Broadly speaking the
following categories can be defined [11]:

1. Physical Algorithms

2. Swarm Algorithms

3. Direct Search Algorithms

4. Evolutionary Algorithms (EA)

Physical Algorithms include Harmony
Search [9, 16], inspired by sound wave inter-
action, Simulated Annealing [15, 18, 29], based
on the annealing process of cooling metal, Ray
optimization [12, 13], inspired by the transition
of light between mediums, and Tabu [10] search
which attempts to escape local minima by com-
bining with other algorithms, improving local
searches by using memory structures that describe
the visited solutions or user-provided sets of rules.
Swarm Algorithms include Ant Colony opti-
mization [2, 6, 17], which is inspired by the
search process employed by ants looking for

1This section owes much to the work of Hare et al. [11].
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food, Particle Swarm optimization [7, 14, 17, 20],
an algorithm using moving ’particles’ which
are influenced by their neighbours in how they
move throughout the search space, and Artificial
bee colony [19], optimization which mimics the
behaviour of a swarm of bees foraging for food.
Direct search algorithms include directional direct
search [3], simplicial direct search [23], which
evaluates the objective function at a set of points
forming a simplex to determine the next iteration,
simplex gradient methods, which uses a simplex
gradient as a substitute for the gradient, and trust
region methods.
Evolutionary Algorithms are perhaps the most
prominent of the gradient-free optimization al-
gorithms, of which Genetic Algorithms (GA’s)
are the most widely applied. These algorithms
use principles inspired by biological evolution
in populations. In general the algorithm relies
on three main operators: selection, mutation and
cross-over. Successive iterations (generations)
are found by assessing the fitness of individual
designs in the previous population and applying
these three operators based on this fitness. GA’s
are used in some of the papers in this text.

While many optimization algorithms are available,
it is important to be able to match the particulars
of the problem to be optimized and the strengths
of chosen algorithm. A thorough understanding
of the search space is of primal importance for
this. The parametrization and type of information
available to the optimization algorithm will play
an important roll in this regard.
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[194] V. Černý. Thermodynamical approach to
the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimiza-
tion Theory and Applications, 45(1):41–51,
January 1985.

[195] R.J. Yang and C.H. Chuang. Optimal topol-
ogy design using linear programming. Com-
puters & Structures, 52(2):265 – 275, 1994.



BIBLIOGRAPHY 158



List of Publications

159



PUBLICATIONS 160

Book chapters

[1] J. N. Richardson, R. Filomeno Coelho, Ph.
Bouillard, and S. Adriaenssens. Discrete
topology optimization – Connectivity for
gridshells. In S. Adriaenssens, Ph. Block,
D. Veenendaal, and C. Williams, editors,
Shells for Architecture – Form finding and
structural optimization. Routledge Architec-
ture/Taylor & Francis, 2013. In press.

Journal articles

[2] J.N. Richardson, R. Filomeno Coelho, and
S. Adriaenssens. Robust topology opti-
mization of truss-like structures with ran-
dom loading and material properties: a multi-
objective perspective. Structural and Multi-
disciplinary Optimization, 2013. Submitted
for publication.

[3] J.N. Richardson, R. Filomeno Coelho, and
S. Adriaenssens. A unified stochastic frame-
work for robust topology optimization of
continuum and truss-like structure. Comput-
ers & Structures, 2013. Submitted for publi-
cation.

[4] J.N. Richardson, G. Nordenson,
R. Laberenne, R. Filomeno Coelho, and
S. Adriaenssens. Flexible optimum design
of a bracing system for faÃ§ade design
using multiobjective genetic algorithms.
Automation in Construction, 32(0):80 – 87,
2013.

[5] J.N. Richardson, S. Adriaenssens, Ph. Bouil-
lard, and R. Filomeno Coelho. Symmetry and
asymmetry of solutions in discrete variable
structural optimization. Struct. Multidiscip.
Optim., 47(5):631–643, May 2013.

[6] J.N. Richardson, S. Adriaenssens,
R. Filomeno Coelho, and Ph. Bouillard.
Coupled form-finding and grid optimiza-
tion approach for single layer grid shells.
Engineering Structures, 52(0):230 – 239,
2013.

[7] J.N. Richardson, S. Adriaenssens, Ph. Bouil-
lard, and R. Filomeno Coelho. Multiobjec-
tive topology optimization of truss structures
with kinematic stability repair. Structural
and Multidisciplinary Optimization, 46:513–
532, 2012.

Conference proceedings

[8] J. N. Richardson, S. Adriaenssens, G.
Nordenson, R. Filomeno Coelho, and R.
Laberenne. Design of a museum facçade
bracing system for changing performance
requirements using multiobjective optimiza-
tion. In ASCE/SEI Structures Congress,
Boston, Massachusetts, April 3–5, 2014. Ac-
cepted.

[9] J.N. Richardson, S. Adriaenssens, and
R. Filomeno Coelho. Robust topology op-
timization of 2d and 3d continuum and truss
structures using a spectral stochastic finite el-
ement method. In 10th World Congress on
Structural and Multidisciplinary Optimiza-
tion (WCSMO 10), Orlando, Florida, USA,
May 19–24, 2013.

[10] J. N. Richardson, S. Adriaenssens, Ph. Bouil-
lard, and R. Filomeno Coelho. Symme-
try of solu- tions in discrete and contin-
uous structural topology optimization. In
B. H. V. Topping, editor, Eleventh Interna-
tional Conference on Computational Struc-
tures Technology (CST 2012), Dubrovnik,
Croatia, September 4–7, 2012.

[11] J. N. Richardson, S. Adriaenssens, Ph. Bouil-
lard, and R. Filomeno Coelho. Optimiza-
tion of truss structures with kinematic sta-
bility repair. In A. G. Malan, P. Nithiarasu,
and B. D. Reddy, editors, Second African
Conference on Computational Mechanics –
AfriCOMP11, Cape Town, South Africa, Jan-
uary 5–8, 2011.



Summary

161



SUMMARY 162

The goal of this thesis is the development of the-
oretical methods targeting the implementation of
topology optimization in structural engineering ap-
plications. In civil engineering applications, struc-
tures are typically assemblies of many standard-
ized components, such as bars, where the largest
gains in efficiency can be made during the prelim-
inary design of the overall structure. The work is
aimed mainly at truss-like structures in civil en-
gineering applications, however several of the de-
velopments are general enough to encompass con-
tinuum structures and other areas of engineering
research too. The research aims to address the fol-
lowing challenges:

• Discrete variable optimization, generally nec-
essary for truss problems in civil engineering,
tends to be computationally very expensive,

• the gap between industrial applications in
civil engineering and optimization research is
quite large, meaning that the developed meth-
ods are currently not fully embraced in prac-
tice, and

• industrial applications demand robust and re-
liable solutions to the real-world problems
faced by the civil engineering profession.

In order to face these challenges, the research is
divided into several research papers, included as
chapters in the thesis.

Discrete binary variables in structural topol-
ogy optimization often lead to very large
computational cost and sometimes even failure
of algorithm convergence. A novel method was
developed for improving the performance of
topology optimization problems in truss-like
structures with discrete design variables, using
so-called Kinematic Stability Repair (KSR).

Two typical examples of topology optimiza-
tion problems with binary variables are bracing
systems and steel grid shell structures. These
important industrial applications of topology
optimization are investigated in the thesis. A
novel method is developed for topology opti-
mization of grid shells whose global shape has
been determined by form-finding. Furthermore a
novel technique for façade bracing optimization
is developed. In this application a multiobjective
approach was used to give the designers freedom
to make changes, as the design advanced at

various stages of the design process.

The application of the two methods to practi-
cal engineering problems, inspired a theoretical
development which has wide-reaching implica-
tions for discrete optimization: the pitfalls of
symmetry reduction. A seemingly self-evident
method of cardinality reduction makes use of
geometric symmetry reduction in structures in
order to reduce the problem size. It is shown in
the research that this assumption is not valid for
discrete variable problems. Despite intuition to
the contrary, for symmetric problems, asymmetric
solutions may be more optimal than their symmet-
ric counterparts.

In reality many uncertainties exist on geome-
try, loading and material properties in structural
systems. This has an effect on the performance
(robustness) of the non-ideal, realized structure.
To address this, a general robust topology op-
timization framework for both continuum and
truss-like structures, developing a novel analysis
technique for truss structures under material
uncertainties, is introduced. Next, this framework
is extended to discrete variable, multiobjective
optimization problems of truss structures, taking
uncertainties on the material stiffness and the
loading into account. Two papers corresponding
to the two chapters were submitted to the journal
Computers and Structures and Structural and
Multidisciplinary Optimization.

Finally, a concluding chapter summarizes the
main findings of the research. A number of appen-
dices are included at the end of the manuscript,
clarifying several pertinent issues.


