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Chapter1- SUMMARY

Adult Stem Cells (SCs) have been found in almost every organ. They are responsible for
homeostasis and tissue repair after injury. SCs reside and self-renew in the adult body
throughout the life of the organism. In rapid self-renewing organs, such as the skin, the
intestine and the blood, SCs divide many times during the life of the animal in order to sustain
the homeostatic needs of the tissue.

All cells of the body, including SCs, are constantly subjected to DNA assaults arising from
endogenous sources, such as reactive oxygen species (ROS) generated by cellular
metabolism, or exogenous assaults arising from the environment. The DNA damage response
(DDR) and DNA repair mechanisms protect cells from accumulating DNA damage by
inducing transient cell cycle arrest allowing DNA repair, triggering senescence or apoptosis.

DNA damages trigger the activation of the effectors of the DDR inducing a transient cell
cycle arrest, allowing DNA repair, or triggering a permanent arrest of the cell cycle or
apoptosis if damages are too extensive.

As skin is the outermost barrier of the body, epidermal cells, including SCs, are
continuously subjected to genotoxic stress, such as UV rays, ionizing radiation (IR) and
chemicals. The skin epidermis is composed of hair follicles (HFs), its associated sebaceous
gland (SG) and the surrounding inter-follicular epidermis (IFE). Different types of SCs
maintain the homeostasis of the skin; multipotent adult bulge SCs ensure the cyclic
regeneration of the HF and the repair of the epidermis after injury, while individual unipotent

SCs ensure homeostasis of the SG and the IFE.

In tissues with high cellular turnover, such as the epidermis, the numerous divisions that a
SC undergoes could result in the accumulation of replication-associated DNA damage. It has
been suggested that adult SCs may undergo asymmetric divisions in which the daughter SC
retains the older (thus “immortal”) DNA strand, while the daughter cell committed to
differentiation inherits the newly synthesized strand that may have incorporated replication-
derived mutations. The in vivo relevance of this mechanism is still a matter of intense debate.

We used multiple in vivo experimental approaches to investigate precisely how bulge SCs






segregate their chromosomes during HF morphogenesis, SC activation and skin homeostasis.
Using pulse-chase experiments with two different uridine analogs together with DNA-
independent chromatin labelling, we showed that multipotent HF SCs segregate their
chromosomes randomly, and that the label-retention observed in the skin epidermis derives

solely from relative quiescence of skin SCs .

We investigated the in vivo response of multipotent adult HF bulge SCs to DNA damage
induced by IR. We showed that bulge SCs are profoundly resistant to DNA damage-induced
cell death compared to their more mature counterparts. Interestingly, we demonstrated that
resistance of bulge SCs to IR-induced apoptosis does not rely on their relative quiescence.
Moreover, we showed that DDR in SCs does not lead to premature senescence. We found that
two intrinsic cellular mechanisms participate in the resistance of bulge SCs to DNA damage-
induced cell death. Bulge SCs express higher level of the anti-apoptotic Bcl-2 and present
more transient activation of p53 due to a faster DNA repair activity mediated by a non-
homologous end joining (NHEJ) mechanism. Since NHEJ is not error free, this property
might be a double-edged sword, supporting short-term survival of bulge SCs but impairing

long-term genomic integrity .

While we unveiled the relevance of DSBs repair by NHEJ in the skin epidermis, little is
known about the role of homologous recombination (HR) during the morphogenesis of the
skin epidermis. Brcal is an essential protein for HR. Conditional deletion of Brcal in the
developing epidermis leads to congenital alopecia accompanied by a decreased density of hair
placodes. The remaining HFs never produce mature hair and progressively degenerate due to
high levels of apoptosis. Multipotent adult HF bulge SCs cannot be detected in adult HF in
the Brcal cKO epidermis. Brcal deletion in the epidermis triggers p53 activation throughout
the epidermis, which activates apoptosis. Interestingly, IFE and the isthmus region of the HF
do not present any pathological phenotype by constitutive deletion of Brcal. Our results
demonstrated the critical role of Brcal during HF morphogenesis. Future studies will be

required to understand the molecular mechanisms controlling this phenotype.
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	Figure 3 Bulge SCs retain their stemness and do not differentiate after DNA damage. (a, b) Quantitative RT–PCR analysis of mRNA expression of the main bulge markers (a) and keratinocyte differentiation-associated genes (b) in FACS-isolated cells from control mice and mice 24 h and 7 days after receiving 5 Gy IR (error bars indicate s.e.m.; n = 3 independent experiments). (c) Scheme representing the genetic targeting and the expected result of 24 h lineage tracing of bulge SCs, and the protocol used to induce and trace the fate of bulge SCs 24 h after IR. D, day. (d) Analysis of the expression of CD34 and P-cadherin in genetically marked HF SCs without IR or 24 h after administration of 5 Gy IR, as illustrated in c. (e) Quantification of YFP+ cells within the bulge and the hair germ of control and irradiated mice, treated as presented in c (error bars indicate s.e.m.; n = 4 mice, 975 bulge cells per mouse); P values were estimated with Pearson’s χ2 test. Scale bars, 50 µm. IFE, interfollicular epidermis; SG, sebaceous gland; Bu, bulge; HG, hair germ; DP, dermal papillae; asterisk, P < 0.05; two asterisks, P < 0.01; three asterisks, P < 0.001.
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	Figure 6 Transient p53 expression protects bulge SCs from DNA-damage-induced apoptosis. (a) Temporal analysis of p53 expression after IR by immunohistochemistry. Note the more rapid clearance of p53 in the bulge area. (b) Quantification of p53-positive cells within the bulge area and other epidermal cells per HF unit (interfollicular epidermis, hair germ and infundibulum) on the immunohistochemistry images (error bars indicate s.e.m.; n = 4 mice, 60 follicular units per mouse). Ctrl, control. (c) Temporal western blot analysis of expression of Mdm2, p53 and p53 phosphorylated at Ser 15 (pSer 15-p53) after IR in FACS-isolated cells, showing the faster downregulation of p53 and pSer 15-p53 in bulge SCs, without a concomitant increase in Mdm2 expression. Vinculin was used as a loading control. Uncropped images of blots are shown in Supplementary Information, Fig. S8b. (d, e) Immunohistochemistry of p53 expression (d) and the relative quantification of p53-positive cells (e) in wild-type (WT) and Mdm2puro/− mice 24 h after 5 Gy IR (error bars indicate s.e.m.; n = 4 mice, 60 follicular units per mouse). (f) Analysis of apoptosis in control and irradiated Mdm2puro/− mice by active caspase-3 immunofluorescence. Arrowheads indicate apoptotic cells. (g) Quantification of apoptotic cells without IR and 24 h after 5 Gy IR in Mdm2puro/− mice (error bars indicate s.e.m.; n = 3 mice; 20,000 bulge cells per mouse). Scale bars, 50 µm. IFE, interfollicular epidermis; SG, sebaceous gland; Bu, bulge; HG, hair germ; If, infundibulum; asterisk, P < 0.05; two asterisks, P < 0.01; three asterisks, P < 0.001.
	Figure 7 Bulge SCs show accelerated DNA damage repair. (a) Detection of DSBs by γ-H2AX staining on skin sections of 7-week-old mice at the indicated time points after 5 Gy IR, showing faster repair of DSBs in bulge SCs. (b) Quantification of the γ-H2AX-positive cells on Cytospin slides of FACS-isolated cells from control mice and mice receiving 5 Gy IR (error bars indicate s.e.m.; n = 600 cells per time point per experiment). (c) Quantification of cells with increased levels of DNA damage (more than six foci of 53BP1) in FACS-isolated α6+ CD34− and α6+ CD34H cells at 1 and 7 h after 5 Gy IR (error bars indicate s.e.m.; n = 1,000 cells per time point). (d) Histogram illustrating cells with high levels of DNA damage (stages 4 and 5) quantified by neutral comet assay of FACS-isolated cells from mice treated or not with IR (error bars indicate s.e.m.; n = 200 cells per time point from three experiments). Scale bars, 50 µm. IFE, interfollicular epidermis; SG, sebaceous gland; Bu, bulge; HG, hair germ; If, infundibulum; asterisk, P < 0.05; two asterisks, P < 0.01; three asterisks, P < 0.001.
	Figure 8 Higher DNA-PK activity in bulge SCs leads to more efficient NHEJ activity and protects bulge SCs from DNA-damage-induced apoptosis. (a) Efficiency of NHEJ as estimated by the ability to repair linearized GFP reporter plasmids. Co-transfection with tdTomato-expressing plasmids was used as an electroporation control (error bars indicate s.e.m.; n = 8 mice; 20,000 bulge cells per mouse). (b) Analysis of NHEJ efficiency in end-joining reactions containing linearized plasmid and nuclear extracts isolated from CD34− and CD34H cells from WT mice, or total epidermal cells from SCID mice. TATA-binding protein (TBP) was used as a loading control for nuclear protein. (c) DNA-PK expression assessed by western blot analysis in nuclear extracts of CD34− and CD34H cells. TBP was used as a loading control. Note the much higher nuclear expression of DNA-PK in bulge SCs. Uncropped images of blots are shown in Supplementary Information, Fig. S8c. (d) DNA-PK activity measured by phosphorylation of a peptide substrate by nuclear extracts of FACS-isolated cells from control and irradiated mice (n = 2). (e) γ-H2AX immunofluorescence of WT and SCID mice, showing the persistence of DSBs in bulge SCs of SCID mice. (f) p53 expression on skin sections from SCID mice before and after IR, showing the sustained expression of p53 in bulge cells of SCID mice. (g) Apoptosis in WT and SCID mice 24 h after 5 Gy IR. Arrowhead indicates an apoptotic bulge SC. (h) Quantification of apoptosis after 5 Gy IR in WT (CD1), SCID and heterozygous SCID (SCID/CD1) mice, showing a greater increase in apoptosis within bulge SCs (error bars indicate s.e.m.; n = 8 mice; 20,000 bulge cells per mouse). (i) Schematic summary of the DDR within the skin epidermis. Bulge SCs show higher levels of Bcl-2 and DNA-PK (red arrows), resulting in accelerated DNA repair, faster downregulation of p53 stabilization and inhibition of apoptosis. Scale bars, 50 µm. IFE, interfollicular epidermis; SG, sebaceous gland; Bu, bulge; HG, hair germ; If, infundibulum; asterisk, P < 0.05; two asterisks, P < 0.01; three asterisks, P < 0.001.




