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Foreword

For many years scientists of various research domains have been actively using phase-
type methods to describe objects in the nature that can be characterized by different
states. The best known applications of phase-type methods belong to telecommu-
nication systems (in queueing theory, Neuts [45]), economics (Norberg [46]), health
economics (Gardiner et al. [25]) and actuarial science (Bowers [10], Wolthuis [64]).
It is an interesting fact that phase-type methods have also been used in baseball
analysis (B. Bukiet and E. R. Harold [14]), algorithmic music composition (Franz
[24]) and in social sciences (Acemoglu et al.[1]).

One of the main reasons of such wide applicability is given by the properties of
phase-type distributions. The set of phase-type distributions is dense in the field
of all positive-valued distributions, and therefore can be used to approximate any
positive-valued distribution.

In 2007 Lin and Liu [40] argued for the use of phase-type distributions to model
the life and health of an individual. Specifically, the authors define a finite-state
continuous-time Markov process to represent the hypothetical aging process of an
individual, this is called a phase-type aging model (”PH-aging model” in the sequel).
Aging is described as a process of consecutive transitions from one health state to
another until death. One important property of this model is that the states have
some physical interpretation, and the number of states is not chosen arbitrarily, but is
defined from data using a well specified algorithmic procedure. Another important
property of the model, which makes it different from other phase-type models for
health, and very relevant for actuarial applications at the same time, is that it
provides a connection between the health state of an individual and his/her age.
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Because of its nice properties, the model of Lin and Liu motivated us to develop
phase-type methods in that part of actuarial science, where the life and the health
of an individual play a central role. Clearly, it includes problems of life, pension and
health insurance companies. The profitability of such companies naturally depends
on the life duration and the health of insured individuals, which implies that these
two characteristics of individuals have to be properly modeled.

The need to have a good model for an individual’s health is reinforced by recent
changes in human mortality. In most countries average life expectancy is steadily
increasing as human mortality rates keep decreasing (Oeppen and Vaupel [47]). As
emphasized in [47], the reduction of human mortality is difficult to predict: it is
not the same for all ages, and it fluctuates in time. Apart from the increasing
lifetime, one obvious outcome of the unpredicted mortality is that it changes the
health development process of a human being. Clearly, this is a major concern for
any life-linked insurance, because these changes may result in huge financial losses.
The risk of losses due to unpredictably decreasing mortality is called longevity risk.

The thesis is organized into four parts. Part I is devoted to the concept of
the phase-type lifetime. We introduce the necessary actuarial and phase-type back-
ground, and present the model of Lin and Liu [40] together with its stochastic ana-
logue elaborated in Lin and Liu [41]. We perform the quantitative analysis of the
states in the model and verify the applicability of the model to basic actuarial prob-
lems. We also investigate its applicability to estimate the longevity risk and to model
correlated cohorts.

Whereas Part I may be viewed as introductory, Part II and Part III contain the
main results of the thesis.

In Part II we employ the phase-type concept for life and health to examine the
profitability of a pension fund. We first construct a profit-test model, where we
focus on the pre-retirement period assuming that pension fund participants receive
a lifetime annuity as a lump sum at the moment of retirement and disappear from
our consideration. With this profit-test model, we examine the risks exposure of the
pension fund. Specifically, we evaluate the risks related to the change in population
dynamics and to the behavior of the financial market. We also examine the long-term
profitability of the fund. We find it natural to assume that the health of pension
fund participants after retirement significantly affects the profitability of the fund.
This is our motivation to separately consider the post-retirement period, which is the
focus of our attention at the end of Part II. Some of these results are presented in
Govorun and Latouche [28], Govorun et al. [29] and Govorun et al. [30].

Part III is devoted to health insurance. Specifically, we are interested in the
distribution of the net present value (abbreviated as ”NPV”) of health care costs
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for an individual of a given age. We examine the costs in both long and short term
perspective that depends on the remaining lifetime of the individual. We propose
and analyze both discrete and continuous time models for NPV allowing the health
care cost to be dependent or independent of the health state. We study the effect of
special events by performing different stress tests. For example, tests with respect to
mortality rates allow us to study the financial impact of an increased lifetime spent
in bad health states for which medical treatments are the most expensive.

In the end of the thesis we give our concluding remarks and briefly describe the
directions of future research that we have thought of, in parallel to the main topics
of this thesis.

We provide a more detailed introduction to each part in its own summary, as
well as a detailed description of its structure and main results. Some useful algebraic
properties are included in Appendix A.

The following notations are used throughout the text:

• Matrices are denoted by capital letters, I stands for the identity matrix;

• Row vectors are usually denoted by underlined letters, 0 and 1 stand for column
vectors of zeros and ones, respectively;

• Superscript T indicates the transposition operation;

• Sign
d
= stands for ”equal in distribution”;

• If M is a matrix,

M(i,·) is the ith line of M ;

M(·,i) is the ith column of M .



Part I

Phase-type lifetime





Summary of Part I

We begin the thesis by introducing the assumption that the lifetime and health of an
individual can be described by a phase-type distribution. We devote the first part
of the thesis to the introduction and the motivation of this assumption because we
employ it in Parts II and III to develop various mathematical models and obtain our
main results.

In Chapter 1, we provide the background helpful in understanding the concept of
the phase-type lifetime. It consists of actuarial definitions, the definitions of phase-
type objects and their applicability in insurance. We also give a brief survey of known
mortality models and recent mortality trends.

In Chapter 2 we present the PH-aging model of Lin and Liu [40], where the
authors introduce the assumption of the phase-type lifetime. Specifically, for the
construction of their PH-aging model the authors show how to specify a concrete
phase-type distribution for the lifetime of an individual, they give some interpretation
to the states and provide a parametrization procedure. We start our investigations by
verifying that the PH-aging model can be used to solve complex actuarial problems.
To do this, we show that the model gives satisfactory solutions to basic actuarial
problems, such as pricing and modeling of the number of survivors in a population,
in comparison with known classical methods.

The fact that the states in the PH-aging model, interpreted as health states, are
not observable creates some difficulties in the tractability of the model. For this
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reason, we develop algorithms to better characterize the health states on the basis
of available information about an individual.

We examine how the PH-aging model can be adapted to deal with the problem
of an unpredicted increase in lifetime (termed ”longevity” in the sequel). We ask a
question ”why do people live longer?” and show that the model allows us to distin-
guish two different causes of longevity: one is related to individual characteristics,
the other is related to external environmental factors.

In view of the longevity problem, Lin and Liu in [41] introduce a stochastic
analogue of the PH-aging model, which we present at the end of Chapter 2 and
apply in Chapter 3.

Specifically, in Chapter 3, we investigate the theoretical applicability of the
stochastic PH-aging model to the problem of correlated cohorts. The problem has
been addressed in numerous studies. For example, in Cairns et al. [16] the authors
argue the importance of modeling correlated cohorts for future mortality forecasting.
They develop a two-population mortality model, which helps in making financial de-
cisions related to longevity risk. Cairns et al. [15] propose a model to price and to
design survival index-based financial instruments, which are called longevity bonds.
The population models, considered in [15], [16] and many other papers, are paramet-
ric factor models, based on the modeling of correlated death rates for cohorts.

We suggest an approach to model the number of survivors in different cohorts as
correlated random variables. Here, we combine the classical technique (Pollard [51])
to model the number of survivors as a Binomial random variable and the technique
to correlate the cohorts via the survival rates. The survival rates are given by the
stochastic PH-aging model, and we correlate them by assuming that all cohorts are
subject to the same uncertainty in future survival rates, but initially they may have
a different health distribution. Therefore, we have two sources of randomness: one is
due to the Binomial assumption and one is due to the uncertainty in future survival
rates. To investigate their impact on the number of survivors, we develop two other
approaches, where we eliminate the sources turn by turn. In the end of the Chapter,
for comparison purposes, we suggest another approach that assumes that all cohorts
are subject to the same common shock.

As an illustration where it is useful to model the number of survivors, we present
the problem of hedging a fixed cohort of pensioners with longevity bonds, which was
considered in Leppisaari [38]. We give a numerical example to demonstrate how our
approaches can be applied to this problem.
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We indicate several main contributions of Part I. As our first contribution, we
have validated the PH-aging model for pricing and modeling the number of survivors
in a cohort.

Our second contribution is the development of a procedure, which allows one to
translate information pertaining to calendar ages into information pertaining to the
health states in the PH-aging model. This has lead to some practical and theoretical
results. For example, if a cost value is available for each age, our procedure deter-
mines a cost value for each health state. Furthermore, If a cost value is known for
an individual, we reduce the uncertainty in the distribution of health states for this
individual. Thus, this procedure allows us to better characterize the health state of
the individual.

As other contributions we indicate the development of various models aimed to
estimate the longevity risk and to represent correlated cohorts, assuming that the
lifetime and health are described by the PH-aging model or its stochastic analogue.





Chapter 1

Background

This chapter provides the necessary background to the assumption of the phase-
type lifetime and to its applications in pension and health insurance. Sections 1.1
and 1.2 are devoted to actuarial and phase-type definitions, Section 1.3 is devoted
to mortality modeling. In Section 1.4 we present some applications of phase-type
methods in insurance that are relevant for our work.

1.1 Actuarial definitions

Actuarial science is the discipline that applies mathematical and statistical methods
to assess risks in insurance and financial industries (see [63]). A very basic object
in actuarial science is a Mortality Table . A mortality table may be defined as a set
of mortality rates qx for all the ages x, the conditional probabilities to die within
one year given that one has survived until age x. Such tables also give other basic
quantities lx and dx, where lx is equal to the expected number of survivors to age x
from the l0 newborns and dx is the expected number of deaths over each age interval
(x, x+ 1].

We use the standard notation: tqx is the conditional probability to die before
age x+ t and tpx is the conditional probability to survive to the age x+ t given the
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individual has survived to the age x. Obviously, they satisfy the equations that

tpx = pxpx+1 · · · px+t−1, tqx = 1− tpx. (1.1)

Here we use the conventional notation 1px = px. We illustrate the survival probability

tpx with respect to t for different x in Fig. 1.1. The data is taken from the mortality
table 1911 for Swedish male population (referred in the sequel as SW1911M). We
use this mortality table in all our numerical examples, unless stated otherwise, as
Swedish mortality database provides the most detailed mortality and population
data and is widely used by researches, for example, Lin and Liu [40]. In Fig. 1.1 we
show tpx for the ages from 10 to 70 with a 5 years step.

Another important parameter related to the mortality environment is the instan-
taneous rate of mortality or the force of mortality , µx, which is given by

µx = lim
h→0+

hqx
h
. (1.2)

It is shown (Bowers [10], Scott [54]) that

tpx = exp

(
−
∫ t

0

µx+rdr

)
.

The central death rate over the interval from (x, x+ 1] is given by

mx =
lx − lx+1

Lx

, (1.3)

where Lx =
∫ 1

0
lx+tdt is interpreted as the total expected number of years lived

between ages x and x+ 1 by survivors from the l0 newborns.
The discount factor v comes in two versions. According to Gerber [26], for a fixed

annually compounded interest rate, δ, the discount factor is given by

v =
1

(1 + δ)
. (1.4)

For a fixed continuously compounded interest, we have

v = e−δ, (1.5)

in this case, δ is called the force of interest.
Consider a simple life insurance contract, which pays a sum equal to 1 at the end

of the year of death of an individual aged x. Denote by Z the present value of the
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Figure 1.1: Survival probability tpx, SW1911M

insured sum. The expectation of Z is called single benefit premium (Gerber [26]).
For this contract, Z = vK+1, where K is the number of future full years of life of the
individual. It is clear that

P[Z = vk+1 ] = P[K = k ] = kpx qx+k, k = 0, 1, 2, ... (1.6)

Thus, the single benefit premium of a life insurance contract is given by

Ax = E[Z] =
∞∑

k=0

vk+1
kpx qx+k. (1.7)

Consider a term insurance contract for n years which pays a unit sum upon the death
of an individual of age x if it occurs before the term of the policy. Assuming that
payment of the insured sum is made at the end of the year of death, we have

Z =

{
vK+1, K = 0, 1, ..., n− 1
0, K = n, n + 1, ...

(1.8)

and the single benefit premium is denoted as

A1
x:n = E[Z] =

n−1∑

k=0

vk+1
kpx qx+k (1.9)
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A term insurance contract which pays a sum insured of 1 upon the survival of an
individual of age x at the term of the policy is called pure endowment . For this type
of insurance

Z =

{
0, K = 0, 1, ..., n− 1
vn, K = n, n+ 1, ...

(1.10)

The single benefit premium is defined by

A 1
x:n = E[Z] = vnnpx (1.11)

Lifetime annuity pays the amount of 1 every year as long as the individual is alive.
The present value of these payments is a random variable given by

äK+1 = 1 + v + v2 + ... + vK .

Mathematically, the value of lifetime annuity for an individual aged x is defined by

äx = E[äK+1 ] =
∞∑

k=0

vkkpx. (1.12)

Similarly, term annuity is defined by

äx:n =
n−1∑

k=0

vkkpx. (1.13)

The premium or tariff is the price of an insurance contract. Premiums that
do not include expenses related to the contract are called net premiums, whilst
premiums which are actually charged to the client are called gross premiums (Scott
[54]). Premiums are usually calculated from the equivalence principle, which states
that the expectation of total loss of the insurer should be equal to zero. The net
annual premiums computed for different types of insurances for an individual aged
x at the start of the contract are presented below:

Life insurance Term insurance Pure endowment
Net premium: Ax/äx A1

x:n /äx:n A 1
x:n /äx:n

The annual gross premium for term insurance is defined by

(A1
x:n + c1)/((1− c2) äx:n),

where c1 and c2 are the initial and annual expenses per policy, respectively.
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Assume that the mortality is not the single decrement of the model. Specifically,
we assume that there are 2 independent decrements, X and Y . In accordance with
Scott [54], let us make the following notations:

t(ap)x is the probability that an individual aged x will survive
for at least t years with respect to X and Y

t(aq)x is the probability that an individual aged x leaves the system
within t years due to either X or Y

As one assumes that the survival times with respect to the decrements X and Y are
independent, it follows that

t(ap)x = tp
X
x tp

Y
x , t(aq)x = 1− t(ap)x, (1.14)

where tp
X
x is the single-decrement probability for an individual aged x to survive with

respect to the cause X only, tp
Y
x – with respect to the cause Y only. Therefore, for

the term insurance, for example, the single benefit premium and the term annuity
take form

A1
x:n =

n−1∑

t=0

vt+1 (t(ap)x − t+1(ap)x) , äx:n =

n−1∑

t=0

vtt(ap)x. (1.15)

1.2 Phase-type objects

We give the definition of a Markov chain introduced in Ross [52]. Consider a stochas-
tic process {Xn, n = 0, 1, 2, . . .} that takes a finite or a countable number of possible
values. If Xn = i, then the process is said to be in state i at time n. We suppose
that, whenever the process is in state i, there is a fixed probability pij that it will
next be in state j independently of its past. That is, we suppose that

P [ Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0 ] = pij, (1.16)

for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. Such stochastic process is called
a Markov chain. Let us denote the state space of this Markov chain by E. Since
probabilities are nonnegative and since the process must take a transition into some
state, we have that

pij ≥ 0,
∑

j∈E

pij = 1, i, j ∈ E. (1.17)



12 Background

A probability distribution {πj , j ∈ E} is said to be a stationary distribution for the
Markov chain if

πj =
∞∑

i=0

πipij, j ≥ 0.

The state j is positive recurrent if the expected number of transitions needed to
return to this state is finite. If the stationary distribution exists and there is no
other stationary distribution then it can be found from the equation

πj = lim
n→∞

(P n)ij , (1.18)

for all j, where P is the one step transition probability matrix P = {pij}, for all i, j.
The stationary probability vector π can be found from the system

{
πP = π,
π1 = 1.

(1.19)

Denote the phase distribution vector at time t by p
t
. The dynamic of p

t
is given by

p
t
= p

0
P t, t ∈ N (1.20)

where p
0
is a row vector representing the initial distribution.

In continuous time, the stochastic process {Xt : t ∈ R+} is called a Markov
process if and only if it satisfies the Markov property

P[Xt+s = j |Xu, 0 ≤ u ≤ t ] = P[Xt+s = j |Xt ], (1.21)

for all s, t ∈ R+ and all j. The Markov process is characterized by matrix P (t),
which represents transition probabilities over an interval of time of length t. Let us
also denote the infinitesimal transition generator of the system by Π. One method
to find P (t) is to solve the Kolmogorov backward and forward equations, which are
defined by

d

dt
P (t) = ΠP (t),

d

dt
P (t) = P (t)Π. (1.22)

According to Theorem 4.13 of Çinlar [18], the solution is given by

P (t) = etΠ, t ≥ 0,

where etΠ is the matrix exponential, which is defined by

etΠ =

∞∑

n=0

1

n!
(tΠ)n. (1.23)
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Therefore, the dynamic of p
t
in continuous time is given by

p
t
= p

0
eΠt, t ∈ R+. (1.24)

The Markov process {Xt : t ∈ R+} on the state space E is irreducible if, for all
i, j ∈ E , there is a path that leads from state i to state j and from state j to state i
in the transition graph.

Phase-type distributions are described in details in Latouche and Ramaswami
[36]. Here, we give the definition of a continuous-time phase-type distribution to
the extent that it is relevant for this thesis. Consider a Markov process on the
states {0, 1, . . . , n} with initial probability vector (α0, α) and infinitesimal generator
Q given by

Q =

[
Υ tT

0 0

]
,

where α, t, 0 are row vectors of size n and Υ is an n × n matrix. Since Q is the
generator of a Markov process, we have that

Υii < 0, ti ≥ 0, Υij ≥ 0 for 1 ≤ i 6= j ≤ n

and
Υ1+ tT = 0. (1.25)

Also, for the initial probability vector we have

α0 + α1 = 1.

Then, the distribution of the time till absorption into state 0 is called the phase-type
distribution with representation (α, Υ) and is denoted as PH(α, Υ).

Phase-type distributions have nice mathematical properties that allow to express
different practical quantities of interest. Let us consider a random variable represent-
ing the lifetime of an individual, which we denote by L. As phase-type distributions
are dense, we can assume L to have the representation PH(α, Υ). Then, the survival
function is defined by

S(x) = αeΥx1, x > 0, (1.26)

where eΥx is the matrix exponential defined by Eq. (1.23). The corresponding phase-
type probability density function is given by

f(x) = αeΥxtT, x > 0. (1.27)

In continuous time, the expected lifetime is determined by

E[L] = −αΥ−11. (1.28)
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In discrete time, it is determined by

E[L] = α(I − eΥ)−11, (1.29)

and the generating function is

g(x) = xα(I − xeΥ)−1(1− eΥ1). (1.30)

Another phase-type object that we use in this thesis is a fluid queue. A fluid
queue is a two dimensional Markov process {(Xt, φt) : t ∈ R+}, where

• Xt ∈ R+ is called ”level” and represents the content of an infinite capacity fluid
buffer at time t;

• {φt : t ∈ R+} is an irreducible Markov process, which represents ”state” at
time t and which takes values in some finite state space; the process regulates
the evolution of the buffer content. We denote by T the infinitesimal transition
generator of φt.

During time intervals when φt is constant and equals i, the level Xt changes its value
with rate ri, which can take any real value. If Xt = 0 and the rate at time t is
negative, then Xt remains at zero:

dXt

dt
=

{
rφt, if Xt > 0,
max(0, rφt), if Xt = 0.

(1.31)

Denote by π the stationary probability vector for the states of the fluid. It is defined
by

πi = lim
t→∞

P[φ(t) = i | φ(0) = j ], ∀ i, j. (1.32)

π is the unique solution of {
πT = 0,
π1 = 1.

(1.33)

A fluid queue, where for state i the level evolves like a Brownian motion with
drift µi and diffusion coefficient σi, is called a Markov modulated Brownian motion
(Breuer [11]).
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1.3 Mortality models

For hundreds of years now, actuaries have been using mortality tables as the basic
tool to describe the mortality. However, a table is only an alternative when there
is no suitable mathematical law of mortality available. According to Bowers et al.
[10], the first mortality table was published by Edmund Halley in 1693 and the first
mortality model by Abraham de Moivre in 1729. The majority of early models
provide analytic expressions for the force of mortality termed a ”law”. For instance,
the force of mortality of de Moivre’s model is

µx = (ω − x)−1, 0 ≤ x < ω.

The law of Gompertz (1825) is given by

µx = Bcx, B > 0, c > 1, x ≥ 0.

Weibull’s (1939) mortality force is

µx = kxn, k > 0, n > 0, x ≥ 0.

Both mortality tables and the approaches based on the force of mortality are ”deter-
ministic” and they tightly depend on data, a chosen pattern and chosen parameters.
Seeking for a more flexible mortality structure, actuaries have developed many para-
metric and statistical models. A detailed description of these models is provided in
Liu [42] and Pitacco [50]. One of the best known parametric mortality models was
introduced in Lee and Carter [37]. The main difference of the Lee-Carter model from
other parametric models is that it allows for uncertainty in forecasts of mortality.
The model assumes that the central death rates introduced in Eq. (1.3) satisfy the
equation

lnmx(t) = ax + bxk(t) + ǫt, (1.34)

where ax, bx are age-dependent parameters of the model, k(t) describes the variation
of the mortality level in time t; ǫt are independent Gaussian random variables for fixed
t, with mean 0 and variance σ2

ǫ . The age-dependence of the parameters ax and bx
leads to different patterns of mortality for every age x and therefore makes it difficult
to choose a proper compromise for k(t). One way is to consider k(t) as a time series
and to apply an autoregressive model to describe its behavior. As a result, it becomes
possible to estimate a confidence interval for the central rates mx(t). However,
according to [42], many people believe that these confidence intervals are too narrow,
which implies an underestimation of the risk of more extreme events. Therefore, a
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chosen pattern and data play a significant role in the mortality forecasting. All this
implies that if the pattern changes in the future the model will not work. The cases
when the pattern changes are numerous.

It has been shown by many studies that the life expectancy has steadily increased
over time and human mortality rates keep decreasing (Oeppen and Vaupel [47]). In
Liu [42] the Swedish male population is taken as an example in order to demonstrate
the change of mortality rates. The author observes an overall increase in the most
probable age of death, an overall decrease in mortality rates at all ages and an overall
increase in the life expectancy. Another interesting observation is that the mortality
does not change evenly for all the ages. Specifically, the mortality decreases more for
young adult ages than for older ages. We verify this on the Belgium population of
mixed genders (the data source is [62]) from 1902 to 2007. In Fig. 1.2 and Fig. 1.3 we
show the evolution of Belgian mortality rates and the average life expectancy taken
from the available mortality tables. The figures show that the conclusions obtained
in Liu [42] for Swedish male population also hold for the Belgian population.
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Figure 1.2: Log mortality rates, log qx, Belgium, 1902 – 2007
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Figure 1.3: Average life expectancy, Belgium, 1840 – 2007

1.4 Phase-type methods in insurance

As we have already mentioned, phase-type methods are convenient to describe objects
that can be characterized by different states and are widely used in numerous research
areas. In insurance, the methods were used already in 1969 (Hoem [31]). The phase-
type approach arises when the benefits are dependent on the status of an insured
individual, which is clearly the case for pension, life and disability insurance. The
approach allows for a natural interpretation, and often provides convenient matrix
expressions for basic actuarial quantities. A good survey of actuarial calculations
using Markovian models is presented in Jones [35]; in this section we present only
essential aspects.

In individual life and disability insurance often a two- or three-state model is
used to model an insurance policy. These models are schematically represented in
Fig. 1.4. For a life annuity described by the two-state model, it is assumed that
benefits are paid while the individual is in state ”Alive” and cease upon transition
to state ”Dead”. The three-state model can be used to describe a disability income
policy. Here, premiums are payable while the individual is in state ”Alive”, and
benefits are payable while the individual is in state ”Disabled”. The calculation of
actuarial values for simple state Markov models is given in Bowers et al. [10].
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Figure 1.4: Simple state space Markov models in insurance

Markov chains are widely applied to describe the dynamic of a population, for
example, of a pension fund. In these applications an insured individual is assumed
to be in one of the predefined sets of states with given transition probabilities. Ac-
cording to Mettler [44], pension plan participants can be divided into the following
subcategories within a pension fund : active employees, disabled benefit recipients,
retired benefit recipients, deceased beneficiaries and resigned beneficiaries. In this
case, Eq. (1.20) and Eq. (1.24) represent the dynamics of the population of pension
plan participants. The works of Bertschi et al. [9], Janssen and Manca [34] and Met-
tler [44] provide an extended application of this method for profit tests in pension
insurance.

In health care, there have been many studies on the estimation of medical costs
over a fixed period of time, where the health of an individual is modeled by a Markov
chain with pre-defined and/or observable states. Most of these studies use the Marko-
vian approach to estimate the mean of the total cost based on available medical
records. In Gardiner et al.[25] the authors obtain expected net present values of to-
tal costs, in Castelli et al.[17] a parametric assumption is introduced to estimate the
mean total cost for a patient with a cancer disease and to perform a cost-efficiency
analysis. A recent work by Zhao and Zhou [67] provides an accurate estimation of
medical costs data by using copula methods.

In economics, the force of interest can be modeled as function of an underly-
ing Markov chain, the states of which represent different states of the economical
environment, see Norberg [46].

In insurance ruin theory, see Asmussen and Albrecher [4], fluid queues appear to
be one of the most useful tools. In Stanford et al. [57], the authors use the connection
between risk processes and fluid queues to obtain efficient computational algorithms
to determine the probability of ruin prior to an Erlangian horizon, assuming that
the sizes of the claims are phase-type distributed. In Badescu et al. [6] the fluid
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queue approach is implemented to determine the Laplace transform of the time until
ruin for a general risk model. Badescu and Landriault [7] develop a recursive algo-
rithm for the calculation of the moments of the discounted dividend payments before
ruin, assuming a multi-threshold dividend structure. Here, the authors establish a
connection between an insurer’s surplus process and a corresponding fluid queue.

Markov modulated Brownian motion is widely applied in both ruin theory (for
the Laplace transform of the time to ruin see Breuer [11]) and mathematical finance
(for option pricing see Elliot and Swishchuk [23]).





Chapter 2

Phase-type aging model

We begin this chapter by Section 2.1, where we introduce the phase-type aging
model and its properties. One of the first logical questions that arises when a new
tool appears in an environment is ”how applicable is it and what type of problems
does it help to solve?”. In the current framework it means that before applying the
PH-aging model to complex actuarial problems, we find it necessary to verify how
suitable it is with respect to the basic ones. Specifically, in Section 2.2 we apply the
phase-type aging model to compute various insurance premiums and to model the
number of survivors in a population.

In Section 2.3 our intention is to show how one may establish a relation between
the states of the PH-aging model and the age of an individual in different contexts. In
Section 2.4 we investigate how the sudden change of health can be taken into account
by the PH-aging model. Clearly, this is important for longevity risk estimations.

In the end of the chapter, in Section 2.5 we introduce the stochastic analogue of
the PH-aging model, which was developed by Lin and Liu in [41].

2.1 Deterministic aging model

In [40], Lin and Liu use a finite-state continuous-time Markov process to model the
hypothetical aging process, which is called phase-type aging model (below, ”PH-aging
model”). Each state represents a physiological age or a health state, and aging is
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described as a process of consecutive transitions from one health state to another.
There is one absorbing state, and the transition from any other state to the absorbing
state is interpreted as the death of the individual. The diagrammatic representation
of the proposed aging process is shown in Fig. 2.1. Here, the system has n phases
with the transition rates λi, i = 1, . . . , n − 1 and the qis are the transition rates to
the absorbing state.

...1 2 n

q1

λ
1

λ
2 λ

n-1

q2 qn

Figure 2.1: Phase-type aging process

All newborns start from the phase 1, therefore the initial probability vector (α0, α)
is such that α0 = 0 and α = [ 1 0 . . . 0 ].

For this model, the time to reach the absorbing state has the meaning of the age
at death. The generator of this Markov process is given by

Q =

[
Λ qT

0 0

]
(2.1)

where q = [ q1 . . . qn ] and

Λ =




−(λ1 + q1) λ1 0 . . . 0
0 −(λ2 + q2) λ2 . . . 0

0 0 −(λ3 + q3)
. . . 0

...
...

. . .
. . .

...
0 0 0 . . . −qn



, (2.2)

and the time of death follows the phase-type distribution with parameters (α,Λ).
The expression (αeΛt)i is the probability to survive for t years and to be in the phase
i at time t. We denote by τx the health state distribution of an individual who
reaches age x. According to the model, it is given by

τx =
αeΛx

αeΛx1
. (2.3)
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Obviously, the time until death of an individual of age x follows the phase-type
distribution with parameters (τx,Λ) (Latouche and Ramaswami [36]). The survival
probability that such an individual survives for t units of time is given by

Sx(t) = τxe
Λt1. (2.4)

The survival function S(t) introduced in Eq. (1.26) has the same meaning as the
survival probability tp0, and, in general, Sx(t) is identical to tpx from Eq. (1.1).

The authors define a structure of the parameters qi, i = 1, . . . , n and λi, i =
1, . . . , n − 1, based on the physiological properties of population they observed. A
detailed explanation is given in Lin and Liu [40], here we only give a brief outline.

λi =

{
λi, i ≤ k
λ, otherwise

and qi =

{
b+ a + ipq, i1 ≤ i ≤ i2
b+ ipq, otherwise,

where k, i1, i2, a , b, p, q are parameters of the model. The meaning is that the au-
thors mark out a developmental period of the phases for very young ages, character-
ized by a different value of λi for every phase, and also a period of increased accident
probability, for juveniles, corresponding to the range of phases i1 to i2, with higher
death rates.

The model potentially consists of a large number of parameters, however, the
authors show that 9 to 13 parameters are enough to give a good approximation of
mortality rates. By comparison, the usual number of parameters of the Lee-Carter
model is around 300. The parameters in Λ are estimated by minimizing the functional

φ =

w∑

x=0

(qx − q̂x)
2 S(x), (2.5)

where qx and S(x) are the observed death rate and survival probability at age x, q̂x
is the corresponding model value for qx and w is the maximal age available in the
observations. Here, q̂x can be expressed in terms of survival functions for ages x and
x+ 1

q̂x =
αeΛx1− αeΛ(x+1)1

αeΛx1
= 1− τxe

Λ1.

We illustrate in Fig. 2.2 the result of the fitting procedure obtained in Lin and
Liu [40]. The solid line represents log(103q̂x) obtained with the phase-type model,
the crosses are the mortality rates taken from SW1911M. The parameters of Λ are

n = 200, λ = 2.3707, b = 9.0987 · 10−4, a = 2.8939 · 10−3, (2.6)
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q = 1.8872 · 10−15, p = 6, i1 = 33, i2 = 70, (2.7)

the length of the developmental period k = 4 and

q1 = 0.1671, q2 = 0.0097, q3 = 0.0003, q4 = 0.0149, (2.8)

λ1 = 1.7958, λ2 = 0.5543, λ3 = 3.5061, λ4 = 0.6535. (2.9)

In this thesis, in all figures with ”SW1911M” in the caption the parameters of the
underlying PH-aging model are given by Eq. (2.6)-(2.9).

For the questions of this thesis we are interested only in the survival probability,
not in the mortality rates. By performing the minimization procedure (2.5) on the
same data we have found a good approximation of the survival function, which we
demonstrate in Fig. 2.3. The crosses represent the survival function computed from
the mortality table and the solid line stands for the survival function of the PH-aging
model.
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Figure 2.2: Mortality rates, log(103qx), SW1911M

Another way to find the parameters of Λ is to use the fitting algorithm suggested
in Asmussen [5] for phase-type distributions. The method uses the expectation-
maximization algorithm to approximate a sample density with a phase-type distri-
bution. The implementation of this algorithm is available as a software tool with
a full userguide paper written by Olsson [48]. As described in the userguide, the
program looks for estimates of the initial vector α and the generator Λ starting from
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Figure 2.3: Survival function, S(t), SW1911M

some initial values (α(0),Λ(0)) which can be either given by the user or can be ran-
domly generated by the program. At every iteration the program produces a new
estimation of these parameters such that its likelihood function increases. Namely,
the estimation (α(k+1),Λ(k+1)) is such that

L(α(k),Λ(k); y) ≤ L(α(k+1),Λ(k+1); y)

where y is the sample to be fitted and L(α,Λ; y) = −∏n
i=1 αe

ΛyiΛ1. We have exper-
imented with this method and we have not obtained a satisfactory fit of the data.
The reason is simple: the algorithm of Asmussen works best with a small number
of states; in order to obtain a good fitting of the mortality rates we need about 200
phases as explained in Lin and Liu [40]. The best approximation that we obtained
with about 30 states is illustrated in Fig. 2.4, where we give 1− tp0, the probability
to die at age t or before for a newborn individual.

There are also other methods of fitting phase-type distributions, see, for example,
Horvath and Telek [32].
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Figure 2.4: Fitting of 1− S(t), SW1911M

2.2 Towards actuarial applications

In order to illustrate the PH-aging model we consider two basic actuarial problems:
pricing and a population modeling.

Pricing. Lifetime annuities. We begin by applying the traditional balance ap-
proach to calculate the values of lifetime annuities for the health states of the PH-
aging model.

Let us introduce the probability kp
(j) to survive k years for an individual in the

health state j at time 0, it is given by

kp
(j) = α(j)eΛk1, for k ≥ 0, (2.10)

where, Λ is defined by Eq. (2.2) and α(j) is a row-vector of size n with

α
(j)
j = 1, α

(j)
i = 0 for i 6= j. (2.11)

The value of the lifetime annuity for an individual in the health state j is then defined
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by

ä(j) =
∞∑

k=0

vkkp
(j) (2.12)

= α(j)
∞∑

k=0

vkeΛk1 = α(j)(I − veΛ)−11. (2.13)

We consider a lifetime annuity with one unit payment per year at the beginning of
each year. By definition, for an individual at calendar age x, this annuity is defined
in Eq. (1.12) and can be rewritten as

äx =
∞∑

k=0

vkSx(k), (2.14)

where v is the discount factor, Sx(k) is the k-years survival probability for an indi-
vidual aged x, defined in Eq. (2.4). With τx defined by Eq. (2.3) we easily verify
that äx is expressed as

äx =

n∑

j=1

(τx)j ä
(j) = τx(I − veΛ)−11. (2.15)

The equations (2.4, 2.12, 2.15) allow us to use conditioning arguments based on the
calendar age or on the physiological age with equal ease.

We use the fact that
∑t−1

k=0 v
keΛk = (I − vteΛt)(I − veΛ)−1 to determine the term

annuity for t years defined in Eq. (1.13)

äx:t =

t−1∑

k=0

vkSx(k) = τx(I − vteΛt)(I − veΛ)−11. (2.16)

For comparison purpose, we represent in Fig. 2.5 the lifetime annuities äx for ages
1–65 calculated from (2.15) as a solid line and the values directly calculated from the
mortality table as crosses. We observe that the fit is quite good, although there is a
slight difference for ages 1–10 and for ages over 50. To explain the difference, we refer
to Fig. 2.3 for the corresponding survival functions, S(t), for a newborn individual.
By looking at the graph we observe that the fit is very good for t in the range 20 to
80 years, however for earlier and later years one can notice slight discrepancies. The
annuities äx are computed with the discount factor v = 0.95. Clearly, high powers
of v converge to zero, which implies that for young individuals the fitting error after
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age 80 does not really matter. For individuals aged 20 to 50, the imperfect fit of
the survival function for earlier ages does not matter and age 80 is still far, so that
discounting will eliminate the fitting error; that is why we observe a good fit of äx
for x in that range. For x ≤ 10, however, the fitting imperfections of S(t) in the first
20 years play a noticeable role. On the other hand, for individuals older than 50, age
80 is not that far, so the discounting does not eliminate completely the fitting error.

For practical purposes, the fit shown on Fig. 2.5 might be sufficiently good. If not,
one would need to make a better approximation either by increasing the number of
states in the model, or by minimizing a functional different from (2.5). For example, if
younger/older ages are more important, in (2.5) one may increase the corresponding
weights.

Another interesting observation that one can draw from Fig. 2.5 is that the annu-
ities computed with the PH-aging model are always higher than the annuities directly
calculated from the mortality table. Clearly, this is good for an insurer who wants
to employ the PH-type approach, as it automatically allows one to incorporate some
margin in the annuity values and, therefore, to be more cautious.
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Figure 2.5: Lifetime annuities, v = 0.95, SW1911M
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Term insurance. We consider a term insurance contract for n years and com-
pute its price in discrete time. We notice that the single benefit premium for term
insurance, given by Eq. (1.9) can be rewritten in terms of survival probabilities as

A1
x:n =

n−1∑

i=0

vi+1
ipx −

n∑

i=1

viipx =

n−1∑

i=0

vi+1Sx(i)−
n∑

i=1

viSx(i). (2.17)

The net premium value is then given by

cx,n =
A1

x:n

äx:n
=

∑n−1
i=0 v

i+1Sx(i)−
∑n

i=1 v
iSx(i)∑n−1

i=0 v
iSx(i)

. (2.18)

We use Eq. (2.16) to obtain

cx,n = v − τx(I − vn+1eΛ(n+1))(I − veΛ)−11− 1

τx(I − vneΛn)(I − veΛ)−11
,

which can be also written as

cx,n = v − v
τx(I − vneΛn)(I − veΛ)−1eΛ1

τx(I − vneΛn)(I − veΛ)−11
. (2.19)

In continuous time, we compute cx,n from the balance equation (Bowers [10])

cx,n

∫ n

0

vtSx(t)dt =

∫ n

0

vtfx(t)dt, (2.20)

where fx(t) = τxe
ΛttT is the density of the phase-type random variable with repre-

sentation (τx,Λ) (see Eq. (1.27) and Eq. (1.26)). By taking the integrals in Eq. (2.20)
and v = e−δ, we obtain

cx,n =
τx (Λ− δI)−1 [e(Λ−δI−)n − I

]
(−Λ)1

τx (Λ− δI)−1 [e(Λ−δI)n − I]1
. (2.21)

We also compute the net premiums from the classical approach, with mortality
rates from the table SW1911M. In Fig. 2.6, along with its classical values, we present
the net premium values, computed with the continuous and discrete phase-type ap-
proach, for the ages from 1 to 60. One can see from the figure that all three methods
give almost identical results.

Evolution of a population. Obviously, the mortality risks of a life insurance
company strongly depend on the evolution of the population of its clients. In this
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Figure 2.6: Premiums for term insurance, cx,n
Parameters: ages 1-60, n = 15, v = 0.943, SW1911M

section we compare the phase-type aging model and existing classical models. To do
this, we fix the age structure of a population, specify the total number of individuals
in each age group and estimate the number of survivors in every year until a chosen
time horizon.

Let Nt(x) be the number of survivors of the age x at time t, Dt(x) be the number
of deaths of age x at time t. Thus, Nt0(x) represents a given population in the initial
year of observation, t0. The evolution of an age group can be represented by

Nt+1(x+ 1) = Nt(x)−Dt(x), t = 1, ..., T.

We consider three methods to determine Nt0+h(x+h): the phase-type approach and
two classical models that are based on the assumption of the binomial distribution
of the number of deaths (see, for example, Pollard [51]).

Binomial simulation. Here, the number of deaths in year t has the binomial
distribution, Dt(x) ∼ Bin(Nt(x), qx), where Nt(x) is the number of survivors at the
beginning of the year and qx is the mortality rate taken from the chosen mortality
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table. In this approach Nt0+h(x+h) is estimated through the simulation of numbers
of deaths in every year. Thus, we perform a simulation of the random variable
{Dt(x) : t = 1 . . . T } many times and look at the average values of Nt0+h(x+ h).

Theoretical binomial approach. The main assumption remains the same as
in the previous model, Dt(x) ∼ Bin(Nt(x), qx); and, symmetrically, the distribution
of Nt+1(x+ 1) is Bin(Nt(x), 1− qx), given Nt(x). We define the generating function
Ft(ξ; x) such that

Ft(ξ; x) =

∞∑

k=0

ξkP [Nt(x) = k ] .

We use the definition of the binomial distribution to find Ft+1(ξ, x+ 1)

Ft+1(ξ; x+ 1) =
∞∑

k=0

ξkP [ Nt+1(x+ 1) = k ]

=
∞∑

k=0

∑

i

P [ Nt(x) = i ] P [ Nt+1(x+ 1) = k | Nt(x) = i ] ξk

=
∑

i

P [ Nt(x) = i ] [qx + (1− qx)ξ]
i

= Ft(qx + ξpx; x), (2.22)

where qx and px are taken from the chosen mortality table. Therefore, in the first
year after the year of initial observation, t0, the generating function, is given by

Ft0+1(ξ; x+ 1) = [qx + (1− qx)ξ]
Nt0(x) . (2.23)

Eq. (2.23) can be generalized as

Ft0+h(ξ; x+ h) =

(
1−

h−1∏

i=0

px+i + ξ
h−1∏

i=0

px+i

)Nt0 (x)

, (2.24)

which we prove by induction. We assume that Eq. (2.24) holds for the year t0 + h
and the age x+ h. By Eq. (2.22),

Ft0+h+1(ξ; x+ h+ 1) = Ft0+h(qx+h + ξpx+h; x+ h)

=

((
1−

h−1∏

i=0

px+i

)
+ (1− px+h)

h−1∏

i=0

px+i + ξ
h∏

i=0

px+i

)Nt0 (x)

=

(
1−

h∏

i=0

px+i + ξ
h∏

i=0

px+i

)Nt0 (x)

.
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This allows us to conclude that the distribution of survivors after h years is

Nt0+h(x+ h) ∼ Bin(Nt0(x), px . . . px+h−1),

or, equivalently, Nt0+h(x+ h) ∼ Bin(Nt0(x), hpx).
Phase-type aging model. We assume that the individuals are independent

and all follow the same PH-aging model. This implies that

Dt0+h(x+ h) ∼ Bin(Nt0(x), τxe
Λ(h−1)1− τxe

Λh1),

where the second parameter represents the probability of dying between years h− 1
and h. Thus, the expected number of deaths is given by

E[Dt0+h(x+ h)] = Nt0(x)(τxe
Λ(h−1)1− τxe

Λh1).

The comparison of the three methods is shown in Fig. 2.7. As initial popu-
lation, we considered 10000 individuals of male gender with uniformly distributed
age-structure; the cohort mortality table is SW1911M. We performed the simulation
of both binomial methods and estimated the expected number of survivors in future
years. The same quantity was calculated using the phase-type approach. In the
figure we plot the ratio of the numbers obtained from the binomial methods over
those from the phase-type method. As it can be seen from the figure the maximum
difference does not exceed 0.2%.

2.3 Characterization of health states

In this section our focus is to determine possible health states of an individual in the
phase-type aging model using available data. Clearly, the available data about the
individual contains the information about his/her age. In Sec. 2.1, we provided a
formula to compute the distribution of health states for a given age x, which can be
considered as a first approximation of a possible health state. It is given by

τx =
αeΛx

αeΛx1
,

where α is the health distribution at birth.
Also, the available data may contain either direct information about the health

of the individual, coming, for example, from expert opinions, or indirect objective
information like, for example, health treatment costs consumed in the past years.
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Figure 2.7: Binomial methods vs PH-aging model:
ratio of survivors, SW1911M.

Direct information. As mentioned in Brockett [13], often expert opinions about
the future life expectancy of an individual are available, and force the recalculation
of the mortality table for this individual. Let us assume that the expected lifetime,
ē, is determined. Denote by e(i) the expected number of the remaining years of life
for each health state i. For an individual in health state i the probability to live
exactly k years is α(i)eΛk(I − eΛ)1, where α(i) is a row-vector of size n defined by
Eq. (2.11). Therefore, e(i) is given by

e(i) = α(i)

∞∑

k=0

keΛk(I − eΛ)1.

If we estimate ē, one might determine the most likely health state i∗, because there
is always i∗ such that e(i

∗+1) ≤ ē ≤ e(i
∗)
, which suggests that the health state of the

individual is going to be somewhere around i∗.
Indirect information. Suppose that one associates to an individual some char-

acterization, which is indirectly related to his/her age. For instance, this character-
ization can represent health care expenses at a given age. Specifically, assume that
an individual aged x can be characterized by the realization of the discrete random
variable Ax. We also assume that the average values of Ax are known for every age:
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E[Ax] = ax, x = 1, ..., xmax. This information allows us to determine the average
values of this random variable for every health state, b = (b(1), ..., b(n)). We compose
the linear system

T bT = J , (2.25)

where T = [τx]x=1,..,xmax, J = [ax]x=1,..,xmax, and where τxb
T represents the average

value of Ax, computed from the PH-aging model. In order to determine b we minimize

min
b

‖T bT −J ‖22. (2.26)

From Sec.2.1 we know that the number of health states in the PH-aging model
can be quite large, specifically, n = 200. Therefore, linear system (2.25) becomes
underdetermined as the number of ages xmax can not be much more than 100. Thus,
in order to solve problem (2.26) we find it useful to have a constraint. Obviously, the
choice of the constraint should depend on the nature of the random variable Ax. If
Ax is related to the health care cost of the individual, one logical constraint is given
by

0 ≤ b(i) ≤ b(i+1) ≤ max
x

(ax), (2.27)

which implies that the health care costs do not decrease with the health state and may
not exceed the maximal value given by the data. We observe that the optimization
problem with the indicated constraint guarantees a piecewise constant step structure
of the costs for the health states. This type of solution allows one to determine a
range of possible health states for a given cost value. Let us consider an example. We
take the data on average health care costs for ages provided in Table 2.1, taken from
[61], to obtain the costs for the health states in the problem (2.26) with constraint
(2.27). The results are shown in Fig. 2.8. We observe that the results provide a
good fit: in Fig. 2.9 we present the average costs for different ages x computed from
the phase-type model, τxb

T, next to the average costs given by the data, ax. As one
can see in Fig. 2.8, if an individual spends, for example, $8000 per year for his/her
health treatment, the possible health states are 163-200 (conventionally); if $2000,
then 51-103. In Fig. 2.10 we demonstrate the distribution of health states at ages
50, 60 and 70, given by Eq. (2.3) together with the possible states given the cost of
$2000 and of $8000. We find from Eq. (2.3) that, if we take an individual aged 60,
then the probability mass is concentrated for health states 90-182. If, in addition,
we know that the treatment cost equals $2000, then we find that the possible health
state lays in the interval 90-103; if it equals $8000 – in the interval 163-182.
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Table 2.1: Average Annual Health Care Costs by Age Group.

Age group Average Cost
0 $8318
1-4 $1285
5-9 $1095
10-14 $1202
15-19 $1667
20-24 $1967
25-29 $2371
30-34 $2484
35-39 $2541
40-44 $2808
45-49 $3575
50-54 $4037
55-59 $4407
60-64 $4999
65-69 $6028
70-74 $7612
75-79 $11195
80-84 $15150
85-89 $21650
90+ $8631

2.4 Longevity risk estimation tools

As we have already mentioned, an unexpected change of health causes additional
uncertainties about the remaining lifetime of individuals and is called a longevity
risk. The question is about how such unexpected changes may be modeled. We
make a distinction between two different natural reasons. The first one is related to
internal factors, that is, properties of the human body which are defined by genetics
and by personal habits. The second is related to external factors that externally
affects the life of individual, like economics, medical service, scientific developments,
etc. The incorporation of the health status through the PH-aging model allows us
to separately consider the two indicated reasons.

Internal factors. This effect is obtained through a change of the initial health
state distribution. For instance, we may assume that an individual of age x con-
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sidered at time 0 has the same health as if he was γ years younger. In this case,
the initial health distribution would be given by τ ∗x = τx−γ. Alternatively, we might
chose to shift the distribution over the phases, so that the density profile is the same
but the health state is younger, and define (τ ∗x)i = (τx)i+δ, for 1 ≤ i ≤ n − δ,
where n is the number of health states; unless x is very small, the missing mass
(τx)1+ · · ·+(τx)δ−1 is likely to be small and may be assigned to τ ∗x in any reasonable
way. The new survival function is

S∗
x(t) = τ ∗xe

Λt1. (2.28)

This idea will be applied in Section 6.3 to estimate the impact of early retirement.
Environmental changes. Here, we assume that at some time the mortality

rates of the whole population become lower. Specifically, at time K in the future the
phase-type aging matrix Λ and the vector of mortality rates are perturbed as follows

Λ̃ = Λ + εD(q), q̃ = (1− ε)q, (2.29)

where ε is a positive scalar assumed to be small and D(q) is the diagonal matrix with
vector q on the diagonal. The effect is to reduce mortality, but to keep physiological
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evolution unchanged. The new survival function is

Sε
x(t) = Sx(t), for t < K, Sε

x(t) = τxe
ΛKeΛ̃(t−K)1, for t ≥ K. (2.30)

This method will be used Section 7.5 to study the effect of an increasing lifetime spent
in bad health states. Also, in this case, instead of the single perturbation coefficient
ε, one can apply different coefficients ε1, ..., εn for each of the health states.

2.5 Stochastic aging model

In Lin and Liu [41], the authors incorporate stochasticity into the survival function
S(t), defined in (1.26), by introducing a time-changed Markov process. Denote by
Jt the state at time t for the phase process of Section 2.1. Let γt be a nondecreasing
continuous-time stochastic process. Denote by Zt the health state at time t of a
given individual aged x at time 0. It is defined as the subordinated Markov process

Zt = Jγt . (2.31)

In other words, it is assumed that the phase-type aging process is influenced by the
time-change process γt. Under this stochastic mortality modeling framework, the
survival function for a newborn is now a stochastic process and it is given by

Sγ(t) = αeΛγt1, t > 0. (2.32)

Similarly to Eq. (2.4), which corresponds to the deterministic PH-aging model, we
define the survival function of an individual aged x as

Sγ
x(t) = τxe

Λγt1, t > 0. (2.33)

The authors in [41] provide analytic expressions for the mean and the variance of
Sγ(t), assuming that γt is a subordinating gamma process with parameter µ = θ =
1/k (Appendix A.3). This results will be useful in Section 3.2, where we deal with
correlated cohorts.

Assume that the intensity matrix Λ has distinct eigenvalues, −λ1, ...,−λn, and let
h1, ..., hn and v1, ..., vn be their corresponding right and left eigenvectors such that
vih

T
i = 1. Define

Λ̃ = −
n∑

i=1

λ̃ih
T
i vi, (2.34)
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where

λ̃i =
1

µ
ln(1 + µλi). (2.35)

The expectation of Sγ(t) is given by

E[Sγ(t)] = αeΛ̃t1, t > 0. (2.36)

Denote
H = (h1, ..., hn), D = diag(−λ1, ...,−λn)

and define ζ1, ..., ζn2 such that

ζi+j = λi + λj , i, j = 1, ..., n.

Define

D̃ ⊕D = diag(−ζ̃1, ...,−ζ̃n2), ζ̃i =
1

µ
ln(1 + µζi)

and
Λ̃⊕ Λ = (H ⊗H)(D̃ ⊕D)(H ⊗H)−1, (2.37)

where the symbols ⊗ and ⊕ are Kronecker product and sum, respectively. By using
the Kronecker operations on matrices (Appendix A.1), the authors show that

(E[Sγ(t)])2 = (α⊗ α)
[
e(Λ̃⊕Λ̃)t

]
(1⊗ 1) (2.38)

and
E
[
Sγ(t)2

]
= (α⊗ α)

[
e(Λ̃⊕Λ)t

]
(1⊗ 1). (2.39)

The variance of Sγ(t) is given by

V ar[Sγ(t)] = (α⊗ α)
[
e(Λ̃⊕Λ)t − e(Λ̃⊕Λ̃)t

]
(1⊗ 1). (2.40)





Chapter 3

Correlated cohorts

In this chapter we deal with correlated cohorts in stochastic mortality environment.
We begin with our motivation in Section 3.1. In Section 3.2 we develop four math-
ematical methods of modeling correlated cohorts and provide their comparison. In
order to show how these models can be applied, in Section 3.3 we consider the prob-
lem of hedging a fixed cohort of annuitants of lifetime pensions with the help of
longevity bonds. We also present our numerical experiments and conclusions.

3.1 Why should cohorts be correlated?

A simple example of why cohorts are correlated is presented in Fig. 3.1. In the figure
we demonstrate the survival functions of two cohorts of different age: cohort A and
cohort B. On one side, at any given point of time the survival probabilities naturally
differ from each other; on the other side, both cohorts live at the same time and,
therefore, are subject to common shocks. These shocks may represent the invention
of a new treatment, or an increase of the quality of life due to other reasons. The
impact of these shocks may be different for each of the cohorts, but, obviously, it will
have the same direction. The two natural questions that appear are how to introduce
a correlation between cohorts and how to measure the impact of such correlation on
the future profits of a life insurance company.
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Figure 3.1: Survival functions of two correlated cohorts

3.2 Models of correlated cohorts

Consider two cohorts of different health: cohort A and cohort B, assumed to be the
healthiest of the two. This may happen if they have different health state distribu-
tion. For instance, we may assume that the members of cohort A have age x and the
members of cohort B are y years younger. Thus, their health state distribution is
given by vectors τx and τx−y, respectively (see Eq. (2.3)). In the deterministic PH-
aging model, the corresponding survival functions are given by Sx(t) and Sx−y(t);
in the stochastic aging model – by Sγ

x(t) and Sγ
x−y(t). According to Eq. (2.4),

Sx(t) = τxe
Λt1, and, according to Eq. (2.33), Sγ

x(t) = τxe
Λγt1 for t > 0, where τx is

given by Eq. (2.3) and γt is a gamma process (Appendix A.3).

We develop below four methods of modeling correlated cohorts, that are based
on the number of survivors in each of the cohorts. The first two deal with the
stochastic survival function Sγ

x(t), the last two deal with the deterministic survival
function Sx(t). Denote by NA(t) the number of survivors in the cohort A at time
t, by NB(t) the number of survivors in the cohort B at time t. Assume also that
NA(0) = NB(0) = N0.

Method I. We adopt the classical Binomial assumption for the number of deaths
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in each year (Pollard [51]) in the stochastic mortality environment as follows

NA(t) ∼ Bin(N0, S
γ
x(t)),

NB(t) ∼ Bin(N0, S
γ
x−y(t)),

(3.1)

where Sγ
z (t) is a random variable that represents t year survival probability for an

individual aged z and that depends on a gamma-process γt (see Eq. (2.33)). Here,
NA(t) and NB(t) are correlated because they are controlled by the same stochastic
process γt. In accordance with Eq. (2.36), the expectation of NA(t) is given by

E[NA(t)] = EγtE[N
A(t) | γt ]

= Eγt [N0τxe
Λγt1] = N0τxe

Λ̃t1,
(3.2)

where Λ̃ is defined in Eq. (2.34). Due to the property given by Eq. (A.5)

(E[NA(t)])2 = N2
0 τxe

Λ̃t1τxe
Λ̃t1

= N2
0 (τx ⊗ τx)e

(Λ̃⊕Λ̃)t(1⊗ 1),
(3.3)

where ⊗ and ⊕ are the Kronecker product and sum, respectively (Appendix A.1).
We recall that NA(t) is Binomial to obtain

E
[
NA(t)

2
]

= Eγt [N0S
γ
x(t)(1− Sγ

x(t)) + (N0S
γ
x(t))

2 | γt ]
= N0τxe

Λ̃t1 +N0(N0 − 1)(τx ⊗ τx)e
(Λ̃⊕Λ)t(1⊗ 1),

(3.4)

where Λ̃⊕ Λ is defined in Eq. (2.37). To simplify the notations, we denote

Bt =
[
e(Λ̃⊕Λ)t − e(Λ̃⊕Λ̃)t

]
(1⊗ 1). (3.5)

Eq. (3.3) and Eq. (3.4) allow us to find

V ar[NA(t)] = E
[
NA(t)

2
]
− (E[NA(t)])2

= N0τxe
Λ̃t1−N0(τx ⊗ τx)e

(Λ̃⊕Λ)t(1⊗ 1) +N2
0 (τx ⊗ τx)Bt

= N0(E[S
γ
x(t)]− E[Sγ

x(t)]
2) +N2

0V ar[S
γ
x(t)].

(3.6)

If we replace x by (x − y) in Eq. (3.2) and in Eq. (3.6), we obtain the expectation
and the variance of NB(t).

In order to compute the covariance of NA(t) and NB(t) we find

E[NA(t)NB(t)] = Eγt [E[N
A(t) | γt ]E[NB(t) | γt ] ]

= Eγt [N
2
0S

γ
x(t)S

γ
x−y(t) | γt ]

= N2
0 (τx ⊗ τx−y)e

(Λ̃⊕Λ)t(1⊗ 1).

(3.7)
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We use Eq. (A.5) to note that

E[NA(t)]E[NB(t)] = N2
0 (τx ⊗ τx−y)e

(Λ̃⊕Λ̃)t(1⊗ 1),

and we obtain

Cov[NA(t), NB(t)] = E[NA(t)NB(t)]−E[NA(t)]E[NB(t)]

= N2
0 (τx ⊗ τx−y)e

(Λ̃⊕Λ)t(1⊗ 1)−N2
0 τxe

Λ̃t1τx−ye
Λ̃t1

= N2
0 (τx ⊗ τx−y)e

(Λ̃⊕Λ)t(1⊗ 1)−N2
0 (τx ⊗ τx−y)e

(Λ̃⊕Λ̃)t(1⊗ 1)
= N2

0 (τx ⊗ τx−y)Bt = N2
0Cov[S

γ
x(t), S

γ
x−y(t)].

(3.8)
Method II. In method I we make a simplified assumption that the numbers of

survivors behave as their expected values

NA(t) = N0S
γ
x(t) = N0τxe

Λγt1,
NB(t) = N0S

γ
x−y(t) = N0τx−ye

Λγt1.
(3.9)

Due to the same argument as in method I,NA(t) andNB(t) are correlated. Moreover,
they have the same expectations as in method I:

E[NA(t)] = N0Eτxe
Λγt1 = N0τxe

Λ̃t1,

E[NB(t)] = N0Eτx−ye
Λγt1 = N0τx−ye

Λ̃t1.
(3.10)

In accordance with Eq. (2.40) and the introduced notation, the variances are

V ar[NA(t)] = N2
0 (τx ⊗ τx)Bt = N2

0V ar[S
γ
x(t)],

V ar[NB(t)] = N2
0 (τx−y ⊗ τx−y)Bt = N2

0V ar[S
γ
x−y(t)].

(3.11)

If we compare this equation with Eq. (3.6), we conclude that in method I the impact
of the Binomial assumption on the variance exactly equals N0(E[S

γ
x(t)]−E[Sγ

x(t)]
2)

for NA(t) and N0(E[S
γ
x−y(t)]−E[Sγ

x−y(t)]
2) for NB(t).

By using Eq. (3.7), Eq. (3.8) and Eq. (3.10), we obtain

Cov[NA(t), NB(t)] = N2
0 (τx ⊗ τx−y)Bt = N2

0Cov[S
γ
x(t), S

γ
x−y(t)], (3.12)

which is the same as in method I. Thus, from Eq. (3.10), (3.11) and (3.12) we observe
that the Binomial assumption of method I increases only the variance of NA(t) and
NB(t); the expectations and the covariance remain the same.

Method III. We keep the classical Binomial assumption for the number of deaths
in each year, but we remove the stochasticity in the survival probability. Specifically,
we suggest that

NA(t) ∼ Bin(N0, Sx(t)), NB(t) ∼ Bin(N0, Sx−y(t)), (3.13)
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where Sx(t) is the survival probability given by the deterministic PH-aging model
(see Eq. (2.4)). In this case, NA(t) and NB(t) are independent random variables. In
order to introduce a correlation we may connect the number of survivors as follows

NB(t) = NA(t)σt, σt > 1. (3.14)

Here, σt is a constant for a given t and is greater than one as cohort B is supposed to
be healthier than cohort A. The choice of σt can be different; here, we find it logical
to assume σt = E[NB(t)]/E[NA(t)]. Here, σt can be equivalently rewritten as

σt = Sx−y(t)/Sx(t). (3.15)

It is obvious that the expectations of the number of survivors are

E[NA(t)] = N0Sx(t), E[NB(t)] = N0Sx−y(t). (3.16)

The variances are given by

V ar[NA(t)] = N0Sx(t)(1− Sx(t)), V ar[NB(t)] = σ2
t V ar[N

A(t)]. (3.17)

It is easy to see that

Cov[NA(t), NB(t)] = σtV ar[N
A(t)]. (3.18)

Method IV. We use a common shock model to introduce the dependence between
the cohorts. The common shock model is useful to describe the dependence of lives
when an exogenous event arises that affects each of the lives. Such models are
common and well explained, for example, in Bowers et al. [10]. Here, we apply the
technique to the number of survivors as follows. We suppose that the individuals of
cohort B can be decomposed into two groups: the first group has the same health
properties as the individuals of cohort A, the second group is independent from the
first and has a better health. Mathematically, we have

NA(t) = X(t) + fA(Y (t)),
NB(t) = Z(t) + fB(Y (t)),

(3.19)

where the random variables X(t), Y (t) and Z(t) are mutually independent, fA and
fB are deterministic functions of Y (t). X(t), fA(Y (t)) and fB(Y (t)) represent the
number of survivors in the group with the health properties of cohort A; Z(t) – with
the health properties of cohort B. For the simplicity of calculations we assume that
fA(Y (t)) = fB(Y (t)) = Y (t); for general fA and fB the computations below can be
carried out in an analogous way.
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Assume Y (0) = k. Furthermore, let us adopt the Poisson assumption for the
number of survivors, which is also very common and well justified in Brillinger [12].
In the deterministic phase-type aging model we have: X ∼ Pois((N0−k)Sx(t)), Y ∼
Pois(kSx(t)), Z ∼ Pois((N0 − k)Sx−y(t)). Thus,

NA(t) ∼ Pois(N0Sx(t)),
NB(t) ∼ Pois(kSx(t) + (N0 − k)Sx−y(t)).

(3.20)

It is easy to see that the expectation of the number of survivors in cohort A is the
same as in the previous method,

E[NA(t)] = N0Sx(t), (3.21)

and for cohort B it is given by

E[NB(t)] = kSx(t) + (N0 − k)Sx−y(t), (3.22)

which is smaller than in the method I for all t. Due to the Poisson assumption, we
have

V ar[NA(t)] = E[NA(t)], V ar[NB(t)] = E[NB(t)]. (3.23)

Due to the mutual independency of X, Y and Z in Eq. (3.19), we have

Cov[NA(t), NB(t)] = V ar[Y ] = kSx(t). (3.24)

We demonstrate the simulation of the number of survivors in Fig. 3.2. Here,
parameter µ of the gamma process γt equals 0.5; this parameter can be interpreted
as a longevity risk level (see Lin and Liu [41]). The dashed grey lines represent the
number of survivors NA(t) and NB(t), simulated using method I. We have shown
analytically (in Eq. (3.2), Eq. (3.10), Eq. (3.16), Eq. (3.21)) that methods I-II and III-
IV give the same expected values ofNA(t). Same conclusions hold for the expectation
of NB(t): all the methods give same values, except method IV, which gives a smaller
value for all t (see Eq. (3.22)). The circles represent the expected values of NA(t)
and NB(t), computed with methods I and II. The solid lines represent the expected
values of NA(t) and NB(t), computed with methods III and IV. The observation that
the circles and the solid lines (except method IV for NB(t)) are very close to each
other is explained by a small difference between Λ and Λ̃ for µ = 0.5. For greater
values of µ this difference becomes more significant.
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Figure 3.2: Number of survivors, methods I-IV
Parameters: N0 = 100, k = 0.3N0, x = 65, y = 25, SW1911M

3.3 Example: hedging with longevity bonds

The problem we consider in this section is described in Leppisaari [38] and serves
as a model example of a situation, which requires computations of the number of
survivors in two correlated cohorts. In order to introduce this problem it is useful to
define the notion of longevity bonds.

Longevity bonds are financial instruments that help to hedge against longevity
risk. Longevity bonds enable to use a small portion of current savings to buy guar-
anteed income for later years of retirement, providing financial security. Longevity
bonds pay a coupon that is proportional to the number of survivors in a reference
birth cohort (see [63]). Usually, the reference birth cohort is chosen on the basis of
the lowest mortality rates. For example, often a Welsh cohort of males is considered
as a reference cohort. We remark that the longevity bond is still an instrument
under development and, despite a few attempts of its issuance, it has not reached
the market so far (see Thomsen and Andersen [59]). However, we believe that the
market will soon suggest a similar instrument against longevity risk, alternative to
the longevity bond (see, for example, Barrieu et al. [8]).
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Assume that the manager of a pension fund wishes to buy some longevity bonds
to hedge the fixed population of annuitants of one unit lifetime pension against
longevity risk. In this case, the future profit of the manager depends on the number
of survivors in the two cohorts: cohort A, which consists of the annuitants, and
cohort B, which is the ”reference” cohort of the longevity bonds. The question is
how many longevity bonds the manager has to buy. In [38], the author suggests to
determine the optimal value of longevity bonds such that it minimizes the variance
of future profits and losses.

The manager adopts the following investment strategy at time 0: to take a fixed-
interest loan to buy longevity bonds with value N . Then, the total profit and loss of
the manager at time t is given by

F (t) = (NA(t)−E[NA(t)])−N(δNB(t)/N0 − r), (3.25)

where r is a fixed interest rate, δ is % paid by the longevity bonds. The first term of
the equation is the profit and loss brought by the annuitants themselves; the second
term is the coupon paid by the longevity bonds minus the payment of interest to the
bank. The variance of F (t) is given by

V ar[F (t)] = V ar[NA(t)] +

(
Nδ

N0

)2

V ar[NB(t)]− 2
Nδ

N0
Cov[NA(t), NB(t)]. (3.26)

The value of N that minimizes V ar[F (t)] is, obviously, a function of t, and is given
by

N∗(t) =
N0Cov[N

A(t), NB(t)]

δV ar[NB(t)]
. (3.27)

It is easy to see that if there is a perfect correlation between cohort A and cohort B,
then N∗ = N0/δ; if there is no correlation at all, then N∗ = 0.

Using Eq. (3.6) and Eq. (3.8), (3.11) and (3.12), (3.17) and (3.18), (3.23) and
(3.24), we obtain the values of N∗(t) for the four methods, described in Section 3.2:

• Method I:

N∗(t) =
N0(τx ⊗ τx−y)Bt

δ((τx−ye
Λ̃t1− (τx−y ⊗ τx−y)e

(Λ̃⊕Λ)t(1⊗ 1))/N0 + (τx−y ⊗ τx−y)Bt)
,

or, equivalently,

N∗(t) =
N0Cov[S

γ
x(t), S

γ
x−y(t)]

δ((E[Sγ
x−y]− E[Sγ

x−y]
2)/N0 + V ar[Sγ

x−y(t)])
; (3.28)
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• Method II:

N∗(t) =
N0(τx ⊗ τx−y)Bt

δ(τx−y ⊗ τx−y)Bt
, (3.29)

or, equivalently,

N∗(t) =
N0Cov[S

γ
x(t), S

γ
x−y(t)]

δV ar[Sγ
x−y(t)]

; (3.30)

• Method III:

N∗(t) =
N0

δσt
,

or, using Eq. (3.15),

N∗(t) =
N0Sx(t)

δSx−y(t)
; (3.31)

• Method IV:

N∗(t) =
N0kSx(t)

δ(kSx(t) + (N0 − k)Sx−y(t))
,

or, equivalently,

N∗(t) =
N0

δ

(
1 +

N0 − k

k

Sx−y(t)

Sx(t)

) . (3.32)

Let us consider a numerical example. In order to simplify the computation pro-
cedure, instead of the full matrix Λ that normally contains around 200 states, we
take the artificially generated matrix Λ̂ with five states given by

Λ̂ =
1

20




−0.4 0.2 0 0 0
0 −0.5 0.4 0 0
0 0 −0.6 0.3 0
0 0 0 −0.7 0.4
0 0 0 0 −0.9




(3.33)

One may verify using Eq. (1.28) that the average life expectancy at birth in such
model equals 91.58 years. In Fig. 3.3 we demonstrate the variance of F (t), computed
using methods I-IV at t = 10, with respect to the value N . We observe that whereas
methods II and III allow us to reduce the variance to almost zero, the variance in
methods I and IV remains greater than a positive constant. We also observe that
the methods II and III give us a similar value of the optimal nominal. As one can
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Figure 3.3: V ar[F (t)] vs N , t = 10, methods I-IV.
Parameters: N0 = 100, k = 0.9N0, x = 65, y = 5, µ = 3, δ = 0.8, Λ = Λ̂.

see, under the considered parameters all methods I-IV give N∗ which is greater or
around N0.

Another interesting observation is that the variance increases for a certain period
of time, then decreases. Indeed, the increase in the first years is mostly caused by
the uncertainty in the future mortality rates; in the long run there will be less and
less individuals alive, which decreases this uncertainty. In Fig. 3.4 we present the
values of the variance, evaluated at the optimal points, N∗(t). In this figure one
can also see that the variance is zero at time zero, which is expected, as we have
no uncertainty at time zero. In Fig. 3.5 we present the variances in method II as a
function of N , computed for different values of t.

In addition, in Fig. 3.5 we observe that N∗(t) is not very sensitive with respect
to t, which means that it is sufficient to solve the optimization problem only at one
point of time.

It is a known fact that the increase of the number of individuals in a population
diversifies the risk related to the uncertainty about the mortality of one individual.
The effect of N0 is seen by a comparison between Fig. 3.3 and Fig. 3.6, constructed
with the same parameters, except that N0 changes its value from 100 to 10000. We
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Figure 3.4: V ar[F (t)] at N∗(t) vs t, method II.
Parameters: N0 = 100, k = 0.9N0, x = 65, y = 5, µ = 3, δ = 0.8, Λ = Λ̂.
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Figure 3.5: V ar[F (t)] vs N , method II.
Parameters: N0 = 100, k = 0.9N0, x = 65, y = 5, µ = 3, δ = 0.8, Λ = Λ̂.
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have two interesting observations: 1) the variance for methods I and II increases
more, than for the methods III and IV; 2) the optimal value of N becomes visibly
the same for methods I and II.

The first observation immediate follows the equations, obtained for the variances
of NA(t) and NB(t) and their covariance. In methods III and IV, these quantities
depend linearly on N0, as shown in Eq. (3.17), (3.23) and Eq. (3.18), (3.24); in
methods I and II the dependence on N0 is quadratic, as shown in Eq. (3.6),(3.11),
and Eq. (3.8),(3.12). This means that, for large N0, V ar[F (t)], given by Eq. (3.26),
has a linear dependence on N0 in methods III and IV, and a quadratic dependence
on N0 in methods I-II.

The second observation is explained by Eq. (3.28) and Eq. (3.30), which show
that N∗(t) in method I and method II differs only by a constant, independent on
N0. Thus, for big values of N0 the difference might not be noticeable in the figure.
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Figure 3.6: V ar[F (t)] vs N , methods I-IV.
Parameters: N0 = 10000, k = 0.9N0, x = 65, y = 5, µ = 3, δ = 0.8, Λ = Λ̂.



Part II

Pension funds modeling





Summary of Part II

In this part, we employ the phase-type assumption for lifetime to examine the prof-
itability of a pension fund.

Pension Funds can be described as life insurance companies selling two basic
types of pension schemes: defined benefit and defined contribution. With defined
benefit schemes (abbreviated as ”DB”) the pension and other benefits are set out in
the contract. This implies the calculation of a premium for a defined pension and
benefits. With defined contribution schemes (abbreviated as ”DC”) the contributions
are fixed (often as percentages of the salary) and the benefits have to be determined.

Profit-test models have been recognized as a major tool available to actuaries
involved in product development and risk management. A profit test uses projection
mathematics to establish the prospective profit profile of a policy on a given set of
assumptions. The profit profile, which is derived from a profit test, is the stream
of profits, which flow from the policy over its lifetime (Bertschi et al. [9]). The
development of profit profiles is well documented in papers such as Smart [56]. The
resulting profit profile is discounted at a risk rate to give the present value of future
profits. Formally, the present value of a cash flow at time t is a discounted difference
between cash inflows, F+

t , and outflows, F−
t :

PVt = (F+
t − F−

t )vt, (3.34)

where v is a discount factor defined in Eq. (1.4) and Eq. (1.5). Recent profit-test
models describe two types of pension schemes: open and closed . In open pension
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schemes, there are new plan participants who arrive to the pension plan according
to a chosen law. Closed pension schemes describe one fixed population of plan
participants.

Not only do profit-test models play a key role in the development of new pen-
sion schemes and estimation of their profitability, but they also serve as a tool to
improve a pension scheme. Also, this type of models is useful for the purposes of
risk management and implementation of new regulations.

In Bertschi et al. [9], Janssen and Manca [34] and Mettler [44], the authors con-
struct profit-test models to estimate the expected present value of future cash flows
of a pension fund. In these papers, pension plan participants are described by a
Markov chain with a subjectively chosen state space (we give a more detailed de-
scription in Section 1.4). Pension plan contribution rates and benefits are considered
as exogenous parameters of the profit-test model, independently whether the plan is
of DB or DC type. Cash inflows consist of contributions to active plan participants
and cash outflows consist of benefit payments and expenses. For example, in [44]
there are benefits to disabled and retired beneficiaries, lump sum payments to wid-
ows and orphans as well as the payment of vested benefits to resigned beneficiaries.
Salaries of plan participants in these papers are also parameters of the models and
often linearly increase with time. In [9], [34] and [44] both open and closed pension
schemes are considered.

In Chapter 4 we construct a profit-test model for a DB pension plan. Similarly to
[9], [34] and [44] we employ a Markov chain to model pension plan participants. The
new assumption that we make is that when active, the participants are described by
a number of health states and evolve from one health state to another in accordance
with the PH-aging model. We have three categories for non-active participants: re-
tired, resigned (termed ”surrendered” in the sequel) and dead. As we have discussed
earlier, the phase-type lifetime assumption allows us to incorporate health as a fac-
tor and characterize the participants in a more precise manner. However, we can
not apply the assumption straightaway, and we need to modify the PH-aging model
to include additional causes of decrement such as retirement and surrender. In our
model we make an assumption that the surrender rate is a deterministic function of
seniority, which is often used in practice, and that pension plan participants behave
independently from each other. In [43], the authors model surrenders stochastically,
allowing for dependent behavior of policyholders.

We model an open pension scheme. Specifically, we assume that, when the par-
ticipants leave the pension plan due to one or another reason, there are new plan
participants with the same initial individual characteristics that come as their re-
placement. The replacement is assumed to happen after some delay, which is con-
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sidered as a parameter of the model. Clearly, by setting the delay to be infinite, one
arrives to a closed pension scheme. Therefore, our chosen pension plan exhibits some
properties of an open pension scheme and at the same time can be easily reduced to
a closed one.

As we have chosen a DB pension plan we need to specify the benefits and de-
termine the contribution rates. Firstly, we assume that plan participants receive a
lifetime pension upon retirement. We remark that in Chapter 4 we do not follow
plan participants after retirement: we assume that at the moment of retirement they
receive a lifetime annuity as a lump sum and disappear from our consideration. Sec-
ondly, in case of death before the retirement age, or if a participant leaves the plan
for personal reasons, the pension fund reimburses the sum of all accrued premiums.
The assumption that the benefits in case of death or surrender are equal to the sum
of accrued premiums is motivated by the following reason: in order to determine
the amount of the benefit for a randomly taken participant at time t, one needs to
determine the number of years that this participant has spent in the pension plan
(termed ”seniority” in the sequel) and the contribution rate for this participant,
which in our model depends on his/her health state at the time of arrival. Our
purpose is to demonstrate that the phase-type approach allows us to keep this in-
formation and, therefore, allows us to deal with benefits of such complex structure.
Unlike in [9], [34] and [44], the contribution rates in our profit-test model are not
exogenous parameters, we obtain equations to compute them for each age and each
health state.

Similarly to the existing studies, cash inflows are contributions from active plan
participants, and cash outflows are benefit payments and expenses. Other technical
assumptions are that the initial population of plan participants is uniformly dis-
tributed between the ages xl and xu, and that the fund has both recurrent, and
lump-sum expenses per policy. These assumptions do not affect the principles of the
profit-test model construction. At the end of Chapter 4, in a similar manner as in
Bertschi et al. [9], we examine the effect of different replacement policies of the fund
by varying the speed at which non-active plan participants are being replaced.

In Chapter 5, we perform a risk analysis of the cash flows obtained in Chapter 4.
Profits may decrease due to causes of very different nature. Obviously, the fact
of increasing life expectancy (Oeppen and Vaupel [47]) leads to a longer period
of pension payments and lowers the profits. Another potential source of losses is
due to unpredicted changes on the market, for example, a fall of investment rates.
Thus, apart from the basic risk related to current mortality, we find it important to
consider longevity and market risks. For the purpose of longevity risk evaluation, we
obtain the distribution of the present values and perform a perturbation analysis with
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respect to future mortality rates. In order to evaluate the market risk, we consider
two new definitions of the cash flows: one with investment benefits (abbreviated as
”IB”) on the accumulated contributions, and the other one with IB on both the
accumulated contributions and the previous IB. In all these cases we model the
investment rate as a Markov reward process, as suggested in Norberg [46].

At the end of Chapter 5, we are interested in analysis of the pension system in
the long-term. We determine the time to stability, maximal and average seniority
in the plan and the stationary health state distribution of plan participants. We
analyze the impact of the change of mortality rates on the stationary distribution.

We find it natural to assume that the cash flows in the post-retirement period
significantly depend on the health and, therefore, on the future mortality rates of
plan participants. For this reason, in Chapter 6 we consider the pre-retirement period
as static, and we focus on the impact of health on the distribution of the future cash
flows coming from the pensioners. Here, similarly to Chapter 4, we construct a
profit-test model for an open pension scheme, and we assume that new participants
are participants at retirement who arrive to the fund over the years. The pensioners
are assumed to have the same age R at the time of their arrival, and each brings
to the fund the accumulation äR corresponding to a lifetime pension of size 1. The
first pension payment is made at the time of arrival. We assume that the pensioners
evolve in time in accordance with the PH-aging model, and can no longer retire
(obviously, as they are pensioners already) or surrender.

The present value of the future cash flows is defined as the discounted sum of
all lifetime annuities transferred to the fund by the pensioners at the time of their
retirement, minus discounted pension payments made by the fund to survivors. Fur-
thermore, we suppose that when a pensioner dies his remaining funds are left in the
fund to finance pension obligations with respect to other pensioners. The remaining
funds are negative if a pensioner lives longer than expected, that is, if the total pay-
ments to the pensioner exceed the lifetime annuity. It must be emphasized that our
specific definition of the cash flows is not the main focus and one might choose other
definitions; the phase-type approach is the main point.

To obtain the distribution of the present value of the cash flows, we determine
the distribution of an individual contribution, and we consider two different models
of the arrival of new pensioners. In the first model, we assume a constant number
of new pensioners joining the fund each year; in the second model, we assume that
new pensioners arrive according to a Poisson process. For the first model, we ap-
proximate the distribution of the total present value by a normal distribution. In
the second model we follow a more detailed procedure, because in this case, the total
present value is a compound Poisson random variable. One of the traditional ways to
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obtain the distribution of such a random variable is to apply the recursive algorithm
introduced by Panjer [49]. As we have discussed above, the individual present value
may be negative, and therefore we modify the algorithm on the basis of the extension
of Panjer’s algorithm given in Sundt and Jewell [58]. We discuss the efficiency of
this approach by performing a comparison between the resulting distribution of total
present value and its normal approximation. We evaluate the impact of health on
the distribution for the models with deterministic and stochastic arrivals by applying
the longevity risk estimation tools developed in Section 2.4. The main aspects of this
work are presented in Govorun and Latouche [28].

As our main contribution in Part II, we indicate the development of the method-
ology to estimate the profitability of the suggested open DB pension plan, where the
lifetime and health of plan participants are described by a phase-type distribution.

The estimation of the profitability focused on the pre-retirement period has re-
quired the elaboration of a profit-test model. To construct the profit-test model we
have developed methods to extend the PH-aging model to multiple decrements such
as retirement and surrender, and to determine contribution rates for ages and health
states. In order to correctly estimate future cash flows, we have determined the dis-
tribution of the seniority of plan participants and the distribution of their entrance
health state. This allowed us to determine the distribution of the present value of
the future cash flows. In addition, we have proposed various techniques for longevity
and market risk estimations, and a technique to perform the stability analysis of the
pension plan. We have also suggested a numerical procedure to estimate the financial
impact of the replacement/recruitment policy. Here, we obtained the optimal speed
at which the leaving plan participants have to be replaced in order to balance cash
inflows and outflows in the long term.

To estimate the profitability of the post-retirement period we have elaborated the
technique for the construction of two profit-test models, with deterministic and with
stochastic arrivals. The comparative analysis of these two models has justified the
use of the model with stochastic arrivals over the model with deterministic arrivals
on a short-term horizon. We have determined the distribution of the present value
of future cash flows and closed form expressions for the moments. This enabled us
to develop a technique to analyze the financial impact of health on the distribution
of the present value of future cash flows. The elaborated technique has allowed us
to compare the financial impact of two different events: early retirement and the
reduction of future mortality rates.





Chapter 4

Profits&Losses: pre-retirement

We begin this chapter by Section 4.1, where we configure the mathematical model
for the pension plan participants. Specifically, we show how to extend the PH-aging
model to allow for other decrements. In Section 4.2 we use the phase-type approach to
determine pension plan contribution rates, which we compare to the values computed
with the classical approach. In Section 4.3 we obtain the profit profile of the pension
plan and perform two simple verification procedures. In Section 4.4 we investigate
the possibility to correct the pension plan to achieve better profitability by changing
the arrival rate of new plan participants.

4.1 Plan participants

We follow the idea described, for example, in Bertschi et al. [9] and in Mettler [44] to
model pension plan participants using a Markov chain. We assume that the Markov
chain has n + 3 phases and that the states are grouped into four categories:

• States 1 to n states describe active participants (A);

• State n+ 1 corresponds to retired participants (R);

• State n+ 2 corresponds to surrendered/resigned participants (S);

• State n+ 3 corresponds to deceased participants (D).
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We look at the evolution of plan participants in continuous time and organize the
structure of the generator matrix according to these four sets of states. We assume
the generator matrix Π to have the form:

Π =




ΠAA qT
{R}

qT
{S}

qT

d −φ 0 0
d 0 −φ 0
d 0 0 −φ


 (4.1)

where ΠAA is an n by n matrix that describes active participants,

ΠAA = Λ− diag
(
qT
{R}

)
− diag

(
qT
{S}

)
, (4.2)

where Λ is the transition rate matrix (2.2) for the PH-aging model. qT
{R}

, qT
{S}

and

qT are column vectors of size n representing transitions to one of the inactive states

(qT is given in Eq. (2.1)), φ is a parameter that represents the rate at which a plan
participant who has left the pension plan is being replaced. d is the row vector
of size n describing replacements in case of retirement, surrender and death. The
diagrammatic representation of the proposed model is presented in Fig. 4.1.

Active

Surrendered Retired Dead

Replacement

Figure 4.1: Modeling of pension plan participants

Denote the state at time t as Φt and the number of years spent in the system
at time t as an active participant as Ψt. We calculate all financial results once in a
year until a chosen time horizon, implying a discrete evolution of plan participants.
In accordance with Eq. (1.24) the state distribution at time t+ 1 is given by

p
t+1

= p
t
eΠ, t ≥ 0,

where p
t
= (p

(i)
t : i = 1, . . . , n + 3), p

(i)
t = P [Φt = i ]. We assume that matrix Π

is irreducible and finite, therefore, there is always stationary distribution given by
lim
t→∞

p
t
.
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The probability that a new participant enters the pension plan at time t in state
i is defined by

M
(i)
t = P [Ψt = 0 , Φt = i ] (4.3)

where i ∈ A. Define Q = {R, S,D}, then we can determine M
(i)
t as

M
(i)
t = p(Q)

t−1

(
eΠ
)
Qi
, (4.4)

where
p(Q)

t
=
(
p
(i)
t , i ∈ {R, S,D}

)
(4.5)

Let us denote the distribution of states for active participants as p(A)
t

. It is given by

p(A)

t
=
(
p
(i)
t , i ∈ {A}

)
(4.6)

The expected number of active plan participants at time t is equal to Np(A)
t

1,
where N is the total number of plan participants defined from the start of the plan.
This number converges to a constant due to the convergence of the distribution p(A)

t
.

In order to complete the description of the evolution of plan participants we need
to specify the transition rates of the matrix Π and the initial distribution of states.

Initial distribution of health states. As was mentioned in the introduction
to this chapter, we consider a population with uniformly distributed ages between
xl and xu. Let us also assume that the population is of male gender and that they
follow SW1911M. What is the corresponding state distribution p

0
of this population?

Recall that p
0
is a vector of size n + 3 and it can be expressed by

p
0
=
(
p(A)

0
, 0, 0, 0

)
, (4.7)

because there is no inactive participants at the launch of the plan. Denote the
random value representing a real age at time zero by B and recall the vector τx
introduced in Eq. (2.3)

τx =
αeΛx

αeΛx1
, (4.8)

which gives the distribution of Φ0, the phase process at time t = 0 given the age is

x, (τx)i = P [Φ0 = i |B = x ], i ∈ A. In order to obtain p(A)
0

=
(
p
(j)
0 , j ∈ A

)
, we

take into account the uniform distribution of initial ages. Thus, the initial phase
distribution is given by

p
(j)
0 = P [Φ0 = j ] =

1

xu − xl

xu∑

x=xl

(τx)j , j ∈ A (4.9)
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Figure 4.2: Health state distribution of active plan participants, p(A)
0

xl = 10, xu = 30, SW1911M

We illustrate the distribution p(A)
0

in Fig. 4.2.
The probability distribution of the real age given a health state is given by

P [B = x |Φ0 = j ] =
P [Φ0 = j |B = x ] P [B = x ]

P [ Φ0 = j ]

which leads to the expression

P [B = x |Φ0 = j ] =

{
(τx)j /

∑xu

t=xl
(τ t)j , x ∈ [xl, xu]

0, x /∈ [xl, xu]
, (4.10)

if B is uniform in [xl, xu]. We illustrate the probability P [B = x |Φ0 = j ] for dif-
ferent j in Fig. 4.3. Here, as well as in all our numerical examples, we suppose that
xl = 10 and xu = 30 as this allows us to have a longer follow-up period before the
individuals retire. One may see from Fig. 4.3 that the probability mass indeed lays
between xl and xu. Consider an individual in health state i for small i. Logically,
the probability that the individual has the minimum possible age is rather high.
The same situation holds for individuals who have high health states. This explains
the peaks which one can see at the boundaries. The other real age distributions
correspond to intermediate health states.

Transition rates: aging and death. We use the PH-aging model introduced in
section 2.1 to obtain the aging rates and the death rates for active plan participants.
Thus, the PH-aging models gives us Λ in Eq. (4.2), and vector q of mortality rates.
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Figure 4.3: Conditional age distribution, P [B = x |Φ0 = j ]
xl = 10, xu = 30, SW1911M

According to Eq. (1.26), the probability to stay alive at least t years for a newborn
individual (survival probability) is defined by

SA(t) = αeΛt1.

The survival function SA(t) has already been given in Fig. 2.3 and will be discussed
again in Fig. 4.5 (crosses).

Transition rates: retirement. We assume that the retirement happens at a
statutory retirement age, R. In order to determine the retirement rates q

{R}
we have

defined a model similar to the PH-aging model, but with an additional absorbing
state representing retirement. The transition rate matrix of the new model is given
by

ΛR = Λ− diag
(
qT
{R}

)
. (4.11)

The probability to stay alive and active for at least t years for a newborn individual
(survival probability) is denoted as SAR(t), it is given by

SAR(t) = αeΛ
Rt1.
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Define the jump function F = F (t) such that

{
F (t) = SA(t), t ∈ [0, R)
F (t) = 0, t ≥ R

We define q
{R}

so that SAR(t) is an approximation of the function F (t).

Denote by i∗ the expected health state at age R. It is determined by

i∗ =
n∑

i=1

i(τR)i. (4.12)

We assume the vector q
{R}

to have the following structure:

(
q
{R}

)
j
=

{
r1, j ≤ i∗

r1 + r2, otherwise,
,

j ∈ A, and we apply the least squares method as a fitting procedure to determine r1
and r2. A rather good approximation is achieved when r1 = 0 and r2 is very high.
The survival function SAR(t) is presented in Fig. 4.5 in small dots. The vertical line
represents the jump of F (t) at R = 65.

Transition rates: surrenders. Surrender rates q
{S}

for active employees should

be chosen to match actual data. We assume that one can obtain the empirical
distribution of the number of years spent in the pension plan at the moment of
stopping the contract. In our experience, the form of this distribution is quite stable
for many pension plans. Therefore, we can derive an empirical survival probability,
Ŝt, which is the fraction of the plan participants who stay more than t years as active
participant. This information has to be translated into the health state model. We
give an example of Ŝt in Fig. 4.4 with the maximal number of years of service being
approximately 12 years.

In order to find a surrender rate for every health state we define a model similar
to the retirement model described above, but with an additional absorbing state
representing surrenders. Let us denote the new phase-type distribution as (α,ΛS),
where

ΛS = Λ− diag
(
qT
{R}

)
− diag

(
qT
{S}

)
.

We see from Eq. (4.2) that ΛS = ΠAA. Recall that the initial distribution of the

health states of plan participants is given by p
0
and that

(
p
0
eΛ

St
)
j
is the probability

to remain at least t units of time in the pension plan as an active participant and
to be in state j at time t. We determine q

{S}
so that p

0
eΛ

St1 is an approximation
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Figure 4.4: Example of empirical survival probability Ŝt, t = 1-15

of the empirical probability Ŝ(t). Like in the problem of retirement rates, we select
a parametrized structure of vector q

{S}
and apply the least squares method to fit

p
0
eΛ

St1 to Ŝ(t) for all t.
Specifically, we assume vector q

{S}
to hold a similar structure as for retirement

rates. However, there are some differences. Denote the maximum possible length of
service in the pension plan obtained from the data as l∗ and let us define φ∗ as the
expected state of an individual who spent l∗ years in the system with retirements,
described above, at the time of retirement. The structure of vector q

{S}
is defined by

(
q
{S}

)
j
=

{
w1, j ≤ φ∗

w1 + w2, otherwise
, j ∈ A.

The main difference between this model and the previous two is the interpretation
of time. In the model with surrenders, time has the meaning of the number of
years spent in the pension plan and is no longer directly interpreted as the age of
a participant. In order to compare this model to the previous two, we observe the
survival functions for a newborn individual. For the first two models we can simply
compare SA(t) and SAR(t), because at the start, all people are newborn and the time
is the age of an individual. In case of the model with surrenders, time starts at the
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moment of entering the pension program, therefore, in order to perform a proper
comparison, we need to take into account the age at which an individual enters the
plan as an active participant. Let this age be a random variable B and let us pretend
that every individual in the population joins the plan, if he/she lives until age B.
In this way, our comparison with SA(t) and SAR(t) will not be influenced by any
assumption about the fraction of the population who joins the pension plan.

Define by SARS(t) the probability for a newborn to be in an active state at
age t in the model with surrenders. Here, we need to underline that the function
SARS(t) is obtained only for demonstration purposes and does not affect our further
calculations.

We obtain SARS(t) in a step by step manner. Obviously, for a newborn individual
SARS(0) = 1. At age t = 1, the individual either is insured for one year with
probability P [B = 0 ] or does not have any insurance with probability P [B > 0 ].
This implies that

SARS(1) = P [B = 0 ]αeΛ
S

1+ P [B > 0 ]αeΛ1.

At age t = 2, there are three possible scenarios for the individual: not being a
part of the pension plan with probability P [B > 1 ], being a plan participant for
one year with probability P [B = 1 ] and being a plan participant for two years with
probability P [B = 0 ]. This results to

SARS(2) = P [B = 0 ]αeΛ
S21+ P [B = 1 ]αeΛeΛ

S

1+ P [B > 1 ]αeΛ21.

We follow the same argument to obtain the survival function at time t

SARS(t) =

t−1∑

x=0

P [B = x ]αeΛxeΛ
S(t−x)1+ αeΛt1

100∑

x=t

P [B = x ] . (4.13)

The three survival functions SARS(t), SA(t) and SAR(t) are presented in Fig. 4.5
in different types of dots. One may see from the figure, that SARS(t) significantly
differs from SA(t) and SAR(t). This is due to the fact that for this figure the initial
distribution of real ages P [B = x ] was chosen uniformly distributed between the
ages 10 and 30 and the empirical survival probability Ŝt was constructed so that l∗

is about 15 years. This implies that by 30 + 15 = 45 years old the probability to
survive in the system should be almost zero, which is observed from the figure. In
Fig. 4.5, as well as in our further illustrations φ∗ = 31 and w1 = 0, w2 = 0.1576,
unless the surrender option is specifically cancelled.

Transition rates: replacements. The last step is to define the last three lines
of the generator matrix Π. The components have the interpretations of a physio-
logical age structure of replacements and a replacement speed. As we have already
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Figure 4.5: Survival probabilities, SA(t), SAR(t) and SARS(t), SW1911M

assumed in Eq. (4.1), the speed of the replacements is the same for surrendered,
retired and deceased participants and is determined by φ. We assume parameter
φ, φ > 0 to be an input parameter of the model. Clearly, the value of the parameter
can be easily found from available data.

Furthermore, as we have discussed in the introduction to this chapter, we assume
that the health structure at replacement is identical to the initial distribution of
participants p

0
. Therefore,

d = p(A)

0
φ.

4.2 Contribution rates

We use the traditional balance approach to calculate the contribution rates (we use
below terms such as ”tariffs” or ”premiums”) of the pension plan. We assume that

an individual in state i at the moment t has the salary Θ
(i)
t and we calculate the tariff

as a percentage of this salary. We also assume the pension fund to have two types
of expenditures per policy: c, a recurrent cost per year and I0, a one-time initial
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cost. In the balance approach we take into account two decrements: death and the
exercise of the option to surrender. Obviously, the two decrements are dependent,
which can be easily captured by the phase-type model.

Our model for the evolution of the plan participants uses health states instead
of real ages. First of all, it makes the delay until the statutory retirement age
random which implies an undefined horizon for calculations. Secondly, unlike for
the mortality table survival probabilities, for an individual in state j, in the phase-
type aging model the probability to survive for t years is not a product of successive
one-year survival probabilities for the states from i to (i+ t− 1). To deal with the
difficulties we calculate gross premiums µx(i) for a contract which starts at age x in
state i. The tariff µx(i), in our setup, is determined at the start of the contract and
does not change for the whole duration of the contract.

Denote by n,kp
[SD,D]
i = α(i)eΛ

SDneΛk1 the probability to remain active in the
plan for n years with respect to death and surrender option, then remain alive for
k years. The quantity n (pq)

[SD]
i = α(i)eΛ

SDn(1 − eΛ
SD

1) represents the probability
to remain active for n years, then become inactive due to death or surrender. Here,
α(i) = (α

(i)
j , j ∈ A) is introduced in Eq. (2.11) and ΛSD is defined by removing

retirement as a cause to leave the pension plan

ΛSD = Λ− diag
(
qT
{S}

)
= ΠAA + diag

(
qT
{R}

)
.

Define

n|äi =
∞∑

k=0

vn+k
n,kp

[SD,D]
i , ä

[θ]
i:n =

n∑

k=0

vk k,0p
[SD,D]
i Θ

(i)
k , (4.14)

A
[θ]
i:n =

n∑

k=1

vk k−1 (pq)
[SD]
i

k−1∑

j=0

Θ
(i)
j .

With the introduced notations µx(i)ä
[θ]
i:R−x is the actuarial present value of the con-

tributions accumulated over R− x years by an individual aged x at the start of the
pension plan, R−x|ä

[θ]
i is his/her lifetime annuity deferred by R−x years, µx(i)A

[θ]
i:R−x

is the actuarial present value of the benefit in case of death or surrender (the benefit
is equal to the sum of accumulated contributions). Then, the balance equation for
µx(i) is

µx(i)ä
[θ]
i:R−x = R−x|äi + µx(i)A

[θ]
i:R−x + cµx(i)ä

[θ]
i:R−x + I0, (4.15)

where cµx(i)ä
[θ]
i:R−x and I0 are recurrent and one-time expenditures, respectively.

The tariff µ(i) for state i is the weighted sum of tariffs µx(i) over all x multiplied
by the probability to enter the plan in the age B = x, conditioned on the state being



4.2 Contribution rates 71

i:

µ(i) =
∑

x

µx(i)P [B = x |Φ0 = i ] .

If B is uniform on [xl, xu] it follows from Eq. (4.10) that the tariff for state i is
determined by

µ(i) =
∑

x∈[xl,xu]

µx(i) (τx)i

(
xu∑

t=xu

(τ t)i

)−1

. (4.16)

To obtain the tariff for age x, we weigh µx(i) with probabilities to be in state i
conditioned on the age being x

µx =
∑

i∈A

µx(i) (τx)i .

From Eq. (2.3) it follows that the tariff for age x is

µx =
(
αeΛx1

)−1
∑

i∈A

µx(i)
(
αeΛx

)
i
. (4.17)

We have also considered a simplified method to compute the tariffs. In the
circumstances, where one has two separate sets of survival probabilities, one for
death, one for surrender, it is a standard practice to make the approximation that
the two causes of removal are independent. This is because available tables often
give mortality and surrender rates separately, which forces actuaries to assume their
independence. Obviously, it creates errors in the calculations. Here, we determine
premium values using this simplified method and estimate the approximation errors.

In fact, to calculate tariffs with this method it is sufficient to use an analogue
of the standard balance equation with two independent causes of decrements with
Eq. (1.14). In this case, the probabilities in Eq. (4.15) are approximated by

n,kp̂
[SD,D]
i = np

S
i n+kp

D
i , n (p̂q)

[SD]
i = np

S
i np

D
i − n+1p

S
i n+1p

D
i

where

np
S
i = α(i)eΛ

S|Dn1, np
D
i = α(i)eΛn1,

The matrix ΛS|D is obtained from the matrix ΠAA by excluding death and retirement
as the reason of leaving the system so that

ΛS|D = ΠAA + diag
(
qT
)
+ diag

(
qT
{R}

)
= ΛSD + diag

(
qT
)
.
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Figure 4.6: Tariffs µ(i) for health states
Parameters: v = 0.971, c = 0.01, I0 = 0.25, SW1911M

We compare the two tariffs for the health states in Fig. 4.6. One may see from
the figure that the difference between the two tariffs is noticeable, but is not very
big. The change of the behavior of the curve corresponds to state 31: as we have
mentioned in Section 4.1, in our examples the rate to surrender is zero for states
below 31, otherwise it is equal to a positive constant. In Fig. 4.6, as well as in our
further illustrations, salary Θ

(i)
t = 1 for all t, i.

We compare the tariffs obtained for ages in Fig. 4.7. In addition to µx and µ̂x

computed as indicated above, we also present the tariffs calculated from a mortality
table, assuming independent decrements. Solid and dashed lines correspond to the
phase-type model with dependent and independent decrements, respectively; the
bullets correspond to classical mortality table approach.

4.3 Cash flows

Seniority distribution and reversal probability. To estimate the profitability of
the pension plan, we need to estimate its future cash flows. Clearly, at every moment
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Figure 4.7: Tariffs µx for ages
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of time, the total cash flow is equal to the sum of the cash flows of all individual
participants. To properly calculate the cash flow coming from one individual in state
j at time t, we need to know how long the individual has already been in the system
and what was his/her health state at the moment of entering the pension plan. Thus,
for every individual we need the distribution of the number Ψt of years spent in the
plan, that we call seniority distribution, and we need the distribution of the health
state at the time of entrance, that we call reversal probability. Define the following
event

E (r)
ji (t) = [ Ψt = r , Φt = i , Φt−r = j ]. (4.18)

E (r)
ji (t) means that at time t a plan participant is in state i, i ∈ A and he/she joined

the pension plan at time t − r being in state j, j ∈ A. Let us also define the joint
probability of service r and state i at time t by rN

(i)
t . It can be written as

rN
(i)
t = P [ Ψt = r , Φt = i ] =

∑

j∈A

P
[
E (r)
ji (t)

]
. (4.19)
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Denote by rNt =
(
rN

(i)
t , i ∈ A

)
the seniority distribution vector at time t. As

suggested by Janssen and Manca [34], rNt can be computed from
{

rNt+1 = (r−1Nt) e
ΠAA

0Nt−r+1 = Mt−r+1
, r ≤ t+ 1 (4.20)

where Mt−r+1 is the vector defined in Eq. (4.4), it is the vector of probability to be
a new plan participant at time (t − r + 1). For the cash flow calculation we need
conditional probabilities S

rPi(t) = P [ Ψt = r | Φt = i ] for active plan participants,
which we find from the equation

S
rPi(t) = rN

(i)
t /

(
p(A)
0
eΠAAt

)
i
, (4.21)

where
(
p(A)
0
eΠAAt

)
i
is the probability to remain among active plan participants for t

consecutive years and to be in state i at time t. We demonstrate conditional seniority
probabilities S

rPi(t) for different i in Fig. 4.8. In the figure, the time horizon t is equal
to 100 and is greater than the stability time t∗ that we compute later in Eq. (5.20).
We observe from the figure that the higher the state, the higher the seniority. Also,
despite in our examples the maximal observed seniority is l∗ = 15, the distributions
in the figure are concentrated on higher values of seniorities for high states. This is
due to the fact that, as we can see from Eq. (4.21), the seniority probabilities are
conditioned on the probability to be in active state i at time t.

The reversal probability to have entered the pension plan in state j, given that
at time t the seniority is r and state is i, is R

r Pji(t) and is given by

R
r Pji(t) = P

[
E (r)
ji (t)

]
/
∑

j∈A P
[
E (r)
ji (t)

]

= P [ Φt−r = j , Ψt = r , Φt = i ] / rN
(i)
t

= P [ Ψt−r = 0 , Φt−r = j ]
(
eΠAAr

)
ji
/ rN

(i)
t

=M
(j)
t−r

(
eΠAAr

)
ji
/ rN

(i)
t ,

(4.22)

where
(
eΠAAr

)
ji
is the probability to stay among active participants for r consecutive

years, starting from state j, and to be in state i at the end of the period. Eq. (4.21)
and Eq. (4.22) allows us to obtain the expression that will be useful in Eq. (4.26)
and Section 5.2

P [ Φt−r = j , Ψt = r |Φt = i ] = R
r Pji(t)

S
rPi(t)

= P
[
E (r)
ji (t)

]
/P [Φt = i ]

= P
[
E (r)
ji (t)

]
/p

(i)
t ,

(4.23)
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Figure 4.8: Conditional seniority distribution, S
rPi(t), t = 100, SW1911M

so we obtain
P
[
E (r)
ji (t)

]
= R

r Pji(t)
S
rPi(t)p

(i)
t . (4.24)

We provide an illustration of Eq. (4.22) in Fig. 4.9. On part (B) we represent

schematically the event E (r)
ji (t) and on part (A) we indicate that the state at time

t− r + 1 is chosen with distribution Mt−r+1.
We illustrate the reversal probabilities R

r Pji(t), r = 0-100, for a participant in
state i = 100 at time t = 100 on the top figure in Fig. 4.10. One reads the figure
from the right to the left. The right graph is the conditional distribution of the health
states, j, at time 100, given zero seniority and i = 100 at this time. Obviously, all
probability mass is concentrated at state j = 100. Other distributions correspond to
different values of r, which increases up to 100 in the left direction. For example, the
first distribution to the left of the right peak is the health state distribution of the
participant, given that he/she entered the pension plan just a couple of years ago.
The distribution is concentrated on values not much smaller than 100 because in a
few years the state may not have changed much. The reversal probability implies
that the participant is active at time t and was active r years ago, therefore, for high
values of r the health state distribution at the entrance to the plan is concentrated
around the youngest possible health states. Clearly, the youngest possible states
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are determined by initial health state distribution p
0
, that we demonstrate on the

bottom figure (it is shown also in Fig. 4.2). By examining the two figures carefully,
one notices that the two peaks on the left of the top figure correspond to the two left
peaks in the bottom figure, amplified by the fact that we consider the distribution
for r = 100. Obviously, given that a participant survives for r = 100 years, one may
expect that his/her state at the entrance to the pension plan is the youngest one.

Cash inflows and outflows. Assume that all the contributions are paid at the
beginning of each year. Let us denote by F+

t (i) the expected cash inflow coming at
time t from participants in health state i, i ∈ A. For a participant in state i at time
t we define F+

t (i) as the expected contribution: if the participant has zero service in

the plan, then the contribution is given by Θ
(i)
t µ(i); if the participant has r years of

service, then the contribution is given by Θ
(j)
t µ(j), where j is the health state at the

entrance to the plan. Thus,

F+
t (i) = NoP[ Φt = i ]

[
S
0Pi(t) Θ

(i)
t µ(i) +

t∑

r=1

S
rPi(t)

∑

j∈A

R
r Pji(t) Θ

(j)
t µ(j)

]
,

No is the total number of participants. We use Eq. (4.19) and (4.21) to show that

F+
t (i) = No

t∑

r=0

∑

j∈A

P
[
E (r)
ji (t)

]
Θ

(j)
t µ(j). (4.25)
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The total cash inflow in year t is F+
t =

∑
i∈A F

+
t (i).

The expected cash outflow F−
t (i) coming at time t from participants in state i,

i ∈ A, consists of several terms:

• payments of lifetime annuities ä(i) (see Eq. (2.12)) to participants who retire
in year t+ 1;

• periodic expenditures for current active policies, c;

• periodic plus initial expenditures for new policies, c + I0;

• payments in case of death or early removal, which are equal to the expected
number of contributions Θ

(i)
t µ(i) paid to the plan
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Thus,

F−
t (i) = ä(i)NoP[ Φt = i ]

(
eΠ
)
iR

+ cNoP[ Φt = i ] +No(c + I0)M
(i)
t +

NoP[ Φt = i ]
((
eΠ
)
iS
+
(
eΠ
)
iD

)∑t
r=0

S
rPi(t)

∑
j∈A r

R
r Pji(t) Θ

(j)
t µ(j)

= ä(i)NoP[ Φt = i ]
(
eΠ
)
iR

+ cNoP[ Φt = i ] +No(c + I0)M
(i)
t +

No
((
eΠ
)
iS
+
(
eΠ
)
iD

)∑t
r=0 r

∑
j∈A P

[
E (r)
ji (t)

]
Θ

(j)
t µ(j),

(4.26)
Finally, we use Eq. (3.34) to compute the present value of the cash flow at time t:

PVt =
(
F+
t − F−

t

)
vk,

where v is a discount factor.
In order to verify if the numerically obtained results make sense we perform a

simple verification for F−
t and F+

t .

Verification of F+
t :

If we assume premiums and salaries to be equal to one for all plan participants and
the interest rate to be δ = 0, then the cash inflow at time t is exactly equal to the
number of active plan participants in the plan.

Verification of F−
t :

Under the same assumptions as for the verification of F+
t , we can exclude the seniority

and reversal probabilities from Eq. (4.26) by calculating r̂t, the aggregate average
seniority in the pension plan at time t, conditional on the past being active. It is
given by

r̂t =

∑t
r=0

∑
i∈A

rN
(i)
t r

∑t
r=0

∑
i∈A

rN
(i)
t

=

∑t
r=0 r

∑
i∈A

∑
j∈A P

[
E (r)
ji (t)

]

∑t
r=0

∑
i∈A

∑
j∈A P

[
E (r)
ji (t)

] . (4.27)

Aggregate average seniority r̂t is a useful quantity. It is a general characteristic of the
pension fund, which can be easily computed from individual data on plan participants
at the moment of leaving the plan. Therefore, the comparison of the value obtained
from Eq. (4.27) to the observed value of r̂t can serve as a goodness-of-fit criterion of
the model. Also, due to its independence on the current state of a participant, r̂t
allows us to approximate the cash outflow given by Eq. (4.26) as follows

F̃−
t (i) ≃ ä(i)NoP[Φt = i ]

(
eΠ
)
iR

+ cNoP[Φt = i ] +No(c+ I0)M
(i)
t +

+NoP[Φt = i ](
(
eΠ
)
iS
+
(
eΠ
)
iD
)r̂t.

Here, we also assumed that premiums and salaries to be equal to one for all plan
participants. The verification tests for F+

t and F+
t are successfully performed.
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Figure 4.11: Cash flows, F−
t and F+

t , no replacements
Parameters: v = 0.971, c = 0.01, I0 = 0.15, No = 1000, SW1911M

4.4 Optimal modifications

The only one parameter of the generator Π which may be chosen with a lot of freedom
is φ, the speed at which participants are replaced in the plan after they die, retire
or surrender (see Eq. (4.1)). The choice of this parameter affects the cash flows in
an expected manner, as we show in Fig. 4.11 and Fig. 4.12. Due to the generator
property of Π, all the characteristics of the plan will stabilize, so do the cash flows,
F−
t and F+

t . If we choose φ to be close to zero, then there will be hardly any active
participants in the future and, therefore, both F−

t and F+
t will converge to zero, as

demonstrated in Fig. 4.11. If φ is a positive constant, then F−
t and F+

t converge to
some non-zero quantity. In the illustration given in Fig. 4.12 we chose φ to balance
future cash flows. In both figures one may notice a high value of the cash outflow
in the first year and then a big drop of it in the next year. This is caused by the
lump-sum initial expenditures per policy-in our model, we assume that at time zero
there are No new participants at once, which leads to the expenditures of I0N

o in
the first year.

In the figures, we use the lump-sum pension amount 1 instead of ä
[θ]
i , the salaries

Θ
(i)
t , i ∈ A are considered to be 1 as well.
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Figure 4.12: Cash flows, F−
t and F+

t , optimal replacements
Parameters: v = 0.971, c = 0.01, I0 = 0.15, No = 1000, SW1911M

We examine the impact of φ on the future cash flows by solving the equation

F̂+(φ) = F̂−(φ), (4.28)

where F̂+, F̂− are the stationary values of the cash inflows and outflows and 1/φ
is the average time of the replacement for surrendered, retired and deceased plan
participants. In order to calculate F̂+, F̂− we obtain the stationary characteristics
of the population of plan participants by assuming the initial health state distribution
to be the stationary distribution of the population, given in Eq. (1.19).

We solve Eq. (4.28) numerically. The resulting difference in cash flows is presented
in Fig. 4.13 for different values of 1/φ, the expected delay of the replacement. The
Y -axis is the difference between cash inflow and cash outflow. The starred part of the
curve corresponds to a positive total cash flow and the solid line corresponds to its
negative values. In this example all salaries are fixed and equal to one. The behavior
of the curve is quite logical – the faster the replacement, the greater the money
received by the pension fund. One can see from the figure that the replacement
should happen within about 3.3 years in order to have a positive long-term profit.
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Chapter 5

Risk management

The chapter is devoted to the risk analysis of the pension system constructed in
Chapter 4. To simplify the discussion and the interpretation of the results, we set all
salaries Θ

(i)
t to be equal to one. In this case, the contribution of a plan participant,

who is in state i at the start of his pension plan, is µ(i) (see Eq. (4.16)). Furthermore,
we assume that all plan participants behave independently from each other.

In Section 5.1 we state our general remarks regarding the procedure of risk assess-
ment. In Section 5.2 we estimate a risk related to the present value of the cash flows
(abbreviated as ”profits and losses”, or ”P&L” in this chapter) with no investment
benefits; this risk is caused by the independence of the survival of plan participants
and we address it as underlying risk. For the purpose of longevity risk estimations,
in Section 5.3 we perform the perturbation analysis of P&L with respect to future
mortality rates.

Section 5.4 is devoted to the market risk. Here we consider two new other defini-
tions of P&L: one with IB on the accumulated contributions, and the other one with
IB on the accumulated contributions and the previous IB. We also give a numerical
example to demonstrate the impact of the market assumptions on the future P&L.
We devote Section 5.5 to the analysis of the pension system in the long term.
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5.1 General remarks

Our aim is to evaluate different risks associated with the pension plan introduced
in Chapter 4. First of all, we need to specify a risk measure and a profit and loss
process.

One of the most popular applied risk measures is value-at-risk (abbreviated below
as ”VaR”). Duffie and Pan [21] define the VaR as follows. For a given time horizon
t and confidence level β, the value-at-risk can be defined as the loss in market value
over the time horizon t that is exceeded with probability 1− β. The values of t and
β are often chosen as 1 year and 99.5%, respectively. If we denote by Xt the VaR
at time t and by Wt the random variable, representing the profit and loss process at
time t, then Xt is such that

P[Wt > Xt ] ≥ β. (5.1)

The VaR is broadly used in risk-controlling by many financial institutions. Also, the
regulatory environment requires financial organizations to develop proprietary risk
measurement models, where VaR plays a key role.

According to Artzner et al. [3], the VaR measure exhibits some imperfections.
For example, it does not satisfy the subadditivity property. This implies that if a
company is forced to meet a requirement of extra capital, which does not satisfy this
property, the company might be motivated to split up into two separate affiliates,
which is of concern for regulators.

Despite the imperfections, the VaR measure allows us to demonstrate the ideas
of risk valuation using a phase-type approach. With our purpose being to examine
the whole financial result of the pension fund in year t, we define Wt to be the total
profit and loss in this year and β = 95%. Thus, in our examples Xt is treated as
the threshold value of P&L in year t, exceeded with probability 95%. Obviously, the
higher the Xt, the better the financial result.

We vary the exact definition of Wt depending on different circumstances and on
the risk to be evaluated. In the following subsections we consider the following cases:

I: Pure P&L. We use this definition to examine pure profits and losses of the
pension plan, for constant and changed mortality rates. The P&L are consid-
ered

(a) In year t;

(b) Accumulated by year t;

II: Pure P&L in year t plus IB on contributions. With this definition we aim
to estimate the effect of the market on future P&L, which we assume to include
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investment benefits in order to better capture market dependence. Specifically,
we suppose that the accumulated contributions by a plan participant bring an
additional investment income, which depends on the state of the market. Thus,
the total P&L value includes total investment income and pure P&L, defined
by I(a). It is natural to assume that pure P&L in year t and the IB obtained on
the accumulated contributions by year t are dependent: this is due to the fact
that both quantities are related to the same plan participants. However, from
the computational point of view, it might be useful to examine the situation
when they are independent. Thus, we obtain the total P&L

(a) Assuming that profits and investments are dependent;

(b) Assuming that profits and investments are independent;

III: Pure P&L during year t plus IB on contributions plus IB on accumu-
lated IB. We reinforce the market dependence introduced in II(a) by assuming
that there is an additional interest obtained on the previous investment income.

5.2 Underlying risk

We determine the distribution of P&L and the associated VaR of the pension plan
with a given transition rate matrix Π (see Eq. (4.1)). According to the classification
provided in the beginning of this section, we examine the P&L realized in year t first,
and the P&L accumulated by year t next.

I(a): Pure P&L during year t. Denote by W
I(a)
t the P&L limited to the

contributions and expenditures of the pension plan during year t and denote it by
W

I(a)
t . We decompose it as the sum of independent and identically distributed ran-

dom variables w
I(a)
t , which correspond to the plan participants, who are supposed

to behave independently. Therefore, if the number of participants is big enough,
we can apply the central limit theorem and conclude that the distribution of W

I(a)
t

is approximately normal with mean NoE[w
I(a)
t ] and variance NoV ar[w

I(a)
t ]. Recall

that No is the total number of participants.
Therefore, the problem is reduced to finding the distribution and the first mo-

ments of w
I(a)
t . We find this distribution from Table 5.1, where we present four

possible types of events to characterize the cost distribution of a participant at time
t, along with the corresponding P&L value and probability. The table should be con-
sidered for all i, j ∈ A. The first event implies either being active in the beginning
of the year and staying active for one year, or being a new participant in year t. In
this case, the participant brings one discounted contribution during year t, and the
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Event P&L value Probability

Active at the end of year
t; entry state is j.

µ(j)vt
∑

i∈A

∑
r P
(
E (r)
ji (t− 1)

) (
1− (eΠ)iQ1

)

+
∑

i∈Q p
(i)
t−1(e

Π)ij

Retires during year t;
active in state i at the
beginning of year t.

−ä(i)vt p
(i)
t−1(e

Π)iR

Active at the beginning
of year t; dies or surren-
ders during year t; se-
niority is r, entry state
is j.

−rµ(j)vt
∑

i∈A P
[
E (r)
ji (t− 1)

] (
(eΠ)iD + (eΠ)iS

)

Not in the plan neither
at the beginning, nor at
the end of year t

0
∑

i∈Q p
(i)
t−1(e

Π)iQ1

Table 5.1: Individual P&L , w
I(a)
t

contribution depends on the state j of the participant at the time of entrance. In
the second case, if a plan participant retires during year t in state i, the loss value
equals the discounted lifetime annuity calculated for health state i (see Eq. (2.12)).

The probability of this event is the probability p
(i)
t−1 to be in state i at time t − 1

times the probability (eΠ)iR to retire in one year from state i.

In the third case, if an active participant with seniority r and entrance health state
j dies or surrenders during year t, the loss value is equal to discounted, accumulated
for r years contributions. The loss value does not depend on health state at time
t − 1, therefore the probability of this event is the sum for all active states i of the
probabilities of E (r)

ji (t− 1) times the probability to die or surrender in one year from

state i. The value of P
[
E (r)
ji (t− 1)

]
is computed in Eq. (4.24).

Obviously, non-existing participants bring zero profit, and that is the fourth case.
One may verify that the sum of all the probabilities in Table 5.1 is equal to 1.

We obtain the distribution function of w
I(a)
t numerically, first by sorting the P&L

values in increasing order, then by summing up the probabilities for the same P&L
values. Upon the construction of the distribution function we compute the VaR,
which we illustrate in Fig. 5.1 for different t. We explain the figure by examining
the evolution of the expected number of plan participants, which is given in Fig. 5.2.
Note that in order to better visualize the VaR dynamics, in Fig. 5.1 as well as in our
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Figure 5.1: 95%-VaR, I(a)
Parameters: v = 0.971, c = 0.01, I0 = 0.25, No = 1000, SW1911M

further figures we cancelled the surrender option.

One observes from the figures that the VaR and the number of active plan par-
ticipants evolve in a similar fashion. The initial population for the models was taken
uniformly distributed between the ages 30 and 50, which implies that within 35
years all of them will be retired, as the pension age is assumed to be 65. However,
those who retire or die become replaced by new participants only after some delay.
Therefore, during ”period of retirement”, the probability of pension payment, that
corresponds to the third event in Table 5.1, grows, and the probability to obtain new
contributions is relatively small. This leads to the decrease of the VaR, which one can
see in the interval 20-30 years. After this period, there are mostly new participants
in the plan and the probability of pension payments is becoming smaller, whereas
the probability of new contributions is becoming relatively high. The corresponding
increase of the VaR can be seen in the period from 25 to 50 years. After this, the
members of the second cohort start to retire, etc. The amplitude of these waves
become smaller in time due to the convergence of the pension system to a stationary
regime, reinforced by the decrease of the discount factor.

I(b): Pure P&L accumulated by year t. Denote by W
I(b)
t the P&L accu-

mulated in the pension fund during the interval [0, t]. To obtain its distribution we

use a similar method as for W
I(a)
t . An individual P&L at time t w

I(b)
t is equal to
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Figure 5.2: Number of active plan participants,
No = 1000, SW1911M.

the accumulated contributions, if the individual at time t is active and has a positive
seniority; it is equal to the accumulated contributions minus the lifetime annuity,
if the individual retires during year t; it is equal to zero, if the individual is not in
the plan, or if he/she has just arrived to the plan and has zero seniority, or if the
individual dies or surrenders during year t (as in this case the benefit is equal to

the accumulated contributions). The distribution of w
I(b)
t is given in Table 5.2. In

the same manner as for I(a), we approximate the distribution of W
I(b)
t by a normal

distribution with mean NoE[w
I(b)
t ] and variance NoV ar[w

I(b)
t ].

We illustrate the evolution of VaR in Fig 5.3. Here as before, we chose the initial
population to be uniformly distributed between the ages 30 and 50, and the pension
age is assumed to be 65. The VaR increases almost linearly during the first 15 years,
which is reasonable because the probability of retirements and, therefore, of pension
payments is rather small. Between the 15th and 35th year from the start of the plan
all initial participants become retired. Due to this reason and due to a delay of the
replacement we see a local minimum of VaR in year 35. After this year there are
mostly new participants in the pension system, therefore, accumulations increase, so
does VaR. And again, in 30 years new plan participants begin to retire, etc. In the
long-term perspective the probabilities will stabilize and VaR will be decreasing due
to the discount factor.
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Event P&L value Probability

Active at the end of year
t; entry state is j; se-
niority r > 0

rµ(j)vt
∑

i∈A P
[
E (r)
ji (t− 1)

] (
1− (eΠ)iQ1

)

Active in the end of year
t; entry state is j; se-
niority r = 0

0
∑

i∈Q p
(i)
t−1(e

Π)ij

Active at the beginning
of year t; retires during
year t; current state i;
seniority r; entry phase
is j

rµ(j)vt

− ä(i)vt
P
[
E (r)
ji (t− 1)

]
(eΠ)iR

Active in the beginning
of year t; seniority r; en-
try state is j; death or
surrender in year t

0
∑

i∈A P
[
E (r)
ji (t− 1)

] (
(eΠ)iD + (eΠ)iS

)

Not in the plan neither
at the beginning, nor at
the end of year t

0
∑

i∈Q p
(i)
t−1(e

Π)iQ1

Table 5.2: Individual P&L , w
I(b)
t
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Figure 5.3: 95%-VaR, I(b)
Parameters: v = 0.971, c = 0.01, I0 = 0.25, No = 1000, SW1911M

5.3 Longevity risk

In this subsection we apply one of the methods that we suggested in Section 2.4 to
estimate the longevity risk. Specifically, in this example we assume that the decrease
of the mortality rates, starting from some time τm, is caused by environmental factors.
Thus, we analyze the P&L in a perturbed environment. The environment in the
pension fund is given by the generator Π (see Eq. (4.1)), which contains mortality
rates for each active state. One may consider different structures of the perturbation
of the rates, depending on the pursued objectives; here, we assume that, starting
from some time τm, the mortality rates become smaller for all health states.

We apply the technique, described in Section (2.4), particularly, in Eq. (2.29) and
define the generator of the perturbed pension system as

Π̃ = Π + εD̂(q), (5.2)

where ε is a positive scalar and

D̂(q) =

(
D(q) 0 −q
0 0 0

)
(5.3)

Here, D(q) is the diagonal matrix with vector q on the diagonal. The distribution of
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health states at time t, p̃
t
= (p̃

(i)
t : i = 1, . . . , n+ 3), is given by

p̃
t
=

{
p
0
eΠt, t < τm

p
0
eΠτmeΠ̃(t−τm), t ≥ τm

.

The seniority distribution vector for the perturbed system is rÑt =
(
rÑ

(i)
t , i ∈ A

)
,

where rÑ
(i)
t = P [ Ψt = r , Φt = i ] is the probability that a participant at time t has

physiological age i and seniority r in the plan. The seniority distribution depends
on the time when the perturbation happens. From Eq. (4.20) and Eq. (4.4) we find
that for all r < t:

• if t < τm, then
rÑt = p̃(Q)

t−r

(
eΠ
)
(Q,A)

eΠAA(r−1);

• if (t− r + 1) ≤ τm ≤ t, then

rÑt = p̃(Q)

t−r

(
eΠ
)
(Q,A)

eΠAA(τm−(t−r+1))eΠ̃AA(t−τm);

• if τm ≤ t− r, then

rÑt = p̃(Q)

t−r

(
eΠ̃
)
(Q,A)

eΠ̃AA(r−1).

Here, Π̃AA = ΠAA + εD(q) is the matrix that describes only active participants of
the perturbed model.

S
r P̃i(t) =

rÑ
(i)
t /p̃

(i)
t ,

for the perturbed conditional probabilities S
r P̃i(t) = P [Ψt = r |Φt = i ] for active

plan participants.
The various conditional reversal probabilities R

r P̃ji(t) are obtained exactly like at
the beginning of Section 4.3 and we find that

• if t < τm, then

R
r P̃ji(t) = p̃(Q)

t−r

(
eΠ
)
(Q,j)

(
eΠAA(r−1)

)
ji
/ rÑ

(i)
t ;

• if (t− r + 1) ≤ τm ≤ t, then

R
r P̃ji(t) = p̃(Q)

t−r

(
eΠ
)
(Q,j)

(
eΠAA(τm−(t−r+1))eΠ̃AA(t−τm)

)
ji
/ rÑ

(i)
t ;
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Event P&L value Probability

Active at the end of
year t; entry state is j.

µ(j)vt
∑

i∈A

∑
r P
[
Ẽ (r)
ji (t− 1)

] (
1− (eΠ̃)iQ1

)

+
∑

i∈Q p̃
(i)
t−1(e

Π̃)ij

Retires during year t;
active in state i at the
beginning of year t.

−˜̈a(i)vt p̃
(i)
t−1(e

Π̃)iR

Active at the beginning
of year t; dies or surren-
ders during year t; se-
niority is r, entry state
is j.

−rµ(j)vt
∑

i∈A P
[
Ẽ (r)
ji (t− 1)

] (
(eΠ̃)iD + (eΠ̃)iS

)

Not in the plan neither
at the beginning, nor at
the end of year t

0
∑

i∈Q p̃
(i)
t−1(e

Π̃)iQ1

Table 5.3: Individual P&L , w̃
I(a)
t

• if τm ≤ t− r, then

R
r P̃ji(t) = p̃(Q)

t−r

(
eΠ̃
)
(Q,j)

(
eΠ̃AA(r−1)

)
ji
/ rÑ

(i)
t .

The probability of event E (r)
ji (t), which means that at time t a plan participant

is in state i, i ∈ A and he/she joined the pension plan at time t − r being in state
j, j ∈ A (see Eq. (4.18)), is given by the expression (4.24), where one has to replace
the seniority and reversal probabilities by their perturbed values.

Define by W̃
I(a)
t and w̃

I(a)
t the perturbed versions ofW

I(a)
t and w

I(a)
t , respectively.

The distribution of w̃
I(a)
t does not change for t ≤ τm. For t > τm, it is given in Table

5.3. The table is mostly identical to Table 5.1; the differences are in the column of
probabilities, which are replaced by their perturbed values, computed above, and in
the P&L value for the event ”retirement”, where ˜̈a(i) is used instead of ä(i). The
quantity ˜̈a(i) is the annuity computed with the new transition matrix.

Like in case I(a), the large number of independent plan participants allows one

to conclude that W̃
I(a)
t has approximately normal distribution with mean NoE[w̃

I(a)
t ]

and variance NoV ar[w̃
I(a)
t ]. We illustrate one example on Fig. 5.4, where we decrease

the mortality rates at time τm = 5 years and ε = 0.3. The solid line represents the
VaR of the original model, the dashed line represents the VaR of the perturbed



5.4 Market risk 93

0 5 10 15 20 25 30 35 40 45 50
−400

−300

−200

−100

0

100

200

300

400

Time

 

 

VaR: original model

VaR: perturbed model

Figure 5.4: 95%-VaR, I(a), longevity effect
Parameters: v = 0.971, c = 0.01, I0 = 0.25, No = 1000, τm = 5, ε = 0.3, SW1911M

model. As one can observe, the VaRs are the same for t ≤ 5; for t > 5, the VaR
of the perturbed system is lower. The difference between the VaRs is bigger for the
periods when participants mostly retire, and it is not so big when new participants
appear.

We are also interested in additional questions about the perturbed pension sys-
tem, that are not related to VaR; these are presented in Section 5.5.

5.4 Market risk

Here, we need a model for the market and we adopt the approach introduced in
Norberg [46], where the economical environment is described by a Markov reward
process (abbreviated below as ”MRP”). This MRP includes a discrete time Markov
chain, and a reward function that associates a reward value for each state of the
Markov chain. Formally, MRP is usually defined as a triplet (S, δ, P ), where S is a
finite or countable state space, δ is a vector that contains a reward value for each
state in S, and P is a transition probability matrix.

Here, we take S = {1, ..., m} and δ =
(
δ(1), .., δ(m)

)
with the interpretation that δt

is the investment rate process at time t. It can take one of m values and is such that



94 Risk management

δt = δ(Yt), where Yt is the state of the Markov chain at time t. P is the transition
probability matrix of Yt.

Let y
0
be the initial probability vector. Then, according to Eq. (1.20), the distri-

bution of the market states in the end of year t is determined by

y
t
= y

0
P t. (5.4)

II(a): Pure P&L in year t plus IB on contributions. Profits and invest-
ments are dependent.

We denote the total P&L during year t byW
II(a)
t and, as before, in order to obtain

the distribution of W
II(a)
t we obtain the distribution of an individual P&L, denoted

by w
II(a)
t . The distribution of w

II(a)
t is given in Table 5.4. The table differs from Table

5.1 in two aspects. Firstly, we change ”P&L value” column of Table 5.1 by adding
the IB on accumulated contributions. The IB is added for those plan participants
who are active at the beginning of year t; for plan participants with seniority r and
entry state j the discounted value of IB equals δrµ(j)vt, where δ is the realization
of the investment rate process δt in year t. We assume that the market and the
participants are independent, so that the P&L value for each participant does not
depend on the particular realization of δt. Secondly, due to the fact that the IB value
depends on r, we need to separately consider cases r > 0 and r = 0 for participants
who are active at the end of year t.

In the definition II(a) we say that profits and investments are ”dependent”,

because both of them are incorporated in the individual distribution of w
II(a)
t . This

is not the case for the approximation that we consider in II(b) in the next paragraph.

Like in all previous cases, W
II(a)
t is approximately normal with the parameters

E[w
II(a)
t (δ)] and V ar[w

II(a)
t (δ)]. By the law of total probability,

P [W
II(a)
t < x ] =

m∑

k=1

(y
t
)k

∫

(−∞,x)

g(u;NoE[w
II(a)
t (δ(k))], NoV ar[w

II(a)
t (δ(k))])du

(5.5)
where g(u;m, σ2) is the normal density function with parametersm and σ2, evaluated
at u, and (y

t
)k = P[ Yt = k ] is given by Eq. (5.4).

II(b): Pure P&L in year t plus IB on contributions. Profits and in-
vestments are independent. We present here an approach, which serves as an
approximation of II(a). Instead of tracking individual P&L in year t and computing
the IB for each participant, we might lump all the contributions at the beginning of
year t and compute the IB on this total amount. Then, the total P&L in year t equals
pure P&L in year t plus this IB. By assuming independence between pure P&L and
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Event P&L value Probability

Active at the end of year
t; entry state is j; se-
niority r > 0.

µ(j)vt

+ δrµ(j)vt

∑
i∈A P

[
E (r)
ji (t− 1)

] (
1− (eΠ)iQ1

)

Active at the end of year
t; entry state is j; se-
niority r = 0.

µ(j)vt
∑

i∈Q p
(i)
t−1(e

Π)ij

Retires during year t;
active in state i at the
beginning of year t; se-
niority r.

−ä(i)vt
+ δrµ(j)vt

P
[
E (r)
ji (t− 1)

]
(eΠ)iR

Active at the beginning
of year t; dies or surren-
ders during year t; se-
niority is r, entry state
is j.

δrµ(j)vt

− rµ(j)vt

∑
i∈A P

[
E (r)
ji (t− 1)

] (
(eΠ)iD + (eΠ)iS

)

Not in the plan neither
at the beginning, nor at
the end of year t.

0
∑

i∈Q p
(i)
t−1(e

Π)iQ1

Table 5.4: Individual P&L , w
II(a)
t , conditional on δt = δ.
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the IB, we obtain that the total P&L is a sum of two independent random variables.
We show that, despite the approximation, this method gives similar results to those
of the model II(a).

Denote the IB in year t by Jt and the accumulations of the fund at the beginning
of year t by Lt. The IB is defined as an interest on the accumulated contributions,
so that

Jt = Ltδtv
t ∀t, (5.6)

and the total P&L in year t is directly expressed as

W
II(b)
t =W

I(a)
t + Jt, (5.7)

where W
I(a)

t is the P&L defined in Section 5.2. Our objective is to determine

the probability density function of W
II(b)
t , which be denote by f

II(b)
t (·). As a first

step, we obtain the distribution of Lt by applying the central limit theorem to the
sum of individual accumulations, that we call lt. This is equal to the number of
accumulated contributions, if the participant is active, and it is equal to 0, otherwise.
The moments of lt are given by

E[lt] =
∑

i∈A

∑

j∈A

∑

r≥0

µ(j)rP
[
E (r)
ji (t− 1)

]
,

V ar[lt] =
∑

i∈A

∑

j∈A

∑

r≥0

(µ(j)r)2P
[
E (r)
ji (t− 1)

]
− (E[lt])

2 .
(5.8)

Thus, the distribution of Lt is approximately normal with parameters NoE[lt] and
NoV ar[lt]. We have assumed that the investment rate process is independent of
the fund, so that Lt and δt are independent and the distribution of Jt, defined by
Eq. (5.6), is given by the mixture

P [ Jt < x ] =
∑

k

(y
t
)(k)

∫

(−∞,x/δ(k))

g(u;NoE[lt], N
oV ar[lt])du.

Denote the probability density function of Jt by fJt(·). The assumption of the inde-

pendence between W
I(a)
t and Jt, and Eq. (5.7) allow to find f

II(b)
t (·) as a convolution,

given by

f
II(b)
t (z) =

∫

(−∞,+∞)

g(u;Nomt, N
oσ2

t )fJt(z − u)du. (5.9)

The numerically computed cdfs of W
II(a)
t and W

II(b)
t are close to each other, as we

show in Fig. 5.5 for t = 1-100, in dashed and solid lines. One may hardly see the
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Figure 5.5: Cumulative distribution functions of W
II(a)
t and W

II(b)
t

v = 0.8, c = 0.01, I0 = 0.25, No = 1000, t = 1-100, SW1911M

difference between the lines and, therefore, conclude that the effect of the dependence
between total P&L and IB is negligible.

III: Pure P&L during year t plus IB on contributions plus IB on ac-
cumulated IB. Assume that the IB obtained from the accumulated premiums in
II(a) is itself re-invested. We are interested mostly in the effect given by the fluctu-
ations of the investment rate; we suppose that for a long existing pension fund these
fluctuations have a bigger impact than the fluctuations related to the population of
pension fund participants. Thus, for the analysis we replace the total accumulations
Lt of the fund by

L∗ = lim
t→∞

E[Lt] = NoE[l],

where l = limt→∞E[lt]. The limits exist due to the generator property of matrix Π.

We define the total IB in year t as

J̄t = J̄t−1δtv + L∗δtv
t, J̄0 = 0, (5.10)

where δt is the investment rate process, defined for model II(a). Since δt takes one



98 Risk management

of m possible values, we can write that

J̄t(δ1, ..., δt) = L∗δtv
t + L∗δtδt−1v

t + ...+ L∗δt · · · δ1vt

= L∗v
t

t∑

k=1

t∏

s=k

δs. (5.11)

In order to obtain the distribution of J̄t we find it convenient to express it in terms of
the distribution of J̄t−1. Define Ht(x, i) = P[ J̄t ≤ x, Yt = i ], where Yt is the Markov
chain that describes the states of the market. Define also

Ht(x) = P[ J̄t ≤ x ] =
∑

i

Ht(x, i). (5.12)

We obtain Ht(x, i) from

Ht(x, i) =

∫ ∞

0

m∑

j=1

dHt−1(y, j)P[ J̄t ≤ x, Yt = i | J̄t−1 = y, Yt−1 = j ].

Here,

P[ J̄t ≤ x, Yt = i | J̄t−1 = y, Yt−1 = j ]
= P[ Yt = i | Yt−1 = j ] · P[ J̄t ≤ x | J̄t−1 = y, Yt−1 = j, Yt = i ]
= (P )(j,i) 1{(yv+L∗vt)δ(i)≤x}.

(5.13)

Therefore,

Ht(x, i) =

∫ ∞

0

m∑

j=1

dHt−1(y, j) (P )(j,i) 1{(yv+L∗vt)δ(i)≤x}

=

m∑

j=1

Ht−1

( x

vδ(i)
− L∗v

t−1, j
)
(P )(j,i) .

(5.14)

The total P&L in year t is defined by

W III
t = W

I(a)
t + J̄t,

where W
I(a)
t and J̄t are independent for any t. If we use Eq. (5.14), (5.12), the

probability density function of W III
t , denoted by f III

t (z), is a convolution of two
continuous distributions

f III
t (z) =

∫

(−∞,+∞)

ht(z − u)g(u;NoE[w
II(a)
t ], NoV ar[w

II(a)
t ])du,
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where ht(z) = dHt(z)/dz.

Market model examples. The incorporation of IB to P&L, given by II(a),
II(b) and III, increases the impact of the market on VaR. According to our assump-
tions, the market is modeled by a Markov reward process, namely, by the Markov
Chain Yt with a finite number of states, and by the associated with it interest rate
process δt. We are interested in the impact of the parametrization of this process on
the distribution of P&L and VaR. Below, we consider two examples.

Example 1. Constant investment rate. Assume that δt = δ for all t. According
to Eq. (5.6), for II(b), the expected value of IB is given by

E[Jt] = δvtE[Lt],

with random variable Lt being the accumulations of the fund at time t. It follows
from Eq. (5.11) that the IB for case III is

J̄t = vtL∗

t∑

k=1

δk = δvtL∗
1− δt

1− δ

Let us compare E[Jt] and J̄t for all t. For high t and δ < 1, the ratio E[Jt]/J̄t
is approximately equal to 1 − δ, where δ is the investment rate value. If δ is small
enough, one can easily see that E[Jt] is close to J̄t. For smaller values of t, prior to
the time to stability, E[Jt] is smaller than J̄t, because E[Lt] < L∗ and (1− δt)/(1− δ)
is greater than one.

The same relations hold for the corresponding VaRs, because the total P&L, for
II(b) and for III, is equal to the sum of the P&L, defined in I(a), and the IB.
We illustrate the VaRs for I(a), II(b) and III, for δ = 5% in Fig. 5.6, where we
depict the obtained relations. Obviously, the VaR for I(a) is the smallest as the
corresponding P&L does not include any IB.

Another important aspect is the sensitivity of the VaRs to the discount rate v.
In Fig. 5.7 we show the VaRs computed with methods II(b) and III for different
values of v. As one may expect, the higher the value of v the lower the VaR. Also,
the value of v does not change the relation between the two VaRs - they get closer
to each other with high values of t.

Example 2. Multiple market states: same constant expected investment rate. We
demonstrate the impact of the choice of the number of market states. We construct
two models of the market: with different number of states, n1 and n2, different gen-
erator matrices, P = eΩ1 and P = eΩ2 , but the same expected investment rate in the
long term.
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Figure 5.6: 95%-VaR, I(a), II(b) and III
m = 2, δt = 5% ∀t, v = 0.98, c = 0.01, I0 = 0.25, No = 1000, SW1911M
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Denote by π
(1)
t and by π

(2)
t the stationary distributions of the market states for

the models with n1 and n2 states, respectively. Denote the set of investment rate
values for the first model by δ1 and by δ2 for the second model. We choose δ1 and
δ2 such that

π(1)δT1 = π(2)δT2 , (5.15)

where π(1)δT1 is the expected investment rate in the model with n1 states, π
(2)δT2 – in

the model with n2 states.
Specifically, n1 = 2 and n2 = 3,

Ω1 =

(
−ω ω
ω −ω

)
, ω > 0 (5.16)

and

Ω2 =




−ω 3/4ω 1/4ω
3/4ω −ω 1/4ω
1/2ω 1/2ω −ω


 , (5.17)

and
δ
(1)
1 = 1%, δ

(2)
1 = 3.5%, (5.18)

δ
(1)
2 = 2.3%, δ

(2)
2 = 3.4%, δ

(3)
2 = 0%. (5.19)

It is easy to verify that the expected interest rate remains the same and its value
is around 2.3%. In the first model, we describe a rather calm market, where the
investment rate can take only two possible values with the same probability. In
the second model, given by Ω2, we allow for a rare crisis state where δ = 0; the
probability to leave this crisis state to one of the calm states is the same.

We illustrate the interest rate behavior for the two markets in Fig. 5.8. One can
see from the figure, that the market with three states corresponds to a more risky
behavior of the market.

We examine the distribution of P&L, which we present in Fig. 5.9 for t = 10 and
t = 25. The two subfigures of the first column depict the P&L distribution, given
by II(b), for the market with two states; the two subfigures of the second column
correspond to the market with three states. The top two subfigures correspond
to the non-stable period: during this period P&L are affected by changes of the
population of plan participants, which provokes a large variance. In the presented
example, there are many surrendered participants at t = 10, which have not been
replaced yet, therefore, the mean of the distributions is slightly negative. For the
stationary period, pure profits and losses are balanced and the positive means of
the distributions on the two bottom subfigures are due to the inclusion of additional
IB. The variance of the bottom distributions shrinks due to the convergence of the
Markov chains, for plan participants and for the market, to a stationary regime.
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Figure 5.8: Interest rate processes
Parameters: n1 = 2, n2 = 3, Eq. (5.16) for Ω1, Eq. (5.17) for Ω2,

ω = 4, Eq. (5.18) for δ1, Eq. (5.19) for δ2.

5.5 Stability analysis

In this section we are interested in the stability analysis of the pension system,
controlled by a Markov chain with generator Π (see Eq. (4.1)).

One interesting characteristic of a Markov chain system is the time it requires
before reaching stability. The time to stability t∗ is the length of time until the char-
acteristics of the population become stable. This is useful to know when choosing
the time horizon for the cash flows calculations. Due to the properties of the transi-
tion probability matrices, the matrix limt→∞ eΠt has all zero eigenvalues, except one
which is equal to one. The matrix eΠ itself has one eigenvalue which is equal to one
and the others that are strictly less than one in absolute value. Taking these facts
into consideration we define t∗ as the smallest value such that

λt
∗

= ε, (5.20)

where λ is the second maximal eigenvalue of the matrix eΠ and ε is the required
degree of precision, so that eΠt is nearly constant for t > t∗.
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Figure 5.9: P&L distribution, II(b), for two markets with
same expected investment rate of 2.3%, different number of states, SW1911M

We illustrate the distribution p(A)
t

of health states of plan participants (4.6) cal-
culated for t prior and after the time to stability in Fig. 5.10. The initial distribution
p(A)
0

, given by Eq. (4.9), is represented by the thin solid line, intermediate distribu-
tions are the dashed lines and the thick solid line is the stationary distribution.

Another interesting characteristic that requires a similar approach is the maximal
seniority of a plan participant in the pension system, that is, the maximum number
of years that an active plan participant may reasonable be expected to spend in the
plan. Assume that the plan participant is in the state i, then the probability to
remain for t years as an active participant is α(i)eΠAAt1, where α(i) = (α

(i)
j , j ∈ A) is

defined by Eq. (2.11). In order to represent the maximum service we define the time
ta such that

∀t ≥ ta : max
i∈A

{α(i)eΠAAt1} ≤ ǫ, (5.21)

where ǫ is small enough. The problem is similar to the one for the time to stability,
where the solution is given by Eq. (5.20) and ta = log ǫ/λA is the solution to eλAta = ǫ,
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xl = 10, xu = 30, SW1911M.

where λA is the maximal eigenvalue of the matrix ΠAA.
Consider the average aggregate seniority r̂t given by Eq. (4.27). Due to the

generator property of the matrix Π, all the quantities in the model converge, so does
r̂t. This we illustrate in Fig. 5.11, in which r̂t converges to 7 at about 13 years.

We examine the stationary health state distribution of plan participants in a
pension system, perturbed at time τm with respect to the mortality rates, as shown in
Eq. (5.2). Denote by Π̃ the perturbed generator, and by π̃ the stationary distribution
of states. One method to obtain π̃ is to find it directly from the system given in
Eq. (1.19) {

π̃eΠ̃ = π̃,
π̃1 = 1.

(5.22)

Another method is to recall the results of the Markov chains perturbation analysis
described in G. E. Cho and C. D. Meyer [19] and E. Seneta [55]. In the current
framework we consider one generic type of the perturbation and a special example.
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Generic Perturbation. We consider the same perturbation as in Eq. (5.2),
where

Π̃ = Π + εD̂(ΠAD),

where ε is a positive scalar and D̂(ΠAD) is defined by Eq. (5.3). According to G.
E. Cho and C. D. Meyer [19], proposition 2.1, the difference between the stationary
distribution of the original and the perturbed system is given by

π̃ − π = π̃εD̂(ΠAD)(−Π)#, (5.23)

and where (−Π)# is the group inverse of (−Π).
Let A be a square matrix and denote by A# its group inverse. According to G.

E. Cho and C. D. Meyer [19], A# is the unique matrix that satisfies

• AA#A = A;

• A#AA# = A#;

• AA# = A#A.
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We define A = (−Π) and make the following partition of matrix A and π

A =

(
AN c
dT A(N,N)

)
, π = (π̄, πN ),

where N is a chosen state. The group inverse of A is given by

A# =

(
(I − 1π̄)A−1

N (I − 1π̄) −πN (I − 1π̄)A−1
N 1

−π̄A−1
N (I − 1π̄) πN π̄A

−1
N 1

)
.

The proposition also defines the difference between πN and π̃N

π̃N − πN = π̃NεD̂(ΠAD)A
#
∗N ,

where A#
∗N denotes the N th column of A#.

In Fig. 5.12 we present the stationary distributions of active health states, ob-
tained from Eq. (5.22) for the original and the perturbed system. In Fig. 5.13 the
solid line represents the difference between π̃ and π, obtained from Eq. (5.23), or
direct computation, the dashed line – from the method given by Eq. (5.22). In this
example, we chose 10−3 as the degree of precision for the stability time calculation.
Both stationary probabilities are zero for the states greater than 150, which corre-
sponds to the retirement age 65. Our general expected observation is that in the
perturbed pension system there are less active participants in young health states,
and more active participants in older health states. Also, the decrease of the mortal-
ity rates leads to the increase of the time spent among active states, which, evidently,
increases the total number of active participants in the perturbed pension system.
This theoretical fact we confirm by performing the numerical summation of the dif-
ferences between the probabilities, given by the graphs.

Special example. Let us consider a special case, where we change only two
elements of generator Π

Π̃(i∗,i∗) = Π(i∗,i∗) − r, Π̃(i∗,R) = Π(i∗,R) + r,

where, i∗ is a chosen health state, r is a positive constant and R is one of the
inactive states, for example, ”retirement”. We reorganize the i∗-th row by moving
some probability mass to the phase R . This type of perturbation is considered in
Corollary 4.2 in G. E. Cho and C. D. Meyer [19]. According to the corollary, the
relative change in the stationary probability of the perturbed state i∗ is given by

πi∗ − π̃i∗ = rπ̃i∗(A
#
(i∗,i∗) − A#

(i∗,R)).

The corollary also shows that the closer the distance between states i∗ and R, the
less sensitive πi∗ to the perturbation.
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Figure 5.12: Stationary health state distributions, π̃ and π
ε = 0.3, SW1911M
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Chapter 6

Profits&Losses: post-retirement

In this chapter we construct a profit-test model for the post-retirement period with
the main purpose to examine the impact of health on the present value of future
cash flows. As we have discussed in the introduction to Part II, the plan participants
evolve in time in accordance with the PH-aging process introduced in Sec. 2.1. Newly
retired pensioners have health states distribution given by τR defined by Eq. (2.3).

In Section 6.1 we obtain the distribution of the present value of the cash flows
assuming a deterministic number of new arrivals each year, and in Section 6.2 we
consider a Poisson process for the arrivals. We compare the two approaches in the
end of Section 6.2. For both approaches we examine in Section 6.3 the impact of
health on the distribution of the present value.

6.1 Deterministic arrival of new participants

We assume here that a constant number N of new pensioners joins the fund at the
beginning of each year. We define by ψu,t the present value at time u of the cash
flow over the interval [u, t) for a pensioner who joined the fund at the beginning of
year u, 0 ≤ u < t. The total present value at time 0 for the fund over the interval
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[0, t) is

Vt =
t−1∑

u=0

vu
N∑

i=1

ψ
(i)
u,t, for t = 0, 1, . . . (6.1)

where ψ
(i)
u,t, i = 1, . . . , N are i.i.d. random variables and they have the same distribu-

tion as ψu,t. Here, we apply the discount coefficient vu to ψu,t in order to obtain the
present value at time 0. To determine the distribution of ψu,t, we condition on the
number of years spent as a pensioner, and obtain the density displayed in Table 6.1,
where τR and Λ are defined by Eq. (2.3) and Eq. (2.2), respectively.

Event Value Probability

still alive after t− u years äR −∑t−u−1
k=0 vk τRe

Λ(t−u)1
dies in [r, r + 1), 0 ≤ r ≤ t− u− 1 äR −

∑r
k=0 v

k τRe
Λr(1− eΛ1)

Table 6.1: Distribution of ψu,t.

We observe from Table 6.1 that the distribution of ψu,t depends only on the
difference t−u, and we denote by µh and θ2h, respectively, the mean and the variance
of ψu,u+h, where h is the length of the interval spent by the pensioner in the pension
plan.

Theorem 6.1.1 The mean µh and the variance θ2h are given by

µh = äR − äR:h (6.2)

= vhτRe
Λh(I − veΛ)−11, (6.3)

θ2h = τR

h−1∑

k=0

vkeΛk1γk − (äR:h)
2, (6.4)

where äR and äR:h are given by Eq. (2.15), (2.16), and

γk =
2− vk(1 + v)

1− v
, for k = 0, 1, . . . (6.5)

Proof. Eq. (6.2) is a classical result, which may be obtained as follows from the
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probability distribution in Table 6.1.

µh = äR −
h−1∑

r=0

τRe
Λr(1− eΛ1)

r∑

k=0

vk − τRe
Λh1

h−1∑

k=0

vk

= äR −
h−1∑

k=0

vkτRe
Λk1 after rearranging the sums

= äR −
h−1∑

k=0

vkSR(k) = äR − äR:h,

where SR(k) is defined in Eq. (2.4). The expression (6.3) follows directly from
Eq. (2.15) and Eq. (2.16).

To prove Eq. (6.4) we start from

E[ψ2
u,u+h] = (äR −

h−1∑

k=0

vk)2τRe
Λh1+

h−1∑

r=0

(äR −
r∑

k=0

vk)2τRe
Λr(1− eΛ1),

and we reorganize the sums in increasing power of eΛ. After simple, but tedious
calculations, we obtain

E[ψ2
u,u+h] = ä2R − 2äRäR:h + τR

h−1∑

k=0

eΛk1vkγk, (6.6)

and, using the formula θ2h = E[ψ2
u,u+h]− µ2

h, we find that

θ2h = τR

h−1∑

k=0

eΛk1vkγk − (äR:h)
2.

Pensioners are assumed to evolve independently in a fixed mortality environment.
Thus, by the central limit theorem, each partial sum in Eq. (6.1) may be approxi-
mated by a normal random variable, for N large enough, and we conclude that Vt
is a sum of discounted normal random variables that are independent. Therefore, Vt
has a normal distribution with parameters given by

E[Vt] = N
t−1∑

s=0

µt−sv
s, V ar[Vt] = N

t−1∑

s=0

θ2t−sv
2s. (6.7)



112 Profits&Losses: post-retirement

We observe that
lim
t→∞

E[Vt] = 0. (6.8)

To show this, we use (6.3) and write

E[Vt] = NτR

t−1∑

s=0

vt−seΛ(t−s)(I − veΛ)−11vs

= vtNτR

t−1∑

s=0

eΛ(t−s)(I − veΛ)−11

= vtNτRe
Λ(I − eΛt)(I − eΛ)−1(I − veΛ)−11. (6.9)

To understand for which values of t it is reasonable to apply the model, we determine
time t when E[Vt] becomes approximately zero. We fix a small ǫ as a required
degree of precision and look for t∗ such that |E[Vt]| < ǫ for t > t∗. The only time-
dependent component in Eq. (6.9) is the product vt(I − eΛt), so that the problem
can be reformulated as follows. We look for t∗ such that ω(t) = vt(1−λt∗) < ǫ for all
t > t∗ where λ∗, λ∗ < 1 is the dominant eigenvalue of eΛ. Thus, t∗ is determined by
ω(t) = ǫ. In Fig. 6.1 we plot E[Vt] and we indicate t∗ computed for different values
of ǫ. One sees from the figure that the impact of ǫ is quite significant: t∗ is about
48 years for ǫ = 10−2, 73 years for ǫ = 10−3 and 97 years for ǫ = 10−4. Actually, the
shape of Vt as a function of t is explained by the shape of ω(t), which we display in
Fig. 6.2.

The variance θh
2 converges to the positive constant

θ2∞ = lim
h→∞

θ2h = τR

∞∑

k=0

vkeΛk1γk − (äR)
2.

To deal with V ar[Vt] as t→ ∞, we need the following technical lemma.

Lemma 6.1.2 Assume that f(t), t = 1, 2, ... is a positive finite function and such
that limt→∞ f(t) = f∞ <∞, and assume that 0 < ν < 1. One has

lim
t→∞

t−1∑

s=0

f(t− s)νs =
f∞

1− ν
. (6.10)

Proof. Define f(s) = 0 for s ≤ 0 and g(t) =
∞∑
s=0

f(t− s)νs. Then,

lim
t→∞

g(t) = lim
t→∞

∞∑

s=0

f(t− s)νs,
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Figure 6.1: Expected present value, E[Vt]
Parameters: SW1911M, v = 0.9091, R = 65, N = 1000

and, by the dominated convergence theorem,

lim
t→∞

g(t) =
∞∑

s=0

( lim
t→∞

f(t− s))νs

=
∞∑

s=0

f∞ν
s = f∞

∞∑

s=0

νs

=
f∞

1− ν
.

The convergence of V ar[Vt], given by Eq. (6.7), immediately results from Lemma
6.1.2 with f(t) = θ2t , f∞ = θ2∞, ν = v2 and

lim
t→∞

V ar[Vt] =
Nθ2∞
1− v2

.

We illustrate V ar[Vt] in Fig. 6.3.
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Figure 6.2: ω(t). Parameters: SW1911M, v = 0.9091
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Figure 6.3: Variance V ar[Vt]
Parameters: SW1911M, v = 0.9091, R = 65, N = 1000
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6.2 Poisson process for new participants

In this section, time is continuous and we assume that new pensioners arrive accord-
ing to a Poisson process. With this assumption, the number of new pensioners Nu

in year [u, u+1), 0 ≤ u ≤ t− 1 is a Poisson random variable with parameter N . We
denote by Kt the total number of new pensioners during the interval [0, t) and by
Wt the total present value at time 0 of the cash flow over the interval [0, t). Then,

Wt =

t−1∑

u=1

vu
Nu∑

i=1

ψ
(i)
u,t, ψ

(i)
u,t ∼ ψu,t. (6.11)

Conditionally given that N0 + ... + Nt−1 = K, the years of arrival have the same
distribution as K iid random variables uniform in {0, 1, ..., t− 1}. Thus,

Wt
d
=

Kt∑

i=1

φ
(i)
t , (6.12)

where φ
(i)
t are independent and identically distributed random variables distributed

as φt. The distribution of φt is the same as of vuψu,t with u being a uniform random
variable in {0, 1, ..., t− 1}. The total number Kt has a Poisson distribution with
parameter Nt, so Wt is a compound Poisson random variable.

Theorem 6.2.1 The mean Mt and the variance Θ2
t of φt, t ≥ 1, integer, are

Mt =
1

t

t−1∑

k=0

µt−kv
k (6.13)

=
vt

t
τRe

Λ(I − eΛt)(I − eΛ)−1(I − veΛ)−11, (6.14)

Θ2
t =

1

t

t−1∑

k=0

θ2t−kv
2k +

1

t

t−1∑

k=0

µ2
t−kv

2k −
(
1

t

t−1∑

k=0

µt−kv
k

)2

. (6.15)
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Proof. As we have indicated above, φt is a uniform mixture of the random variables
vuψu,t, for 0 ≤ u ≤ t− 1. Therefore,

E[φt] =
1

t

t−1∑

k=0

E[ψk,t]v
k =

1

t

t−1∑

k=0

µt−kv
k

=
1

t

t−1∑

k=0

vtτRe
Λ(t−k)(I − veΛ)−11 by (6.3)

=
vt

t
τR

t−1∑

k=0

eΛ(t−k)(I − veΛ)−11

=
vt

t
τR(I − eΛt)(I − eΛ)−1(I − veΛ)−11.

For the second moments, we have

E[φ2
t ] =

1

t

t−1∑

k=0

E[ψ2
k,t]v

2k,

so that

Θ2
t =

1

t

t−1∑

k=0

E[ψ2
k,t]v

2k −
(
1

t

t−1∑

k=0

E[ψk,t]v
k

)2

=
1

t

t−1∑

k=0

θ2t−kv
2k +

1

t

t−1∑

k=0

µ2
t−kv

2k −
(
1

t

t−1∑

k=0

µt−kv
k

)2

.

The three terms represent the average variance, the average squared mean and the
average mean squared of vkψk,t, respectively.

Since E[Wt] = NtMt, it is immediately obvious from (6.9, 6.14) that E[Wt] =
E[Vt], so that the two models give the same expected present values. The variance
of Wt can be expressed in terms of the variance of Vt as follows

V ar[Wt] = NtE[φ2
t ] = N

t−1∑

k=0

E[ψ2
k,t]v

2k (6.16)

= N

t−1∑

k=0

(θ2t−k + µ2
t−k)v

2k = V ar[Vt] +N

t−1∑

k=0

µ2
t−kv

2k, (6.17)

which shows that:
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• V ar[Wt] is greater than or equal to V ar[Vt];

• V ar[Wt] and V ar[Vt] converge to the same constant as t → ∞: we apply
Lemma 6.1.2 with f(t) = µ2

t , f∞ = limt→∞ µt = 0 and ν = v2 and find that
the right-most term in (6.17) converges to zero.

We illustrate the indicated relations between V ar[Wt] and V ar[Vt] in Fig. 6.4. The
dashed line stands for V ar[Wt] and the solid line stands for V ar[Vt]. One observes
from the figure that the shape of V ar[Wt] is similar to the shape of ω(t) presented
in Fig. (6.2). This is because N

∑t−1
k=0 µ

2
t−kv

2k has a similar behavior as ω(t).
We conclude that the model with Poisson arrivals may be chosen for short-term

computations as it allows us to capture the risks related to the uncertainty in the
arrivals. In the long-term, the effect of this uncertainty becomes less significant, and
therefore one may use the model with deterministic arrivals.
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Figure 6.4: Variances V ar[Wt] and V ar[Vt]
Parameters: SW1911M, N = 10, R = 65, v = 0.9091

Computational aspects. The iterative Panjer recursion, introduced in Panjer
[49] and presented in Appendix A.5, is traditionally used to find the density function
of a positive compound random variable of the Panjer class. The present value Wt
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is a compound Poisson random variable consisting of individual present values φt.
Individual present values φt may take negative values when the life of an individual
is longer than expected and, therefore, Wt may also be negative. In order to compute
the density function of Wt, we follow the procedure suggested in Sundt and Jewell
[58]. We introduce two random variables:

φ+
t = max(0, φt), and φ−

t = max(0,−φt), (6.18)

and also define

W+
t =

N(t)∑

s=1

φ+
s , and W−

t =

N(t)∑

s=1

φ−
s ,

then Wt = W+
t − W−

t . Thus, one needs to apply the Panjer recursion twice to
obtain the distribution of W−

t and W+
t , and finally to take the convolution of W+

t

and (−W−
t ), defined in Appendix A.4, to obtain the distribution of Wt. Note that

W+
t and W−

t are independent because N(t) has the Poisson distribution and the φis
are independent.

A question one may ask is whether it is worth the effort of computing the exact
distribution when we may as well use the normal approximation based on the first two
moments. We compare in Fig. 6.5 the density of Wt obtained by Panjer’s algorithm
and the normal density function. We observe that even for small values of N the
approximation is very good. The dashed line is the density of Wt obtained from
the extended Panjer procedure and the solid line is the normal approximation with
the same mean and variance. It is easy to see that the two distributions are almost
identical.

A second problem with the Panjer recursion appears when the parameter of the
Poisson distribution ofKt is big. That parameter is Nt, and, according to Eq. (A.13),
the iterations in the Panjer recursion start from Pr[Kt = 0 ] = e−Nt, this may be
identical to zero up to machine precision, and may result in all probabilities being
miscomputed as zero. In order to overcome this difficulty, we have started with an
arbitrary value at the first iteration and re-normalize the probabilities at the end of
each iteration. In this case, we have stopped the algorithm when the mean and the
variance from the calculated distribution are close to the theoretical values from Eq.
(6.9, 6.16).

In Fig. 6.5 we also display the normal approximation for the density of Vt as a
dotted line. As we have discussed, the expected values of Wt and Vt are identical,
and the variances differ as shown in Eq. (6.17) and Fig. 6.4. In Fig. 6.5 we choose
t = 15 years, which corresponds to a moderate difference between the variances.

In some applications it is important to calculate the distribution of Wt up to
extremely high quantiles. One such example is the loss of credit portfolios of a
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Figure 6.5: Probability density function of the total present value
Parameters: SW1911M, N = 10, t = 15, v = 0.9091

bank, which in accordance with Basel II regulations has to be calculated up to
the 99% quantile level. In S. Gerhold et al. [27] the authors derive numerically
stable algorithms based on iterative Panjer’s recursion, which allow to make precise
calculations.

6.3 Impact of health

We investigate in this section the impact onWt and Vt of a general change of health of
the pensioners. As we have mentioned in Section 2.4, an unexpected change of health
conditions causes additional uncertainties about the remaining lifetime of individuals
and is called a longevity risk. In Section 2.4 we identified two different major causes
of longevity. The first is related to internal factors, that is, properties of the human
body which are defined by genetics and by personal habits. The second is related to
external factors that externally affects the life of individual, like economics, medical
service, scientific developments, etc. We now examine the impact of each cause on
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the present values Wt and Vt.

Internal factors. As we suggested in Section 2.4, one may assume that the
individuals retiring at age R have the health distribution given by τ ∗R. According to
Eq. (2.28), the new survival function is S∗

R(t) = τ ∗Re
Λt1.

We assume that the annuities äR are computed with initial health distribution
τR, but in actual fact retires with τ ∗R. Therefore, to analyze the impact of health
we change only the probabilities τR by τ ∗R in Table 6.1 to obtain the distribution
of new random variable denoted by ψ∗

u,u+h; everything else remains the same. The
total present value V ∗

t over the interval [0, t) is

V ∗
t =

t−1∑

u=0

vu
N∑

i=1

ψ∗
u,t

(i), for t = 0, 1, . . .

Let us denote by µ∗
h and θ∗h

2, respectively, the mean and the variance of ψ∗
u,u+h. The

expressions for µ∗
h and θ∗h

2 are given in the following lemma.

Lemma 6.3.1 Assume that the random variable ψu,u+h, t ≥ 0 is defined by Table
6.1, where the health state distribution is τ ∗R. Its mean and variance are given by

µ∗
h = (τR − τ ∗R + vhτ ∗Re

Λh)(I − veΛ)−11, (6.19)

θ∗h
2 = τ ∗R

h−1∑

k=0

vkeΛk1γk − (ä∗R:h)
2, (6.20)

where ä∗R:h = τ ∗R(I − vheΛh)(I − veΛ)−11 and the γk’s are given in Eq. (6.5). In
particular, if τ ∗R = τR−γ , 0 ≤ γ ≤ R, then

µ∗
h = äR − äR−γ:h, (6.21)

θ∗h
2 = τ ∗R

h−1∑

k=0

vkeΛk1γk − (äR−γ:h)
2. (6.22)

Proof. The proof repeats the one of Theorem 6.1.1. However, when τ ∗R = τR−γ , 0 ≤
γ ≤ R it is simply enough to replace R by R− γ in Eq. (6.2)-(6.4).

For the model with Poisson arrivals, the expectation and the variance of φ∗
t can

be found using their relation to µ∗
h and θ∗h

2 defined by Theorem 6.2.1. Specifically,
for M∗

t and Θ∗
t
2 we have the following lemma.
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Lemma 6.3.2 The mean M∗
t and the variance Θ∗

t
2 of φ∗

t , t ≥ 1, with the health
state distribution τ ∗R at retirement, are

M∗
t =

1

t

t−1∑

k=0

µ∗
t−kv

k

Θ∗
t
2 =

1

t

t−1∑

k=0

(θ∗t−k)
2v2k +

1

t

t−1∑

k=0

(µ∗
t−k)

2v2k −
(
1

t

t−1∑

k=0

µ∗
t−kv

k

)2

,

where µ∗
t−k and (θ∗t−k)

2 are given by Eq. (6.19) and Eq. (6.20), respectively.
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Figure 6.6: Impact of internal factors: E[V ∗
t ].

Parameters: SW1911M, N = 10, v = 0.9091

We illustrate the impact of internal factors on the expected present value E[V ∗
t ] in

Fig. 6.6. We show the expectation for different retirement ages, 60, 63 and 65 years
old with γ = 5, 2 and 0, respectively. As äR is computed for τ 65, the expectation for
early retirements at age 63 and at age 60 converges to negative constants. Obviously,
the earlier the retirement, the better the health, the longer the life, and, therefore,
the lower the present value.
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We also recall from Section 2.4 that we may shift the distribution of health states
at retirement. In this particular example, we see that to decrease the retirement age
to 60 has the same impact on the expectation as shifting the distribution of health
states at age 65 by δ = 12 phases: the corresponding curves are nearly identical.
Similarly, to decrease the retirement age to 63 is the same as to shift the distribution
of health states by δ = 5 phases. The expectations are shown in different types of
dots.

It must be noted that the health state distribution may be changed in other
manners. For instance, define by τ ∗1 the distribution of health states shifted by 5
states with respect to τR; by τ

∗
2 the distribution of health states shifted by 12 states

with respect to τR. Then, the choice of τ ∗ = 1/2τ∗1 + 1/2τ ∗2 corresponds to the
situation where we have two populations of mixed health. The expectation is shown
as circles.

External factors. Here, we assume that at time K the mortality rates become
lower for all participants. We apply the technique described in Section 2.4 to obtain
the distribution of the perturbed individual present value ψε

0,t(K) given in Table 6.2
with ε being the parameter of the perturbation. The difference with Table 6.1 is
in the column of probabilities. Here, we divide the life of the participant into two
periods: before and after the change of mortality rates. The present values in Table
6.2 remain the same as in Table 6.1, because the annuity äR is calculated before the
change of mortality rates. The total perturbed present value V ε

t over the interval
[0, t) is

V ε
t =

t−1∑

u=0

vu
N∑

i=1

ψε
u,t, for t = 0, 1, . . .

Obviously, for K > t the expectation and the variance of ψε
0,t(K) are the same as of

ψ0,t and is defined by Theorem 6.1.1. The distributions of ψε
u,t(K), 0 < u ≤ t − 1

and K ≤ t can be obtained on the basis of the distribution ψε
0,t(K) as follows

ψε
u,t(K)

d
=ψε

0,t−u(K − u), 1 ≤ u ≤ K,

ψε
u,t(K)

d
=ψε

0,t−u(0), K + 1 ≤ u ≤ t− 1.

For K ≤ t, the expectation and the variance of ψε
0,t(K) are given in the following

Lemma.

Lemma 6.3.3 Assume that the distribution of ψε
0,t(K), K ≤ t is defined by Table

6.2. The mean µε
t and the variance θεt

2 of ψε
0,t(K) are given by

µε
t = µK − SR(K)vK(äεR+K:t−K−1 − 1), (6.23)

θεt
2 = θ2K+1 + SR(K)vK∆ε

t,K , (6.24)
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Event Value Probability

still alive after t years, t ≤ K äR −
∑t−1

k=0 v
k τRe

Λt1

still alive after t years, t > K äR −∑t−1
k=0 v

k τRe
ΛKeΛ̃(t−K)1

dies in [r, r + 1), 0 ≤ r ≤ K − 1 äR −
∑r

k=0 v
k τRe

Λr(1− eΛ1)

dies in [r, r + 1), K ≤ r ≤ t− 1 äR −∑r
k=0 v

k τRe
ΛKeΛ̃(r−K)(1− eΛ̃1)

Table 6.2: Individual present value ψε
0,t(K)

where µK and θ2K+1 are given in Theorem 6.1.1, SR(K) is defined in Eq. (2.4),

äεx:t = τx(I − vteΛ̃t)(I − veΛ̃)−11,

∆ε
t,K =

t−K−1∑

i=1

τR+Ke
Λ̃ivi1(γi+K − 2äR:K+1)− SR(K)vK(äεR+K:t−K−1 − 1)2.

Proof. We start with determining the expectation of ψε
0,t(K) from Table 6.2 as

follows

µε
t =

(
äR −

t−1∑

k=0

vk

)
τRe

ΛKeΛ̃(t−K)1+

K−1∑

r=0

(
äR −

r∑

k=0

vk

)
τRe

Λr(I − eΛ)1

+

t−1∑

r=K

(
äR −

r∑

k=0

vk

)
τRe

ΛKeΛ̃(r−K)(I − eΛ̃)1. (6.25)

In Eq. (6.25) we take äR out, group the remainder of the first and the third terms to
obtain

µε
t = äR − τRe

ΛK

(
1− vK+1

1− v
I + vK

t−K−1∑

s=1

vseΛ̃s

)
1

−τR
K−1∑

r=0

1− vr+1

1− v
eΛr(I − eΛ)1.

We notice that SR(K)τR+K = τRe
ΛK , since both parts of the equation are the

probability to survive to age R + K, given the individual has survived to age R.
Algebraically, the equation results from Eq. (2.3) and (2.4). Define äεx:t to be the
annuity for t years for an individual aged x, calculated with the transition matrix Λ̃.
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This gives

µε
t =äR − SR(K)vK(äεR+K:t−K−1 − 1)

− 1− vK+1

1− v
τRe

ΛK1−
K−1∑

r=0

1− vr+1

1− v
τRe

Λr(I − eΛ)1

= äR − SR(K)vK(äεR+K:t−K−1 − 1)−
K∑

r=0

τRe
Λr1

(
1− vr+1

1− v
− 1− vr

1− v

)

= äR − (äR:K+1 + SR(K)vK(äεR+K:t−K−1 − 1)) (6.26)

= µK − SR(K)vK(äεR+K:t−K−1 − 1).

To determine the variance we start from the formula θεt
2 = E[ψε

0,t
2(K)] − (µε

t)
2. To

determine E[ψε
0,t

2(K)] we proceed in the same way as for Eq. (6.25), and we obtain

E[ψε
t
2] =

(
äR −

t−1∑

k=0

vk

)2

τRe
ΛKeΛ̃(t−K)1+

K−1∑

r=0

(
äR −

r∑

k=0

vk

)2

τRe
Λr(I − eΛ)1

=ä2R +

K∑

s=0

τRv
seΛs1(γs − 2äR) + vK

t−K−1∑

s=1

τRv
seΛKeΛ̃s1(γs+K − 2äR)

=ä2R − 2äR(äR:K+1 + SR(K)vK(äεR+K:t−K−1 − 1))

+
K∑

s=0

τRv
seΛs1γs + vK

t−K−1∑

s=1

τRv
seΛKeΛ̃s1γs+K.

Therefore,

θεt
2 =ä2R − 2äR(äR:K+1 + SR(K)vK(äεR+K:t−K−1 − 1))

+
K∑

s=0

τRv
seΛs1γs + vK

t−K−1∑

s=1

τRv
seΛKeΛ̃s1γs+K

− (äR − (äR:K+1 + SR(K)vK(äεR+K:t−K−1 − 1)))2

=− (äR:K+1 + SR(K)vK(äεR+K:t−K−1 − 1))2

+

K∑

s=0

τRv
seΛs1γs + SR(K)vK

t−K−1∑

s=1

τR+Kv
seΛ̃s1γs+K

=− ä2R:K+1 +
K∑

s=0

τRv
seΛs1γs + SR(K)vK

t−K−1∑

i=1

τR+Ke
Λ̃ivi1(γi+K − 2äR:K+1)

− (SR(K))2v2K(äεR+K:t−K−1 − 1)2 = θ2K+1 + SR(K)vK∆ε
t,K .
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Equation (6.26) shows that µε
t can be interpreted as the difference between two

annuities. The first äR represents accumulations accrued at retirement. The second
is equal to the sum of two annuities of durations K + 1 and t−K − 1, respectively.
The annuity of duration K+1 units of time is calculated with the original mortality
matrix Λ, the annuity of duration t−K − 1 units of time is calculated with the new
mortality matrix Λ̃ and is adjusted to the present by discounting and multiplying by
the probability to survive for K years.

Equation (6.24) shows that the variance of ψε
0,t(K) at time t ≥ K is the sum

of two terms. The first is the accumulated variance at t = K + 1 calculated in
the original mortality assumptions; the second is ∆ε

t,K adjusted to the present by
discounting and multiplying by the probability to survive for K years.

For the model with Poisson arrivals, the expectation and the variance of φε
t can

be obtained from the following lemma.

Lemma 6.3.4 The mean Mε
t and the variance Θε

t
2 of φε

t , t ≥ 1 are

Mε
t =

1

t

t−1∑

k=0

µε
t−kv

k

Θε
t
2 =

1

t

t−1∑

k=0

(θεt−k)
2v2k +

1

t

t−1∑

k=0

(µε
t−k)

2v2k −
(
1

t

t−1∑

k=0

µε
t−kv

k

)2

,

where µε
t−k and (θεt−k)

2 are given by Eq. (6.23) and Eq. (6.24), respectively.

We give an illustrative example in Fig. 6.7, where we depict E[V ε
t ] for ε = 0, 0.1

and 0.2 and also E[V ∗
t ] with retirement at age 62. We observe that E[V ∗

t ] is almost
identical to E[V 0.2

t ], which indicates that the overall reduction of mortality rates by
20% has approximately the same financial impact as retirement at age 62 instead of
65. Therefore, we remark that the constructed model also allows us to compare the
impacts of mortality reduction and of other important events – early retirement in
this case.
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Part III

Health Care





Summary of Part III

The connection, provided by the phase-type lifetime assumption, between the age
and health opens new horizons in health insurance. This part is devoted to the
estimation of health care costs for an individual of a given age.

Modeling health care costs is a problem of great interest in health insurance and
economics (Zhao and Zhou [67]). The estimations of the costs play a key role in
pricing, reserving and risk assessment in health insurance, as well as performing
cost-effectiveness and cost-utility analyses in health economics. The modeling of
health care costs is not a simple problem as the accumulated cost by an individual
is correlated with his/her survival time.

Often it is assumed that health care costs depend on an individual health state,
which is modeled by a Markov chain. In Castelli et al. [17], Gardiner et al. [25]
and Zhao and Zhou [67] the Markov chain has a fixed number of states, which is a
subjectively chosen parameter, and does not depend on the age of an individual. The
health care cost related quantities that are studied in [17], [25] and [67] are slightly
different as we showed in Section 1.4, but all of them are computed as expected
values. In Gardiner et al. [25], the authors work in continuous time and determine
the expected net present value (abbreviated as ”NPV” in the sequel) of health care
costs over a fixed time horizon.

In Chapter 7 we are focused not only on the expectation of NPV, but also on
the distribution. We develop three models for NPV with our underlying assumption
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being that the lifetime and health of an individual are described by the PH-type
aging model with the generator Q (see Eq. (2.1)) that has a two-diagonal or any
structure.

The first two models are discrete time models designed to determine the distribu-
tion of NPV over a long-term horizon such as the lifetime of an individual, which is
a phase-type random variable. In the first model (called ”model with iid costs”) we
assume that the annual health care costs are independent and identically distributed
random variables, and thus they do not depend on the aging of an individual. In-
deed, in reality not all types of health care costs depend on the aging process. There
is almost no such dependence for dental care costs as well as for costs related to a
health damage caused by accidents. In insurance, this approach might be useful to
estimate personal accident type of policies. In the United States, for instance, there
is a personal injury protection policy in auto insurance, which covers medical and
funeral expenses associated to a car accident and which is obligatory in some of the
states. In the second model (called ”Markov reward model for costs”), similarly to
[17], [25] and [67], we assume that the annual health care costs depend on the aging
process and that the value of the cost is a constant for each given state. In the two
models, NPV is a compound random variable, where the number of terms in the
sum has a phase-type distribution and where a time-dependent coefficient is applied
to each term. In the absence of this coefficient and if the health costs are iid, to
find the distribution of NPV one may apply the algorithm suggested by Eisele [22],
which is a natural extension of the widely used procedure introduced by Panjer [49].
In our work, we develop a method that enables us to write similar algorithms for
the distribution of NPV in both models. We compare the two models by providing
a simple parametrization procedure, and we perform a sensitivity analysis to study
the effect of different phenomena. For example, tests with respect to mortality rates
allow us to estimate the impact of an increased lifetime spent in bad health states
for which medical treatments are the most expensive.

The third model is a continuous-time model designed to compute the distribution
of NPV over a fixed short-term horizon. The motivation is that regulatory require-
ments often impose restrictions on a short-term basis, implying that the risks have to
be calculated with a good precision at any time. The model represents a continuous
time version of the Markov reward model for costs and employs a fluid queue with
time-dependent rates to describe the behavior of NPV in time.

In Chapter 8 we extend the discrete- and continuous-time models with health
state dependent costs by allowing the cost to be random for a given health state. In
discrete time, the model, called ”Randomized Markov reward model”, is similar to
the Markov reward model for costs, the difference being that the cost for a given state
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is no longer a constant, but is a random variable with a distribution defined by the
state. In continuous time, we suggest two models to introduce the uncertainty in the
cost for a given state. In both models NPV is represented by a fluid queue with time-
dependent stochastic rates. In the first model (called ”fluid model with geometric
cost rates”) the cost rate for a given state is defined as a geometric Brownian motion
with parameters that depend on the state. The geometric Brownian motion is widely
used in mathematical finance to model non-negative random variables such as prices
or interest rates (see, for example, Lin [39]). In the second model (called ”fluid model
with Brownian increments”) the cost rates are given by the increments of a Brownian
motion with state-dependent parameters, a process widely used in ruin theory and
in mathematical finance, see Section 1.4.

The principal difference between the two models is illustrated in Fig. 8.2 and
Fig. 8.3: in the first model the cost rate has a positive drift for a given state; in the
second model the cost rate fluctuates around its average constant value. Another
important difference between the two models is that the fluid model with Brownian
increments allows the cost rates to be negative. The assumption that the costs can
be of any sign might be useful in several cases. For example, if at time u an individual
receives from an insurance institution a health treatment coverage, which has been
overestimated. In this case, at time u1 > u the part of the coverage that exceeded
real treatment costs may be reimbursed to the insurance institution. If at time u1
the individual did not need any treatment, the total cost rate at time u1 is obviously
negative. Another example is the situation, when the cost rates are re-defined as
a total cash flow and contain also regular contributions of the individual to his/her
health insurance plan. In other words, the model can be used to estimate the NPV
of future profits and losses. If one needs only non-negative costs, we indicate how the
fluid model with Brownian increments can be adapted. There are several advantages
of the model over the fluid model with geometric cost rates that we underline at the
end of the chapter.

As a main contribution of Part III we indicate the development of various math-
ematical models to determine recursive equations for the distribution of NPV. Here,
the lifetime and health of the individual are described by the PH-aging model with
the generator Q (see Eq. (2.1)) of a two-diagonal or any structure.

In discrete time, we have elaborated a model with iid costs and models with health
dependent costs with constant and random costs for a given state. We have obtained
recursive equations for the distribution of NPV over a phase-type time horizon by
extending the procedure introduced in Panjer [49]. For each of the models, we have
also derived closed form expressions for the expectation of NPV. We have suggested
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a parametrization procedure for the model with iid costs and for the model with
health dependent constant costs. As a result of this procedure we have obtained a
specific parametrization under which the model with iid costs gives approximately
same expected value of NPV as the model with health dependent costs. Furthermore,
we have elaborated a technique to estimate the financial impact of longer survival
in bad health states, which we have applied to the model with health dependent
constant costs.

In continuous time, we have elaborated three fluid models with health dependent
costs rates. In the first fluid model, the cost rate is a constant for each given health
state, and in the two other models the cost rate is a state-dependent random variable.
In the last two models, the cost rate for a given state is defined by a stochastic process,
a geometric Brownian motion or an instantaneous increment of a Brownian motion,
with parameters that depend on the state. We have obtained recursive equations
for the distribution of NPV over a fixed time horizon by using a renewal argument.
To apply the renewal argument in the models with stochastic cost rates, we have
additionally derived the distribution of the increments of NPV for a given state. For
each of the three fluid models we have developed two sets of recursive equations: a
simpler one when Q has a two-diagonal structure, and a more complex one when Q
is a generator of any structure.

Needless to remark that as far as we know fluid queues with time-dependent
deterministic or stochastic rates have not yet been well studied in the literature.
Therefore, the equations that we have obtained for the distribution of NPV (”level”
of a fluid queue) in our continuous time models may be considered as a novel con-
tribution to the theory of fluid queues.

Another remark is that the developed models and equations are general enough
and may be applied to any other actuarial quantities where total discounted payments
are correlated with the lifetime of an individual.



Chapter 7

Net present value of health care costs

In this chapter we deal with the net present value of costs in health insurance. In
Section 7.1 we start with the introduction of the problem and some algorithmic
aspects that help us to determine the distribution of the net present value.

In order to evaluate the distribution over a long-term horizon, we define two
discrete time models that are based on different assumptions for health care costs.
In Section 7.2 we assume that annual individual health care costs are independent
and identically distributed random variables for each year of life. Thus, they do not
depend on the aging of individuals. In Section 7.3 we present our second model,
where we assume that health care costs depend on the health state of the individual
and that they are defined by a Markov reward process introduced in Section 5.4. We
discuss the aspects of the parametrization and sensitivity analysis of the models in
Sections 7.4 and 7.5, respectively.

In Section 7.6 we develop a continuous time model, where the net present value
of health care costs is described by a fluid queue.

7.1 Main objectives

Our main objective is to develop a phase-type method to obtain the distribution of
the net present value of a health care contract. In continuous time the net present
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value is given by

St =

t∫

0

vuXudu or S =

L∫

0

vuXudu, (7.1)

where v is a constant coefficient, Xu is a health care cost rate at time u, t is a fixed
time horizon. Here and below, we assume that the individual is of age x at time zero,
and we denote his/her remaining lifetime by L, omitting the index x in the notation.

The remaining lifetime L of the individual is a continuous time random variable,
resulting from the PH-aging model. Thus, L ∼ PH(τ,Λ), where τ is the health state
distribution at age x, given by Eq. (2.3), and Λ is the aging transition rate matrix,
defined by Eq. (2.2). The expected value of L is given by Eq. (1.28), where α is
replaced by τ .

For a life long duration we adopt a discrete time approach and define the net
present value of a health care contract as

S =

[L]∑

t=1

vt−1Xt, (7.2)

where [L] is the integer number of remaining life years, and Xt is the health care
cost in year t. The coefficient v is allowed to take any positive value and v including
greater than one, so as to include inflation, interest force, the increase of health care
prices, etc.

Define by ψt the health state of the individual at time t. As seen in Section 2.1, the
probability to survive for t years and to be in state i at time t is

(
τeΛt

)
i
, i = 1, .., n.

We aim to determine the distribution of S, which we denote by GS(k). The problem
is equivalent to the problem of finding the conditional distribution given the health
state at time 0, because GS(k) = τ HT(k), where

H(k) : Hi(k) = P [S ≤ k | ψ0 = i ], i = 1, ..., n. (7.3)

In order to obtain a recursive equation for H(k) we notice that

if [L] = 1 then S = X1, (7.4)

if [L] ≥ 2 then S = X1 + vS̃, (7.5)

where S̃ is a random variable with the same transition matrix as S, but with a
different initial health state vector. Denote by y the conditional probability to die
in any given year, given the health state at time 0. It is equal to one minus one year
survival probability, so that

y = 1− eΛ1. (7.6)
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We determine the exact form of the recursive equations for H(k) in Sections 7.2
and 7.3, where we consider two different models for health care costs, Xt.

In the short-term, when t is not big, we aim to compute the net present value
precisely at any time, therefore it is convenient to adopt a continuous time approach.
In this approach, we determine the distribution of St defined by Eq. (7.1). In order
to obtain the distribution, in Section 7.6 we apply a renewal argument similar to the
one given by Eq. (7.4) and Eq. (7.5).

7.2 Model with iid costs

For some types of health care costs in discrete time it is reasonable to assume that
annual health care costs Xt are random, independent and have the same distribution.
This assumption leads to the following theorem. In continuous time, we defer the
discussion to Section 8.4.

Theorem 7.2.1 (iid costs) Suppose that Xt are discrete iid random variables that
take M non-negative possible values, Xt ∈ {c1, ..., cM}, with F (k) = P [Xt ≤ k] and
f(k) = P [Xt = k]. The conditional distribution H(k) of the net present value S of
a health care contract defined by Eq. (7.2) is such that

Hi(k) = yiF (k) +
(
eΛ
)
(i,·)

M∑

θ=1

f(cθ)H
T

(
k − cθ
v

)
, k ≥ 0, (7.7)

where y is given by Eq. (7.6), i = 1, ..., n. In particular,

Hi(0) = f(0)α(i)eΛ(I − f(0)eΛ)−1yT, (7.8)

where α(i) is defined in Eq. (2.11).
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Proof. The proof is based on the representation of S given by Eq. (7.4) and Eq. (7.5):

Hi(k) =P [ [L] = 1 | ψ0 = i ]P[X1 ≤ k ]

+
∑

j∈{A}

P[ψ1 = j |ψ0 = i ]P[X1 + vS̃ ≤ k |ψ1 = j ]

=yiF (k) +
∑

j∈{A}

P[ψ1 = j |ψ0 = i ]

M∑

θ=1

f(cθ)Hj

(
k − cθ
v

)

=yiF (k) +
∑

j∈{A}

(eΛ)(i,j)

M∑

θ=1

f(cθ)Hj

(
k − cθ
v

)

=yiF (k) +
(
eΛ
)
(i,·)

M∑

θ=1

f(cθ)H
T

(
k − cθ
v

)
.

If k = 0, this implies that all costs Xt, t = 1, ..., [L] are equal to zero and, therefore,

Hi(0) =

∞∑

s=1

P[ [L] = s ](f(0))s =

∞∑

s=1

α(i)eΛsyT(f(0))s

=α(i)f(0)eΛ
∞∑

s=0

eΛsyT(f(0))s

=f(0)α(i)eΛ(I − f(0)eΛ)−1yT.

Lemma 7.2.2 The expectation of S in the model with iid costs Xt is given by

E[S] = τ(I − veΛ)−11E[Xt]. (7.9)

Proof. The expectation of S is computed as follows

E[S] = E




[L]∑

t=1

vt−1Xt


 = E[Xt]E

[
1− v[L]

1− v

]
=

1

1− v
(1− g(v))E[Xt], (7.10)

where g(v) is the generating function of a discrete phase-type random variable defined
in Eq. (1.30) as

g(v) = vτ (I − veΛ)−1(1− eΛ1).
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One can represent 1 as τ (I − veΛ)−1(I − veΛ)1. Therefore,

1− g(v) = τ(I − veΛ)−1(I − veΛ)1− vτ(I − veΛ)−1(1− eΛ1)

= τ(I − veΛ)−1(I − veΛ − vI + veΛ)1

= (1− v)τ (I − veΛ)−11.

This result together with Eq. (7.10) gives the statement of the lemma.

7.3 Markov reward model for costs

We capture the dependence between the health care costs and the aging of an indi-
vidual by introducing a Markov reward process. In this framework it is defined as
the triplet (A ∪ {D},W, P ), where

i. A ∪ {D} is the set of possible states: A is the set of n health states from the
aging model, {D} is one absorbing state for death;

ii. W is the vector of size n+ 1 of health care costs for each state so that

Wi ≥ 0, if i ∈ A, and Wi = 0, if i ∈ {D}; (7.11)

iii. P is the state transition matrix, which is constructed from the generator of the
aging model as follows

P =

[
eΛ yT

0T 1

]
, (7.12)

where y is given by Eq. (7.6). Denote the corresponding health state process
by φt, t = 0, 1, 2, ....

The application of the Markov reward process results in a simplier equation forH(k),
as shown by the following theorem.

Theorem 7.3.1 Suppose that Xt follows the Markov Reward process defined by the
triplet (A ∪ {D},W, P ). The conditional distribution H(k) of the net present value
S of a health care contract defined by Eq. (7.2) is such that

Hi(k) = yi1{Wi≤k} + (eΛ)(i,·)H
T

(
k −Wi

v

)
, k ≥ 0, (7.13)

where y is given by Eq. (7.6), i = 1, .., n.. In particular,

if Wi 6= 0 then Hi(0) = 0, (7.14)

if Wi = 0 then Hi(0) = yi + (eΛ)(i,·)H
T(0). (7.15)
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Proof. The proof is analogous to the proof of Theorem 7.2.1. To show the statement
we use the fact that P[X1 ≤ k | φ0 = i ] = 1{Wi≤k} and P[X1 = k | φ0 = i ] = 1{Wi=k},
because X1 is deterministic given the health state i at the beginning of the year.

When k = 0 Eq. (7.14) and Eq. (7.15) show that Eq. (7.13) is no longer a recursive
equation, but it defines a linear system. The following lemma gives a closed form
expression for E[S], which is similar to the one given by Lemma 7.2.2 for the iid
model. Specifically, in Eq. (7.9) the vector 1E[Xt] is replaced by WT.

Lemma 7.3.2 The expectation of S for the Markov reward model (A ∪ {D},W, P )
is given by

E[S] = [τ 0](I − vP )−1WT. (7.16)

Proof. Denote by g(ζ) the probability generating function of S: g(ζ) = E[ζS]. We
have

g(ζ) = [τ 0]fT(ζ), (7.17)

where fT(ζ) is a column vector of size n + 1 such that fi(ζ) = E[ ζS | φ0 = i ], i ∈
A ∪ {D}. If [L] = 1, then by Eq. (7.4) fi(ζ) = ζWi. If [L] ≥ 2, by conditioning on
the first transition, we obtain

fi(ζ) =
∑

j∈A∪{D}

P[φ1 = j | φ0 = i ]E[ ζS | φ0 = i, φ1 = j ]

=
∑

j∈A∪{D}

P[φ1 = j | φ0 = i ]E[ ζWi+vS̃ | φ0 = i, φ1 = j ]

= ζWi

∑

j∈A∪{D}

P[φ1 = j | φ0 = i ]E[ (ζv)S̃ | φ1 = j ]

= ζWi

∑

j∈A∪{D}

P(i,j)E[ (ζ
v)S | φ0 = j ]

= ζWi

∑

j∈A∪{D}

P(i,j)fj(ζ
v). (7.18)

In the matrix form, Eq. (7.18) is written as

fT(ζ) = ΥPfT(ζv), (7.19)

where Υ is a diagonal matrix of size n+ 1, given by

Υ =




ζW1 . . . 0 0
...

. . .
...

...
0 . . . ζWn 0
0 . . . 0 1


 . (7.20)



7.4 Parametrization aspects 139

We employ the properties of generating functions and Eq. (7.17) to obtain

E[S] =
∂g(ζ)

∂ζ

∣∣∣∣
ζ=1

= [τ 0]
∂fT(ζ)

∂ζ

∣∣∣∣∣
ζ=1

. (7.21)

Denote

W̃ =




W1 . . . 0 0
...

. . .
...

...
0 . . . Wn 0
0 . . . 0 0


 . (7.22)

By differentiating Eq. (7.19), we find

∂fT(ζ)

∂ζ
=

1

ζ
W̃ΥPfT(ζv) + vζv−1ΥP

∂fT(z)

∂z

∣∣∣∣∣
z=ζv

=
1

ζ
W̃f(ζ) + vζv−1ΥP

∂f (z)

∂z

∣∣∣∣
z=ζv

. (7.23)

We evaluate Eq. (7.23) at ζ = 1 and use fT(1) = 1 to obtain

∂fT(ζ)

∂ζ

∣∣∣∣∣
ζ=1

= W̃1+ vP
∂fT(z)

∂z

∣∣∣∣∣
z=1

, (7.24)

and, after rearranging the terms,

∂fT(ζ)

∂ζ

∣∣∣∣∣
ζ=1

= (I − vP )−1WT. (7.25)

By combining Eq. (7.21) and Eq. (7.25) we obtain the statement of the lemma.

7.4 Parametrization aspects

In order to indicate how the model with iid costs and the Markov reward model can
be used in practice, we give here one example of a parametrization procedure.

What is the available data? This is the first natural question that appears when
one intends to parametrize a model. We may assume that health care costs are
available for each age, from 0 to xmax (100 in our examples), possibly as frequency
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Figure 7.1: Distributions of Binomial Ŷx, x = 1-100, constrained in [1, 10]

distributions and more likely as averages only. We denote by Ŷx the health care cost
for age x, observed from the data and we denote by M an integer such that Ŷx ≤M
with probability one for all x.

On the illustrative example to follow, we take M = 10 and assume that Ŷx has
E[Ŷ0] = 1, E[Ŷ100] = 10 and E[Ŷx] is linear in between. To give a better feeling for
the distributions to follow, we plot in Fig. 7.1 an example, when Ŷx has a Binomial
distribution with the probability mass constrained to be between 1 and 10. In our
numerical examples we consider an individual aged 40 at time zero.

Markov reward model for costs. In order to parametrize the model, where
health care costs follow a Markov reward process, we implement the procedure de-
scribed in Section 2.3, and so we determine a value of the cost Wi for every health
state i ∈ A. To obtain the values we assume that the costs are non-decreasing with
respect to health, and we require the equality of their first moments for all ages.
Namely, we solve numerically the linear optimization problem with constraints

min
WA

‖TWT
A −J ‖22, WA : 0 < Wi ≤Wi+1 ≤ M, i = 1, ..., n− 1 (7.26)

Here, T = [τx]x=1,..,100 and J = [E[Ŷx]]x=1,..,100. The result of the minimization
is presented in Fig. 7.2. We recognize that the health costs for the states have a
piece-wise constant structure similar to the one shown in Fig. 2.8. As one can see
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Figure 7.2: Health care costs Wi for states i ∈ {A}
Markov reward model, M = 10, SW1911M

in Fig. 7.3, the fit of average costs for ages is quite good, especially for young ages.
The total sum of the squared differences between the average costs is 0.6242 with
maximum cost value being 10.

Model with iid costs. For this model, we need a common distribution for the
costs Xt of successive years. We denote by X a random variable with this common
distribution. An individual aged x in the beginning of a health care contract can
potentially live until age xmax, which signifies that X might be considered as a
combination of health care costs for future years of life:

X =

xmax∑

j=x

βj−xŶj, (7.27)

where βj are weights reflecting ”the importance of each year”. The weights βj can be
chosen in many different ways. We have considered the three following approaches:

i. ”All years have the same value”. In this case, the weights are uniform,

βj =
1

xmax − x
, (7.28)

and we denote by X(1) and S(1) the values of X and S, respectively;
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Figure 7.3: Expected health care costs for ages 1-100
M = 10, SW1911M

ii. ”Later years are less representative because fewer individuals survive”. Here,
the weights are

βj =
Sx(j)∑

j≥0

Sx(j)
, (7.29)

where Sx(j) is the j years survival probability defined by Eq. (2.4). We denote
by X(2) and S(2) the values of X and S, respectively;

iii. ”The importance of future years depends on the survival probabilities and on
economical factors”. Here, the weights are given by

βj =
vjSx(j)∑

j≥0

vjSx(j)
, (7.30)

where v is the coefficient in Eq. (7.2). If v < 1, future years have less impor-
tance; if v > 1, they get more weight. We denote by X(3) and S(3) the values
of X and S, respectively.

In Fig. 7.4 we illustrate the three different choices of the distribution for X . The
dashed lines in the figure represent our toy data: the distributions of health care



7.4 Parametrization aspects 143

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Health care costs

 

 

β
j
: uniform (1)

β
j
: survival (2)

x=100

x=90
x=80

x=40 x=50

x=70

x=60

β
j
: survival and inflation (3)

Figure 7.4: Distribution of Xi in the iid model for costs
v = 0.9, xmax = 100, Ŷx from Fig. 7.1, SW1911M

costs Ŷx for different values of x, from 40 to 100 at intervals of 10 years. The three
solid lines stand for the distribution of X for the three choices of coefficients βj .
One observes from the figure that the choice of βj has a significant impact on the
distribution of X .

Remark 7.4.1 If the weights βj, j = 0, .., xmax − x are chosen according to (7.30),
then the Markov reward model and the model with iid costs give approximately the
same expectation of S. The higher the value of xmax, the lower the difference.

Indeed, in the Markov reward model for costs, the expectation of S is

E[S] =
∑

i≥0

viτxe
ΛiWT

A =
∑

i≥0

viτxe
Λi1τx+iW

T
A (7.31)

=
∑

i≥0

viSx(i)(TWT
A)x+i, (7.32)

where (TWT
A)j is the average health cost at age j from Eq. (7.26).
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In the model with iid costs and weights βj chosen as in Eq. (7.30) the expectation
of S is

E[S(3)] = E[X(3)]
∑

i≥0

viSx(i) (7.33)

=

(
xmax−x∑

j=0

βjE[Ŷj+x]

)(
∑

i≥0

viSx(i)

)

=

xmax−x∑

j=0

vjSx(j)E[Ŷx+j]. (7.34)

In Eq. (7.32) and Eq. (7.34) the terms (TWT
A)x+j and E[Ŷx+j] are only approxi-

mately the same as a result from the minimization procedure (7.26). A second slight
difference between the equations comes from the upper summation limits: whereas
in Eq. (7.32) the summation goes up to infinity, in Eq. (7.34) it goes only up to
(xmax − x). Recall that xmax is the maximum observed age. This indicates that for
an individual aged x the probability to survive for more than (xmax−x) years should
be very small, and this small probability determines the difference due to trunca-
tion. Furthermore, the higher the xmax, provided in the observations, the lower is
the difference. Thus, we have the statement of the lemma.

Remark 7.4.1 provides a useful property of the choice number 3, which we con-
sider as the best of the three. Another interesting remark concerning the choice of
coefficients βj is given below.

Remark 7.4.2 The ratio E[S(1)]/E[S(2)] of the expected values of S with the weights
given by (7.28) and by (7.29) is invariant with respect to v.

Indeed, Eq. (7.33) indicates that E[S] in both cases is the product of E[X ] and∑
i≥0 v

iSx(i). The first factor does not depend on v, because the weights βj, given
by (7.28) and (7.29), do not depend on v. The second factor does not depend on the
weights. Thus, E[S(1)]/E[S(2)] = E[X(1)]/E[X(2)] and it is independent of v.

We present in Fig. 7.5 and in Fig. 7.6, respectively, the distributions of S, calcu-
lated with v = 0.7 and with v = 1.02. Let us denote by S∗ the net present value S in
the Markov reward model. By looking at the figures one notices that the distribution
of S∗ and the distribution of S(3) are close to each other. The computed expectations
of S are: E[S∗] = 15.91 and E[S(3)] = 15.93 for v = 0.7, and E[S∗] = 413.16 and
E[S(3)] = 407.5 for v = 1.02, which confirms Remark 7.4.1. We also notice that in
both figures S(1) is stochastically greater than S(2). This is due to the fact that the
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expected costs E[Ŷx] increase with x and that later ages receive more weight in X(1)

than in X(2).
By examining Fig. 7.5 for v = 0.7, we conclude that the choice of the mixing

factors βj significantly affects the distribution of S. In Fig. 7.6 for v = 1.02 the
distributions of S(1), S(2) and S(3) seem not to differ very much; this is mostly due
to the fact that for v greater than one the distribution of X becomes similar for all
three choices of βj , and because v becomes the dominant effect (the x-axis scale is
different for Fig. 7.5 and Fig. 7.6).

Another observation is that whereas the distribution of S∗ in Fig. 7.6 is quite
smooth, in Fig. 7.5 it is quite irregular. This can be explained by the following
argument.

When v = 0.7, due to the presence of the powers of v in Eq. (7.2), S∗ effectively
becomes a sum of a small number of random variables. For example, already at
time t = 10 with maximal value of Xt being M = 10, the actual cost value does not
exceed vt−1M = 0.4. Furthermore, in Markov reward model the Xts are dependent
random variables and may take the same values for successive values of t due to the
step structure of costs for health states (see Fig. (7.2)). In the model with iid costs,
S(1), S(2) and S(3) are mixtures of independent random variables. This explains the
smoothness of S(1), S(2) and S(3) and the irregularity that we observe for S∗. When
v = 1.02, S∗ is a sum of a large number of random variables and, despite their
dependence, we can observe a smooth curve.

We also remark that when v = 0.7 and the maximal cost value M equals 10, the
maximal value of S in Eq. (7.2) is bounded by

maxS ≤M
∑

j≥0

vj =
M

1− v
=

10

1− 0.7
≃ 33. (7.35)

For v = 1.02, S takes a wide spectrum of values, which is bounded by

maxS ≤ M

L̄∑

j=0

vj =M
1− vL̄+1

1− v
, (7.36)

where L̄ is the maximal number of the years of life, which is determined analogously
to Eq. (5.21) for the maximal service time in a pension plan. In our example, for an
individual aged x L̄ is about 75 years with the precision of 1%. Thus,

maxS ≤ 10
1− 1.0275+1

1− 1.02
≃ 1752. (7.37)
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Wi, i ∈ {A} from Fig. 7.2, SW1911M

7.5 Sensitivity analysis

In practice, there are many health and non-health related phenomena that may occur
and lead to significant changes in future profits and losses of a health care contract.

One of such phenomena is the change of the coefficient v due to market fluctua-
tions. The impact of v on the distribution of S, computed using the Markov reward
model for costs, is demonstrated in Fig. 7.7 for v ≥ 1 and in Fig. 7.8 for v < 1.
We give two different graphs because we need two different horizontal scales. Both
figures show that by increasing v we increase the spread between the distributions,
because, by increasing v, we increase the values S can take, which leads to the shift
of the probability mass to higher values.

Another phenomenon, which becomes more important with new developments in
medicine and the accompanying change in mortality, is that people survive longer in
older ages and in bad health states. To estimate the financial impact of such longevity
we perform a perturbation of matrix Λ with respect to mortality rates, similarly to
Eq. (2.29); in the present case, we apply the change to the last m health states only.
In Fig. 7.9 we present the distributions of S , computed using the Markov reward
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Figure 7.8: Markov reward model: distribution of S for different v ≤ 1
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model for costs, taking v = 1 and m = 30 and different values of the perturbation
coefficient ε. One observes from the figure that the decrease of mortality rates for the
last 30 health states leads to the change of the distribution only for costs greater than
200 approximately. This indicates that the individuals who experience the change
of mortality rates also spend more than 200. This amount may be compared to the
expected cost until reaching state n−m. In our examples, the individuals have age
40 at the start of the contract, which implies that their expected health state is about
90 (see Eq. (4.12)). The average time spent in state i equals 1/|Λii| and the health
cost in state i is Wi. Thus, the expected cost accumulated from state 90 to state
n−m = 170 is given by

∑170
i=90Wi/|Λii| ≃ 209, which confirms the observation.

7.6 Fluid queue approach

Our objective in this section is to compute the distribution of

St =

t∫

0

vuXudu, (7.38)
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where t is a fixed time horizon, Xu is a health cost rate at time u, v is a constant.

The fluid queue is a continuous version of the Markov reward model, to be used
to describe the dynamic of St in continuous time. According to Section 1.2, we define
the fluid queue as a two dimensional Markov process {(St, φt), t ∈ R+}, where:

• St ∈ R+ is the ”level” at time t, the net present value of a health care contract
accumulated over the interval (0, t);

• φt is the health states process at time t, it can take values in a finite state space,
A ∪ {D}, and is controlled by the generator Q of the aging process, defined in
Eq. (2.1).

During intervals of time when φt is constant and equal to i, the level St varies at
the time-dependent rate riv

t, which, in our case, is positive if the individual is still
alive and in one of the health states in A, and equal to zero for the state {D}. The
evolution of the net present value can thus be expressed by the following equation:

dSt/dt = rφtv
t. (7.39)
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Here, rφt plays the role of health care cost rate Xt at time t.
In order to obtain the distribution of St, we condition on the health state at time

0
P [St ≤ z ] = τ HT

t (z), with Ht,i(z) = P [St ≤ z | φ0 = i ] , (7.40)

and we focus on the conditional probability given φ0.
We start our discussion with the assumption that Q is a two-diagonal generator

like the one presented in Section 2.1 for the PH-aging model. We notice that, due
to the two-diagonal structure of Q presented in Fig. 2.1, if at time 0 the individual
is in the health state i out of n possible active states and one state for death, then
by time t the individual can make at most n + 1 − i health state transitions. This
argument allows us to express H t(z) as follows in terms of the joint distribution of
the level and the health state at time t given the health state at time 0

Ht,i(z) =

n−i+1∑

j=0

Fi,t,j(z), (7.41)

where
Fi,t,j(z) = P [St ≤ z, φt = i+ j | φ0 = i ] . (7.42)

This allows us to focus on the joint probabilities Fi,t,j(z) and express them recursively.
Denote by δi(u, t) the increment of the level from time u to time t if the health state
remains continuously in state i. It is determined by

δi(u, t) =

∫ t

u

riv
sds = ri(v

t − vu)/log v. (7.43)

Theorem 7.6.1 If Q is a two-diagonal generator, the joint distribution functions
Fi,t,k(z), z ≥ 0 are recursively given by

Fi,t,k(z) =

∫ t

0

Fi,u,k−1 (z − δi+k(u, t))Qi+k−1,i+k(e
Q(t−u))i+k,i+k du, (7.44)

for k = 1, ..., n− i+ 1. The initial condition corresponds to k = 0 and is given by

Fi,t,0(z) = (eQt)i,i1{δi(0,t)≤z}. (7.45)

Proof. The proof follows from a simple renewal argument, which is illustrated in
Fig. 7.10. If after having made k health state transitions by time t, given health
state i at time 0, the level is at most z, it means that there was some time u in the
past, at which the kth transition took place. The increment between time u to time
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Figure 7.10: Net present value Sθ, 0 ≤ θ ≤ t. Illustration

t if the health state is i+ k equals δi+k(u, t), which signifies that at time u the level
should have been at most equal to z − δi+k(u, t).

We derive the algorithm to determine Fi,t,k(z) from the expressions given in the
following theorem by solving numerically the integrals in Eq. (7.44). The distri-
butions of St within one year period, calculated numerically for integer z with a
three months interval, are presented in Fig. 7.11. Obviously, S0 equals zero. As t
increases, the fluid is allowed to make more transitions, and the distribution of St

becomes smoother, in addition to being shifted to the right.
Let us now assume that the generator Q has no special structure. The two-

diagonal structure allowed us to count the number of transitions in the interval (0, t)
and connect them to the state at time t so that Ht,i(z) is the sum of the joint
probabilities Fi,t,k(z), as shown in Eq. (7.41). If the generator Q has an arbitrary
structure, then the number of transitions in the interval (0, t) is unbounded and is
no longer directly connected to the state at time t. Thus, we need a slightly different
approach. Denote

Fi,t,j,k(z) = P [St ≤ z, φt = j, nt = k | φ0 = i ] ,

where nt is the number of transitions in the interval (0, t). Then,

Ht,i(z) =
∑

j∈A∪{D}

∞∑

k=0

Fi,t,j,k(z), (7.46)
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and an algorithm to determine Fi,t,j,k(z) may be derived from the following theorem.

Theorem 7.6.2 The joint distribution functions Fi,t,j,k(z), z ≥ 0 are recursively
given by

Fi,t,j,k(z) =

∫ t

0

∑

j̃∈A∪{D}

Fi,u,j̃,k−1 (z − δj(u, t))Qj̃,j(e
Q(t−u))j,j du, (7.47)

for k = 1, ...,∞. The initial condition corresponds to k = 0 and is given by

Fi,t,j,0(z) = (eQt)i,i1{δi(0,t)≤z}1{i=j}. (7.48)

Here, Q is a generator of any structure.

Proof. We apply the same type of argument as in Theorem 7.6.1 to determine
Fi,t,j,k(z). The only difference is that at time u the individual is allowed to be in any
state, and therefore we need to sum over all possible states inside the integral (7.47).





Chapter 8

Stochastic extensions

The chapter is devoted to the development and analysis of some stochastic extensions
to the models introduced in Chapter 7.

We start the chapter with our motivation to develop such models, which we
present in Section 8.1. In Section 8.2, we work in discrete time and develop the
stochastic analogue of the Markov reward model for costs, defined in Section 7.3.

In continuous time, we extend the fluid queue approach introduced in Section 7.6
by assuming the health care cost rate to be random for a given health state. This
automatically implies that the increment of the level δi(u, t), defined in Eq. (7.43), is
a random variable, and we need to describe this random variable. It appears that the
randomness in δi(u, t) can be introduced in several ways. In Section 8.3 and Section
8.4, we present two fluid models with different assumptions for δi(u, t).

8.1 Motivation

We explain our motivation with the help of Fig. 8.1. The graph shows the simulation
of health care costs in the future life years of an individual aged 40.

The dots represent a trajectory of independent identically distributed health care
costs; the crosses represent health care costs that follow the Markov reward model
and, thus, take constant values for a given health state. The distribution of the
net present value of health care policies under these two assumptions for costs was
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Figure 8.1: Health care costs per year. Illustration

obtained in Section 7.2, and in Section 7.3 (in discrete time) and 7.6 (in continuous
time).

One sees from the figure that, depending on a particular type of health care, both
models may not have a perfect physical interpretation. In the iid model the costs are
a bit too random, even if the health care concerns only exogenous health damages;
furthermore, for general type of health care it is not very likely to have high costs in
younger ages and lower costs in older ages. It is not very likely either to have such
a deterministic step structure for costs, as shown by the crosses.

One natural extension is to assume that the costs do generally increase with the
health state, and do so with an element of randomness, as shown by the solid line.

8.2 Randomized Markov reward model

We define a randomized Markov reward model (A∪{D},W, P ) (below, ”randomized
MRM”) as an extension of the Markov reward model for costs, defined in Section
7.3 and given by (A ∪ {D},W, P ). In Section 7.3, it is assumed that, if the health
state is i, i ∈ A ∪ {D}, then the cost Xt in Eq. (7.2) is a known constant Wi.
Here, we suppose that Wi is a discrete random variable: it is defined on a given
set C = {c1, ..., cM} of non-negative values, if i ∈ A, with a distribution which may
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depend on i, and it is equal to 0 with probability one if i = {D}. The distribution
function and the density of Wi are

F (i)(k) = P[Wi ≤ k ] and f (i)(k) = P[Wi = k ], i ∈ A ∪ {D}, k ≥ 0. (8.1)

Theorem 8.2.1 Suppose that {Xt} follows the randomized Markov Reward model
defined by the triplet (A ∪ {D},W, P ). The conditional distribution H(k) of the net
present value S, defined by Eq. (7.2), is

Hi(k) = yiF
(i)(k) + (eΛ)(i,·)

M∑

j=1

f (i)(cj)H
T

(
k − cj
v

)
, k ≥ 0, i = 1, .., n, (8.2)

where y is given by Eq. (7.6).

Proof. Similarly to the proofs of Theorem 7.2.1 and Theorem 7.3.1, we obtain

Hi(k) =P [ [L] = 1 | φ0 = i ] P[X1 ≤ k | φ0 = i ]+
∑

s∈{A}

P[φ1 = s | φ0 = i ] P[X1 + vS̃ ≤ k | φ1 = s, φ0 = i ]

=yiF
(i)(k) +

∑

s∈{A}

(eΛ)(i,s)

M∑

j=1

f (i)(cj)Hs

(
k − cj
v

)

=yiF
(i)(k) +

M∑

j=1

f (i)(cj)
∑

s∈{A}

(eΛ)(i,s)Hs

(
k − cj
v

)

=yiF
(i)(k) + (eΛ)(i,·)

M∑

j=1

f (i)(cj)H
T

(
k − cj
v

)
. (8.3)

One may notice that Eq. (8.2) is very similar to Eq. (7.7); the only difference is
that the probability mass function f (i)(cj) and the cumulative distribution function
F (i)(k) have index (i), which indicates that the distribution of cost X1 depends
on health state i. The following lemma determines the expectation of S and goes
without proof as it immediately results from Lemma 7.3.2.

Lemma 8.2.2 The expectation of S in the randomized Markov reward model (A ∪
{D},W, P ) is

E[S] = [τ 0](I − vP )−1E[WT], (8.4)

where the matrix P is defined by Eq. (7.12).
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8.3 Fluid model with geometric cost rates

In Section 7.6, we assume that the rate rφt is the constant ri as long as φt remains
equal to i. Here, we assume that it is a random variable, which takes only non-
negative values. Specifically, we shall assume in this section that rφt, given φt = i,

evolves like a geometric Brownian motion R
(i)
t of the form given in Appendix A.3,

with parameters µi, σi and R
(i)
0 . Thus, the increment of the level from time u to

time t for state i is given by

δi(u, t) =

∫ t

u

vsR(i)
s ds, 0 ≤ u ≤ t, (8.5)

and we write v = e−α, where α is the force of interest. To give a better feeling for
the behavior of costs in such model we give an illustration in Fig. 8.2. In this simple
example we change state i to state i+1 every 30 years; the drift µi increases with the
state and the diffusion coefficient σi is assumed to be independent of i. The jumps
that we observe at the moments of changing the state are due to the fact that the
stochastic processes R

(i)
t , for all i, start evolving at t = 0, and are independent of

each other.

We establish in the following lemma a connection between two stochastic pro-
cesses, δi(u, t) and δi(0, t− u).

Lemma 8.3.1 If δi(u, t) is defined by Eq. (8.5), then

δi(u, t)
d
=

1

R
(i)
0

R̃(i)
u e

−αuδi(0, t− u),

where R̃
(i)
u is a geometric Brownian motion with parameters µi, σi and R

(i)
0 , and

independent on R
(i)
u .

Proof. According to Eq. (A.10),

R
(i)
t = R

(i)
0 e

(µi−σ2
i /2)t+σiWt , (8.6)

where Wt is a standard Brownian motion. For the simplicity of notations, denote

µ̄i = µi − σ2
i /2, σ̄i = σi. (8.7)
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We may rewrite Eq. (8.6) as

R
(i)
t = R

(i)
0 e

µ̄it+σ̄iWt

= R
(i)
0 e

µ̄i(t−u)+µ̄iu+σ̄i(Wt−Wt−u)+σ̄iWt−u

= R
(i)
0 e

µ̄i(t−u)+σ̄iWt−ueµ̄iu+σ̄i(Wt−Wt−u).

Since Wt has stationary and independent increments,

R
(i)
t

d
=R

(i)
0 e

µ̄i(t−u)+σ̄iWt−ueµ̄iu+σ̄iW̃u

=
1

R
(i)
0

R
(i)
t−uR̃

(i)
u . (8.8)

Here, W̃u is a standard Brownian motion, independent on Wu, so that R̃
(i)
u is inde-

pendent of R
(i)
t−u.
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By definition (8.5) of δi(u, t), and by Eq. (8.8), we obtain

δi(u, t) =

∫ t

u

e−αsR(i)
s ds

d
=

1

R
(i)
0

R̃(i)
u

∫ t

u

e−αsR
(i)
s−uds

d
=

1

R
(i)
0

R̃(i)
u e

−αu

∫ t−u

0

e−αsR(i)
s ds

d
=

1

R
(i)
0

R̃(i)
u e

−αuδi(0, t− u).

Denote

Y (i)
α (t) =

∫ t

0

e(µ̄i−α)s+σ̄iWsds, (8.9)

where t is a fixed time horizon. Integrals of this type are known and widely used
in mathematical finance. The distribution of Y

(i)
α (t) was explicitly obtained in 1992

by Marc Yor [66] and studied further in Schröder [53]. Since the distribution does
not have a very simple form, in our computations below we find it convenient to
denote by g(i)(x, t;α) and by G(i)(x, t;α) the probability density and the cumulative

distribution function of Y
(i)
α (t), respectively.

Denote the cumulative distribution function of a lognormal random variable X =
x0e

µ+σZ , where x0, µ and σ are parameters, and Z is a standard normal random
variable, by l(x;µ, σ2, x0). According to Appendix A.2, it is given by

l(x;µ, σ2, x0) =
1

x
√
2πσ2

e−
(lnx−(lnx0+µ))2

2σ2 . (8.10)

Lemma 8.3.2 The cumulative distribution function of δi(u, t), 0 ≤ u ≤ t defined by

Eq. (8.5) with R
(i)
0 > 0 is

P[ δi(u, t) ≤ z ] = G(i)(z/R
(i)
0 , t;α), u = 0, (8.11)

and for u > 0 we have

P[ δi(u, t) ≤ z ] =

∫ ∞

0

l(s; (µ̄i − α)u, σ̄2
i u,R

(i)
0 )G(i) (z/s, t− u;α)ds, (8.12)

The parameters µ̄i and σ̄i are defined in Eq. (8.7).
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Proof. To prove Eq. (8.11) we express δi(0, t) in terms of Y
(i)
α (t)

δi(0, t) =

∫ t

0

e−αsR(i)
s ds =

∫ t

0

e−αsR
(i)
0 e

µ̄is+σ̄iWsds

= R
(i)
0

∫ t

0

e(µ̄i−α)s+σ̄iWsds
d
=R

(i)
0 Y

(i)
α (t).

Therefore,

P[ δi(0, t) ≤ z ] = P
[
R

(i)
0 Y

(i)
α (t) ≤ z

]

= P
[
Y (i)
α (t) ≤ z/R

(i)
0

]
= G(t)(z/R

(i)
0 , t;α).

To prove Eq. (8.12) we use Lemma 8.3.1 and Eq. (8.11) to express δi(u, t), u > 0 in

terms of Y
(i)
α (t− u)

δi(u, t)
d
=

1

R
(i)
0

R̃(i)
u δi(0, t− u)e−αu

d
=

1

R
(i)
0

R̃(i)
u e

−αuR
(i)
0 Y

(i)
α (t− u)

d
= R̃(i)

u e
−αuY (i)

α (t− u). (8.13)

By Eq. (8.6), Eq. (8.13) and the definition of convolution operation (see Appendix
A.4),

P[ δi(u, t) ≤ z ] = P
[
R̃(i)

u e
−αuY (i)

α (t− u) ≤ z
]

= P
[
R̃

(i)
0 e

(µ̄i−α)u+σ̄iWuY (i)
α (t− u) ≤ z

]

=

∫ ∞

0

l(s; (µ̄i − α)u, σ̄2
i u,R

(i)
0 )G(i) (z/s, t− u;α) ds,

because R̃
(i)
0 e

(µ̄i−α)u+σ̄iWu is a lognormal random variable with parameters x0 = R̃
(i)
0 =

R
(i)
0 , µ = (µ̄i − α)u and σ = σ̄i

√
u.

If Q is a two-diagonal generator like in PH-aging model, one derives the algorithm
to determine Fi,t,k(z) = P [St ≤ z, φt = i+ k | φ0 = i ] from the following theorem.

Theorem 8.3.3 Assume that {rt} is a geometric Brownian motion with parameters
that are state-dependent and δi(u, t), 0 ≤ u ≤ t, is defined by Eq. (8.5). If Q is a
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two-diagonal generator, the joint distribution functions Fi,t,k(z), z ≥ 0 are recursively
given by

Fi,t,k(z) =

∫ t

0

∫ z

0

Fi,u,k−1 (z − y) g̃(i+k)
α (y; u, t)Qi+k−1,i+k(e

Q(t−u))i+k,i+k dydu (8.14)

for k = 1, ..., n− i+ 1. The initial condition corresponds to k = 0 and is given by

Fi,t,0(z) = (eQt)i,iG
(i)(z/R

(i)
0 , t;α). (8.15)

Here,

g̃(i)α (y; u, t) =

∫ ∞

0

1

s
l(s; (µ̄i − α)u, σ̄2

i u,R
(i)
0 )g(i) (y/s, t− u;α)ds, (8.16)

where µ̄i and σ̄i are defined in Eq. (8.7).

Proof. In general, the proof repeats the one of Theorem 7.6.1. Here, to prove
Eq. (8.15), we only need to demonstrate that G(i)(z/R

(i)
0 , t;α) is the cumulative

distribution function of δi(0, t). This immediately follows from Lemma 8.3.2 for
u = 0. To prove Eq. (8.14), we only need to show that the probability density

function of δi(u, t) is g̃
(i)
α (y; u, t), which is given by Eq. (8.16). This is a direct

result from the differentiation of Eq. (8.12) in Lemma 8.3.2 with respect to z. This
completes the proof.

If Q has no special structure, we use the same argument as in Theorem 8.3.3 to
extend Theorem 7.6.2 as follows.

Theorem 8.3.4 Assume that that {rt} is a geometric Brownian motion with state-
dependent parameters and δi(u, t), 0 ≤ u ≤ t, is defined by Eq. (8.5). Assume also

that g̃
(i)
α (y; u, t) is given by Eq. (8.16). The joint distribution functions Fi,t,j,k(z), z ≥

0 are recursively given by

Fi,t,j,k(z) =

∫ t

0

∑

j̃∈A∪{D}

∫ z

0

Fi,u,j̃,k−1 (z − y) g̃(j)α (y; u, t)Qj̃,j(e
Q(t−u))j,j dudy, (8.17)

for k = 1, ...,∞. The initial condition corresponds to k = 0 and is given by

Fi,t,j,0(z) = (eQt)i,iG
(i)(z/R

(i)
0 , t;α)1{i=j}. (8.18)

Here, Q is a generator of any structure.



8.4 Fluid model with Brownian increments 163

8.4 Fluid model with Brownian increments

We assume that Xu in Eq. (7.38) can potentially take negative values. This assump-
tion leads to the fact that, for a given health state i, the increment δi(u, t) of the level
can take negative values. Thus, we may represent δi(u, t) as a discounted increment

from time u to time t of stochastic process B
(i)
s ,

δi(u, t) =

∫ t

u

vsdB(i)
s , 0 ≤ u ≤ t, (8.19)

where B
(i)
s is a Brownian motion, defined in Appendix A.3, with parameters that

depend on state i: drift µi and variance σi; v = e−α, where α is the force of interest.
We give an example of the cost behavior in Fig. 8.3. We choose 1 as a time

discretization step for B
(i)
t , which has led to

B
(i)
t+1 − B

(i)
t = µi(t + 1)− µit+ σiW (t+ 1)− σiW (t)

d
=µi + σiW (1),

where W (t) is a standard Brownian motion, defined in Appendix A.3. Thus, in state
i the costs fluctuate around constant µi with variance σ2

i . In Fig. 8.3 we change state
i to state i+1 after a random period of time given by 1/|Λ(i, i)|, which is the average
sojourn time in state i in the PH-aging model. The drift µi is chosen to increase
with the state, and the variance σ2

i is chosen to be state-independent.
Similarly to Section 8.3, δi(u, t) is a stochastic process and the connection between

δi(u, t) and δi(0, t− u) is given in the following lemma.

Lemma 8.4.1 If δi(u, t) is defined by Eq. (8.19), then δi(u, t)
d
= δi(0, t− u)e−αu.

Proof. By definition (8.19) of δi(u, t),

δi(u, t) = δi(u, u+ t− u) =

∫ u+t−u

u

e−αsdB(i)
s (8.20)

=

∫ t−u

0

e−α(s+u)dB
(i)
s+u = e−αu

∫ t−u

0

e−αsdB
(i)
s+u. (8.21)

The process B
(i)
t has independent and stationary increments, therefore dB

(i)
s has the

same distribution as dB
(i)
s+u, and we have the statement of the lemma.

One readily adapts Theorems 7.6.1 and 7.6.2 to the present model as shown
below, firstly for a two-diagonal generator Q, secondly for the general case.
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Figure 8.3: Health care costs: state-dependent Brownian increments
Parameters: µi = 10i, σi = 5, i = 1− 8, SW1911M

Theorem 8.4.2 Assume that the increment δi(u, t) is given by Eq. (8.19) and Q
is a two-diagonal generator. The joint distribution functions Fi,t,k(z), z ∈ R are
recursively given by

Fi,t,k(z) =∫ t

0

∫ ∞

−∞

Fi,u,k−1 (z − y)φ(y;µi+k(u, t), σ
2
i+k(u, t))Qi+k−1,i+k(e

Q(t−u))i+k,i+k dydu

(8.22)

for k = 1, ..., n− i+ 1. The initial condition corresponds to k = 0 and is given by

Fi,t,0(z) = (eQt)i,iΦ(z;µi(0, t), σ
2
i (0, t)). (8.23)

Here, functions Φ(x;µ, σ2) and φ(x;µ, σ2), respectively, are the cumulative distribu-
tion and the probability density of the normal distribution with parameters µ and σ2;
µi(u, t) is the expected value of δi(u, t),

µi(u, t) = e−αuµi

α
(1− e−α(t−u)), (8.24)

and σ2
i (u, t) is the variance of δi(u, t),

σ2
i (u, t) = e−2αu σ

2
i

2α
(1− e−2α(t−u)). (8.25)
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Proof. In general, the proof repeats the one of Theorem 7.6.1. Here, we only need to
prove that δi(u, t) is a normal random variable with parameters µi(u, t) and σ

2
i (u, t),

given by Eq. (8.24) and Eq. (8.25), respectively.

The Brownian motion B
(i)
t is the solution of the stochastic differential equation

(see, for example, Lin [39])

dB
(i)
t = µidt+ σidWt, (8.26)

where Wt is a standard Brownian motion. Thus, from Eq. (8.19) for u = 0 we obtain

dδi(0, t) = e−αtµidt+ e−αtσidWt, (8.27)

From Example 5.6 in Lin [39] it follows immediately that

δi(0, t) ∼ N

(∫ t

0

e−αsµids,

∫ t

0

e−2αsσ2
i ds

)
(8.28)

By computing the integrals in (8.28), we obtain

δi(0, t) ∼ N

(
µi

α
(1− e−αt),

σ2
i

2α
(1− e−2αt)

)
. (8.29)

From (8.29) and Lemma 8.4.1 it follows that

δi(u, t) ∼ N

(
e−αuµi

α
(1− e−α(t−u)), e−2αu σ

2
i

2α
(1− e−2α(t−u))

)
. (8.30)

Therefore,
δi(u, t) ∼ N

(
µi(u, t), σ

2
i (u, t)

)
. (8.31)

If Q has no special structure, we use the same argument as in Theorem 8.4.2 to
extend Theorem 7.6.2 as follows.

Theorem 8.4.3 Assume that the increment δi(u, t) is given by Eq. (8.19). The joint
distribution functions Fi,t,j,k(z), z ∈ R are recursively given by

Fi,t,j,k(z) =∫ t

0

∑

j̃∈A∪{D}

∫ ∞

−∞

Fi,u,j̃,k−1 (z − y)φ(y;µj(u, t), σ
2
j (u, t))Qj̃,j(e

Q(t−u))j,j dudy (8.32)

for k = 1, ...,∞. The initial condition corresponds to k = 0 and is given by

Fi,t,j,0(z) = (eQt)i,iΦ(z;µi(0, t), σ
2
i (0, t))1{i=j}. (8.33)

Here, Q is a generator of any structure.
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We remark that the constructed fluid model with Markov modulated Brownian
increments is a continuous time version of the randomized MRM from Section 8.2.
The parametrization procedure is essentially the same as for the randomized MRM:
one needs to choose the expected costs µi for each state i and the level of uncertainty
around this expectation. For example, µi might be chosen to be the same as for
Markov reward model introduced in Section 7.3, and the variance might be chosen
as a constant or proportional to µi.

In comparison with the fluid model with geometric cost rates introduced in Sec-
tion 8.3, the fluid model with Markov modulated Brownian increments provides a
more efficient algorithm to compute the distribution of St. The reason is that in
Theorems 8.4.2 and 8.4.3 the random variable δi(u, t) has a normal distribution; in
Theorems 8.3.3 and 8.3.4 the distribution of δi(u, t) depends on the distribution of

Y
(i)
α (t− u) (see Eq. (8.13)), which is not easy to compute.
Another difference between the two fluid models is that the model with Markov

modulated Brownian increments allows the costs Xu to take negative values. If Xu

can only be positive, one needs to adapt the model. Clearly, if the average cost
is around 500$ and the variance is 10$, the probability mass related to negative
values of Xu is very small, and one may adopt the approximation. If one desires a
more precise model, one may use a subordinator as a stochastic process for B

(i)
s in

Eq. (8.19). This would guarantee dB
(i)
s ≥ 0 and, thus, the positivity of the costs. One

example of such subordinator is a gamma process defined in Appendix A.3. Due to
the discontinuity of sample paths (see Applebaum [2]), the replacement of Brownian

motion B
(i)
s by a gamma process leads to more complex calculations, which are not

presented in this thesis, and which make a part of our future projects.



Conclusion and perspectives

In this thesis we have suggested several mathematical models for different life-linked
insurances. The novelty of the models is that they use a phase-type distribution to
describe the lifetime of an individual. This key assumption exhibits a number of
nice properties of phase-type distributions, the most important of which being the
connection that it provides between the age and the health state of an individual.
The possibility to assign a reward structure to every health state naturally inspired
us to compute the distribution of different lifetime dependent costs.

In pension insurance, we have computed distribution of the present value of future
profits and losses of a defined benefit pension plan. Here, we extended the phase-type
lifetime assumption to a multi-decrement case, which allowed us to solve the most
challenging problem in profit-testing - to model the individuals in the pension plan.
The problem is challenging as individuals tend not only to die and retire, but also
to quit the pension plan for personal reasons (to ”surrender”) at random times.

In the part about health insurance, we have focused on the distribution of the net
present value of health care costs. The phase-type approach gave us the opportunity
to compute the distribution using a recursive procedures both in continuous and in
discrete time. Furthermore, the flexibility of the phase-type approach allowed us
to consider different assumptions for health costs, for example, a deterministic or a
random cost for a given state of health. In addition, due to the phase-type lifetime
assumption, it becomes convenient to employ fluid queue techniques to obtain the
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recursions in continuous time.

The phase-type lifetime assumption states that, while alive, an individual is trav-
eling from one health state to another with certain speed until eventually he/she
reaches the terminal (”dead”) state. Changing the dynamic of this process has al-
lowed us to model different population phenomena such as longevity and health
change in a natural way. In both pension insurance and health care we applied the
population modeling techniques to estimate the financial impact of health-related
events.

During the construction of our models, we had to make a number of assumptions
regarding the objects we examined. Evidently, one can go beyond these assumptions
and consider more complex models to study different important events in insurance.
For instance, one may introduce a correlation between surrenders and economical
environment in the pension profit-test model, and so estimate the effect of mass
surrendering of people in crisis times. For profitability estimation purposes, it would
also be useful to introduce a detailed model for long-term interest rates. In the
viewpoint of longevity problem, one may consider stochastic death rates in the phase-
type lifetime model to better capture the uncertainty of the survival in the future.
For instance, we find it interesting to employ the stochastic aging model not only to
model correlated cohorts, but also to model the mortality in pension insurance and
health care.

Evidently, a lot of work has to be done to bring these models to a practical use. In
several places we gave indications of possible parametrization procedures; however,
one needs to work with real data to make the models more practical and consider
detailed case studies. One would also need to focus on fitting the model to specific
examples.

We believe that the mathematical models we have constructed are general enough
and are not tied to a particular field of insurance. The models we have developed
in health care, for instance, allow to deal with any financial quantities that are life-
dependent. In the next paragraphs we give some examples that can be considered
as our future research directions.

Optimal consumption

In Part II and Part III we investigated questions related to the profitability of finan-
cial institutions such as pension funds and insurance companies. But what about
households? Let us take the viewpoint of a retired individual with some savings. The
question is how to spend efficiently these savings over the remaining period of life,



Conclusion and perspectives 169

and how to adjust the consumption to personal health and personal risk preferences.
The motivation of this research came from Huang et al. [33], where the authors
determine the optimal consumption over time in the classical lifecycle model first
introduced by Yaari [65]. The authors suppose that the force of mortality obeys the
law of Gompertz . In our approach, we assume that the lifetime of the individual is
of phase-type, and below we present our first thoughts on the subject.

Huang et al. [33] considered the optimization problem

J = max
c(0)

E




D∫

0

e−αtuγ(c(t))1{t≤L}dt


 , (8.34)

where c(t) is the rate of consumption at time t, α is the force of interest, uγ(·) is a
utility function with risk aversion coefficient γ, D is a fixed time horizon and L is
the remaining lifetime.

There are also budget constraints and boundary conditions, given by

{
dF (t)

dt
= rF (t) + π0 − c(t),

F (0) = W and F (D) = 0,
(8.35)

where F (t) is the capital trajectory at time t,W, W > 0 is the initial savings amount,
π0 is the constant income rate of the individual, r is a risk free interest rate.

In Huang et al. [33] the authors determine an explicit form of c(t), assuming that
the utility function is given by





u(c) =
c1−γ

1− γ
, γ > 0, γ 6= 1,

u(c) = ln c, γ = 1.
(8.36)

This is the constant relative risk aversion (CRRA) type of utility functions (for more
details, see P. P. Wakker [60]). The function u(c) is strictly increasing, γ ≥ 0 is the
coefficient of risk aversion. If γ = 0, the individual is ”risk-neutral”, γ → ∞ stands
for ”infinite risk aversion”.

The optimal consumption rate is determined as

c∗γ(t) = c∗γ(0)e
r−α
γ

t (pt)
1/γ , (8.37)

where pt is the t years survival probability of the individual. The initial optimal
consumption rate c∗γ(0) is determined as follows. By substituting Eq. (8.37) into
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(8.35) the authors in [33] arrive at the first-order ordinary differential equation for
F (t)

dF (t)

dt
− rF (t)− π0 + c∗γ(0)e

r−α
γ

t (pt)
1/γ = 0,

the solution of which is

F (t) = ert
(
π0

∫ t

0

e−rsds− c∗γ(0)

∫ t

0

e
r−α
γ

s (ps)
1/γ e−rsds+W

)
, (8.38)

and c∗γ(0) is determined by the constraint F (D) = 0.
In our case, mortality for an individual aged x is driven by the PH-aging model

and, therefore,
ps = τxe

Λs1, (8.39)

where τx is the health state distribution at age x, defined by Eq. (2.3), transition
rate matrix Λ is defined by Eq. (2.2). We combine (8.38) with (8.39) to obtain that

c∗γ(0) =
π0/r(e

rt − 1) +Wert

ertIγ
, (8.40)

where

Iγ =

t∫

0

(
τxe

((k−r)γI+Λ)s1
)1/γ

ds, (8.41)

with k =
r − α

γ
. If γ = 1, then

Iγ = τx ((k − r)γI + Λ)−1 (e((k−r)γI+Λ)t − I
)
1. (8.42)

If γ 6= 1, then it is more difficult to determine Iγ analytically, and we apply numerical
methods.

We are interested in determining the sensitivity of c∗(t) with respect to the risk
aversion coefficient γ and with respect to the initial health state. In Fig. 8.4 we plot
c∗(t) for different values of γ and we make two observations. Firstly, we observe that
the higher the γ, the closer the graphs to the flatter c∗γ(t), shown by the solid line.
Secondly, we observe that the graphs, except for γ = 1, intersect in approximately
the same point t∗, which implies that, in this point, the optimal consumption rate
is independent on the risk preferences, given by γ. The curve for γ = 1 differs from
the other curves due to the fact that at γ = 1 the utility function is logarithmic (see
Eq. (8.36)).
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These two observations together indicate that the value of c∗γ(t), calculated for
γ → ∞, may crosse c∗γ(t) calculated for fixed γ, in t∗. We check this empirical
assumption by determining

lim
γ→∞

c∗γ(t) = lim
γ→∞

c∗γ(0)e
r−α
γ

t (pt)
1/γ

= lim
γ→∞

c∗γ(0) =
π0/r(e

rt − 1) +Wert

ert limγ→∞ Iγ
, (8.43)

where

lim
γ→∞

Iγ = lim
γ→∞

t∫

0

(
τxe

Λs1
)1/γ

e
r(1−γ)−α

γ
sds

=

t∫

0

e−rsds = (1− e−rt)
1

r
. (8.44)

Eq. (8.43) and Eq. (8.44) together result in

lim
γ→∞

c∗γ(t) = π0 +Wr/(1− e−rt).

Therefore, in order to determine t∗, we solve numerically

|c∗γ̂(t)− lim
γ→∞

c∗γ(t)| ≤ ε,

for a fixed γ̂ and ε. For example, we find that if γ̂ = 3 and ε = 10−2, then t∗ is about
13, which is confirmed by Fig. 8.4.

In Fig. 8.5 we illustrate c∗(t) for different initial ages x and γ = 19. One sees
from the figure, that the younger the individual at the beginning, the more uniform
the consumption rate becomes. We again observe that the curves intersect at about
the same time.

There are several research directions to investigate here. One direction is to
incorporate a stochastic interest rate, this would allow us to examine the impact
of the economy on the individual consumption. Another direction is to incorporate
stochasticity in the future mortality rates. This would help us to estimate the effect
of longevity problem on individual households. There are many studies (see, for
example, [33]) that allow to solve the optimal consumption problem (8.34) if the
mortality rates depend on a Brownian motion. To keep the connection with the PH-
aging model one may implement the stochastic aging model, introduced in Section
2.5.
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Figure 8.4: Optimal rate of consumption: effect of γ
Parameters: x = 65, α = 0.05, W = 10, r = 0.05, π0 = 0, SW1911M

Health economics

In the book by Drummond et al. [20] it is explained why cost-effectiveness and
cost-utility analyses of health care are important issues in health economics. The
analyses help to solve such problems as decision making regarding the production of
new drugs, or determining the optimal treatment strategies. The efficiency or utility
criteria often depend on the estimated quality and quantity of years lived after taking
a treatment. Clearly, this implies that it is important to take into account the health
state development of an individual before and after the treatment. For this purpose,
it is quite common (see, for example, Castelli et al. [17]) to use a Markovian model.
However, as we have mentioned in the introduction to Part III, such models can be
improved with the help of the PH-aging model. Below we give some indications for
future research on this topic.

Consider the cost-effectiveness problem of the production and of the consumption
of health care. An example of the widely used criterion of effectiveness is the quality-
adjusted life year (QALY) (see Drummond et al. [20]). QALY is the measure of
disease burden, which takes into account both the quality of life and the number of
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Parameters: γ = 19, α = 0.05, W = 10, r = 0.05, π0 = 0, SW1911M

years lived. In order to compute its value, one associates a utility value to the states
of health.

Assume that we need to choose the optimal treatment strategy for an indi-
vidual suffering from a certain disease. Furthermore, assume that the individ-
ual/government has a limited budget, and therefore can not automatically choose
the most effective strategy. We suggest the following steps to determine QALY for
possible treatment strategies.

The problem of determining QALY for a treatment strategy (k) may be reduced
to the computation of the distribution of

J (k) =

L∫

0

f(t, φt)dt,

where L is the remaining lifetime after the treatment, f(t, φt) is a function of time t
and the health state φt at time t. One may also compute the distribution of the net
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present value of costs for treatment (k), given by

C(k) =

L∫

0

vkrφtdt,

where v is a discount factor and rφt is the cost rate for the state φt. Thus, in order
to choose an efficient strategy one may compute the distributions of J (k) and C(k)

for all k and compare all outcomes.
Technically, to compute J (k) and C(k) one should determine L, f(t, φt) and rφt .

We suggest to describe L by a phase-type distribution, similarly as it is done in
the PH-aging model of Lin and Liu [40]. We believe that one needs to adapt the
PH-aging model to describe the health state progression of an individual subject to
the disease and the treatment (k). It is important to collaborate with experts in
medicine to learn about the progression of the disease: this would help to determine
the structure of the new transition matrix and the function f(t, φt). The cost rates
rφt one may obtain using the procedure that we have developed in Section 2.3.

Due to the assumption that L is of phase-type, in order to obtain the distributions
of J (k) and C(k) one may use the approaches that we have developed in Part III for
the net present value of health care costs.



Appendix A

Useful algebra

A.1 Kronecker operations

The Kronecker product of two matrices A and B, denoted by A⊗B, is an operation
resulting in a block matrix. If A is a m × n matrix and B is a p × q matrix, then
A⊗ B is a mp× nq block matrix

A⊗B =




a11B ... a1nB
...

. . .
...

am1B ... amnB


 . (A.1)

The Kronecker product is bilinear and associative:

A⊗ (B + C) = A⊗B + A⊗ C,
(A+B)⊗ C = A⊗ C +B ⊗ C,
(kA)⊗ B = A⊗ (kB) = k(A⊗ B),
(A⊗ B)⊗ C = A⊗ (B ⊗ C),

(A.2)

where A,B and C are matrices and k is a scalar.
The Kronecker sum of two matrices A and B of size n×n andm×m, respectively,

is denoted by A⊕ B and is defined as

A⊕ B = A⊗ Im + In ⊗ B, (A.3)
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where Ik is the k × k identity matrix.
The Kronecker exponentiation is given by

eA⊕B = eA ⊗ eB, (A.4)

where eX is the matrix exponential of the matrix X .
Using the indicated properties one can prove that

αeA1βeB1 = (α⊗ β)(eA ⊗ eB)(1⊗ 1)
= (α⊗ β)eA⊕B(1⊗ 1).

(A.5)

A.2 Some distributions

A random variable X that is gamma-distributed with shape k and scale θ is denoted
by X ∼ Γ(k, θ) and has the following properties:

• E[X ] = kθ;

• V ar[X ] = kθ2;

• the probability density function is given by

f(x; k, θ) =
1

θkΓ(k)
xk−1e−

x
θ , x > 0, k, θ > 0. (A.6)

Here,

Γ(s) =

∞∫

0

ts−1e−tdt.

A lognormal random variable is a random variable whose logarithm is normally
distributed. A lognormal random variable X with parameters µ and σ can be rep-
resented as X = eµ+σY , where Y is a standard normal random variable, and has the
following properties:

• E[X ] = eµ+
1
2
σ2
;

• V ar[X ] = (eσ
2 − 1)e2µ+σ2

;

• the probability density function is given by

φl(x;µ, σ
2) =

1

x
√
2πσ2

e
−
(ln x− µ)2

2σ2 ; (A.7)
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• the cumulative distribution functions is

Φl(x;µ, σ
2, ) = Φ

(
ln x− µ

σ

)
, (A.8)

where Φ(x) is a cumulative distribution function of a standard normal random
variable.

A.3 Stochastic processes

Let X = (X(t), t ≥ 0) be a stochastic process defined on a probability space
(Ω,F , P ). We refer to Applebaum [2] to introduce a Lévy process X as follows:

i. X(0) = 0 almost surely;

ii. X has independent and stationary increments: for each n ∈ N and each 0 ≤
t0 < t1 < ... < tn+1 <∞ the random variables (X(tj+1)−X(tj), 0 ≤ j ≤ n) are
independent, and the random variables X(tj+1)−X(tj) and X(tj+1−tj)−X(0)
are equal in distribution;

iii. X is stochastically continuous: for all a > 0 and for all s ≥ 0

lim
t→s

P[ |X(t)−X(s)| > a ] = 0.

A standard Brownian motion in R is a Lévy process (W (t), t ≥ 0) such that

• W (t) ∼ N(0, t) for each t ≥ 0;

• W (t) has continuous sample paths.

A Brownian motion with drift is a Lévy process (B(t), t ≥ 0) such that

B(t) = µt+ σW (t), (A.9)

where µ, µ ∈ R is called a drift and σ, σ ∈ R is a diffusion coefficient. It is easy to
see that B(t) ∼ N(µt, σ2t).

A geometric Brownian motion can be defined as a continuous time stochastic
process (S(t), t ≥ 0) of the form

S(t) = S(0)e(µ−
σ2

2
)t+σW (t). (A.10)
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Thus, S(t) is a lognormal random variable with mean S(0)eµt and variance

S2(0)e2µt(eσ
2t − 1).

A subordinator is a one-dimensional Lévy process that is non-decreasing (almost
surely). One example of the subordinator is a gamma process. A subordinator
γt, t ≥ 0 is called a gamma process with parameters k, θ > 0 if γt is a gamma
distributed random variable with probability density function f(x; kt, θ), given by
Eq. (A.6).

A.4 Convolution

Suppose that X and Y are independent random variables with distribution functions
F and G, respectively. Then the distribution of X +Y , denoted by F ∗G and called
the convolution of F and G, is given by

(F ∗G)(a) =
∞∫

−∞

F (a− y)dG(y). (A.11)

If X and Y are discrete random variables with probability mass functions f and
g, respectively. Then the distribution of X + Y , denoted by f ∗ g and called the
convolution of f and g, is given by

(f ∗ g)(a) =
∞∑

k=−∞

f(k)g(a− k). (A.12)

A.5 Panjer recursion

The probability distribution of a counting random variable N belongs to the Panjer
class, if

P[N = k ] = pk = (a+ b/k)pk−1, k ≥ 1,

for some a and b, which fulfill a+ b ≥ 0. The initial value p0, is determined such that

∞∑

k=0

pk = 1.
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The Panjer recursion is an algorithm to compute the probability distribution of
a compound random variable

S =

N∑

i=1

Xi,

where Xi are i.i.d. random variables and independent of N . S and Xi have a
distribution on a lattice hN0 of width h > 0

fk = P[Xi = hk ], gk = P[S = hk ].

The algorithm gives a recursion to compute gk:

• if a = 0, 



g0 = p0e
f0b,

gk =

k∑

j=1

bj

k
fjgk−j;

• if a 6= 0, 



g0 =
p0

(1− f0a)1+b/a
,

gk =
1

1− f0a

k∑

j=1

(a+
bj

k
)fjgk−j.

If N is a Poisson random variable with parameter λ, then

a = 0, b = λ, p0 = e−λ,

and the Panjer recursion takes form





g0 = e−λ(1−f0)

gk =

k∑

j=1

λj

k
fjgk−j.

(A.13)
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Pension and Health Insurance: Phase-Type Modeling

Maria Govorun

Depuis longtemps les modèles de type phase sont utilisés dans plusieurs

domaines scientifiques pour décrire des systèmes qui peuvent être car-

actérisés par différents états. Les modèles sont bien connus en théorie des

files d’attentes, en économie et en assurance.

La thèse est focalisée sur différentes applications des modèles de type

phase en assurance. En particulier, le modèle de Lin et Liu en 2007 est

intéressant, parce qu’il décrit le processus de vieillissement de l’organisme

humain. La durée de vie d’un individu suit une loi de type phase et les

états de ce modèle représentent des états de santé. Le fait que le modèle

prévoit la connexion entre les états de santé et l’âge de l’individu le rend

très utile en assurance. Les résultats principaux de la thèse sont des nou-

veaux modèles et méthodes en assurance pension et en assurance santé

qui utilisent l’hypothèse de la loi de type phase pour décrire la durée de

vie d’un individu.

En assurance pension le but est d’estimer la profitabilité d’un fonds de

pension. Pour cette raison, on construit un modèle profit-test qui de-

mande la modélisation de plusieurs caractéristiques. On décrit l’évolution

des participants du fonds en adaptant le modèle du vieillissement aux

causes multiples de sortie. L’estimation des profits futurs exige qu’on

détermine les valeurs des cotisations pour chaque état de santé, ainsi que

l’ancienneté et l’état de santé initial pour chaque participant. Cela nous

permet d’obtenir la distribution de profits futurs et de développer des

méthodes pour estimer les risques de longevité et de changements de

marché. De plus, on suppose que la diminution des taux de mortalité

pour les pensionnés influence les profits futurs plus que pour les partic-

ipants actifs. C’est pourquoi, pour évaluer l’impact de changement de

santé sur la profitabilité, on modélise séparément les profits venant des

pensionnés.

En assurance santé, on utilise le modèle de type phase pour calculer la dis-

tribution de la valeur actualisée des coûts futurs de santé. On développe

des algorithmes récursifs qui permettent d’évaluer la distribution au cours

d’une période courte, en utilisant des modèles fluides en temps continu, et

pendant toute la durée de vie de l’individu, en construisant des modèles

en temps discret. Les modèles en temps discret correspondent à des hy-

pothèses différentes qu’on fait pour les coûts: dans un modèle on suppose

que les coûts de santé sont indépendants et identiquement distribués et ne

dépendent pas du vieillissement de l’individu; dans les autres modèles on

suppose que les coûts dépendent de son état de santé.


