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suis également très reconnaissant envers Yves De Smet pour son encadrement
qui fut des plus important jusqu’aux dernières semaines de rédaction, ainsi que
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Chapter 1

Introduction

An optimization problem consists of finding the best item in a set of feasible
solutions. Each item is evaluated according to an objective function, which
allows us to rank the items from the best to the worst ones. Hence, an opti-
mization problem is characterized by a pair composed of an objective function
and a feasible set (Papadimitriou and Steiglitz 1982).

One of the most well-known optimization problems is the shortest path
problem, which consists of finding the shortest route between two distinct
nodes in a network. This problem can be used to answer questions such as:
“What is the shortest path from Iéna station to Alésia station in the Paris
Metro subway network?”. In this case, the feasible set is characterized by all
the feasible paths between these two stations and the objective function takes
into account the time traveled between stations in order to evaluate the travel
time between Iéna and Alésia.

In this thesis, we focus ourselves on a particular class of optimization prob-
lems, the so-called combinatorial optimization problems. In this case, the fea-
sible set is a finite collection of objects and its cardinality is frequently expo-
nential in the size of the collection’s representation (Schrijver 2003). Typical
examples of combinatorial optimization problems are the shortest path prob-
lem, the knapsack problem, and the assignment problem.

As illustrated previously, optimization problems can be used to formulate
questions from the real-world. Modeling such a problem requires the precise
definition of the values of parameters in order to build the objective function
and the feasible set. Those values rely on some assumptions as well as on the
accuracy of the evaluations. Therefore, a small perturbation of these param-
eters can lead to another optimization problem that still remains suitable to
model the initial question. However, even though these models are very close,
they could lead to different optimal solutions.

The study of the link between a small adjustment of the parameters and a
change in the optimal solution is at the core of a mathematical programming
approach called inverse optimization. The most studied question in inverse
optimization can be described as the problem of finding a minimal adjust-
ment of the objective function parameters such that a given feasible solution
becomes an optimal one (Ahuja and Orlin 2001, Heuberger 2004). Over the

1



2 CHAPTER 1. INTRODUCTION

last years, this approach has received great attention within the combinatorial
optimization community, and has shown its crucial importance in geophysi-
cal sciences, transportation and traffic flow, among others (see, for example,
Tarantola (1987), Burton and Toint (1992), Sokkalingam et al. (1999), Ahuja
and Orlin (2001)).

Let us illustrate inverse optimization in the problem of finding the shortest
path from Iéna station to Alésia station. It is known that the theoretical
shortest path is not always the one chosen by users in practice (Burton and
Toint 1992). Indeed, usually users choose their route based on a variety of
factors, such as the travel time, the safety, the number of transfers from one
train to another, or congestion. Inverse optimization can be used to incorporate
the routes that are actually used into the model, modifying the a priori costs
in order to ensure the optimality of these paths.

In real-world applications, it is common to encounter decision making prob-
lems that are by their very nature multidimensional, i.e, their feasible solutions
are evaluated with respect to multiple criteria. This is a prominent aspect in
situations modeled as knapsack problems, such as capital budgeting (Bhaskar
1979, Rosenblatt and Sinuany-Stern 1989), planning remediation of contam-
inated lightstation sites (Jenkins 2002), selecting transportation investments
(Teng and Tzeng 1996), and relocating problems arising in conservation biol-
ogy (Kostreva et al. 1999).

In this context, the mathematical programming model is a multi-objective
optimization problem. These problems are characterized by a pair composed
of a feasible set and a vector of objective functions that are often contradictory
(Zeleny 1974, Steuer 1986, Ehrgott 2005). The main difficulty faced with such
problems is that there is not only one objective function to be maximized,
but a set of functions that has to be maximized “simultaneously”. Since there
is generally no ideal feasible solution that is simultaneously optimal for all
objective functions, the resolution of such a problem usually leads to finding
the so-called efficient solutions. An efficient solution is characterized by the
fact that it is not possible to find another feasible solution that leads to an
improvement of the outcomes of all objective functions, without a degradation
of the outcome of at least one objective function.

The initial question addressed in this thesis is how to take into account
the multi-objective aspect of decision problems in inverse optimization. This
extension has been mentioned in Ahuja and Orlin (2001), but to our best
knowledge, it has not been covered yet. The most straightforward extension
consists of finding a minimal adjustment of the objective functions coefficients
such that a given feasible solution becomes efficient. However, there is not
only a single question raised by inverse multi-objective optimization, because
there is usually not a single efficient solution. The way we define inverse multi-
objective optimization takes into account this important aspect. This gives rise
to many questions which are identified by a precise notation that highlights a
large collection of inverse problems that could be investigated. In this thesis,
a selection of inverse problems are presented and solved. This selection is mo-
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tivated by their possible applications and the interesting theoretical questions
they can rise in practice.

In addition, two main fields of application, where inverse multi-objective
optimization is of a significant interest, have been identified. In stability analy-
sis, it can be used to assess the stability of a feasible solution to remain efficient
when the problem parameters are perturbed. To the best of our knowledge,
this approach leads to the first algorithm that allows to compute the stability
radius in a reasonable amount of time.

In group decision making, it can be used to compute compromise solutions
among different experts. Such a problem requires to select a solution that
satisfies a set of constraints and represents a compromise among the group
of experts. This decision making task can be modeled as a multi-objective
combinatorial optimization problem, where each objective function is an ex-
pert’s point of view over the feasible set. Let us observe that if there exists
an ideal solution, then there is a consensus among the experts. Based on this
observation, a compromise solution may be determined by finding a minimal
adjustment of the experts’ evaluations so that an ideal solution exists.

Contributions

Most of the results presented in this thesis have been published in three inter-
national journals and presented in three conferences.

The contributions on the inverse {0,1}-knapsack problem, presented in
Chapter 6, have been published in Discrete Optimization (Roland et al. 2013a).
The first work on inverse multi-objective optimization has been accepted for
publication in Discrete Applied Mathematics and the corrected proof is avail-
able online on the journal’s website (Roland et al. 2013b). Finally, the con-
tributions on the stability radius, presented in Chapters 7 and 8, have been
published in 4OR – A Quarterly Journal of Operations Research (Roland et al.
2012).

These results have also been presented in the following three conferences:

• “Inverse combinatorial optimization under the Chebyshev norm and its
extensions to multi-objective optimization”, ORBEL26, 26th Annual
Conference of the Belgian Operations Research Society, Brussels, Bel-
gium, February 2-3, 2012.

• “A propos de l’analyse de stabilité de l’ensemble des solutions efficaces
dans les problèmes combinatoires multi-objectifs”, 13ème Congrès de la
Société Française de Recherche Opérationnelle et d’Aide à la Décision,
Angers, France, April 11 -13, 2012.

• “The Inverse Multi-Objective {0,1}-Knapsack Problem under the Cheby-
shev Distance”, The 21st International Conference on Multiple Criteria
Decision Making, Jyvaskyla, Finland, June 13 - 17, 2011.
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This thesis incorporates all the results presented in the three articles and
the three presentations cited above. However, let us point out that more details
are provided and that several proofs have been completely rewritten in order to
ease their understanding. Furthermore, inverse multi-objective optimization is
presented in a totally new way through a taxonomy of inverse problems.

Outline

This thesis is organized as follows. The following four chapters present the
background on which relies this research. In Chapter 2, several important con-
cepts, their definitions and the basic notation are introduced. In Chapter 3,
combinatorial optimization is defined, a quick overview of the theory of com-
plexity is given, and various methods for solving such problems are presented
and illustrated. In Chapter 4, multi-objective combinatorial optimization is
defined, and various methods are presented. In Chapter 5, a quick review of
inverse optimization is provided, a method for solving the inverse shortest path
problem is presented, and a previously proposed method for solving the inverse
{0,1}-knapsack problem is analyzed and its incorrectness is proved.

The following three last chapters constitute the novelty of this thesis. In
Chapter 6, several methods for solving two inverse {0,1}-knapsack problems are
presented. These problems are classified in complexity classes and numerical
results from computational experiments are reported. In Chapter 7, inverse
optimization is extended to multi-objective optimization, a taxonomy of inverse
problems is proposed, and a collection of algorithms along with numerical
results from computational experiments are presented. In Chapter 8, inverse
multi-objective optimization is applied to stability analysis and group decision
making. We conclude this thesis in Chapter 9, with a summary of the main
results, several remarks, and potential directions for future research.



Chapter 2

Preliminary notions

This section addresses several important concepts, their definitions and the
basic notation required for the remaining chapters of this thesis. First, let us
present the classical set notation.

• Let Z be the set of integers,

• R the set of reals,

• R+ = {x ∈ R : x > 0} the set of positive reals including zero,

• N = {x ∈ Z : x > 0} the set of natural numbers, that is the set of
positive integers including zero.

Let J = {1, 2, . . . , j, . . . , n} and I = {1, 2, . . . , i, . . . , q} be two sets of ele-
ments indices. Let Rn = {(x1, x2, . . . , xj, . . . , xn) : xj ∈ R for j ∈ J} be the
set of real-valued vectors of length n > 1, Rq×n = {(C1, C2, . . . , Ci, . . . , Cq) :
Ci ∈ Rn for i ∈ I} be the set of real-valued matrices composed of n columns
and q rows denoted by Ci with i ∈ I. A vector x ∈ Rn is a matrix composed
of 1 column and n rows, and the transpose of x, denoted by x>, is a matrix
composed of n columns and 1 row. By abuse of notation, the zero vector 0 is
a vector with all the components equal to zero. The canonical basis of Rn is
denoted by the n vectors ej with j ∈ J .

For any vector x ∈ Rn, and real number p > 1, the Lp norm of x is defined
by

|x|p =
(∑
j∈J

|xj|p
) 1

p
,

where L1, L2, and L∞ are respectively the so-called Manhattan, Euclidean,
and Chebyshev norms. For instance, |x|1 =

∑
j∈J |xj|, and |x|∞ = maxj∈J |xj|.

The distance between two vectors c, d ∈ Rn can be computed by the Lp
norm of c− d.

The distance between two matrices C,D ∈ Rq×n can be measured by the
norm of C−D (see, for example, Deza and Deza (2009), or Horn and Johnson
(1990)). Let | · | denote a vector norm, and || · || a matrix norm. If C − D

5



6 CHAPTER 2. PRELIMINARY NOTIONS

is treated as a vector of size qn, then vector norms such as the Lp norm can
be used. For instance, |C − D|1 =

∑
i∈I
∑

j∈J |Cij − Dij|, and |C − D|∞ =
maxi∈I,j∈J |Cij −Dij|. Otherwise, one may consider matrix norms such as the
maximum column sum ||C −D||1 = maxj∈J

∑
i∈I |Cij −Dij|, or the maximum

row sum ||C −D||∞ = maxi∈I
∑

j∈J |Cij −Dij|. In what follows, it is assumed
that δ : Rq×n × Rq×n → R+ is a distance function that can be linearized by
a set of linear constraints, i.e., can be replaced by a linear function and a set
of constraints in a linear program (a linearizable function). L1 and L∞ norms
are examples of such a function. Their linearizations are detailed in Chapter
6 and Chapter 7.

Let x, y ∈ Rn be two vectors, we will note

• x < y iff ∀j ∈ J : xj < yj,

• x 5 y iff ∀j ∈ J : xj 6 yj,

• x 6= y iff ∃j ∈ J : xj 6= yj,

• x ≤ y iff x 5 y and x 6= y,

and the binary relations =, ≥, and > are defined in a similar way.
Let V,W ⊆ Rn denote two sets of vectors. Then, the set addition of V and

W (denoted by V ⊕W ) can be stated as follows,

V ⊕W = {x ∈ Rn : x = x1 + x2, x1 ∈ V, x2 ∈ W},

and by abuse of notation, {x} ⊕W is also noted x⊕W .

Definition 1 (Open Hypersphere (Steuer 1986)). Consider the space Rn with
the euclidean distance denoted by L2(x, y) =

√∑n
i=1(xi − yi)2, for all x, y ∈

Rn. A n-dimensiomal open hypersphere centered at x∗ ∈ Rn with radius ε > 0
is the set

Hε(x
∗) =

{
x ∈ Rn : L2(x, x

∗) < ε
}
,

and by abuse of notation, Hε(x
∗) is also noted Hε.

Definition 2 (Interior Point (Steuer 1986)). A point x∗ ∈ S ⊂ Rn is an
interior point of S if and only if x∗ belongs to a n-dimentional open hypersphere
Hε centered at x∗ such that Hε ⊂ S.

Definition 3 (Boundary Point (Steuer 1986)). A boundary point of S ⊂ Rn is
a point x∗ ∈ Rn such that every n-dimentional open hypersphere Hε centered
at x∗ contains points in S and points not in S.

Definition 4 (Bounded Set (Steuer 1986)). A set S ⊂ Rn is bounded if and
only if there exists an n-dimensional hypersphere that contains S. Otherwise,
the set is unbounded.
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Consider q vectors x1, x2, . . . , xj, . . . , xq ∈ Rn, and q scalars λ1, λ2,. . .,λj,. . .,
λq > 0 with

∑q
j=1 λj = 1. The expression λ1x

1 +λ2x
2 + . . .+λjx

j + . . .+λqx
q

is said to be a convex combination of vectors x1, x2, . . . , xj, . . . , xq.

Definition 5 (Convex Set (Steuer 1986)). A set S ⊂ Rn is convex if and only
if for any x1, x2 ∈ S the point λx1 +(1−λ)x2 ∈ S for all λ ∈ [0, 1]. Otherwise,
the set is nonconvex.

Definition 6 (Convex Hull (Padberg 1995, Schrijver 2003)). Let S ⊆ Rn. The
set { t∑

i=1

µix
i : t > 1, µ ∈ Rt+,

t∑
i=1

µi = 1, and x1, . . . , xt ∈ S
}

is the convex hull of S, or conv.hull(S) for short.

Definition 7 (Extreme Point (Steuer 1986)). A point x∗ ∈ S ⊂ Rn is an
extreme point if and only if two points x1, x2 ∈ S, with x1 6= x2 do not exist
such that x∗ = λx1 + (1− λ)x2 for some λ ∈]0, 1[.

Definition 8 (Cone (Padberg 1995)). A subset S ⊆ Rn is a cone if and only
if x1, x2 ∈ S implies λ1x

1 + λ2x
2 ∈ S, for all λ1 > 0 and λ2 > 0.

Let us define the following two cones:

Rn= =
{
x ∈ Rn : x =

∑
j∈J

ejαj, αj > 0, j ∈ J
}
,

Rn5 =
{
x ∈ Rn : x =

∑
j∈J

ejαj, αj 6 0, j ∈ J
}
.

The graphical representation of these cones are presented in Figures 2.1 and
2.2.

Definition 9 (Displaced Cone). Let S ⊆ Rn be a cone and y ∈ Rn a vector.
The set y ⊕ S is a displaced cone, which represents the translation of S from
the origin to vector y.

Let us illustrate the concept of displaced cone with a vector y ∈ R2. The
Figures 2.3 and 2.4 represent y ⊕ R2

= and y ⊕ R2
5, respectively.
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(0, 0)

R2
≧

f1(x)

f2(x)

Figure 2.1: The cone R2
= represented graphically by the hatched zone.

(0, 0)

R2
≦

f1(x)

f2(x)

Figure 2.2: The cone R2
5 represented graphically by the hatched zone.
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(0, 0)

y ⊕ R2
≧

f1(x)

f2(x)

b

y

Figure 2.3: The displaced cone y⊕R2
= represented graphically by the hatched

zone.

(0, 0)

y ⊕ R2
≦

f1(x)

f2(x)

b

y

Figure 2.4: The displaced cone y⊕R2
5 represented graphically by the hatched

zone.





Chapter 3

Combinatorial optimization

Combinatorial optimization consists of finding an optimal solution in a
finite collection of objects. This class of problem is formally defined and
several related problems are also considered. A quick overview of the
theory of complexity is given. Finally, various methods are presented
and illustrated on the well-known {0,1}-knapsack problem. We will
consider only methods that are required for a good understanding of
the next chapters.

3.1 Concepts, definitions and notation

Combinatorial optimization is defined by Schrijver (2003) as the problem of
finding an optimal object in a finite collection of objects, where the number
of objects is typically exponential in the size of the collection’s representation.
In this thesis, we restrict ourselves to a particular class of combinatorial opti-
mization problems that are defined as follows (Nemhauser and Wolsey 1988).

Definition 10 (An instance of a linear combinatorial optimization problem).
Let E = {e1, e2, . . . , ej, . . . , en} denote a finite set, X ⊆ 2E a family of subsets
of E (the feasible set), and f : 2E → N a linear profit function. For each
solution S ∈ X, consider the expression f(S) =

∑
e∈S f({e}). An instance of

a linear combinatorial optimization problem is a pair (X, f).

Definition 11 (A linear combinatorial optimization problem). A linear com-
binatorial optimization problem is characterized by a set Π of instances (X, f).
The problem consists of finding, for a given instance (X, f), a solution S∗ ∈ X
such that S∗ ∈ arg max{f(S) : S ∈ X}.

From Definition 11, we may conclude that any set of instances (i.e., any
set of pairs (X, f)) is an optimization problem. However, the instances that
constitute an optimization problem usually share a common structure. For
example, in the shortest path problem the feasible set X is always characterized

11
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by a precise model which ensures that each feasible solution is a path between
a source node and a target node.

The objective function f : 2E → N can be characterized by a vector c ∈ Nn.
For this purpose, each subset S of E is completely defined by an incidence
vector.

Definition 12 (An incidence vector). Consider a subset S ⊆ E. The incidence
vector x ∈ {0, 1}n of E defining S can be stated as follows,

xj =

{
1, if ej ∈ S,
0, otherwise.

Consequently, the feasible set is rewritten as X ⊆
{
x : x ∈ {0, 1}n

}
. For

each feasible solution x ∈ X, the objective function is defined by f(x) =
c>x =

∑
j∈J cjxj, where J = {1, 2, . . . , j . . . , n} is the set of element indices,

and c ∈ Nn is the so-called profit vector. Therefore, a linear combinatorial
optimization problem is defined by pair (X, c) and consists of finding x∗ ∈ X
such that x∗ ∈ arg max{f(x) : x ∈ X}.

Combinatorial optimization problems are related to linear optimization
problems. These problems are very well-known and can be solved by the
simplex algorithm or interior point methods (Vanderbei 2008).

Definition 13 (Linear optimization problem (LP)). An instance of a linear
optimization problem is defined by max{c>x : Ax 5 b, x ∈ Rn}, where c ∈ Rn,
A ∈ Rm×n, and b ∈ Rm.

For some particular problems, the variables (not necessarily all) have to take
an integer value, in which case the model is a linear mixed integer problem.
When all the variables have to take an integer value the model is a linear
integer problem.

Definition 14 (Linear mixed integer problem). Let JZ ⊂ J denotes the set of
integer components. An instance of a linear mixed integer optimization problem
is defined by max{c>x : Ax 5 b, xj ∈ Z for all j ∈ JZ, xj ∈ R for all j /∈ JZ},
where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

Definition 15 (Linear integer problem (IP)). An instance of a linear integer
optimization problem is defined by max{c>x : Ax 5 b, x ∈ Zn}, where c ∈ Rn,
A ∈ Rm×n, and b ∈ Rm.

Every combinatorial optimization problem can be formulated as a binary
integer problem that is an IP where all variables have to be either 0 or 1.
Indeed, it is easy to transform a combinatorial optimization problem into a
BIP by formulating a shortest path problem in a directed graph, where each
feasible solution x ∈ X is a path between the source and the target nodes.
This is illustrated in Chapter 5, where the knapsack problem is reduced to
the shortest path problem. However, the number of inequalities in the BIP is
potentially exponential in the size of E.
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Definition 16 (Linear binary integer problem (BIP)). An instance of a linear
binary integer optimization problem is defined by max{c>x : Ax 5 b, x ∈
{0, 1}n}, where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm.

The {0,1}-knapsack problem (KP) is a well-known classical linear combi-
natorial optimization problem (see, for example, Martello and Toth (1990) or
Kellerer et al. (1994) for a complete review of knapsack problems, their partic-
ular cases, extensions, and formulations). Let J = {1, 2, . . . , j, . . . , n} denotes
a set composed of n items with profits cj ∈ N and weights wj ∈ N, for each
j ∈ J . Let W ∈ N denote the capacity of a knapsack. The {0,1}-knapsack
problem consists of selecting a subset S ⊆ J , such that the sum of the profits
of the elements of S is maximized and the sum of weights of the same elements
does not exceed the capacity of the knapsack.

The problem can be formulated as a BIP as follows.

max f(x) =
∑
j∈J

cjxj

subject to:
∑
j∈J

wjxj 6 W

xj ∈ {0, 1}, j ∈ J.

(KP)

Consequently, an instance of KP is defined by a feasible set X =
{
x ∈

{0, 1}n :
∑

j∈J wjxj 6 W
}

, and a profit vector c ∈ Nn, i.e., a pair (X,c). It is
naturally assumed that

∑
j∈J wj > W and wj 6 W , for all j ∈ J ; otherwise,

the problem is obvious.

3.2 Complexity theory

This section gives a quick overview of complexity theory (see, for example,
Garey and Johnson (1979) or Papadimitriou and Steiglitz (1982) for a com-
plete review). The concepts developed in this theory are of a crucial importance
to analyze problems and to design algorithms. For example, under some hy-
pothesis such as P 6= NP, it can help to answer questions such as: “Can the
problem be solved with a polynomial time algorithm ?”

The complexity of an algorithm is defined with respect to the input size
of the problem instances. For a given input size, it represents the worst-
case behavior of the algorithm to solve an instance with the given input size.
Only very large scale instances are considered in order to determine the limits
of applicability of the algorithm. Therefore, only the rate of growth of the
complexity of the algorithm is provided (Papadimitriou and Steiglitz 1982).
It is for this reason that the complexity is usually characterized by the Big-O
notation (Cormen et al. 2001). A function f(n) belongs to the set O(g(n)) if
there exists two positive constants k and n0 such that 0 6 f(n) 6 kg(n) for
all n > n0.

The complexity of an algorithm requires to measure the size of input in-
stances. For example, the input of the {0,1}-Knapsack problem is an integer
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P NP

NP-Complete

NP-Hard

co-NP
Complete

co-NP-Hard

co-NP

Figure 3.1: Topography of the main complexity classes.

for the number of items and a set of integers for the profits and weights. This
input is encoded on a computer by a sequence of symbols over a fixed alphabet
Σ such as bits. The size of the input is the length of this sequence. For example,
let us encode the knapsack problem as a sequence of bits. The number of items
n is encoded by dlog2(n)e bits. This function is in O(log(n)). The weights are
encoded by

∑
j∈Jdlog2(wj)e bits. This function is in O(n log(W )), because it

is assumed that wj 6 W , for all j ∈ J . Similarly, the profits are encoded by
a number of bits in O(n log(V )), where V = max{cj : j ∈ J}. Consequently,
the whole instance is encoded by a number of bits in O(n(log(W ) + log(V ))).

For convenience, the theory of NP-Completeness studies decision problems,
i.e., problems that can be answered by “yes” or “no”. To each optimization
problem is associated a decision problem. For example, the {0,1}-Knapsack
decision problem stated as follows:

The {0,1}-Knapsack Decision Problem (KDP)
INSTANCE: An instance (X, c) of KP and a t ∈ N.
QUESTION: Is there an x ∈ X with c>x > t?

If the objective function is easy to evaluate, then the decision problem is
not harder than the optimization problem. Indeed, if one can solve efficiently
KP, then the decision problem KDP can be solved efficiently. It consists of
finding an optimal solution x∗ of KP and to evaluate c>x∗ > t. In this case,
the optimization problem is at least as hard as the decision problem.

In this theory, problems are classified into classes such as P, NP, co-NP,
NP-Complete, and co-NP-Complete. These classes are illustrated in Figure
3.1. Other classes may be developed, see for example Garey and Johnson
(1979) for a complete review.

The class P is composed of all the decision problems that can be solved
by a polynomial time algorithm. This class is formally defined through the
use of deterministic one-tape Turing machines (DTM). Roughly speaking, a
DTM program solves an instance of a decision problem by reading the input
on its tape and stops on the accept halt-state in case of a “yes” instance, or
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on the reject halt-state in case of a “no” instance. Let LM denote the set
of strings w over an alphabet Σ such that the DTM program M accepts w,
i.e., the language accepted by M . A decision problem can be characterized by
a language as well, i.e., a set of all the input sequences that encode a “yes”
instance. Hence, P is the set of languages L such that there is a polynomial
time DTM program M for which L = LM . A DTM program runs in polynomial
time if the number of steps, for the computation to reach a halt-state, is bound
by a polynomial.

The class NP is composed of all the decision problems for which there
exists, for all “yes” instance, a concise certificate that can be checked by a
polynomial time algorithm for validity. For KDP, a certificate is given by a
feasible solution x such that c>x > t. This certificate is said concise, because
its length is bounded by a polynomial in the size of the input instance. This
class is defined formally through the use of non-deterministic Turing machines
(NDTM). Roughly speaking, a NDTM program solves an instance of a decision
problem by a two phase approach. During the first phase, the program guesses
the certificate and write it on the tape. In the second phase, the program
checks the certificate written on the tape. In case of a “yes” instance the
program halts in an accepting state. Finally, NP is the set of languages L
such that there is a polynomial time NDTM program M for which L = LM .
A NDTM program runs in polynomial time if the number of steps for the
computation, on a string w ∈ LM , until an accept state is reached is bound by
a polynomial.

The class co-NP is composed of the complements of the NP problems. In
other words, a language L belongs to co-NP if and only if L̄ belongs to NP.
Therefore, the class co-NP is composed of all the decision problems for which
there exists, for all “no” instance, a concise certificate that can be checked by
a polynomial time algorithm for validity.

A polynomial time reduction from L1 to L2 is denoted by L1 ∝ L2. It is
said that L1 ∝ L2, if there exists a polynomial time DTM program M such
that for all string w over Σ, the program M compute a string w′ such that
w ∈ L1 if and only if w′ ∈ L2. Consequently, if L2 belongs to P and L1 ∝ L2,
then L1 belongs to P as well.

A language L is NP-Hard if for all L′ ∈ NP, L′ ∝ L. A language L is
NP-Complete if L belongs to NP and NP-Hard classes. This implies that if
there was a polynomial algorithm for an NP-Complete problem, then every
NP problems could be solved in polynomial time, i.e., P and NP would be
the same class. For this reason, problems that are NP-Complete are said to
be the hardest problems in NP.

The complexity classes co-NP-Hard and co-NP-Complete are not detailed
here, because they are defined similarly.
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3.3 Dynamic programming

Dynamic programming is a general approach that consists of breaking up a
problem into a collection of sub-problems and to write the solution of all of
them in terms of the solution of smaller sub-problems.

Let us illustrate this approach in the context of the {0,1}-knapsack prob-
lem (Kellerer et al. 1994). A dynamic programming approach for solving this
problem relies on Property 1.

Property 1 (Optimal substructure). Let S∗ ⊆ J denote a feasible set of items
of an instance max{c>x :

∑
j∈J wjxj 6 W} of KP and r ∈ S∗ an item. If S∗

is an optimal solution, then S∗\{r} is an optimal solution to the knapsack
sub-problem of capacity W − wr and item set J\{r}.

This property means that an optimal solution to KP contains optimal solu-
tions to sub-problems of KP. Based on this principle, let us define the knapsack
sub-problems that consider the first i ∈ J items of J and a capacity equal to
q ∈ N, with q 6 W . These sub-problems consist in selecting a subset of items
S in the first i items of J , such that the sum of the profits of the elements of
S is maximized and the sum of weights of the same elements does not exceed
q. These sub-problems are formulated by the binary integer linear programs
denoted by KPi(q).

gi(q) = max
i∑

j=1

cjxj

subject to:
i∑

j=1

wjxj 6 q

xj ∈ {0, 1}, j ∈ {1, . . . , i}

(KPi(q))

The function gi(q) denotes the maximum profit achievable when considering
the first i items of J , with i ∈ J and a capacity q ∈ {0, 1, . . . ,W}. Note
that the original knapsack problem is to find gn(W ). It is widely known that
the following recursive formula solves the knapsack problem (see for example
Kellerer et al. 1994).

gi(q) =


gi−1(q), if q < wi,

max
{
gi−1(q − wi) + ci, gi−1(q)

}
, if q > wi.

with g1(q)← 0 for q = 0, 1, . . . , w1−1 and g1(q)← c1 for q = w1, w1+1, . . . ,W .
Let us explain how this recursive formula is built. Let us assume that gi(q)

is known for all i ∈ {1, 2, . . . , r} and capacity q ∈ {0, 1, . . . ,W}. Consider
item (r + 1) and all sub-problems g(r+1)(q) with q ∈ {0, 1, . . . ,W}. Based on
Property 1, either item (r+1) is packed and g(r+1)(q)← gr(q−w(r+1))+c(r+1),
or item is not packed and g(r+1)(q) ← gr(q). If w(r+1) is greater than q, then
item (r + 1) is too large to be packed in the knapsack g(r+1)(q), and therefore
g(r+1)(q) ← gr(q). Otherwise, the profit of packing item (r + 1) must be
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considered. If gr(q − wr+1) + cr+1 > gr(q), then there is a profit to place
this item in the knapsack and therefore g(r+1)(q) ← gr(q − w(r+1)) + c(r+1).
Otherwise, the item is not packed and g(r+1)(q)← gr(q).

Based on this formula, Algorithm 1 computes gj(q) for all q ∈ {0, 1, . . . ,W}
and j ∈ J . Therefore it runs in O(nW ), which is a pseudo-polynomial algo-
rithm, because W can be exponential in the input size.

Finally, the optimal solution of KP is obtained by computing the optimal
solution of KPi(q). This optimal solution is denoted by Xi(q) ⊆ J . This set is
derived form the computation of gi(q). If gi(q) is assigned to gi−1(q−wi) + ci,
then Xi(q) = Xi−1(q − wi) ∪ {i}. Otherwise, Xi(q) = Xi−1(q).

Algorithm 1 A dynamic programming algorithm for KP.

1: for q = 0, 1, . . . ,W do
2: g0(q)← 0;
3: end for
4: for j = 1, 2, . . . , n do
5: for q = 0, 1, . . . , (wj − 1) do
6: gj(q)← gj−1(q);
7: end for
8: for q = wj, (wj + 1), . . . ,W do
9: if gj−1(q − wj) + cj > gj−1(q) then

10: gj(q)← gj−1(q − wj) + cj;
11: else
12: gj(q)← gj−1(q);
13: end if
14: end for
15: end for

There exists another well-known dynamic programming algorithm for solv-
ing the knapsack problem. Unlike the previous approach that performs a search
in the weight space, this algorithm performs a search in the profit space. It
relies on the function hi(v) that is the minimal weight of a subset of items with
profit equal to v when considering the first i items. Let U denote an upper
bound on the optimal solution value of the knapsack. This upper-bound is
fixed by solving the linear relaxation of KP. Consequently, the following recur-
sive formula computes the value of hi(v) for all i ∈ J and v ∈ {0, 1, 2, . . . , U}
(Kellerer et al. 1994).

hi(v) =


hi−1(v), if v < ci,

min
{
hi−1(v), hi−1(v − ci) + wi

}
, otherwise,

where h0(0)← 0 and h0(v)← W + 1, for all v ∈ {1, 2, . . . , U}. This recursive
formula means that either item i is not packed in the knapsack and therefore
hi(v) = hi−1(v), or this item is packed and therefore hi(v) = hi−1(v− ci) +wi.
The optimal solution of the knapsack problem is the maximal value of v such
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that hn(v) 6 W . Consequently, an algorithm for solving the knapsack problem
is obtained (see Algorithm 2), that runs in O(nU).

Algorithm 2 A dynamic programming algorithm for KP.

1: h0(0)← 0;
2: for v = 1, 2, . . . , U do
3: h0(v)← W + 1;
4: end for
5: for i = 1, 2, . . . , n do
6: for v = 0, 1, . . . , (ci − 1) do
7: hi(v)← hi−1(v);
8: end for
9: for v = ci, (ci + 1), . . . ,W do

10: if hi−1(v − ci) + wi < hi−1(v) then
11: hi(v)← hi−1(v − ci) + wi;
12: else
13: hi(v)← hi−1(v);
14: end if
15: end for
16: end for

3.4 Branch-and-bound algorithms

A simple approach for solving a combinatorial optimization problem could
consist of enumerating all the feasible solutions. However, such an algorithm
runs in O(2n). Branch-and-bound algorithms are based on a clever complete
enumeration of the feasible set through the exploration of a tree (Wolsey 1998,
Kellerer et al. 1994). Each node of this branch-and-bound tree is associated
with a subset of the feasible set and the root is associated to the whole feasible
set. Parent nodes and child nodes are connected as follows. Let us consider a
node and its subset X ′ ⊆ X. This subset is split up into smaller ones denoted
by X1, X2, . . . , Xi, . . . , Xm ⊆ X ′, where X1 ∪X2 ∪ . . . ∪Xm = X ′. These sets
are the m child nodes of X ′ (see Figure 3.2).

This procedure is applied to each child node until the subset contains a
single feasible solution. In other words, if |Xi| = 1, then the node is a leaf that
is associated to a single feasible solution.

Each leaf node leads to a lower bound on the objective function value. An
upper bound is computed on each node. Given a subset X ′ ⊆ X, an upper
bound UX′ satisfies the condition UX′ > f(x), for all x ∈ X ′.

Let zl denote a lower bound on the objective function value. If UX′ 6 zl,
then there are no better solution in the sub-tree rooted at that node. Therefore,
this sub-tree is pruned from the branch-and-bound tree in order to reduce the
search space.
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X ′

X1 X2
. . . Xi

. . . Xm

Figure 3.2: Local representation of the branch-and-bound tree with respect to
a feasible set X ′.

Algorithm 3 The branch-and-bound algorithm.

1: M ← {X};
2: Let zl be a lower bound on max{f(x) : x ∈ X}
3: while M 6= ∅ do
4: Select a set X ′ from M ;
5: if |X ′| = 1 then
6: Let x be the single solution belonging in X ′;
7: if f(x) > zl then
8: zl ← f(x);
9: end if

10: else
11: Let UX′ be an upper bound on max{f(x) : x ∈ X ′};
12: if UX′ > zl then
13: Let split up X ′ into m subsets X1, X2, . . . , Xm;
14: Add X1, X2, . . . , Xm into M ;
15: end if
16: end if
17: end while

The general branch-and-bound approach is presented in Algorithm 3. The
way the subsets are added and selected from M determine how the tree is
explored. There are many ways to explore this tree. The most common are
the breadth-first, depth-first, and best-first manners. The first two methods are
elementary tree traversal algorithms that will not be detailed in this chapter
(see, for example, Cormen et al. (2001), for more details). If the set M is
implemented as a stack, then the tree is explored in a depth-first manner. If
the set M is implemented as a queue, then the tree is explored in a breadth-first
manner. The best-first algorithm explores the tree by always considering the
subset with largest upper bound first. This requires to transform only slightly
Algorithm 3.

Let us illustrate the branch-and-bound method for solving the knapsack
problem. In this case, X = {x ∈ {0, 1}n :

∑
j∈J wjxj 6 W}. An upper bound
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on max{f(x) : x ∈ X} is obtained by solving a linear relaxation of KP denoted
by LKP.

max
∑
j∈J

cjxj

subject to:
∑
j∈J

wjxj 6 W

xj ∈ [0, 1], j ∈ J

(LKP)

This problem can be solved in O(n) if the items are sorted with respect to
their efficiency, i.e.,

cj
wj

> ck
wk

, for all j, k ∈ J , with j < k (Kellerer et al. 1994).

The branch-and-bound three is built as follows. To each node is associated
a value k ∈ J and a vector x0 ∈ {0, 1}k. This pair defines a subset X ′ ={
x ∈ {0, 1}n :

∑
j∈J wjxj 6 W,xj = x0j , j ∈ {1, 2, . . . , k}

}
⊆ X. This subset

is split up into two subsets X1, X2 ⊆ X. The first subset is defined by fixing
x0k+1 = 1 and k ← k + 1. The second one is defined by fixing x0k+1 = 0 and
k ← k + 1. These two sets are the two child nodes of X ′. If a set is empty,
i.e.

∑k
j=1 x

0
jwj > W , then the corresponding node is removed. Otherwise, the

same procedure is applied on the set until a leaf is reached. The root node is
X, with k = 0, and the leaves are reached when k = n. For each node, the
linear relaxation LKP is solved in order to get an upper bound. For each leaf,
the value of f(x0) is a lower bound on the optimal solution value of KP.

A complete branch-and-bound tree for the knapsack problem of Equation
3.1 is illustrated in Figure 3.3.

min f(x) = 5x1 + 7x2
subject to: x1 + x2 6 1

x ∈ {0, 1}2
(3.1)

In this example, X1 = {x ∈ {0, 1}n : x1 + x2 6 1, x1 = 1}, X2 = {x ∈
{0, 1}n : x1 +x2 6 1, x1 = 0}, X3 = {(1, 0)}, X4 = {(0, 1)}, and X5 = {(0, 0)}.
The two nodes X1 and X2 provide two upper bounds. Their values are 5 and
7, respectively. The three leaves X3, X4, and X5 provide three lower bounds.
Their values are 5, 7, and 0, respectively. Therefore, the optimal solution value
is 7.

3.5 Cutting plane methods

Cutting plane algorithms are very common methods for solving linear integer
problems. This approach has been introduced by Dantzig et al. (1954) for
solving the traveling salesman problem that is also well-known in combinatorial
optimization. Afterward, this concept has been further extended by Gomory
(1958) for solving linear integer programs.

Let us consider a linear integer problem max{c>x : Ax 5 b, x ∈ Zn}. The
linear relaxation of this problem is max{c>x : x ∈ P0}, where P0 = {x ∈ Rn :
Ax 5 b} is a polyhedron. Let PI = conv.hull(P0∩Zn) denotes the integer hull
of P , i.e., the convex hull of the integer vectors in P . Hence, the linear integer
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Figure 3.3: Illustration of the branch-and-bound tree for the knapsack problem
of equation 3.1.

problem is equivalent to max{c>x : x ∈ PI , x ∈ Zn}. It is easy to see to see
that PI ⊆ P0.

The main idea behind cutting plane methods is to find a collection of sub-
sets P1, P2, . . . , Pi, . . . , Pm ⊆ P0 such that P0 ⊃ P1 ⊃ . . . ⊃ Pi ⊃ . . . ⊃
Pm ⊇ PI , where Pi is obtained by cutting off certain parts of P(i−1), for all
i ∈ {1, 2, . . . ,m}. Each polyhedron Pi leads to a linear program max{c>x :
x ∈ Pi} which can be solved by the simplex method. The polyhedron Pm is
such that, the optimal solution of the associated linear program is an integer
vector. This integer vector is obviously an optimal solution to the initial linear
integer problem.

Let us illustrate this approach on the following linear integer problem
(Mitchell 2009).

min f(x) = −2x1 − x2
subject to: x1 + 2x2 6 7

2x1 − x2 6 3
x ∈ Z2

+

(3.2)

The problem is illustrated in Figure 3.4 and its linear relaxation is illus-
trated in 3.5. The linear relaxation of Problem 3.2 is min{f(x) : x ∈ P 0},
where P0 = {x ∈ R2

+ : x1 + 2x2 6 7, 2x1 − x2 6 3}. The optimal solution of
this relaxation is x∗ = (x1, x2) = (2.6, 2.2), and the optimal solution value is
f(x∗) = −7.4. This relaxation must be improved in order to get an integral
solution. The principle is to cut off x∗ by a set of valid cutting planes, i.e., to
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Figure 3.4: An illustration of Problem 3.2, where the integral vectors are
designated by dots and the integer hull PI is filled in gray.

add a set of constraints that are not satisfied by x∗, but satisfied by all feasible
integral vectors x ∈ PI . The inequalities x1 +x2 6 4 and x1 6 2 are such valid
cutting planes. By adding these two inequalities to P0, one obtains the linear
program min{f(x) : x ∈ P 1}, where P1 = {x ∈ R2

+ : x1 + 2x2 6 7, 2x1 − x2 6
3, x1 + x2 6 4, x1 6 2}. This linear program is illustrated in Figure 3.6. The
optimal solution is an integral vector (x1, x2) = (2, 2). Therefore, this solution
is an optimal solution to Problem 3.2. If the optimal solution was not integral,
then the procedure would have been repeated by introducing a set of linear
constraints to cut off this solution. The main steps of the cutting plane method
are summarized in Algorithm 4.

Algorithm 4 A cutting plane algorithm for solving linear integer programs.

1: Let x∗ denotes an optimal solution to max{c>x : x ∈ P};
2: while x∗ /∈ Zn do
3: Add a set of valid cutting planes to P that cut off x∗;
4: Let x∗ denotes an optimal solution to max{c>x : x ∈ P};
5: end while

Let us note that cutting planes are often generated by using Chvátal-
Gomory cuts. This method is not detailed in this section. The reader may
refer to Schrijver (1986) for more detailed information on this subject.
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Figure 3.5: An illustration of the linear relaxation of Problem 3.2, with x∗ the
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Figure 3.6: An illustration of the linear relaxation of Problem 3.2 with two
additional constraints.





Chapter 4

Multi-objective combinatorial
optimization

Multi-objective optimization consists of maximizing “simultaneously”
several objective functions over a set of feasible solutions. This class
of problem is defined and several related problems are also considered.
Various methods are presented with a special focus on the knapsack
problem. We will consider only methods that are required for a good
understanding of the next chapters.

4.1 Concepts, definitions and notation

Multi-objective optimization consists of maximizing “simultaneously” several
objective functions over a set of feasible solutions (see, for example, Zeleny
(1974), Steuer (1986), Ehrgott (2005)). The feasible set is denoted by X ⊆
Rn. The outcome of each feasible solution x ∈ X is denoted by a vector
F (x) = (f1(x), f2(x), . . . , fi(x), . . . , fq(x)) composed of the outcomes of q > 2
objective functions fi : X → R, with i ∈ I, where I = {1, 2, . . . , q} is the set
of objective subscripts. Consequently multi-objective optimization consists of
solving the problem “max”{F (x) : x ∈ X}, where the maximization operator
is between quotation marks since there is not necessarily an outcome vector
that maximize simultaneously all the objectives and that no natural total order
exists on Rq with q > 2.

Without loss of generality, we assume that all the objective functions are
to be maximized. Indeed, minimizing a function is equivalent to maximizing
the negative of the same function.

Combinatorial problems have their counterpart in multi-objective optimiza-
tion. As in single-objective optimization, a particular class of multi-objective
combinatorial optimization problems (MOCO) is considered. Each instance
is defined by a pair (X,C) where X ⊆ {x : x ∈ {0, 1}n} is the feasible
set and C ∈ Nq×n is the so-called profit matrix. Each objective function
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fi : X → N, with i ∈ I, is defined by a row of the profit matrix with
fi(x) =

∑
j∈J Cijxj = Cix, where Ci is the i-th row of C.

Linear optimization problems have also their counterpart in multi-objective
optimization. These problems are defined as follows.

Definition 17 (Linear multi-objective optimization problem (MOLP)). An in-
stance of a multi-objective linear optimization problem is defined by “max”{Cx :
Ax 5 b, x ∈ Rn}, where C ∈ Rq×n, A ∈ Rm×n, and b ∈ Rm.

In multi-objective optimization two spaces should be distinguished. The
decision space is the space in which the feasible solutions are defined, and the
objective space is the space in which the outcome vectors are defined. The
image of the feasible set in the objective space is denoted by Y = {y ∈ Rq :
y = Cx, x ∈ X}.

Definition 18 (Ideal Solution). A feasible solution x ∈ X is said to be ideal
if and only if Cx is an ideal outcome vector.

Definition 19 (Ideal Vector). The ideal outcome vector y∗ ∈ Rq to an instance
(X,C) is defined by y∗i = max{Cix : x ∈ X}, for all i ∈ I.

There is not necessarily an ideal solution and no natural total order exists
on Rq with q > 2. Consequently, it is widely accepted to build the dominance
relation on the set Y of outcome vectors. This is a binary relation that is
irreflexive, asymmetric, and transitive.

Definition 20 (Dominance). Let y, y′ ∈ Y be two outcome vectors. It is said
that y dominates y′ if and only if y ≥ y′.

The dominance relation induces a partition of Y into two subsets: the set
of dominated outcome vectors and the set of non-dominated outcome vectors.
The set of non-dominated outcomes corresponding to an instance (X,C) is
denoted by ND(X,C).

Definition 21 (Non-dominated). An outcome vector y ∈ Y is non-dominated
if and only if there is no y′ ∈ Y such that y′ dominates y.

Similarly, in the decision space the concepts of efficient and non-efficient
solutions can be defined. The set of efficient solutions corresponding to an
instance (X,C) is denoted by E(X,C).

Definition 22 (Efficiency). A solution x∗ ∈ X is efficient if and only if there
is no x ∈ X such that Cx ≥ Cx∗.

A linear integer program can be used to check whether a feasible solution
x0 is an efficient solution of (X,C).
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max
∑
i∈I

∑
j∈J

Cijxj

subject to: Cx = Cx0

x ∈ X.

(ND-Test)

Wendell and Lee (1977) have shown that, if x∗ is an optimal solution to Prob-
lem ND-Test, then x0 ∈ E(X,C) if and only if Cx0 = Cx∗.

Now, let us consider multi-objective linear combinatorial optimization prob-
lems. In such optimization problems, the non-dominated set is partitioned into
two sets: the supported and the unsupported non-dominated outcome vectors
sets, respectively.

Definition 23 (Supported non-dominated outcome vector). Let y ∈ ND(X,C)
denote a non-dominated outcome vector. If y is on the boundary of Y 5 =
Conv(ND(X,C)⊕Rq5), then y is a supported non-dominated outcome vector.
Otherwise, y is an unsupported non-dominated outcome vector.

Some methods for computing the non-dominated outcome vectors provide
only extreme non-dominated outcome vector as output. An example of such a
method is presented in the next section.

Definition 24 (Supported-extreme non-dominated outcome vector). Let y ∈
Y denote a supported non-dominated outcome vector. If y is an extreme point
of Y 5, then y is a supported-extreme non-dominated outcome vector. Other-
wise, y is an supported non-extreme non-dominated outcome vector.

Let us illustrate the concepts presented above on the following instance of
a bi-objective optimization problem.

max f1(x) = x2 + 2x3 + 3x4 + 4x5
max f2(x) = 2x1 + 2x2 + x3

subject to: x1 + x2 + x3 + x4 + x5 6 1
x1, x2, . . . , x5 ∈ {0, 1}

(4.1)
The objective space of this instance is illustrated in Figure 4.1. The

non-dominated set is ND(X,C) = {y(2), y(3), y(5)}, where y(2) and y(5) are
supported-extreme non-dominated vectors.

Let us finally point out that many MOCO problems are known to be in-
tractable, i.e., there cannot exist a polynomial time algorithm to solve them.
This comes from the fact that the number of efficient solutions may be ex-
ponential in the input size. For example, even polynomial optimization prob-
lems, such as the shortest path problem, are known to be intractable in multi-
objective optimization (Ehrgott 2005).

In what follows, we will present several methods for solving multi-objective
combinatorial optimization problems. We only focus on methods that are
required for a good understanding of inverse multi-objective optimization.
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Figure 4.1: An illustration of the objective space of Problem 4.1, with the
outcome of each feasible solution an the convex hull over these points.

4.2 Scalarization techniques

The set of efficient solutions of a multi-objective linear program can be obtained
by solving a collection of linear programs (Geoffrion 1968). Indeed, for each
efficient solution x0 of a MOLP, there exists a vector λ ∈ Rq, with λi > 0 for
all i ∈ I, such that x0 is an optimal solution of the following scalar maximum
problem.

max
∑
i∈I

λifi(x)

subject to: Ax 5 b

x ∈ Rn.

(4.2)

Conversely, it is known that if λi > 0 for all i ∈ I, then an optimal solution
of Problem 4.2 is efficient. As explained previously, in combinatiorial optimiza-
tion problems there may exists unsupported non-dominated solutions. There
does not exists a vector λ such that an unsupported non-dominated solutions
is an optimal solution of Problem 4.2. In other words, unsupported solutions
are not optimal solutions to a convex combination of the objective functions.
Therefore, such a method cannot be used to find all the non-dominated solu-
tions.

One of the most well-known technique for finding all the efficient solution
is the ε-constraint method (Steuer 1986, Ehrgott 2005). This method requires
to solve a collection of single-objective linear programs (Problem 4.3), where
only one of the original objective function k ∈ I is selected for maximization
and the remaining (q − 1) functions are transformed into constraints.
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max fk(x)

subject to: fi(x) > εi, for all i ∈ I, i 6= k

x ∈ X.
(4.3)

A feasible solution x0 ∈ X is efficient if and only if there exists a vector
ε ∈ Rq such that x0 is an optimal solution to Problem 4.3 for all k ∈ I.

Even though this methods looks very simple, it lacks of a well established
procedure to configure Problem 4.3, i.e., to fix the value of ε. Anyway, combi-
natorial optimization problems are usually solved by ad hoc methods that rely
on their intrinsic structure. This is why, in the next section is presented an ad
hoc method for solving the multi-objective knapsack problem.

4.3 Dynamic programming

The dynamic programming approaches can be applied for solving multi-objective
optimization problems. Let us illustrate this method on the multi-objective
{0,1}-knapsack problem. As explained in Chapter 3, the knapsack problem
can be solved by performing a search in the profit space. This approach has
been extended recently by Erlebach et al. (2002) to the multi-objective case.

Let UBi denote an upper bound on the optimal solution value of the i-
th objective function, i.e., UBi > max{fi(x) : x ∈ X}, for all i ∈ I. Let
hk(v) denote the minimal weight of a subset of items with an outcome equal
to v ∈ Nq when considering the first k ∈ J items. Consequently, the following
recursive formula computes the value of hk(v) for all k ∈ J and v ∈ Nq, such
that vi ∈ {0, 1, 2, . . . , UBi}, for all i ∈ I.

hk(v) =


hk−1(v), if ∃i ∈ I : vi < Cik,

min
{
hk−1(v), hk−1(v

′) + wk
}
, otherwise,

where v′ = (v1 − C1k, v2 − C2k, . . . , vi − Cik, . . . , vq − Cqk). This formula is
initialized as follows. If v is the null vector (i.e., v = 0), then the value of
h0(v) is fixed to 0. Otherwise, the value of h0(v) is fixed to W + 1 for all
v ∈ {v ∈ Nq : vi ∈ {0, 1, 2, . . . , UBi}, i ∈ I}. In other words, there is no
feasible solution that contains no items with an outcome equal to v. This
means that the lightest knapsack without profits is the empty one. Finally,
the non-dominated set requires to find all the non-dominated vectors v ∈ Nq
such that hn(v) 6 W .

Algorithm 5 computes the formula hk(v) for all k ∈ J and v ∈ Nq, such that
vi ∈ {0, 1, 2, . . . , UBi}, for all i ∈ I. Therefore, it runs in O

(
n(Πi∈IUBi)

)
, or in

a reduced form in O(n(UBmax)
q), where UBmax = max{UB1, UB2, . . ., UBi,

. . ., UBq}. A post-processing algorithm for building the non-dominated set can
be performed by any algorithm designed for problems with an explicitly given
feasible set (Ehrgott 2005). For example, one could use a pairwise comparison,
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in which case the post-processing runs in O
(
(UBmax)

2qq
)
, where (UBmax)

q is
the cardinality of the set on which the post-processing is performed.

Algorithm 5 A dynamic programming algorithm for the multi-objective
{0,1}-knapsack problem.

1: for v ∈ Nq : vi ∈ {0, 1, 2, . . . , UBi} for all i ∈ I do
2: h0(v)← W + 1;
3: end for
4: h0(0)← 0;
5: for k ∈ {1, 2, . . . , n} do
6: for v ∈ Nq : vi ∈ {0, 1, 2, . . . , UBi}, for all i ∈ I do
7: if ∃i ∈ I : vi < Cik then
8: hk(v)← hk−1(v);
9: else

10: v′ ← (v1 − C1k, v2 − C2k, . . . , vi − Cik, . . . , vq − Cqk);
11: if hk−1(v

′) + wk < hk−1(v) then
12: hk(v)← hk−1(v

′) + wk;
13: else
14: hk(v)← hk−1(v);
15: end if
16: end if
17: end for
18: end for



Chapter 5

Inverse optimization

A quick review of inverse optimization is given in this chapter. This
mathematical programming approach is motivated by two illustrative
examples. Inverse optimization is then defined and several particular
cases are presented. In this chapter we restrict ourselves to the problem
of finding a minimal adjustment of the profit vector such that a given
feasible solution becomes an optimal one. A method for solving the
inverse shortest path problem is presented. This method is of a signif-
icant importance in this thesis. Finally, a previously proposed method
for solving the {0,1}-knapsack problem is presented and proved to be
incorrect.

5.1 Introduction

Inverse optimization takes its origins in the theory of inverse problems that
arise in many fields of physics and mathematics (see, for example, Tarantola
1987). Inverse problems are loosely defined by Keller (1976) as follows: “We
call two problems inverses of each other if the formulation of each involves all
or part to the solution of the other”. One of the two problems is often called
the direct problem, whereas the other one is called the inverse problem. The
direct problem is usually the one that is more natural or more studied, while
the inverse problem is newer and not so well understood.

Let us illustrate this concept with the direct problem stated by the fol-
lowing question. What are the roots of a given polynomial p(x) of degree n?
Let x1, x2, . . . , xr denote the roots of p(x). An example of a related inverse
problem would be stated as follows. What polynomial p(x) of degree n has
roots of x1, x2, . . . , xr ? Let us consider an example of such an inverse prob-
lem. Consider the polynomial p(x) = x− 2, where the only root is x = 2. The
inverse problem has many solutions such as (x− 2), or k(x− 2) for all k ∈ R,
such that k 6= 0. As it is often the case, this inverse problem is said ill-posed
(i.e., not well-posed), because there exists more than one solution (Hadamard
1902).
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Inverse problems have been introduced in optimization recently (see, for ex-
ample, Burton and Toint 1992, Ahuja and Orlin 2001). Since then, this math-
ematical programming approach has been strongly developed and has shown
its importance in geophysical sciences, transportation and traffic flow, among
others (see, for example, Tarantola 1987, Burton and Toint 1992, Sokkalingam
et al. 1999, Ahuja and Orlin 2001). Let us illustrate this concept by two
applications drawn from traffic modeling and facility location.

• Traffic Modeling (Burton and Toint 1992)
Shortest path techniques can be used by network planners in order to
determine what are the paths taken by the users of a road network. How-
ever, these procedures do not take into account the perceived cost of the
users. Indeed, usually users evaluate paths in terms of time, money, dis-
tance, road’s quality, etc. Recovering the perceived cost is an important
step in the analysis of a network users’ behavior. Therefore, it is very
useful to know some of the routes that are actually used (and thus con-
sidered as the optimal ones) and then incorporate this knowledge into
the model, modifying the a priori costs in order to ensure the optimality
of the paths used by the users in the modified network.

This represents an instance of the inverse shortest path problem. Given a
network, represented by a weighted graph and a given path; the question
is to modify the weights, as little as possible, such that the given path
becomes an optimal one.

• Facility Location (Heuberger 2004)
Consider a road network and a set of clients. The facility location prob-
lem consists of installing facilities in the network in such a way that the
distance to the clients is minimum. However, it can happen that the
facility already exists and cannot be relocated with reasonable costs. In
such a situation, one may want to modify the network as little as possible
(for instance, by improving roads) in order to make optimal the current
location of the facilities.

This represents an instance of the inverse facility location problem. Given
a network represented by a weighted graph, the location of a set of clients,
and the location of a set of facilities; the question is to modify the weights,
as little as possible, such that the given location becomes an optimal one.

There are many inverse optimization problems, however the one that is the
most studied is described as follows: “Given an optimization problem and a
feasible solution to it, the corresponding inverse optimization problem consists
of finding a minimal adjustment of the profit vector such that the given solution
becomes optimum” (Heuberger 2004). In the literature, this adjustment of the
profit vector is generally performed under the L1, the L2, or the L∞ norm.

As already stressed by (Heuberger 2004), this definition is very precise
compared with what the inverse problems are. In order to cover all inverse
problems, we broadly define inverse optimization as the problem of finding
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a minimal adjustment of an optimization instance inducing a change in the
optimal solution’s characteristics. For example, an inverse knapsack problem
could consist of finding a minimal adjustment of weights and profits so that
a given feasible solution becomes optimal. Another inverse knapsack problem
could consist of finding a minimal adjustment of the capacity so that the opti-
mal solution value is equal to a given constant. These two examples highlight
the wide range of inverse problems that can be investigated. However, in this
chapter, we will restrict ourselves to the more restrictive definition provided in
the previous paragraph.

5.2 Inverse problems

In the context of this thesis, inverse combinatorial optimization problems are
defined as follows. Let Π denote an optimization problem and (X, f) ∈ Π
an instance of Π. The associated inverse problem consists of determining an
instance (X ∗, g∗) ∈ Π, that minimizes a cost function γ : Π × Π → R, with
respect to (X, f), such that the optimal solution of (X ∗, g∗) satisfies a set of
conditions.

The following statement is an example of one condition on the optimal so-
lution of (X ∗, g∗): a given feasible solution x0 is an optimal solution of (X ∗, g∗).
In this case, the inverse problem can be modeled through the following bilevel
optimization problem.

(X ∗, f ∗) ∈ arg min γ((X, f), (X , g))
subject to: g(x∗) = g(x0)

x∗ ∈ arg max{g(x) : x ∈ X}
(X , g) ∈ Π

(5.1)

The following statement is another example of condition: the optimal so-
lution value of (X ∗, f ∗) is equal to a given constant k ∈ R. In this case, the
inverse problem can be modeled through the following bilevel optimization
problem.

(X ∗, f ∗) ∈ arg min γ((X, f), (X , g))
subject to: g(x∗) = k

x∗ ∈ arg max{g(x) : x ∈ X}
(X , g) ∈ Π

(5.2)

In this chapter we restrict ourselves to the inverse optimization problems
that are defined as follows. Let Π denote a combinatorial optimization problem,
(X, c) ∈ Π an instance of Π, and x0 ∈ X a feasible solution. The associated
inverse problem consists of determining a profit vector d∗ ∈ Nn such that x0 is
an optimal solution of (X, d∗) and |d∗ − c|p is minimum. This class of inverse
problems can be modeled through the following bilevel optimization problem.
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d∗ ∈ arg min |d− c|p
subject to: d>x∗ = d>x0

x∗ ∈ arg max{d>x : x ∈ X}
d ∈ Nn

(5.3)

5.3 Polynomial optimization problems

There is a very important result that concerns every optimization problem
that are polynomially solvable. Ahuja and Orlin (2001) have proved that if
an optimization problem can be solved in polynomial time for every linear
objective function, then inverse versions of this problem can also be solved
in polynomial time if the adjustment is measured by L1 or L2. This result
is significant, because it implies that a wide range of inverse optimization
problems are polynomially solvable. However, as explained in their paper, this
result cannot be used in practice for large scale instances, because it relies on
the use of the ellipsoid algorithm.

Many polynomial problems have been considered in inverse optimization.
In the next section the inverse shortest path will be presented. This inverse
problem is of considerable interest for two main reasons. First, as stressed
in the next section, it provides intuitions for solving inverse combinatorial
optimization problems. Second, it is required for proving the incorrectness
of the method proposed by Huang (2005) for solving the inverse knapsack
problem.

5.4 The inverse shortest path

The shortest path problem is one of the most well-studied combinatorial prob-
lems in inverse optimization. Burton and Toint (1992) have studied this prob-
lem, where the adjustment is measured by the L2 norm. They transformed this
problem into a quadratic program. Zhang and Liu (1996) have transformed
it into an inverse assignment problem which is solved by an instance of the
assignment problem. More recently, Ahuja and Orlin (2001) have studied in-
verse linear programming, where the adjustment is measured by the L∞ and
L1 norms. They have applied these results on several combinatorial problems
such as the shortest path problem, the assignment problem, and the minimum
cost flow problem.

Let us detail the method proposed by Ahuja and Orlin (2001) for solving
the inverse shortest path problem, where the adjustment is measured by the
L1 norm. Unlike what is stated in Section 5.2, in their approach the profits
can take any real value. This is only the case in this section.

Let us consider a directed graph (a digraph) denoted by D = (V,A), where
V = {1, 2, . . . , n} is the set of vertices and A = {(i, j) : i, j ∈ V } is the set of
arcs between pairs of vertices. It is well-known that the shortest path problem,
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between a source s ∈ V and a target t ∈ V in a digraph D, can be formulated
by the following linear program.

min
∑

(i,j)∈A

CijXij

subject to:
∑

{j:(i,j)∈A}

Xij −
∑

{j:(j,i)∈A}

Xji =


1, if i = s,
0, for all i /∈ {s, t},
−1, if i = t.

0 6 Xij 6 1, for all (i, j) ∈ A,

(5.4)

where C ∈ Rn×n is the cost matrix that defines the cost of each arc (i.e, Cij is
the cost assigned to an arc (i, j)) and X ∈ {0, 1}n×n defines a path between s
and t (i.e, either Xij = 1 and (i, j) is in the path, or Xij = 0 and (i, j) is not
in the path).

The shortest path can be also formulated in a more general form, i.e., a
linear program of the form min{c>x : Ax = b} (Papadimitriou and Steiglitz
1982). Let us consider a graph G with m nodes and n arcs. Each arc is
denoted by ej, where cj is the cost of ej and xj is equal to 1 if ej belongs
to the path from s to t and 0 otherwise, with j ∈ J . This directed graph
is described by a node-arc incidence matrix A, where the rows and columns
correspond to the nodes and arcs, respectively (Sierksma 2001). It is defined,
for all i ∈ {1, 2, . . . ,m} and j ∈ J , as follows:

Aij =


1, if arc ej leaves node i,
−1, if arc ej enters node i,
0, otherwise.

(5.5)

In order to ensure that the path defined by x starts from s ∈ {1, 2, . . . ,m}
and ends to t ∈ {1, 2, . . . ,m}, the vector b is defined, for all i ∈ {1, 2, . . . ,m},
as follows:

bi =


1, if i = s,
−1, if i = t,
0, otherwise.

(5.6)

Consequently, the shortest path problem is formulated as follows:

min c>x
subject to: Ax = b

xj > 0, for all j ∈ J.
(5.7)

The dual of Problem 5.7 is the following linear program.

max
m∑
i=1

πibi

subject to:
m∑
i=1

Aijπi + λj = cj, for all j ∈ J

π ∈ Rm
λj > 0, for all j ∈ J.

(5.8)
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Due to the particular structure of A, this linear program can be reformu-
lated as follows:

max πs − πt
subject to: πk − πl + λj = cj, for all k, l ∈ {1, 2, . . . ,m} such that ej = (k, l)

π ∈ Rm
λj > 0, for all j ∈ J.

(5.9)

With this formulation, it is easier to see that the value of πi is equal to the
length of the shortest path from node i to node t, for all i ∈ {1, 2, . . . ,m}.

Let us consider the complementary slackness conditions for the primal-dual
pair composed of Problem 5.7 (the primal) and Problem 5.9 (the dual). Let x
and (π, λ) be the primal and dual feasible solutions, respectively. Then, x and
(π, λ) are both optimal if and only if for all j ∈ J either xj = 0, or λj = 0.

Let us consider two sets J0 = {j ∈ J : x0j = 0} and J1 = {j ∈ J : x0j = 1},
and F = {j ∈ J : 0 < x0j < 1}, where x0 is a given feasible solution to Problem
5.7. Based on these sets, the complementary slackness condition implies that
λj = 0, for all j ∈ J1.

The inverse of Problem 5.7 consists of finding a cost vector d ∈ Rn so
that x0 becomes an optimal solution. By considering the previous condition
in Problem 5.9, one obtains the inverse problem formulated by the following
program.

min
∑
j∈J

|dj − cj|

subject to:
m∑
i=1

aijπi = dj, for all j ∈ J1

m∑
i=1

aijπi + λj = dj, for all j ∈ J0

π ∈ Rm
λj > 0, for all j ∈ J0.

(5.10)

The distance function between vectors c and d has to be linearized in order
to transform Problem 5.10 into a linear program. Thus, the L1 norm is replaced
by the objective function

∑
j∈J(αj + βj) subject to dj − cj = αj − βj, αj > 0,

and βj > 0. Consequently, Problem 5.10 can be reformulated as the following
linear program.
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min
∑
j∈J

αj +
∑
j∈J

βj

subject to:
m∑
i=1

Aijπi − αj + βj = cj, for all j ∈ J1

m∑
i=1

Aijπi + λj − αj + βj = cj, for all j ∈ J0

π ∈ Rm
λj > 0, for all j ∈ J0

(5.11)

The constraints in Problem 5.11 can be restated as follows:{
−αj + βj = cπj , for all j ∈ J1,
−αj + βj = cπj − λj, for all j ∈ J0,

(5.12)

where cπj = cj −
∑m

i=1 aijπi, for all j ∈ J . Due to the particular structure of
this problem cπj = cj − πk + πl, where ej = (k, l). Based on the observation we
made on the value of πi from Problem 5.9, the value of cπj can be interpreted
as the detour caused by taking ej to reach t. For this reason, it is well-known
that cπj satisfies the following conditions for all j ∈ J :{

cπj = 0, if x∗j = 1,
cπj > 0, otherwise,

(5.13)

where x∗ is an optimal solution to Problem 5.7, i.e., a shortest path.

Let us consider each case. If cπj = 0 and j ∈ J0, then −αj + βj = −λj.
Therefore −αj + βj = 0 and dj = cj, because αj + βj is minimized. If cπj = 0
and j ∈ J1, then −αj + βj = 0. Therefore. dj = cj. If cπj > 0 and j ∈ J0, then
−αj + βj = cπj − λj. Therefore −αj + βj = 0 and dj = cj, because αj + βj is
minimized. If cπj > 0 and j ∈ J1, then −αj + βj = cπj . Therefore, βj = cπj and
cj = dj − cπj .

Based on these results, the optimal solution d∗ of Problem 5.10 is obtained
as follows:

d∗j =

{
cj = dj − cπj , if x0j = 1 and x∗j = 0,
cj = dj, otherwise,

(5.14)

Intuitively, this means that each time an edge ej causes a detour, the cor-
responding cost is reduced in order to remove this detour. This principle is
applied in the next chapter for solving the inverse knapsack problem.

Therefore, the inverse shortest path can be reduced to compute the shortest
path problem which can be solved in O(n + m logm) by using the Dijkstra’s
algorithm when all arc costs are non-negative. However, this procedure does
not ensure that the profits remain positive.



38 CHAPTER 5. INVERSE OPTIMIZATION

5.5 The inverse knapsack problem

The inverse {0, 1}-knapsack consists of finding a minimal adjustment of the
profit vector such that a given feasible set of items becomes an optimal solution.
The {0, 1}-knapsack problem is very interesting from a theoretical point of
view. It is the simplest non-trivial integer linear program with binary variables
(Pisinger 1995). This simple structure can lead to find properties that make
the problem easier to solve. This is also a very general problem, because any
integer program can be solved as a {0, 1}-knapsack problem (Pisinger 1995,
Mathews 1897). Moreover, it can appear as a subproblem of more general
combinatorial optimization problems. These reasons and our knowledge of this
problem have led us to consider this inverse problem as a good start before
extending inverse optimization to multi-objective combinatorial optimization.

Several approaches have been suggested for dealing with such problems,
where the adjustment is measured by the L1 norm. For example, the inverse
integer linear programming problem by Huang (2005), Schaefer (2009), Wang
(2009), the inverse {0,1}-knapsack problem by Huang (2005), and combina-
torial optimization problems by Yang and Zhang (1999). However, the said
approaches are either computationally expensive, or fail in the search of inverse
solutions. The methods used by Wang (2009) and Yang and Zhang (1999) are
based on the cutting plane algorithm and the column generation method. How-
ever, as explained in their respective papers, those methods only guarantee to
converge in a finite number of steps.

When considering the L∞ norm one could also apply cutting plane al-
gorithms or a column generation method but with the same drawback. A
procedure based on the Newton’s method has been considered by Zhang and
Liu (2002), however it requires to solve a particular problem belonging to the
NP-Hard complexity class.

The method proposed by Huang (2005) for the inverse knapsack problem
is based on the reduction from the knapsack problem to the shortest path
problem. However, as it will be explained in what follows, this approach is
incorrect. For this purpose, let us detail the reduction from the knapsack to
the shortest path.

A reduction from the {0,1}-knapsack problem to the
shortest path problem

It is well-known that the {0,1}-knapsack problem can be formulated as a short-
est path on a directed acyclic graph (Schrijver 1986). In order to simplify this
approach, we assume that W > 0, and cj, wj > 0 holds for all j ∈ J . This for-
mulation is based on the dynamic programming approach presented in Chapter
3. Let us recall that it considers a function gj(q) that is the maximum profit
achievable when considering the first j items and a capacity equal to q. The
recursive formula, that computes this function, can be implemented by a di-
rected graph D = (V,A). In this digraph, the set of all the vertices V is defined
as follows:
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V = (0, 1, . . . , n)× (0, 1, . . . ,W − 1,W ), (5.15)

where {0, 1, . . . ,W −1,W} contains all the possible value of feasible solution’s
weight. A vertex (j − 1, q) represents the solution when considering the j − 1
first items and a capacity of q. As detailed in dynamic programming, from this
state, there are two possibilities, i.e., either item j is packed in the solution,
or item j remains outside of the knapsack. These choices can be represented
by the set of arcs denoted by A.

A =
{

((j − 1, q), (j, q′)) : (q′ − q ∈ {0, wj}) ∧ j ∈ {1, 2, . . . , n}
}
, (5.16)

where an arc ((j − 1, q), (j, q + wj)) represents the decision of including item
j in the knapsack and an arc ((j − 1, q), (j, q)) represents the decision of not
including it. This graph is usually represented by using (n + 1) layers, where
each vertex (j, q) is in the j-th layer, for all j = 0, . . . , n and q ∈ {0, 1, . . . ,W}
(See Figure 5.1). In this configuration, each arc connects two vertices from
two adjacent layers, because if there is an arc between (j, q) and (k, q′), then
j = (k − 1).

Finally, the profit of including an item j to the knapsack is provided by the
arc length l : A→ N.

l((j − 1, q), (j, q′)) =

{
cj, if q′ − q = wj,
0, otherwise.

(5.17)

Each arc is the link between a solution of weight q using the (j−1) first items
to a solution of weight q′ using the j first items. These pairs of solutions can
be linked if their respective weights allows this consistently with the dynamic
programming recursive formula. Therefore, it is easy to see that any directed
path P from (0, 0) to (n, q) for some q 6 W yields to a feasible solution x
defined as follows.

xj =

{
0, if ∃q ∈ N : ((j − 1, q), (j, q)) ∈ P,
1, if ∃q ∈ N : ((j − 1, q), (j, q + wj)) ∈ P.

(5.18)

Consequently, the optimal solution is the longest path between (0, 0) and
(n, q), with q 6 W . In order to find the optimal solution, a second graph
denoted by D′ = (V ′, A′) is built as follows.

V ′ = V ∪ {t},
A′ = A ∪

{
((n, q), t) : q ∈ {0, 1, . . . ,W − 1,W}

}
,

l((n, q), t)) = 0 for all q ∈ {0, . . . ,W − 1,W}.
(5.19)

It is easy to see that finding the optimal solution is equivalent to finding
the longest path from the source (0, 0) to the target vertex t in D′ = (V ′, A′).
As there is no cycle in this graph, the longest path can be found by using
traditional shortest path algorithms with a length function l′ such that l′(a) =
−l(a), for all a ∈ A′
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Figure 5.1: Network model of the knapsack problem from equation 5.20

Let us consider the following knapsack problem as an illustrative example:

max f(x) = 8x1 + 9x2 + 3x3 + 7x4 + 6x5
subject to: 3x1 + 2x2 + 2x3 + 4x4 + 3x5 6 9

xi ∈ {0, 1}, i = 1, . . . , 5,
(5.20)

where the cost vector c is (8, 9, 3, 7, 6). This leads to build the network model
presented in Figure 5.1.

An incorrect approach for solving the inverse
{0,1}-knapsack problem

Based on this reduction, Huang (2005) concluded that the inverse {0,1}-
knapsack can be reduced to solve the inverse shortest path on the knapsack’s
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network model. However, this conclusion is not valid, because the network
associated with the knapsack problem is a very particular one and therefore
any modification on the weights should be applied with caution. For example,
in Figure 5.1 if the length of ((2, 0), (3, 2)) is modified, this actually means that
the third item’s profit is modified. Therefore, the length of many arcs such as
((2, 1), (3, 3)) and ((2, 2), (3, 4)) must also be modified in such a way that the
network remains correct. In other words, the inverse {0,1}-knapsack problem
can be solved as the inverse shortest path problem, but only with additional
constraints, which was not the case in the work by Huang (2005).

Due to the lack of an ad hoc approach for solving the inverse knapsack
problem, the next chapter is dedicated to the study of this problem. Several
methods are proposed and a complexity analysis is presented.





Chapter 6

The inverse {0,1}-knapsack
problem

The inverse {0,1}-knapsack problem consists of finding a minimal ad-
justment of the profit vector such that a given feasible set of items
becomes an optimal solution. In this chapter, two models are consid-
ered. In the first, the adjustment is measured by the Chebyshev norm. A
pseudo-polynomial time algorithm is proposed to solve it. In the second,
the adjustment is based on the Manhattan norm. This model is reduced
to solve a linear integer program. While the first problem is proved to
be co-NP-Complete, the second is co-NP-Hard and strong arguments
are against its co-NP-Completeness. For both models, a bilevel linear
integer programming formulation is also presented. Numerical results
from computational experiments to assessing the feasibility of these ap-
proaches are reported.

6.1 Introduction

In this chapter, the inverse {0, 1}-knapsack problem is studied. The adjustment
is first measured under the L∞ norm. The problem is theoretically studied
and a proof of its co-NP-Completeness is provided. Combinatorial arguments
are used to present a pseudo-polynomial time algorithm. The inverse {0, 1}-
knapsack problem under the L1 norm is then considered. The problem is the-
oretically studied and a proof of its co-NP-Hardness is also provided. Next,
as elegantly proposed by Ahuja and Orlin (2001), optimality conditions are
used to formulate this problem as an integer linear program. Such conditions
are described in the dynamic programming algorithm for the {0, 1}-knapsack
problem. This implies that, if the profit vector is integer-valued, the inverse
problem is reduced to solve an integer linear program. Otherwise, the inverse
problem is solved by the linear relaxation of the integer linear program, which
can be solved with a pseudo-polynomial time algorithm. Unlike the algorithm

43
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proposed by Huang (2005), our method can be used to solve all problem in-
stances. Furthermore, comparing to the approach proposed by Schaefer (2009),
this formulation can significantly reduce the number of variables.

This chapter also proposes a bilevel integer linear programming formulation
for solving the inverse {0, 1}-knapsack problem. This implies that branch-and-
bound (Moore and Bard 1990) and branch-and-cut (DeNegre and Ralphs 2009)
algorithms can be used to solve it.

The methods proposed in this chapter have been implemented and compu-
tational experiments were made on a large set of randomly generated instances.
The purpose of the experiments is to determine how the performance of the
algorithms changes with different inputs in order to assess their practical ap-
plicability.

This chapter is organized as follows: in Section 6.2, a pseudo-polynomial
time algorithm is presented to solve the inverse {0, 1}-knapsack problem under
the L∞ distance. In Section 6.3, an integer linear program for solving the
inverse problem is stated in the context of the L1 distance. In Section 6.4,
a bilevel programming approach is developed. In Section 6.5, computational
experiments with knapsack problems under the L∞ and the L1 norms are
presented.

6.2 The Inverse {0, 1}-Knapsack Problem

under L∞

This section deals with the problem and some theoretical results, which lead to
proposing an algorithm for solving the inverse {0, 1}-knapsack problem under
the L∞ distance.

Problem Definition

Let (X, c) denote an instance of the {0, 1}-knapsack problem and x0 ∈ X a
feasible solution. The L∞ inverse {0, 1}-knapsack problem (IKP-∞) can be
stated as follows:

d∗ ∈ arg min maxj∈J{|cj − dj|}
subject to: d>x∗ = d>x0

x∗ ∈ arg max{d>x : x ∈ X}
d ∈ Nn

(IKP-∞)

IKP-∞ is a bilevel optimization problem which determines a profit vector
d∗ ∈ Nn, which minimizes the L∞ distance with respect to c and such that x0

is an optimal solution of the modified knapsack problem (X, d∗).

Theoretical Results

We start by analyzing the nature of some optimal solutions of IKP-∞. Based
on a partition of J defined by J0 = {j ∈ J : x0j = 0} and J1 = {j ∈ J : x0j =
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1}, the first theorem establishes that an optimal solution d∗ can be built by
increasing cj, for all j ∈ J1 and by decreasing cj, for all j ∈ J0.

Theorem 1. There exists an optimal solution d∗ ∈ Nn of IKP-∞ where ∀j ∈
J1 : d∗j > cj and ∀j ∈ J0 : d∗j 6 cj.

Proof. Let d ∈ Nn denote any optimal solution of IKP-∞, J0> = {j ∈ J0 :
dj > cj}, J1< = {j ∈ J1 : dj < cj}. Consider a solution d∗ of IKP-∞ defined
as follows, for all j ∈ J :

d∗j =


cj, if j ∈ {J1< ∪ J0>},

dj, otherwise.
(6.1)

The constraints set of IKP-∞ implies that d>x0 > d>x for all feasible solutions
x ∈ X. Let us show that for all x ∈ X, if d>x0 > d>x, then d∗>x0 > d∗>x.
This is equivalent to show that the following condition holds: if d>(x0−x) > 0,
then d∗>(x0− x) > 0. The profit vector d∗ is introduced in the first inequality
as follows, (d − d∗ + d∗)>(x0 − x) > 0, which leads to write: d∗>(x0 − x) >
(d∗−d)>(x0−x). From Equation 6.1 and the definition of J1, one may deduce
that, for all j ∈ J1, (x0 − x)j > 0 and (d∗j − dj) > 0. Similarly, for all j ∈ J0,
(x0 − x)j 6 0 and (d∗j − dj) 6 0. Therefore, (d∗ − d)>(x0 − x) > 0, and
consequently d∗>(x0 − x) > 0. Therefore, d∗ is an optimal solution of IKP-∞,
and the theorem is proved.

Let us define a vector dk ∈ Nn of distance at most k from vector c with respect
to the L∞ norm.

Definition 25 (Vector dk). Given k ∈ N, define for all j ∈ J ,

dkj =


max{0, cj − k}, if x0j = 0,

cj + k, if x0j = 1.

The following theorem provides an optimality condition for dk based on the
value of k.

Theorem 2. If d∗ denotes an optimal solution of IKP-∞, with k = maxj∈J{|cj−
d∗j |}, then dk is also an optimal solution of IKP-∞.

Proof. Let d∗ denote an optimal solution of IKP-∞ such that maxj∈J{|cj −
d∗j |} = k, and J<k = {j ∈ J : (|cj − d∗j | < k)∧ (d∗j 6= 0)}. Based on Theorem 1,
it can be assumed that ∀j ∈ J1 : d∗j > cj and ∀j ∈ J0 : d∗j 6 cj. Therefore, if
|J<k| = 0, then d∗ = dk. Let us assume that |J<k| > 1. Let J1,<k = J1 ∩ J<k
and J0,<k = J0 ∩ J<k. It is easy to see that the value of d∗j can be increased
for all j ∈ J1,<k and decreased for all j ∈ J0,<k without altering the optimality
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of x0. Let us detail this result. By hypothesis, d∗>x0 > d∗>x, for all x ∈ X.
This can be written as follows:∑

j∈J\J<k

d∗jx
0
j +

∑
j∈J1,<k

d∗jx
0
j >

∑
j∈J\J<k

d∗jxj +
∑

j∈J1,<k

d∗jxj +
∑

j∈J0,<k

d∗jxj

Based on the definition of dk,∑
j∈J\J<k

dkjx
0
j +

∑
j∈J1,<k

dkjx
0
j >

∑
j∈J\J<k

dkjxj +
∑

j∈J1,<k

dkjxj +
∑

j∈J0,<k

d∗jxj.

Since
∑

j∈J0,<k d∗jxj >
∑

j∈J0,<k dkjxj, one obtains:∑
j∈J\J<k

dkjx
0
j +

∑
j∈J1,<k

dkjx
0
j >

∑
j∈J\J<k

dkjxj +
∑

j∈J1,<k

dkjxj +
∑

j∈J0,<k

dkjxj

Therefore, for all x ∈ X: ∑
j∈J

dkjx
0
j >

∑
j∈J

dkjxj

Consequently dk is an optimal solution of IKP-∞ and the theorem is proved.

As a corollary of the theorem, an optimal solution of IKP-∞ can be built
on the basis of the distance between vectors c and d∗. Therefore, IKP-∞ can
be reduced to finding the L∞ distance between d∗ and c, which is easy to
compute since it is given by the minimal value of k where x0 is an optimal
solution with respect to dk. In order to reduce the search domain, an upper
bound on the distance is provided in the following lemma.

Lemma 1. Let D∞ ∈ N denote the optimal solution value of IKP-∞. Then,
D∞ 6 C = maxj∈J0{cj}

Proof. It is always possible to build a vector d ∈ Nn with maxj∈J{|cj − dj|} =
maxj∈J0{cj} such that d>x0 = max{d>x : x ∈ X}. The vector is defined as
follows, ∀j ∈ J1 : dj = cj and ∀j ∈ J0 : dj = 0. It is easy to see that for all
x ∈ X, one obtains d>x0 > d>x and maxj∈J{|cj − dj|} = maxj∈J0{cj}. This
concludes the proof.

Naturally, the value of k can be increased without altering the optimality
of x0 with respect to vector dk. This is expressed in Theorem 3.

Theorem 3. If dk satisfies dk>x0 = max{dk>x : x ∈ X}, then for all k′ ∈ N,
with k′ > k, one obtains dk

′>x0 = max{dk′>x : x ∈ X}.

Proof. Similarly to the proof of Theorem 2, it is easy to see that the value of
dkj can be increased for all j ∈ J1 and decreased for all j ∈ J0 without altering

the optimality of x0. Consequently dk
′

is a feasible solution of IKP-∞ and the
theorem is proved.
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Complexity Results

As with many combinatorial optimization problems, an important issue is to
analyze the complexity of the IKP-∞ problem. We shall start by defining the
corresponding decision problem.

The Inverse {0, 1}-Knapsack Decision Problem under L∞ (IKDP-∞)
INSTANCE: An instance (X, c) of KP, a feasible solution x0 ∈ X and a
k ∈ N0.
QUESTION: Is there a vector d ∈ Nn such that maxj∈J{|cj − dj|} 6 k,
d>x∗ = d>x0 and x∗ ∈ arg max{d>x : x ∈ X}?

IKP-∞ can be solved by using a binary search for the optimal solution value
through a certain number of calls to IKDP-∞. Sketch of the algorithm. Based
on Lemma 1, it is known that the optimal solution value must be between
a ← 0 and b ← C. Call IKDP-∞ with k ← b(a + b)/2c. If the answer is
“Yes”, set b ← k; otherwise, set a ← k + 1, and repeat the process. When
a = b, the optimal solution value is obtained. The number of calls to IKDP-
∞ is bounded from above by log2C, which is polynomial in input length.
Furthermore, based on Theorem 2, it is also known that the optimal solution
of IKP-∞ can be computed in polynomial time based on the optimal solution
value of IKDP-∞. Therefore, if IKDP-∞ can be solved in polynomial time,
then IKP-∞ can also be solved in polynomial time.

It is easy to verify that if IKDP-∞ can be solved in polynomial time, then
IKP-∞ can also be solved in polynomial time by applying a binary search.

Theorem 4. IKDP-∞ is co-NP-Complete.

Proof. To prove the Theorem, let us introduce the decision problem IKDP-∞.

IKDP-∞
INSTANCE: An instance (X, c) of KP, a feasible solution x0 ∈ X and a
k ∈ N.
QUESTION: Is there a feasible solution x ∈ X such that dk>x > dk>x0?

Let us prove the NP-Completeness of this decision problem. It is easy to see
that IKDP-∞ belongs to NP, since a nondeterministic Turing machine has
only to guess a subset of J represented by an incidence vector x and check in
polynomial time that x ∈ X and dk>x > dk>x0.

Consider the {0,1}-Knapsack decision problem stated as follows:

The {0,1}-Knapsack Decision Problem (KDP)
INSTANCE: An instance (X, c) of KP and a t ∈ N.
QUESTION: Is there an x ∈ X with c>x > t?

The NP-Hardness of IKDP-∞ is provided by a polynomial time reduction
from KDP to IKDP-∞. An instance of KDP is transformed into an instance of
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IKDP-∞ by adding an item to the set J , with cn+1 = t−1, wn+1 = W , x0j = 0,
for j = 1, . . . , n, x0n+1 = 1, and k = 0. It is easy to see that the reduction is
polynomial. The correctness of this reduction is proved in what follows. For
any given “Yes” instance of KDP, there exists an x ∈ X such that c>x > t.
Therefore, in the corresponding instance of IKDP-∞, there exists an x ∈ X
such that dk>x > dk>x0. For any given “No” instance of KDP, c>x < t for
all x ∈ X. Therefore, in the corresponding instance of IKDP-∞, there is no
x ∈ X such that dk>x > dk>x0. This proves the reduction. Thus, IKDP-∞ is
NP-Complete.

Next, let us prove that IKDP-∞ is the complement of IKDP-∞. Any “Yes”
instance of IKDP-∞ is a “No” instance of IKDP-∞. This is deduced from The-
orems 2 and 3. By the definition of dk, any “No” instance of IKDP-∞ is a “Yes”
instance of IKDP-∞. The complement of an NP-Complete problem is co-
NP-Complete (see, for example, Garey and Johnson (1979)). Consequently,
IKDP-∞ is a co-NP-Complete problem and the theorem is proved.

A pseudo-polynomial time algorithm is provided in what follows, which
implies that IKP-∞ is fortunately a weakly co-NP-Complete problem.

A Pseudo-polynomial Time Algorithm

A pseudo-polynomial time algorithm for computing an optimal solution of IKP-
∞ is proposed in this section.Thanks to Lemma 1, it is known that the distance
between vectors d∗ and c is bound from above by C = maxj∈J{(1 − x0j)cj}.
The algorithm consists of finding the minimal value k ∈ {0, 1, . . . , C}, so that
x0 is an optimal solution of the knapsack problem (X, dk).

Sketch of the algorithm. Start with k ← 0. Compute a profit vector dk.
If the knapsack problem with dk provides an optimal solution x∗ such that
dk>x∗ = dk>x0, then stop. Set d∗ ← dk. Otherwise, repeat the previous step
with k ← k + 1. The correctness of this algorithm relies directly from Lemma
1 and Theorem 2.

The following pseudo-polynomial time algorithm (see Algorithm 6 for the
pseudo-code) can be established with this procedure. It makes use of a solver
denoted by KP (X, c), which gives the optimal solution value of the knapsack
problem (X, c).

Algorithm (6) runs in O(nWC). Let us detail how this complexity is deter-
mined. The first loop (line 3) runs at most C times. The loop has two parts:
a second loop (line 4) and a call to the knapsack solver KP (line 11). The
second loop runs in O(n) and the call to the knapsack solver runs in O(nW )
by using a dynamic programming approach (see, for example, Kellerer et al.
(1994)). Therefore, these two parts run in O(nW ) and the whole algorithm
runs in O(nWC). Due to the call to the knapsack solver and C (that can be
exponential in input size), we have a pseudo-polynomial time algorithm.

The running time complexity of this approach can be reduced toO(nW logC)
by using a binary search, because as stated in Theorem 3, the value of k can
be increased without altering the optimality of x0 with respect to vector dk.
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Algorithm 6 Compute an optimal solution d∗ of IKP-∞.

1: C ← maxj∈J{(1− x0j)cj};
2: OPT← KP (X, c);
3: for all (k = 1 to C) and (OPT > dk>x0) do
4: for all (j = 1 to n) do
5: if (x0j = 0) then
6: dkj ← max{0, cj − k};
7: else if (x0j = 1) then
8: dkj ← cj + k;
9: end if

10: end for
11: OPT← KP (X, dk);
12: end for
13: d∗ ← dk;

Sketch of the algorithm. Based on Lemma 1, it is known that the optimal
solution must be between a ← 0 and b ← C. Build a vector d as stated
in Theorem 2 by using the distance k ← a + b(b − a)/2c. If x0 is an optimal
solution for the resulting vector, set b← k; otherwise, set a← k+1 and repeat
the process. When a = b, the optimal solution is obtained. See Algorithm 7
for a pseudo-code of this procedure.

Algorithm 7 Compute an optimal solution d∗ of IKP-∞.
1: a← 0;
2: b← C;
3: while a 6= b do
4: k ← a+ b(b− a)/2c;
5: for all (j = 1 to n) do
6: if (x0j = 0) then
7: dkj ← max{0, cj − k};
8: else if (x0j = 1) then
9: dkj ← cj + k;

10: end if
11: end for
12: OPT← KP (X, dk);
13: if OPT = dk>x0 then
14: b← k;
15: else
16: a← k + 1;
17: end if
18: end while
19: d∗ ← da;

Algorithm (7) runs in O(nW logC). Let us detail how this complexity
is determined. The first loop (line 3) runs at most logC times. The loop
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has two parts: a second loop (line 5) and a call to the knapsack solver KP
(line 11). The second loop runs in O(n) and the call to the knapsack solver
runs in O(nW ) by using a dynamic programming approach (see, for example,
Kellerer et al. (1994)). Therefore, these two parts run in O(nW ) and the whole
algorithm runs in O(nW logC). Due to the call to the knapsack solver and
C (that can be exponential in input size), we have a pseudo-polynomial time
algorithm.

6.3 The Inverse {0, 1}-Knapsack Problem

under L1

This section deals with the problem and several theoretical results, which lead
to designing an integer linear programming model for solving the inverse {0, 1}-
knapsack problem under the L1 distance. To our best knowledge, this is the
first formulation that solves all the problem instances with a pseudo-polynomial
number of variables and constraints. Indeed, the integer linear programming
formulation of Schaefer (2009) suggested to solve inverse integer programming
problems is defined by an exponential number of constraints.

Problem Definition

Let x0 ∈ X denote a feasible solution. The L1 inverse {0, 1}-knapsack problem
(IKP-1) can be stated as follows:

min
∑

j∈J |cj − dj|
subject to: d>x∗ = d>x0

x∗ ∈ arg max{d>x : x ∈ X}
d ∈ Nn

(IKP-1)

IKP-1 is a bilevel optimization problem that determines a profit vector d∗ ∈ Nn,
which minimizes the L1 distance with respect to c such that x0 is an optimal
solution of the modified knapsack problem (X, d∗).

Some Theoretical Results

We shall start by introducing a lower bound on the L1 distance between vectors
c and d∗ inspired by the upper bound proposed by Ahuja and Orlin (2002) for
the shortest path problem.

Lemma 2. Let d∗ denote an optimal profit vector for IKP-1, x0 an optimal
solution for (X, d∗) and x′ ∈ X. Then, a lower bound on the optimal solution
value of IKP-1 is given by

|d∗ − c|1 =
∑
j∈J

|d∗j − cj| > (c>x′ − c>x0)
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Proof.

|d∗ − c|1 > (d∗> − c>)(x0 − x′)
= d∗>x0 − d∗>x′ − c>x0 + c>x′

= (d∗>x0 − d∗>x′) + (c>x′ − c>x0)
> (c>x′ − c>x0),

where the first inequality holds because both x0 and x′ are 0-1 vectors and the
second inequality results from d∗>x0 > d∗>x′. This concludes the proof.

This lower bound cannot be reached for all the inverse L1 knapsack in-
stances. Let us illustrate this point with two examples. Consider the following
knapsack instance:

max f(x) = 4x1 + 5x2 + 6x3
subject to: x1 + x2 + x3 6 1

x1, x2, x3 ∈ {0, 1},

where x∗ = (0, 0, 1) is an optimal solution. If the feasible solution x0 = (1, 0, 0)
is chosen, then (c>x∗−c>x0) = 2 is obtained. It is easy to see that d∗ = (6, 5, 6)
with |d∗ − c|1 = 2 = (c>x∗ − c>x0).

On the other hand, the following counter example shows this negative re-
sult:

max f(x) = x1 + x2 + x3
subject to: x1 + x2 + x3 6 1

x1, x2, x3 ∈ {0, 1}

If x0 = (0, 0, 0) is considered, then (c>x∗ − c>x0) = 1 is obtained. However,
it is easy to see that the optimal solution of the IKP-1 must be d∗ = (0, 0, 0)
with |d∗ − c|1 = 3. Consequently, the lower bound cannot be reached for all
instances.

This leads us to the following lemma, which provides an upper bound on
the optimal solution value of IKP-1.

Lemma 3. Let D1 ∈ N denote the optimal solution value of IKP-1. Then,
D1 6

∑
j∈J{(1− x0j)cj}.

Proof. Proved by using the same arguments as in Lemma 1.

Complexity Results

Let us analyze the complexity of IKP-1. We shall start by defining the corre-
sponding decision problem.

The Inverse {0, 1}-Knapsack Decision Problem under L1 (IKDP-1)
INSTANCE: An instance of the {0, 1}-knapsack problem (X, c), a feasible
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solution x0 ∈ X and a k ∈ N0.
QUESTION: Is there a vector d ∈ Nn so that,

∑
j∈J |cj − dj| 6 k, d>x∗ =

d>x0 and x∗ ∈ arg max{d>x : x ∈ X} ?

It is easy to verify that if IKDP-1 can be solved in polynomial time, then
IKP-1 can also be solved in polynomial time by applying a binary search.

Theorem 5. IKDP-1 is co-NP-Hard

Proof. Consider the complement of the {0,1}-Knapsack decision problem de-
noted by KDP that is stated below.

INSTANCE: An instance of the {0, 1}-knapsack problem (X, c) and a t ∈ N0.
QUESTION: Is the condition

∑
j∈J xjcj < t fulfilled for all x ∈ X ?

It is easy to see that KDP is the complement of KDP. Thus, by the NP-
Completeness of KDP, one obtains that KDP is co-NP-Complete. The co-
NP-Hardness of IKDP-1 is provided by a polynomial time reduction from
KDP to IKDP-1. An instance of KDP is transformed into an instance of
IKDP-1 by adding an item to the set J , with cn+1 = t − 1, wn+1 = W ,
x0j = 0 for j = 1, . . . , n, x0n+1 = 1, and k = 0. The correctness of this

reduction is as follows. For any given “Yes” instance of KDP, for all x ∈ X
one obtains

∑
j∈J xjcj < t. Therefore, in the corresponding IKDP-1 instance

the conditions d>x∗ = d>x0 and x∗ ∈ arg max{d>x : x ∈ X} are satisfied. For
any “No” instance of KDP, there exists an x ∈ X such that

∑
j∈J xjcj > t.

Therefore, in the corresponding IKDP-1 instance the conditions d>x∗ = d>x0

and x∗ ∈ arg max{d>x : x ∈ X} are not satisfied because d>x0 = t− 1 and by
hypothesis, there exists an x ∈ X such that d>x = t. Consequently, IKDP-1
is co-NP-Hard and the theorem is proved.

However, IKDP-1 has not been proved to belong to co-NP because the
knapsack problem is required for building a certificate for the “No” instances.
Indeed, IKDP-1 can be solved by an oracle Turing machine NPKDP as proven
below.

Theorem 6. IKDP-1 belongs to NPKDP

Proof. A nondeterministic polynomial time oracle Turing machine with KDP
oracle can check whether d ∈ Nn satisfies the conditions

∑
j∈J |cj − dj| ≤ k,

d>x∗ = d>x0, and x∗ ∈ arg max{d>x : x ∈ X}. The nondeterministic machine
guesses vector d. Then, the first condition is checked in polynomial time and
the two last are checked by using the KDP oracle.

From this complexity analysis, one can conclude that the problem should
be harder to solve than IKP-∞ and that there is less hope of finding a pseudo-
polynomial time algorithm to solve it. This is why the use of integer linear
programing and bilevel integer linear programing models are investigated in
the remaining of this chapter.



6.3. THE INVERSE {0, 1}-KNAPSACK PROBLEM UNDER L1 53

An Integer Linear Programming Formulation

An integer linear program for computing d∗ is proposed here. Let us recall
the classical dynamic programming approach for a given instance (X, d) of
the {0,1}-Knapsack problem. Let gi(q) denote the maximum profit achiev-
able when considering the first i items of J , with i ∈ J and a capacity
q ∈ {0, 1, . . . ,W}. The value of gi(q) can be determined through the following
linear {0, 1} model.

gi(q) = max
∑i

j=1 djxj
subject to:

∑i
j=1wjxj 6 q

xj ∈ {0, 1}, j ∈ {1, . . . , i}

Note that the original knapsack problem is to find gn(W ). It is widely
known that the following recursive formula solves the knapsack problem (see
for example Kellerer et al. 1994).

gi(q) =


gi−1(q), if q < wi,

max
{
gi−1(q − wi) + di, gi−1(q)

}
, if q > wi.

with g1(q)← 0 for q = 0, 1, . . . , w1−1 and g1(q)← d1 for q = w1, w1+1, . . . ,W .
This approach can be modeled as an integer linear program. Consider the
following set of constraints denoted by (6.2).

g1(q) > 0, for all q = 0, 1, . . . , w1 − 1,
g1(q) = d1, for all q = w1, w1 + 1, . . . ,W,
gi(q) = gi−1(q), for all q = 0, 1, . . . , wi − 1, and i ∈ {j ∈ J : j > 2},
gi(q) > gi−1(q), for all q = wi, 1, . . . ,W, and i ∈ {j ∈ J : j > 2},
gi(q) > gi−1(q − wi) + di, for all q = wi, wi + 1, . . . ,W, and i ∈ {j ∈ J : j > 2}.

(6.2)
By minimizing gn(W ) over this set of constraints, it is easy to see that one

obtains the optimal value of the knapsack problem. Consider the following
integer linear programming model (Problem 6.3).

min
∑

j∈J δj
subject to: δj > dj − cj, j ∈ J

δj > cj − dj, j ∈ J∑
j∈J djx

0
j > gn(W )

The set of constraints (6.2) on gn(W )
d ∈ Nn
δj ∈ N, j ∈ J

(6.3)

Similar to the dynamic programming algorithm for the knapsack problem, this
integer program can be built with an algorithm that runs in O(nW ).

The following theorem establishes the exactness of this formulation for
solving IKP-1.
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Theorem 7. Problem 6.3 determines a vector d∗ ∈ Nn with d∗>x0 = max{d∗>x :
x ∈ X} and such that there is no d′ ∈ Nn with

∑
j∈J |cj − d′j| <

∑
j∈J |cj − d∗j |

and d′x0 = max{d′x : x ∈ X}.

Proof. The feasible solution x0 is optimal for all vectors d ∈ Nn satisfying the
set of constraints described in Problem 6.3. Indeed, gn(W ) > max{d>x : x ∈
X} and the set of constraints implies d>x0 > gn(W ). Furthermore, all vectors
leading to the optimality of x0 satisfy the set of constraints. Indeed, for all
vectors d ∈ Nn with d>x0 = max{d>x : x ∈ X}, one can build a gn(W ) ∈ N
such that

∑
j∈J djx

0
j = gn(W ). This results from the definition of gn(W ). This

concludes the proof.

If the integrality constraint on vector d is removed, Problem 6.3 becomes a
linear programming model. Then, Problem 6.3 can be solved through a pseudo-
polynomial time algorithm. Indeed, it is known that Karmarkar’s algorithm
for solving linear programming runs in O(n3,5L), where n denotes the number
of variables and L the number of bits in the input (Karmarkar 1984). Problem
6.3 is composed of O(nW ) variables. Therefore, one can build an algorithm

for computing d∗ ∈ Rn that runs in O
(

(nW )3,5log(nW )
)

. Of course, this is

a theoretical result and Karmarkar’s algorithm should be replaced in practice
by the simplex algorithm.

6.4 A Bilevel Programming Approach

Since the inverse {0, 1}-knapsack can be defined as a bilevel problem, a natu-
ral approach for solving this problem is to consider bilevel programming tech-
niques. This section presents how these techniques can be applied to the
inverse {0, 1}-knapsack under the L∞ norm. However, it is easy to extend this
approach to the L1 norm.

Linearization of the Inverse {0, 1}-Knapsack Problem

This section deals with the linearization of the bilevel problem IKP-∞. We
shall start by introducing a variable δ ∈ R to remove the maximization oper-
ator. The problem can be stated as follows:

min δ
subject to: δ > cj − dj, j ∈ J

δ > dj − cj, j ∈ J
d>x∗ = d>x0

x∗ ∈ arg max{d>x : x ∈ X}
d ∈ Nn
δ ∈ R

The non-linear vector product d>x∗ can be replaced by a sum of n real-
valued variables. Create n new variables ej ∈ R+ with j ∈ J that are equal
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either to zero or bounded from above by dj. This is expressed by the two
following constraints for each variable ej with j ∈ J .

ej 6 dj,

ej 6 xjM.

where M = 2 maxj∈J{cj} is the upper bound on the the value of d∗j , with
j ∈ J . This upper bound is directly deduced from Lemma 1.

Finally, replace d>x with
∑

j∈J ej. The resulting bilevel integer linear pro-
gramming version of the inverse {0, 1}-knapsack problem under the L∞ norm
can be stated as follows:

min δ
subject to: δ > dj − cj, j ∈ J

δ > cj − dj, j ∈ J∑
j∈J e

∗
j = d>x0

d ∈ Nn
δ ∈ R
e∗ ∈ arg max

∑
j∈J ej

subject to: ej 6 dj, j ∈ J
ej 6 xjM, j ∈ J
e ∈ Rn+
x ∈ X

(6.4)

Now, let us prove the correctness of this formulation. Consider the two fol-
lowing lemmas establishing the optimality of e∗, that is

∑
j∈J e

∗
j = max{d>x :

x ∈ X}.

Lemma 4. If e ∈ Rn+ and x ∈ X denote a feasible solution of the lower-level
problem of the bilevel optimization problem (6.4), then

∑
j∈J ej 6

∑
j∈J xjdj.

Proof. The two following relations between e ∈ Rn+ and x ∈ X are directly
deduced from the set of constraints of the lower-level problem.

(ej > 0)⇒ (xj = 1),

(ej = 0)⇒ (xj = 1) ∨ (xj = 0).

Due to the set of constraints of the lower-level problem, one obtains ej 6 dj.
Therefore, ej 6 xjdj for all j ∈ J , which implies

∑
j∈J ej 6

∑
j∈J xjdj. This

concludes the proof.

Lemma 5. For all feasible solutions x ∈ X, there exists a vector e ∈ Rn+ satis-
fying the set of constraints of the lower-level problem of the bilevel optimization
problem (6.4) and such that

∑
j∈J ej =

∑
j∈J xjdj.
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Proof. Define the vector e ∈ Rn+ as follows. For all j ∈ J :
ej = dj, if xj = 1,

ej = 0, otherwise.

this implies that
∑

j∈J ej =
∑

j∈J xjdj. Furthermore, it is easy to see that
vector e satisfies the set of constraints. This concludes the proof.

Theorem 8. Let e∗ ∈ Rn+ denote an optimal solution of the lower level problem
of the bilevel optimization problem (6.4). Then,

∑
j∈J e

∗
j = max{d>x : x ∈ X}.

Proof. This results directly from Lemmas 4 and 5.

Analysis of the Bilevel Integer Linear Programming
Problem

Consider the use of bilevel integer linear programming for solving IKP-∞. The
existing methods for solving bilevel integer linear programming problems do
not allow to have constraints on variables ej in the upper level problem (Moore
and Bard 1990, DeNegre and Ralphs 2009). However, this can be easily tackled
by inserting the constraint

∑
j∈J ej = d>x0 into the objective function. With

L = C + 1, the following equivalent problem is obtained.

min δ +
(∑

j∈J ej − d>x0
)
L

subject to: δ > dj − cj, j ∈ J
δ > cj − dj, j ∈ J
d ∈ Nn
δ ∈ R
e ∈ arg max

∑
j∈J ej

subject to: ej 6 dj, j ∈ J
ej 6 xjM, j ∈ J
e ∈ Rn+
x ∈ X

(6.5)

Based on Lemma 1, it is known that δ 6 C. Therefore, a solution of
Problem (6.5) with d>x0 <

∑
j∈J ej is not an optimum, because in this case,

δ +
(∑

j∈J ej − d>x0
)
L > L > C.

This integer bilevel linear programming problem can be solved by a branch-
and-cut algorithm (DeNegre and Ralphs 2009) or by a branch-and-bound al-
gorithm (Moore and Bard 1990).

6.5 Computational Experiments

The purpose of this section is to report the behavior of Algorithm 7 and the
integer programming model of Problem 6.3 on several sets of randomly gen-
erated instances. This helps to measure the practical application in terms of
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performance of the approaches proposed in this paper. The design of the ex-
periments is inspired by the frameworks used in Martello and Toth (1990) and
in Pisinger (1995). Experiments on the bilevel model are not included due to
the poor performance of the existing procedures (DeNegre and Ralphs 2009,
Moore and Bard 1990).

Design of the Experiments

For a better understanding of how the methods behave, several groups of
randomly generated instances of the {0,1}-knapsack problem were considered.
For a given number of variables n and data range R, instances were randomly
generated in three different ways:

• Uncorrelated instances where cj and wj are randomly distributed in
[1, R];

• Weakly correlated instances where wj is randomly distributed in
[1, R] and cj is randomly distributed in [wj−R/10, wj +R/10] such that
cj > 1;

• Strongly correlated instances where wj is randomly distributed in
[1, R] and cj = wj + 10.

The reader should refer to Kellerer et al. (1994) for more detailed information
on the instances.
For each class of instance, three types of groups were constructed:

• Type 1 where each instance i ∈ {1, . . . , S} is generated with the seed
number i and W is computed as the maximum between R and bi/(S +
1)
∑

j∈J wjc;

• Type 2 where each instance i ∈ {1, . . . , S} is generated with the seed
number i andW is computed as the maximum betweenR and bP

∑
j∈J wjc,

where P ∈ [0, 1];

• Type 3 where each instance i ∈ {1, . . . , S} is generated with the seed
number i · 10 and W is computed as the maximum between R and
bP
∑

j∈J wjc, where P ∈ [0, 1].

In the three cases, each instance is completed by a feasible solution x0

defined through the traditional greedy heuristic algorithm (see Kellerer et al.
1994). This provides a feasible solution that is sufficiently close to the optimal
one. Two random generators were used to build these instances; the one used
in the HP9000 - UNIX and the random function of the NETGEN generator
(Klingman et al. 1974).

Groups of Type 1 were composed by S = 100 instances as proposed in
Kellerer et al. (1994) and groups of Type 2 and 3 were composed by S = 30
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instances. The choice of 30 is based on the rule of thumb in statistics to
produce good estimates (Coffin and Saltzman 2000).

For each group of instances, the performance of the approaches were mea-
sured through the average (Avg.), standard deviation (Std. dev.), minimum
(Min.) and maximum (Max.) of the CPU time in seconds.

Algorithm 7 was implemented in the C++ programming language and in-
tegrates the algorithm for the {0,1}-knapsack problem proposed by Pisinger
(1997)1 and Problem 6.3 is solved by using the Cplex solver. All the ex-
periments were performed on a multiple processors architecture composed of
four 2.8 GHz AMD Opteron dual-core processors, 32GB of RAM, and running
Linux as the operating system. This makes it possible to take advantage of
the parallel algorithms found in the Cplex solver. A limit of 10 hours was
assigned to each group of S instances. An excess time limit is represented by
a dash in the tables.

Statistical Analysis

For the analysis of Algorithm 7, only strongly correlated instances are consid-
ered as they appear as being the hardest instances for the knapsack solver used
in both algorithms. Furthermore, only the results on Type 2 instances gener-
ated by the HP-9000 UNIX random function are presented in this section as
they give rise to the same conclusions as the other types of randomly generated
instances. For more details on the results of the computational experiments,
the reader may consult Appendix A.

Algorithm 7 is very efficient for large scale instances. For example, with
n = 105, R = 104 and P = 0.5, the average computation time is 27.37 seconds
with a 95% confidence interval [17.96, 36.79] obtained by using the Student’s
t-Distribution with 29 degrees of freedom. Let us point out that the perfor-
mances of this algorithm are strongly linked to the embedded knapsack solver.
Therefore, the use of another solver could either increase or decrease signifi-
cantly the computation time.

For the experiments on the integer linear programming formulation for
solving IKP-1 we shall also present the results for the uncorrelated instances
because of the hardness of this problem.

When considering small uncorrelated instances, the inverse problem can be
solved with a reasonable computation time. For example, with n = 50, R =
500, and P = 0.5, the average computation time is 79.41 seconds with a 95%
confidence interval [50.95, 107.88]. However, by the nature of the formulation,
the computation time becomes quickly unreasonable. For example, with n =
80, R = 500, and P = 0.5, the average computation time is 744.64 seconds
with a 95% confidence interval [430.58, 1058.71].

The use of strongly correlated instances has a strong impact on the per-
formance. For example, with n = 50, R = 100, and P = 0.5, the average

1The implementation of this algorithm is available at http://www.diku.dk/~pisinger/
codes.html
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computation time for the strongly correlated instances is 209.38 seconds with
a 95% confidence interval [150.09, 268.67], while for the uncorrelated instances
the average computation time is 6.45 seconds with a 95% confidence interval
[3.93, 8.97].

6.6 Conclusion

In this chapter, the inverse knapsack problem has been defined and studied for
both the L∞ and L1 norms. Complexity analysis has highlighted the theoretical
hardness of both problems. Despite the hardness of IKP-∞, experimental
results have shown the tractability of the computational procedure used for
solving it. On the other hand, the method proposed here for solving IKP-1
can only handle small instances. However, this result is partially explained
by the co-NP-Hardness of this problem. Therefore, the use of approximation
algorithms should be considered in the future.

There are many possible extensions of this work. For instance, the use of
other norms, the nature of the adjustment, and constraints on the adjustment
are of obvious interest. Furthermore, this work clears the way for solving the
inverse version of other optimization problems such as the multi-constraint
knapsack problem and the integer knapsack problem. Indeed, some of the
proposed approaches could be easily extended to these problems.

The knowledge acquired in this chapter is a significant help for solving
some inverse multi-objective combinatorial optimization problems. Indeed, in
the next chapter several algorithms will rely on the same observations that the
ones we made in this chapter to solve the inverse knapsack.





Chapter 7

Inverse multi-objective
optimization

In this chapter, inverse optimization is extended to multi-objective op-
timization. Inverse multi-objective combinatorial optimization is firstly
defined as the problem of finding a minimal adjustment of the objec-
tive functions coefficients such that a given feasible solution becomes
an efficient one. A more general definition is then considered. It is
stated as the problem of finding a minimal adjustment of the optimiza-
tion instance inducing a change in the efficient set and/or in the non-
dominated set. This definition raises many questions that are formalized
by a triplet which highlights a large collection of inverse problems that
could be investigated. Several inverse problems are presented along with
their respective applications. Finally, a collection of algorithms to solve
several inverse problems are presented.

7.1 Introduction

The purpose of this chapter is to address the question of extending inverse op-
timization to the context of multi-objective optimization. As explained in the
introduction this constitutes our main focus. To our knowledge this question
has never been addressed in previous works.

Let us start with a first definition of inverse multi-objective optimization.
This definition is a particular case of a more general definition that will be
stated afterward. For this purpose, we consider the most usual definition of
inverse optimization in single-objective optimization. It consists of finding
a minimal adjustment of the coefficients of the objective function (i.e., the
profit vector) such that a given solution becomes optimal. In the context
of multiple objective functions, the adjustment should be performed on the
coefficients of all the objective functions (i.e., the profit matrix), which can be
measured by any distance function between matrices. As explained in Chapter
4, there is usually no feasible ideal solution, but a set of efficient solutions.
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Consequently, the concept of “optimality” could be replaced by “efficiency”.
Therefore, the most straightforward extension of inverse optimization to multi-
objective optimization problems consists of finding a minimal adjustment of
the profit matrix such that a given feasible solution becomes efficient.

This question has potential theoretical and practical implications. It leads
to a way for measuring “the distance to efficiency” for a feasible solution. This
distance is equal to zero if and only if the solution is efficient, and increases
with how much the coefficients have to be modified so that the solution be-
comes efficient. An illustrative application of inverse optimization in the field
of multi-objective optimization drawn from portfolio analysis can be stated
as follows. Portfolios are generally built by searching the ones that minimize
risk and simultaneously maximize return, dividends, liquidity, etc. Given a
portfolio, it is nevertheless difficult to evaluate its performances on this set of
objectives. In such a kind of problems it is common to model the expected
return by the average daily return. However, when looking about the different
periods to observe, there is no consensus among researchers and practitioners.
It might be calculated over the last week, the last month, etc. We could start
to build a general model in order to identify efficient solutions. An observed
portfolio might be dominated in this model because investors perceive or eval-
uate parameters in a slightly different way. However, a natural constraint is
to impose the efficiency of the observed portfolios. Therefore, one could focus
on the minimal adjustment of the initial model parameters in order to satisfy
this constraint. In a first attempt for solving this problem, we could assume
that all the objectives and constraints are linear. Within these assumptions,
the model leads to an instance of the inverse multi-objective knapsack prob-
lem, i.e., given an instance and a set of feasible solutions, the question is how
to modify the profits as little as possible such that those solutions become
efficient.

7.2 Inverse problems

As explained in Chapter 5, inverse optimization can be more broadly defined
as the problem of finding a minimal adjustment of an optimization instance
(X, c) inducing a change in the optimal solution’s characteristics. Hence, a
more general definition of inverse multi-objective optimization can be stated
as follows.

Definition 26 (inverse multi-objective optimization). Given an instance (X,C),
an inverse problem consists of finding a minimal adjustment of (X,C) induc-
ing a change in the efficient set E(X,C) and/or in the non-dominated set
ND(X,C).

This definition raises many questions that can be formalized as follows. Let
us consider an instance (X,C). Inverse multi-objective optimization consist of
finding another instance (X ∗, D∗) that satisfies some conditions and such that
the distance to (X,C) is minimized. A feasible solution to an inverse problem
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is denoted by (X , D) and an optimal solution is denoted by (X ∗, D∗). In order
to not get lost in all these questions, we describe each inverse multi-objective
optimization problem by a triplet [α • β • γ]. The α field describes how the
instance is allowed to be modified, i.e., a set of conditions on (X , D). The
β field describes the conditions on ND(X , D) and/or E(X , D). The γ field
describes how the modification is measured.

There are many possible ways to instantiate these fields and therefore many
possible inverse multi-objective optimization problems could be defined. For
example, the α field may be composed of elements from the set {D ∈ Nq×n, D =
C,X ⊆ {x : x ∈ {0, 1}n},X = X,X ⊆ X , . . .}. The β field may be com-
posed of elements from the set {E(X , D) ⊆ E(X,C), x0 ∈ E(X , D), X0 ⊆
E(X , D), . . .}, where x0 ∈ X and X0 ⊆ X are given as input to the in-
verse problem. The γ fields may be composed of elements from the set {|C −
D|p, ||C −D||p, δ(C,D), . . .}, where p > 1.

Let us illustrate this nomenclature with the following examples. In these
examples, the feasible set X is not modified, i.e, X is equal to X. Therefore,
the β field describes the conditions on ND(X,D) and/or E(X,D).

Example 1 (Distance to efficiency). [D ∈ Nq×n • x0 ∈ E(X,D) • |C − D|p]
denotes the problem of computing the distance to efficiency of x0 ∈ X. Let
D∗ denote an optimal solution to it. This inverse problem consists of finding
a profit matrix D∗ that is as close as possible to C such that x0 is efficient,
with respect to the distance function |C −D∗|p. This distance is equal to zero
when x0 ∈ E(X,C) and proportional with how much the profit matrix C must
be modified to transform x0 into an efficient solution. Hence, this is a way to
measure the distance to the efficiency that might be seen as the quality of a
solution.

Example 2 (Stability radius). The stability radius of an efficient solution is
defined as the maximal variation of the problem parameters that allows this
solution to remain efficient (see Emelichev et al. 2004, Emelichev and Kuzmin
2006, Emelichev and Podkopaev 2010). It is easy to see that the stability radius
of an efficient solution can be obtained through the minimal adjustment of
the parameters, in such a way that the solution becomes non-efficient. The
inverse problem [D ∈ Nq×n • x0 /∈ E(X,D) • |C −D|p] can be used to answer
this question, where only the profit matrix is modified. Note that the α field
could also be defined by D ∈ Nq×n,X ⊆ {0, 1}n, in which case all the problem
parameters are allowed to be modified. This example is addressed in more
details in Chapter 8.

Example 3 (Stability of an efficient set). The stability radius of an efficient
solution can be generalized to the whole efficient set. This can be defined as the
maximal variation of the problem parameters so that the efficient set remains
unchanged. The inverse problem [D ∈ Nq×n • E(X,C) 6= E(X,D) • |C −D|p]
can be used to compute it. This consists in finding the minimal adjustment of
the profit matrix inducing a change (addition or removal of solutions in the
efficient set).
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Distance function Simplified form
|C −D|∞ | · |∞
|C −D|1 | · |1
Any linearizable distance function δ(C,D)

Table 7.1: Correspondence between distance functions and their simplified
form

Example 4 (Distance to ideal - Compromise solution). [D ∈ Nq×n • {Dx0} =
ND(X,D) • |C −D|p] denotes the problem of computing the distance to ideal
of x0 ∈ X. It consists of finding a profit matrix D∗ that is as close as possible
to C such that the vector D∗x0 is the ideal outcome. As it will be explained in
Chapter 8, this inverse problem leads to a concept of compromise solution in
the context of combinatorial optimization problems with multiple experts.

From our perspective, these examples provide a significant motivation to
the study of inverse multi-objective optimization problems. In the remaining
sections of this chapter we will focus on a theoretical exploration of inverse
problems. The stability radius and the concept of compromise solutions are
discussed in more details in Chapter 8.

The notation [α•β•γ] may easily become cumbersome. It can be simplified
by omitting the α and the γ fields. This leads to the inverse problems denoted
by [•β•], [•β •γ], or [α •β•]. If the α field is omitted, then it takes the default
value of D ∈ Nq×n. If the γ field is omitted, then the adjustment is measured
by any linearizable distance function between C and D. Furthermore, the
γ field can be simplified if only matrices C and D are compared. Table 7.2
gives the correspondence between the distance functions and their respective
simplifications.

In the following sections are presented a collection of algorithms to solve
several inverse problems. We selected these inverse problems due to their
potential applications. Indeed, some of these algorithms will be used in the
next chapter for the computation of stability radii and compromise solutions.

7.3 A binary search algorithm for

[•x0 ∈ E(X,D) • | · |∞]

The inverse problem [•x0 ∈ E(X,D) • | · |∞] consists of finding a minimal
adjustment of the profit matrix, measured by the Chebyshev norm, such that
a given feasible solution becomes efficient. The inverse problem can be stated
as follows:

D∗ ∈ arg min |C −D|∞
subject to: x0 ∈ E(X,D)

D ∈ Nq×n.
([•x0 ∈ E(X,D) • | · |∞])

This problem can be modeled as the following bilevel optimization problem:
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D∗ ∈ arg min |C −D|∞
subject to: Dx0 = Dx∗

D ∈ Nq×n
x∗ ∈ arg max

∑
i∈I
∑

j∈J Dijxj
subject to: Dx = Dx0

x ∈ X

(7.1)

where we seek for a profit matrix D∗ ∈ Nq×n, which minimizes the L∞ distance
with respect to C and such that x0 is an efficient solution of the modified
optimization problem (X,D∗). The efficiency of x0 is ensured by Problem
ND-Test (see, Section 4.1) as the second level optimization problem.

Theoretical results

At first, let us analyze the nature of some optimal solutions of [•x0 ∈ E(X,D)•
| · |∞]. Based on a partition of J defined by J0 = {j ∈ J : x0j = 0} and
J1 = {j ∈ J : x0j = 1}, the first theorem establishes that an optimal solution
D∗ can be built by increasing, or keeping equal, Cij, for all j ∈ J1 and by
decreasing, or keeping equal, Cij, for all j ∈ J0, for i ∈ I.

Theorem 9. There exists an optimal solution D∗ ∈ Nq×n of [•x0 ∈ E(X,D) •
| · |∞] such that ∀j ∈ J1 : D∗ij > Cij and ∀j ∈ J0 : D∗ij 6 Cij, with i ∈ I.

Proof. Let D ∈ Nq×n denote any optimal solution of [•x0 ∈ E(X,D) • | · |∞].
Define the following sets for all i ∈ I : J0>

i = {j ∈ J0 : Dij > Cij}, J1<
i = {j ∈

J1 : Dij < Cij}. Consider a solution D∗ of [•x0 ∈ E(X,D) • | · |∞] defined as
follows, for all i ∈ I:

D∗ij =


Cij, if j ∈ {J1<

i ∪ J0>
i }

Dij, otherwise.
(7.2)

Let us show that for all x ∈ X, if Dx0 ≥ Dx, then D∗x0 ≥ D∗x. This is
equivalent to show that the following condition holds: if D(x0 − x) ≥ 0, then
D∗(x0 − x) ≥ 0. The profit matrix D∗ is introduced in the first inequality
as follows, (D − D∗ + D∗)(x0 − x) ≥ 0, which leads to write: D∗(x0 − x) ≥
(D∗−D)(x0−x). From Equation 7.2 and the definition of J1, one may deduce
that, for all j ∈ J1, (x0−x)j > 0 and (D∗ij−Dij) > 0. Similarly, for all j ∈ J0,
(x0 − x)j 6 0 and (D∗ij − Dij) 6 0. Therefore, (D∗ − D)(x0 − x) = 0, and
consequently D∗(x0 − x) ≥ 0.

Let us define a matrix Dk ∈ Nq×n of distance at most k from matrix C with
respect to the L∞ norm.

Definition 27 (Dk). Let k > 0 be a natural number. Then, Dk is a matrix of
size q × n, where for all i ∈ I, and j ∈ J ,

Dk
ij =


max{0, Cij − k}, if x0j = 0,

Cij + k, otherwise.
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Theorem 10. If D∗ represents an optimal solution of [•x0 ∈ E(X,D) • | · |∞],
such that |C−D|∞ = k, then Dk is also an optimal solution of [•x0 ∈ E(X,D)•
| · |∞].

Proof. Let D∗ denote an optimal solution of [•x0 ∈ E(X,D) • | · |∞], such
that |C − D|∞ = k. Let us show that for all x ∈ X, if D∗x0 ≥ Dx, then
Dkx0 ≥ Dkx. Similarly to the proof of Theorem 9, this is equivalent to show
that the following condition holds: if D∗(x0 − x) ≥ 0, then Dk(x0 − x) ≥ 0.
This leads to write: Dk(x0− x) ≥ (Dk −D∗)(x0− x). From Definition 27 and
the definition of J0, one may deduce that, for all j ∈ J1, (x0 − x)j 6 0 and
(Dk

ij −D∗ij) 6 0. Similarly, for all j ∈ J1, (x0 − x)j > 0 and (Dk
ij −D∗ij) > 0.

Therefore, (Dk −D∗)(x0 − x) = 0, and consequently Dk(x0 − x) ≥ 0.

Lemma 6. If δ∞ ∈ N is the optimal solution value of [•x0 ∈ E(X,D) • | · |∞],
then δ∞ 6 ∆ = maxi∈I,j∈J0{Cij}

Proof. It is always possible to build a matrix D ∈ Nq×n, with |C − D|∞ =
maxi∈I,j∈J0{Cij}, such that Dx0 is a non-dominated solution of (X,D). The
matrix is defined as follows, ∀i ∈ I,∀j ∈ J1 : Dij = Cij and ∀i ∈ I,∀j ∈ J0 :
Dij = 0. It is easy to see that for all x ∈ X, one obtains Dx0 = Dx and
|C −D|∞ = maxi∈I,j∈J0{Cij}. This concludes the proof.

Lemma 7. If Dkx0 is a non-dominated vector for (X,Dk), then Dk+1x0 is a
non-dominated vector for (X,Dk+1).

Proof. Let us assume that there exists a solution x ∈ X such that Dk+1x
dominates Dk+1x0. Therefore, Dk+1(x − x0) ≥ 0. The profit matrix Dk is
introduced in the inequality as follows, (Dk+1 +Dk −Dk)(x− x0) ≥ 0, which
leads to write: Dk(x − x0) ≥ (Dk − Dk+1)(x − x0). From Definition 27 and
the definition of J1, one may deduce that, for all j ∈ J1, (x − x0)j 6 0 and
(Dk

ij −Dk+1
ij ) 6 0. Similarly, for all j ∈ J0, (x− x0)j > 0 and (Dk

ij −Dk+1
ij ) >

0. Therefore, (Dk − Dk+1)(x − x0) = 0, and consequently Dk(x − x0) ≥ 0.
Therefore, Dkx dominates Dkx0 which contradicts the hypothesis, and the
lemma is proved.

Algorithm

Based on the results presented in the previous section, a binary search algo-
rithm for computing an optimal solution of [•x0 ∈ E(X,D) • | · |∞] is devised.
Thanks to Theorem 10, an optimal solution of [•x0 ∈ E(X,D) • | · |∞] can be
built based on the distance between matrices D∗ and C. Since this distance is
bounded from above by ∆ = maxi∈I,j∈J{(1−x0j)Cij} (see Lemma 6), the algo-
rithm consists of finding the minimal value k ∈ {1, 2, . . . ,∆} such that Dkx0

is a non-dominated vector of the MOCO instance (X,Dk). This condition is
naturally checked by solving Problem ND-Test. The minimal value of k can be
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found by performing a binary search on the set {1, 2, . . . ,∆} as a consequence
of Lemma 7. Therefore, Algorithm 8 requires to solve O(log2∆) times Problem
ND-Test. For more details on the procedure, see the pseudo-code of Algorithm
8.

Algorithm 8 A binary search algorithm to compute an optimal solution D∗

of [•x0 ∈ E(X,D) • | · |∞], with respect to the Chebyshev norm.

1: a← 0;
2: b← ∆;
3: while (a 6= b) do
4: k ← a+ b(b− a)/2c;
5: Build matrix Dk;
6: x∗ ← Solve Problem ND-Test;
7: if (Dkx0 = Dkx∗) then
8: b← k;
9: else

10: a← k + 1;
11: end if
12: end while
13: D∗ ← Da;

The computational complexity of Algorithm 8 could be potentially im-
proved by taking into account the characteristics of the combinatorial prob-
lem. Let us consider the multi-objective knapsack problem as an illustrative
example. As presented in Chapter 4, a dynamic programming approach solves
this problem in O(n(UBmax)q), where UBmax = max{UB1, UB2, . . . , UBi, . . .,
UBq} and UBi is an upper bound on the optimal solution value of the i-th ob-
jective function. Therefore, in the context of [•x0 ∈ E(X,D)•|·|∞], the inverse
multi-objective knapsack problem can be solved in O(log2∆n(UBmax)q).

7.4 A binary search algorithm for

[•x0 /∈ E(X,D) • | · |∞]

The inverse problem [•x0 /∈ E(X,D) • | · |∞] consists of finding a minimal
adjustment of the profit matrix such that a given feasible solution becomes
non-efficient. This question is formalized as follows. Let (X,C) denote an
instance of a MOCO and x0 ∈ X a feasible solution. The inverse problem can
be stated as follows:

D∗ ∈ arg min |C −D|∞
subject to: x0 /∈ E(X,D)

D ∈ Nq×n.
([•x0 /∈ E(X,D) • | · |∞])

Let us first note that this inverse problem is not feasible whenever every
solution x ∈ X\{x0} is a subset of x0, i.e., when there does not exists a j ∈ J
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such that xj = 1 and x0j = 0. This situation occurs, for example, in the
following instance:

max f1(x) = 5x1 + 5x2
max f2(x) = 3x1 + 2x2

subject to: x1 + x2 6 2
x1, x2 ∈ {0, 1},

(7.3)

where {v1, v2, v3, v4} = {(1, 1); (1, 0); (0, 1); (0, 0)} is the feasible set and {v1}
is the efficient set. The feasible solutions v2, v3 and v4 are subsets of v1, which
implies that for all profit matrices D ∈ Nq×n : Dv1 = Dv2, Dv1 = Dv3, and
Dv1 = Dv4. Therefore, the inverse problem [•v1 /∈ E(X,D) • | · |∞] is not
feasible.

Theoretical results

The strategy for solving this problem is to apply the opposite of the approach
for solving [•x0 ∈ E(X,D) • | · |∞]. That is to say, the way for building the
optimal solution of [•x0 ∈ E(X,D)•|·|∞] is the opposite of building the optimal
solution of [•x0 /∈ E(X,D) • | · |∞]. The profits that were increased in the first
case, will be decreased. Inversely, profits that were decreased in the first case,
will be increased. This approach is intuitive, because it is obvious that both
inverse problems are the opposite of each other. This section provides the
theoretical results that prove this intuition.

Let us first analyze the nature of some optimal solutions of [•x0 /∈ E(X,D)•
| · |∞]. Based on a partition of J defined by J0 = {j ∈ J : x0j = 0} and
J1 = {j ∈ J : x0j = 1}, the first theorem establishes that an optimal solution
D∗ of [•x0 /∈ E(X,D) • | · |∞] can be built by decreasing, or keeping equal, Cij,
for all j ∈ J1 and by increasing, or keeping equal, Cij, for all j ∈ J0, for all
i ∈ I.

Theorem 11. For every feasible instance of [•x0 /∈ E(X,D)• | · |∞] with profit
matrix C, there exists an optimal solution D∗ ∈ Nq×n of [•x0 /∈ E(X,D)•| · |∞]
such that ∀j ∈ J1 : D∗ij 6 Cij and ∀j ∈ J0 : D∗ij > Cij, with i ∈ I.

Proof. Let D ∈ Nq×n denote an optimal solution of [•x0 /∈ E(X,D) • | · |∞].
Define the following sets for all i ∈ I : J0<

i = {j ∈ J0 : Dij < Cij}, J1>
i =

{j ∈ J1 : Dij > Cij}. By definition of D, there is a feasible solution x ∈ X
with Dx ≥ Dx0. Consider a matrix D∗ ∈ Nq×n defined as follows, for all
i ∈ I, j ∈ J :

D∗ij :=

{
Cij, if j ∈ {J1>

i ∪ J0<
i },

Dij, otherwise.
(7.4)

Let us show that if Dx ≥ Dx0, then D∗x ≥ D∗x0. This is equivalent to
show that the following condition holds: if D(x− x0) ≥ 0, then D∗(x− x0) ≥
0. The profit matrix D∗ is introduced into the first inequality as follows,
(D+D∗−D∗)(x−x0) ≥ 0, which leads to write: D∗(x−x0) ≥ (D∗−D)(x−x0).
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From Equation 7.4 and the definition of J1, one may deduce that, for all j ∈ J1,
(x− x0)j 6 0 and (D∗ij −Dij) 6 0. Similarly, for all j ∈ J0, (x− x0)j > 0 and
(D∗ij−Dij) > 0. Therefore, (D∗−D)(x−x0) = 0 and consequently D∗(x−x0) ≥
0. This implies that D∗ is a feasible solution of [•x0 /∈ E(X,D) • | · |∞] and
therefore an optimal one, because the inequality |D∗ − C|∞ 6 |D − C|∞ is
directly deduced from Equation 7.4.

Based on the same principle of increasing and decreasing some specific parts
of the profit matrices, let us define a particular operator 	 between pairs of
matrices with respect to x0. In order to not overload the notation, this feasible
solution x0 is omitted .

Definition 28 (D 	 E). Let D and E be two matrices of size q × n. For all
i ∈ I and j ∈ J ,

(D 	 E)ij :=

{
max{0, Dij − Eij}, if j ∈ J1,
Dij + Eij, otherwise.

This particular operation is crucial, because when it is applied on a feasible
solution of [•x0 /∈ E(X,D) • | · |∞], the resulting solution is also feasible. This
is established in the following theorem.

Theorem 12. For all E ∈ Nq×n, if D is a feasible solution of [•x0 /∈ E(X,D)•
| · |∞], then D 	 E is also feasible.

Proof. Let us show that if Dx ≥ Dx0, then (D	E)x ≥ (D	E)x0. Similarly
to the proof of Theorem 11, it is equivalent to show that the following condition
holds: if D(x − x0) ≥ 0, then (D 	 E)(x − x0) ≥ 0. Consequently, one can
write: (D 	 E)(x− x0) ≥ [(D 	 E)−D](x− x0) ≥ 0.

From Definition 28, one may deduce that, for all i ∈ I, j ∈ J1, (x−x0)j 6 0
and [(D 	 E) − D]ij 6 0. Similarly, for all i ∈ I, j ∈ J0, (x − x0)j > 0 and
[(D 	E)−D]ij > 0. Therefore, [(D 	E)−D](x− x0) = 0 and consequently
(D 	 E)(x− x0) ≥ 0. This implies the proof of this theorem.

Let us define a matrix, denoted Dk ∈ Nq×n, of distance at most k from
matrix C with respect to the L∞ distance.

Definition 29 (Dk). Let k > 0 be a natural number. Then, Dk is a matrix of
size q × n, where for all i ∈ I and j ∈ J ,

Dk
ij :=

{
max{0, Cij − k}, if j ∈ J1,
Cij + k, otherwise.

The following theorem provides an optimality condition for Dk based on the
value of k.

Theorem 13. If there exists an optimal solution D of [•x0 /∈ E(X,D) • | · |∞]
with |C −D|∞ = k, then Dk is also an optimal solution of [•x0 /∈ E(X,D) •
| · |∞].
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Proof. From Theorem 11, it can be assumed that ∀i ∈ I, ∀j ∈ J1 : Dij 6 Cij
and ∀j ∈ J0 : Dij > Cij. Therefore, it is easy to build a matrix E ∈ Nq×n
such that D 	 E = Dk. From Theorem 12, Dk is a feasible solution of [•x0 /∈
E(X,D)•|·|∞] and obviously an optimal solution to [•x0 /∈ E(X,D)•|·|∞].

As a corollary of this theorem, an optimal solution of [•x0 /∈ E(X,D)•|·|∞]
can be built on the basis of the optimal solution value. Indeed, if the optimal
solution value of [•x0 /∈ E(X,D)• | · |∞] is equal to k, then an optimal solution
of this problem is given by the matrix Dk. Therefore, [•x0 /∈ E(X,D) • | · |∞]
can be reduced to finding the optimal solution value, which is given by the
minimal value of k where x0 is a non-efficient solution with respect to Dk. In
order to reduce the search domain, an upper bound on this value is provided
in the following lemma.

Lemma 8. If δ∞ ∈ N is the optimal solution value of [•x0 /∈ E(X,D) • | · |∞],
then δ∞ 6 ∆ = maxi∈I,j∈J{x0jCij}

Proof. For a feasible instance of [•x0 /∈ E(X,D) • | · |∞], it is always possible
to build a matrix D ∈ Nq×n such that |C − D|∞ = maxi∈I,j∈J{x0jCij} and
Dx0 is a dominated solution of (X,D). The matrix is defined as follows,
∀i ∈ I,∀j ∈ J0 : Dij = Cij and ∀i ∈ I,∀j ∈ J1 : Dij = 0. It is easy to see
that there exists another feasible solution x ∈ X such that Dx ≥ Dx0 and
|C−D|∞ = maxi∈I,j∈J{x0jCij}. This solution satisfies the condition that there
exists a j ∈ J , such that xj = 1 and x0j = 0; otherwise the problem is not
feasible. This concludes the proof.

Algorithm

Based on the results presented in the previous section, an algorithm for com-
puting an optimal solution of [•x0 /∈ E(X,D)•|·|∞] is devised. On the basis to
Theorem 13, an optimal solution of [•x0 /∈ E(X,D) • | · |∞] can be built based
on the distance between matrices D∗ and C. Since this distance is bounded
from above by ∆ = maxi∈I,j∈J{x0jCij} (see Lemma 8), the algorithm consists
of finding the minimal value k ∈ {1, 2, . . . ,∆} such that Dkx0 is a dominated
vector of the multi-objective instance (X,Dk). This condition is naturally
checked by solving ND-Test.

The minimal value of k can be found by performing a binary search on the
set {1, 2, . . . ,∆}, because the value of k can be increased without altering the
non-efficiency of x0 with respect to matrix Dk, as it can be directly deduced
from Theorem 12. Therefore, Algorithm 9 requires to solve log2∆ times ND-
Test. For more details on the procedure, see the pseudo-code of Algorithm
9.

Computational experiments

The purpose of this section is to report the performance of Algorithm 9 (in
terms of CPU time) on several sets of randomly generated instances of the
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Algorithm 9 Compute an optimal solution D∗ of [•x0 /∈ E(X,D) • | · |∞].

1: a← 0;
2: b← ∆;
3: while (a 6= b) do
4: k ← a+ b(b− a)/2c;
5: Build matrix Dk;
6: x∗ ← Solve ND-Test;
7: if (Dkx0 6= Dkx∗) then
8: b← k;
9: else

10: a← k + 1;
11: end if
12: end while
13: D∗ ← Da;

bi-objective {0,1}-knapsack problem (BKP).

As in the previous chapter, the design of the experiments is inspired by the
frameworks used in Martello and Toth (1990) and in Pisinger (1995). For a
given number of variables n and data range R, a set of instances was randomly
generated in the following way. Each instance s ∈ {1, 2, . . . , S} is generated
with the seed number s. The values of C1j, C2j and wj are uniformly distributed
within the range [1, R], and W is computed as the maximum between R and
bP
∑

j∈J wjc, where P ∈ [0, 1]. Groups were composed of S = 30 instances.
The choice of 30 is based on the rule of thumb in statistics to produce good
estimates (Coffin and Saltzman 2000). Other types of randomly generated
instances, for which the profit matrices are correlated with the weights, were
also considered. Since these instances have led to the same kind of results, we
will not detail them hereafter.

The performance of the algorithm was measured through the average (Avg.),
standard deviation (Std. dev.), minimum (Min.) and maximum (Max.) of
the CPU time in seconds. This algorithm has been implemented in the C#
programming language and ND-Test was solved by using the Cplex solver
through the C# library. These experiments were performed on a 3.0 GHz
dual-core processor with 4GB of RAM.

For each set of instances, Algorithm 9 was run on each efficient solution.
Results show that Algorithm 9 is very efficient for large scale instances. For
example, with n = 500, R = 1000 and P = 0.5, the average CPU time is 4.91
seconds with a standard deviation of 2.14. Let us point out that the perfor-
mances of this algorithm are strongly linked to Problem ND-Test. Therefore,
the use of another way to test the efficiency of a feasible solution could either
increase or decrease significantly the CPU time. For more details about the
results of the computational experiments, the reader may consult Table 7.2.
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CPU time (s)
R = 100 R = 1000

n Avg. Std. dev. Min. Max. Avg. Std. dev. Min. Max.
10 0.41 0.10 0.30 0.74 0.58 0.09 0.44 0.81
50 0.51 0.10 0.42 0.96 0.77 0.13 0.62 1.30

100 0.68 0.17 0.51 1.14 1.13 0.29 0.80 2.25
500 1.31 0.81 0.28 3.58 4.91 2.14 0.96 8.32

Table 7.2: Impact of varying the number of variables n and data range R on
the performance of Algorithm 9 with a group of instances with P = 0.5.

7.5 An integer linear programming

formulation of [•x0 /∈ E(X,D)•]

An integer linear program for solving [•x0 /∈ E(X,D)•] is proposed here. Let
us first start with the following formulation (with non-linear constraints).

D∗ ∈ arg min δ(C,D)

subject to: D ∈ Nq×n

x ∈ X
(Dx)i > (Dx0)i + si, for all i ∈ I∑
i∈I

si > 1

si > 0, for all i ∈ I.

(7.5)

where the set of constraints requires that Dx dominates Dx0.

In order to linearize the set of constraints, the non-linear vector product
(Dx)i is replaced by a sum of n real-valued variables. Let us create nq variables
eij ∈ R with i ∈ I, j ∈ J . Those variables eij are either equal to zero if xj = 0,
or equal to Dij if xj = 1. This is expressed by the following constraints:
eij > 0, eij 6 Dij, eij 6 xjM , eij > Dij − (1 − xj)M , where M is an upper
bound on the value of D∗ij for all i ∈ I, j ∈ J . This bound can be obtained by
considering a profit matrix D0 ∈ Nq×n defined as follows: D0 is either equal to
zero if x0j = 1, or equal to Cij if x0j = 0. It is easy to see that [•x0 /∈ E(X,D)•]
is feasible if and only if D0 is a feasible solution to it. Consequently, the value
of M is determined with respect to D0 and the choice of distance function.
The resulting linear program is given by Problem 7.6.
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min δ(C,D)

subject to: D ∈ Nq×n

x ∈ X∑
j∈J eij > (Dx0)i + si, for all i ∈ I∑
i∈I si > 1

si > 0, for all i ∈ I
for all i ∈ I, j ∈ J :

eij 6 Dij

eij 6 xjM

eij > Dij − (1− xj)M
eij > 0

eij ∈ R

(7.6)

7.6 A branch-and-bound approach for

[•x0 ∈ E(X,D)•]
The inverse problem [•x0 ∈ E(X,D)•] consists of finding a minimal adjustment
of the profit matrix such that a given feasible solution x0 ∈ X becomes efficient.
This problem can be stated as follows:

D∗ ∈ arg min δ(C,D)
subject to: x0 ∈ E(X,D)

D ∈ Nq×n.
([•x0 ∈ E(X,D)•])

A branch-and-bound approach to solve [•x0 ∈ E(X,D)•] is introduced
in this section. The purpose of this approach is to be able to solve [•x0 ∈
E(X,D)•] for any linearizable distance function. In the tree, each node is a
relaxation of the inverse problem. The initial relaxation is min{δ(C,D) : D ∈
Nq×n}. This relaxation is very poor, because there are no constraints to ensure
the efficiency of x0. For each node (relaxation), it is easy to check if x0 is an
efficient solution by solving Problem ND-Test. Let x∗ be an optimal solution
of this problem. There are (q + 1) possibilities for improving the relaxation,
i.e. to ensure that x0 is not dominated by x∗. Indeed, Dx0 = Dx∗, and
(Dx0)i > (Dx∗)i, with i ∈ I, are (q + 1) sufficient conditions to ensure that
Dx0 is not dominated by Dx∗.

The branch-and-bound tree is built as follows. The root is P 0 = min{δ(C,D) :
D ∈ Nq×n}. Let D0 be an optimal solution to P 0. By solving Problem ND-
Test, it is easy to check if x0 is an efficient solution for an instance (D0, X).
Let x∗ be an optimal solution of this problem. If x0 is a non-efficient solu-
tion (Cx∗ 6= Cx0), then (q + 1) new child nodes are created. The first one is
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P 0∪{Dx0 = Dx∗}. That is to say, the linear program P 0 where the constraint
Dx0 = Dx∗ is added to it. The (1 + i)-th node is P 0 ∪ {(Dx0)i > (Dx∗)i},
with i ∈ I. This process is repeated for each child node.

The optimal solution of each leaf leads to a feasible solution and an upper
bound on δ(D∗, C). Furthermore, the optimal solution value of a given node
is a lower bound for the other nodes in the sub-tree rooted at this node. Let
δ∗ be an upper bound on δ(D∗, C). Therefore, if the optimal solution value
of a node is greater than δ∗, then the sub-tree rooted at that node is pruned.
The procedure is described in Algorithm 10 which explores the tree search in
a best-first manner.

Algorithm 10 Compute an optimal solution D∗ of [•x0 ∈ E(X,D)•].
1: UP ← {P 0};
2: δ∗ is an upper bound on δ(D∗, C);
3: while UP 6= ∅ do
4: Select a linear program P from UP with respect to the best-first

search;
5: if P is feasible then
6: Let D0 be an optimal solution to P ;
7: δ0 ← δ(D0, C);
8: if δ0 < δ∗ then
9: Let x∗ be an optimal solution to Problem ND-Test for the

instance (X,D0);
10: if D0x∗ 6= D0x0 then
11: UP ← UP ∪

{
P ∪ {Dx0 = Dx∗}

}
;

12: UP ← UP ∪
{
P ∪ {(Dx0)i > (Dx∗)i} : i ∈ I

}
;

13: else
14: δ∗ ← δ0;
15: D∗ ← D0;
16: end if
17: end if
18: end if
19: end while

7.7 A cutting-plane approach for

[•X0 ⊆ E(X,D)•]
The inverse problem [•X0 ⊆ E(X,D)•] consists of finding a minimal adjust-
ment of the profit matrix such that a given set of feasible solutions becomes
efficient. This problem can be stated as follows:

min δ(C,D)
subject to: X0 ⊆ E(X,D)

D ∈ Nq×n.
([•X0 ⊆ E(X,D)•])
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A cutting-plane approach to solve [•X0 ⊆ E(X,D)•] is introduced in this
section. It requires to establish a relaxation of this problem and a way to
generate cuts. Let us consider each feasible solution x0 ∈ X0. Let S(x0) =
{x1, x2, . . . , xk} ⊆ X be a set composed of k feasible solutions, and D ∈ Nq×n a
profit matrix. For all x ∈ S(x0), the outcome vector Dx0 is not dominated by
Dx if and only if, either Dx0 = Dx, or there exists i ∈ I with (Dx0)i > (Dx)i.
It is easy to translate those conditions into a set of constraints. Consequently,
a relaxation of [•X0 ⊆ E(X,D)•] can be defined as follows

D∗ ∈ arg min δ(C,D)

subject to: D ∈ Nq×n

for all i ∈ I, x0 ∈ X0, xl ∈ S(x0) :

(Dx0)i > (Dxl)i − αl(x0)M
(Dx0)i > (Dxl)i − βl,i(x0)M
for all x0 ∈ X0, xl ∈ S(x0) :

αl(x
0) +

∑
i∈I βl,i(x

0) 6 q

αl(x
0), βl,i(x

0) ∈ {0, 1}.

([•X0 ⊆ E(S, D)•])

Problem [•X0 ⊆ E(S, D)•] is a relaxation of [•X0 ⊆ E(X,D)•] because
it requires that each solution x0 ∈ X0 should be efficient with respect to a
subset of feasible solutions and not to the whole set. The constraint (Dx0)i >
(Dxl)i − βl,iM should be replaced by (Dx0)i > (Dxl)i − βl,iM + 1 in order to
have a linear program.

The value M is an upper bound on D∗ij for all i ∈ I, j ∈ J . This bound is
obtained by considering a zero profit matrix D∗,0 ∈ Rq×n defined as follows:
D∗,0 is equal to zero for all i ∈ I, j ∈ J . It is easy to see that [•X0 ⊆ E(X,D)•]
is feasible if and only if D∗,0 is a feasible solution to it, because the outcome of
all feasible solution in (X,D∗,0) is equal to the null vector. Based on D∗,0 and
the choice of a distance function, it is easy to determine a value for M . For
instance, if δ(C,D) = |C −D|∞ in the γ field, then M = max{Cij : i ∈ I, j ∈
J}.

Let D0 be an optimal solution to [•X0 ⊆ E(S, D)•]. The condition x0 ∈
E(X,D0) can be checked by solving Problem ND-Test. A cut with respect to
D0 is generated in Problem [•X0 ⊆ E(S, D)•] by adding x∗ to S(x0).

Sketch of the algorithm. By solving Problem ND-Test, for all x0 ∈ X0,
it is easy to check if x0 is an efficient solution to an instance (X,C). Let
x∗ be an optimal solution of this problem. If x0 is not an efficient solution
(Cx∗ 6= Cx0), then add x∗ in the set S(x0). If for all x0 ∈ X0 : S(x0) = ∅,
then stop. Otherwise, solve Problem [•X0 ⊆ E(S, D)•]. Let D0 be an optimal
solution to this problem. If X0 is a set of efficient solutions with respect to
(X,D0), then stop; otherwise, repeat the process. See Algorithm 11 for a
pseudo-code of this procedure.
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Theorem 14. Algorithm 11 converges to an optimal solution of the inverse
problem [•X0 ⊆ E(X,D)•] in a finite number of steps.

Proof. Let us consider the end of any iteration t of the while loop. For all
x0 ∈ X0 it is ensured that for all x ∈ S(x0), Dtx0 is not dominated by Dtx,
and there exists an x∗ such that Dtx∗ = Dtx0. If there exists at least one
x0 ∈ X0 such that Dtx∗ 6= Dtx0, with x∗ ∈ X, then the variable Count is not
equal to zero. Therefore, the while loop continues to the next iteration. This
implies that x∗ /∈ S(x0), otherwise it would contradict the feasibility of Dt to
[•X0 ⊆ E(S, D)•]. Therefore, the number of iterations of the while loop is
bounded by the cardinality of the feasible set. At the end of the algorithm, the
loop condition ensures that X0 ⊆ E(X,Dt), and [•X0 ⊆ E(S, D)•] implies
that Dt is an optimal solution.

Algorithm 11 Compute an optimal solution D∗ of [•X0 ⊆ E(X,D)•].
1: D0 ← C;
2: Count ← 0;
3: for all x0 ∈ X0 do
4: Solve ND-Test for (X,D0) and let x∗ be an optimal solution;
5: if D0x∗ 6= D0x0 then
6: S(x0)← x∗;
7: Count ← Count + 1;
8: else
9: S(x0)← ∅;

10: end if
11: end for
12: t← 0;
13: while Count > 0 do
14: t← t+ 1;
15: Let Dt be an optimal solution of [•X0 ⊆ E(S, D)•] for (X,Dt−1);
16: Count ← 0;
17: for all x0 ∈ X0 do
18: Solve Problem ND-Test for (X,Dt) and let x∗ be an optimal so-

lution;
19: if Dtx∗ 6= Dtx0 then
20: S(x0)← S(x0) ∪ x∗;
21: Count ← Count + 1;
22: end if
23: end for
24: end while
25: D∗ ← Dt;
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7.8 A cutting-plane approach for

[•{Dx0} = ND(X,D)•]
The inverse problem [•{Dx0} = ND(X,D)•] consists of finding a minimal
adjustment of the profit matrix such that a given efficient solution becomes an
ideal one. This problem can be stated as follows:

D∗ ∈ arg min δ(C,D)
subject to: {Dx0} = ND(X,D)

D ∈ Nq×n.
([•{Dx0} = ND(X,D)•])

Algorithm

A cutting-plane approach for [•{Dx0} = ND(X,D)•] is introduced in this
section. It requires to establish a relaxation of this problem and a way to
generate cuts. Let S = {x1, x2, . . . , xk} ⊆ X be a set composed of k feasible
solutions, and let D ∈ Rq×n be a profit matrix. If the outcome vector Dx0

dominates Dx, then Dx0 = Dx. It is easy to express those conditions into a
set of constraints. Consequently, a relaxation of [•{Dx0} = ND(X,D)•] can
be defined as follows.

min δ(C,D)

subject to: D ∈ Nq×n

for all i ∈ I, xl ∈ S :

(Dx0)i > (Dxl)i

([•{Dx0} = ND(S, D)•])

Problem [•{Dx0} = ND(S, D)•] is a relaxation of [•{Dx0} = ND(X,D)•],
because it requires that x0 is an ideal solution with respect to S, a subset of
feasible solutions, and not with respect to the whole set.

Let D0 be an optimal solution to [•{Dx0} = ND(S, D)•] and x∗,i an
optimal solution to the single objective optimization problem (X,D0

i ), with
i ∈ I. The condition {D0x0} = ND(X,D0) can be checked by solving the
q single objective optimization problems, i.e., {D0x0} = ND(X,D0), if and
only if, for all i ∈ I : (D0x0)i > (D0x∗,i)i. A cut with respect to D0 is
generated in Problem [•{Dx0} = ND(S, D)•] by adding to S every x∗,i such
that (D0x0)i � (D0x∗,i)i.

Sketch of the algorithm. By solving all Problems (X,Ci), with i ∈ I, it is
easy to check if x0 is an ideal solution to (X,C). Let x∗,i be an optimal solution
to (X,Ci). If x0 is an ideal solution ((Cx0)i > (Cx∗,i)i, for all i ∈ I), then stop.
Otherwise, add to S every x∗,i such that (D0x0)i � (D0x∗,i)i and solve Problem
[•{Dx0} = ND(S, D)•]. Let D0 be an optimal solution to this problem. If x0

is an ideal solution with respect to (X,D0), then stop; otherwise, repeat the
process. See Algorithm 12 for a pseudo-code of this procedure.
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Algorithm 12 Compute an optimal solution D∗ of [•{Dx0} = ND(X,D)•].
1: D0 ← C;
2: S ← ∅;
3: Count ← 0;
4: for all i ∈ I do
5: Let x∗ be an optimal solution to (X,D0

i );
6: if (D0x∗)i > (D0x0)i then
7: S ← {x∗} ∪ S;
8: Count ← Count + 1;
9: end if

10: end for
11: t← 0;
12: while Count > 0 do
13: t← t+ 1;
14: Let Dt be an optimal solution of [•{Dx0} = ND(S, D)•] for

(X,Dt−1);
15: Count ← 0;
16: for all i ∈ I do
17: Let x∗ be an optimal solution to (X,Dt

i);
18: if (Dtx∗)i > (Dtx0)i then
19: S ← S ∪ {x∗};
20: Count ← Count + 1;
21: end if
22: end for
23: end while
24: D∗ ← Dt;

Theorem 15. Algorithm 12 converges to an optimal solution of [•{Dx0} =
ND(X,D)•] in a finite number of steps.

Proof. Let us consider the end of any iterations t of the while loop. For all
x ∈ S it is ensured that Dtx0 is not dominated by Dtx. If there exists at
least an x∗ ∈ X and an i ∈ I such that (Dtx∗)i > (Dtx0)i, then the variable
Count is not equal to zero. Therefore, the while loop continues to the next
iteration. This implies that x∗ /∈ S, otherwise it would contradict the feasibility
of Dt to [•{Dx0} = ND(S, D)•]. Therefore, the number of iterations of the
while loop is bounded by the cardinality of the feasible set. At the end of the
algorithm, the loop condition requires that for all x ∈ X : Dtx0 = Dtx, and
[•{Dx0} = ND(S, D)•] ensure that Dt is an optimal solution.
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7.9 A cutting-plane approach for

[•|ND(X,D)| = 1•]
The inverse problem [•|ND(X,D)| = 1•] consists of finding a minimal ad-
justment of the profit matrix such that a feasible ideal solution exists. This
problem can be stated as follows:

min δ(C,D)
subject to: |ND(X,D)| = 1

D ∈ Nq×n.
([•|ND(X,D)| = 1•])

Algorithm

A cutting-plane approach for [•|ND(X,D)| = 1•] is introduced in this section.
As applied in the previous section, it requires to establish a relaxation of this
problem and a way to generate cuts. Let S = {x1, x2, . . . , xk} ⊆ X be a set
composed of k feasible solutions, let D ∈ Rq×n be a profit matrix, and let x0 ∈
X be an unknown feasible solution. For all xl ∈ S, the outcome vector Dx0

dominates Dxl if and only if Dx0 = Dxl. It is easy to express those conditions
into a set of constraints. Consequently, a relaxation of [•|ND(X,D)| = 1•]
can be defined as follows

min δ(C,D)

subject to: D ∈ Nq×n

x0 ∈ X
for all i ∈ I, xl ∈ S :

(Dx0)i > (Dxl)i

([•|ND(S, D)| = 1•])

Contrary to the relaxation [•{Dx0} = ND(S, D)•], the feasible solution
x0 is unknown. Therefore, the vector product (Dx0)i is non-linear. However,
it can be linearized by replacing it by a sum of n real-valued variables. Let
us create nq variables eij ∈ R+ with i ∈ I, j ∈ J . Those variables eij are
either equal to zero if x0j = 0, or they are equal to Dij if x0j = 1. This is
expressed by the following four constraints: eij > 0, eij 6 Dij, eij 6 xjM ,
eij > Dij − (1 − x0j)M , where M is an upper bound on the value of D∗ij for
all i ∈ I and j ∈ J . This bound can be obtained by considering a profit
matrix D∗,0 ∈ Nq×n that was defined in Section 7.7. It is easy to see that
[•|ND(X,D)| = 1•] is feasible if and only if D∗,0 is a feasible solution to
it, because the outcome of all feasible solution in (X,D∗,0) is equal to the
null vector. Consequently, the value of M is determined with respect to D∗,0

and the choice of distance function. The resulting linear program is given by
Problem 7.7 as follows.
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min δ(C,D)

subject to: D ∈ Nq×n

for all i ∈ I, xl ∈ S :∑
j∈J eij > (Dxl)i

for all i ∈ I, j ∈ J :

eij > 0

eij 6 Dij

eij 6 x0jM

eij > Dij − (1− x0j)M

(7.7)

This mixed-integer linear program contains q|S|+ 4qn constraints, nq real
variables, and nq non-negative integer variables.

Sketch of the algorithm. Let D0 be an optimal solution to [•|ND(S, D)| =
1•], with S initialized to the efficient set E(X,C). If there exists an ideal
solution to (X,D0), then stop. Otherwise, a cut with respect to D0 is generated
in Problem [•|ND(S, D)| = 1•] by adding E(X,D0) to S, and repeat the
process. See Algorithm 13 for a pseudo-code of this procedure.

Algorithm 13 Compute an optimal solution D∗ of [•|ND(X,D)| = 1•] .

1: S ← E(X,C);
2: Let D0 be an optimal solution to [•|ND(S, D)| = 1•];
3: while |ND(X,D0)| > 1 do
4: S ← E(X,D0);
5: Let D0 be an optimal solution to [•|ND(S, D)| = 1•];
6: end while
7: D∗ ← D0;

7.10 Conclusion

In this chapter, we have extended inverse optimization to multi-objective com-
binatorial optimization. Different inverse problems have been defined showing
the extent of this new field of research. These problems have been solved by
branch-and-bound, branch-and-cut, binary search, and integer programming
approaches. However, some of these approaches are computationally expen-
sive.

Two illustrative applications are considered in the next chapter. One of the
inverse problems considered in this chapter will be used in stability analysis.
Two other inverse problems will be used to compute compromise solutions in
portfolio selection with multiple experts.



Chapter 8

Illustrative applications

We have identified two fields of application where inverse multi-objective
optimization is of a significant interest. In stability analysis, it can be
used to assess the ability of a feasible solution to remain efficient when
the problem parameters are perturbed. In group decision analysis, it
can be used to compute compromise solutions among different experts.
In this chapter, we discuss these applications in their practical and the-
oretical aspects.

8.1 Stability analysis

As already stressed in the introduction, modeling a multi-objective optimiza-
tion problem requires to fix the values of the parameters in order to define the
objective functions and the feasible set. Those values rely on various hypothe-
ses as well as on the accuracy of the evaluations. These sources of uncertainty
must be taken into account, because a small perturbation on the model can
potentially transform an efficient solution into a non-efficient one. This reflects
an instability aspect of the model. A way of assessing such an instability is
to compute a stability radius for each efficient solution. This radius is defined
as the maximal variation of the problem parameters that allows the solution
to remain an efficient one (see Emelichev et al. 2004, Emelichev and Kuzmin
2006, Emelichev and Podkopaev 2010).

The purpose of this section is to study the calculation of the stability radius
in the context of multi-objective combinatorial optimization and to investigate
how inverse optimization can be used to compute it. In single-objective combi-
natorial optimization, the stability radius can be computed in polynomial time
if the problem is polynomially solvable (Chakravarti and Wagelmans 1998).
However, to the best of our knowledge, no algorithm can compute the stability
radius for multi-objective combinatorial problems except by explicit enumer-
ation (Emelichev and Podkopaev 2010). Theoretical results are available for
measuring the stability radius, but the proposed formula requires the complete
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enumeration of subsets of the feasible set (Emelichev et al. 2004, Emelichev
and Kuzmin 2006, Emelichev and Podkopaev 2010).

Computing the stability radius by inverse optimization

Let us define the stability radius of an efficient solution of a MOCO with
respect to the L∞ distance. The set of all matrices D with distance at most
ε ∈ N from C is defined by Γ(ε) = {D ∈ Nq×n : |C − D|∞ 6 ε}. The
stability radius of an efficient solution x ∈ E(X,C) is the optimal solution of
max{ε ∈ N : ∀D ∈ Γ(ε), x ∈ E(X,D)}.

The calculation of the stability radius is closely related to inverse multi-
objective optimization. Indeed, it is easy to see that the stability radius of
an efficient solution can be obtained through the minimal adjustment of the
parameters, in such a way that a given solution becomes non-efficient. This pre-
cise question has been covered in Chapter 7 when we solved [•x0 /∈ E(X,D) •
| · |∞] by a binary search. The optimal solution value of [•x0 /∈ E(X,D)• | · |∞]
is equal to the stability radius of x0 increased by one unit.

The stability radius of an efficient solution can also be measured by any
linearizable distance function. In this case, the radius can be computed by
solving the inverse problem [•x0 /∈ E(X,D)•]. This problem is formulated as
an IP in Chapter 7. However, in the next subsection we will only consider the
L∞ norm.

Illustrative Examples

The purpose of this section is to present and analyze the stability radius for
several illustrative instances of the bi-objective {0,1}-knapsack problem. An
extended version of the stability radius is considered, where we take into ac-
count stable and unstable components in the profit matrix, i.e., some values
in the profit matrix may have a different value while others are fixed. This
helps to get a better understanding of the concept of stability radius. Let
us note that we could even consider intervals on the profits to express more
precisely the uncertainty on their adequate values, i.e., to consider the inverse
problem [LDi 5 Di 5 UDi for all i ∈ I,D ∈ Nq×n • x0 /∈ E(X,D) • | · |∞],
where UD,LD ∈ Nq×n. This would enable a more sophisticated analysis for a
real-world application.

The set of stable components in the profit matrix is denoted by S ⊆ I ×J .
The set of unstable components is denoted by S̄, with S̄ ∪ S = I × J . This
leads to modify [•x0 /∈ E(X,D) • | · |∞] as follows:

min |C −D|∞
subject to: x0 /∈ E(X,D)

D ∈ Nq×n
Cij = Dij, for all (i, j) ∈ S.

(8.1)

With the notation [α•β•γ], this problem is denoted by [D ∈ Nq×n,∀(i, j) ∈
S : Dij = Cij •x0 /∈ E(X,D)• | · |∞]. Theorems 11, 12, and 13 can be extended
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to Problem 8.1. It requires to modify the definition of Dk as follows, for all
i ∈ I, j ∈ J ,

Dk
ij :=


max{0, Cij − k}, if j ∈ J1 and (i, j) ∈ S̄,
Cij + k, if j ∈ J0 and (i, j) ∈ S̄,
Cij, otherwise,

as well as the definition of D 	 E, for all i ∈ I, j ∈ J ,

(D 	 E)ij :=


max{0, Dij − Eij}, if j ∈ J1 and (i, j) ∈ S̄,
Dij + Eij, if j ∈ J0 and (i, j) ∈ S̄,
Dij, otherwise.

It is easy to show that Theorems 11, 12, and 13 remain valid with these
modifications. However, Lemma 8 cannot be applied in this situation as illus-
trated in the following instance:

max f1(x) = 1x1 + 2x2
max f2(x) = 4x1 + 1x2

subject to: x1 + x2 6 1
x1, x2 ∈ {0, 1},

(8.2)

where {v1, v2, v3} = {(1, 0); (0, 1); (0, 0)} is the feasible set, {v1, v2} is the
efficient set. Lemma 8 states that the optimal solution of [•v2 /∈ E(X,D) •
| · |∞] is bounded by maxi∈I,j∈J{v2jCij} that is equal to 2. However, if S =
{(1, 1); (1, 2); (2, 2)} is the set of stable components, then there is no feasible
solution to Problem 8.1. In this case, by convention, the stability radius of v2

is equal to infinity. However, the use of Algorithm 9, to solve Problem 8.1,
requires to fix the value of an upper bound on the optimal solution value. For
this purpose, in practice, one would consider the value of n · q ·maxi∈I,j∈J{Cij}
as being large enough to represent an adequate upper bound on the stability
radius, because this modification would completely change the initial profits.

Consider, as a first illustrative example, the following knapsack instance:

max f1(x) = 10x1 + x2 + 2x3
max f2(x) = 2x1 + 8x2 + 10x3

subject to: x1 + x2 + x3 6 1
x1, x2, x3 ∈ {0, 1},

(8.3)

where {v1, v2, v3, v4} = {(1, 0, 0); (0, 1, 0); (0, 0, 1); (0, 0, 0)} is the feasible set,
{v1, v3} is the efficient set, and all components are unstable. When solving
[•x0 /∈ E(X,D) • | · |∞] on each efficient solution, the stability radii of v1 and
v3 are 3 and 0, respectively. It means that v1 remains efficient even if one
increases or decreases by 3 the profit of each item (keeping such profits as
non-negative), whereas there exists a profit matrix with distance 1 that leads
to transform v3 into a non-efficient solution. This strong difference does not
appear when looking only at the non-dominated set in the objective space given
by {(10, 2); (2, 10)}. It is due to the fact that all feasible solutions in Problem
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8.3 are independent (the intersections between the feasible sets of items are
empty) and to the existence of the non-efficient solution v2 that is very close to
v3 in the objective space. Indeed, the independence implies that the outcome
of a solution can be improved or deteriorated without modifying the outcome
of another solution. Therefore, the outcome of v3 can be deteriorated and the
outcome of v2 can be improved without modifying the outcome of v1. This
explains the difference between v1 and v2 in terms of stability.

Let us consider the influence of stable components on this instance. If the
profit of the second item is stable, then the stability radius of v3 is increased
to 1, because all the modifications to have v2 dominate v3 must be applied on
the third item.

Consider, as a second example, the following instance:

max f1(x) = 10x1 + x2 + x3
max f2(x) = 2x1 + 8x2 + 2x3

subject to: 2x1 + x2 + x3 6 2
x1, x2, x3 ∈ {0, 1},

(8.4)

where {v1, v2, . . . , v5} = {(1, 0, 0); (0, 1, 0); (0, 1, 1); (0, 0, 1); (0, 0, 0)} is the fea-
sible set, {v1, v3} is the efficient set, and all components are unstable. Even
though the image of the feasible set in the objective space is the same for this
second instance, the stability radii are different. Their values are both equal
to 3. This is because, in this case, v2 is a subset of v3, which implies that any
modification to the outcome of v2 leads to a modification to the one of v3. In
other words, for all profit matrices D ∈ Nq×n : Dv3 = Dv2. This explains why
v3 is more stable in this second example.

Consider, as a third example, the following instance:

max f1(x) = 2x1 + 4x2
max f2(x) = 4x1 + 2x2

subject to: x1 + x2 6 1
x1, x2 ∈ {0, 1},

(8.5)

where {v1, v2, v3} = {(1, 0); (0, 1); (0, 0)} is the feasible set, {v1, v2} is the
efficient set, and the set of stable components is S = {(1, 1); (2, 1)} (the first
item’s profits are stable). The stability radii of v1 and v2 are both equal to
1. This shows that even though v1 is only composed of a single stable item
and v2 of a single unstable item, both have the same stability radius. If all
components are unstable, then the stability radii of v1 and v2 are both equal
to 0. This shows the influence of stable components on the stability radius.

Even though the situations presented in this section can be easily tackled,
we should remember that such an analysis would become tedious in large
scale instances with complex combinatorial structures. This also shows the
usefulness of computing the stability radius for providing information on the
underlying structure of the feasible set.
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8.2 Compromise solutions in project

portfolio selection with multiple experts

Project portfolio selection is a common problem that frequently includes the
evaluation of each project by multiple experts (Tian et al. 2005, Shih et al.
2005). It requires to select a subset of projects that satisfies a set of con-
straints and represents a compromise among the group of experts. Traditional
constraints are budget satisfaction and project dependencies.

In this context, let us assume that the expert’s evaluations are of a quan-
titative nature as illustrated in the following example. Consider a company
that engages a call for proposals for R&D projects that would be operated in
the forthcoming years. Each project is then evaluated by estimating its net
present value (NPV). However, this quantity is non-unique, because it requires
fixing the rate of return and the period to observe. It might be calculated over
a week, a month, etc. As a result, a group of experts is hired to assess the
proposals. It is decided that each expert can choose how the net present value
is evaluated. Based on these evaluations, the portfolio must maximize the
net present value of each expert and satisfy a budget constraint. This deci-
sion making task is modeled as a multi-objective combinatorial optimization
problem, where each objective function is an expert’s evaluation.

A usual approach to tackle this problem consists of building a utility func-
tion to quantify the performance of each portfolio. A simple way to build such
a utility function would be to aggregate the experts evaluations by the geomet-
ric or the arithmetic mean (Forman and Peniwati 1998, Saaty 2005, 1999). In
these cases, the evaluations of each expert are aggregated in such a way that
the group may be seen as a new “individual”. This leads to a classical project
portfolio problem where only one decision maker is involved.

Another way to deal with this problem is to model it as a multi-objective
combinatorial optimization problem where each objective function is an ex-
pert’s point of view over the portfolios. This judgment is the sum of the
expert’s evaluation of the projects selected in the portfolio. A portfolio is said
“ideal” if it maximizes the judgments of all experts. Let us observe that if
there exists an ideal portfolio, then there is a consensus among the experts on
this portfolio. Based on this observation, several concepts of compromise port-
folios can be defined. The first one is to find a portfolio (or a set of portfolios)
that is as close as possible to the ideal portfolio (Zeleny 1974). This leads to a
set of compromises, which depend on the choice of a distance function. Let us
consider the efficient set and the ideal solution in Figure 8.1. In this example,
the compromise solution with respect to the Euclidean distance is v3, because
it is the closest solution to f̄ .

A second concept of compromise is presented in this section, which shows
how we can use inverse optimization in this context. It is based on the following
observation: evaluations are not necessarily precise and a slight modification of
their value could be accepted. Hence, the compromise solution may be deter-
mined by finding a minimal adjustment of the experts’ evaluations so that an
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Figure 8.1: A set of efficient solutions {v1, v2, v3} and the ideal outcome vector
f̄
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Figure 8.2: A set of feasible solutions {v1, v3} and the ideal solution v2

ideal portfolio exists. This leads to a new multi-objective optimization model
that is as close as possible to the original one, where there exists an ideal solu-
tion. For example, this could lead to transform the problem of Figure 8.1 into
the problem of Figure 8.2, where v2 is the compromise solution. Our approach
also allows, in a certain sense, to measure how the experts are conflicting with
each other and could indicate potential conflicts among experts on the eval-
uations of the projects. This information could be used by experts during a
negotiation phase.

This concept of compromise is closely related to inverse multi-objective op-
timization. Indeed, it is easy to see that a compromise can be obtained through
the minimal adjustment of the parameters, in such a way that the cardinality of
the image of the efficient set in the objective space is equal to one. This precise
question has been covered in Chapter 7 when we solved [•|ND(X,D)| = 1•]
. A second algorithm can be used to compute the compromise solution. It
requires to solve the inverse problem [•{Dx0} = ND(X,D)•] for each feasible
solution, where the inverse problem is solved by a cutting plane approach.

These two methods are studied from a theoretical and a practical point
of view. Several properties, such as influence of non-discriminating experts,
monotonicity, and dominance are proved to be satisfied. Then, the compromise
solutions of an illustrative example are analyzed and compared to the ones



8.2. COMPROMISE SOLUTIONS IN PROJECT PORTFOLIO
SELECTION WITH MULTIPLE EXPERTS 87

obtained by the Zeleny’s procedure.

Concepts and notation

Let I = {1, 2, . . . , i, . . . , q} denote a set of experts, and J = {1, 2, . . . , j, . . . , n}
a set of items. The evaluation of an expert i ∈ I over each item j ∈ J is denoted
by Cij ∈ N. The portfolio selection problem (PSP) consists of selecting a subset
S ⊆ J , such that the sum of the evaluations of the elements belonging to S
is “maximized” and simultaneously satisfies a set of constraints. The set of
constraints is defined by the system Ax 5 b, where x ∈ {0, 1}n is the incidence
vector of S, A ∈ Rm×n, and b ∈ Rm. The problem can be stated as follows:

“ max ” F (x) = {f1(x), f2(x), . . . , fi(x), . . . , fq(x)}
subject to: Ax 5 b

xj ∈ {0, 1}, j ∈ J.
(PSP)

where fi(x) =
∑

j∈J Cijxj, for all i ∈ I. Consequently, an instance of the PSP
problem is a particular multi-objective combinatorial optimization problem.
Indeed, it is defined by a feasible set X ⊆

{
x ∈ {0, 1}n

}
, and a profit matrix

C ∈ Nq×n. In what follows we will denote (X,C) such an instance.

The relative importance of each expert i ∈ I is assumed to be given by a
weight λi > 0, with

∑
i∈I λi = 1. Hence, two well-known procedures could be

applied to handle such a situation. The first one consists of computing the
geometric mean of evaluations, for all projects j ∈ J :

G(Cj) =
∏
i∈I

Cλi
ij .

The second procedure consists of computing the arithmetic mean of the
evaluations, for all projects j ∈ J :

A(Cj) =
∑
i∈I

λiCij.

Those transformations lead to a new PSP reduced to one artificial expert
(q = 1). The first one leads to the objective function

∑
j∈J G(Cj)xj and the

second one leads to
∑

j∈J A(Cj)xj.

Another way to handle such a situation would be to find the solutions
that are as close as possible to the ideal outcome vector denoted by f̄ =
(f̄1, f̄1, . . . , f̄q), where f̄i(x) = maxx∈X fi(x). The distance of a feasible solution
x ∈ X to the ideal vector, with respect to an expert i ∈ I, is denoted by
di(x) = |fi(x) − f̄i|. Hence, the distance to the ideal vector can be measured
as the weighted Lp norm denoted by Lp(λ, x) = [

∑
i∈I λ

p
i d
p
i ]

1/p. Therefore the
compromise set is made up of all the feasible solutions that minimize Lp(λ, x).
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Theoretical developments

The new concept of compromise, based on inverse optimization, is formalized
in this section. Let (X,C) denote a PSP and (X,D∗) a minimal adjustment of
(X,C) such that there exists an ideal solution in (X,D∗). This ideal solution
is a compromise to (X,C). More formally, seeking for a compromise solution
to a PSP can be stated as follows.

min δ(C,D)
subject to: |ND(X,D)| = 1

D ∈ Zq×n.
(CPSP)

where δ : Rq×n × Rq×n → R+ denotes a distance function between two profit
matrices. Let D∗ denote an optimal solution to CPSP. Every solution x∗ ∈ X,
such that for all x ∈ X : D∗x∗ = D∗x is a compromise solution to PSP.

As explained previously, this model is closely related to the inverse multi-
objective optimization problem [•{Dx0} = ND(X,D)•]. Hence a compromise
can be reached by solving this inverse problem for all feasible solution x0 ∈ X.

Let us analyze the nature of some optimal solutions of the inverse problem
[•{Dx0} = ND(X,D)•]. Based on a partition of J defined by J0 = {j ∈ J :
x0j = 0} and J1 = {j ∈ J : x0j = 1}, the following theorem establishes that an
optimal solution D∗ of [•{Dx0} = ND(X,D)•] can be built by decreasing, or
keeping equal, Cij, for all j ∈ J0 and by increasing, or keeping equal, Cij, for
all j ∈ J1, for all i ∈ I.

Theorem 16. For every instance of [•{Dx0} = ND(X,D)•] with profit matrix
C, there exists an optimal solution D∗ ∈ Nq×n of [•{Dx0} = ND(X,D)•] such
that ∀j ∈ J0 : D∗ij 6 Cij and ∀j ∈ J1 : D∗ij > Cij, with i ∈ I.

Proof. Let D ∈ Nq×n denote any optimal solution of [•{Dx0} = ND(X,D)•].
Define the following sets for all i ∈ I : J1<

i = {j ∈ J1 : Dij < Cij}, J0>
i = {j ∈

J0 : Dij > Cij}. By definition of D, Dx0 = Dx, for all x ∈ X. Consider a
matrix D∗ ∈ Nq×n defined as follows, for all i ∈ I, j ∈ J :

D∗ij :=

{
Cij, if j ∈ {J0>

i ∪ J1<
i }

Dij, otherwise.
(8.6)

Let us show that if Dx0 = Dx, then D∗x0 = D∗x. This is equivalent to
show that the following condition holds: if D(x0 − x) = 0, then D∗(x0 − x) =
0. The profit matrix D∗ is introduced into the first inequality as follows,
(D+D∗−D∗)(x0−x) = 0, which leads to write: D∗(x0−x) = (D∗−D)(x0−x).
From Equation 8.6 and the definition of J1, one may deduce that, for all j ∈ J1,
(x0 − x)j > 0 and (D∗ij − Dij) > 0. Similarly, for all j ∈ J0, (x0 − x)j 6 0
and (D∗ij − Dij) 6 0. Therefore, (D∗ − D)(x0 − x) = 0 and consequently
D∗(x0 − x) = 0. This implies that D∗ is a feasible solution of [•{Dx0} =
ND(X,D)•] and therefore an optimal one y definition of D∗ (see Equation
8.6).
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Figure 8.3: The set of feasible solutions of the PSP given in Equation 8.7

Let us illustrate this theorem with the following instance (X,C) of PSP:

C =

(
1 1 1 3 0
1 1 1 4 7

)
, X =


x1 = (1, 1, 1, 0, 0)
x2 = (0, 0, 0, 1, 0)
x3 = (0, 0, 0, 0, 1)

, (8.7)

where Cx1 = (3, 3), Cx2 = (3, 4), Cx3 = (0, 7), and E(X,C) = {x2, x3}. The
image of the efficient set in the objective space is presented in Figure 8.3. If
the L∞ norm is considered, then, from Theorem 16, the best profit matrices
at distance 1 from C so that x1, x2, or x3 would become ideal are C1, C2, and
C3, respectively.

C1 =

(
2 2 2 2 0
2 2 2 3 6

)
, (8.8)

C2 =

(
0 0 0 4 0
0 0 0 5 6

)
, (8.9)

C3 =

(
0 0 0 2 1
0 0 0 3 8

)
. (8.10)

These profit matrices imply that only x1 becomes an ideal solution with a
profit matrix at distance 1 from C. Therefore, C1 is an optimal solution to
CPSP and x1 is a compromise solution. It is worth stressing that this compro-
mise is not an efficient solution in the initial problem. Therefore, this method
does not satisfy the dominance property, which can be stated as follows: “If
every expert prefers portfolio A over portfolio B, then portfolio B cannot be
selected by the group”.

Therefore, two algorithms can be developed to solve CPSP. The first one
requires to solve [•{Dx0} = ND(X,D)•] for each feasible solution. This al-
gorithm can be adapted to ensure the dominance property by restricting the
domain on the efficient set (i.e., by solving [•{Dx0} = ND(X,D)•] on each
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efficient solution). The second algorithm solves CPSP by a cutting plane ap-
proach (i.e., by solving [•|ND(X,D)| = 1•] ). However, this second approach
does not ensure the dominance property.

Computational experiments

The purpose of this section is to report the performance of Algorithm 12 and
Algorithm 13 (in terms of CPU time) for computing compromise solutions.
The design of the experiments is the same as the one presented in Section
7.4. Both algorithms were implemented in the C# programming language and
linear programs were solved by using the Cplex solver through the C# library.

Algorithm 12 is applied to each efficient solution. The purpose of these
experiments is not to compare the performance of both approaches, because
they do not answer the same question (i.e. only the first procedure ensure the
dominance property), but to determine if these algorithms could be used in
practice, i.e., if they can find a compromise solution in a reasonable amount
of time.

CPU time (s)
R = 100 R = 1000

n Avg. Std. dev. Min. Max. Avg. Std. dev. Min. Max.
10 0.20 0.18 0.01 0.86 0.34 0.27 0.02 1.41
20 0.34 0.26 0.02 1.44 0.55 0.24 0.11 1.02
30 0.43 0.23 0.11 1.08 0.90 0.47 0.21 1.88
40 0.63 0.30 0.20 1.50 1.41 0.64 0.34 2.95
50 0.98 0.47 0.24 2.65 2.03 0.77 0.73 4.18
60 1.59 1.42 0.41 8.34 3.72 1.68 1.08 8.25

Table 8.1: Impact of varying the number of variables n and data range R on
performance of Algorithm 12 with a group of instances with P = 0.5.

CPU time (s)
R = 100 R = 1000

n Avg. Std. dev. Min. Max. Avg. Std. dev. Min. Max.
10 0.21 0.13 0.02 0.50 0.24 0.09 0.02 0.42
15 0.72 0.61 0.04 2.40 0.94 0.62 0.03 3.54
20 4.39 5.12 0.04 27.21 3.83 3.30 0.39 13.18
25 23.19 22.91 0.04 86.63 16.99 15.60 5.66 88.65

Table 8.2: Impact of varying the number of variables n and data range R on
performance of Algorithm 13 with a group of instances with P = 0.5.

Computational results are presented in Tables 8.1 and 8.2. When con-
sidering Algorithm 12, the influence of R is significant. Indeed, the average
computation time is roughly doubled when R is multiplied by 10. In Algo-
rithm 13, the value of R does not influence the computation time. It is easy
to see that Algorithm 12 is much more efficient than Algorithm 13 and could
be more easy to use in practice. Algorithm 12 is more efficient, because the
domain search is reduced to the efficient set. However, this algorithm can be-
come unusable for large scale instances, because the size of the efficient set can
be exponential in the size of the problem instance.
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Theoretical study of CPSP

The purpose of this section is to study different properties that should be
satisfied by the method (Problem CPSP) proposed in this chapter. The first
property is called non-influence of non-discriminating experts and it can be
stated as follows: “A non-discriminating expert has the same point of view on
each portfolio. If a portfolio is a compromise, then it remains a compromise if
a non-discriminating expert is taken into account (i.e., is added to the group
of experts)”. The proof of this theorem requires to extend the notation of
[•{Dx0} = ND(X,D)•] to any instance of PSP . For example, for an instance
(Xa, Ca) it is denoted by [•{Dax

0} = ND(Xa, Da) • δ(Ca, Da))]. This inverse
problem consists of finding a profit matrix Da ∈ Nq×n as close as possible to
Ca such that Dax

0 is an ideal outcome vector with respect to (Xa, Da).

Theorem 17. Problem CPSP is not influenced by any non-discriminating
expert.

Proof. Let (X,C) denote a PSP with C a q × n profit matrix. Let x0 be a
compromise for CPSP. Let C̃ ∈ N(q+1)×n be an extension of C with a non-
discriminating expert, where for all i ∈ I and j ∈ J : C̃ij = Cij, and the values
C̃(q+1)j are defined in such a way that for all x, y ∈ X : (C̃(q+1))x = (C̃(q+1))y.
This means that the (q+ 1)-th expert has the same point of view on each pair
x, y of portfolios.

Let D0 be an optimal solution of [•{Dx0} = ND(X,D) • δ(C̃,D)] and D1

be an optimal solution of [•{Dx1} = ND(X,D) • δ(C̃,D)], where x1 ∈ X is
any portfolio. Let us prove that δ(C̃,D0) 6 δ(C̃,D1), for all x1 ∈ X. This
would implies that x0 is also a compromise solution for (X, C̃).

It is easy to check that C̃(q+1) = D1
(q+1) = D0

(q+1), because the perfor-
mance of each portfolio is already the same on this objective and a modifi-
cation of these profits would only lead to increase the distance. Indeed, let
us assume that D0

(q+1) 6= C̃(q+1). By definition of D0, D0x0 = D0x, for all

x ∈ X. One may build another matrix D0′ ∈ N(q+1)×n such that D0′
i = D0

i

for all i ∈ I and D0′

(q+1) = C̃(q+1). It is easy to see that D0′x0 = D0′x, be-

cause (C̃(q+1))x
0 = (C̃(q+1))x. Hence, this matrix is also a feasible solution to

[•{Dx0} = ND(X,D) • δ(C̃,D)].

Therefore, δ(C̃,D0) 6 δ(C̃,D1), otherwise it would contradict the hypoth-
esis that x0 is a compromise to (X,C). This implies that x0 remains a com-
promise.

Let us notice that an expert who has the same evaluation on each project
(i.e., an expert i ∈ I such that Cij = Cik, for all j, k ∈ J) is a discriminating
expert, because that would express that a bigger portfolio is preferred to a
smaller one. Let us illustrate this case with the following instance (X,C) of
PSP:
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C =

(
1 1 1 1 1
1 1 1 4 7

)
, X =


x1 = (1, 1, 1, 0, 0)
x2 = (0, 0, 0, 1, 0)
x3 = (0, 0, 0, 0, 1)

. (8.11)

In this example, the first expert has the same evaluation on each project.
However, this expert is not a non-discriminating expert, because the portfolio
x1 is better than portfolios x2 and x3.

The second property is called monotonicity and is stated as follows: “If
a portfolio is not a compromise solution, then it cannot become a compro-
mise without improving the evaluations of the projects belonging to such a
portfolio”.

Theorem 18. Problem CPSP satisfies the monotonicity property.

Proof. Let x∗ be a compromise solution, D∗ be an optimal solution to [•{Dx∗} =
ND(X,D)•]. Consider a feasible solution x0 ∈ X such that δ(D∗, C) <
δ(D0, C), where D0 is an optimal solution to [•{Dx0} = ND(X,D)•] (i.e.,
x0 is not a compromise solution).

Let us build a profit matrix, denoted by C̃, such that the evaluations of
the projects belonging to x0 will not be improved. More formally, C̃ = C + Ẽ,
where Ẽ ∈ Rq×n satisfies the following conditions: for all i ∈ I, j ∈ J : Ẽij 6 0
and for all j ∈ J , if x0j = 0, then for all i ∈ I : Ẽij = 0. This transformation of
C does not improve the evaluations of the projects belonging to x0.

Let D̃∗ denotes an optimal solution to [•{Dx∗} = ND(X,D) • δ(C̃,D)]
and D̃0 an optimal solution to [•{Dx0} = ND(X,D) • δ(C̃,D)]. The solution
D̃0 is a transformation of C̃, because it is an optimal solution to [•{Dx0} =
ND(X,D) • δ(C̃,D)]. Therefore, D̃0 = C̃ + E0, where E0 ∈ Nq×n. This leads
to write D̃0 = C + Ẽ + E0, because C̃ = C + Ẽ. Similarly, one may write
D̃∗ = C + Ẽ + E∗.

Let us assume that thanks to the transformation of C into C̃, x0 becomes
a better potential compromise solution than x∗, i.e., δ(D̃∗, C̃) > δ(D̃0, C̃).
Therefore, D̃0x0 ≥ D̃0x∗. If true, this would contradict the monotonicity
property. This is equivalent to:

(C + Ẽ + E0)x0 ≥ (C + Ẽ + E0)x∗. (8.12)

After transformation, it leads to the following equation:

(C + E0)x0 ≥ (C + E0)x∗ + Ẽ(x∗ − x0). (8.13)

From the definition of Ẽ, we may deduce that, for all j ∈ J with x0j = 1 :

(x∗−x0)j 6 0 and Ẽij 6 0. Similarly, for all j ∈ J with x0j = 0, (x∗−x0)j > 0

and Ẽij = 0. Therefore, Ẽ(x∗ − x0) = 0 and consequently (C +E0)x0 ≥ (C +
E0)x∗. Moreover, since the distance function is invariant under a translation
operation, it can be deduced that δ(C + E0, C) < δ(C + E∗, C), because
δ(D̃0, C̃) < δ(D̃∗, C̃). Therefore, x0 is a better potential compromise solution
than x∗. This contradicts the hypothesis on x0 (i.e., δ(D∗, C) < δ(D0, C)).
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Figure 8.4: Image of the efficient set to Problem 8.14

Illustrative examples

The purpose of this section is to compare the compromise solutions obtained
by the methods presented in this paper with the ones obtained by the minimal
distance to the ideal. For this purpose, an illustrative example is used to
present cases where the methods give different results.

Consider the following knapsack instance:

max f1(x) = 2x1 + 4x2 + 1x3
max f2(x) = 2x1 + 1x2 + 6x3

subject to: x1 + x2 + x3 6 1
x1, x2, x3 ∈ {0, 1},

(8.14)

where {v1, v2, v3} = {(1, 0, 0); (0, 1, 0); (0, 0, 1)} is the efficient set. Let us com-
pute the distance between the ideal vector and the image of each efficient
solution (see Table 8.3).

Feasible solution l1 l∞

v1 6 4
v2 5 5
v3 3 3

Table 8.3: Distance between each efficient solution and the ideal outcome
vector for Problem 8.14.

In this case, the efficient solution v3 is considered as a compromise for both
distance functions. The minimal adjustments to transform these solutions into
ideal ones are given in Table 8.4.

With respect to all methods and all measures, v3 is always preferred to v2.
It is natural, because in both cases the portfolio is evaluated to 1 by an expert
and the second evaluation is always better for v3. When taking into account
the distance to the ideal vector, v3 is always the best solution. However, v1

could be considered as a compromise too, because it is a balanced solution.
This is indeed obtained in the minimal adjustment.
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Feasible solution l1 l∞ || · ||1 || · ||∞
v1 6 2 2 4
v2 5 3 3 5
v3 3 2 2 3

Table 8.4: Minimal adjustments to transform each efficient solution into an
ideal solution for Problem 8.14.

8.3 Conclusion

In this chapter, inverse multi-objective optimization has shown its usefulness
in two fields of applications.

In the first application, we have addressed the problem of computing the
stability radius of an efficient solution in the context of MOCO. More precisely,
we focused on the maximal perturbation of the objective functions coefficients
such that a given solution remains efficient. This is measured under the Cheby-
shev norm and the coefficients are restricted to natural numbers. The stability
radius of an efficient solution is modeled as a particular inverse optimization
problem. The model is solved by an algorithm which only requires to solve a
logarithmic number of mixed integer programs. It contains a linear number
of constraints and variables compared with the instance of the combinatorial
optimization problem if its feasible set can be defined by linear constraints.
To the best of our knowledge, this algorithm is the first one that allows to
compute the stability radius in a reasonable amount of time.

In the second application, we have addressed the problem of computing
a compromise solution in the context of portfolio selection. More precisely,
we focused on the minimal adjustment of the objective functions coefficients
of a MOCO in such a way that an ideal solution exists in a multi-objective
combinatorial optimization problem. To the best of our knowledge, this is an
innovative definition of the concept of compromise.

Two inverse problems are considered to compute such a compromise so-
lution. The first one consists of solving an inverse optimization problem for
each efficient solution. The second one is based on a cutting plane algorithm
which adds constraints on the profit matrix at each iteration. Even though,
the first algorithm is more efficient than the second one, both approaches re-
main significant because the first one solves CPSP and ensures the dominance
property.

We also ensured the good behavior of this approach by a theoretical anal-
ysis. We have proved that monotonicity, dominance, and influence by non-
discriminating expert properties are satisfied by this approach.



Chapter 9

Conclusion

Before the beginning of this thesis, there was no research studying inverse op-
timization in the context of multi-objective problems. Motivated by our strong
interest in combinatorial optimization, we focused ourselves on inverse combi-
natorial problems. Because of its simple structure, the knapsack problem was
a good starting point for pursuing such a study. However, it was astonishing
to discover that the only work available on the inverse knapsack problem was
incorrect, yet it was never presented as such in other articles. This is why our
first research focused on the inverse knapsack problem.

The inverse knapsack problem has been defined and studied for both the
Chebyshev and Manhattan norms. In the case of the Chebyshev norm, the
problem has been proved to be co-NP-Complete. A pseudo-polynomial time
algorithm has been proposed to solve it, which runs in O(nW logC), where W
is the capacity and C is bounded by the largest profit value. The experimental
results have shown the efficiency of this procedure for large scale instances. The
link between inverse problems and bi-level programming has also been consid-
ered. However, the existing approach for solving such bi-level problems cannot
be used in practice for large scale instances. In the case of the Manhattan
norm, the problem has been proved to be co-NP-Hard. This problem has not
been proved to belong to co-NP, because the building of a certificate requires
to solve the knapsack problem. Our approach to solve this problem consisted
of formulating it as a linear integer program. However, computational experi-
ments have shown that only small instances can be handled by this approach.
The link between inverse problems and bi-level programming has also been
considered, but with the same drawbacks in terms of computation time.

With the knowledge brought by this study of the inverse knapsack problem,
we were able to face with the challenge of extending inverse optimization to the
context of multi-objective problems. We have proposed to define the inverse
of a multi-objective optimization instance as the problem of finding a minimal
adjustment of this instance inducing a change in the efficient set and/or in
the non-dominated set. This broad definition raised many inverse problems
that have been described by a triplet. The first component of this triplet
describes how the instance is allowed to be modified, the second one provides
a set of conditions on the efficient set (and/or on the non-dominated set) of

95
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the modified instance, and the third one describes how the modification is
measured. This way of describing each inverse problem has shown the extent
of this new field of research.

A selection of inverse multi-objective combinatorial optimization problems
have been solved. Several proposed approaches have strongly benefited from
our research on the inverse knapsack problem. We have based the procedures
on traditional optimization approaches such as branch-and-bound, branch-and-
cut, binary search, and integer programming. Many inverse problems have
been successfully solved. However, some of the proposed approaches were
computationally very expensive.

We have identified two fields of application where inverse multi-objective
optimization is of a significant interest. This provides a strong motivation for
studying inverse multi-objective problems.

In the first application, we have addressed the problem of computing the
stability radius of an efficient solution. More precisely, we have focused on
the maximal perturbation of the objective functions’ coefficients such that a
given solution remains efficient. This is computed by solving one of the inverse
problems that we had selected. To the best of our knowledge, this approach is
the first one that allows to compute the stability radius in a reasonable amount
of time.

In the second application, we have addressed the problem of computing
a compromise solution in the context of portfolio selection. More precisely,
we focused on the minimal adjustment of the objective functions’ coefficients
in such a way that an ideal solution exists in a multi-objective combinatorial
optimization problem. To the best of our knowledge, this is an innovative
definition of the concept of compromise. Two approaches based on inverse
problems, that we had selected previously, are proposed to address this ques-
tion. We also ensured the good behavior of this approach by a theoretical
analysis. We have proved that monotonicity, dominance, and influence by
non-discriminating expert properties are satisfied by this approach.

Perspectives

There are many obvious directions of research that could be pursued. For in-
stance, one may consider the use of other norms, the nature of the adjustment,
and constraints on the adjustment.

One of these natural directions of research could be used to address the fol-
lowing project selection problem (started from personal communications with
Jeffrey Keisler and Ralph Keeney in 2011, and Roy (1996)). Consider an or-
ganization that faces to a project selection problem in R&D with an annual
budgeting cycle. Every year a budget is negotiated and new projects are pro-
posed. Then, the organization has to decide on the continuation of projects
and the implementation of new ones. Experts in portfolio analysis share the
opinion that profits are hard to evaluate and therefore a feasible space for these
values rather than a precise one can be provided. The most adequate value
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should therefore belong to this interval but is unknown till completeness of the
project. However, in general, the more a project gets close to its end, the more
accuracy can be provided. Therefore profits should be updated each year. As
a consequence, the ongoing project portfolio might no longer be an optimal
solution. Another important aspect, that should be taken into account, is the
interdependencies between projects, because positive synergies or complemen-
tarity may occur. Therefore, the organization should take into account the
ongoing project portfolio when selecting new ones.

The inverse optimization problem that could help to address this project
portfolio selection can be stated as follows. Consider a set of projects and a
set of ongoing projects, where the profit of each project is characterized by
an interval instead of a precise value. The inverse problem consists of finding
a value of profit for each project, that belongs to its respective interval, such
that there exists an optimal portfolio which contains the ongoing projects.

The fact that projects are characterized by intervals, also raises the question
of preprocessing. For example, one may ask the following question: “Does there
exist a profit vector, that is consistent with the intervals, such that a given
project belongs to the optimal solution?”. This could help to discard some
uninteresting projects in order to reduce the search space.

The distinction between supported and unsupported non-dominated solu-
tions should be also investigated. We could try to improve the efficiency of
several inverse problems by focusing only on the supported solutions, instead of
focusing on all the non-dominated solutions. For example, one may distinguish
the computation of non-dominated supported and unsupported solutions.

One could also consider the link between approximation algorithms and
inverse optimization in the context of multi-objective problems. Indeed, a new
approximation scheme, proposed by Orlin et al. (2008), takes its origin in in-
verse optimization. It relies on the following principles. Firstly, the parameters
of real-world problems are approximate. Secondly, if there exist a small ad-
justment of these parameters such that a given solution becomes an optimal
one, then this solution might be considered to be sufficiently good. As stated
previously, this is at the core of inverse optimization. This leads to a new
way of defining near-optimal solutions. An approximation algorithm could be
designed based on this principle. Such an algorithm could be more efficient
than an exact algorithm, because a small change of the parameters can often
simplify the problem. It would be worthwhile to study this new scheme in
the context of multi-objective optimization and to investigate the potential
benefits over traditional approaches.

In this thesis, we have proposed a way to define inverse multi-objective
optimization. However, one may consider other ways to define inverse opti-
mization in a multi-objective context. For example, if the adjustment of the
optimization instance is performed on two aspects, such as the profit vector and
the feasible set, then this adjustment could be evaluated by two distinct ob-
jective functions. Our definition of inverse multi-objective optimization could
also be extended in a more multi-objective perspective. Indeed, all inverse
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multi-objective optimization problems that have been considered in this thesis
are single-objective optimization problems. An inverse multi-objective opti-
mization problem could be a multi-objective optimization problem as well.
For example, the adjustment of each objective function’s coefficients could be
quantified by a distinct objective function in the inverse problem.



Appendix A

Computational Results

In this appendix are presented the results from the computational experiments
for the inverse {0,1}-knapsack problem (Chapter 6). The performance results
of Algorithm 7 are presented in Table A.1 and Table A.2. The performance
results of Problem 6.3 are presented in Tables A.3, A.4, A.5, and A.6.
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