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1. Introduction

A guiding question in differential geometry is the following: Given a family of geometric
objects, does there exist a best object in that family? It is often not obvious what
qualities should distinguish an object as “best” and the precise definition is tacitly part
of the question which, despite its vagueness, leads to numerous important notions and
problems. Indeed, many facets of differential geometry can be interpreted in terms of the
best object mantra. Examples include harmonic maps as best maps between Riemannian
manifolds, encompassing geodesics and minimal submanifolds, Einstein metrics as best
metrics on certain manifolds, extremal metrics as best metrics in a given Kähler class,
including Kähler–Einstein metrics or Hermite–Einstein metrics as best Hermitian metrics
on a holomorphic vector bundle over a Kähler manifold.

In many cases, including the above examples, the problem of finding best objects can
be phrased in terms of an elliptic, typically nonlinear partial differential equation. A
useful tool in the search for solutions is to consider a related parabolic problem leading
to the notion of geometric flows1. While not a priori easier than the original elliptic
problem, passing to the parabolic picture gives access to additional analytical techniques.
Furthermore, one might hope to relate the eventual nonexistence of solutions to the
elliptic equation to singularity formation along the parabolic flow.

A testimony to the utility of geometric flows is G. Perelman’s work on Ricci flow
entailing a proof of Thurston’s geometrisation conjecture via Hamilton’s programme
[28, 29, 24]. Following Perelman’s breakthrough in three-dimensional geometry, it has
been proposed by G. Tian – J. Song that Kähler–Ricci flow implements a general Kähler
version of the minimal model programme in algebraic geometry which aims to find the
best representative in the birational equivalence class of a given algebraic variety. It
is conjectured that on a general Kähler manifold the flow continues through singular-
ities and converges to an analytical minimal model endowed with a possibly singular
Kähler–Einstein structure [2]. Later, G. Tian – J. Streets proposed symplectic curva-
ture flow as a generalisation of Kähler–Ricci flow to almost Kähler and almost Hermitian
geometry with the hope of finding canonical structures in these cases [37]. Other promi-
nent examples are S. Donaldson’s existence proof of Hermite–Einstein metrics on stable
holomorphic bundles over algebraic surfaces using Hermitian Yang–Mills flow [9] or P.
Chruściel’s use of Calabi flow in the construction of Robinson–Trautman solutions to
Einstein’s equations in general relativity [8].

The principal objects of study in this thesis are twisted Calabi flow and time-dependent
Hermitian Yang–Mills flow which generalise their namesake flows in the sense that they

1Here, the term geometric flow is used in the broader sense and denotes any (parabolic) evolution
equation for geometric quantities. It is not necessarily a gradient flow.
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involve additional external data. In the case of twisted Calabi flow, the Kähler–Ricci
form ρ is replaced by ρ` α, where the twist α is a time-dependent family of two-forms.
Time-dependent Hermitian Yang–Mills flow is obtained from Hermitian Yang–Mills flow
by allowing the Kähler metric on the base to depend on the time parameter. Both
arise as first order approximations to Calabi flow on two types of adiabatic fibrations
considered by J. Fine [13] and Y.-J. Hong [22, 21] respectively.

It is shown that on a compact Riemann surface of genus at least one and for smooth
initial data twisted Calabi flow exists for all positives times provided that the twist αptq
is negative semidefinite and stays within a fixed cohomology class. Moreover, if the twist
converges to a limit α8 as t Ñ 8, then the solution converges to the α8-twisted cscK
metric considered by J. Fine [13, 14] and J. Song – G. Tian [35].

Similar results are obtained for time-dependent Hermitian Yang–Mills flow. If X is a
compact Riemann surface with Kähler class κ and E Ñ X a holomorphic vector bundle,
then for any smooth family of Kähler forms ωptq in κ and any Hermitian metric h0 on
E, Hermitian Yang–Mills flow with respect to ωptq starting at h0 exists for all times.
If E Ñ X is κ-slope stable and ωptq converges to ω8 at an exponential rate, then the
solution converges exponentially to a ω8-Hermite–Einstein metric.

In addition, the thesis presents several explicit solutions to symplectic curvature flow
which can be grouped into two types: left invariant solutions on nilmanifolds and static
non-Kähler solutions on twistor fibrations over hyperbolic space. The latter are the first
compact examples of potential limit objects for symplectic curvature flow that do not
admit a Kähler structure.

Remark. By a slight abuse of language, both, complex manifolds admitting Kähler
metrics and complex manifolds with a given Kähler structure are referred to as Kähler
manifolds. In addition, regarding the complex structure as fixed, the term “Kähler met-
ric” can refer to a Kähler form or the corresponding Riemannian metric, understanding
that one uniquely defines the other.



2. Twisted Calabi Flow

2.1. Introduction

One of the key features in the study of compact Kähler manifolds is that the Kähler
metrics in a given Kähler class κ can be parametrised by functions. If pX, J, ω0q is Kähler
with ω0 P κ, then owing to the BB-lemma any other Kähler form in κ can be written
as ω0 ` iBBϕ with the Kähler potential ϕ P C8pX,Rq being unique up to a constant.
Conversely, the two-form ωϕ :“ ω0 ` iBBϕ for ϕ P H :“ tϕ P C8pX,Rq |ω0 ` iBBϕ ą 0u
defines a Kähler metric in κ, so the set of Kähler metrics in κ can be identified with
H{R. It is, however, often more convenient to work with Kähler potentials than with
the metrics themselves. As an open subset of C8pX,Rq, H carries the structure of a
Fréchet manifold, on which

pf1, f2qϕ :“

ż

X
f1 ¨ f2

ωnϕ
n!
, f1, f2 P C

8pX,Rq “ TϕH .

defines a Riemannian metric. This metric, independently due to Mabuchi, Semmes and
Donaldson, formally turns H into nonpositively curved symmetric space. In addition,
proving the existence of weak geodesics, Chen [6] showed that H is a genuine metric
space. These properties play an important role in the search for canonical metrics in
Kähler geometry.

The question if a given Kähler class contains a canonical representative has been
attributed to Calabi who proposed to look for extremal metrics, i.e. critical points of
the Calabi energy

Ca : HÑ R , ϕ ÞÑ Capϕq “

ż

X
pSpωϕq ´ Sq

2
ωnϕ
n!
. (2.1)

Here Spωϕq denotes the scalar curvature of the metric ωϕ and S the average scalar
curvature which is a cohomological constant and independent of ϕ P H. The variation
of Ca at ϕ P H in direction ψ P TϕH “ C8pX,Rq is given by

pdCaqϕψ “ 2

ż

X
pD˚ϕDϕSpωϕqq ¨ ψ

ωnϕ
n!
, (2.2)

where the Lichnerowicz operator Dϕ “ B∇ acting on a function f is defined by applying
the B operator on the holomorphic tangent bundle pTX, Jq to ∇f . The L2pX,ωϕq-
adjoint of Dϕ is denoted by D˚ϕ and the subscript indicates that all operations are
performed with respect to the metric gϕ defined by ωϕ. Integrating by parts, one sees that
kerD˚ϕDϕ “ kerDϕ, so ωϕ is extremal precisely if the gϕ-gradient of the scalar curvature



12 2. Twisted Calabi Flow

defines a holomorphic vector field. If X does not admit nontrivial holomorphic vector
fields — or more generally the Futaki invariant of pX,κq vanishes — this is equivalent
to the scalar curvature being constant, i.e. Spωϕq “ S.

Encompassing constant scalar curvature Kähler and Kähler–Einstein metrics, extremal
Kähler metrics have been the object of extensive study (cf. e.g. [30] for an overview). A
method Calabi himself proposed to find extremal metrics is to deform an initial metric
via a fourth order parabolic evolution equation known as Calabi flow. The Calabi flow
equation reads

Btϕ “ ´pSpωϕq ´ Sq or Btω “ ´iBBSpωq (2.3)

on the level of Kähler potentials and Kähler forms respectively. Calabi flow bears re-
semblance to (normalised) Ricci flow. Both compare variations in the metric defining
quantity — the Kähler potential in the case of Calabi flow and the metric itself in the
case of Ricci flow — to the only natural curvature tensor living in the same space, the
scalar and the Ricci curvature. This analogy, however, is only formal. Analytically, as a
fourth order equation, Calabi flow requires a different set of tools than the second order
Ricci flow. One does, for instance, not have a maximum principle and has to rely on
monotone quantities such as the Calabi energy (which is manifestly nonincreasing under
Calabi flow) to obtain a priori bounds. Calabi flow on compact manifolds has been con-
jectured to smoothly exist for all times and to converge to a constant scalar curvature
Kähler (cscK) metric at infinity, provided such metrics exist in the given Kähler class
(in [36] the author states that the long-time existence conjecture is due to Calabi and
attributes the convergence conjecture to Donaldson). J. Streets showed in [36] that the
long-time existence conjecture is true albeit in a very weak sense. A central motivation
for long-time behaviour conjectures is the existence of functional Ma : H Ñ R, called
the Mabuchi energy (or K-energy), whose defining property is

pdMaqϕψ “

ż

X
pSpωϕq ´ Sqψ

ωnϕ
n!

. (2.4)

The right hand side of (2.4) defines a closed one-form which by contractibility of H
has to be exact. If ϕ evolves according to (2.3), then BtMapϕq “ ´Capϕq, so Mabuchi
energy is decreasing and convex along Calabi flow. Moreover, Chen–Tian [7] showed
that Mabuchi energy is bounded from below if the Kähler class admits cscK metrics.
When H is equipped with the Donaldson–Semmes–Mabuchi metric, Calabi flow becomes
precisely the gradient flow of Mabuchi energy and in light of H being a nonpositively
curved metric space one might hope the flow to be well behaved [27].

In the case of compact Riemann surfaces, Calabi flow is fairly well understood. Start-
ing at an arbitrary initial Kähler metric, Calabi flow exists for all times and converges at
an exponential rate to a cscK metric of the same volume (that metric is unique except
on the Riemann sphere, where the Möbius group PGlp2,Cq acts biholomorphically and
generates a nontrivial family of Fubini–Study metrics, all of which are cscK). This was
first proved by P. Chruściel [8]. Later, X.X. Chen [5] gave a new proof using a slightly
different approach which has since been refined by M. Struwe [38]. All three authors
exploit the fact that on a Riemann surface any two Hermitian (and thus Kähler) metrics
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are conformally equivalent to parametrise Kähler metrics by eug0 for a reference Kähler
metric g0 of the same volume and rewrite the Calabi flow equation in terms of the log-
arithm u of the conformal factor. For analytical reasons, the authors choose g0 to be a
constant scalar curvature Kähler metric, thereby assuming a priori knowledge about the
existence of a suitable limit object provided by the unformisation theorem. S.-C. Chang
[4] later removed this assumption providing a new proof of the uniformisation theorem
using Calabi flow. Another specificity to Riemann surfaces exploited by the authors is
the existence of energy functionals decreasing along Calabi flow, for which it is unclear
whether they generalise to higher dimensions. Chruściel used a physically motivated
Bondi mass loss formula in addition to the fact that Calabi energy is decreasing in order
to derive a sufficiently strong a priori bound on u to prove long-time existence. In Chen’s
and Struwe’s proof, the analytic role of Bondi mass is fulfilled by the Liouville energy,
another functional on H decreasing along Calabi flow. In additional to being mathe-
matically more natural, the Liouville energy has been conjectured by Chen to admit a
higher-dimensional generalisation which would be useful in the general study of Calabi
flow.

The objective in this chapter is to study twisted Calabi flow on compact Riemann
surfaces of positive genus. Instead of cscK metrics, twisted Calabi flow is designed to
find so called twisted cscK metrics appearing in the work of Fine [13, 14] and of Song–
Tian [35] which can roughly be understood as canonical metrics on the base of certain
fibrations retaining information on the varying moduli of the fibres. More abstractly,
given a closed real two-form α on a Kähler manifold pX,Jq, one can look within a given
Kähler class κ for solutions to the equation

Λωpρpωq ` αq “ Ŝ, (2.5)

where Ŝ is a cohomological constant, ρpωq the Kähler–Ricci form of the metric ω P κ
and Λω denotes the (pointwise) adjoint of wedging with ω. Note that Ŝ is cohomological
and only depends on the first Chern class of pX, Jq, the cohomology class of α and the
volume of the Kähler class rωs. Also observe that Λωρpωq “ Spωq which justifies calling
(2.5) the twisted cscK equation. On a Riemann surface of positive genus this equation
can always be solved uniquely if

ş

X α ď 0 and one can ask whether the solution can be
found via the twisted Calabi flow

Btϕ “ ´pΛωϕpρpωϕq ` αq ´ Ŝq . (2.6)

For the application in mind (cf. Chapter 4), it is important to allow α to vary in the time
parameter t. We show that on a compact Riemann surface of positive genus for negative
semidefinite twists αptq in a given cohomology class, the equation (2.6) admits a unique
smooth long-time solution. Furthermore, if αptq converges to a limiting twist α8 in a
suitably strong sense, then the solution to twisted Calabi flow converges exponentially
fast to the α8-twisted cscK metric.
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2.2. Notation

2.2.1. Parametrisation of Metrics

Throughout this chapter pX, J, ω0q denotes a compact Riemann surface of positive genus
with fixed complex structure J and a smooth background Kähler metric ω0. The back-
ground metric is used to define the space of Kähler potentials H and the metric corre-
sponding to a potential ϕ P H is denoted by ωϕ “ ω0 ` iBBϕ. In a local holomorphic
coordinate z “ x ` iy a Riemannian metric g is locally determined by gxx :“ gpBx, Bxq,
gxy “ gpBx, Byq and gyy “ gpBy, Byq. If g is J-invariant, then gxx “ gyy and gxy “ 0, so
any other J-invariant metric g1 can be expressed as g1 “ eug for u “ log g1xx{gxx. The
locally defined u is independent of the chosen holomorphic coordinate and defines a real
valued function on X. Since H2pX,Rq – R, a Kähler class is uniquely determined by its
volume. These considerations imply that Kähler metrics in rω0s can also be parametrised
as metrics of the same volume conformally equivalent to ω0 via

"

u P C8pX,Rq
ˇ

ˇ

ˇ

ˇ

ż

X
eu ω0 “

ż

X
ω0 “ volpX, rω0sq

*

.

2.2.2. Geometric Operators and Curvature

On a general Kähler manifold pX,ω), wedging with the Kähler form ω defines a map
Ωp,qpXq Ñ Ωp`1,q`1pXq, α ÞÑ α^ω. The (pointwise) adjoint of this map Λω : Ωp,qpXq Ñ
Ωp´1,q´1pXq is called contraction with ω. On a two-form α it can be computed as the
factor of proportionality between α^ ωn´1{pn´ 1q! and the volume form ωn{n!. In the
case of a Riemann surface pX,ωq, any two-form is of type p1, 1q and hence a pointwise
multiple of ω, i.e. given α P Ω2pX,Rq, Λωα is the unique smooth function such that
α “ Λωα¨ω. It follows from this description that if ω and ω1 are related by ω1 “ euω, then
Λω1 “ e´uΛω. For metrics parametrised by Kähler potentials ϕ P H, the contraction
Λωϕ is abbreviated by Λϕ.

The B-Laplacian associated to a Kähler metric ω on functions is defined by ∆ωf “
ΛωiBBf . It follows from the Kähler identities that ∆ω is one half of the full Riemannian
Laplacian. As with the contraction one has ∆ω1 “ e´u∆ω if ω1 “ euω and we abbreviate
∆ωϕ by ∆ϕ. Conformal factor and Kähler potential are related by p1 ` ∆0ϕq “ eu if
ωϕ “ ω0 ` iBBϕ “ euω0.

On a Kähler manifold pX,ωq of complex dimension n, one can conveniently compute
the Kähler–Ricci form ρpωq as the i times the curvature of the Chern connection on the
anti-canonical bundle K´1

X “ pT 1,0Xqn endowed with the Hermitian metric hω :“ ωn

which is locally given by Fhω “ Bh
´1
ω Bhω “ BB log hω. The scalar curvature is obtained

from the Kähler–Ricci form by contracting with ω, i.e. Spωq “ Λωρpωq. In the case of
a Riemann surface, the Kähler–Ricci forms of the background metric ω0 and euω0 are
related by

ρpeuω0q “ iFeuhω0 “ iBB logpeuhω0q “ iBBu` ρpω0q ,

so for the scalar curvature one has

Speuω0q “ Λeuω0ρpe
uω0q “ e´uΛ0piBBu` ρpω0qq “ e´up∆0u` Spω0qq . (2.7)
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Scalar curvature can also be seen as a map

Sc: HÑ C8pX,Rq , Scpϕq “ Spωϕq “ ΛϕiBB logωϕ ,

where in the last expression ωϕ is interpreted as a Hermitian product on the holomorphic
line bundle T 1,0X in a local trivialisation. From here (cf. also Appendix A.3) one obtains

pdScqϕ ¨ ψ “ ∆2
ϕψ ´ Scpϕq∆ϕψ

for the derivative of the scalar curvature map, which using the relation D˚ϕDϕψ “ ∆2
ϕψ´

Scpϕq∆ϕψ `
1
2 ¨ gϕpdScpϕq, dψq can be reexpressed as

pd Scqϕ ¨ ψ “ D˚ϕDϕψ ´
1

2
gϕpdScpϕq, dψq . (2.8)

2.2.3. Analysis

For various analytic arguments, it is necessary to allow metrics that are not a priori
smooth and to lower the regularity requirements on u. For our purposes the spaces
of interest are CkpX, gq and the Sobolev spaces LpkpX, gq which can be defined as the
completion of C8pXq with respect to the norms

}ϕ}CkpX,gq “

k
ÿ

j“0

sup
X
|∇jϕ| ,

}ϕ}LpkpX,gq
“

˜

k
ÿ

j“0

ż

X
|∇jϕ|p ω

¸

1
p

,

where all gradients and pointwise norms are taken with respect to the inner products
induced by the metric g on the respective tensors. To lighten the notation, explicit
mention of the metric is omitted if norms are taken with respect to the background metric
g0. The Sobolev embedding theorems provide continuous linear embeddings Lpk ãÑ Lql if

1

p
ď

1

q
`
k ´ l

2

and Lpk ãÑ C l if
1

p
ă
k ´ l

2

for integers k, l ě 0 and reals p, q ě 1. Moreover, the embeddings are compact whenever
the inequalities are strict (the second always is).

Remark. There exists a stronger version of the second embedding into Hölder spaces.
However, we only require the stated version.

As a boundary case of the Sobolev embeddings, L2
1 does not quite embed into C0, but

a function in L2
1 cannot have its Lp-norms grow too quickly in p. A precise statement is

provided by the Moser–Trudinger inequality.
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Proposition 2.2.1. If f P L2
1, then ef P L1. Moreover, there exist positive constants

C, µ such that
ż

X
ef ω0 ď Ce

µ}f}2
L2
1 .

The Gagliardo–Nirenberg interpolation inequalities, which in their general version per-
mit finer interpolation between Sobolev spaces than the embedding theorems are an
essential tool for the higher regularity analysis. Of interest here is only the following
case.

Proposition 2.2.2. Let 2 ď p ď 8 and j,m P N with j ă m. There exists a constant
C ą 0 such that for all f P L2

mpX, gq with
ş

X f ω0 “ 0 the following inequality holds:

}∇jf}Lp ď C}∇mf}aL2}f}
1´a
L2 , a “

j ` 1´ 2{p

m
.

Corollary 2.2.3. Let 2 ď p ď 8 and k, l P N such that 2 ď k ă l ` 2. There exists a
constant C ą 0 such that for all f P L2

l`2 with
ş

X f ω0 “ 0 the following holds:

}∇kf}Lp ď C
´

}∇l`2f}aL2}f}
1´a
L2
2
` }f}L2

2

¯

, a “
k ´ 1´ 2{p

l
.

Morally, Corollary 2.2.3 is obtained from Proposition 2.2.2 by replacing f by ∇2f
(which is no longer a function). A proof can be found in [8]. The Sobolev, Moser–
Trudinger and Gagliardo–Nirenberg inequalities are discussed in a more general form in
[1].

2.2.4. Twisted Calabi Flow

The goal of this chapter is to prove the following theorem:

Theorem 2.2.4. Let pX, Jq be a compact Riemann surface of positive genus and H the
space of Kähler potentials for a Kähler class κ with respect to a background metric ω0 P κ.
Let αptq, t ě 0 be a smooth one-parameter family of real closed negative semidefinite
two-forms in a fixed cohomology class such that αptq converges to a real closed negative-
semidefinite two-form α8 and Btαptq to 0 at exponential rates in Ck for all k P N0.
Denote by S the average scalar curvature and by α the integral of α and set Ŝ :“ S `α.
Then the α-twisted Calabi flow equation

Btϕptq “ ´pScpϕptqq ` Λϕptqαptq ´ Ŝq (2.9)

starting at smooth initial data ϕp0q admits a unique long-time solution ϕptq. Moreover,
if ωϕptq “ euptqω0, then uptq converges exponentially to the logarithm of the conformal

factor of the α8-twisted cscK metric in Ck for all k P N0.

Observe that in terms of u, equation (2.9) reads

Btu “ e´upBte
uq “ e´uBtp1`∆0ϕq “ ∆ϕBtϕ “ ´∆ϕpScpϕq ` Λϕαq ,
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which in light of (2.7) can be expressed as

Btu “ ´e
´u∆0re

´up∆0u` Sc0`Λ0αqs . (2.10)

This is a quasilinear fourth order parabolic PDE and standard theory guarantees exis-
tence and uniqueness of smooth solutions for small times t P r0, T r. Unless explicit note
is made to the contrary, the background metric g0 is taken to be the α8-twisted cscK
metric satisfying Sc0`Λ0α8 “ Ŝ, whose existence and uniqueness proof is essentially
that of the uniformisation theorem (cf. Appendix B.1). With this choice of g0, the claim
of Theorem 2.10 then states that uptq should exponentially converge to 0. Also note that
if euptqω0 solves twisted Calabi flow with respect to αptq in the class rω0s, then for any
c ą 0 the path ceupt{c

2qω0 is a solution of twisted Calabi flow with respect to αpt{c2q in
the class crω0s. We can hence assume without loss of generality that rω0s has unit volume.

The proof of Theorem 2.2.4 is organised as follows. Twisted versions of Mabuchi,
Liouville and Calabi energy are defined and shown to be uniformly bounded in time
along twisted Calabi flow, which is used to obtain an a priori L2

2-bound on u. Chruściel’s
higher regularity arguments are then adopted to improve the uniform bounds on u from
L2

2 to any Ck implying long-time existence of twisted Calabi flow. Lastly, convergence
and its exponentiality are established.

Remark. In our context, a function f on X ˆ r0, T r for T Ps0,8s is called uniformly
bounded or controlled in Ck or Lpk if there exists a constant independent of t P r0, T r
such that the respective norm satisfies }f} ď C. In general, C,C 1, etc. denote constants
independent of t whose precise value is allowed to change from line to line.

2.3. Energy Functionals

In their proofs of the long-time existence and convergence of Calabi flow on compact
Riemann surfaces, X.X. Chen [5] and M. Struwe [38] rely on the boundedness of the
Liouville energy, Calabi energy and to a lesser extent of Mabuchi energy along the flow.
Bounds on Liouville and Calabi energy imply an a priori bound on }u}L2

2
, which turns

out to be sufficient to extend short-time solutions to arbitrary positive times. X.X.
Chen [5] uses the boundedness of Mabuchi energy to show that Calabi energy tends to
zero as tÑ8. Both, Mabuchi and Liouville energy, are easiest defined in terms of their
variations, which on a Riemann surface are given by pdMaqϕ ¨ψ “

ş

XpSpωϕq´Sqψ ωϕ and
pdF qϕ ¨ ψ “

ş

X gϕpdSpωϕq, dψqωϕ. Choosing a reference metric g0 in H, the variational
expressions can be integrated to

Mapϕq “

ż

X
uωϕ ´

1

2
Sϕ∆0ϕω0 ` pSc0´Sqϕω0 ,

F pϕq “

ż

X
ur∆0u` 2 Sc0sω0 .

An explicit formula for the Mabuchi energy in arbitrary dimension can be found in e.g.
[30]. The existence of a higher-dimensional version of the Liouville energy has been
conjectured by X.X. Chen (cf. [5]).



18 2. Twisted Calabi Flow

As for regular Calabi flow, the key to obtaining critical a priori bounds for solutions
to twisted Calabi flow lies in the boundedness of certain energy functionals, namely
twisted versions of Mabuchi, Liouville and Calabi energy. Unfortunately, the arguments
in [38, 5] cannot be adopted directly, as the twisted Liouville and twisted Calabi energy
as defined below are not manifestly decreasing under twisted Calabi flow. However,
their time-derivatives are decreasing in leading order and the lower order pieces can
be shown to have uniformly bounded time integral by using a lower bound on twisted
Mabuchi energy. The twist αptq is assumed to satisfy the assumptions of Theorem 2.2.4
throughout.

2.3.1. Twisted Mabuchi energy

The definition of twisted Mabuchi energy requires a choice of a reference Kähler metric
g0. While not necessary at this point, we choose this to be the same α8-twisted cscK
metric used to define H.

Definition 2.3.1. Twisted Mabuchi energy is the functional on HˆΩ2pX,Rq given by

Mapϕ, αq :“

ż

X
uωϕ ´

1

2
Ŝϕ∆0ϕω0 ` pSc0`Λ0α´ Ŝqϕω0 ,

where u is understood to depend on ϕ via u “ logp1`∆0ϕq. In this definition, Ŝ “ S`α
and α depends on the cohomology class of α.

Proposition 2.3.2. Twisted Mabuchi energy is uniformly bounded along twisted Calabi
flow.

Proof. For α “ 0, twisted Mabuchi energy reduces to regular Mabuchi energy which
is known to be bounded below on Riemann surfaces [5]. Denote by ∆´1

0 the Green’s
operator seen as a homeomorphism of C80 pX, g0q “ tf P C

8pXq |
ş

X f ω0 “ 0u. Since α
is nonpositive and Λ0α´ α has zero integral we can estimate

Mapϕ, αq “

ż

X
uωϕ ´

1

2
pS ` αqϕ∆0ϕω0 ` pSc0´S ` Λ0α´ αqϕω0

“ Mapϕ, 0q `
|α|

4

ż

X
|dϕ|2g0 ω0 `

ż

X
pΛ0α´ αqϕω0

ě ´C ´

ˇ

ˇ

ˇ

ˇ

ż

X
pΛ0α´ αqϕω0

ˇ

ˇ

ˇ

ˇ

“ ´C ´

ˇ

ˇ

ˇ

ˇ

ż

X
p1`∆0ϕq ¨∆

´1
0 pΛ0α´ αqω0

ˇ

ˇ

ˇ

ˇ

ě ´C ´ sup
X
|∆´1

0 pΛ0α´ αq| ¨

ż

X
ωϕ

ě ´

˜

C ` sup
X,tě0

|∆´1
0 pΛ0α´ αq|

¸

.



2.3. Energy Functionals 19

By the assumptions convergence assumptions on αptq, the second term is bounded, so
twisted Mabuchi energy has a lower bound depending only on the path αptq.

It remains to find an upper bound. To this end, we individually consider the variations
of Ma in ϕ and in α. One computes

pδϕMaqpϕ,αq 9ϕ “

ż

X
∆ϕ 9ϕωϕ ` u∆ϕ 9ϕωϕ ´ Ŝ 9ϕ∆0ϕω0 ` 9ϕpSc0`Λ0α´ Ŝqω0

“

ż

X
9ϕ∆0u´ Ŝ 9ϕp1`∆0ϕq ` 9ϕpSc0`Λ0αqω0

“

ż

X
9ϕr∆0u` Sc0`Λ0α´ e

uŜsω0

“

ż

X
9ϕrScpϕq ` Λϕα´ Ŝsωϕ ,

which in the direction of twisted Calabi flow becomes

pδϕMaqpϕ,αqp´pScpϕq ` Λϕα´ Ŝqq “ ´

ż

X
pScpϕq ` Λϕα´ Ŝq

2 ωϕ ď 0 .

We remark that the expression Capϕ, αq :“
ş

XpScpϕq ` Λϕα ´ Ŝq2 ωϕ is the twisted
Calabi energy which will be examined later.

For the variation of Ma in direction of α one finds

pδαMaqpϕ,αq 9α “

ż

X
ϕΛ0 9αω0 ,

so the total time-derivative of twisted Mabuchi energy is

BtMapϕ, αq “ ´Capϕ, αq `

ż

X
ϕΛ0 9αω0

and can be estimated by

BtMapϕ, αq ď

ż

X
ϕΛ0 9αω0

ď

ż

X
∆0ϕ∆´1

0 Λ0 9αω0

“

ż

X
p1`∆0ϕq∆´1

0 Λ0 9αω0

ď sup
X
|∆´1

0 Λ0 9α| ¨

ż

X
euω0

“ sup
X
|∆´1

0 Λ0 9α| .

By the decay properties of α, the integral
ş8

0 supX |∆
´1
0 Λ0 9α| dt (depending only on αptq

and the background metric) is finite and one gets

Mapϕptq, αptqq ďMapϕp0q, αp0qq `

ż 8

0
sup
X
|∆´1

0 Λ0 9α| dt

which bounds the twisted Mabuchi energy from above along twisted Calabi flow.
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Remark. The upper bound on twisted Mabuchi energy is technically not required for
Theorem 2.2.4, but the details of the proof are used to bound twisted Liouville and
twisted Calabi energy.

2.3.2. Twisted Liouville energy

Like twisted Mabuchi energy, twisted Liouville energy depends on the choice of a back-
ground metric g0. In this case the choice of g0 being the α8-twisted cscK metric does
matter.

Definition 2.3.3. Twisted Liouville energy is the functional on HˆΩ2pX,Rq given by

F pϕ, αq :“

ż

X
ur∆0u` 2Λ0α` 2 Sc0sω0 “

1

2

ż

X
|du|20 ω0 ` 2

ż

X
upΛ0α` Sc0qω0 .

Proposition 2.3.4. Twisted Liouville energy is uniformly bounded along twisted Calabi
flow.

Proof. To establish a lower bound we want to use the Poincaré inequality to estimate
the second integral appearing in the above right hand side expression for the twisted
Liouville energy in terms of }du}L2 and then complete the square with the first integral.
Set ru :“

ş

X uω0. Since we normalised to unit volume, Jensen’s inequality implies that
ru “

ş

X uω0 ď log
ş

X e
u ω0 “ 0. With the choice of background metric and the zero-

integral property of Λ0pα´ α8q in mind we can estimate

F pϕ, αq “
1

2

ż

X
|du|20 ω0 ` 2

ż

X
upΛ0α` Sc0qω0

“
1

2

ż

X
|du|20 ω0 ` 2Ŝ ¨ ru

loomoon

ě0

`2

ż

X
uΛ0pα´ α8qω0

ě
1

2

ż

X
|du|20 ω0 ` 2

ż

X
pu´ ruqΛ0pα´ α8qω0

ě
1

2

ż

X
|du|20 ω0 ´ 2 sup

X
|Λ0pα´ α8q|

ˆ
ż

X
pu´ ruq2 ω0

˙
1
2

ě
1

2

ż

X
|du|20 ω0 ´ 2 sup

X
|Λ0pα´ α8q|λ

´ 1
2

ˆ
ż

X
|du|20 ω0

˙
1
2

“
1

2

«

ˆ
ż

X
|du|20 ω0

˙
1
2

´ 2λ´
1
2 sup

X
|Λ0pα´ α8q|

ff2

´ 2λ´1 sup
X
|Λ0pα´ α8q|

2

ě ´2λ´1 sup
X,tě0

|Λ0pα´ α8q|
2 ,

where λ is the first nonzero eigenvalue of the full g0-Laplacian. Since αptq is bounded in
t, F pϕ, αq can be bounded from below by a constant depending on the path αptq.
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An upper bound on twisted Liouville energy can be obtained by estimating its time-
derivative. We again compute the variation in ϕ and in α separately. It is

pδϕF qpϕ,αq 9ϕ “ 2

ż

X
∆ϕ 9ϕr∆0u` Sc0`Λ0αsω0

“ 2

ż

X
∆ϕ 9ϕreupScpϕq ` Λϕαqsω0

“

ż

X
gϕpd 9ϕ, dpScϕ`Λϕαqqωϕ ,

which under Calabi flow becomes

pδϕF qpϕ,αqp´pScpϕq ` Λϕα´ Ŝqq “ ´

ż

X
|dpScpϕq ` Λϕαq|

2
ϕ ωϕ ď 0 .

The variation in α-direction is

pδαF qpϕ,αq 9α “ 2

ż

X
uΛ0 9αω0 ,

so for the total time-derivative of twisted Liouville energy one has

BtF pϕ, αq “ ´

ż

X
|dpScpϕq ` Λϕαq|

2
ϕ ωϕ ` 2

ż

X
uΛ0 9αω0 ,

which can be estimated by

1

2
BtF pϕ, αq ď

ż

X
uΛ0 9αω0

“

ż

X
∆0u∆´1

0 Λ0 9α
looomooon

“:η

ω0

“

ż

X
Scpϕqη ωϕ ´

ż

X
Sc0 η ω0

“

ż

X
pScpϕq ` Λϕα´ Ŝqη ωϕ ´

ż

X
Λϕαη ωϕ ` Ŝ

ż

X
η ωϕ ´

ż

X
Sc0 η ω0 .

In light of the volume constraint
ş

X ω0 “
ş

X ωϕ “ 1 the last three terms satisfy

´

ż

X
Λϕαη ωϕ ` Ŝ

ż

X
η ωϕ ´

ż

X
Sc0 η ω0 ď sup

X
|η| ¨

«

sup
X,tě0

|Λ0α| ` |Ŝ| `

ż

X
| Sc0 |ω0

ff

looooooooooooooooooooomooooooooooooooooooooon

K

,

whereas using Cauchy–Schwarz on the first term gives
ż

X
pScpϕq ` Λϕα´ Ŝqη ωϕ ď sup

X
|η| pCapϕ, αqq

1
2

“ sup
X
|η|

ˆ

´BtMapϕ, αq `

ż

X
ϕΛ0 9αω0

˙
1
2

.
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In the last step we have used the expression for twisted Calabi energy found in the
proof of boundedness of twisted Mabuchi energy (Proposition 2.3.2). Integrating the
expression for BtF from 0 to τ ě 0, these estimates give

1

2
F pϕpτq, αpτqq “

1

2
F pϕp0q, αp0qq `

1

2

ż τ

0
BtF pϕ, αq dt

ď C `K

ż τ

0
sup
X
|η| dt`

ż τ

0
sup
X
|η|

ˆ

´BtMa`

ż

X
ϕΛ0 9αω0

˙
1
2

dt

ď C `K

ż 8

0
sup
X
|η| dt`

ˆ
ż τ

0
sup
X
|η|2 dt

˙
1
2
ˆ
ż τ

0
´BtMa`

ż

X
ϕΛ0 9αω0 dt

˙
1
2

ď C 1 `

ˆ
ż 8

0
sup
X
|η|2 dt

˙
1
2
ˆ

´Mapτq `Map0q `

ż τ

0

ż

X
p1`∆0ϕqη ω0 dt

˙
1
2

ď C 1 ` C2
ˆ

´Mapτq `Map0q `

ż τ

0

ż

X
η ωϕ dt

˙
1
2

ď C 1 ` C2
`

´Mapτq ` C3
˘

1
2 ,

where we have used Cauchy–Scharz and the convergence assumptions on α. Conse-
quently, the lower bound on twisted Mabuchi energy gives the desired upper bound for
twisted Liouville energy.

The boundedness of the twisted Liouville energy along twisted Calabi flow has an
important implication:

Corollary 2.3.5. Along twisted Calabi flow, }u}L2
1

is uniformly bounded in t.

Proof. From the computation used to establish a lower bound on twisted Liouville energy
in the proof of Proposition 2.3.4 we recall

F pϕ, αq ě
1

2

«

ˆ
ż

X
|du|20 ω0

˙
1
2

´ 2λ´
1
2 sup

X
|Λ0pα´ α8q|

ff2

´ 2λ´1 sup
X
|Λ0pα´ α8q|

2 .

Uniform boundedness of supX |Λ0pα´α8q| and the upper bound on F imply the uniform
boundedness of }du}2L2 “

ş

X |du|
2
0 ω0. Via the Poincaré inequality, this controls }u´ru}L2

and hence }u´ ru}L2
1
, so in order to obtain a genuine bound on }u}L2

1
it remains to find

an estimate on ru. By Jensen’s inequality we already established ru ď 0. To find a lower
bound we use the volume constraint and the Moser–Trudinger inequality (Proposition
2.2.1). It is

e´ru “ e´ru

ż

X
eu ω0 “

ż

X
eu´ru ω0 ď Ce

µ}u´ru}2
L2
1 ,

which implies ru ě ´ logC ´ µ}u´ ru}2
L2
1

as desired.
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Unfortunately, control over }u}L2
1

is not quite sufficient to imply uniform boundedness
of u in L8. However, the Moser–Trudinger inequality allows us to uniformly bound
ş

X e
suω0 along twisted Calabi flow for any s P R by a constant Cpsq. Indeed, one has

ż

X
esuω0 ď Ce

µs2}u}2
L2
1 . (2.11)

This will be useful in establishing uniform bounds on twisted Calabi energy.

2.3.3. Twisted Calabi energy

Definition 2.3.6. Twisted Calabi energy is the functional on Hˆ Ω2pX,Rq given by

Capϕ, αq :“

ż

X
pScpϕq ` Λϕα´ Ŝq

2 ωϕ

Proposition 2.3.7. Twisted Calabi energy is uniformly bounded along twisted Calabi
flow.

Proof. Twisted Calabi energy is manifestly nonnegative, so it suffices to find an upper
bound. This is again done by estimating the time-derivative of twisted Calabi energy
and then integrating. Using (2.8), the variation in direction of ϕ can be expressed as

pδϕCaqpϕ,αq 9ϕ “ 2

ż

X
pScpϕq ` Λϕα´ ŜqD˚ϕDϕ 9ϕωϕ

´

ż

X
pScpϕq ` Λϕα´ ŜqgϕpdScpϕq, d 9ϕqωϕ

´ 2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕα∆ϕ 9ϕωϕ

`

ż

X
pScpϕq ` Λϕα´ Ŝq

2∆ϕ 9ϕωϕ .

Integrating the third term by parts gives

´2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕα∆ϕ 9ϕωϕ

“ ´

ż

X
gϕpdpScpϕq ` Λϕαq, d 9ϕqα´

ż

X
pScpϕq ` Λϕα´ ŜqgϕpdΛϕα, d 9ϕqωϕ .

and we observe that the second term on the right hand side combines with the second
term of the above expression for pδϕCaqpϕ,αq 9ϕ to cancel out the fourth term. What
remains is

pδϕCaqpϕ,αqp 9ϕq “ 2

ż

X
pScpϕq ` Λϕα´ ŜqD˚ϕDϕ 9ϕωϕ

´

ż

X
gϕpdpScpϕq ` Λϕαq, d 9ϕqα .
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Under twisted Calabi flow this becomes

pδϕCaqpϕ,αqp´pScpϕq`Λϕα´Ŝqq “ ´2}DϕpScpϕq`Λϕαq}
2
L2pX,gϕq

`

ż

X
|dpScpϕq`Λϕαq|

2
gϕα .

Due to the nonpositivity of α, both terms are nonpositive.

Remark. This is the only instance where pointwise nonpositivity of α is used. The fact
that the elliptic problem of finding twisted cscK metrics only requires α be integrally
nonpositive (cf. Theorem B.1.1 in Appendix B.1) suggest one should also be able to
relax the pointwise condition on α to an integral one in the parabolic case.

The variation in the α-direction is

pδαCaqϕ,α 9α “ 2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕ 9αωϕ

and can be estimated by

ż

X
pScpϕq ` Λϕα´ ŜqΛϕ 9αωϕ ď Ca

1
2 ¨

ˆ
ż

X
pΛϕ 9αq2 ωϕ

˙
1
2

ď

ˆ

´BtMa`

ż

X
ϕΛ0 9αω0

˙
1
2

¨ sup
X
|Λ0 9α| ¨

ˆ
ż

X
e´u ω0

˙
1
2

ď C sup
X
|Λ0 9α|

ˆ

´BtMa`

ż

X
ϕΛ0 9αω0

˙
1
2

,

where in the last step we used that
ş

X e
´u ω0 is uniformly bounded along Calabi flow by

(2.11). We can thus estimate the total time-derivative of twisted Calabi energy by

BtCa ď C sup
X
|Λ0 9α|

ˆ

´BtMa`

ż

X
ϕΛ0 9αω0

˙
1
2

and integration from 0 to τ ě 0 gives

Capϕpτq, αpτqq “ Capϕp0q, αp0qq `

ż τ

0
BtCadt

ď C 1 ` C

ż τ

0
sup
X
|Λ0 9α|

ˆ

´BtMa`

ż

X
ϕΛ0 9αω0

˙
1
2

dt

ď C 1 ` C

ˆ
ż τ

0
sup
X
|Λ0 9α|2 dt

˙
1
2
ˆ
ż τ

0
´BtMa`

ż

X
ϕΛ0 9αω0 dt

˙
1
2

.

By the convergence properties of α, the integral
ş8

0 supX |Λ0 9α|2 dt is finite and the same
is true for

ş8

0

ş

X ϕΛ0 9αω0 dt as was shown in the proof of the boundedness of twisted
Mabuchi energy (Proposition 2.3.2). Hence

Capτq ď C 1 ` C2
`

´Mapτq `Map0q ` C3
˘

1
2

and twisted Calabi energy is uniformly bounded along twisted Calabi flow.
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Before the boundedness of twisted Calabi energy can be used to control }u}L2
2

an
intermediate step is required.

Corollary 2.3.8. The logarithm u of the conformal factor is uniformly bounded in C0

along twisted Calabi flow.

Proof. The idea is to use twisted Calabi energy to obtain a bound on }u}
L
3{2
2

. The

Sobolev embedding L
3{2
2 ãÑ C0 then proves the claim. Using Hölder’s inequality with

p “ 4 and q “ 4{3 and the Moser–Trudinger inequality in the form (2.11) with s “ 3 we
estimate

ż

X
|∆0u|

3
2 ω0 “

ż

X
e

1
2
u|∆ϕu|

3
2 ωϕ

ď

ˆ
ż

X
e2u ωϕ

˙
1
4
ˆ
ż

X
p∆ϕuq

2 ωϕ

˙
3
4

“

ˆ
ż

X
e3u ω0

˙
1
4
ˆ
ż

X
pScpϕq ´ e´u Sc0q

2 ωϕ

˙
3
4

ď C

ˆ
ż

X
2pScpϕq ` Λϕα´ Ŝq

2 ` 2pŜ ´ Λϕα´ e
´u Sc0q

2 ωϕ

˙
3
4

ď C
`

2Ca` C 1
˘

3
4 .

The desired uniform bound on }u}
L
3{2
2

then follows from elliptic estimates.

Corollary 2.3.9. The logarithm u of the conformal factor is uniformly bounded in L2
2

along twisted Calabi flow.

Proof. The proof is very similar to that of Corollary 2.3.8. With the uniform C0-
boundedness of u in mind one estimates

ż

X
p∆0uq

2 ω0 “

ż

X
eup∆ϕuq

2 ωϕ

ď sup
X
eu ¨

ż

X
p∆ϕuq

2 ωϕ

ď C

ż

X
pScpϕq ´ e´u Sc0q

2 ωϕ

ď C

ż

X
2pScpϕq ` Λϕα´ Ŝq

2 ` 2pŜ ´ Λϕα´ e
´u Sc0q

2 ωϕ

ď Cp2Ca` C 1q .

Again, the desired bound on }u}L2
2

follows from elliptic estimates.
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2.4. Higher a priori Bounds

The presentation largely follows [8], though some adjustments are necessary to deal with
additional terms appearing in our case. For integers k1, ..., ks and a tensor S we use the
notation

S “ “∇k1u ’ ¨ ¨ ¨ ’ ∇ksu”

to indicate that S is an algebraic expression (possibly involving the metric g0) multilin-
early and nontrivially depending on the ki

th covariant derivatives of u. We also allow
the expressions to contain a factor of a bounded smooth function on X ˆr0,8r, such as
Λ0α or derivatives thereof. One has

“∇k1u ’ ¨ ¨ ¨ ’ ∇ksu” ď C|∇k1u| ¨ ¨ ¨ |∇ksu| ,

where | ¨ | is the pointwise norm on tensors induced by g0. We also recall that the choice
of background metric g0 was such that

ş

X ω0 “ 1 and Sc0`Λ0α8 “ Ŝ. All covariant
derivatives are taken with respect to g0. We start with a few preparatory lemmas.

Lemma 2.4.1. Let l P N0. The time-derivative of ∇lu can be written as

Bt∇lu “ e´2ur´∆2
0∇lu´∇l∆0Λ0pα´ α8q `R

1
l `R

2
l `R

3
l `R

4
l s ,

where Ril are expressions of the form

R1
l “ “∇u ’ ∇l`3u”

R2
l “ “p∇u` p∇uq2 `∇2uq ’ ∇l`2u”

R3
l “

ÿ

sě2
1ďijď1`l

i1`¨¨¨`is`ďl`4

“∇i1u ’ ¨ ¨ ¨ ’ ∇isu”

R4
l “

ÿ

1ďiďl`2

“∇iu” .

Remark. The B-Laplacian appearing in (2.10) is only half the Hodge-Laplacian acting
on functions, which normally would lead to confusing prefactors in the analysis. In
favour of a cleaner presentation, we redefine ∇ to be 1{

?
2 times the metric covariant

derivative and denote by ∆0 acting on tensors 1{2 times the rough Laplacian for the
remainder of the higher regularity analysis.

Proof. This is shown by induction on l. Using ∆0pf1f2q “ p∆0f1qf2 ` f1p∆0f2q ´

gpdf1, df2q, ∆0e
f “ ef p∆0f´

1
2 |df |

2
0q as well as Sc0`Λ0α “ Ŝ`Λ0pα´α8q one computes

for l “ 0:

Btu “ ´e´u∆0pe
´up∆0u` Sc0`Λ0αqq

“ e´2ur´∆2
0u´∆0pSc0`Λ0αq ´ g0pdu, d∆0uq

` p∆0uq
2 `

1

2
|du|20∆0u` pSc0`Λ0αq∆0u´ g0pdu, dpSc0`Λ0αqqs

“ e´2ur´∆2
0u´∆0Λ0pα´ α8q `R

1
0 `R

2
0 `R

3
0 `R

4
0s .
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Now suppose the claim is true for l. Then

Bt∇l`1u “ ∇pBt∇luq
“ ∇pe´2ur´∆2

0∇lu´∇l∆0Λ0pα´ α8q`R
1
l `R

2
l `R

3
l `R

4
l sq

“ e´2up´2∇uqr´∆2
0∇lu´∇l∆0Λ0pα´ α8q`R

1
l `R

2
l `R

3
l `R

4
l s (2.12)

` e´2ur´∇∆2
0∇lu´∇l`1∆0Λ0pα´ α8qs (2.13)

` e´2ur∇pR1
l `R

2
l `R

3
l `R

4
l qs (2.14)

The first term in (2.12) is p∇uq ¨∆2
0∇lu “ “∇u ’ ∇4`lu” and constitutes a part of R1

l`1.

The second term is p∇uq ¨∇l∆0Λ0pα´α8q “ “∇u” and subsumed in R4
l`1. In a similar

fashion p∇uqR1
l “ “p∇uq2 ’ ∇l`3u” contribues to R2

l`1, p∇uqR2
l to R3

l`1, p∇uqR3
l to

R3
l`1 and p∇uqR4

l to R3
l`1 and R2

l`1.

Commuting ∆2 and ∇ (see e.g. Appendix A.1) one obtains ´∇∆2
0∇lu “ ´∆2

0∇l`1u`
řl`3
j“1 “∇ju” (the curvature terms are all bounded), so (2.13) accounts for the two special

terms and a contribution to R4
l`1.

It remains to examine the contributions from (2.14). The first is

∇R1
l “ “∇u ’ ∇l`3u”` “∇2u ’ ∇l`3u”` “∇u ’ ∇l`4u” ,

where the first term can arise since the notation “S” allowed the appearance of bounded
smooth functions. The first two terms contribute to R2

l`1, and the third to R1
l`1. The

second contribution is

∇R2
l “ “p∇u` p∇uq2 `∇2uq ’ ∇l`2u”

` “p∇2u` p∇uq∇2u`∇3uq ’ ∇l`2u”

` “p∇u` p∇uq2 `∇2uq ’ ∇l`3u” .

Here, the first term adds to R3
l`1 and the third to R2

l`1, whereas the second term con-
tributes to R3

l`1 and in the case of l “ 0 also to R2
l`1. Next one has

∇R3
l “

ÿ

sě2
1ďijď2`l

i1`¨¨¨`isďl`5

“∇i1u ’ ¨ ¨ ¨ ’ ∇isu”

which by definition is subsumed under R3
l`1. Lastly,

∇R4
l “

ÿ

1ďiďl`3

“∇iu”

which contributes R4
l`1.

The purpose of the previous lemma is to more precisely describe the lower order terms
of the time-derivative of the functionals

El :“

ż

X
e2u|∇lu|2 ω0 (2.15)

indexed by l P N.
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Lemma 2.4.2. For the time-derivative of El under twisted Calabi flow (2.10) the fol-
lowing estimate holds:

BtEl ď ´2}∇l`2u}2L2 ` CpΦ
1
l ` Φ2

l ` Φ3
l q ` Ce

´δt}u´ ru}L2
2
,

where

Φ1
l “

ż

X
|∇u||∇l`1u||∇l`2u|ω0 ,

Φ2
l “

ÿ

sě3
1ďijďl`1

i1`¨¨¨`isď2l`4

ż

X
|∇i1u| ¨ ¨ ¨ |∇isu|ω0 ,

Φ3
l “

ÿ

1ďi1,i2ďl`2
i1`i2ď2l`2

ż

X
|∇i1u||∇i2u|ω0

and δ is a positive constant. Recall that ru was defined to be the average of u with respect
to the background metric.

Proof. It follows from Lemma 2.4.1 that

BtEl “

ż

X
Btpe

2uq|∇lu|2 ω0 ` 2

ż

X
e2upBt∇lu,∇luqω0

“ 2

ż

X
e2upBtuq|∇lu|2 ω0

looooooooooooomooooooooooooon

Il

´ 2

ż

X
p∆0∇lu,∆0∇luqω0

loooooooooooooomoooooooooooooon

II0l

`

4
ÿ

r“1

2

ż

X
pRrl ,∇luqω0

looooooooomooooooooon

IIrl

´ 2

ż

X
p∇l∆0Λ0pα´ α8q,∇luq

loooooooooooooooooomoooooooooooooooooon

IIIl

We estimate each term individually.

The first term

Il “ ´2

ż

X
∆2

0u¨|∇lu|2 ω0´2

ż

X
∆0Λ0pα´α8q¨|∇lu|2 ω0`2

ż

X
pR1

0`R
2
0`R

3
0`R

4
0q|∇lu|2 ω0

needs to be examined separately for l “ 1, l “ 2 and the general case l ě 3 to account
for the leading order contributions potentially not stemming from the |∇lu|2 factor. For
l “ 1, one can integrate ∆2

0u ¨ |∇u|2 by parts once to obtain an integrand which can be
estimated by |∇3u||∇2u||∇u|, so the integral is of type Φ1

1. The integrand in the second
summand can be estimated by |∇u|2, so the integral is of type Φ3

1. After integrating
R1

0|∇u|2 by parts once to get rid of the third derivative, all contributions of the third
integral in I1 can be estimated in terms of Φ2

1. If l “ 2, after integrating the fourth
derivative in ∆4 by parts, the first and the third term in I2 can be estimated by Φ2

2 and
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the second by Φ3
2. For l ě 3 the first and third summand can directly be estimated by

Φ2
l and the second again by Φ2

l .
The term II0

l contains the highest order contribution to BtEl and — in light of (A.1)
in Appendix A.1 — can be expressed as

II0
l “ ´2

ż

X
|∆0∇lu|2 ω0 “ ´2

ż

X
|∇l`2u|2 ω0 `

ż

X
“|∇l`1u|2”ω0 .

It follows that II0
l ď ´2}∇l`2u}2L2 ` CΦ3

l .
The term II1

l is of the form

II1
l “

ż

X
“∇u ’ ∇l`3u ’ ∇lu”ω0

which after integration by parts on the highest order derivative becomes
ż

X
“∇2u ’ ∇l`2u ’ ∇lu”` “∇u ’ ∇l`2u ’ ∇l`1u”` “∇u ’ ∇l`2u ’ ∇lu”ω0 .

The middle summand is estimated by Φ1
l and after another integration by parts to get

rid of the pl`2qnd derivative, the third summand by Φ2
l . The first summand is estimated

by Φ1
l if l “ 1 and after an integration by parts by Φ2

l for l ě 2.
For II2

l one has

II2
l “

ż

“p∇u` p∇uq2 `∇2uq ’ ∇l`2u ’ ∇lu”ω0 .

In the case of l “ 1 this becomes
ż

X
“p∇uq2 ’ ∇3u”` “p∇uq3 ’ ∇3u”` “∇2u ’ ∇3u ’ ∇u”ω0 .

The last summand is dominated by Φ1
1 and after integrating by parts the third derivative,

the first and second summand are less than CΦ2
1. For l ě 2 one can estimate II2

l by Φ2
l

after integrating by parts to get rid of the pl ` 2qnd derivative.
It follows from the definition of R3

l that

II3
l “

ÿ

sě2
1ďijďl`1

i1`¨¨¨`isďl`4

ż

“∇i1u ’ ¨ ¨ ¨ ’ ∇isu ’ ∇lu”ω0 ,

which can directly be estimated by Φ2
l .

The term II4
l is of the form

II4
l “

ÿ

1ďiďl`2

ż

X
“∇iu ’ ∇lu”ω0 ,

which is controlled by Φ3
l .
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Lastly, consider the remaining term

IIIl “

ż

X
p∇l∆0Λ0pα´ α8q,∇luqω0 .

Denoting by ∇˚ the L2pX, g0q-adjoint of ∇, define Dl to be the differential operator
Dl “ ∇˚l´2∇l for l ě 2 and D1 “ id. Integrating by parts and applying Cauchy–
Schwarz yields

|IIIl| ď }Dl∆0Λ0pα´ α8q}L2}∇2u}L2 ď Ce´δt}u´ ru}L2
2
,

where the exponentially decaying factor on the right hand side is owing to the assumed
exponential convergence of α to α8 in Ck for any k P N.

Remark. For our purposes it would have been sufficient to estimate the last term as
IIIl ď }∇˚l∇l∆0Λ0pα ´ α8q}C0}u}L1 ď C}u}L1 , but the above estimates in terms
of }u ´ ru}L2

2
fit in more naturally with the treatment of the other terms. Also, the

exponential decay factor, while nice and a byproduct of the choice of background metric,
is not strictly necessary and will be left out from here on.

Lemma 2.4.3. For l P N, there exists a finite index set B and constants αβ, γβ for each
β P B satisfying 0 ă αβ ă 2 and γβ ě 2´ αβ such that

BtEl ď ´2}∇l`2u}2L2 ` C
ÿ

βPB

}∇l`2u}
αβ
L2 }u´ ru}

γβ
L2
2
` C}u´ ru}L2

2
, (2.16)

where ru “
ş

X uω0.

Proof. We only need to estimate the three terms Φr
s for r “ 1, 2, 3 on the right hand side

of the expression for BtEl in Lemma 2.4. Starting with Φ1
l one can estimate

Φ1
l “

ż

X
|∇u||∇l`1u||∇l`2u|ω0 ď }∇u}L4}∇l`1u}L4}∇l`2u}L2 .

For the first factor one has }∇u}L4 ď C}u ´ ru}L2
2

by the Sobolev embeddings. For the

second factor one can use the Gagliardo–Nirenberg inequality to obtain }∇l`1u}L4 ď

C}∇l`2u}
pl`2´1{2q{pl`2q
L2 }u´ ru}

1´pl`2´1{2q{pl`2q
L2 . With the obvious inequality }u´ ru}L2 ď

}u´ ru}L2
2

this combines to

Φ1
l ď C}∇l`2u}

1` l`2´1{2
l`2

L2 }u´ ru}
2´ l`2´1{2

l`2

L2
2

which is of the required form.
Next we estimate

Φ3
l “

ÿ

1ďi1ďi2ďl`2
i1`i2ď2l`2

ż

X
|∇i1u||∇i2u|ω0 ď

ÿ

1ďi1ďi2ďl`2
i1`i2ď2l`2

}∇i1u}L2}∇i2u}L2 .
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If i2 “ l ` 2, then i1 ď l and one can apply Gagliardo–Nirenberg to the i1-term and

estimate }∇i1u}L2}∇i2u}L2 ď C}∇l`2u}
1`i1{pl`2q
L2 }u ´ ru}

1´i1{pl`2q
L2 which is of the form

(2.16) after again estimating }u´ru}L2 ď }u´ru}L2
2
. If i2 ă l`2, then }∇i1u}L2∇i2u}L2 ď

C}∇l`2u}
pi1`i2q{pl`2q
L2 }u´ ru}

2´pi1`i2q{pl`2q
L2 by application of the Gagliardo–Nirenberg in-

equality to both factors. This also fits (2.16) since i1 ` i2 ď 2l ` 2.
It remains to estimate Φ2

l . Let

Ψ “

ż

X
|∇i1u| ¨ ¨ ¨ |∇isu|ω0

be a summand of Φ2
l , i.e. s ě 3, 1 ď ij ď l`1 and i1`¨ ¨ ¨` is ď 2l`4. Let k ě 0 be the

number of ijs for which ij “ 1 and reorder the indices such that ij ě 2 for 1 ď j ď s´k.
Applying Hölder’s inequality to Ψ yields

Ψ “

ż

X
|∇u|k|∇i1u| ¨ ¨ ¨ |∇is´ku| ď C}∇u}k

Lkp0
}∇i1u}Lp1 }∇is´ku}Lps´k ,

for positive numbers p0, ..., ps´k satisfying 1{p0 ` 1{p1 ` ¨ ¨ ¨ 1{ps´k “ 1. We emphasise
that the indices ij , 1 ď j ď s´ k satisfy 2 ď ij ď l ` 1 and i1 ` ¨ ¨ ¨ ` is´k ď 2l ` 4´ k.
Corollary 2.2.3 of the Gagliardo–Nirenberg inequalities implies

Ψ ď }u´ ru}kL2
2

s´k
ź

j“1

´

}∇l`2u}
aj
L2}u´ ru}

1´aj
L2
2
` }u´ ru}L2

2

¯

, aj “
ij ´ 1´ 2{pj

l

and evaluating the product gives

Ψ ď C
ÿ

βPB1

}∇l`2u}
αβ
L2 }u´ ru}

γβ
L2
2
,

where the total exponent satisfies αβ ` γβ “ s ě 3. In order for this to be of the form
(2.16), we require αβ ă 2. The largest exponent of }∇l`2u} satisfies

αmax “

s´k
ÿ

j“1

aj “
1

l

s´k
ÿ

j“1

pij´1´2{pjq ď
2l ` 4´ k

l
´
s´ k

l
´

2p1´ 1{p0q

l
ď

2l ´ 1` 2{p0

l
,

so choosing p0 ą 2 implies αβ ď αmax ă 2 as needed.

We can now combine the already established uniform bound on u in L2
2 with the

preceding lemma to show that norms involving higher derivatives of u cannot exhibit
finite time singularities.

Lemma 2.4.4. For k P N there exists a positive constant C such that

BtEk ď ´}∇k`2u}2L2 ` C}u´ ru}L2
2
. (2.17)

Remark. The term on the rightmost side of (2.17) can of course be estimated by a
constant, but the present form turns out to be useful to establish exponential convergence
of uÑ 0 in higher Sobolev norms.
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Proof. The analysis of section 2.3 shows that u is bounded in L2
2pX, g0q for as long as

the flow exists. By Lemma 2.4.3, the time-derivative of Ek is of the form

BtEk ď ´2}∇k`2u}2L2 ` C
ÿ

βPB

}∇k`2u}
αβ
L2 }u´ ru}

γβ
L2
2
` C}u´ ru}L2

2
(2.18)

for a finite index set B and constants αβ, γβ satisfying 0 ă αβ ă 2 and γβ ě 2´αβ. An
application of Young’s inequality with ε

ab ď εap `
1

q
ppεq´q{pbq ,

1

q
`

1

p
“ 1

with p “ 2{αβ and q “ 2{p2´ αβq yields

}∇k`2u}
αβ
L2 }u´ ru}

γβ
L2
2
ď ε}∇k`2u}2L2 ` Cpε, l, βq}u´ ru}

2γβ{p2´αβq

L2
2

.

Since 2γβ{p2´ αβq ě 2, one further estimates

}u´ ru}
2γβ{p2´αβq

L2
2

“ }u´ ru}
2γβ{p2´αβq´1

L2
2

}u´ ru}L2
2
ď C 1}u´ ru}L2

2
.

Choosing ε sufficiently small compared to the constant appearing in (2.17) one then has

C
ÿ

βPB

}∇k`2u}
αβ
L2 }u´ ru}

γβ
L2
2
ď }∇k`2u}2L2 ` C

2}u´ ru}L2
2
,

so BtEk ď ´}∇k`2u}2L2 ` C
2}u´ ru}L2

2
as claimed.

Proposition 2.4.5. Let 0 ă T ď 8 and u P Cpr0, T r, L2
2pX, g0qq be a solution to twisted

Calabi flow (2.10) with smooth initial data up0q “ u0. Then

@t P r0, T r : }u}L2
k
ď Cp1` tq

1
2 ,

where the constant C depends on k and the initial data. In particular, if T ă 8, then

sup
0ďtăT

}u}L2
k
ă 8

for any k.

Proof. Since uniform boundedness of u in L2
2 implies uniform boundedness in C0pXq,

the estimate

}u}2L2
k
ď Cp|ru|2 ` }∇ku}2L2q ď C

ˆ

1` sup
X
e´2u

ż

X
e2u|∇ku|2 ω0

˙

ď Cp1` Ekq

shows that is suffices to establish Ek ď Cp1` tq. But this follows from integrating (2.17)
and the uniform boundedness of }u´ ru}L2

2
.
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Corollary 2.4.6. Under the assumptions stated in Theorem 2.2.4, twisted Calabi flow
admits a unique long-time solution u P C8pX ˆ r0,8rq.

Proof. For given smooth initial data, let u be the smooth unique short-time solution to
(2.10) provided by standard theory of parabolic equations. Suppose u only exists on
r0, T r for a maximal existence time T Ps0,8r. For a sequence ti in r0, T r converging
to T consider the sequence uptiq. By Proposition 2.4.5 the sequence uptiq is bounded
in L2

k for any k and by the compactness of the embeddings L2
k`2 ãÑ Ck has convergent

subsequences in each Ck. By passing to such a subsequence, we assume that uptiq
converges in C0 and denote by upT q its limit. Since u is uniformly bounded in C4, so is
Btu in C0 and one has

}uptq ´ upT q}C0 ď inf
j
p}uptq ´ uptjq}C0 ` }uptjq ´ upT q}C0q

“ inf
j
}uptq ´ uptjq}C0

ď inf
j

ˇ

ˇ

ˇ

ˇ

ż tj

t
pBsuqpsq ds

ˇ

ˇ

ˇ

ˇ

ď sup
0ďtăT

}Btu}C0 ¨ inf
j
|t´ tj |

“ C ¨ inf
j
|t´ tj | ,

which implies that uptq Ñ upT q in C0. In addition, upT q has to coincide with limits
of subsequences converging in Ck, so upT q is in fact smooth (in fact the convergence
uptq Ñ upT q is in C8, which can be shown using e.g. Lemma A.2.2 in Appendix A.2).
In particular upT q can be taken as smooth initial data and the flow can be continued
contradicting the maximality of T .

2.5. Convergence and Exponentiality

With long-time existence of twisted Calabi flow established, one can ask how a solution
uptq behaves as tÑ8. We already know that }u´ru}L2

2
is uniformly bounded in t P r0,8r

and proceed to show that it in fact converges to zero at an exponential rate. Lemma 2.4.4
is then used to show that uptq converges to zero in each Ck. To lighten the presentation
we refer to the solution of αptq-twisted Calabi flow for fixed initial metric and twist αptq
by either ωptq, ϕptq or uptq, where the three are related by ωptq “ p1`∆0ϕqω0 “ euptqω0.
In addition, we write Captq instead of Capϕptq, αptqq for twisted Calabi energy evaluated
at ϕptq and αptq and extend this notation to other energy functionals.

2.5.1. Convergence in L2
2pX, g0q

We start out by showing that twisted Calabi energy has the right limiting behaviour.

Lemma 2.5.1. Twisted Calabi energy tends to zero along Calabi flow.
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Proof. Recall that twisted Mabuchi energy is bounded along Calabi flow and satisfies

BtMa “ ´Ca`

ż

X
ϕΛ0 9αω0 .

The proof of the boundedness of twisted Mabuchi energy (Proposition 2.3.2) also shows
that

ş8

0

ş

X ϕΛ0 9αω0 dt ă 8, so

ż 8

0
Captq dt ă 8 .

Also recall from the proof of the boundedness of twisted Calabi energy (Proposition
2.3.7) that

BtCa ď 2

ż

X
pScpϕq ` Λϕα´ ŜqΛ0 9αω0

and applying Cauchy–Schwarz gives the estimate BtCa ď 2Ca1{2 supX,tě0 |Λ0 9α| which is
bounded from above by a positive constant K. Now suppose that Captq does not tend
to zero as tÑ8. Then there exists a monotone and unbounded sequence ptiq in r0,8r
and ε ą 0 such that Captiq ě ε for all i P N. By passing to a subsequence one can
assume that the intervals Ii :“sti ´ ε{p2Kq, tir are disjoint and contained in r0,8r. For
s P Ii we estimate

Captiq ´ Capsq “

ż ti

s
pBtCaqptq dt ď K ¨ pti ´ sq

which, in light of ti ´ s ă ε{p2Kq, implies

Capsq ě Captiq ´K ¨ pti ´ sq ą Captiq ´ ε{2 ě ε´ ε{2 “ ε{2 .

This construction yields infinitely many disjoint intervals Ii Ă r0,8r such that

ż

Ii

Captq dt ě
ε2

4K
,

which contradicts
ş8

0 Captq ă 8.

Corollary 2.5.2. Along twisted Calabi flow one has limtÑ8 }∆0uptq}L2pX,g0q “ 0.
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Proof. We recall that Sc0`Λ0α8 “ Ŝ with Ŝ “ Sc0`Λ0α8 “ S ` α ď 0 and estimate

}∆0u}
2
L2 `

ż

X
∆0u ¨ Λ0pα´ α8qω0

ď }∆0u}
2
L2 `

ż

X
∆0u ¨ Λ0pα´ α8qω0 `

1

2
|Ŝ|

ż

X
eu|du|20 ω0

“ }∆0u}
2
L2 `

ż

X
∆0u ¨ Λ0pα´ α8qω0 ´ Ŝ

ż

X
peu ´ 1q∆0uω0

“

ż

X
p∆0uq

”

∆0u` Λ0pα´ α8q ´ Ŝpe
u ´ 1q

ı

ω0

“

ż

X
p∆0uq

”

∆0u` Sc0`Λ0α´ Ŝe
u
ı

ω0

“

ż

X
p∆0uqe

u
”

Scpϕq ` Λϕα´ Ŝ
ı

ω0

ď

ˆ
ż

X
p∆0uq

2 ω0

˙1{2 ˆż

X
e2upScpϕq ` Λϕα´ Ŝq

2 ω0

˙1{2

ď }∆0u}L2 ¨ sup
X
eu{2 ¨ Ca1{2 .

Bringing
ş

X ∆0u ¨ Λ0pα´ α8qω0 to the right hand side, applying Cauchy–Schwarz and
dividing by }∆0u}L2 gives

}∆0u}L2 ď C
´

Ca1{2 ` }Λ0pα´ α8q}L2

¯

.

The right hand side tends to 0 as tÑ8 proving the claim.

Corollary 2.5.3. Along twisted Calabi flow, limtÑ8 }uptq ´ ruptq}L2
2pX,g0q

“ 0 as well as

limtÑ8 }uptq}L2
2pX,g0q

“ 0.

Proof. The first part of the claim, limtÑ8 }uptq ´ ruptq}L2
2
“ 0, follows immediately from

Corollary 2.5.2 and the estimate }uptq ´ ruptq}L2
2
ď C}∆0u}L2 . For the second part,

observe that

f ÞÑ log

ż

X
ef ω0

defines a continuous map L2
2 Ñ R which vanishes at 0. Applying this to f “ uptq ´ ruptq

gives

0 “ ´ lim
tÑ8

log

ż

X
euptq´ruptq ω0 “ ´ lim

tÑ8
p´ruptq ` log

ż

X
euptq ω0 “ lim

tÑ8
ruptq .

Since }u}2
L2
2
“ }u ´ ru}2

L2
2
` ru2, this implies the desired convergence limtÑ8 }uptq}L2

2
Ñ

0.
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2.5.2. Exponentiality and Convergence in CkpX, g0q

We now proceed to show that the convergence of }u}L2
2

and }u´ ru}L2
2
Ñ 0 occurs at an

exponential rate. The following technical lemma in conjunction with Lemma 2.4.4 then
implies exponential convergence of u to zero in Ck for any k P N0.

Lemma 2.5.4. Let f : r0,8rÑ r0,8r be a differentiable function satisfying the differ-
ential inequality

Btf ď ´af `Be
´γt

for constants a, γ ą 0 and B P R. Then for any 0 ă δ ă minta, γu there exists a C such
that fptq ď Ce´δt.

Proof. For B ď 0 the nonnegativity of f implies that if fpt0q “ 0, then fptq “ 0 for all
t ě t0. For the open connected subset of r0,8r where fptq ‰ 0 one has Bt log f ď ´a
and integration yields the claim for δ “ a. If B ą 0, then observe that the differential
inequality remains true for any 0 ă γ1 ă γ, so we can assume that γ ď a. Now the
estimate

Btpe
γtfq ď γeγtf ´ aeγtf `B ď B

yields eγtfptq ď fp0q `B ¨ t, so for any 0 ă ε ă γ we have

fptq ď pfp0q `B ¨ tqe´εt ¨ e´pγ´εqt .

Since pfp0q ` B ¨ tqe´εt is bounded uniformly in t, setting δ :“ γ ´ ε concludes the
proof.

Proposition 2.5.5. Let ϕptq be a solution to twisted Calabi flow. Then there exist
positive constants C, δ such that Captq ď Ce´δt.

Proof. We will show that there exist positive constants C,C 1 such that for sufficiently
large times one has the estimate BtCa ď ´C

1Ca`C}Λ0 9α}L2 . The exponential decay of
}Λ0 9α}L2 and Lemma 2.5.4 then prove the claim.

Denote by op1q for any smooth function of t that tends to 0 as tÑ8. Since uptq Ñ 0
in C0 as t Ñ 8, we have supX e

˘u “ 1 ` op1q. Observe that for any function f and
metric g, the constant a that minimises }f ´ a}L2pX,gq is given by the average of f with

respect to the metric g. Denoting by rS to be the average of Scpϕq ` Λϕα with respect
to the background metric g0, one thus have the estimate

Ca ď

ż

X
pScpϕq ` Λϕ ´ rSq2 ωϕ ď p1` op1qq}Scpϕq ` Λϕα´ rS}2L2 .

Combining the Poincaré inequality and the Cauchy–Schwarz inequality one can estimate
}f ´ rf}L2 ď }∆f}L2 , which in the case at hand yields

Ca ď Cp1` op1qq}∆0pScpϕq ` Λϕαq}L2 . (2.19)
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Combining this estimate with Ca “ op1q and the Sobolev embedding L2
2 ãÑ L4

1 we now
have

BtCa “ 2

ż

X
pScpϕq ` Λϕα´ Ŝqp∆

2
ϕBtϕ´ Scpϕq∆ϕBtϕ´ Λϕα∆ϕBtϕqωϕ

`

ż

X
pScpϕq ` Λϕα´ Ŝq

2∆ϕBtϕωϕ ` 2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕ 9αωϕ

“ ´2

ż

X
p∆ϕpScpϕq ` Λϕα´ Ŝqq

2 ωϕ ´

ż

X
pScpϕq ` Λϕα´ Ŝq

2∆ϕBtϕωϕ

´2Ŝ

ż

X
pScpϕq ` Λϕα´ Ŝq∆ϕBtϕωϕ ` 2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕ 9αωϕ

“ ´2

ż

X
p∆ϕpScpϕq ` Λϕαqq

2 ωϕ `

ż

X
pScpϕq ` Λϕα´ Ŝq|dpScpϕq ` Λϕαq|

2
0 ω0

´|Ŝ|

ż

X
|dpScpϕq ` Λϕα´ Ŝq|

2
ϕ ωϕ ` 2

ż

X
pScpϕq ` Λϕα´ ŜqΛϕ 9αωϕ

ď ´2 inf
X
e´u}∆0pScpϕq ` Λϕαq}

2
L2 ` } Scpϕq ` Λϕα´ Ŝ}L2 ¨ }dpScpϕq ` Λϕαq}

2
L4

`2Ca1{2}e´uΛ0 9α}L2

ď ´2 inf
X
e´u}∆0pScpϕq ` Λϕαq}

2
L2 ` sup

X
e´uCa1{2}dpScpϕq ` Λϕαq}

2
L4

`C}Λ0 9α}L2

ď p´2 inf
X
e´u ` C sup

X
e´uCa1{2q}∆0pScpϕq ` Λϕαq}

2
L2 ` C}Λ0 9α}L2

ď ´2p1` op1qq}∆0pScpϕq ` Λϕαq}
2
L2 ` C}Λ0 9α}L2

ď ´p2´ 1qC 1Ca` C}Λ0 9α}L2

for t sufficiently large such that all instances of op1q (including that in (2.19)) are small
compared to 1{2.

Corollary 2.5.6. Let uptq solve twisted Calabi flow. Then there exist positive constants
C, δ such that }u´ ru}L2

2
ď Ce´δt and }u}L2

2
ď Ce´δt.

Proof. Recall from the proof of Corollary 2.5.2 that

}∆0u}L2 ď C
´

Ca1{2 ` }Λ0pα´ α8q}L2

¯

.

Proposition 2.5.5 along with the exponential convergence of α Ñ α8 implies that
}∆0u}L2 Ñ 0 at an exponential rate and hence that

}u´ ru}L2
2
ď Ce´δt

for suitable C, δ ă 0. To establish the second claim it remains to show that ruptq tends
to zero exponentially. We write

|ru|p1` op1qq “ |ru|
8
ÿ

k“0

ruk

pk ` 1q!
“ p1´ eruq “

ż

X
peu ´ eruqω0
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and observe that ex ´ ey “ px´ yqbpx, yq where bpx, yq is bounded if x, y vary within a
bounded set. If t is sufficiently large, then op1q lies in, say s ´ 1{2, 1{2r and one has

|ru| ď 2

ż

X
peu ´ eruqω0 ď C

ż

X
|u´ ru|ω0 ď C}u´ ru}L2 ď C 1e´δt .

Proposition 2.5.7. Let uptq solve twisted Calabi flow. Then for any k P N0 there exist
positive constants Ck, δk such that }u}L2

k
ă Cke

´δkt. The same is true for the Ck-norms
of u.

Proof. From Lemma 2.4.4 we know that the time-derivative of El “ }e
u∇lu}2L2 , l P N is

given by
BtEl ď ´}∇l`2u}2L2 ` C}u´ ru}L2

2
.

By the Gagliardo–Nirenberg inequality (2.2.2) one has

}∇lu}2L2 ď C}∇l`2u}2aL2}u´ ru}
2p1´aq
L2 , a “ l{pl ` 2q

and applying Young’s inequality with ε and p “ 1{a to the right hand side gives

}∇lu}2L2 ď Cε}∇l`2u}2L2 ` C
1pεq}u´ ru}2L2 .

Estimating El ď supX e
u}∇lu}2L2 and choosing ε sufficiently small, this can be used to

further estimate BtEl by

BtEl ď ´El ` C}u´ ru}2L2
2
` C}u´ ru}L2

2
ď ´El ` C

1}u´ ru}L2
2
.

The rightmost term on the right hand side decays exponentially by Corollary 2.5.6,
so Lemma 2.5.4 can be applied to the above differential inequality. Since }∇lu}2L2 ď

supX e
´2uEl, this shows that

}∇lu}2L2 ă Ce´δt .

By the exponential convergence uÑ 0 in L2
2, this is also true for l “ 0, so summing from

l “ 1 to k and taking the smallest occurring δ on the right hand side gives }u}2
L2
k
ď Ce´δt

as claimed. The exponential decay of u in Ck-norms follows from the Sobolev embeddings
L2
k`2pXq ãÑ CkpXq.



3. Time-Dependent Hermitian Yang–Mills
Flow

3.1. Introduction

Hermitian Yang–Mills flow is a semilinear parabolic PDE for a path of Hermitian metrics
hptq on a holomorphic vector bundle E over a Kähler manifold pX,ωq which tries to
deform an arbitrary initial metric h0 into a Hermite–Einstein metric with respect to ωX ,
i.e. a metric h whose curvature Fh satisfies ΛωiFh “ λ idE . Hermite–Einstein metrics
can be seen as a best Hermitian metric compatible with a given Kähler metric ωX , their
Chern connections are instances of Yang–Mills connections which play an important role
in four-manifold geometry (cf. [10]) and gauge theory (cf. C.1 for more details). In [9]
S. Donaldson used Hermitian Yang–Mills flow to give a proof of the Kobayashi–Hitchin
correspondence on projective algebraic surfaces and compact complex curves, relating
the solvability of the Hermite–Einstein equation — an analytic problem — to the algebro-
geometric condition of Takemoto–Mumford (or slope) stability of the holomorphic bundle
E Ñ X. The analysis in [9] shows that the flow exists for all times over holomorphic
bundles on compact Kähler manifolds, independently of stability. Donaldson related
convergence to the existence of a lower bound for a functional M , which we refer to
as the Donaldson functional. Hermitian Yang–Mills flow can be seen as the gradient
flow of M and in some sense, the Donaldson functional plays a role similar to that of
Mabuchi energy for Calabi flow. Hermitian Yang–Mills flow was also used in the study
of Higgs–Bundles by Simpson in [34], wherein the author also relates convergence of
Hermitian Yang–Mills flow at infinity to stability of the bundle and the properties of the
Donaldson functional for bundles of base manifolds with arbitrary dimension.

We are interested in the case where the Kähler metric on the base X changes in time
within its cohomology class. The resulting time-dependent Hermitian Yang–Mills flow
(which we sometimes simply refer to as Hermitian Yang–Mills flow or abbreviate as
HYMF) arises naturally in the construction of adiabatic approximations to Calabi flow
on ruled manifolds (Chapter 4 contains a detailed account). For technical reasons we
restrict our attention to the case of complex dimension one. The goal of this section is
to prove the following theorem.

Theorem 3.1.1. Let X a compact Riemann surface with a fixed Kähler class κ P

H1,1pX,Rq and ωptq, t P r0,8r a smooth one-parameter family in κ converging to a
limit Kähler form ω8. The convergence is assumed to be exponential in the sense that
the logarithm uptq of the conformal factor relating ωptq and ω8 via ωptq “ euptqω8 as well
as its time-derivative tend to 0 at exponential rates in CkpX, g8q for all k P N0. Let fur-
thermore E Ñ X be a holomorphic rank r vector bundle assumed to be slope-stable with
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respect to the class κ. Denote by Fh the curvature of the Chern connection associated
to a Hermitian metric h on E and by λ “ 2πxrc1pEqs, rXsy{rVolpX,Ωq the Hermite–
Einstein constant. Then for any smooth initial Hermitian metric h0 the time-dependent
Hermitian Yang–Mills flow given by

h´1ptqpBthqptq “ ´rΛωptqiFhptq ´ λ idEs , (3.1)

admits a unique smooth long-time solution hptq with hp0q “ h0. Moreover, hptq con-
verges exponentially fast in each Ck for k P N0 to a ω8-Hermite–Einstein metric h8
characterised by Λω8iFh8 “ λ idE up to a constant factor.

After recalling some general facts, we present the proof in four steps: short-time
existence, long-time existence, convergence and exponentiality of the convergence.

3.2. Preliminaries

3.2.1. Chern Connections on E and EndpEq

We recall some fundamental facts about Chern connections on Kähler manifolds for
future reference. Let h, k be two Hermitian metrics on E. Let η P EndpEq be the
endomorphism relating h and k via kpη¨, ¨q “ hp¨, ¨q (write h “ kη). In a local triviali-
sation h, k are represented by Hermitian matrices which we also denote by h, k. In that
trivialisation one has η “ k´1h.

The Chern connection dh is the unique connection making h parallel and satisfying
d0,1
h “ B. It is locally represented by dh “ d`Ah, where the connection one-form is purely

of type p1, 0q and given by Ah “ h´1Bh. Splitting dh into its type components, we write
dh “ B`Bh with Bh “ B`Ah. The curvature of pE, dhq is given by Fh “ BAh “ Bph

´1Bhq.
If k is another Hermitian metric on E related to h by η as above, then the Chern
connections of h and k differ by a global p1, 0q-form with values in EndpEq given by
dh ´ dk “ η´1Bkη. Since this is locally just Ah ´Ak, one finds

Fh ´ Fk “ Bpη
´1Bkηq (3.2)

for the difference of the curvatures.
We will frequently deal with associated data on the bundle EndpEq, so we recall some

basic relations here. The Hermitian product h on E induces the Hermitian product h1

on EndpEq which is given by pφ, ψqh :“ h1pφ, ψq “ trpφψhq, where φ, ψ are sections of
EndpEq and ψh denotes the h-adjoint of ψ. In addition, EndpEq inherits a holomorphic

structure from E which we denote by B
1
. The Chern connection dh1 on pEndpEq, h1, B

1
q

coincides with the connection d1h on EndpEq induced by the Chern connection on E. As

before one has d1h “ B
1
` B1h, where locally B1h “ B ` A1h. The connection one-form is

given by A1h “ adAh “ rAh, ¨s, defining r¨, ¨s on
À

k ΛkT ˚CX b EndpEq to be given by
the usual commutator on the endomorphism part and the wedge product on the form
part, i.e. if α P ΛkT ˚CX, β P ΛlT ˚CX, φ, ψ P EndpEq (all over the same base point), then
rαbφ, βbψs “ α^ βb rφ, ψs “ p´1qkl`1rβbψ, αbφs. For the curvatures one obtains
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F 1h “ adFh and hence F 1h ´ F 1k “ ad
Bpη´1Bkηq

. We also remark that for φ P EndpEq the

h1-adjoint of adφ is given by adφh .

To lighten the notation a bit, we shall drop primes if the context makes it clear whether
we are working on E or EndpEq.

3.2.2. Kähler Identities on Vector Bundles

The Riemannian metric g associated to the Kähler form ω on X endows the (com-
plexified) tangent bundle TCX and associated bundles — in particular ΛkT ˚CX — with
Hermitian products p¨, ¨qω. These can be expressed by pα, βqω “ ˚pα^˚β̄q, where ˚ is the
Hodge-star operator associated to g. We can combine the Hermitian structures p¨, ¨qω on
ΛkT ˚CX and p¨, ¨qh on EndpEq to a Hermitian structure p¨, ¨qh,ω on

À

k ΛkT ˚CX bEndpEq
given by linearly extending

pαb φ, β b ψqh,ω “ pφ, ψqh ¨ pα, βqω .

The pointwise Hermitian structure gives rise to an L2-product on
À

k ΩkpX,EndpEqq:

xa, byh,ω “

ż

X
pa, bqh,ω dvolω .

The Kähler (or Nakano) identities relate the operators Bh, B and their formal L2-adjoints
B˚, B

˚

h to the metric data on the base. They read

B˚ “ irΛω, Bs, B
˚

h “ ´irΛω, Bhs . (3.3)

Indeed, B˚ is independent of h, justifying the omission of the subscript. A proof of the
Kähler identities can be found in e.g. [23].

3.2.3. Relating Different Laplacians

If pE, hq is a Hermitian holomorphic vector bundle, one can define various Laplacians
on the space of form-valued sections ΩkpX,Eq:

∆B,h,ω “ B
˚Bh ` BhB

˚, ∆
B,h,ω “ B

˚

hB ` BB
˚

h, ∆d,h,ω “ d˚hdh ` dhd
˚
h .

With the help of the Kähler identities (3.3) and the relation Fh “ d2
h “ pBBh ` BhBq one

finds

∆B,h,ω `∆
B,h,ω “ ∆d,h,ω ,

∆B,h,ω ´∆
B,h,ω “ rΛω, iFhs .

Defining the corresponding Laplacians on ΩkpX,EndpEqq in the same manner, the
second identity becomes ∆B,h,ω ´ ∆

B,h,ω “ rΛω, adiFhs which reduces to adΛωiFh on

Ω0pX,EndpEqq.
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It will be of importance to know how Laplacians on Ω0pX,EndpEqq defined by different
Hermitian metrics h, k are related. For ϕ P Ω0pX,EndpEqq compute

p∆B,h,ω ´∆B,k,ωqϕ “ iΛωBpBh ´ Bkqϕ

“ iΛωBrη
´1Bkη, ϕs

“ iΛωrBpη
´1Bkηq, ϕs ´ iΛωrη

´1Bkη, Bϕs

“ iΛωrFh ´ Fk, ϕs ´ iΛωrη
´1Bkη, Bϕs

“ adΛωipFh´Fkq ϕ´ iΛωrη
´1Bkη, Bϕs .

Performing a similar computation or simply using the relations relating ∆B and ∆
B

one
finds

p∆
B,h,ω ´∆

B,k,ωqϕ “ ´iΛωrη
´1Bkη, Bϕs ,

p∆d,h,ω ´∆d,k,ωqϕ “ adΛωipFh´Fkq´2iΛωrη
´1Bkη, Bϕs .

Finally, all of the three Laplacians acting on Ω0pX,Eq or Ω0pX,EndpEqq depend on the
metric via ∆ω “ e´u∆ω1 if ω “ euω1.

3.3. Short-Time Existence

We merely show that the evolution equation (3.1) defines a semilinear parabolic system.
The existence of a unique smooth short-time solution is then guaranteed by standard
theory. Setting ηptq “ h´1

0 hptq, we express (3.1) as

Btη “ ´ηrΛωiBpη
´1Bh0ηq ` ΛωiFh0 ´ λ idEs

“ ´riΛωBBh0η ´ iΛωpBη ^ η
´1Bh0ηq ` ηΛωiFh0 ´ ηλ idEs ,

which using the Kähler identities can be rearranged to

pBt `∆h0,ω,Bqη “ iΛωBη ^ η
´1Bh0η ´ ηrΛωiFh0 ´ λ idEs . (3.4)

From this we see that time-dependent Hermitian Yang–Mills flow is a semilinear parabolic
PDE (the highest order piece is linear).

3.4. Long-Time Existence

With the exception of higher regularity estimates, most techniques used in this section
are an adaptation of Donaldson’s to the case of a moving base metric. Working over
a Riemann surface grants us the luxury that the contracted curvature ΛωFh already
controls the full curvature Fh.

To establish long-time existence we assume that the flow exists only on a maximal
time interval r0, T r, T ă 8 and show that hptq converges to a smooth Hermitian metric
as t Ñ T , permitting the flow to be extended beyond the maximal existence time T ,
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hence contradicting its maximality. In the case at hand, the proof can be split into three
steps. The first consists in showing that hptq converges in C0 to a continuous metric
hpT q. Using a maximum principle argument we then establish an a priori bound on
ΛωiFh uniform in r0, T r, which in conjunction with the C0-boundedness also provides a
C1-bound via a blowup argument. Finally, we use a parabolic bootstrapping argument to
establish that ΛωFh remains uniformly bounded in Ck and infer that this also uniformly
bounds hptq in Ck for any k P N0. The C0-limit hpT q then has to be smooth and the
convergence of hptq to hpT q occurs in C8.

Remark. By maximum principle we refer to the parabolic maximum principle for heat
equations on manifolds with varying metric which can be found in e.g. [40].

Remark. The precise argument for the boundedness in each Ck in conjunction with
C0-convergence implying C8 convergence is given by Lemma A.2.2 in Appendix A.2
(set E “ Ck`1, F “ Ck and G “ C0 with S, T being the obvious inclusions).

3.4.1. Convergence in C0 for finite time

The first step is to establish the C0-convergence of hptq for t Ñ T . There is a natural
notion of C0-distance between two Hermitian metrics on a complex vector bundle induced
by the symmetric distance of Hermitian inner products on a finite-dimensional complex
vector space which we recall below.

Denote by H the set of Hermitian inner products on Cr. The (right) action of Glpr,Cq
on H given by ph ¨ gqp¨, ¨q “ hpg¨, g¨q is transitive and the stabiliser of a point h0 P H (we
can take h0 to be the standard Hermitian product on Cr) consists of those g P Glpr,Cq
that are unitary with respect to h0, i.e. H – UprqzGlpr,Cq. Writing h0pg¨, g¨q “
h0pg

˚g¨, ¨q leads to another description of H. One shows that the map Uprq ¨ g ÞÑ
g˚g is a bijection between UprqzGlpr,Cq to the positive h0-self-adjoint endomorphisms
End`h0pC

rq. We can endow the homogeneous space UprqzGlpr,Cq with a symmetric space
structure by observing that the fixed point set Glpr,Cqσ of the involutive automorphism
σpgq :“ g´1˚ of Glpr,Cq is precisely Uprq. At the identity, this induces the splitting
glpr,Cq “ uprq‘iuprq as the ˘1-eigenspaces of dσ. We now identify TUprq¨e UprqzGlpr,Cq
with iuprq and define an AdUprq-invariant inner product on iuprq, say pa, bq :“ trpab˚q “
trpabq and extend this right-invariantly to a Riemannian metric on H endowing the set
of Hermitian inner products with a symmetric space structure.

We are interested in the geodesic distance in H in the End`h0pC
rq-picture. For H P

End`h0pC
rq one has TH End`h0pC

rq “ Endh0pCrq with the inner product given by

xA,ByH “ trpAH´1BH´1q .

To see this, write A “ pa˚aq9, B “ pb˚bq9 and H “ g˚g for paths a, b in Glpr,Cq through
g. Since the tangent map of right multiplication by g´1 on UprqzGlpr,Cq is given by
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9a ÞÑ pag´1q9 and we demanded right multiplication to be an isometry, we get

xA,ByH “ xpa˚aq9, pb˚bq9yg˚g

“ xrpag´1q˚pag´1qs9, rpbg´1q˚pbg´1qs9ye˚e

“ trpg´1˚a˚ag´1g´1˚b˚bg´1q

“ trpAH´1BH´1q

as claimed. To compute the geodesic distances consider

dp1, exppAqq “

ż 1

0
xA expptAq, A expptAqy

1
2

expptAq dt “ trpA2q
1
2 .

The right invariance of the Riemannian metric implies that for f, g P Glpr,Cq one has
dpg˚g, f˚fq “ dp1, pfg´1q˚fg´1q. In the End`h0-picture this means that

dpH,Kq “ dpH
1
2
˚H

1
2 ,K

1
2
˚K

1
2 q “ dp1, pK

1
2H´

1
2 q˚pK

1
2H´

1
2 qq .

Taking the logarithm of the positive self-adjoint endomorphism pK
1
2H´

1
2 q˚pK

1
2H´

1
2 q

and using the formula for dp1, exppAqq one then obtains

dpH,Kq “ trplogppK
1
2H´

1
2 q˚pK

1
2H´

1
2 qq2q

1
2 .

In other words, if λi for i “ 1, ..., r are the (positive) eigenvalues of pK
1
2H´

1
2 q˚pK

1
2H´

1
2 q,

then

dpH,Kq “ dpλ1, ..., λrq “

˜

ÿ

i

plog λiq
2

¸
1
2

.

To reassure ourselves of this computation we check by hand that d is in fact symmetric.
For convenience we define the map Φ: HˆHÑ H by ΦpH,Kq “ pK

1
2H´

1
2 q˚pK

1
2H´

1
2 q

and note that ΦpH,Kq´1 “ ΦpK,Hq. Now

dpK,Hq “ dpλ´1
1 , ..., λ´1

r q “

˜

ÿ

i

plog λ´1
i q

2

¸
1
2

“ dpλ1, ..., λrq “ dpH,Kq .

We could alternatively observe that d “
?
˝ tr ˝2 ˝ log ˝Φ “

?
˝ tr ˝2 ˝ log ˝Φ´1.

An important feature of the metric d on H is its completeness. However, for the pur-
pose of obtaining a C0-bound on hptq under HYMF, the metric d is somewhat unwieldy
and it is convenient to consider an alternative distance measure σ on H. We define

σpH,Kq :“ trpHK´1q ` trpK´1Hq ´ 2n

and observe that much like d, σ also factors through Φ and Φ´1 in the sense that
σ “ tr ˝Φ` tr ˝Φ´1 ´ 2n. In terms of eigenvalues of ΦpH,Kq, we have

σpH,Kq “ σpλ1, ..., λrq “
ÿ

i

pλi ` λ
´1
i ´ 2q .
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Compared to d, σ has the disadvantage that it fails to satisfy the triangle inequality and
hence does not define a genuine metric. However, d and σ are equivalent in the sense
that they define the same topology on H. In particular, σ can be used to determine
whether a given sequence in H is Cauchy. We establish this equivalence by finding
homeomorphisms Ξ,Θ of r0,8r such that d ď Ξ ˝ σ and σ ď Θ ˝ d. First observe that
we can assume all eigenvalues λi of ΦpH,Kq to satisfy λi ě 1 since both σ and d are
invariant under λj ÞÑ λ´1

j for any 1 ď j ď r. Let λk be the biggest of the λi ě 1. Define

homeomorphisms φ, ψ : r1,8rÑ r0,8r via ψpxq “ log x and φpxq “ x ` x´1 ´ 2. We
estimate

σpλ1, ..., λrq ď rpλk ` λ
´1
k ´ 2q

“ rpφ ˝ ψ´1qplog λkq

“ rpφ ˝ ψ´1qpmaxi | log λi|q

ď rpφ ˝ ψ´1qpp
ř

iplog λiq
2q

1
2 q

“ rpφ ˝ ψ´1qpdpλ1, ..., λrqq

and similarly

dpλ1, ..., λrq ď rmax
i
| log λi|

“ r log λk

“ rpψ ˝ φ´1qpλk ` λ
´1
k ´ 2q

“ rpψ ˝ φ´1qpmaxipλi ` λ
´1
i ´ 2qq

ď rpψ ˝ φ´1qp
ř

ipλi ` λ
´1
i ´ 2qq

“ rpψ ˝ φ´1qpσpλ1, ..., λrqq .

Setting Ξ “ r ¨ψ ˝φ´1 and Θ “ r ¨φ ˝ψ´1 yields the desired homeomorphisms of r0,8r.

Now let hptq, kptq be two one-parameter families of Hermitian metrics on E for t P
r0, T r solving equation (3.1). For η “ k´1h it was Fh ´ Fk “ Bpη

´1Bkηq. We compute

Bt trpηq “ ´ trpk´1pBtkqk
´1hq ` trpk´1pBthqq

“ trprΛωiFk ´ λ idEs ηq ´ trpη rΛωiFh ´ λ idEsq

“ ´ trpηΛωipFh ´ Fkqq

“ ´ trpη iΛωBpη
´1Bkηqq

“ trpη iΛωη
´1pBηqη´1Bkηqq ´ trpη iΛωη

´1BBkηqq

“ iΛωptq trppBηqη´1pBkηqq ´ trpΛωiBBkηq .

The first term is nonpositive, since it can be written as ´ trpη´1iΛωpBkηqpBηqq, where
η´1 is k-self-adjoint and positive definite while iΛωpBkηqpBηq “ iΛωpdz ^ dzqηBkηB “
|dz|2ωηBkηB is k-self-adjoint and positive semidefinite (we wrote dkη “ ηBkdz ` η

B
dz,

where ηBk and η
B

are k-adjoint to one another). The composition of two self-adjoint



46 3. Time-Dependent Hermitian Yang–Mills Flow

positive semidefinite endomorphisms has nonnegative trace: if A,B are positive semidef-
inite and self-adjoint and U diagonalises A, then trAB “ trpU˚UAU˚UB

1
2B

1
2 q “

trpAdiagUB
1
2U˚UB

1
2U˚q which can be seen to be nonnegative in a straightforward com-

putation. The second term is ´ trp∆B,k,ωηq, where ∆B,k,ω “ B
˚Bh is the B-bundle Lapla-

cian defined by ωptq and h acting on endomorphisms of E. A quick computation shows
that the trace intertwines the bundle Laplacian and the Laplacian on functions, i.e.

tr ∆B,k,ωη “ trpΛωiBBkηq

“ ΛωiB trpBη ` rAk, ηsq

“ iΛωBB trpηq

“ ∆B,ω trpηq

owing to the antisymmetry of the commutator. Here ∆B,ω is the B-Laplacian defined by
the ωptq acting on functions. This permits to estimate

pBt `∆ωptqq trpηq ď 0 .

Reversing the roles of h and k shows that the same estimate holds for trpη´1q and
hence also for σph, kq. By the maximum principle we then know that supX σph, kq is
nonincreasing in t. As a byproduct this also reproves that solutions to (3.1) are unique:
Let hp0q “ kp0q, then supX σph, kq “ 0 and hence hptq “ kptq for all t P r0, T r.

We now have what we need to prove

Proposition 3.4.1. If hptq is a smooth solution to (3.1) on r0, T r, T ă 8, then hptq
converges to a continuous Hermitian metric hpT q as tÑ T .

Proof. Let ti be a sequence in r0, T r converging to T in r0, T s. The claim is that hptiq
is Cauchy in the space of Hermitian metrics on E with the complete metric supX d.
Given ε ą 0, find a δ ą 0 such that σphptq, hpt1qq ă ε for any 0 ď t, t1 ă δ. Then
σphpT ´ t1q, hpT ´ tqq ă ε for any 0 ă t, t1 ď δ since supX σ is nonincreasing. Now find
N such that i ą N implies T ´ ti ď δ.

3.4.2. An a priori C0-bound on |ΛωiFh|h

The first step in controlling hptq in higher order is to bounding the contracted curvature
|ΛωptqiFhptq|hptq uniformly in C0. This is done using the maximum principle. In order to
compute Bt|ΛωptqiFhptq|

2
hptq we need some preparation.

First we remark that since ΛωiFh is h-self-adjoint, one has |ΛωiFh|
2
h “ trppΛωiFhq

2q.
Less conveniently, the base metric depends on the time parameter and we need to ex-
amine how contraction with the base metric behaves under taking derivates. On a
Riemann surface this is not too complicated since if one writes ωptq “ euptqω8, then
Λωptq “ e´uptqΛω8 . For a p1, 1q-form α, the time-derivative of Λωα then simply is
BtΛωα “ ´ 9uΛωα.

Remark. On a general Kähler manifold this formula becomes BtΛωα “
1
2Λ2

ωα ^ 9ω ´
Λω 9ω ¨ Λωα. If α “ iFh, then the first term could potentially see the full curvature (and
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not only the contracted part) preventing us from applying the maximum principle to
|ΛωFh|

2. On a Riemann surface this difficulty cannot arise.

Next we compute how the curvature behaves under the flow:

BtFh “ BtBph
´1Bhq

“ ´Bpph´1Bthqph
´1Bhqq ` Bph´1BpBthqq

“ ´Bpph´1Bthqph
´1Bhqq ` Bpph´1Bhqph´1Bthqq ` BBph

´1Bthq

“ BprAh, h
´1Bths ` Bph

´1Bthqq

“ BBhph
´1Bthq

“ ´BBhΛωiFh

“ ´BB
˚

hFh

“ ´∆
B,h,ωFh ,

where in the last two steps we have used that dhFh “ 0 (for degree reasons on a Riemann
surface and by the Bianchi identity in general). The identities relating the different
Laplacians derived in 3.2.3 imply 2∆

B,h,ωFh “ 2∆B,h,ωFh “ ∆d,h,ωFh, so the curvature
Fh solves the bundle heat equation

pBt `∆
B,h,ωqFh “ pBt `∆B,h,ωqFh “ pBt ` 1{2 ¨∆d,h,ωqFh “ 0 .

In order to examine the behaviour of the contracted curvature under Hermitian Yang–
Mills flow, we use the Kähler identities to observe

∆B,h,ωΛωξ “ Λω∆
B,h,ωξ ,

∆
B,h,ωΛωξ “ Λω∆B,h,ωξ ,

∆d,h,ωΛωξ “ Λω∆d,h,ωξ

for ξ P Ω2pX,EndpEqq. For the contracted curvature one then obtains

pBt `∆B,h,ωqΛωiFh “ pBt `∆
B,h,ωqΛωiFh “ pBt `

1

2
∆d,h,ωqΛωiFh “ ´ 9uΛωiFh .

As a last preparation, we observe that for ϕ P Ω0pX,EndpEqq there holds

∆B,h,ωpϕ
2q “ ϕ ¨∆B,h,ωϕ`∆B,h,ωϕ ¨ ϕ` iΛωpBϕ^ Bhϕ´ Bhϕ^ Bϕq ,

∆
B,h,ωpϕ

2q “ ϕ ¨∆
B,h,ωϕ`∆

B,h,ωϕ ¨ ϕ` iΛωpBϕ^ Bhϕ´ Bhϕ^ Bϕq .

We abbreviate κ :“ ΛωiFh (this in not the Kähler class containing the metrics ωptq
which we also denoted by κ) and compute

pBt `∆B,ωq|κ|
2
h “ trrpBt `∆B,h,ωqκ

2s

“ 2 trrκpBt `∆B,h,ωqκ` iΛωpBκ^ Bhκqs

“ ´2 9u trrκ2s ` 2 trriΛωpBκ^ Bhκqs

“ ´2 9u|κ|2h ´ |dhκ|
2
h,ω ,
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where we used the identity 2 trriΛωpBhκ^Bκqs “ |dhκ|
2
h,ω in the last step. Since the sign

is crucial in our case, we take some space to go through the computation in detail. We
prove the more general relation for self-adjoint ϕ,ψ P Ω0pX,EndpEqq:

pdhϕ, dhψqh,ω “ i trrΛωpBhϕ^ Bψ ` Bhψ ^ Bϕqs .

Write dhϕ “ ϕ
B
dz̄ ` ϕBdz. The endomorphisms ϕ

B
and ϕB are then h-adjoint to each

other and the same holds when replacing ϕ by ψ. Recalling pα, βqω “ ˚pα ^ ˚β̄q we
compute

pdhϕ, dhψqh,ω “ pϕB, ψBqh|dz|
2
ω ` pϕB, ψBqh|dz̄|

2
ω “ trrϕBψB ` ψBϕBs ˚ ipdz ^ dz̄q (3.5)

on the one hand and

trriΛωpBhϕ^ Bψ ` Bhψ ^ Bϕqs “ trrϕBψB ` ψBϕBsΛωipdz ^ dz̄q (3.6)

on the other. Here, Λω and ˚ coincide on the volume form ω and hence on all two-forms,
so combining (3.5) and (3.6) yields the result.

The convergence assumptions on uptq imply that
ş8

0 supX | 9u| ă 8, allowing the use of
the maximum principle to obtain a uniform bound on |κ|2h. Indeed, the estimate

pBt `∆B,ωq|κ|
2
h ď 2 sup

X
| 9u| ¨ |κ|2h

implies that the solution to BtΦptq “ supX | 9u|Φptq satisfying the initial condition Φp0q “
supX |Λω0iFh0 |

2 dominates |κ|2h, so

|κ|2h ď Φptq “ Φp0q exp

ˆ
ż t

0
sup
X
| 9u|psq ds

˙

.

By assumption, the right hand side is uniformly bounded in t. We now know |iFhptq|h
and hence the curvature iFhptq to be uniformly bounded in r0, T r, even if T “ 8. Since
hptq converges to a continuous metric hpT q for t Ñ T , κ also remains bounded with
respect to any reference metric, e.g. h0. It follows then from the blowup argument (cf.
Appendix C.3) that hptq is in fact bounded uniformly on r0, T r in C1 with respect to
some fixed C1-structure.

3.4.3. Higher a priori bounds on ΛωiFh

The principal ingredient in our proof for higher regularity is the fact that the contracted
curvature κ “ ΛωiFh satisfies the linear parabolic PDE

ˆ

Bt `
1

2
∆d,h,ω

˙

κ “ ´ 9uκ , (3.7)

where we consider the right hand side as an inhomogeneity which is a bounded continuous
section of EndpEq over X ˆ r0, T r. The nonautonomous generator 2L :“ ∆d,h,ω can be
expressed as

∆d,h,ω “ ∆d,h0,ω ` adΛωipFh´Fh0 q
´2iΛωrη

´1Bh0η, B ¨ s
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for η “ h´1
0 h. The a priori C0-bound on Fh and the C1-bound on h imply that the

coefficients of L are bounded in C0 on Xˆr0, T r. In addition, the highest order coefficient
only depends on t via ∆d,h0,ω “ e´u∆d,h0,ω8 , so a constant of ellipticity of L can be found
independently of t. The idea is to use a classical inner Lp and Schauder estimates to infer
boundedness of the equation’s solution, κ, in higher parabolic Sobolev and Hölder spaces
which in turn will increase control over the coefficients as well as the inhomogeneity. We
will see that one can in fact bootstrap to uniformly bound κ in Ck for any k P N0.

We adopt the notation and regularity result of Appendix A.4 (with EndpEq taking
the role of the vector bundle E in the appendix). The initial regularity results for the
inhomogeneity ´ 9uκ and the coefficients of L establish that the hypotheses of Proposition
A.4.3 are satisfied and we obtain }κ}Lp1,2pXT ,ω8,h0q ă 8 (technically, Proposition A.4.3

only bounds }κ}Lp1,2pX 1T ,ω8,h0q
for X 1T “ X ˆ rε, T r, but for small times, say 0 ď t ď ε,

smoothness of κ already implies boundedness in Ck for any k P N0). Consequently,
the coefficients of L and the inhomogeneity are also bounded in Lp1,2 (for any p) and

hence in C0,0,α for a sufficiently small α ą 0 by the parabolic Sobolev embedding A.4.5.
The Schauder regularity theory in Proposition A.4.4 then implies that κ is bounded in
C1,2,αpX,ω8, h0q, again implying the same regularity on coefficients and inhomogeneity.
Repeatedly using A.4.4, the argument can be iterated to show that κ is bounded in
Ck,2k,α for any k (the bounds may of course grow in k). In particular, κ is for any k P N0

bounded in CkpX,ω8, h0q uniformly in t P r0, T r.
It remains to examine how the uniform boundedness of κ in Ck implies that of h or

equivalently η “ h´1
0 h, provided η is already bounded in C1. The key lies in using (3.2)

and the Kähler identities to write

∆B,h0,ωη “ ηΛωiFh ` iΛωpBηqη
´1pBh0ηq ´ ηΛωiFh0 (3.8)

and using elliptic regularity theory in a similar fashion to the parabolic theory used above
to bound κ “ ΛωiFh in Ck, k P N0. First observe that the right hand side is bounded
in C0 which gives a bound in Lp2 of η. For sufficiently high p, Lp2 embeds into C1`α, so
the right hand side is in fact uniformly bounded in C0,α. Elliptic Schauder theory then
bounds η in C2,α and the right hand side in C1,α. A bootstrapping argument then gives
the desired uniform bound on η in Ck, k P N0.

Remark. As an alternative to the parabolic regularity theory, one can also follow Don-
aldson’s approach and apply the maximum principle to |∇kκ|h,ω and use induction on
k to show that ∇kκ is exponentially bounded. The advantage of our method is that it
also works to establish uniform Ck-bounds on κ uniform in t P r0,8r.

3.5. Convergence for t Ñ 8

To show convergence of hptq as t Ñ 8 in C8 we proceed in three steps. The first one
is to show that hptq remains bounded in C0 which is achieved by solving Hermitian
Yang–Mills flow for very special initial conditions (which require slope stability of E)
yielding a convergent one-parameter family of metrics kptq and using the fact that σph, kq
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is nonincreasing. In the second step we use the Donaldson functional M to construct a
sequence of times ptiq Ñ 8 for which κptiq converges to λ idE in L2 and conclude that
hptq converges in C1 to a ω8-Hermite–Einstein h8 metric on E. Finally, a variation
of the parabolic regularity argument used to show long-time existence provides uniform
bounds on κ in Ck, k P N0 implying that the convergence of hptq to h8 occurs in C8.

3.5.1. Uniform C0-boundedness of hptq

We exploit that we are working over a Riemann surface by writing ωptq “ euptqω8
(as before) and the fact that rωs-slope stability implies the existence of a ω8-Hermite–
Einstein metric h8. They key observation is that the conformal class of Hermitian
metrics containing h8 — that is the set of metrics efh8 for a smooth real valued function
f on X — is stable under Hermitian Yang–Mills flow. More specifically, if k0 “ ef0h8,
then solving the original flow equation

k´1Btk “ ´re
´uΛω8iFk ´ λ idEs

is equivalent to finding an fptq satisfying

pBt `∆B,ωptqqf “ p1´ e
´uqλ , (3.9)

with initial condition fp0q “ f0. Too see this, observe that Fefh “ Fh ` BBf idE . If f
solves (3.9), set k “ efh8 and compute

k´1Btk “ Btf idE

“ ´∆ωptqf idE `p1´ e
´uqλ idE

“ ´∆ωptqf idE ´e
´uΛω8iFh8 ` λ idE

“ ´rΛωptqpiFh8 ` iBBf idEq ´ λ idEs

“ ´rΛωptqiFkptq ´ λ idEs .

The evolution equation (3.9) for f is just heat flow on functions with an inhomogeneity
p1´e´uqλ decaying exponentially to 0 (in C8), so f converges exponentially to a constant
function and kptq to a multiple of h8 in C8. Since adding a constant to a solution of
(3.9) gives a new solution, we can arrange for this multiple to be one.

Now if hptq with arbitrary initial condition h0 is a long-time solution to HYMF, then
we can consider the C0-distance measure σphptq, kptqq, where kptq is a solution to HYMF
starting in the conformal class as h8. We already know that σphptq, kptqq is decreasing,
so we can compute

dphptq, h8q ď dphptq, kptqq ` dpkptq, h8q ď Ξpσphptq, kptqqq ` Ξpσpkptq, h8qq ,

where Ξ: R`0 Ñ R`0 is a orientation preserving diffeomorphism comparing d to σ. The
first term on the right hand side is decreasing and the second tends to 0, hence hptq is
bounded in C0 uniformly for t P r0,8r.
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3.5.2. Convergence of hptq to h8 in C1

For the Kähler metric ω8 we consider the Donaldson functional M defined on pairs of
Hermitian metrics which satisfies the following properties:

• for Hermitian metrics h, k, l one has

Mph, lq `Mpl, kq “Mph, kq ,

• the variational property

δhMph0, hq ¨ η “

ż

X
trrpΛω8iFh ´ λ idEqh

´1ηsω8

• and boundedness of Mph0, hq from below for a fixed reference metric h0 and h
varying, i.e.

inf
h
Mph0, hq ě ´Cph0q .

The last property uses stability of the bundle E Ñ X. For a construction of M , see
Appendix C.2.

The variation of Mph0, ¨q in direction of Hermitian Yang–Mills flow is

BtMph0, hptqq “ ´

ż

X
trrpΛω8iFh ´ λ idEqpΛωptqiFh ´ λ idEqsω8

“ ´

ż

X
trrpΛω8iFh ´ λ idEqpΛω8iFh ´ λ idEqsω8 (3.10)

´

ż

X
trrpΛωptq ´ Λω8qiFh pΛω8iFh ´ λ idEqsω8 .

Reexpressing pΛωptq ´ Λω8q “ pe
uptq ´ 1qΛω8 and using the Cauchy–Schwarz inequality

on the trace in the second integral, we estimate

BtMph0, hptqq ď ´

ż

X
trrpΛω8iFh ´ λ idEq

2sω8

` sup
X
peuptq ´ 1q ¨ sup

X,t
ptrrpΛω8Fhptqq

2s
1
2 q

ż

X
trrpΛω8iFh ´ λ idEq

2s
1
2 ω8

ď ´

ż

X
trrpΛω8iFh ´ λ idEq

2sω8

`C sup
X
peuptq ´ 1q

ˆ
ż

X
trrpΛω8iFh ´ λ idEq

2sω8

˙
1
2

“ ´A2 `BA

“ ´ApA´Bq

with A “ p
ş

X trrpΛω8iFh´λ idEq
2sω8q

1
2 and B “ C supXpe

uptq´1q. By the assumptions

on the convergence properties of uptq, one deduces Bptq “ C supXpe
uptq ´ 1q Ñ 0. We

consider two cases:
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• @t ą 0Dt1 ą t : Apt1q ´ Bpt1q ď 0. In this case there exists a sequence of times
ti Ñ8 such that 0 ď Aptiq ď Bptiq, so Aptiq converges to 0.

• Dt1 ą 0@t ą t1 : Aptq ´ Bptq ą 0. In this case BtMph0, hptqq is negative for t ą t1.
SinceMph0, hptqq is bounded from below, we then know that there exists a sequence
of times ti Ñ 8 such that BtMph0, hptiqq converges to 0, but reexamining (3.10),
we see this is only possible if Aptiq goes to 0 (the other summand already tends to
0).

Either way, we find a sequence ti Ñ8, such that Aptiq “ }Λω8iFhptiq´λ idE }L2pX,h,ω8q

converges to 0. The pointwise inner product on EndpEq depends of course on h,
but since hptq remained uniformly bounded for all times, we also have }Λω8iFhptiq ´
λ idE }L2pX,h0,ω8q Ñ 0.

We can now rely on the usual arguments to obtain further information about hptq as
t Ñ 8. Since h and ΛωFh are bounded in C0, the blowup argument in Appendix C.3
gives boundedness of h in C1. Recall from (3.8) that

∆B,h0,ωη “ ηΛωiFh ` iΛωpBηqη
´1pBh0ηq ´ ηΛωiFh0 .

The right hand side is bounded in C0, so by elliptic regularity it follows that hptq is
bounded in Lp2 (for any p). We turn back to the sequence ti Ñ 8 for which we had
that Λω8Fhptiq Ñ λ idE in L2. Since Lp2 ãÑ C1 compactly (for sufficiently high p), we
can assume hi to be convergent in C1 by passing to a subsequence. The same formula
then implies that ∆h0,ωηptiq converges in L2, so by elliptic regularity hptiq converges in
L2

2. Since hptiq is a sequence satisfying Λ8Fhptiq Ñ λ idE in L2, the limit has to be a
Hermite–Einstein metric h8. Looking again at the convergence properties of hptq, we
observe that for the particular sequence hptiq constructed above, σphptiq, kptiqq converges
to 0 (after a rescaling of kptq, so that its limit is h8). But σphptq, kptqq is decreasing, so
hptq converges to h8 in C0. Now since hptq is bounded in Lp2 which embeds compactly
into C1, the convergence hptq Ñ h8 occurs in C1 (by Lemma A.2.2 in Appendix A.2).

3.5.3. Convergence of hptq in C8

In order to establish the convergence of hptq in C8 we show boundedness of κ in Ck

for any k P N0 by slightly modifying the argument used to show uniform bounded-
ness of κ in t P r0, T r. Recall that the maximum principle argument in 3.4.2 showed
boundedness of }κ}h uniformly for t P r0,8r. Since hptq converges in C1, this im-
plies uniform boundedness of |κ|h0 . By equation (3.8) ∆h0η is thus bounded uni-
formly in C0 for all times. Now cover tt P R | t ě 0u by intervals Ij “ rj, j ` 2r,
j P N0. On each of the intervals we invoke the Lp1,2 regularity estimates of Proposi-
tion A.4.3 to obtain bounds }κ}Lp1,2pXˆrj`ε,j`2r,ω8,h0q ă C with a constant C indepen-

dent of j. Since the intervals overlap and κ is bounded for finite times in any Ck,
we obtain that }κ}Lp1,2pXˆrj,j`2r,ω8,h0q ă C. Using the parabolic Sobolev embedding

A.4.5 then gives }κ}C0,0,αpXˆrj,j`2r,ω8,h0q ă C. Now repeating the argument with the
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Schauder estimates of Proposition A.4.3, one has }κ}Ck,2k,αpXˆrj,j`2r,ω8,h0q ă C and in-

deed }κ}Ck,2k,αpXˆr0,8r,ω8,h0q ă C for any k P N0. In particular, hptq is bounded in Ck.
Lemma A.2.2 in Appendix A.2 then implies that the convergence of hptq as tÑ8 occurs
in C8.

3.6. Exponentiality of Convergence

The main result of this section is the following exponentiality result:

Proposition 3.6.1. Under the assumptions in Theorem 3.1.1, the renormalised con-
tracted curvature defined by a solution hptq to time-dependent Hermitian Yang–Mills
flow, κ̃ :“ ΛωiFh ´ λ idE “ κ ´ λ idE, tends to zero at an exponential rate in each
C l. More precisely, for each l P N there exist positive constants Cl, αl, such that
}ΛωiFh ´ λ idE }ClpXq ď Cle

´αlt.

The idea of the proof is to show that the positive L2-products xκ̃,∆kκ̃yh,ω decay
exponentially and deduce that all L2

k-norms of κ̃ tends to 0 exponentially fast. Sobolev
embeddings into C l then give the behaviour as claimed.

Once the exponential decay of κ̃ is established, one then deduces exponential conver-
gence of hptq as follows. Fix a k P N0. Since hptq is bounded in Ck and Bth “ ´hκ̃,
one obtains that Bth and its kth spatial derivatives tend to zero at an exponential rate.
Estimating h8 ´ hptq “

ş8

t pBthqpsq ds then implies that hptq ´ h8 and its kth spatial
derivatives also tend to zero exponentially.

Some technical preparation is required to establish the claimed decay properties of κ̃.

3.6.1. Poincaré-Inequality on Ω0pX,EndpEqq

Throughout this section let ∆ “ ∆d,h,ω denote the full d-Laplacian on Ω0pX,EndpEqq or
occasionally on Ω1pX,EndpEqq defined by ω and h. We claim that ∆kκ̃ptq, k ě 0 is L2-
orthogonal (with respect to the metrics ωptq, hptq) to the kernel of dh for any t P r0,8r.
For k ą 0 this follows from the self-adjointness of ∆ and for k “ 0 from the fact that the
only holomorphic endomorphisms of rωs-stable bundles over compact Kähler manifolds
pX,ωq are multiples of idE . As the kernel of dh is contained in H0pX,EndpEqq, we find
ker dh : Ω0pX,EndpEqq Ñ Ω1pX,EndpEqq “ tc idE |c P Cu and compute

xκ̃, idEyh,ω “

ż

X
trpΛωiFh ´ λ idEqω “ 0

to prove our claim. The importance in this observation lies in the fact that we have
Poincaré-inequalities

}∆kκ̃}L2,h,ω ď C}dh∆kκ̃}L2,h,ω , }dh∆kκ̃}L2,h,ω ď C}∆k`1κ̃}L2,h,ω

where the constant C can be chosen independent of t since convergence of the metrics
hptq and ωptq in C8 implies convergence of the spectrum of their associated Laplacians.
Furthermore one has elliptic estimates of the form

}κ̃}L2
2k,h,ω

ď K}∆kκ̃}L2,h,ω
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where K depends on k but can again be chosen independently of t.

3.6.2. Time dependence of the Laplacian

When taking the pointwise inner product of endomorphisms α, β P Ω0pX,EndpEqq, the
real part of pα, βqh,ω is given by the product of the self-adjoint parts of α and β while the
imaginary part is the product of their skew-adjoint parts. The mixed products vanish.
The same is true for the L2-product. In our case we will only care about the real part
and it is useful to split time-derivatives of ∆kκ̃ into self-adjoint and skew parts.

Let αptq be a smooth one-parameter family in Ω0pX,EndpEqq. If h is a smooth path
of Hermitian metrics on E with h´1Bth “ ρ, then

pBtαq
h “ Btpα

hq ` rρ, αhs .

If in addition αptq is hptq-self-adjoint for each t, then

Btα “

ˆ

Btα`
1

2
rρ, αs

˙

´
1

2
rρ, αs

where the first summand is the h-self-adjoint and the second the h-skew-adjoint. In our
case we have ρ “ ´κ̃ and a computation gives

Bt∆α “

„

´ 9u∆α`∆

ˆ

9α´
1

2
rκ, αs

˙

` iΛωrdhκ, dhαs



`
1

2
rκ,∆αs ,

where the two summands represent again the self- and skew-adjoint parts. Now induction
on k shows that

Bt∆
kκ “

«

´
1

2
∆k`1κ`

k´1
ÿ

j“0

∆jiΛωrdhκ, dh∆k´1´jκs ´
k
ÿ

j“0

∆jp 9u∆k´jκq

ff

`
1

2
rκ,∆kκs .

(3.11)
Note that one can replace κ by κ̃ in this formula and that the first summand is again
self-adjoint while the second is skew. Using the Kähler identities we can simplify the
expression iΛωrdhκ, dh∆k´1´jκs a bit. One finds that for α, β P Ω0pX,EndpEqq it is

iΛωrdhα, dhβs “ d˚hrpB ´ Bhqα, βs ` radκ α, βs ,

which in the case at hand gives

iΛωrdhκ, dh∆k´1´jκs “ d˚hrpB ´ Bhqκ,∆
k´1´jκs . (3.12)

3.6.3. Time-derivatives of xκ̃,∆kκ̃yh,ω

We use (3.11) to compute the time-derivative of the positive expression fk :“ xκ̃,∆kκ̃yh,ω.
The positivity stems from the self-adjointness of the Laplacians which permits to write
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the L2-product as }∆k{2κ̃}2h,ω if k is even or }dh∆pk´1q{2κ̃}2h,ω if k is odd. One obtains
(omitting the subscripts of the pointwise inner product p¨, ¨q) that

Btxκ̃,∆
kκ̃yh,ω “ Bt

ż

X
pκ̃,∆kκ̃qω

“

ż

pBtκ̃,∆
kκ̃qω `

ż

X
pκ̃, Bt∆

kκ̃qω `

ż

X
pκ̃,∆kκ̃q 9uω

“ ´

ż

X
pκ̃,∆k`1κ̃qω ´

k
ÿ

j“0

ż

X
pκ̃,∆jp 9u∆k´j κ̃qqω (3.13)

`

k´1
ÿ

j“0

ż

X
pκ̃,∆jiΛωrdhκ̃, dh∆k´1´j κ̃sqω .

Examining the terms a bit closer one can find the symmetries

ż

X
pκ̃,∆jp 9u∆k´j κ̃qqω “

ż

X
pκ̃,∆k´jp 9u∆j κ̃qqω (3.14)

via integration by parts. Less obvious are the symmetries

ż

X
pκ̃,∆jiΛωrdhκ̃, dh∆k´1´j κ̃sqω “

ż

X
pκ̃,∆k´1´jiΛωrdhκ̃, dh∆j κ̃sqω . (3.15)

One way to see them is to compute

Btx∆
lκ̃,∆k´lκ̃yh,ω “ ´

ż

X
pκ̃,∆k`1κ̃qω ´

k
ÿ

m“0

ż

X
pκ̃,∆mp 9u∆k´mκ̃qqω

`

l´1
ÿ

m“0

ż

X
p∆k´l`mκ̃, iΛωrdhκ̃, dh∆l´1´mκ̃sqω

`

k´l´1
ÿ

m“0

ż

X
p∆l`mκ̃, iΛωrdhκ̃, dh∆k´l´1´mκ̃sqω .

As the left hand side and the first two terms on the right hand side agree for all l “
0, ¨ ¨ ¨ , k, so do the remaining terms. Taking their difference for l “ j and l “ j`1 yields
the desired relations.

We now estimate the terms of p3.13q separately.

• For the leading order term ´
ş

Xpκ̃,∆
k`1κ̃qω “ ´fk`1 we simply use the Poincaré-

inequality fk ď Cfk`1, so

´

ż

X
pκ̃,∆k`1κ̃qω ď ´C´1fk .
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• To estimate the absolute value of the second term, we can estimate each summand
ş

Xpκ̃,∆
jp 9u∆k´j κ̃qqω individually. Using the symmetry (3.14) we may assume

j ě k{2. If k “ 2q is even, then
ż

X
pκ̃,∆jp 9u∆k´j κ̃qqω “

ż

X
p∆qκ̃,∆j´qp 9u∆2q´j κ̃qqω

ď }∆qκ̃ }L2}∆j´qp 9u∆2q´j κ̃q}L2

ď f
1{2
k } 9u∆2q´j κ̃}L2

2pj´qq

ď f
1{2
k c} 9u}C2pj´qq}∆2q´j κ̃}L2

2pj´qq

ď f
1{2
k c} 9u}C2pj´qq}κ̃}L2

k

ď f
1{2
k cK} 9u}C2pj´qq}∆qκ̃}L2

“ cK} 9u}C2pj´qq ¨ fk .

Similarly, if k “ 2q ` 1 is odd, then
ż

X
pκ̃,∆jp 9u∆k´j κ̃qqω “

ż

X
pdh∆qκ̃, dh∆j´qp 9u∆2q´j κ̃qqω

ď }dh∆qκ̃ }L2}dh∆j´qp 9u∆2q´j κ̃q}L2

ď f
1{2
k } 9u∆2q´j κ̃}L2

2pj´qq`1

ď f
1{2
k c} 9u}C2pj´qq`1}∆2q´j κ̃}L2

2pj´qq`1

ď f
1{2
k c} 9u}C2pj´qq`1}κ̃}L2

k`1

ď f
1{2
k cK} 9u}C2pj´qq`1}dh∆qκ̃}L2

“ cK} 9u}C2pj´qq`1 ¨ fk .

We keep in mind that } 9u}Cl Ñ 0 as tÑ8 for any l.

• The remaining terms can be estimated quite crudely by recalling that we already
know that |∆lκ̃| Ñ 0 as t Ñ 8 for any l. We use the symmetry p3.15q to assume
that j ď pk ´ 1q{2. If k “ 2q ` 1 is odd, then using (3.12) we compute
ż

X
pκ̃,∆jiΛωrdhκ̃, dhκ̃∆2q´j κ̃sqω “

ż

X
pdh∆j κ̃, rpB ´ Bhqκ̃,∆

2q´j κ̃sqω

ď }dh∆j κ̃}L2

ˆ
ż

X
| ad∆2q´j κ̃pB ´ Bhqκ̃|

2 ω

˙
1
2

ď }dh∆j κ̃}L2

ˆ
ż

X
| ad∆2q´j κ̃ |

2
op ¨ |dhκ̃|

2 ω

˙
1
2

ď }dh∆j κ̃}L2}dhκ̃}L2 sup
X
| ad∆2q´j κ̃ |op

ď C}dh∆qκ̃}L2}dh∆qκ̃}L2 sup
X
| ad∆2q´j κ̃ |op

ď C sup
X
| ad∆2q´j κ̃ |op ¨ fk .
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If k “ 2q is even and q ě 1, it suffices to simply replace all instances of 2q ´ j by
2q´1´j in the previous computation. Note that the prefactor C supX | ad∆2q´j κ̃ |op

of fk is also a function tending to 0 as tÑ8.

Combing the estimates for each term one finally obtains

Btfk ď ´C
´1fk ` r ¨ fk ,

where r is a smooth function of t converging to 0 as tÑ8. Pick t1 sufficiently big such
that for all t ě t1 one has ´C´1 ` rptq ď ´C´1{2. Then for t ě t1 one has

Btfk ď ´
1

2C
fk

implying fk ď Ae´αt with α “ 1{2C and A sufficiently big such that the inequality also
holds for 0 ď t ă t1. This means that }κ̃}L2

k,h,ω
tends exponentially to 0. Again, ωptq

and hptq converge in C8, so }κ̃}L2
k,h0,ω8

exhibit the same exponential decay. Choosing k

sufficiently large so that L2
k ãÑ C l proves exponential convergence in Ck for any k P N0

concluding the proof of Proposition 3.6.1.





4. Geometric Motivation and Adiabatic
Limits

4.1. Introduction

The objective of this chapter is to motivate the development of twisted Calabi flow and
time-dependent Hermitian Yang–Mills flow carried out in chapters 2 and 3 by showing
that they arise naturally in the construction of adiabatic approximations to Calabi flow
on certain fibrations.

Given a holomorphic submersion π : Z Ñ X between two compact complex manifolds,
the fibres Zx :“ π´1ptxuq are complex submanifolds of Z. Fibres over different points
are always diffeomorphic, but need not be biholomorphic — their complex structures can
change along the base. Assuming that X is Kähler and that there exists a holomorphic
line bundle LÑ Z admitting a Hermitian metric with fibrewise positive curvature, one
can construct Kähler structures on Z as follows. Let ωX be a Kähler form on the base
and h be a Hermitian metric on L with curvature Fh such that ω0 :“ iFh{2π is positive
when restricted to the fibres. For r P R sufficiently big, ωr :“ ω0 ` π˚rωX is a closed
and positive p1, 1q-form on Z and hence Kähler. Moreover, with growing r, the base
becomes approximately flat and one expects the curvature of pZ, ωrq to be dominated
by that of the fibres. Indeed, formally expanding the scalar curvature Spωrq into powers
of r´1, one finds that the leading order r0-coefficient is given by the scalar curvature of
the fibre whereas the scalar curvature of the base appears in the coefficient of r´1.

If the fibres Zx admit cscK metrics in c1pL|Zxq, one might attempt to find a cscK
metric on the total space Z by having ω0 restrict to the canonical metrics on each fibre
and making r very large, hoping to be able to perturb ωr to a cscK metric using the
inverse function theorem. However, this procedure turns out to be too näıve. The reason
for its failure lies in the interplay of the adiabatic geometry of pZ, ωrq and the analytic
details of the inverse function theorem. Roughly speaking, if Φr : A Ñ B are the maps
from a suitable Banach space A of perturbations of ωr to a Banach space B such that the
norm of Φrpψq measures the deficiency of the metric ωr perturbed by ψ having constant
scalar curvature, then a cscK metric on Z corresponds to a zero of Φr. The curvature
analysis can be translated to }Φrp0q}B “ Opr´1q and provided that pdΦrq0 is surjective,
the inverse function theorem guarantees the existence of a ball around Φrp0q onto which
Φr maps surjectively. It turns out that the radius of that ball decreases like r´s for some
s ą 0, so one cannot guarantee that it contains 0 P B, no matter the size of r. In order to
make the inverse function argument work, one needs to construct better approximations
ωr,k, such that the corresponding maps satisfy }Φr,kp0q}B “ Opr´pk`1qq for k ą s´ 1.

A more precise analysis of the r´1 coefficient of Spωrq reveals that it is the sum of the
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scalar curvature of pX,ωXq and a term reflecting how the moduli and fibrewise metrics
change along the base. To construct the next best approximation ωr,1, one thus needs
to modify the base metric to account for this basepoint dependence of the fibrewise
structures. This amounts to solving a nonlinear elliptic equation that resembles that
characterising a canonical metric on the base, modified by a twist reflecting the structure
of the fibres. Subsequent approximations ωr,k, k ą 1 can then be obtained by solving
linear elliptic PDEs.

These ideas have been exploited by Fine [13, 14] and Hong [22]. Using the above
adiabatic scheme, Fine constructed cscK metrics on the total space of Kodaira surfaces,
i.e. X and the fibres of Z Ñ X are Riemann surfaces of genus ě 2, while Hong does
the same on projectivised stable holomorphic vector bundles over compact Kähler man-
ifolds. We consider a parabolic version of the adiabatic limits in these cases, where
the elliptic problems of finding metrics ωr,k approximating a cscK metric up to order
Opr´kq are replaced by the parabolic problems of finding paths of metrics ωr,kptq rep-
resenting Opr´kq approximations to Calabi flow on Z. The ωr,kptq are given as exact
solutions to approximative equations which are defined by demanding that the defect
Btωr,kptq ` iBBSpωr,tptqq of ωr,kptq solving Calabi flow be Opr´pk`1qq. The precise forms
of the approximative equations are derived below. We show that the 1st order approxi-
mations ωr,1ptq naturally lead to twisted Calabi flow in the case of Kodaira surfaces1 and
time-dependent Hermitian Yang–Mills flow in the case of ruled manifolds (projectivised
bundles).

4.2. General Adiabatic Setup

We want to establish a precise notion of adiabatic limits in a general context and compute
a pointwise expansion of scalar curvature of the adiabatic metrics ωr in powers of r´1.
Some preparation is required.

4.2.1. Notation and Basic Properties

Denote by Z,X compact connected complex manifolds and by π : Z Ñ X a holomorphic
submersion. The fibres Zx “ π´1ptxuq are complex submanifolds of Z whose holo-
morphic inclusions Zx ãÑ Z are denoted by ιx. The vertical bundle V :“ ker dπ is a
holomorphic subbundle of TZ and its fibrewise restrictions ι˚xV are isomorphic to the
tangent bundle TZx of the fibres. With the help of a real p1, 1q-form ω0 on Z whose
fibrewise restrictions are nondegenerate one can define a complement to V in TZ:

H :“ tw P TZ | @ v P V : ω0pw, vq “ 0u .

Lemma 4.2.1. A fibrewise nondegenerate two-form ω0 induces a splitting TZ “ V ‘H
of complex vector bundles.

1Unfortunately, the results of Chapter 2 are not strong enough. It is not evident that the twist appearing
in the adiabatic analysis should be negative semidefinite. In addition, its cohomology class may vary
in time.
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Proof. The pointwise splittings TZx “ Vx ‘ Hx are linear algebra, but it remains to
see that the splitting is one vector bundles. As the kernel of dπ, V is manifestly a
holomorphic subbundle of TZ. Over suitable open subsets U Ă Z one can find smooth
frames of V given by local sections txju and tyju of TZ such that ω0pxi, yjq “ δij (one
way to do this is to write Z as a local product of an open set of X with the underlying
real manifold N of the fibres Zx. In product charts, one can then simply Gram–Schmidt
the coordinate vector fields of the N -coordinates with respect to the pseudo Riemannian
metric ω0p¨, J ¨q with the X-coordinates as a parameter). For a tangent vector ζ P TZ
set

prUV pζq “
ÿ

i

pω0pxi, ζqyi ´ ω0pyi, ζqxiq ,

prUH “ id´prUV .

This defines local projection maps of TZ to V and H respectively which in fact do not
depend on the chosen coordinates so long as ω0pxi, yjq “ δij and hence extend to smooth
sections prV and prH of EndpTZq. Checking that H “ ker prV then shows that H is
a real subvectorbundle of TZ. Since ω0 is J-invariant, so is H, making it a complex
subvectorbundle of TZ.

We call H the horizontal bundle and remark that splitting TZ “ V ‘ H defines a
decomposition of differential forms induced by ΛkpV ˚‘H˚q “

À

i`j“k ΛiV ˚bΛjH˚. For
a two-form α we write α “ αV V `αHH`αV H for its decomposition into vertical-vertical,
horizontal-horizontal and vertical-horizontal components.

For later use we also observe that the splitting of TZ into horizontal and vertical
subspaces defines a connection on the fibration π : Z Ñ X. In particular, one can define
its curvature to be the two-form F on X with values in vertical vector fields (sections
of V ) constructed as follows. Given ξ1, ξ2 P TπpzqX, extended locally to vector fields, set

F pξ1, ξ2q :“ rrξ1, rξ2svert “ rrξ1, rξ2s ´
Črξ1, ξ2s, where rξ denotes the unique horizontal lift of

ξ P TX to H. This corresponds to the notion of curvature as infinitesimal holonomy
around loops on the base.

For the adiabatic setup, a suitable ω0 should in addition be closed, of type p1, 1q and
positive on each fibre in addition to being fibrewise nondegenerate. In the two cases we
consider, such forms arise as the curvature of a holomorphic line bundle over Z:

Definition 4.2.2. A holomorphic line bundle LÑ Z is called relatively positive if there
exists a Hermitian structure h on L whose curvature ω0 “ i{p2πqFh is positive on each
fibre Zx of Z.

Forms ω0 with these properties can be used to construct Kähler metrics on Z provided
that the base X is Kähler.

Lemma 4.2.3. If ω0 is a closed p1, 1q-form on Z which is fibrewise positive and ωX is
a Kähler form on X, then for all sufficiently large r, ωr :“ ω0` rπ

˚ωX defines a Kähler
form on Z.
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Proof. The forms ω0 and ωX are closed and J-invariant. Since π is holomorphic and
the exterior derivative commutes with pullbacks, the same is true for π˚ωX and hence
for ωr. The vertical-horizontal decomposition of ωr is given by ωr “ ω0V V ` pω0HH `

rπ˚ωXq. Note that by definition of H, ωr has no vertical-horizontal component. As the
decomposition TZ “ V ‘ H is J-invariant, it suffices to check that both the vertical-
vertical piece ω0V V and the horizontal-horizontal piece ω0HH ` rπ˚ωX are positive for
sufficiently large r. For ω0V V this is true by assumption. For the horizontal-horizontal
component consider the compact unit tangent bundle UTX Ă TX with respect to the
metric gX “ ωXp¨, J, ¨q and pull it back to ČUTX Ă H via horizontal lifts. Since the fibres
of Z are compact, this is a compact subset of H and it suffices to check positivity of
ω0HH ` rπ

˚ωX on ČUTX. Denote by a the minimum of the function w Ñ ω0HHpw, Jwq

on ČUTX and choose r ą ´a. Then pω0HH ` rπ
˚ωXqpw, Jwq ą 0 on ČUTX and hence on

all of E.

The cohomology classes κr :“ rω0s ` rrπ˚ωXs are called adiabatic classes. Assuming
ω0 is the curvature of a relatively positive line bundle LÑ Z and the base X is polarised
by a line bundle Q Ñ X such that ωX P c1pQq, then Z is polarised by the line bundle
Lb π˚Qr and κr “ c1pLb π

˚Qrq for r large enough to imply that κr is a Kähler class.
We shall henceforth make these assumptions.

4.2.2. Geometry of the Vertical-Horizontal Splitting

Via the splitting TZ “ V ‘H one can define several geometric operations that are useful
in computing the scalar curvature of the metrics ωr in terms of data on the base and
on the fibres. Let n be the (complex) dimension of X and n` k that of Z. We denote
by σx “ ι˚xω0 the fibrewise restriction of ω0 to Zx and permit the occasional omission of
the basepoint-specifying subscript as well as the identification ω0V V “ σ. For α P Λ2V ˚

and β P Λ2H˚ define the vertical and horizontal contractions as

ΛV α :“ k
α^ σk´1

σk
,

ΛHβ :“ n
β ^ π˚ωn´1

X

π˚ωnX

and the corresponding vertical and horizontal Laplacians by

∆V f :“ ΛV piBBfqV V ,

∆Hf :“ ΛHpiBBfqHH

for a function f on Z. One has the compatibility rules ∆Hπ
˚g “ π˚∆ωXg for g P C8pXq

and ∆σxpι
˚
xfq “ ι˚xp∆V fq for f P C8pZq, where ∆σx is the Laplacian on the fibre Zx

defined by the metric σx. This is to say that ∆V are the fibrewise Laplacians with respect
to the metrics σ on the fibres and ∆H is the pullback of the Laplacian on X. Next we
examine how ΛV ,ΛH ,∆V and ∆H behave under changes of the adiabatic parameter r.
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Lemma 4.2.4. For α P Λ2T ˚Z one has

Λωrα “ ΛV αV V ` r
´1ΛHαHH `Opr

´2q .

Proof. In light of the splitting ωr “ ωrV V ` ωrHH “ σ ` prπ˚ωX ` ω0HHq it is

ωn`kr “

ˆ

n` k

k

˙

ωr
k
V V ^ ωr

n
HH “

ˆ

n` k

k

˙

σk ^ prπ˚ωX ` ω0HHq
n

ωn`k´1
r “

ˆ

n` k ´ 1

k

˙

σk ^ prπ˚ωX ` ω0HHq
n´1

`

ˆ

n` k ´ 1

k ´ 1

˙

σk´1 ^ prπ˚ωX ` ω0HHq
n ,

with which one obtains

Λωrα “ pn` kq
α^ ωn`k´1

r

ωn`kr

“ k
αV V ^ σ

k´1 ^ prπ˚ωX ` ω0HHq
n

σk ^ prπ˚ωX ` ω0HHq
n

` n
αHH ^ σ

k ^ prπ˚ωX ` ω0HHq
n´1

σk ^ prπ˚ωX ` ω0HHq
n

“ ΛV αV V ` Λrπ˚ωX`ω0HH
αHH .

Setting s “ r´1 the second term can be written as

n
αHH ^ σ

k ^ prπ˚ωX ` ω0HHq
n´1

σk ^ prπ˚ωX ` ω0HHq
n

“ ns
αHH ^ pπ

˚ωX ` sω0HHq
n´1

pπ˚ωX ` sω0HHq
n

,

from where differentiation at s “ 0 yields

Λrπ˚ωX`ω0HH
αHH “ r´1ΛHαHH `Opr

´2q

as claimed.

Lemma 4.2.5. The ωr-Laplacian on functions satisfies the following adiabatic expansion
property:

∆ωr “ ∆V ` r
´1∆H `Opr

´2q .

Proof. It is ∆ωrf “ Λωr iBBf . The claim follows from the adiabatic expansion properties
of Λωr .

4.2.3. Scalar Curvature Expansion of Adiabatic Metrics

We now derive the scalar curvature expansion of the adiabatic metrics ωr into inverse
powers of the adiabatic parameter r. Recall that on a Kähler manifold pY, ωq of dimen-
sion n the Ricci curvature is J-invariant and defines a closed p1, 1q-form, the Kähler–Ricci
form ρpωq, which is related to the Ricci tensor in the same way the Kähler form ω is
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related to the metric g. Moreover, ρpωq can be computed as i times the curvature of the
anticanonical bundle K˚ “ ΛnpTY, Jq endowed with the Hermitian metric h “ pn!q´1ωn

given by the volume form seen as a section of K bK (here K means reversing the sign
of the complex structure).

Lemma 4.2.6. The scalar curvature of ωr satisfies

Spωrq “ Spσq ` r´1rπ˚SpωXq `∆V pΛHω0HHq ` iΛHFΛkV,σHH
s `Opr´2q , (4.1)

where FΛkV,σ is the curvature of the vertical anticanonical bundle ΛkV with Hermitian
metric induced by σ.

Proof. We define Hermitian metrics on ΛkV and ΛnH by

hV :“ pk!q´1pωrq
k
V V “ pk!q´1σk ,

hH :“ pn!q´1pωrq
n
HH “ pn!q´1prπ˚ωX ` ω0HHq

n ,

hX :“ pn!q´1π˚ωnX .

The Kähler–Ricci form of Z is i times the curvature of the anticanonical bundle K˚ “

ΛkV b ΛnH with Hermitian metric hV b hH which is locally given by

ρpωrq “ iBB log hV b hH

“ iBB log hV ` iBB logpπ˚ωX ` r
´1ω0HHq

n

“ iBB log hV ` iBB logppπ˚ωXq
n ` nr´1ω0HH ^ ω

n´1
X `Opr´2qq

“ iBB log hV ` iBB logpr1` r´1ΛHω0HH `Opr´2qshXq

“ iBB log hV ` iBB log hX ` r
´1iBBpΛHω0HHq `Opr´2q .

Observing that iBB log hX “ π˚ρpωXq is purely horizontal-horizontal and in light of
Lemma 4.2.4 one then computes

Spωrq “ Λωrρpωrq

“ ΛV ρpωrqV V ` r
´1ΛHρpωrqHH `Opr´2q

“ ΛV piBB log hV qV V

` r´1rΛV piBBpΛHω0HHqqV V ` ΛHpiBB log hV qHH ` ΛHiBB log hXs `Opr´2q

“ Spσq ` r´1r∆V pΛHω0HHq ` iΛHFΛkV,σHH
` π˚SpωXqs `Opr´2q

which is as claimed.

Remark. It will later occur that ω0 and ωX individually depend on r. In this case,
one can first use the above expansion of Spωrq ignoring the individual r dependencies
of ω0 and ωX and subsequently expand each term still depending on r into powers of
r´1. Owing to the analyticity of all involved operations, the resulting terms can then be
grouped according to their powers of r´1 to yield the full expansion of Spωrq. In essence,
this is just the chain rule for composite functions.
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We want to use this expansion to construct approximations to Calabi flow on Z in the
adiabatic classes κr “ c1pLb π

˚Qrq.

Definition 4.2.7. Let k P N0. A family of smooth paths of Kähler metrics ωr,kptq in κr
is said to be a (pointwise) order k or Opr´kq approximation to Calabi flow with initial
condition ωr if

Btωr,kptq ` iBBSpωr,kptqq “ Opr´pk`1qq

and ωr,kp0q “ ωr.

Remark. The term “initial condition” might be slightly confusing in this context, as
the initial metric depends on the adiabatic parameter r. However, this dependence is
given by ωr “ ω0 ` rπ

˚ωX and fixing both ω0 and ωX prescribes initial data ωr in each
class κr. From here on, if no explicit mention is made to the contrary, the initial data
are understood to be of this form.

The following sections exploit specific features of two types of complex manifolds Z
fitting into the adiabatic framework and outline the construction of approximations to
Calabi flow of arbitrary order in r´1 in these cases. The first type consists of Kodaira
surfaces and the second of ruled manifolds. In light of the wealth of geometric data in
both cases, it is useful to think of the construction of approximations ωr,kptq in terms of
a scheme indexed by r:

• A fibrewise positive two-form ω0 and a Kähler form ωX on the base define the
following data: the metric ωr “ ω0 ` rπ˚ωX , the splitting TZ “ V ‘H and the
corresponding contractions and operators, a family of fibrewise metrics σ and the
scalar curvatures of the base, the fibres and the total space. The forms ω0 and ωX
may also individually depend on r.

• From this data elements in the tangent spaces to ω0 and ωX are constructed
prescribing their infinitesimal evolution. The construction of infinitesimal changes
may explicitly depend on r.

• After the infinitesimal evolution, the forms ω0 and ωX have changed and along
with them all dependent quantities outlined in the first point, in particular ωr.

4.3. Adiabatic Scheme for Kodaira Surfaces

In [13] J. Fine used elliptic adiabatic techniques to construct cscK metrics on Kodaira
surfaces, i.e. compact complex surfaces Z admitting a holomorphic submersion π : Z Ñ
X to a Riemann surface. The additional requirement that the fibres have genus at least
2 ensures that the fibres admit no nonzero holomorphic vector fields and that the cscK
metrics thereon are unique in each Kähler class. In an analysis similar to that of [13],
we derive for each k P N parabolic equations for families of metrics ωr,kptq that agree
(pointwise) with Calabi flow up to order k in r´k.
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For the remainder of this section π : Z Ñ X denotes such a Kodaira surface with high
genus fibres and base. We begin by showing that Z admits a relatively positive line
bundle and the previously presented adiabatic framework can be applied.

Proposition 4.3.1. Denote by V :“ ker dπ the vertical bundle of the fibration π : Z Ñ
X. The relative canonical bundle V ˚ Ñ Z is relatively positive.

Proof. The restriction of V ˚ to a fibre Zx is the canonical bundle of that fibre which
is positive owing to the genus assumption gpZxq ě 2. Indeed, it is

ş

Zx
c1pKZxq “

´
ş

Zx
c1pZxq “ ´2χpZxq “ 4pg ´ 1q ą 0 and hence c1pKZxq P H

1,1pX,Zq is positive. By
the uniformisation theorem, there exists a unique Kähler metric with constant negative
scalar curvature in c1pKZxq which can be interpreted as a negatively curved Hermitian
structure on TZx. The induced Hermitian structure on KZx “ T ˚Zx thus is positively
curved. It is standard that the constant scalar curvature metrics with given volume on a
Riemann surface depend smoothly on the complex structure, so the induced Hermitian
structures on KZx smoothly piece together to a Hermitian structure on V ˚ (cf. e.g.
[14]).

Alternatively, one can pick any J-invariant Riemannian metric g on Z such that its
fundamental two-form ω has fibrewise restrictions σx :“ ω|Zx P c1pKZxq. Since the
restriction of g to a fibre is necessarily Kähler, one has that σx ą 0. The two-form ω
itself need not be closed, but making a smooth choice of Hermitian metrics hx on V ˚|Zx
such that i{p2πqFhx “ σx and then gluing the hx to a Hermitian metric h on V ˚ yields
a closed two-form ω0 P c1pV

˚q with fibrewise restrictions σx.

We fix an initial Hermitian metric h on V ˚ with curvature ω0 :“ i{p2πqFh having
fibrewise positive restrictions. It is also natural to assume that the initial base metric
lies in c1pKXq P H

1,1pX,Zq (this can be achieved by rescaling). The Kähler manifold Z
is then polarised by V ˚ b π˚Kr

X for large r. Lemma 4.2.6 is applicable to the metrics
ωr :“ ω0 ` rπ

˚ωX P c1pV
˚ b π˚Kr

Xq and the scalar curvature expansion can be used to
define approximations to Calabi flow on Z.

4.3.1. 0th Order Approximation to Calabi Flow

The order Opr0q approximation to Calabi flow on Z is given by fibrewise Calabi flow. For
x P X denote by hx the Hermitian product on the line bundle KXx Ñ Zx obtained by
restricting h and V ˚ to Zx. By assumption σx “ i{p2πqFhx is a Kähler form on Zx and
Calabi flow on that fibre is given by Btσx “ ´iBBSpσxq. Locally expressing the curvature
of hx as Fhx “ BB log hx, fibrewise Calabi flow can be written as Bthx “ 2πSpσxqhx. By
[8] and [5], that flow exists for all times and its solution hxptq depends smoothly on the
initial conditions and the complex structure on the fibre. This implies that the hxptq
piece together to a smooth Hermitian metric hptq on V ˚. Denote by ω0ptq “ i{p2πqFhptq
the rescaled curvature of hptq and set

ωr,0ptq :“ ω0ptq ` rπ
˚ωX .
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It remains to check that ωr,0ptq is the desiredOpr0q approximation to Calabi flow. Indeed,

Btωr,0ptq ` iBBSpωr,0ptqq “
i

2π
BtFh ` iBBSpωr,0ptqq

“
i

2π
BB
Bth

h
` iBBSpωr,0ptqq

“ iBBp´Spσq ` Spωr,0ptqqq

“ Opr´1q ,

where in the last step we used the scalar curvature expansion of Lemma 4.2.6. As the
fibrewise restrictions hxptq converge for tÑ8, so does hptq.

Remark. As the horizontal-horizontal parts of ω0ptq can change, it is not a priori clear
that ωr,0ptq remains positive for all t. However, since ω0ptq converges, its horizontal-
horizontal part varies in a compact family. The arguments in Lemma 4.2.3 can thus
be adapted to hold uniformly in t, albeit for a possibly larger threshold for r. Similar
situations arise throughout the analysis and we tacitly treat them the same way without
explicit mention.

4.3.2. 1st Order Approximation to Calabi Flow

Denote by ψ1 the r´1 term in the expansion of Spωr,0q which is given by

ψ1 “ π˚SpωXq `∆V pΛHω0HHq ` iΛHFV,σHH .

The fibrewise metrics σ define an r-independent, L2pZ, ωrq-orthogonal decomposition
C8pZq “ π˚C8pXq ‘ C8K pZq of functions on Z into functions pulling back from the
base and those having fibrewise zero integral. Let ψ1 “ ψK,1`ψX,1 be the corresponding
decomposition of ψ. The part pulling back from the base is given by

ψX,1pxq “ VolpZxq
´1

ż

Zx

ψ1 σx “ π˚SpωXq `VolpZxq
´1

ż

Zx

pΛHiFV,σHHqσx .

The rightmost term can be expressed as A´1
x ΛωXπ˚piFV,σ ^ σq, where Ax “ VolpZxq

and π˚ denotes the pushdown of forms on Z to forms on X which is characterised by
ş

X θ ^ π˚η “
ş

Z π
˚θ ^ η for forms θ P ΩlpXq and η P Ω4´lpZq. We set

α :“ A´1
x π˚piFV,σ ^ σq P Ω2pXq

and observe that α depends only on the fibrewise restrictions σ of ω0. Suppose ωX solves
the twisted Calabi flow equation

pBtωXqptq “ ´r
´2iBBpSpωXptqq ` ΛωXptqαptqq ,

then the path of Kähler metrics

ω1r,0 :“ ω0ptq ` rπ
˚ωXptq

satisfies
Btω

1
r,0 ` iBBSpω

1
r,0q “ r´1iBBψK,1 `Opr´2q

and thus gives an Opr´1q approximation to Calabi flow up to the remaining term ψK,1.
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Remark. Unfortunately, the results of Chapter 2 are not directly applicable, since we do
not know whether the twist α is pointwise nonpositive or stays within a given cohomology
class.

To deal with this remaining error at r´1, we add a time-dependent Kähler potential
φK,1 with

ş

Zx
φK,1 σx “ 0 to ω1r,0 and set

ωr,1 :“ ω1r,0 ` r
´1iBBφK,1 .

The effect of adding the Kähler potential r´1φK,1 on the scalar curvature can be deter-
mined by expanding

Spωr,1q “ Spω1r,0q ` r
´1dScω1r,0 φK,1 `Opr

´2q .

Using the general equation for the linearisation of the scalar curvature map found in
Appendix A.3 and expanding the r-dependent quantities into powers of r using Lemma
4.2.5 and the formulae in Lemma 4.2.6 one finds that

dScω1r,0 φK,1 “ ∆2
ω1r,0

φK,1 ´ Spω
1
r,0q∆ω1r,0

φK,1 ` 2
iBBφK,1 ^ ρpω

1
r,0q

ω12r,0

“ ∆2
V φK,1 ´ Spσq∆V φK,1 `Opr´1q , (4.2)

so in leading order, the linearisation of the scalar curvature map is the linearised fibre-
wise scalar curvature. Setting D0 :“ ∆2

V ´ Spσq∆V , this implies Spωr,1q “ Spω1r,0q `

r´1D0φK,1 `Opr´2q, so if φK,1 solves the linear parabolic equation

pBt `D0qφK,1 “ ´ψK,1 (4.3)

with initial condition φK,1p0q “ 0, then one has

Btωr,1 ` iBBSpωr,1q “ r´1iBBpBtφK,1 `D0φK,1 ` ψK,1q `Opr´2q “ Opr´2q

and ωr,1 is the desired Opr´1q approximation to Calabi flow.

Remark. The fibres have no holomorphic vector fields, so generically kerD0 consists
of fibrewise constant functions and the inhomogeneity ´ψK,1 is orthogonal to kerD0 .
Moreover, as the fibrewise metrics σptq converge as tÑ 8, so does the generator D0 of
(4.3). The solution φK,1 to p4.3q can thus be expected to converge.

4.3.3. 2nd Order Approximation to Calabi Flow

Denote by ψ2 the r´2 coefficient function of the expansion of Spωr,1q into powers of r´1

and by ψ2 “ ψX,2 ` ψK,2 its decomposition according to C8pZq “ π˚C8pXq ‘ C8K pZq
defined by σptq. Each of the two terms will be dealt with by adding appropriate Kähler
potentials to ωr,1. This requires more detailed knowledge of how Kähler potentials in
π˚C8pXq and C8K pZq affect the scalar curvature.
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Since the leading order term of the scalar curvature expansion (4.1) is the fibrewise
curvature Spσq, adding a potential r´jiBBφK to ω1r,0 with φK P C

8
K pZq entails a change

in the total scalar curvature whose lowest order contribution in r´j is given by the lin-
earisation of the fibrewise scalar curvature map, i.e. r´jD0φK “ r´jp∆2

V ´Spσq∆V qφK.
Higher orders in r´1 of course also undergo changes. This is merely a slight variation of
the required modification for passing from ω1r,0 to ωr,1.

The situation changes if the Kähler potential is pulled back from the base. Adding
a potential iBBφX to ω1r,0 “ ω0 ` rπ˚ωX is the same as replacing the base metric ωX
by ωX ` r´1iBBf , where f satisfies π˚f “ φX . The lowest order in which the scalar
curvature of ω1r,0 is sensitive to the base metric is r´1, so the addition of r´1iBBf to ωX
affects Spωr,0q only from order r´2 onwards with the change being the r´2 part of

r´1
“

π˚SpωX ` r
´1iBBfq `∆V pΛ

1
Hω0HHq ` iΛ

1
HFV,σHH

‰

,

where Λ1H is horizontal contraction defined by ωX ` r´1iBBf . Linearising the above
expression shows that this r´2 part is given by

π˚p∆2
ωX
f ´ SpωXq∆ωXfq ` p∆V pΛHω0HHq ` iΛHFV,σHHqπ

˚∆ωXf

and we set DXφX to be the π˚C8pXq part of this, i.e.

DXφX “ ∆2
HφX ´ π

˚SpωXq∆HφX ` π
˚π˚p∆V pΛHω0HHq ` iΛHFV,σHHq∆HφX .

The upshot of this analysis is that the modification of ω1r,0 by iBBφX entails an Opr´2q

change in the scalar curvature, the π˚C8pXq-part of which is DXφX in order r´2.
Adding the Kähler potential r´jiBBφX instead, all changes to the scalar curvature are
Opr´pj`2qq with the order r´pj`2q change in π˚C8pXq being DXφX .

With these preparations we can define second and higher order order approximations
to Calabi flow. Set

ω1r,1 :“ ωr,1 ` iBBφX,2

with φX,2 P π
˚C8pXq solving the fourth order linear parabolic equation

pBt `DXqφX,2 “ ´ψX,2 (4.4)

with initial condition φX,2p0q “ 0. By construction one has Btω
1
r,1 ` iBBSpω1r,1q “

r´2iBBψ1K,2 ` Opr´3q, where ψ1K,2 is the sum of ψK,2 and the additional error term in

C8K pZq at r´2 due to the Kähler potential iBBφX,2. Now have φK,2 solve the linear
parabolic equation

pBt `D0qφK,2 “ ´ψ
1
K,2 ,

again with initial condition φK,2p0q “ 0. The path of Kähler metrics

ωr,2 :“ ω1r,1 ` r
´2iBBφK,2

then is an Opr´2q approximation to Calabi flow.
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4.3.4. Higher Order Approximation to Calabi Flow

The method for obtaining the 2nd order approximation can be used inductively to con-
struct higher order approximations. Suppose that

ωr,k “ ω1r,0 `
k
ÿ

l“1

r´liBBφK,l `
k
ÿ

l“2

r´pl´2qiBBφX,l

is an Opr´kq approximation to Calabi flow, where the ψK,l have fibrewise zero integral
and φX,l are pulled back from the base. Denote by ψk`1 “ ψX,k`1 ` ψK,k`1 the de-
composition of the r´pk`1q term in Spωr,kq into summands in π˚C8pXq and C8K pZq.
Have φX,k`1 solve pBt ` DXqφX,k`1 “ ´ψX,k`1 with zero initial condition and set
ω1r,k :“ ωr,k ` r´pk´1qiBBφX,k`1. As for the corresponding correction term in the 2nd

order approximation, the addition of the Kähler potential φX,k`1 at order r´pk´1q only
affects the scalar curvature at order pk ` 1q and higher in r´1. Denote ψ1K,k`1 to be

the order r´pk`1q term in the scalar curvature of ω1r,k and let φK,k`1 be the solution to
pBt `D0qφK,k`1 “ ´ψ

1
K,k`1. Thenx

ωr,k`1 :“ ω1r,k ` r
´pk`1qiBBφK,k`1

is an Opr´pk`1qq approximation to Calabi flow.

4.4. Adiabatic Scheme for Ruled Manifolds

Another case in which adiabatic techniques have successfully been used to construct
cscK metrics is that of ruled manifolds. A ruled manifold is the projectivisation of a
holomorphic vector bundle E Ñ X, i.e. a holomorphic fibration π : PE Ñ X where
the fibres are copies of complex projective space. Suppose that the base X is compact
with no holomorphic vector fields and that κ is a Kähler class on X admitting a cscK
metric. Further suppose that the bundle E Ñ X is slope stable with respect to κ.
Using elliptic adiabatic techniques, Hong proved the existence of cscK metrics on PE
in [22]. In [21], the construction was extended to certain ruled manifolds coming from
polystable bundles. Later, in [3] Brönnle considered the case of E splitting into a direct
sum of stable bundles with pairwise different slopes and proved the existence of non-cscK
extremal Kähler metrics on PE.

With the objective of outlining a parabolic version of the adiabatic analysis, we adopt
the setting in [22]. To this end, we consider a compact connected Kähler base manifold X
with no nonzero holomorphic vector fields and Kähler class κ containing a cscK metric on
which Calabi flow is assumed to admit a converging long-time solution. The holomorphic
vector bundle E is assumed to be a κ-slope stable SUpk`1q-bundle. In order to produce
a suitable adiabatic class of Kähler metrics, we specify a relatively positive line bundle
on PE.

Proposition 4.4.1. The relative hyperplane bundle ĆOp1q Ñ PE obtained by gluing
together the hyperplane bundles Op1q over each fibre is a relatively positive holomorphic
line bundle on PE.
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Proof. The holomorphic local trivialisations E|U – Ck`1 ˆ U for U Ă X open induce

holomorphic local trivialisations PE|U – CPk ˆ U . Setting ĆOp1q|U :“ Op1q ˆ U gives a
holomorphic line bundle over PE|U . The holomorphic transition functions between local

trivialisations E|U and E|V induce holomorphic transition functions between ĆOp1q|U
and ĆOp1q|V which establishes that ĆOp1q is a holomorphic line bundle. To show that
ĆOp1q is relatively positive, observe that a choice of Hermitian metric h in E defines a

Hermitian structure rh´1 on the relative hyperplane bundle ĆOp1q Ñ PE whose curvature
ω0phq :“ i{p2πqF

rh´1 restricts to the Fubini–Study metric on each fibre PEx defined by
h at x P X.

Remark. The holomorphic submersion π : PE Ñ X inducing local holomorphic triv-
ialisations is not a generic feature. As seen in the case of Kodaira surfaces, a model
holomorphic fibre need not exist. In contrast to high genus Riemann surfaces, complex
projective spaces don’t have moduli and CPn serves as a model fibre for π : PE Ñ X.

Remark. We shall lighten the notation by also denoting the relative hyperplane bundle
and its powers by Oplq, l P Z.

We now fix an initial Kähler metric ωX P κ and a Hermitian metric h on E and
consider the adiabatic metrics

ωr :“ ω0phq ` rπ
˚ωX

as initial data for the to be constructed approximations to Calabi flow. As the fibre-
wise metrics have constant scalar curvature, the constant path of Kähler metrics defined
by ωr is already an Opr0q approximation to Calabi flow. Constructing higher order
approximations to Calabi flow, however, is slightly more involved than in the case of
Kodaira surfaces, owing to the presence of nontrivial holomorphic vector fields on the
fibres. Their existence entails the nonuniqueness of fibrewise cscK metrics in their co-
homology class and the kernel of the linearised fibrewise scalar curvature map contains
strictly more than fibrewise constant functions. The corresponding terms in the scalar
curvature expansion into powers of r´1 need to be treated separately when constructing
approximative flows. A detailed discussion requires some background on the parametric
geometry of PE.

4.4.1. Notation and Parametric Geometry of PE

We first recall some standard theory of complex projective space and its symplectic
geometry. Let Ck`1 be equipped with the standard Hermitian product (inducing the
standard inner product on R2k`2 as its real part) and Upk ` 1q the unitary group with
respect to that Hermitian product. We consider CPk “ pCk`1zt0uq{Cˆ. The Upk ` 1q-
action on Ck`1 commutes with the Cˆ-action, so the action of Upk`1q descends to CPk.
The quotient p : Ck`1zt0u Ñ CPk factors through the unit sphere S2k`1 Ă R2k`2 – Ck`1

via
Ck`1zt0u

p1
Ñ S2k`1 p2

Ñ CPk ,
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where the map p1 is given by z ÞÑ z{|z| and p2 is the obvious quotient map. The fibre
p´1

2 ptluq in S2k`1 over a point l P CPk consists of those z P l with |z| “ 1 and hence
is a copy of S1. This allows for an elegant description of a Fubini–Study form in the
symplectic picture. Denote by Ω “ i

2

řk
j“0 dzj ^ dz̄j “

řk
j“0 dxj ^ dyj the standard

symplectic form on Ck`1 – R2k`2. The (symplectic geometric) Fubini–Study form on
CPk with standard Hermitian metric is the unique Upk ` 1q-invariant closed two-form
such that p˚2ω

1 “ ι˚Ω, where ι : S2k`1 Ñ C2k`2 is the inclusion map.

To define ω1 at l P CPk we set ω1lpu, vq :“ Ωzpru, rvq for a choice of z P p´1
2 ptluq and

lifts ru, rv of u, v P TlCPk to TzS
2k`1. We need to show that this is well defined, i.e.

independent of the choice of z P p´1
2 ptluq “ l X S2k`1 and independent of the choice of

lift ru, rv. First fix a z P l X S2k`1. The orthogonal (Euclidian) complement to TzS
2k`1

inside TzCk`1 is just the real line Rz, so the symplectic complement with respect to Ω
is iRz. Since the S1 orbit of z is teiθzu, its tangent space at z is also given by iRz. This
implies that Ωz as a map

Ωz : TzS
2k`1 ˆ TzS

2k`1 Ñ R

descends to a map TzS
2k`1{TzS

1 ˆ TzS
2k`1{TzS

1 Ñ R. Hence Ωzpru, rvq is independent
of the choice of lifts. Furthermore, since Ω is Upk ` 1q-invariant, it is in particular S1-
invariant, so Ωeiθzpe

iθ
ru, eiθrvq “ Ωzpru, rvq. The relation p˚2ω

1 “ ι˚Ω holds by construction
and ω1 is Upk ` 1q-invariant since Ω is. In addition ω1 is closed since p˚2dω

1 “ ι˚dΩ “ 0
and p˚ is injective. The latter injectivity also gives uniqueness of ω1 with the property
p˚2ω

1 “ ι˚Ω.

Remark. It turns out that the symplectic geometric Fubini–Study form ω1 obtained
this way is not the most natural from a Kähler geometric viewpoint. The description
of CPk as a Riemannian quotient π2 : S2k`1 Ñ CPk with fibre S1 Ă R2k`2 implies
VolpS2k`1q “ VolpCPk, ω1q ¨ VolpS1q. Since VolpS2k`1q “ 2π ¨ πk{k!, the volume of CPk
with respect to the volume form ω1k{k! induced by the Fubini–Study metric defined
as above is VolpCPk, ω1q “ πk{k!, so ω1 does not lie in an integral class. Rescaling ω1

by setting ω :“ ω1{π yields a Fubini–Study form satisfying ω P c1pOp1qq which can
alternatively be described as ω “ i{p2πqF , where F is the curvature of the Hermitian
metric on Op1q induced by the standard Hermitian structure of Ck`1. From now on
we shall work with the integral Fubini–Study form ω and we remark that ω satisfies
p˚ω “ 1{π ¨ ι˚Ω.

Next, we want to show that the Upk`1q-action on CPk is Hamiltonian and describe the
moment map. Let A P upk ` 1q be a skew-Hermitian endomorphism. The infinitesimal
action of A on Ck`1 is given by the vector field XA

z “ Bt|t“0pe
tAzq “ Az P Ck`1 –

TzCk`1. The map

xµCk`1 , Ay : Ck`1 Ñ R , z ÞÑ
1

2
ΩzpAz, zq
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defines a moment map for the Upk ` 1q-action on Ck`1. One computes

pdxµCk`1 , Ayqzpwq “
1

2
pΩzpAw, zq ` ΩzpAz,wqq

“
1

2
pΩzpw,A

˚zq ` ΩzpAz,wqq

“
1

2
p´Ωzpw,Azq ` ΩzpAz,wqq

“
1

2
pΩzpAz,wq ` ΩzpAz,wqq

“ ΩzpAz,wq

“ pιXAΩqzpwq ,

where ιXA denotes contraction with the vector field XA (the double use if ι as a con-
traction of tensors and an inclusion of S2k`1 ãÑ Ck`1 should not cause any ambiguity).
To see that µCk`1 is equivariant, let U P Upk ` 1q and compute

xµCk`1pUzq, Ay “
1

2
ΩpAUz,Uzq “

1

2
ΩpU´1AUz, zq “ xµCk`1pzq,AdU´1 Ay .

The moment map for the Upk ` 1q-action on Ck`1 can be used to construct one for the
action on CPk. We set

xµCPkprzsq, Ay :“
1

2π

ΩzpAz, zq

|z|2
“

1

2π
Ωp1pzqpAp1pzq, p1pzqq .

It is apparent that this is well defined and one has µCPkprzsq “ 1{π ¨ µCk`1pp1pzqq. In
essence, the moment map on CPk at rzs is given by the restriction of µCk`1 to S2n`1

evaluated at any unit length representative of rzs. Observe that if w P S2k`1, then
XA
w “ Aw P TwS

2k`1. Keeping this in mind we compute

dpxµCPk ˝ p,Ayqz “ 1{π ¨ dpxµCk`1 , Ayqp1pzq ¨ pdpqz

“ 1{π ¨ pιXAΩqp1pzq ¨ pdp1qz

“ 1{π ¨ pιXAι˚Ωqp1pzq ¨ pdp1qz

“ pιXAp˚ωqp1pzq ¨ pdp1qz

“ pιdpXAωqrzs ¨ pdpqz .

Since dpXA is the vector field on CPk representing the infinitesimal action of A P upk`1q
on CPk, this affirms that µCPk is indeed a moment map. Equivariance of µCPk follows
from the equivariance of µCk`1 .

A computation shows that for A P upk ` 1q one has

ż

CPk
xµCPk , Ay

ωk

k!
“

i

2π

trA

pk ` 1q!
,

so the Hamiltonians of the SUpk ` 1q-action on CPk have zero integral.
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Remark. The fibrewise Hamiltonians automatically having zero integral is the reason
we chose to work with an SUpk`1q-bundle E. One could modify the moment map µCPk
by subtracting the trace term to obtain a moment map for Upk ` 1q-bundles with the
same property, but as we will see this turns out to be unnatural when considering the
parametric geometry of PE.

We finish this summary by C-linearly extending µCPk to a map CPk Ñ glCpk ` 1q˚

(using the decomposition glCpk ` 1q “ upk ` 1q ‘ iupk ` 1q). Concretely, this extension
is given by

xµCPkprzsq, Ay “
i

2π

hstdpAz, zq

hstdpz, zq
,

where hsdt is the standard Hermitian product on Ck`1 (with C-linearity in the first
argument) of which Ω is the negative imaginary part.

We now introduce a parametric moment map for the fibration PE Ñ X, where each
fibre carries the Fubini–Study metric induced by the Hermitian metric h in E on that
fibre. Given an element u P ΓpX, upE, hqq, i.e. a smooth section of the bundle upE, hq Ñ
X of h-skew-adjoint endomorphisms of E, we get fibrewise Hamiltonians xµPEx , uxy with
zero integral over the fibre PEx (with respect to the Fubini–Study metric induced by
hx) for each x P X.

Proposition 4.4.2. The fibrewise Hamiltonions xµPEx , uxy glue to a smooth function
Mph, uq P C8pPEq on the total space.

Proof. Let U Ă X be an open set over which E is trivialised by a Φ: E|U Ñ U ˆ Ck`1

such that for each x P U the associated fibre map Φx : pEx, hxq Ñ pCk`1, hstdq is a
unitary isomorphism. The induced trivialisation φ : PE|U Ñ U ˆ CPk then has fibre
maps φx : PEx Ñ CPk that are holomorphic isometries with respect to the respective
Fubini–Study metrics. We use Φ to locally interpret u as a smooth map U Ñ Upk ` 1q,
more precisely set

û : U Ñ Upk ` 1q , x ÞÑ ΦxuxΦ´1
x .

For each x P U the action of ûx on CPk has the zero-integral Hamiltonian

xMph, uqx :“ xµPEx , uxy ˝ φ
´1
x .

This should be clear since Φx and φx preserve all relevant structure. For a more detailed
proof denote by σx, ω the Fubini–Study forms on PEx and CPk respectively and compute

dxMph, uqxp¨q “ dpxµPEx , uxyq ¨ dφ
´1
x p¨q

“ σxpX
ux , dφ´1

x ¨q

“ pφ´1˚
x σxqpdφxX

ux , ¨q

“ ωpX ûx , ¨q

The zero integral property of xMph, uqx follows from that of Mph, uqx by the diffeomor-
phism invariance of the integral of forms. We observe that the right hand side of the
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moment map relation for xM is a smooth family of one-forms on CPk indexed by U . Ap-
plying d˚ (the formal L2-adjoint of d with respect to the Fubini–Study metric on CPk)
to both sides of the equality gives

∆xMph, uqx “ d˚ωpX ûx , ¨q

and since xMph, uqx has zero integral, we can invert the Laplacian and obtain

xMph, uqx “ ∆´1d˚ωpX ûx , ¨q .

The right hand side defines a smooth function on U ˆ CPk, so the same is true for
xMph, uqx. We immediately infer that the collection of fibrewise moment mapsMph, uqx :“

xµPEx , uxy “
xMph, uqx ˝ φx is smooth in x. This is independent of the choice of U and

φ, so Mph, uq P C8pPEq as claimed.

As in the nonparametric model case we can C-linearly extend Mph, ¨q to a map

Mph, ¨q : ΓpX,EndpEqq Ñ C8pPE,Cq

and even more generally to a map

Mph, ¨q : ΩppX,EndpEqq Ñ ΩppPEq

by applying Mph, ¨q to the endomorphism factor and pulling back the form part to PE.

With these preparations we can now describe ω0phq “ i{p2πqFOp1q,rh´1 in terms of the

horizontal-vertical decomposition of TPE “ H ‘ V .

Proposition 4.4.3. In the decomposition ω0phq “ ω0phqV V ` ω0phqHH ` ω0phqHV , the
vertical-vertical component ω0phqV V is given by the fibrewise Fubini–Study metrics σ
defined by the Hermitian metric h. The horizontal-horizontal component is ω0phqHH “
´Mph, FE,hq, where FE,h P Ω2pX, upE, hqq is the curvature of the Chern connection on
pE, hq. The mixed component vanishes.

Proof. The restriction of ω0phq to a fibre PEx is the Fubini-Study metric on that fibre
defined by hx, i.e. ω0phqV V “ σ and the mixed part vanishes by definition of the
connection TPE “ H ‘ V . It remains to show that ω0phqHH “ ´Mph, FE,hq.

The calculation in Appendix D.1 computes the decomposition of ω0phq in terms of the
connection TPE “ H 1 ‘ V 1 on PE that is induced by the Chern connection on pE, hq
(one has V “ V 1, the prime merely indicates that the projections TPE Ñ V might
a priori differ). It is shown that with respect to that decomposition ω0phqV 1V 1 “ σ,
ω0phqH 1V 1 “ 0 and ω0H 1H 1 “ ´Mph, FE,hq. In particular, the two connections on PE
coincide and ω0HH “ ´Mph, FE,hq.

We can now derive an explicit form of the scalar curvature expansion (4.2.6) for
ωr “ ω0phq ` rπ

˚ωX on PE.
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Proposition 4.4.4. The expansion of ωr in powers of r´1 is given by

Spωrq “ 2πkpk ` 1q ` r´1r´4πpk ` 1qMph,ΛωXFE,hq ` π
˚SpωXqs `Opr´2q (4.5)

Proof. The order r0 term is just the fibrewise scalar curvature Spσq, which is constant
for the Fubini–Study metric. The integral Fubini–Study metric is Kähler–Einstein with
ρ “ 2πpk`1qω, so Spσq “ 2πkpk`1q. Apart from the pulled back scalar curvature of the
base, the r´1 term consists of two parts, the vertical Laplacian applied to the contracted
horizontal-horizontal part of the curvature of Op1q, ∆V ΛHω0HH , and horizontal con-
traction of the curvature of the vertical anticanonical bundle iΛHFΛkV,σHH

. Proposition
4.4.3 shows that ΛHω0phqHH “ ´Mph,ΛωXFE,hq and since the fibrewise SUpk ` 1q-
Hamiltonians constitute the first eigenspace of the Fubini–Study Laplacian with eigen-
value 2πpk ` 1q (cf. Proposition D.2.2 and the following remark in Appendix D.2), one
has ∆V ΛHω0HH “ ´2πpk`1qMph,ΛωXFE,hq. For the second term, observe that ΛkV “
Opk ` 1q (the canonical bundle of CPk is Op´k ´ 1q) and that the Hermitian metric on
ΛkV induced by σ corresponds to rh´bpk`1q. Since by definition i{p2πqFOp1q,rh´1 “ ω0phq

this implies iΛHFΛkV,σHH
“ 2πpk ` 1qΛHω0phqHH “ ´2πpk ` 1qMph,ΛωXFE,hq. The

total Opr´1q term is given by ´4πpk ` 1qMph,ΛωXFE,hq ` π
˚SpωXq as claimed.

4.4.2. 1st Order Approximation to Calabi Flow

To define an Opr´1q approximation to Calabi flow we first need to understand how ω0phq
evolves if hptq is a smooth path of Hermitian metrics on E.

Lemma 4.4.5. Let hptq be a smooth family of Hermitian metrics on E and uptq :“
ih´1ptqpBthqptq (this is an element of ΓpX, upE, hptqqq for each t). Then ω0phptqq satisfies

Btω0phptqq “ iBBMphptq, uptqq .

Proof. First consider the nonparametric case of E being a vector space with a family of
Hermitian structures hptq (we omit t from here on) with reference structure h0. Each
h defines a real scalar product gh and a symplectic from Ωh on E via gh “ Reh and
Ωh “ ´ Imh. (in this convention one has ghpu, vq “ Ωhpu, ivq and Ωh “

ř

i dxi^dyi in a
gh-orthonormal R-basis txi, yiu with yi “ ixi). The moment map for the UpE, hq-action
on PE with integral Fubini–Study metric defined by h is given by

xµPE , Ayprzsq “
1

2π

ΩhpAz, zq

hpz, zq
.
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If A “ ih´1pBthq, then

xµPE , ih
´1pBthqyprzsq “

1

2π

Ωhpih
´1pBthqz, zq

hpz, zq

“ ´
1

2π

Imhpih´1pBthqz, zq

hpz, zq

“ ´
1

2π

Im ipBthqpz, zq

hpz, zq

“ ´
1

2π

pBthqpz, zq

hpz, zq
.

Keeping this in mind, we define a family of positive functions efptq on PE by setting

efpt,rzsq “
hpz, zq

h0pz, zq
.

The derivative of fptq with respect to the parameter t is then given by

pBtfqpt, rzsq “
pBthqpz, zq

hpz, zq
.

If rh´1 and rh´1
0 denote the induced metrics on Op1q Ñ PE, then one finds that they

are related by rh´1 “ e´frh´1
0 , so their curvatures satisfy F

rh´1 “ F
rh´1
0
´ BBf . Putting

everything together one finds that

BtiF
rh´1 “ ´iBBpBtfq “ 2πiBBxµPE , ih

´1pBthqy .

For the parametric case (E Ñ X now being a vector bundle), observe that the change
of moment map and the change of the Hermitian metric rh´1 on Op1q occur fibrewise,
so the nonparametric computation also applies in this case up until rh´1 “ e´frh´1

0 . The
curvature relations also hold forOp1q Ñ PE, so ω0phq “ i{p2πqF

rh´1 “ ω0ph0q´i{p2πqBBf
and

Btω0phq “ iBBMph, uptqq

as claimed.

We can now derive equations for paths in metrics on the base ωXptq and Hermitian
metrics hptq on E whose solutions will make ωrptq “ ω0phptqq ` rπ˚ωXptq an Opr´1q

approximation to Calabi flow. Comparing

Btωrptq “ iBBMph, ih´1Bthq ` rπ
˚BtωX

to the scalar curvature expansion from Proposition 4.5

iBBSpωrq “ r´1iBBr´4πpk ` 1qMph,ΛωXFE,hq ` π
˚SpωXqs `Opr´2q



78 4. Geometric Motivation and Adiabatic Limits

shows that if ωXptq solves Calabi flow on the base, i.e. BtωX “ ´iBBSpωXq and if hptq
solves the time-dependent Hermitian Yang–Mills flow

ih´1Bth “ 4πpk ` 1qΛωXpt{rqFE,h , (4.6)

then
ωr,1 :“ ω0phpt{rqq ` rπ

˚ωXpt{r
2q

defines the desired approximation.

Remark. The Opr´1q approximation to Calabi flow being given by Hermitian Yang–
Mills flow with respect to an evolving base metric is the reason why we have assumed
the bundle E Ñ X to be slope stable. This assumption guarantees the existence and
convergence of the Hermitian Yang–Mills flow, at least when the base is a Riemann
surface. In the general case, slope stability is a necessary and sufficient condition for the
existence of a suitable limit object (a Hermite–Einstein metric) by the Hitchin–Kobayashi
correspondence.

4.4.3. 2nd Order Approximation to Calabi Flow

In the adiabatic scheme for Kodaira surfaces, higher order approximations to Calabi flow
in r´1 could be obtained by solving linear parabolic equations for two types of perturba-
tions of ωr, one for each summand in the decomposition C8pZq “ π˚C8pXq ‘ C8K pZq
of functions on Z into functions that are fibrewise constant and those that have zero
integral on each fibre. The addition of a path of Kähler potentials on the base could com-
pensate for the failure of the Opr´kq approximation ωr,k to be Opr´pk`1qq in π˚C8pXq
and the subsequent addition of a Kähler potential with fibrewise zero integral correcting
to remaining error term in C8K pXq would then give an Opr´pk`1qq approximation ωr,k`1

to Calabi flow.
In the case of ruled manifolds, similar techniques can be used. However, one cannot

hope to correct the full failure of ωr,1 being an Opr´2q approximation to Calabi flow in
the L2-complement to π˚C8pXq in C8pPEq via the addition of fibrewise mean value
zero Kähler potentials. The reason for this is that the cscK metrics on the fibres are
not unique — the gradients of Hamiltonians for the Upk ` 1q-action define holomorphic
vector fields, so the pieced together fibrewise Hamiltonians for the action of sections
in ΓpX, upE, hqq lie in the kernel of the linearised fibrewise scalar curvature map. The
corresponding error terms need to be treated separately.

We split the Opr´2q term ψ2 of Spωr,1ptqq into three parts, ψ2 “ ψX,2 ` ψu,2 ` ψK,2
according to the splitting

C8pPEq “ π˚C8pXq ‘Mph,ΓpX, upE, hqqq ‘ C8K,h ,

where the second summand consists of mean value zero Hamiltonians for infinitesimal
isometries of the fibre (with respect to the Fubini–Study metric depending on h) and the
last summand is the L2 orthogonal complement to the other two. The decomposition
only depends on the Hermitian metric hptq. Each of the three Opr´2q error terms
necessitates a specific correction of ωr,1.
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• ψX,2 P π˚C8pXq is dealt with by perturbing Calabi flow on X. This correction
introduces a new error term in Mph,ΓpX, upE, hqqq at r´2 which we subsume along
with the original r´2 term ψu,2 to ψ1u,2 PMph,ΓpX, upE, hqqq.

• ψ1u,2 PMph,ΓpX, upE, hqqq requires an adjustment of hptq,

• ψK,2 P π˚C8K,h is compensated for by a Kähler potential in C8K pPEq.

These changes accumulate to give the desired Opr´2q approximation ωr,2 of Calabi flow.
A key features of the adjustments is that they leave the scalar curvature in lower order
unchanged, i.e. the scalar curvatures of ωr,1 and ωr,2 agree up to (including) order r´1,
only their higher order parts differ.

The π˚C8pXq-Correction

Set ωX,1 :“ ωX ` r´1iBBf and ω1r,1 :“ ωr,1 ` π˚iBBf “ ω0phq ` rπ˚ωX,1. Passing from
Spωr,1q to Spω1r,1q amounts to replacing ωX by ωX,1 in the scalar curvature expansion
(4.5), so the change in scalar curvature caused by the addition of the Kähler potential π˚f
is Opr´2q. The precise change at r´2 in the scalar curvature is obtained by linearising
the quantities at r´1 involving ωX,1. We expand

SpωX,1q “ SpωXq ` r
´1pdScqωXf `Opr

´2q ,

ΛωX,1FE,h “ ΛωXFE,h ` r
´1

„

1

2
Λ2
ωX
FE,h ^ iBBf ´ ΛωXFE,h ¨∆ωXf



`Opr´2q ,

which gives

Spω1r,1q “ Spωr,1q ` r
´2 rπ˚pdScqωXf s

´ r´22πpk`1q
“

Mph,Λ2
ωX
FE,h^iBBfq ´ 2Mph,ΛωXFE,hq ¨ π

˚∆ωXf
‰

`Opr´3q .

Observe that the third term lies in Mph,ΓpX, upE, hqqq. Now define g P C8pXq by
π˚g “ ψX,2 and have f solve the linear parabolic PDE

pBt ` dScωXptqqf “ ´gpr
2tq

with zero initial condition. Then ω1r,1 with h evaluated at t{r and ωX,1 evaluated at t{r2

satisfies

Btω
1
r,1 ` iBBSpω

1
r,1q “ r´2iBBrψ1u,2 ` ψK,2s `Opr´3q ,

where ψ1K,2 “ ψK,2 ´ 2πpk ` 1q
“

Mph,Λ2
ωX
FE,h ^ iBBfq ´ 2Mph,ΛωXFE,hq ¨ π

˚∆ωXf
‰

.

The Mph,ΓpX, upE, hqqq-Correction

Adjust hptq by setting

h1ptq :“ hptqpidE `r
´1ϑptqq
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for a family of hptq-self-adjoint endomorphisms ϑptq P iupE, hptqq of E. We derive an
evolution equation for ϑ such that the new family

ω2r,1ptq :“ ω0ph1q ` rπ
˚ωX,1 ,

again with h1 evaluated at t{r and ωX,1 evaluated at t{r2, is an Opr´2q approximation
to Calabi flow up to a part in C8K,2. Using Lemma 4.4.5 to compare the time-derivatives
of ω1r,1 and ω2r,1 yields

Btω
2
r,1 ´ Btω

1
r,1 “ r´1iBBrMph1, ih1

´1Bth1q ´Mph, ih
´1Bthqs . (4.7)

On the other hand,

Spω2r,1q´Spω
1
r,1q “ ´r

´14πpk`1qrMph1,ΛωXFE,h1q´Mph,ΛωXFE,hqs`Opr
´3q , (4.8)

where the remainder term is Opr´3q because the entirety of the r´2 term stems from
the linearisation of the r´1 term. Expressing the linearisations of Mph1, ih1

´1Bth1q and
Mph1,ΛωXFE,h1q in r´1 as

Mph1, ih1
´1Bth1q “ Mph, ih´1Bthq ` r

´1Qphqpϑ, Btϑq `Opr´2q

Mph1,ΛωXFE,h1q “ Mph, FE,hq ` r
´1P phqpϑq `Opr´2q

we can combine (4.7) and (4.8) to

Btω
2
r,1 ` iBBSpω

2
r,1q “ r´2iBBrQphqpϑ, Btϑq ´ 4πpk ` 1qP phqpϑq ` ψ1u,2 ` ψK,2s `Opr´3q .

It remains to compute P and Q and to check that the linear equation

Qphqpϑ, Btϑq ´ 4πpk ` 1qP phqpϑq ` ψ1u,2 “ 0 (4.9)

is parabolic and can be solved. In order to do this we need to linearise M as a map

M : Hˆ glCpEq Ñ C8pPE,Cq ,

whereH “ GlCpEq{UpE, h0q is the space of Hermitian inner products on E parametrised
by the transitive GlCpEq-action on a reference product h0. As M only depends on
fibrewise restrictions of the relevant quantities, it suffices to think of E as a vector
space.

Remark. The reason to look at the C-linear extension of Mph, ¨q is that the space of
arguments glCpEq “ upE, hq ‘ iupE, hq does not itself depend on h making calculations
conceptionally easier.

With respect to the group action of GlCpEq on H via g ¨ h :“ hpg´1¨, g´1¨q, the
adjoint action on glCpEq and precomposition by φg´1 (the action of GlCpEq on PE) on
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C8pPEq, the map M is equivariant. Recalling Mph,Aqprzsq “ i{p2πq ¨ hpAz, zq{hpz, zq
one computes

Mpg ¨ h,Adg Aqprzsq “
i

2π

„

pg ¨ hqpAdgpAqz, zq

pg ¨ hqpz, zq



“
i

2π

„

hpAg´1z, g´1zq

hpg´1z, g´1zq



“ Mph,Aqpg´1 ¨ rzsq .

We now compute the derivatives D1M and D2M of M with respect to the H and the
glCpEq-argument. Since M is linear in the second argument, we have

pD2Mqph0, AqpBq “Mph0, Bq .

Computing the derivative with respect to the first argument is done by differentiating
the equivariance property. Using the transitive action GlCpEq with stabiliser UpE, h0q

at h0 on H, we identify the tangent space Th0H with iupE, h0q (Note: Instead of the
transitive GlCpEq-action one can parametrise H via h0ζ for a positive h0-self-adjoint ζ.
The resulting identification of Th0H with iupE, hq differs from the previous one by a
factor of ´2). Let gt be a path in Upk` 1q with g0 “ idE and pBtgtq|t“0 “ η “ ηu` ηiu P
upE, h0q ‘ iupE, h0q. Differentiating the left hand side of the equivariance property for
gt at t “ 0 yields

Bt|t“0Mpgt ¨ h0,Adgt Aq “ pD1Mqph0, AqpBt|t“0gt ¨ h0q ` pD2Mqph0, AqpBt|t“0 Adgt Aq

“ pD1Mqph0, Aqpηiuq `Mph0, rη,Asq .

On the other hand

Bt|t“0Mpgt ¨ h0,Adgt Aq “ Bt|t“0pφg´1q
˚Mph,Aq

“ Bt|t“0pφ
´1
g q

˚Mph0, Aq

“ ´LXηMph0, Aq ,

where Xη is the holomorphic vector field generated by η (which is Killing and symplectic
if ηiu “ 0). Combining the two gives

pD1Mqph0, Aqpηiuq “ ´LXηMph0, Aq ´Mph0, rη,Asq . (4.10)

It seems as if though the right hand side seems to “see more” of η, but this is resolved by
observing that for a path gt in UpE, h0q, we have gt ¨h0 “ h0 and η “ ηu. The invariance
property then gives just the usual UpE, h0q-equivariance property of the moment map
Mph, ¨q which reads

LXηuMph0, Aq `Mph0, rηu, Asq “ 0 ,

so (4.10) reduces to the more natural looking form

pD1Mqph0, Aqpηiuq “ ´LXηiuMph0, Aq ´Mph0, rηiu, Asq . (4.11)
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Now let hs be a family of paths in Hermitian metrics of the form hs “ h0pidE `sϑq for
ϑptq P iupE, h0ptqq. We want to compute Bs|s“0Mphs, ih

´1
s pBthsqq. Since the derivative

only depends on hs up to first order in s we can instead look at hs “ h0e
sϑ which has

the advantage that we can write hs “ gs ¨ h0 for gs :“ e´
1
2
sϑ. One computes

Bs|s“0Mphs, ih
´1
s pBthsqq “ pD1Mqph0, ih

´1
0 pBth0qqpBs|s“0gs ¨ h0q

`pD2Mqph0, ih
´1
0 pBth0qqpBs|s“0ih

´1
s pBthsqq

“
1

2
LXϑMph0, ih

´1
0 pBth0qq `

1

2
Mph0, rϑ, ih

´1
0 pBth0qsq

`Mph0, rih
´1
0 pBth0q, ϑsq `Mph0, iBtϑq

“
1

2
LXϑMph0, ih

´1
0 pBth0qq `Mph0, iBtϑq

´
1

2
Mph0, rϑ, ih

´1
0 pBth0qsq .

The fact that the last summand doesn’t directly cancel in the computation is not a
mistake, but it vanishes nonetheless. The easiest way to see this is to observe that the
left hand side and all other summands on the right hand side are real, whereas the last
summand is purely imaginary since rθ, ih´1

0 pBth0qs is h0-skew-adjoint. Another way to
see this is to explicitly compute

Bs|s“0Mphs, ih
´1
s pBthsqqprzsq “ Bs|s“0

i

2π

„

hspih
´1
s pBthsqz, zq

hspz, zq



“
i

2π

„

Bth0piϑz, zq

h0pz, zq
´
Bth0pz, zq

h0pz, zq

h0piϑz, zq

h0pz, zq
`
h0piBtϑz, zq

h0pz, zq



“ Mph0, iBtϑq `
i

2π

„

1

2

d

ds

ˇ

ˇ

ˇ

ˇ

s“0

ipBth0qpe
sϑz, esϑzq

h0pesϑz, esϑzq



“ Mph0, iBtϑq ` 1{2 ¨LXϑMph0, ih
´1
0 pBth0qq .

In this computation the term Mph0, rϑ, ih
´1
0 pBth0qsq does not even appear. Applied to

our case this computation yields

Qphqpϑ, Btϑq “Mph, iBtϑq ` 1{2 ¨LXϑMph, ih´1Bthq . (4.12)

In order to determine P , consider

FE,hs “ Bph´1
s Bhsq

“ FE,h0 ` sr´Bpϑh
´1
0 Bh0q ` Bph

´1
0 Bph0ϑqqs `Ops2q

“ FE,h0 ` sBrBϑ` rh
´1
0 Bh0, ϑss `Ops2q

“ FE,h0 ` sBBh0ϑ`Ops2q ,

which implies

ΛωXFE,hs “ ΛωXFE,h0 ´ si∆B,h0,ωX
ϑ`Ops2q ,
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where ∆
B,h0,ωX

is the B-bundle Laplacian on EndpEq defined by ωX and h0. Again using

hs “ gs ¨ h0 with gs “ e´
1
2
sϑ instead of hs “ pidE `sϑq, the desired first order expansion

of Mphs,ΛωXFE,hsq can be computed via

Bs|s“0Mphs,ΛωXFE,hsq “ pD1Mqph0,ΛωXFE,h0qpBs|s“0gs ¨ h0q

` pD2Mqph0,ΛωXFE,h0qpBs|s“0ΛωXFE,hsq

“
1

2
LXϑMph0,ΛωXFE,h0q `

1

2
Mph0, rϑ,ΛωXFE,h0sq

´ Mph0,∆B,h0,ωX
iϑq

“
1

2
LXϑMph0,ΛωXFE,h0q ´Mph0,∆B,h0,ωX

iϑq

which yields

P phqpϑq “
1

2
LXϑMph,ΛωXFE,hq ´Mph,∆B,h,ωX

iϑq . (4.13)

With the expression (4.13) and (4.12) for P and Q, the equation (4.9) for the correction
ϑ becomes

Mph, iBtϑq ` 4πpk ` 1qMph,∆
B,h,ωX

iϑq ` ψ1u,2

`
1

2
LXϑrMph, ih´1Bthq ´ 4πpk ` 1qMph,ΛωXFE,hqs “ 0

and in light of (4.6) the Lie-derivative term vanishes automatically. Writing ψ1u,2 “
Mph, iAptqq, this equation is satisfied if and only if

pBt ` 4πpk ` 1q∆
B,h,ωX

qϑ “ ´Aptq , (4.14)

which is a bundle valued heat equation and indeed parabolic. If we have a solution ϑ
with initial value ϑp0q “ 0, then the corresponding ω2r,1 solves

Btω
2
r,1 ` iBBSpω

2
r,1q “ r´2iBBψK,2 `Opr´3q .

The C8K pPEq-Correction

To correct the remaining deficiency of ω2r,1 not solving Calabi flow up to (and including)

order r´2, we use the same technique as in the case of Kodaira surfaces and modify ω2r,1
by a Kähler potential φ P C8K pPEq. Set

ωr,2 :“ ω2r,1 ` r
´2iBBφ

and observe from equation (4.1) (cp. also (4.2)) that the addition of the Kähler potential
r´2iBBφ changes the scalar curvature at order r´2 by the linearised fibrewise curvature
dScF , i.e.

Spωr,2q “ Spω2r,1q ` r
´2pdScF qσφ`Opr´3q .

Observe that pdScF qσ restricted to C8K pPEq has trivial kernel. This is due to C8K pPEq
being orthogonal to π˚C8pXq ‘ Mph,ΓpupE, hqqq and the fibrewise linearisations of
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the scalar curvature taking place at cscK metrics, so kerpdScF qσ is precisely C8pXq ‘
Mph,ΓpupE, hqqq. The linear parabolic equation

pBtφ` pdScF qσqφ “ ´ψK,2

should thus be solvable and taking φ to be its solution with zero initial condition makes
ωr,2 the desired Opr´3q approximation to Calabi flow.

4.4.4. Higher Order Approximation to Calabi Flow

The procedure described in 4.4.3 can adapted inductively to arbitrarily high orders. Set

ωX,p “ ωX ` iBB

p
ÿ

l“1

r´lfl ,

hp “ h

˜

idE `

p
ÿ

l“1

r´lϑl

¸

,

Φp “ r´1
p
ÿ

l“1

r´lφl

and suppose that

ωr,pptq “ ω0php´1pt{rqq ` rπ
˚ωX,p´1pt{r

2q ` iBBΦp´1ptq

solves Calabi flow up to order r´p, i.e.

Btωr,p ` iBBSpωr,pq “ r´pp`1qiBBpψX,p`1 ` ψu,p`1 ` ψK,p`1q `Opr´pp`2qq ,

where the r´pp`1q error has been decomposed according to C8PE “ π˚C8pXq ‘
Mph,ΓpX, upE, hqqq ‘ C8K pPEq. The corrections ϑp, fp and φp such that the corre-
sponding ωr,p`1 is an order r´pp`1q approximation to Calabi flow are found exactly as
before. For completeness, we state the equations that need to be solved (with zero initial
conditions) and refer to the discussion of the second order approximation for details.

• Set ωX,p :“ ωX,p´1 ` iBBr´pfp and ω1r,pptq :“ ω0php´1pt{rqq ` rπ˚ωX,ppt{r
2q `

iBBΦp´1ptq, write ψX,p`1 “ π˚g and have fp solve

pBt ` pdScqωXptqqfp “ ´gpr
2tq .

Then

Btω
1
r,p ` iBBSpω

1
r,pq “ r´pp`1qiBBpψ1u,p`1 ` ψK,p`1q `Opr´pp`2qq ,

where ψ1K,p`1 “ ψK,p ´ 2πpk ` 1q
“

Mph,Λ2
ωX
FE,h ^ iBBfp ´ 2ΛωXFE,h∆ωXfpq

‰

.
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• Set hp :“ hp´1 ` r
´phϑp and ω2r,pptq :“ ω0phppt{rqq ` rπ

˚ωX,ppt{r
2q ` iBBΦp´1ptq,

write ψ1u,p`1 “Mph, iAq and have ϑp solve

pBt ` 4πpk ` 1q∆
B,h,ωX

qϑ “ ´A .

Then
Btω

2
r,p ` iBBSpω

2
r,pq “ r´pp`1qiBBψK,p`1 `Opr´pp`2qq .

• Set Φp :“ Φp´1`r
´pp`1qϕp and ωr,p`1ptq :“ ω0phppt{rqq`rπ

˚ωX,ppt{r
2q`iBBΦpptq.

Having φp solve
pBt ` pdScF qσqφp “ ´ψK,p`1

gives the desired Opr´pp`1qq approximation to Calabi flow:

Btωr,p`1 ` iBBSpωr,p`1q “ Opr´pp`2qq .

4.5. Outlook

The adiabatic analysis presented here does not constitute a complete proof of the ex-
istence and convergence of Calabi flow on Kodaira surfaces and projectivised stable
bundles with initial condition given by ωr for sufficiently large r; it has been included
in this thesis to motivate the development of twisted Calabi flow and time-dependent
Hermitian Yang–Mills flow in the previous chapters. However, it should be possible to
extend the analysis to give a full proof. We present a brief account of the work required
to fill in the gaps.

4.5.1. The Inverse Function Theorem

The Banach space version of the inverse function theorem states that if Φ: AÑ B is a
continuously differentiable map between Banach spaces A,B and dΦ0 is an isomorphism,
then there exists an open ball BδpΦp0qq Ă B and an open neighbourhood U Ă A of 0,
such that Φ|U : U Ñ BδpΦp0qq is bijective. Moreover, the size of δ is controlled by
}pdΦq´1

0 }op — the smaller }pdΦq´1
0 }op, the larger δ.

As outlined in the introduction, the intended application of the inverse function the-
orem is to perturb a sufficiently good approximation ωr,k to Calabi flow to a genuine
solution. Writing the approximative metrics as ωr,n “ ωrp0q` iBBϕr,nptq, define the map
Φr,n by

Φr,npψq “ Btpϕr,n ` ψq ` Scpϕr,n ` ψq ´ Sr ,

where Sc denotes the scalar curvature map of the background metric ωrp0q and Sr is the
average scalar curvature of the adiabatic class κr. By construction Φr,npψq measures the
failure of ωr,n` iBBψ to satisfy Calabi flow. To invoke the inverse function theorem, the
Φr,n need to be set up as maps between suitable Banach spaces Ar,n and Br,n such that
the following criteria are satisfied:

1. The maps Φr,n : Ar,n Ñ Br,n are differentiable with invertible derivative at 0.
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2. The sequences Φr,np0q measuring how close ωr,n is to being a solution to Calabi
flow in Br,n satisfy }Φr,np0q}Br ď Cr´pn´aq for constants C, a independent of r
and n.

3. The operator norms of the inverse of pdΦr,nq0 (controlling the size δr,n of the balls
onto which Φr,n maps surjectively) grow at most at a rate such that δr,n ě Cr´b

with constants C, b independent of r and n.

4. The topologies of Ar,n and Br,n are strong enough to ensure that Φr,npψq “ 0
implies that ωr,n ` iBBψ is a classical solution to Calabi flow.

The first three conditions ensure that by choosing n ą a` b one has that δ-balls around
Φr,np0q onto which a suitable restriction of Φr,n maps bijectively contain 0 for all suffi-
ciently large r. The last condition then implies that the metric given by the preimage
of 0 defines a classical solution to Calabi flow.

Good candidates for Ar,n and Br,n are parabolic Sobolev spaces P 0
k`1 (the upper

0 means zero initial value) and Pk whose norms are comprised of L2-norms of mixed
derivatives up to order 4k, where a time-derivative counts for four spatial derivatives and
the spatial L2-norms are taken with respect to ωr,n (an exponential damping term in t is
possibly necessary to account for the noncompactness of r0,8r). For sufficiently high k,
parabolic Sobolev embeddings guarantee that condition 4 is satisfied. Condition 1 can be
verified by setting up the theory of linear parabolic PDEs in a suitable matter. Condition
2 requires the translation of the pointwise estimates for the Opr´nq approximations ωr,n
to genuine estimates in Pk. In the elliptic case, this can be achieved by estimates
in suitably constructed local models (see [13] and also r3s) and a similar construction
should work in the parabolic case. One of the difficulties lies in the fact that most
corrections used to define the approximative flows depend themselves on r — a nuisance
we clandestinely ignored in our analysis (for instance hptq defined via (4.6) depends on
r via the rescaling of time in ωX). The construction of the local model requires that
this dependence can be controlled uniformly in r. In many cases this can be reduced
to analysing the behaviour of solutions to linear parabolic PDEs under rescaling of the
time parameter in the inhomogeneity and the elliptic generator at different rates. Lastly,
condition 3 amounts to controlling the operator norm of pdΦr,nq

´1
0 . For this, one has to

solve the linear parabolic PDEs Btψ ` pdScqϕr,n ¨ ψ “ f and establish estimates of the

form }ψ}Ar,n ď C 1rb
1

}f}Br,n , which requires precise control over the coefficients of the
generator pd Scqϕr,n and the norms on both sides. The resulting estimate }pdΦr,nq

´1
0 }op ď

C 1rb
1

then needs to be translated into the desired control over δr,n with C, b depending
on C 1, b1.



5. Symplectic Curvature Flow

5.1. Introduction

In this chapter we present explicit non-Kähler solutions to symplectic curvature flow
(or SCF) recently introduced by J. Streets and G. Tian in [37]. Symplectic curvature
flow on an almost Kähler manifold pM,ω0, J0q of real dimension 2n is given by a system
of coupled evolution equations for the symplectic structure ω and the almost complex
structure J with initial conditions ωp0q “ ω0, Jp0q “ J0. Explicitly,

Btω “ ´2P ,

BtJ “ ´2g´1
”

P p2,0q`p0,2q
ı

`R .

Here, P denotes the Chern–Ricci form given by 2i times the curvature of the Chern
connection on the almost anticanonical bundle Λn,0pTMq and P p2,0q`p0,2q is the sum of
the p2, 0q and p0, 2q-part of P . The musical isomorphism g´1 raises the second index,
i.e. gpg´1P p2,0q`p0,2qξ, ηq “ P p2,0q`p0,2qpξ, ηq. Finally, R :“ rRc, Js is the J-antilinear
part of Rc, where Rc denotes the Riemann–Ricci curvature tensor Ric viewed as an
endomorphism of the tangent bundle via g.

Key properties of this flow proved in [37] include parabolicity, short-time existence
and preservation of the almost Kähler property of ω and J . Furthermore, if the initial
J0 is integrable, i.e. pM,ω0, J0q is Kähler, then P is the Kähler–Ricci form and BtJ “ 0,
so in this case SCF reduces to Kähler–Ricci flow.

Seeing symplectic curvature flow as a generalisation of Kähler–Ricci flow to almost
Kähler geometry, one might hope to study canonical structures on almost Kähler mani-
folds in terms of limiting objects of the flow. In section 5.2 we show that SCF on certain
twistor fibrations over hyperbolic space leads to compact non-Kähler static solutions,
thus providing first examples to limiting structures of symplectic curvature flow that
are genuinely outside the realm of Kähler geometry and Kähler–Ricci flow. Section 5.3
concerns certain invariant structures on nilmanifolds for which the flow equations reduce
to an ODE. For these structures we solve the flow explicitly and compute the asymptotic
behaviour of the Riemann and the Nijenhuis tensors.

5.2. Compact non-Kähler Static Solutions to SCF

The SCF equations can be readily solved if Btω “ λω0, BtJ “ 0, λ P R, in which case the
flow acts by rescaling the metric: ωptq “ p1`λtqω0, Jptq “ J0. Such solutions are called
static and in the Kähler setting this behaviour is exhibited by Kähler–Einstein metrics.
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We present examples of compact static solutions to SCF in dimensions npn ` 1q which
cannot be Kähler if n ą 1. They are constructed from the twistor fibrations

π : Z2n Ñ H2n ,

where the fibre over each point in 2n-dimensional hyperbolic space H2n consists of all
almost complex structures compatible with the standard hyperbolic metric on H2n and
inducing a fixed orientation. These spaces are examples of symplectic twistor spaces
described by A. Reznikov in [32]. J. Fine and D. Panov showed in [15] that Z2n can be
realised as a coadjoint orbit. We follow their approach to define a symplectic structure
ω and a compatible almost complex structure I on Z2n and show that pZ2n, ω, Iq is a
static solution to SCF. Furthermore, these static solutions descend to compact quotients
of Z2n with hyperbolic fundamental group which cannot support any Kähler structures
if n ą 1. We find that the flow shrinks the metric if n ą 2, expands it if n “ 1 and
leaves it invariant in the case n “ 2.

5.2.1. Coadjoint Orbit Description

Consider SOp2n, 1q, the identity component of the group of isometries of R2n`1 with
Lorentzian metric. Its Lie algebra is given by

sop2n, 1q “

"

pu, Aq :“

ˆ

0 ut

u A

˙
ˇ

ˇ

ˇ

ˇ

u P R2n, A P sop2nq

*

.

In this description, SOp2nq can be seen as a subgroup of SOp2n, 1q defined as the stabiliser
of p1, 0q P R ˆ R2n “ R2n`1. A choice of almost complex structure J0 P sop2nq on R2n

defines an element

ξ0 :“

ˆ

0 0
0 J0

˙

P sop2n, 1q

and singles out a copy of Upnq inside SOp2nq Ă SOp2n, 1q as the stabiliser of ξ0 under
the adjoint action (the matrices in SOp2n, 1q commuting with ξ0 are precisely those
A P SOp2nq Ă SOp2n, 1q with AJ0 “ J0A). Denote by

Opξ0q – SOp2n, 1q{Upnq

the adjoint orbit of ξ0. The Killing form on sop2n, 1q is nondegenerate and defines
an isomorphism sop2n, 1q – sop2n, 1q˚ intertwining the adjoint and coadjoint action of
SOp2n, 1q, so Opξ0q can be seen as a coadjoint orbit. Standard theory then endows Opξ0q

with a SOp2n, 1q-invariant symplectic structure ω.
An explicit description of the tangent space of Opξ0q can be given with the help of the

following lemma.

Lemma 5.2.1. As a Upnq representation space, sop2n, 1q admits the equivariant decom-
position

sop2n, 1q – upnq ‘ Λ2pCnq˚ ‘ Cn ,

where Cn “ pR2n, J0q.
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Proof. We only sketch the proof here and refer to [15] for details. Let U P Upnq Ă
SOp2nq Ă SOp2n, 1q. The adjoint action of U on sop2n, 1q is given by

AdU

ˆ

0 ut

u A

˙

“

ˆ

0 pUuqt

Uu UAU´1

˙

,

i.e. AdU pu, Aq “ pUu,AdU Aq, from which the equivariant splitting sop2n, 1q – sop2nq‘
Cn can be inferred. Those elements in sop2nq commuting with J0 constitute upnq as a
subset of sop2nq. The Upnq-invariant complement of upnq in sop2nq can be naturally
identified with Λ2pCnq˚ giving the desired decomposition.

Viewing Opξ0q as SOp2n, 1q{Upnq, the lemma implies that

Tξ0Opξ0q – TE¨UpnqpSOp2n, 1q{Upnqq – TESOp2n, 1q{TEUpnq – Λ2pCnq˚ ‘ Cn ,

where E denotes the identity in SOp2n, 1q. It is apparent that the (real) dimension of
Opξ0q is npn ` 1q. Since Opξ0q is a homogeneous space, the same description is valid
for the tangent spaces at other points as well. However, the almost complex structure
J determining the identification Cn – pR2n, Jq will depend on the chosen point. The
following consideration makes this clearer.

Observe that the different points in the adjoint orbit of ξ0 under SOp2nq Ă SOp2n, 1q
are of the form

ξ “

ˆ

0 0
0 J

˙

,

where J “ AJ0A
´1 with A P SOp2nq. The stabiliser of ξ under the SOp2nq-action is

again Upnq, so the orbit is given by SOp2nq{Upnq, which amounts to all possible choices
of orientation preserving almost complex structures compatible with the given inner
product on R2n.

From a slightly different point of view this can be formulated as follows: The inclusion
Upnq Ñ SOp2nq induces a fibre map π : Opξq – SOp2n, 1q{Upnq Ñ SOp2n, 1q{SOp2nq –
H2n with fibre isomorphic to SOp2nq{Upnq; the adjoint orbit Opξ0q fibres over hyper-
bolic space with the fibre over a point x P H2n consisting of all almost complex struc-
tures compatible with the hyperbolic metric on H2n at x. This gives the identification
Z2n – Opξ0q. From here on, Z2n will be used to denote the adjoint orbit Opξ0q, the cor-
responding coadjoint orbit, the homogeneous space SOp2n, 1q{Upnq and the total space
of the twistor fibration π : Z2n Ñ H2n.

If px, Jq P Z2n with x P H2n and J in the fibre over x, the tangent space at px, Jq is

Tpx,JqZ2n – Λ2pCnq˚ ‘ Cn , Cn “ pR2n, Jq .

We endow Z2n with an almost complex structure I by demanding this identification
to be C-linear with respect to the usual linear complex structure on Cn and the sign-
reversed linear complex structure on Λ2pCnq˚. The resulting almost complex structure
is the “Eells–Salamon” structure of the twistor space Z2n Ñ H2n. (cf. [11]).

As a coadjoint orbit, Z2n has already been endowed with SOp2n, 1q-invariant sym-
plectic form ω. It follows from homogeneous space description that SOp2n, 1q-invariant
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forms on Z2n are in one-to-one correspondence with Upnq-invariant forms on Tξ0Z2n –

Λ2pCnq˚ ‘ Cn. In the following, we will show that the space of closed Upnq-invariant
real two-forms on Λ2pCnq˚ ‘ Cn is one-dimensional.

Lemma 5.2.2. For n ą 1 the space of Upnq-invariant real two-forms on Cn ‘ Λ2pCnq˚
is two-dimensional. Invariant forms are linear combinations of the standard Hermitian
forms on P :“ Cn and on Q :“ Λ2pCnq˚. If n “ 1, Upnq-invariant real two-forms are
multiples of the standard Hermitian form on P .

Proof. Let Ω be a real invariant two-form on P ‘Q. In the obvious notation Ω can be
written as

Ω “

ˆ

ΩPˆP ΩQˆP

ΩPˆQ ΩQˆQ

˙

.

As Upnq is compact, P and Q are equivalent to their dual representations. Furthermore,
if n ą 1, P and Q are irreducible and inequivalent, so by Schur’s lemma we have
ΩQˆP “ 0, ΩPˆQ “ 0 and ΩPˆP “ λ1Ω1 and ΩQˆQ “ λ2Ω2, where Ω1 and Ω2 are the
standard Hermitian forms on P and Q respectively. Since Ω is real, so are λ1, λ2.

If n “ 1, then Q “ 0 and the above argument shows that Ω “ λ1Ω1 for λ1 P R.

Lemma 5.2.3. The “Eells-Salamon” almost complex structure I on Z2n is compatible
with the symplectic structure ω.

Remark. If n “ 2, this is a special case of Theorem 4.4 in [16].

Proof. At ξ0, I is given by the Upnq-invariant linear complex structure of pΛ2pCnq˚,´iq‘
pCn, iq, with respect to which the standard Hermitian forms on Λ2pCnq˚ and Cn are
invariant. Being a linear combination of the latter two, ω is I-invariant at ξ0.

A direct computation shows that ωξ0pI¨, ¨q is positive definite. More precisely, for
pu, Aq, pv, Bq P sop1, 2nq one finds

ωξ0pIpu, Aq, pv, Bqq “ 2p2n´ 1qrxu,vy ` trABts ,

so ω is compatible with I at ξ0. By SOp2n, 1q-invariance of ω and I, the compatibility
is global.

Proposition 5.2.4. The space of closed SOp2n, 1q-invariant real two-forms on Z2n is
one-dimensional consisting of real multiples of the standard symplectic form ω on the
adjoint orbit Z2n.

Proof. Standard theory endows the adjoint orbit Z2n “ Opξ0q with a SOp2n, 1q-invariant
symplectic form ω and a moment map µ : Z2n Ñ sop2n, 1q which is the inclusion of
the adjoint orbit. Let ω1 be another SOp2n, 1q-invariant symplectic form on Z2n and
assume it is not a real multiple of ω. As SOp2n, 1q is semisimple, its symplectic action
on the simply connected space pZ2n, ω

1q admits a moment map µ1 : Z2n Ñ sop2n, 1q
whose image is the adjoint orbit of ξ10 :“ µ1pξ0q. The elements ξ0 and ξ10 are linearly
independent in sop2n, 1q for ξ10 “ λξ0 would imply µ1 “ λµ and hence ω1 “ λω. Their
span is a two-dimensional subspace of sop2n, 1q on which the isotropy group Upnq of ξ0
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acts trivially, but the space of all elements in sop2n, 1q on which Upnq acts trivially is one-
dimensional, consisting of imaginary multiples of the identity matrix in upnq Ă sop2n, 1q
(cf. Lemma 5.2.1). This is a contradiction, so ω1 is a real multiple of ω.1

In terms of Upnq-invariant real two-forms Ω “ λ1Ω1`λ2Ω2 on Cn‘Λ2pCnq˚ for n ą 1,
this means that closedness imposes a fixed ratio between λ1 and λ2. In particular, neither
Ω1 nor Ω2 can be closed and the only closed invariant real two-forms are real multiples
of ω. The case n “ 1 is trivial.

5.2.2. Symplectic Curvature Flow on pZ2n, ωq

In order to run SCF on Z2n with the SOp2n, 1q-invariant almost Kähler structure pω, Iq
serving as initial data, the Chern–Ricci curvature and the I-anti-invariant part of the
Riemann–Ricci tensor need to be determined.

The Riemann–Ricci tensor Ric is determined by a Upnq-invariant metric, so it is itself
invariant. This is enough to see that Ric has to be I-invariant: If multiplication by p´i, iq
on Λ2pCnq˚‘Cn were represented by an element in Upnq this would be immediate. This
is not the case, but there is an easy work-around. Set zij :“ zi ^ zj and consider the
basis pzij , zkq of Λ2pCnq˚ ‘ Cn. Since Ric is symmetric bilinear, it is determined by
its values on ppzij , 0q, pzi

1j1 , 0qq, pp0, zkq, p0, zk1qq and ppzij , 0q, p0, zkqq. For each of these
pairs of arguments there exists an element diagpeiλ1 , ..., eiλnq P Tn Ă Upnq acting by
multiplication by p´i, iq, so Ric has to be I-invariant. Consequently, R “ rRc, Is “ 0.

The Chern–Ricci tensor P is a closed SOp2n, 1q-invariant two-form, so by Proposi-
tion 5.2.4, P is a multiple of ω. In [15] J. Fine and D. Panov determined the first Chern
class of Z2n: c1pZ2nq “ pn ´ 2qrωs. As p1{4πqP represents the first Chern class (P is
2i times the curvature of the Chern connection on the anticanonical bundle, i{2π times
which represents the first Chern class), we have P “ 4πpn´ 2q ¨ ω. In particular, P has
no p2, 0q and p0, 2q-parts.

With this result, SCF for pZ2n, ωq becomes

Btωptq “ 8πp2´ nq ¨ ωp0q , BtI “ 0 .

It is manifest that SCF collapses pZ2n, ωq in finite time if n ą 2, expands it if n “ 1 and
leaves the almost Kähler structure unchanged if n “ 2.

5.2.3. Non-Kähler Quotients

The symplectic form ω and the almost complex structure I on Z2n are SOp2n, 1q-
invariant, so the almost Kähler structure will descent to quotients of Z2n by subgroups
Γ Ă SOp2n, 1q. In the adjoint orbit description of Z2n, Γ acts by conjugation. Viewing
Z2n – SOp2n, 1q{Upnq (Upnq acting from the right), this corresponds to Γ acting by left
multiplication, so the actions of Upnq and Γ on SOp2n, 1q commute.

Choosing Γ Ă SOp2n, 1q to be the fundamental group of a compact hyperbolic manifold
M of dimension 2n, one obtains two quotients: ΓzH2n – ΓzSOp2n, 1q{SOp2nq “: M

1We thank M. Cahen for this moment map trick.
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and ΓzZ2n – ΓzSOp2n, 1q{Up2nq. The action of Γ on Z2n and H2n commutes with
the projection π : Z2n Ñ H2n, so ΓzZ2n fibres over M with fibre SOp2nq{Upnq. This
shows that ΓzZ2n is a fibre bundle with compact base and fibre, so it is itself compact.
Furthermore, the fibre SOp2nq{Upnq is connected and simply connected, so ΓzZ2n and
M have isomorphic fundamental groups π1pΓzZ2nq – π1pMq – Γ, but compact Kähler
manifolds cannot have fundamental group isomorphic to that of a compact hyperbolic
manifold in dimension greater than 2 (see e.g. [39]). Hence, ΓzZ2n cannot be Kähler if
n ą 1.

5.3. SCF on Left-invariant Structures on Select Nilmanifolds

In the case of left-invariant almost Kähler structures on a nilpotent Lie group, SCF
reduces to an ODE on the corresponding nilpotent Lie algebra. Moreover, if the structure
coefficients of a connected, simply connected Lie group’s Lie algebra can be chosen
rational, the Lie group admits cocompact lattices (Theorem 7 in [27]). As non-abelian
nilpotent Lie algebras are never (cf. [20]), taking quotients by such lattices results in
compact non-Kähler manifolds on which we can hope to explicitly solve SCF.

This section presents such explicit solutions for SCF on three different nilalgebras.
For the computations involved, the expression for the Chern–Ricci form provided in the
following lemma is useful.

Lemma 5.3.1. Let pM, g, J, ωq be an almost Kähler manifold. Denote by A the connec-
tion one-form of the Levi–Civita connection in a local complex frame (a local frame in
which J is constant). In that frame the Chern–Ricci form has the following expression:

P “ d trpAJq .

Proof. The Chern connection on an almost Hermitian manifold pM, g, J, ωq is the unique
connection ∇ with respect to which g and J are parallel and whose torsion has vanishing
p1, 1q-part. In the almost Kähler case it is given by ∇XY “ DXY ´

1
2JpDXJqY , where

D denotes the Levi–Civita connection. If A and C are the connection one-forms of the
Levi–Civita connection and the Chern connection in a local complex frame, then the
formula for the Chern connection can be expressed as

C “ A´
1

2
JpDJq “ A´

1

2
JrA, Js “

1

2
pA´ JAJq

Denote by F the full curvature tensor of ∇ given by the endomorphism-valued two-
form F “ dC ` C ^ C. The Chern–Ricci tensor is derived from F via Pkl “ ωijFijkl,
where ij are the endomorphism indices (i lowered via the metric) and kl the form indices.
Omitting the form indices, a brief calculation yields

P “ ωstFst “ ωitF
it “ gjtJ

j
i F

it “ J ji F
i
j “ trpJF q .

Application of the two-form C^C to a pair of tangent vectors u, v gives pC^Cqpu, vq “
rCu, Cvs. The fact that for two endomorphisms A,B one has trpABq “ trpBAq in
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conjunction with rJ,Cs “ 0 implies

ptr JC ^ Cqpu, vq “ trpJrCu, Cvsq “ trpJCuCvq ´ trpJCvCuq “ 0 ,

i.e. trpJC ^Cq “ 0. Since dJ “ 0, the remaining contribution to the Chern–Ricci form
is

P “ trpJdCq “ d trpJCq “
1

2
d rtrpJAq ` trpAJqs “ d trpAJq

as claimed.

We want to apply this result to left-invariant almost Kähler structures on Lie groups,
in which case left-invariant frames are complex frames. With the help of the next lemma,
the Chern–Ricci form P can be expressed directly in terms of the Lie algebra and the
almost complex structure.

Lemma 5.3.2. Let G be a Lie group and pg, J, ωq a left-invariant almost Kähler struc-
ture. If A is the connection one-form of the Levi–Civita connection in a left-invariant
frame, then for any left-invariant vector field Z P g one has

trAZJ “
1

2
trpadZ ˝J ` J ˝ adZq ´ tr adJZ .

Proof. Viewing the almost Kähler structure pg, J, ωq as algebraic data on the Lie algebra
g of G, the condition that the alternating bilinear form ω “ gpJ ¨, ¨q be closed means that
0 “ dωpX,Y, Zq “ ´ωprX,Y s, Zq ` ωprX,Zs, Y q ´ ωprY,Zs, Xq for any X,Y, Z P g.

Now let peiq be an orthonormal left-invariant frame of g. Using the Koszul formula

2gpY,AZXq “ gprZ,Xs, Y q ´ gprZ, Y s, Xq ´ gprX,Y s, Zq ,

the desired result follows from a straightforward computation:

2 trAZJ “ 2
ÿ

i

gpei, AZJeiq

“
ÿ

i

gprZ, Jeis, eiq ´ gprZ, eis, Jeiq ´ gprJei, eis, Zq

“
ÿ

i

gpadZ ˝Jpeiq, eiq ` gpJ ˝ adZpeiq, eiq ´ gprJei, eis, Zq

“ trpadZ ˝J ` J ˝ adZq ´
ÿ

i

gprJei, eis, Zq .

We use the closedness of ω to express the second term on the right as ´2 tr adJZ :
ÿ

i

gprJei, eis, Zq “
ÿ

i

ωprJei, eis, JZq

“
ÿ

i

ωprJei, JZs, eiq ´ ωprei, JZs, Jeiq

“
ÿ

i

gpJrJei, JZs, eiq ´ gpJrei, JZs, Jeiq

“
ÿ

i

gpadJZ Jei, Jeiq ` gpadJZ ei, eiq

“ 2 tr adJZ .
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Since for any left-invariant one-form θ P g˚ and X,Y P g the relation dθpX,Y q “
´θprX,Y sq holds, Lemmas 5.3.1 and 5.3.2 combine to

P pX,Y q “ pd trAJqpX,Y q “ ´ trArX,Y sJ “ ´
1

2
trpadrX,Y s ˝J`J˝adrX,Y sq`tr adJrX,Y s .

This has a very useful consequence:

Proposition 5.3.3. (L. Vezzoni)1 All left-invariant almost Kähler structures on two-
step nilpotent Lie groups are Chern–Ricci flat.

Proof. Let G be a two-step nilpotent Lie group with fixed almost Kähler structure and g
the Lie algebra of G. The assumption that G is two-step then means that rrg, gs, gs “ 0,
i.e. for any X,Y P g we have adrX,Y s “ 0, so

P pX,Y q “ ´
1

2
trpadrX,Y s ˝J ` J ˝ adrX,Y sq ` tr adJrX,Y s “ ` tr adJrX,Y s .

Now choose an orthonormal basis peiq of g with the property that each ej lies either in
rg, gs or in rg, gsK. Then the summands of

tr adZ “
ÿ

i

gprZ, eis, eiq

vanish since either ei P rg, gs and therefore r¨, eis “ 0 (two-step property) or ei P rg, gs
K

and gpr¨, eis, eiq “ 0.

It should be noted that on manifolds with Chern–Ricci flat almost Kähler structure
symplectic curvature flow reduces to anti-complexified Ricci flow introduced by H.V. Le
and G. Wang in [25].

5.3.1. Kodaira–Thurston Manifold

The simplest example of a symplectic nilmanifold is the Kodaira–Thurston manifold
which can be realised as a product of S1 and the quotient of the three-dimensional
Heisenberg group

H3 :“

$

&

%

¨

˝

1 x1 x3

0 1 x2

0 0 1

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x3 P R

,

.

-

by the obvious integral lattice Γ :“ H3 X Glp3,Zq Ă H3. Topologically, the Kodaira–
Thurston manifold is a S1-bundle over a three-torus where the fibers are given by the
central direction in H3 and the base by the two unpreferred directions in H3 and the
additional S1-direction.

1This was brought to the our attention by Luigi Vezzoni in a private conversation. His proof will be
published in A note on canonical Ricci forms on 2-step nilmanifolds in Proc. AMS.
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The Lie algebra h3 ‘ R of H3 ˆ R is given by generators e1, ..., e4 with re1, e2s “ e3

as the only nontrivial Lie bracket. Equivalently, of the dual basis vectors e1, ..., e4 of
ph3‘Rq˚ the only one whose corresponding left invariant one-form is not closed is e3 with
de3 “ ´e1^ e2. By Proposition 5.3.3, any left-invariant almost Kähler structure defined
on the 2-step nilalgebra h3 ‘ R is Chern–Ricci flat and SCF leaves the symplectic form
of an initial left-invariant almost Kähler structure unchanged. The evolution equation
then is just BtJ “ R or equivalently Btg “ ´Ric`RicpJ ¨, J ¨q (the equivalence can be
seen by observing 0 “ Btω “ pBtgqpJ ¨, ¨q ` gpBtJ ¨, ¨q).

Consider the following two-parameter family of almost Kähler structures (matrices
interpreted in the ei{e

j basis) with positive parameters α, β:

ω “ e1 ^ e3 ´ e2 ^ e4 ,

J “ pJ ijq “

¨

˚

˚

˝

0 0 ´α 0
0 0 0 β
α´1 0 0 0

0 ´β´1 0 0

˛

‹

‹

‚

g “ pgijq “

¨

˚

˚

˝

α´1 0 0 0
0 β´1 0 0
0 0 α 0
0 0 0 β

˛

‹

‹

‚

.

Computing the connection one-form A of the Levi–Civita connection D via the Koszul
formula gives

A “
1

2

¨

˚

˚

˝

0 α2e3 α2e2 0
´αβe3 0 ´αβe1 0
´e2 e1 0 0

0 0 0 0

˛

‹

‹

‚

.

The Ricci Tensor is then given by Ricjk “ Rkj kl, where R “ dA ` A ^ A is the full
Riemann curvature tensor:

Ric “
1

2

¨

˚

˚

˝

´αβ 0 0 0
0 ´α2 0 0
0 0 α3β 0
0 0 0 0

˛

‹

‹

‚

.

Finally, SCF is determined by Btg “ ´Ric`RicpJ ¨, J ¨q, so

Bt

¨

˚

˚

˝

α´1 0 0 0
0 β´1 0 0
0 0 α 0
0 0 0 β

˛

‹

‹

‚

“
1

2

¨

˚

˚

˝

2αβ 0 0 0
0 α2 0 0
0 0 ´2α3β 0
0 0 0 ´α2β2

˛

‹

‹

‚

.

The resulting equations Btα “ ´α
3β, Btβ “ ´

1
2α

2β2 can easily be integrated observ-

ing that Btpα
´ 2

3β
4
3 q “ 0. The general solution for initial values αp0q “ α0, βp0q “ β0 is

given by

αptq “ α0

ˆ

1`
5

2
α2

0β0 ¨ t

˙´ 2
5

, βptq “ β0

ˆ

1`
5

2
α2

0β0 ¨ t

˙´ 1
5

.

Geometrically, this means that symplectic curvature flow shrinks the central directions of
H3ˆR while expanding the unpreferred directions at inverse rates. The shrinking of the



96 5. Symplectic Curvature Flow

central direction in H3 and that of R occur at different rates, the former collapsing faster
than the latter. The corresponding unequal expansion of the unpreferred directions e1, e2

is due to the choice of symplectic form which couples e1, e3 and e2, e4.

Two quantities whose behaviour under SCF might be of interest are the (pointwise)
norms of the Nijenhuis tensor and the Riemann curvature tensor. One finds

}N}2 “ 8α2β “
8α2

0β0

1` 5
2α

2
0β0 ¨ t

, }R}2 “
11

4
α4β2 “

11

4

α4
0β

2
0

p1` 5
2α

2
0β0 ¨ tq2

.

Symplectic curvature flow on the Kodaira–Thurston manifold has also been considered
in [25] as an instance of anti-complexified Ricci flow, but it appears the example therein
is faulty (e.g. the given solution does not satisfy the initial conditions) and we felt it
would be worth including our own computation.

5.3.2. Sum of two Heisenberg algebras

The computation is similar for the product of two Heisenberg groups. The generators
e1, ..., e6 of its Lie algebra can be chosen such that re1, e2s “ e5 and re3, e4s “ e6. The
Lie algebra h3 ‘ h3 is two-step, so Lemma 5.3.3 can be applied. In the following, all
matrices are with respect to the ei{e

j basis.

Consider the following three-parameter family of almost Kähler structures for positive
parameters α, β, γ:

ω “ e1 ^ e5 ` e2 ^ e4 ` e3 ^ e6 ,

g “ α´1e1 b e1 ` β´1e2 b e2 ` γ´1e3 b e3 ` βe4 b e4 ` αe5 b e5 ` γe6 b e6 ,

J “

¨

˚

˚

˚

˚

˚

˚

˝

03

0 ´α 0
´β 0 0
0 0 ´γ

0 β´1 0
α´1 0 0

0 0 γ´1
03

˛

‹

‹

‹

‹

‹

‹

‚

.

As in the case of h3‘R, the flow equation of SCF can be written as Btg “ ´Ric`RicpJ ¨, J ¨q,
where the Ricci tensor is computed from the connection one-form of the Levi–Civita con-
nection via the full Riemann curvature tensor. We obtain

Ric “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

´αβ 0 0 0 0 0
0 ´α2 0 0 0 0
0 0 ´γβ´1 0 0 0
0 0 0 ´γ2 0 0
0 0 0 0 α3β 0
0 0 0 0 0 γ3β´1

˛

‹

‹

‹

‹

‹

‹

‚
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and

Btg “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

2αβ 0 0 0 0 0
0 ´γ2β´2 ` α2 0 0 0 0
0 0 2γβ´1 0 0 0
0 0 0 ´α2β2 ` γ2 0 0
0 0 0 0 ´2α3β 0
0 0 0 0 0 ´2γ3β´1

˛

‹

‹

‹

‹

‹

‹

‚

.

The resulting equations for α, β, γ are

Btα “ ´α
3β, Btβ “ ´

1

2
α2β2 `

1

2
γ2, Btγ “ ´γ

3β´1

with initial conditions αp0q “ α0, βp0q “ β0, γp0q “ γ0. The equation for Btβ can be

rewritten as 2Bt log β “ Bt logα{γ, so β{β0 “ pα{α0q
1
2 pγ{γ0q

´ 1
2 . With this expression for

β the other two equations read

Btα “ ´Lα
7
2γ´

1
2 , Btγ “ ´L

´1γ
7
2α´

1
2 ,

where L “ β0pγ0{α0q
1
2 .

In the case β0 “ γ0{α0, these equations can be integrated without much difficulty and
the solutions are

αptq “ α0p1` 2α0γ0 ¨ tq
´ 1

2 , βptq “ β0, γptq “ γ0p1` 2α0γ0 ¨ tq
´ 1

2 .

As on the Kodaira–Thurston manifold, symplectic curvature flow shrinks the central
directions in each of the copies of H3 and expands the base direction coupled to the
central ones by the symplectic form at the inverse rate.

For general initial conditions, integration of the equations for α and γ becomes more
difficult. One may substitute ξ :“ L´1α´3, η :“ Lγ´3. Then Btξ “ Btη, so ξ “ η ` c,
where c “ L´1α´3

0 ´ Lγ´3
0 . The case c “ 0 corresponds exactly to the “easy” case

considered previously. The equation for η reads

Btη “ 3η
1
6 pη ` cq

1
6 .

Integration is possible in terms of hypergeometric series, but we have not pursued the
analysis. Qualitatively, the behaviour is expected to be similar to the easy case with the
central directions collapsing, the two base directions coupled to the central directions by
the symplectic form expanding at inverse rates and the remaining two base directions
coupled to each other tending to a finite scale.

The pointwise norms of the Nijenhuis and Riemann tensors are given by

}N}2 “ 8pα2β ` γ2β´1q , }R}2 “
11

4
pα4β2 ` γ4β´2q .

In the case where β0 “ γ0{α0, these reduce to

}N}2 “ 16αγ “ 16
α0γ0

1` 2α0γ0 ¨ t
, }R}2 “

11

2

α2
0γ

2
0

p1` 2α0γ0 ¨ tq2
.
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5.3.3. The Nilalgebra n4

The situation changes for the nilalgebra n4 with generators e1, ..., e4 and re1, e2s “ e3

and re2, e3s “ e4 as the only nonvanishing commutators. This nilalgebra is three-step,
so Lemma 5.3.3 does not hold and SCF turns out to evolve both ω and J nontrivially.

The initial almost Kähler structure considered is ω0 “ e1 ^ e3 ` e2 ^ e4 and J0 “

e3 b e1 ` e4 b e2 ´ e1 b e3 ´ e2 b e4, ei P n˚4 . The symplectic form ω0 is closed since
de1 “ de2 “ 0 and de3 “ ´e1 ^ e2 and de4 “ ´e2 ^ e3.

To run symplectic curvature flow, Btpω, Jq needs to be known on a sufficiently large
space of almost Kähler structures on n4. For computational convenience the following
familiy of almost Kähler structures was chosen:

ω “ e1 ^ e3 ` e2 ^ e4 ` γe1 ^ e2, J “

¨

˚

˚

˝

0 a1 b1 0
a 0 0 c1

b 0 0 d1

0 c d 0

˛

‹

‹

‚

.

The matrix J is to be understood as an endomorphism of g in the ei{e
j basis. The fact

that J is an almost complex structure imposes algebraic relations on a, b, c, d, a1, b1, c1, d1:

aa1 ` bb1 “ ´1, ac` bd “ 0

aa1 ` cc1 “ ´1, a1c1 ` b1d1 “ 0

bb1 ` dd1 “ ´1, ab1 ` c1d “ 0

cc1 ` dd1 “ ´1, a1b` cd1 “ 0 .

The equations on the right hand side are all equivalent in light of the ones on the
left, of which only three are independent. Furthermore, the compatibility condition
ωpJ ¨, J ¨q “ ω fixes γ by b1γ “ a1 ` d, so the above defines a four-dimensional space of
almost Kähler structures on n4.

The metric associated to ω, J in the ei{e
j basis is given by

pgijq “

¨

˚

˚

˝

g11 0 0 g14

0 g22 g23 0
0 g23 g33 0
g14 0 0 g44

˛

‹

‹

‚

“

¨

˚

˚

˝

b` γa 0 0 ´a
0 c´ γa1 ´a1 0
0 ´a1 ´b1 0
´a 0 0 ´c1

˛

‹

‹

‚

.

Infinitesimal changes of these almost Kähler structures under SCF are determined by
the Chern–Ricci form and the Ricci curvature (more precisely, the p2, 0q ` p0, 2q-part of
the Ricci curvature, since 2g´1 Ricp2,0q`p0,2q “ JR).

To compute them, let D denote the Levi–Civita connection of the left-invariant metric
g. Its connection one-form A in the ei{e

j is the element of Endpn4q b n˚4 given by

2gpek, Dejeiq “ 2gpek, A
l
ijelq “ gprej , eis, ekq ´ gprej , eks, eiq ´ gprei, eks, ejq
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or, more explicitly, by

2d14d23A “

¨

˚

˚

˝

0 0 0 0
0 ´g23pg33 ´ g14qd14 ´g33pg33 ´ g14qd14 0
0 g22pg33 ´ g14qd14 g23pg33 ´ g14qd14 0
0 0 0 0

˛

‹

‹

‚

e1

`

¨

˚

˚

˝

0 0 0 0
0 g23g44d14 g33g44d14 0
0 ´g22g44d14 ´g23g44d14 0
0 0 0 0

˛

‹

‹

‚

e4

`

¨

˚

˚

˝

0 2g23g44d23 g33g44d23 0
´g23pg33 ´ g14qd14 0 0 g23g44d14

´pd23 ` g22g14 ´ g
2
23qd14 0 0 ´g22g44d14

0 ´2g23g14d23 pd14 ´ g14g33qd23 0

˛

‹

‹

‚

e2

`

¨

˚

˚

˝

0 g33g44d23 0 0
´g33pg33 ´ g14qd14 0 0 g33g44d14

g23pg33 ´ g14qd14 0 0 ´g23g44d14

0 ´pd14 ` g14g33qd23 0 0

˛

‹

‹

‚

e3 .

Here d14 “ g11g44´g
2
14 and d23 “ g22g33´g

2
23. Observe d14d23 “ det gij “ detωij ¨det J .

For ω, J in the considered family, it is detω “ 1 and detJ “ det J0 “ 1, so d14d23 “ 1.

With A known, the Riemann curvature FD is then given by the endomorphism valued
two-form A^A` dA. The Ricci curvature viewed as an endomorphism of n4 by means
of g turns to out to be

Rc “ g´1 Ric “

¨

˚

˚

˝

´g2
33g44 0 0 0
0 ´g44pg

2
33 ` d14q 0 0

0 2g23g33g44 g44pg
2
33 ´ d14q 0

g14pg
2
33 ` d14q 0 0 g44d14

˛

‹

‹

‚

.

Computing the commutator rRc, Js and expressing the gij in terms of entries of J yields
for 2R:

¨

˚

˚

˝

0 a1c1pb12 ´ d14q b1c1p2b12 ´ d14q 0
ac1pb12`2d14q 0 0 c12pb12`2d14q

´2aa1b1c1´bc1p2b12́ d14q`ad
1pb12`d14q 0 0 2́ca1b1c1´d1c1pb12́ 2d14q

0 ´aa1pb12̀ d14q´cc
1pb12̀ 2d14q`2da1b1c1 ´ab1pb12̀ d14q`dc

1pb12́ 2d14q 0

˛

‹

‹

‚

(5.1)

The second quantity required to write out the SCF equations explicitly is the Chern–
Ricci tensor P , for which a convenient expression was derived in Lemma 5.3.1:

P “ trpJdAq .
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With the A given above it is P “ c1e1 ^ e2. Furthermore,

´2g´1P p2,0q`p0,2q “

¨

˚

˚

˝

0 ´b1c1 0 0
c12 0 0 0

d1c1 ` ac1 0 0 c12

0 b1d1 ` ab1 ´b1c1 0

˛

‹

‹

‚

. (5.2)

Along with the expression for R found in equation (5.1) this constitutes the evolution
equation BtJ “ ´2g´1P p2,0q`p0,2q`R. Setting yptq “ p1`5{2 ¨ tq1{5, the explicit solution
to this ODE with the initial condition Jp0q “ J0 is given by

a “ y´1 ´ y´3 , b “ 2y´1 ´ y´3 ,
c “ 2y ´ y´1 , d “ ´y ` y´1 ,
a1 “ ´y ` y´1 , b1 “ ´y´1 ,
c1 “ ´y´3 , d1 “ y´1 ´ y´3 .

For the evolution of ω according to Btω “ ´2P with ωp0q “ ω0 one obtains

ωptq “ e1 ^ e3 ` e2 ^ e4 ` 2py2 ´ 1qe1 ^ e2

and the metric evolves as

pgijq “ gpei, ejq “

¨

˚

˚

˝

2y ´ 2y´1 ` y´3 0 0 ´y´1 ` y´3

0 2y3 ´ 2y ` y´1 y ´ y´1 0
0 y ´ y´1 y´1 0

´y´1 ` y´3 0 0 y´3

˛

‹

‹

‚

.

The Nijenhuis tensor pNijq in the ei{e
j basis is given by

¨

˚

˚

˝

0 p2y´4́ y´6qpe2`e3q ´py´4́ y´6qpe2`e3q y´4pe1´e4q

´p2y´4́ y´6qpe2`e3q 0 ´y´2pe1´e4q ´py´4́ y´6qpe2`e3q

py´4́ y´6qpe2`e3q y´2pe1´e4q 0 ´y´6pe2`e3q

´y´4pe1´e4q py´4́ y´6qpe2`e3q y´6pe2`e3q 0

˛

‹

‹

‚

from which its norm can be computed with a bit of work. The leading order turns out
to be y´5 or equivalently t´1 as in the Kodaira–Thurston case.

5.4. Outlook

It has been conjectured in [37] that SCF exists for as long as long as the cohomology
class of ωptq stays inside the symplectic cone C Ă H2pX,Rq. In the case of left-invariant
almost Kähler structures on Lie groups, the tangent bundle is trivial and the first Chern
class, represented by a multiple of P , vanishes. This means that the symplectic class is
stable under SCF and the conjecture then says that the flow should exist for all times.
We have confirmed the long-time existence for the examples examined in the second part
of this chapter and it would be interesting to see whether this is true in general for SCF
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on left-invariant almost Kähler structures on Lie groups. In any case, one might hope to
express the limiting structure or the singularity formation in terms of the initial data,
ideally of the symplectic class and the Lie algebra.

Is is known that, topologically, compact Nilmanifolds are iterated torus bundles (cf
[33]). In the cases examined in this chapter, it seems that — in some imprecise sense —
these fibres collapse under SCF. Studying the interaction between the iterated bundle
structure and the flow might help answer the questions on the limiting structures and
long-time existence of SCF.





A. Background Material

The material presented here is standard. It can be found in textbooks or is folklore.

A.1. Some Riemannian Geometry

Let pM, gq be a Riemannian manifold. Using summation convention, a pp, qq-tensor in
local coordinates is given by

T “ T
i1¨¨¨ip
j1¨¨¨jq

Bxi1
b ¨ ¨ ¨ Bxip b dx

j1 ¨ ¨ ¨ b dxjq .

When dealing with tensors, abstract index notation is used, i.e. indices of T
i1¨¨¨ip
j1¨¨¨jq

are
interpreted as open arguments of T . When a given quantity does not define a tensor,
indices are interpreted as concrete indices, i.e. coefficients of a coordinate representation.
Let ∇ be the Levi–Civita connection on M . Locally, the connection one-form is given
by the Christoffel symbols

Γkij “
1

2
pBigjl ` Bjgil ´ Blgijq

(this does not define a tensor). With this, the covariant derivative of a pp, qq-tensor T is

∇mT
i1¨¨¨ip
j1¨¨¨jq

“ BmT
i1¨¨¨ip
j1¨¨¨jq

`

p
ÿ

k“1

T
i1¨¨¨ik´1lik`1¨¨¨ip
j1¨¨¨jq

Γikml ´

q
ÿ

k“1

T
i1¨¨¨ip
j1¨¨¨jk´1ljk`1¨¨¨jq

Γlmjk .

Note that even though not every term on the right hand side defines a tensor, their sum
does. The Riemannian curvature tensor is given by

Rijk
l “ BiΓ

l
jk ´ BjΓ

l
ik ` ΓlimΓmjk ´ ΓljmΓmik

from which the Ricci and scalar curvature are derived via

Rjk “ Rljk
l , R “ gjkRjk “ Rll .

If M is a surface, the full Riemannian curvature is already determined by the scalar
curvature. One has

Rlijk “
1

2
pδligjk ´ δ

l
jgikq , Rjk “

1

2
Rgjk .

The following relations concern commutators of covariant derivatives

∇i∇jT
i1¨¨¨ip
j1¨¨¨jq

´∇j∇iT
i1¨¨¨ip
j1¨¨¨jq

“

p
ÿ

k“1

Rijl
ikT

i1¨¨¨ik´1lik`1¨¨¨ip
j1¨¨¨jq

´

q
ÿ

k“1

Rijjk
lT
i1¨¨¨ip
j1¨¨¨jk´1ljk`1¨¨¨jq

.
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Observe that the left hand side is a priori second order in T , but the left hand side is in
fact zeroth order. The tensor-Laplacian (or rough Laplacian) is defined by

∆T “ ´gij∇i∇jT
i1¨¨¨ip
j1¨¨¨jq

“ ´∇i∇jT
i1¨¨¨ip
j1¨¨¨jq

.

It is possible to commute (higher) covariant derivatives and the rough Laplacian acting
on tensors and in general the difference

∇k1 ¨ ¨ ¨∇kr∆T
i1¨¨¨ip
j1¨¨¨jq

´∆∇k1 ¨ ¨ ¨∇krT
i1¨¨¨ip
j1¨¨¨jq

will be an expression depending on the curvature, its covariant derivatives and linearly
on T in up to r covariant derivatives.

The pointwise inner product induced on pp, qq-tensors by the metric g is given by

pT, Sqg “ gj1j
1
1 ¨ ¨ ¨ gjqj

1
qgi1i11 ¨ ¨ ¨ gipi1pT

i1¨¨¨ip
j1¨¨¨jq

S
i11¨¨¨i

1
p

j11¨¨¨j
1
q
.

Of special interest is the case where one of the tensors is a covariant derivative of a
pp, q ´ 1q-tensor. For notational convenience we omit the covariant indices and the
corresponding contraction with the metric. If T is a pp, q ´ 1q-tensor and S a pp, qq-
tensor, then

gi1i
1
1∇i1pgi2i

1
2 ¨ ¨ ¨ giqi

1
qTi2¨¨¨iqSi11¨¨¨i1qq “ p∇T, Sqg ` pT, δSqg ,

where δS is the p0, q´ 1q tensor given by gi1i
1
1∇i1Si11¨¨¨i1q . Defining the vector field Xi1 “

gi1i
1
1 ¨ ¨ ¨ giqi

1
qTi2¨¨¨iqSi11¨¨¨i1q , the left hand side can be written as divX “ ∇iXi and a

computation shows that divX ¨ dVolg “ dpιXdvolgq. Stoke’s theorem then implies the
relation

ż

M
p∇T, Sqg dVolg “ ´

ż

M
pT, δSqg dVolg ,

which is valid for pp, qq-tensors S and pp, q´ 1q-tensors T . A consequence of this is that
for pp, qq-tensors S and T one has

ż

M
p∆T, Sqg dVolg “

ż

M
p∇T,∇Sqg dVolg

and in particular the rough Laplacian is self-adjoint. Suppressing superfluous indices,
the formulae for commuting covariant derivatives and integrating by parts imply that
the difference

ż

M
p∆T,∆Sqg ´ p∇2T,∇2SqgVolg (A.1)

“

ż

M
gabga

1b1rp∇a∇bT,∇a1∇b1Sqg ´ p∇a∇a1T,∇b∇b1Sqgs dVolg

is an expression of two orders lower involving the curvature of the metric g.
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A.2. Some Functional Analysis

Lemma A.2.1. Let E be a Banach space, x P E and pxiq a sequence in E such that
every subsequence of pxiq has a subsequence converging to x. Then pxiq converges to x.

Proof. Suppose pxiq does not converge to x, i.e. there exists ε ą 0 and a subsequence
pxij q such that }xij ´ x} ě ε for all j. But pxij q has a subsequence converging to x, a
contradiction.

Lemma A.2.2. Let E,F,G be Banach spaces, T : E Ñ F a compact operator and
S : F Ñ G a linear bounded injection. If pxiq is a bounded sequence in E such that
pSTxiq converges in G, then pTxiq converges in F .

Proof. Denote z P G the limit of pSTxiq. By compactness of T , any subsequence of
pTxiq has a convergent subsequence in F whose limit point maps to z under S owing to
the continuity of S. By injectivity of S, the limit points of pTxiq have to be y :“ S´1pzq
and hence pTxiq converges to y by Lemma A.2.1.

A.3. Linearisation of the Scalar Curvature Map

We compute the linearisation of the scalar curvature as a map

Sc: HÑ C8pXq , Scpϕq :“ Spω0 ` iBBϕq

from Kähler potentials H on a n-dimensional compact Kähler manifold X with reference
metric ω0 to C8pXq. A metric ωϕ “ ω0 ` iBBϕ induces a volume form Ωϕ :“ 1{n! ¨ ωnϕ
which can be seen as a Hermitian metric on the anticanonical bundle K˚ “ ΛnT p1,0qX.
The Kähler–Ricci form ρϕ of ωϕ is then given by the curvature of the Chern connection
of Ωϕ, i.e. ρϕ “ iBB log Ωϕ, and the scalar curvature by Scpϕq “ Λϕρϕ. We fix a tangent
direction ψ at ϕ “ 0 P H and note that for small enough s, the function sψ defines a
Kähler potential. Using the subscript s instead of sψ we expand Ωs and Λs into powers
of s:

Ωs “ 1{n! ¨ pω0 ` siBBψq
n “ Ω0 ` sΛ0iBBψ ¨ Ω0 `Ops2q “ Ω0 ` s∆0ψ ¨ Ω0 `Ops2q ,

Λsα “ n
α^ ωn´1

s

ωns

“ Λ0α` s

„

npn´ 1q
α^ iBBψ ^ ωn´2

0

ωn0
´ n2α^ ω

n´1
0

ωn0

iBBψ ^ ωn´1
0

ωn0



`Ops2q

“ Λ0α` s
“

1{2 ¨ Λ2
0α^ iBBψ ´ Λ0α ¨∆0ψ

‰

`Ops2q ,

which is valid for any two-form α. We have also used that the kth power of the adjoint
of wedging with ω is given by

1{k! ¨ Λkωα1 ^ ¨ ¨ ¨ ^ αk “
n!

pn´ kq!

α1 ^ ¨ ¨ ¨αk ^ ω
n´k

ωn



106 A. Background Material

for two-forms α1, ..., αk. This follows from the linear algebra in e.g. [23]. For the scalar
curvature one can compute locally

Scs “ ΛsiBB log Ωs

“ Λs
“

iBB log Ω0 ` siBB∆0ψ `Ops2q
‰

“ Λ0iBB log Ω0 ` s
“

∆2
0ψ ` 1{2 ¨ Λ2

0iBB log Ω0 ^ iBBψ ´ Λ0iBB log Ω0 ¨∆0ψ
‰

`Ops2q

“ Sc0`s
“

∆2
0ψ ´ Sc0 ∆0ψ ` 1{2 ¨ Λ2

0ρ0 ^ iBBψ
‰

`Ops2q ,

so

pd Scq0 ¨ ψ “ ∆2
0ψ ´ Sc0 ∆0ψ ` 1{2 ¨ Λ2

0ρ0 ^ iBBψ .

A.4. Parabolic Hölder and Sobolev Norms on Manifolds

The role of this appendix is to outline a proof of how to transfer parabolic estimates
in Sobolev and Schauder spaces (adapted to 2nd order equations) from flat domains in
Rn to compact manifolds. We denote by pX, gq a compact n-dimensional Riemannian
manifold with Levi–Civita connection ∇g and by pE, hq a rank m vector bundle over X
with inner product h and a connection ∇h with respect to which h is parallel. For T ą 0
set XT :“ X ˆ r0, T r and define ΓpXT , E b pT

˚Xqbkq to be smoothly time-dependent
C8-sections of E b pT ˚Xqbk over X. On ΓpXT , E b pT

˚Xqbkq we have the norms
} ¨ }LppXT ,g,hq defined by

}sb P }LppXT ,g,hq :“

ˆ
ż T

0

ż

X
p|sb P |g,hq

p dvolg dt

˙1{p

for s a section of E and P a section of pT ˚Xqbk. Here | ¨ |g,h denotes the pointwise
norm on E b pT ˚Xqbk given by |s b P |g,h “ |s|h|P |g. The Levi–Civita connection ∇g
and the connection ∇h induce a connection on E b pT ˚Xqbk denoted by ∇. We define
the parabolic Sobolev space Lp1,2pXT , g, hq as the completion of ΓpXT , Eq with respect
to the norm

}s}Lp1,2pXT ,g,hq :“

˜

}Bts}
p
LppXT ,g,hq

`
ÿ

kď2

}∇ks}pLppXT ,g,hq

¸1{p

.

Remark. The generalisation to higher regularity parabolic Sobolev spaces is straight-
forward, though mixed derivatives have to be allowed with one time-derivative counting
for two spatial ones. We only need Lp1,2, however.

Defining parabolic Hölder spaces takes a bit more preparation. We first set the spaces
Ck,2kpXT , g, hq to be the completions of ΓpXT , Eq with respect to the norms

}s}Ck,2kpXT ,g,hq :“
ÿ

0ď2j`lď2k

sup
XT

|B
j
t∇ls|g,h .
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The parabolic distance between points px, txq, py, tyq P XT is defined by dppx, txq, py, tyqq :“
pdgpx, yq

2 ` |tx ´ ty|q
1{2, where dg is the geodesic distance on X defined by g. The con-

nection ∇ on EbpT ˚Xqbk defines a parallel transport maps for paths on X. We denote
by Ξx,y : Ex b pT

˚Xqbkx Ñ Ey b pT
˚Xqbky the parallel transport maps along a minimis-

ing geodesic joining x to y. Should y lie in the cut locus of x, this might not be well
defined, but for the purpose of defining Hölder norms, the only relevant case is that of y
being close to x. For α Ps0, 1r and s, P sections as above, we can now define the Hölder
seminorms as

rsb P sα,XT ,g,h :“ sup
px,txq‰py,tyqPXT

|psb P qpx,txq ´ Ξ´1
x,y ¨ psb P qpy,tyq|g,h

dppx, txq, py, tyqqα

and obtain parabolic Hölder spaces Ck,2k,αpXT , g, hq as the completion of ΓpXT , Eq with
respect to the norms

}s}Ck,2k,αpXT ,g,hq :“ }s}Ck,2kpXT ,g,hq `
ÿ

2j`l“2k

rB
j
t∇lssα,XT ,g,h .

Observe that both parabolic Sobolev and Hölder norms makes sense when replacing
X by a geodesically convex subset U Ă X. The main ingredient in transferring estimates
on open sets in Rn to M is the following lemma:

Lemma A.4.1. For k P N0 there exists a finite collection of points xi, coordinate charts
ϕi : Ui Ñ Ωi about the points xi and trivialisations Φi : E|Ui Ñ Rm ˆ Ui and a constant
K such that the Ui are geodesically convex with smooth boundary and there holds

1{K}sΦi,ϕi}Ck,2k,αpΩiT q ď }s}Ck,2k,αpUiT ,g,hq ď K}sΦi,ϕi}Ck,2k,αpΩiT q

for all s P ΓpXT , Eq. Here sΦi,ϕi “ pr1 ˝Φi ˝ s ˝ ϕ
´1
i : Ωi Ñ Rm is the section s locally

understood as a function on Ωi with values in Rm via the chart ϕi and the trivialisation
Φi. The norms Ck,2k,αpΩiT q are the parabolic Hölder norms on functions from ΩiT to
Rm with respect to the Euclidian metric g0 on Rn and the standard inner product h0 on
Rm.

Proof. We only give a detailed outline of the proof and use a less precise, but also less
convoluted notation. About each point x P X construct charts ϕ : Ui Ñ Ω via geodesic
coordinates. These charts have the property that g coincides with g0 at x and that
the connection one-form of the Levi–Civita connection (Christoffel symbols) vanishes at
x P X. Making the charts U smaller if necessary, one can then use parallel transport on
E along outward geodesics to construct a trivialisation Φ: E|U Ñ RmˆU such that the
connection one-form of ∇h vanishes at x (i.e. TU corresponds to the horizontal subspace
at x). By the continuity of g, h and the connections, given δ ą 0, one can make the U
yet smaller such that on each chart ϕ with trivialisation Φ of E one has that

1. g0 and g are δ-close in C0 (with respect to say g0),

2. h0 and h are δ-close in C0
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3. The connection one-forms of the Levi–Civita connection and the connection on E
are δ-close to zero in C0.

Here g and h are to be understood as the structures of X and E transferred to Ωi via
ϕi and Φi. By compactness of X we can choose finitely many points xi such that the
corresponding Ui with ϕi and Φi satisfy the above property. The properties 1 and 2
guarantee that for sufficiently small δ in each of the pUi, ϕi,Φiq, the pointwise norms on
time-dependent sections sbP of E b pT ˚Mqbk defined by g, h and g0, h0 are uniformly
equivalent on ΩiT , i.e.

1{C sup
ΩiT

|sb P |g0,h0 ď sup
ΩiT

|sb P |g,h ď C sup
ΩiT

|sb P |g0,h0 ,

where we have identified s b P with a function Ωi Ñ Rm ˆ Rkn using ϕi and Φi. The
local difference between ordinary derivative and covariant derivative Ds ´ ∇s is an
algebraic expression in s and the connection one-form. It follows by induction that the
local expressions for ∇ls ´ Dls are a sum of derivatives of connection one forms and
derivatives of s up to order l ´ 1, where the derivatives of s can be expressed either as
ordinary or as covariant derivatives. Applying the pointwise estimates then gives

sup
ΩiT

|∇ls|g,h ď K sup
ΩiT

l
ÿ

i“0

|Dis|g0,h0 , sup
ΩiT

|Dls|g0,h0 ď K sup
ΩiT

l
ÿ

i“0

|∇is|g,h ,

where the constant K arises as a product of the constant C in the pointwise estimates
and the supremum over derivatives of the connection one form up to order l ´ 1. The
same estimates holds true for time-derivatives of s and one obtains

1{K
ÿ

0ď2j`lď2k

sup
ΩiT

|B
j
tD

ls|g0,h0 ď
ÿ

0ď2j`lď2k

sup
ΩiT

|B
j
t∇ls|g,h ď K

ÿ

0ď2j`lď2k

sup
ΩiT

|B
j
tD

ls|g0,h0 .

As presented, the constants K depend on i, but taking their supremum over the finitely
many indices shows that they can be chosen independently of the i. Comparing rBjt∇lssα,g,h
to rBjtD

lssα,g0,h0 is slightly more complicated, owing to the involvement of parallel trans-
port and geodesic distances. However, parallel transport is localy defined via an ordinary
differential equation whose coefficients are given by the connection one-form of ∇. By
property 3 they can be assumed to be arbitrarily small, so parallel transport in the
charts pUi, ϕi,Φiq can be uniformly compared to the trivial transport defined by the flat
connections on TΩi and Rm. The same argument works for geodesic distances. This can
be used to show that

1{KrBjtD
lssα,g0,h0 ď rB

j
t∇lssα,g,h ď KrBjtD

lssα,g0,h0

proving the claim.

An analogous result holds for Lp1,2-norms.
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Lemma A.4.2. For k P N0 there exists a finite collection of points xi, coordinate charts
ϕi : Ui Ñ Ωi about the points xi and trivialisations Φi : E|Ui Ñ Rm ˆ Ui and a constant
K such that the Ui have smooth boundary and there holds

1{K}sΦi,ϕi}Lp1,2pΩiT q
ď }s}Lp1,2pUiT ,g,hq ď K}sΦi,ϕi}Lp1,2pΩiT q

for all s P ΓpXT , Eq. Here Lp1,2pΩiT q is defined with respect to Rn and Rm carrying their
canonical structures.

Proof. The proof of A.4.1 can be adapted to this case (as there is no parallel transport,
it is not even necessary to work with local geodesic coordinates). We merely remark that
the volume forms on UiT defined by g and g0 differ by functions which are uniformly
bounded from above and from below by a positive constant.

We now proceed to show that local parabolic regularity results also apply to compact
manifolds.

Proposition A.4.3. Denote by ¨ contraction in tensor indices. Let Lpx, tq “ A2px, tq ¨
∇2 ` A1px, tq ¨∇` A0px, tq be a strongly elliptic linear second order operator acting on
sections of E. Assume the coefficients Al to be bounded continuous sections of EndpEqb
pTXqbl over XT . Then there exists a constant C such that for all strong solutions
u P Lp1,2pXT , g, hqloc (the subscript loc indicates that u has the required regularity, but that
we do not assume a priori boundedness of the global Lp1,2-norm) of the linear parabolic
equation pBt ` Lqu “ f on XT for a continuous section f of E over XT , one has the
estimate

}u}Lp1,2pX 1T ,g,hq
ď Cp}u}LppXT ,g,hq ` }f}LppXT ,g,hqq ,

where X 1T is a set of the form Xˆsε, T r for ε ą 0.

Proof. We glue local versions of interior parabolic Lp1,2-estimates which can be found
in e.g. [31]. The results therein concern parabolic systems on domains in Ω Ă Rn
assumed to have BMO (bounded mean oscillation) coefficients and inhomogeneity in Lp.
The bounded continuous coefficients and inhomogeneity satisfy these assumptions and
the result in [31] of relevance to us can be phrased as follows: If Ai,j2 , Ai1 and A0 are
bounded continuous functions from ΩT Ñ EndpRmq for 1 ď i, j ď m, where A2 satisfies
the ellipticity condition

p´Ai,j2 ξiξjv, vq ě λ|ξ|2|v2|, @ξ P Rn, v P Rn ,

for a fixed λ ą 0 uniformly in ΩT and Ω1T Ă ΩT is of the form Ω1T “ Ω1ˆsε, T r for an
open subset Ω1 such that the closure of Ω1 is contained in Ω (what matters here is that
Ω1T is at a positive distance from the parabolic boundary Ω ˆ t0u Y BΩ ˆ r0, T r), then
for strong solutions u of the equation

˜

Bt `

n
ÿ

i,j“1

Ai,j2 BiBj `

n
ÿ

i“1

Ai1Bi `A0

¸

u “ f (A.2)
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with f : ΩT Ñ Rm a bounded continuous function, one has the estimate

}u}Lp1,2pΩ1T q
ď Cp}u}LppΩT q ` }f}LppΩT qq . (A.3)

Now let u P Lp1,2pXT , g, hq be a solution of pBt `Lqu “ f as in the hypothesis. We cover
X by finitely many charts and trivialisations pUi, ϕi,Φiq in which the metric estimates
of Lemma A.4.2 hold and find open subsets U 1i with closure contained in Ui which still
cover X. Denote the corresponding domains in Rn by Ωi and Ω1i. The sections uϕi,Φi in
local charts solve equations of the form (A.2) and the estimates (A.3) hold, where the
constant can be taken to be independent of i. Set Ui

1
T :“ U 1iˆsε, T r, and Ω1i :“ Ω1iˆsε, T r

and estimate

}u}Lp1,2pX 1T ,g,hq
ď

ÿ

i

}u}Lp1,2pUi
1
T ,g,hq

ď K
ÿ

i

}uϕi,Φi}Lp1,2pΩi
1
T ,g0,h0q

ď CK
ÿ

i

`

}uϕi,Φi}LppΩiT ,g0,h0q ` }fϕi,Φi}LppΩiT ,g0,h0q
˘

ď C 1
`

}u}LppXT ,g,hq ` }f}LppXT ,g,hq
˘

which proves the claim.

Remark. The author of [31] makes assumptions on the dimension of Ω restricting at-
tention to odd n ě 3. These restrictions can be circumvented by adding a phantom
direction z Ps ´ ε, εr and extending u, f to u1, f 1 trivially in that direction in the case
of even n ě 2. The operator L is extended parabolically to L1 by adding ´B2

z . If u
solves pBt ` Lqu “ f , then pBt ` L1qu1 “ f 1 and the estimates can be applied to the
latter systems. Estimates for the primed quantities translate directly to estimates for
the unprimed ones.

The analogous estimates hold for parabolic Hölder spaces.

Proposition A.4.4. Let Lpx, tq “ A2px, tq ¨ ∇2 ` A1px, tq ¨ ∇ ` A0px, tq be a strongly
elliptic linear second order operator taking sections of E to sections of E. Assume that
for k P N0 the coefficients Al lie in Ck,2k,αpXT , g, hq (with the natural extension of
the definition of parabolic Hölder spaces to sections of EndpEq b pTXqbl). Then there
exists a constant C such that for all strong solutions u P Ck`1,2k`2,αpXT , g, hqloc (here
the subscript loc indicates that Bjt∇lu for 2j ` l ď 2l ` 1 are Hölder continuous with
coefficient α, but no boundedness assumption of the global Ck`1,2k`2,α-norm is made) of
the linear parabolic equation pBt ` Lqu “ f on XT for f P Ck,2k,αpXT , g, hq, one has the
estimate

}u}Ck`1,2k`2,αpX 1T ,g,hq
ď C

´

}u}Ck,2k,αpXT ,g,hq ` }f}Ck,2k,αpXT ,g,hq

¯

,

where X 1T is defined as in Proposition A.4.3.
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Proof. The statement of this theorem for domains Ω Ă Rn can be found in the classical
paper [18]. Though stated slightly differently (see the remark below), the results [18]
imply that replacing bounded continuity of the coefficients Ai,jl and the inhomogeneity
f in the domain estimates in the proof of Proposition A.4.3 by the condition that they
be in Ck,2k,α (with values in EndpRmq and Rm respectively), on has estimates analogous
to the Lp case, i.e.

}u}Ck`1,2k`2,αpΩ1T q
ď C

´

}u}Ck,2k,αpΩT q ` }f}Ck,2k,αpΩT q

¯

,

where u P Ck`1,2k`2,αpΩT q is a classical solution the parabolic equation on ΩT defined
by the Al with inhomogeneity f . As in the Lp case, Rn and Rm are endowed with their
canonical structures. The transfer of the domain estimates to estimates on X now works
exactly as in the proof of Proposition A.4.3, with one additional subtlety: the seminorms
rs b P sα,g,h are not local in the sense that their definition involves taking a supremum
over XT ˆXT z∆ (∆ being the diagonal). One has

}u}Ck`1,2k`2pX 1T ,g,hq
ď

ÿ

i

}u}Ck`1,2k`2pUi
1
T ,g,hq

ď K
ÿ

i

}uϕi,Φi}Ck`1,2k`2pΩi
1
T ,g0,h0q

ď K
ÿ

i

}uϕi,Φi}Ck`1,2k`2,αpΩi
1
T ,g0,h0q

ď CK
ÿ

i

´

}uϕi,Φi}Ck,2k,αpΩiT ,g0,h0q ` }fϕi,Φi}Ck,2k,αpΩiT ,g0,h0q

¯

ď C 1
´

}u}Ck,2k,αpXT ,g,hq ` }f}Ck,2k,αpXT ,g,hq

¯

. (A.4)

For the Hölder seminorms we distinguish two cases. Denote by δ the infimum of the
radii r about points in x P X such that the geodesic distance ball of radius r about x is
entirely contained in one of the U 1i . By compactness of X, δ is strictly positive. Now if
px, txq, py, tyq P X

1
T such that 0 ă dppx, txq, py, tyqq ă δ, then we can suppose that both

points are contained in the same Ui
1
T and estimate for 2j ` l “ 2k ` 2

|pB
j
t∇kuqpx,txq ´ Ξ´1

x,ypB
j
t∇kuqpy,tyq|g,h

dppx, txq, py, tyqqα
ď }u}Ck`1,2k`2,αpUi

1
T ,g,hq

ď K}u}Ck`1,2k`2,αpΩi
1
T ,g0,h0q

ď CK
´

}u}Ck,2k,αpΩi1T ,g0,h0q ` }f}Ck,2k,αpΩi
1
T ,g0,h0q

¯

ď CK2
´

}u}Ck,2k,αpUiT ,g,hq ` }f}Ck,2k,αpUiT ,g,hq

¯

ď C 1
´

}u}Ck,2k,αpXT ,g,hq ` }f}Ck,2k,αpXT ,g,hq

¯

.
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On the other hand, if dppx, txq, py, tyqq ě δ, then using (A.4) yields

|pB
j
t∇kuqpx,txq ´ Ξ´1

x,ypB
j
t∇kuqpy,tyq|g,h

dppx, txq, py, tyqqα
ď }u}Ck`1,2k`2pX 1T ,g,hq

¨ δ´α

ď C 1
´

}u}Ck,2k,αpXT ,g,hq ` }f}Ck,2k,αpXT ,g,hq

¯

.

Combing the two cases, taking the supremum over X 1T ˆX
1
T z∆, summing over 2j ` l “

2k ` 21 and adding (A.4) one obtains

}u}Ck`1,2k`1,αpX 1T ,g,hq
ď C

´

}u}Ck,2k,αpXT ,g,hq ` }f}Ck,2k,αpXT ,g,hq

¯

as claimed.

Remark. The parabolic Hölder norms in [18] explicitly take into account the distance
of a given point to the parabolic boundary. Working with the domains Ωi

1
T which are a

fixed distance away from the parabolic boundary of ΩiT allows translation of Friedman’s
parabolic Hölder estimates on domains to the ones used in the above proof.

Lastly, we translate a certain parabolic Sobolev embedding to compact manifolds.

Proposition A.4.5. Let p ą pn ` 2q{2 and 0 ă α ă mint1, 2 ´ pn ` 2q{pu. Then
Lp1,2pXT , g, hq embeds continuously into C0,0,αpXT , g, hq.

Proof. This follows directly from the metric estimates in Lemmas A.4.3, A.4.4 and the
corresponding domain result found in e.g. [41] (page 27, theorem 1.4.1).



B. Supplement to Chapter 2

B.1. Twisted cscK Metrics on Riemann Surfaces

For the sake of completeness we prove the existence and uniqueness of twisted cscK
metrics with unit volume on compact Riemann surfaces of positive genus. These twisted
cscK metrics serve as limit objects for twisted Calabi flow and a priori knowledge of
their existence is assumed in several proofs of Chapter 2 concerning the flow’s long-
time behaviour. The existence and uniqueness proofs of twisted cscK metrics closely
resemble those of the uniformisation theorem and can be found e.g. in the doctoral
thesis of J. Fine.

Theorem B.1.1. Let X be a compact Riemann surface of positive genus with smooth
reference Kähler-metric ω0 and α P Ω2pX,Rq a smooth two-form with nonpositive inte-
gral. Then there exists a unique smooth Kähler-metric ω in the cohomology class of ω0

such that Spωq ` Λωα “ Ŝ is constant (twisted cscK metric).

The cohomological constant Ŝ is given by Ŝ ¨ Vol “
ş

X ρpωq ` α and in particular

Ŝ ď 0. Parametrising metrics in the class ω0 via euω0, the twisted cscK equation is
equivalent to

∆0u` |Ŝ|e
u “ ´pSc0`Λ0αq , (B.1)

where the subscript 0 indicates that the corresponding quantity is defined by the ref-
erence metric ω0. If Ŝ “ 0, then

ş

X Sc0`Λ0αω0 “ 0 and the equation (B.1) can be

uniquely solved by inverting the Laplacian. From now on we assume Ŝ ‰ 0 and rescale
the metrics such that Ŝ “ ´1. We consider the map

F : L2
4pX, g0q Ñ L2

2pX, g0q , F puq “ ∆0u` exppuq

and need to solve the nonlinear elliptic problem F puq “ φ for φ P A, where

A :“

"

φ P L2
2

ˇ

ˇ

ˇ

ˇ

ż

X
φω0 ą 0

*

.

This is done via a continuity argument: We show that imF Ă A is open, closed and
nonempty, so by connectedness of A, imF then has to be A.

Remark. Sobolev multiplication works in L2
k for k ě 2 and ul P L2

k if u P L2
k for any

l P N0. Moreover,
ř8
l“0 u

l{l! is absolutely convergent in L2
k, so exppuq P L2

k if u P L2
k. By

rescaling the L2
k-norms one can achieve that }eu}L2

k
ď e

}u}
L2
k .

We first show uniqueness
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Lemma B.1.2. The map F : L2
4 Ñ L2

2 is injective, i.e. solutions to F puq “ φ are
unique.

Proof. There are Sobolev embeddings L2
4pXq ãÑ C2pXq and L2

2pXq ãÑ C0pXq, so it
suffices to show that classical solutions to F puq “ φ are unique. Let φ´, φ` P C

0pXq
and u´, u` P C

2 solutions F pu˘q “ φ˘. We claim that if φ´ À φ`, then u´ À u`,
where À means consistently either ă or ď. Indeed, ∆u˘ ` eu˘ “ φ˘ and φ´ À φ`
imply ∆pu´´ u`q À eu` ´ eu´ . Now if pu´´ u`q attains a global maximum at x0 P X,
then ∆pu´ ´ u`qpx0q ě 0 and hence eu´px0q À eu`px0q which is equivalent to u´px0q ´

u`px0q À 0. But x0 was a global maximum of u´´u`, so u´´u` ď pu´´u`qpx0q À 0
and thus u´ À u`. The claimed uniqueness follows from this.

Lemma B.1.3. The image of F is open in A.

Proof. This can be proved by an inverse function theorem argument. We show that
F : L2

4 Ñ L2
2 is a submersion and hence locally surjective thus proving the claim. We

first observe that the Laplacian as a map

∆: L2
4 Ñ L2

2

is bounded linear and hence Fréchet differentiable with derivative pd∆quv “ ∆v at any
u P L2

4. A small calculation for u, v P L2
4 shows that

exppu` vq ´ exppvq “ exppuq ¨ v ` exppuq

˜

8
ÿ

k“0

vk

pk ` 1q!

¸

¨ v2 .

The linear map v ÞÑ exppuq ¨ v from L2
4 to L2

2 is bounded and the remainder term
ρupvq :“ exppuq

ř8
k“0 v

k{pk ` 1q! ¨ v2 satisfies }ρupvq}L2
2
{}v}L2

4
Ñ 0 for v Ñ 0 in L2

4.

Hence u ÞÑ exppuq is Fréchet differentiable with derivative pd expquv “ exppuq ¨ v. Also
observe that pd expqu : L2

4 Ñ L2
2 is compact since it factors as a bounded linear map

L2
4 Ñ L2

4 composed with the compact inclusion L2
4 ãÑ L2

2. We conclude that F is Fréchet
differentiable with

pdF quv “ ∆v ` exppuq ¨ v

being a compact perturbation of the zero-index Fredholm operator ∆: L2
4 Ñ L2

2 and
thus is itself Fredholm with index zero. In particular pdF qu is surjective if and only if it
is injective, so it remains to show that the equation

∆v ` exppuq ¨ v “ 0

has v “ 0 as a unique solution. The uniqueness can be established by a slight modifica-
tion of the maximum principle argument used to prove Lemma B.1.2.

Lemma B.1.4. The image of F is closed in A.
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Proof. Let pφiq be a sequence in imF converging to φ P A. The claim is that φ P imF .
Let puiq be a sequence in L2

4 such that F puiq “ φi. We shall show that a subsequence of
the puiq converges to a limit u in L2

4 and that F puq “ φ. This amounts to establishing
appropriate a priori bounds on puiq and using compactness of Sobolev embeddings to
extract a convergent subsequence.

We begin by showing that puiq and eui are bounded in L2. Denote by rφ :“
ş

X φω0{Vol ą

0 the average of φ and by g P L2
4 the unique solution to ∆g “ φ ´ rφ with

ş

X g ω0 “ 0.
Set

u´ :“ g ´max
X

g ´ 1` log rφ ,

u` :“ logpmax
X

φ` 1q .

The functions u´, u` P C
2 are constructed to satisfy F pu´q ă φ and F pu`q ą φ. Indeed

one has

F pu´q “ ∆g ` eg´maxX g´1`log rφ “ φ´ rφ` eg´maxX g´1
rφ ă φ and

F pu`q “ elogpmaxX φ`1q ą max
X

φ ě φ .

Note that φi Ñ φ in L2
2 implies convergence in C0, so for almost all i P N one has

the estimate F pu´q ă φi ă F pu`q. Applying the arguments in the proof of Lemma
B.1.2 this implies u´ ă ui ă u`, so the sequences ui and eui are bounded in C0 and in
particular in L2.

From here standard elliptic estimates for the Laplacian can be used to bound ui in
L2

4. Via

}ui}L2
2
ď Cp}∆ui}L2 ` }ui}L2q ď Cp}φi}L2 ` }eui}L2 ` }ui}L2q

one sees that puiq is bounded in L2
2. Since }eui}L2

2
ď e

}ui}L2
2 , the same holds true for eui .

From here one can use

}ui}L2
4
ď Cp}∆ui}L2

2
` }ui}L2q ď Cp}φi}L2

2
` }eui}L2

2
` }ui}L2q

to see that puiq is bounded in L2
4. By compactness of the embedding L2

4 ãÑ L2
2, one can

extract from ui a subsequence (also denoted by ui) converging in L2
2 to a limit u. Since

exp: L2
2 Ñ L2

2 is continuous, eui converges to eu. The estimate

}ui ´ uj}L2
4
ď Cp}φi ´ φj}L2

2
` }eui ´ euj}L2

2
` }ui ´ uj}L2q

implies that puiq is Cauchy in L2
4 and hence that puiq Ñ u in L2

4. Lastly, by continuity
of F : L2

4 Ñ L2
2, one has F puq “ F plimuiq “ limF puiq “ limφi “ φ.

The Lemmas B.1.2, B.1.3 and B.1.4 imply that the equation F puq “ φ admits a unique
solution u P L2

4 whenever φ P L2
2 has positive integral. With this we can prove Theorem

B.1.1.
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Proof. By assumption the smooth function φ :“ ´pSc0`Λαq has nonnegative integral
and the case of zero integral was already treated. If

ş

X φω0 ą 0, there exists a unique
u P L2

4, such that
∆0u` |Ŝ|e

u “ φ

and the metric euω0 is twisted cscK. It remains to show that u is in fact smooth. This
is a local property, so we can – at the cost of replacing ∆ by a general elliptic second
order operator L with smooth coefficients – assume that u and φ are functions on an
open ball B1p0q Ă R2. Let ϕε be a family of mollifiers with support in the closure of the
ball Bεp0q. We also assume again that Ŝ “ ´1. For n ě 2, the smoothened functions
un :“ u ˚ϕ1{n and φn :“ φ ˚ϕ1{n satisfy Lun` e

un “ φn on B1{2p0q. Moreover punq Ñ u
in L2

4 and pφnq Ñ φ in L2
k for any k. Let Ul Ă R2 be a family of open sets satisfying

B1{4p0q Ă Ul Ă B1{2p0q and U l`1 Ă Ul. Interior elliptic estimates for L give

}un ´ um}L2
k`2pUk`2q

ď Ckp}Lpun ´ umq}L2
kpUkq

` }un ´ um}L2pUkqq

ď Ckp}φn ´ φm}L2
kpUkq

` }eun ´ eum}L2
kpUkq

` }un ´ um}L2pUkqq

and an induction argument starting at k “ 4 shows that punq is Cauchy in any L2
kpB1{4p0qq.

It follows that u P L2
kpB1{4p0qq for any k. In particular u is smooth.
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C.1. Relation Between Yang–Mills Flow and Hermitian
Yang–Mills Flow

Hermitian Yang–Mills flow can be seen a gauge fixed version of Yang–Mills flow on Kähler
manifolds. We loosely follow the discussion in [10]. Let pX, gq be a compact Riemannian
manifold and pE, hq a complex vector bundle with fixed Hermitian structure. One can
define a best connection in the space Ah of h-unitary connections on pE, hq to be a
critical point of the Yang–Mills functional

YM : Ah Ñ R , Y MpAq :“

ż

X
|FA|

2
g,h dvolg

Recall that Ah is an affine space over the space Ω1pX, uq of one-forms on X with values
in the Lie algebra of the group of unitary gauge transformations U . The variation of the
Yang–Mills functional in direction of a P Ω1pX, uq is given by

pdYMqA ¨ a “ 2

ż

X
pd˚AFA, aqh dvolg ,

where p¨, ¨qh denotes the real inner product on EndpEq-valued forms induced by h, g
and d˚A the adjoint of the extension dA of the connection to Ω‚pX,EndpEqq. It follows
that critical points A of the Yang–Mills functional are characterised by the Yang–Mills
equation d˚AFA “ 0. In order to find critical points, one can consider Yang–Mills flow,
the downward gradient flow of YM , which (up to a factor) is given by

BtA` d
˚
AFA “ 0 . (C.1)

If u P U is a unitary gauge transformation of pE, hq, then u acts on unitary connection
by pullback, i.e. upAq “ uAu´1 and it turns out that the Yang–Mills functional and thus
the Yang–Mills equation are invariant under this action. In particular, the Yang–Mills
equation is not elliptic and the Yang–Mills flow not parabolic. The gauge invariance,
however, is the only obstruction to parabolicity of the Yang–Mills flow and one can
construct parabolic flows on Ah that induce the same flow on gauge equivalence classes
Ah{U via gauge fixing. The classical way of doing this is to write Aptq “ A0 ` aptq for
a path aptq in Ω1pX, uq and consider the equation

BtA` d
˚
AFA ` dAd

˚
Aa “ 0 (C.2)

which can be shown to be parabolic and to be gauge equivalent to (C.1) (The tangent
space of gauge orbits is given by TAUA “ dAΩ0pX, uq). In addition, it is possible to pass
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from a solution Bptq of (C.2) to a solution Aptq of (C.1) by endowing the U-principal
fibration AÑ Ah{U (some additional technical assumptions are required for the action
to be free) with the connection given by defining the horizontal space in TAAh to be
the L2-orthogonal complement to TAUA and setting Aptq to be the horizontal lift of the
path rBptqs in Ah{U .

In the Kähler case, this gauge fixing can be achieved by considering Hermitian Yang–
Mills flow which in a suitable sense is gauge equivalent to Yang–Mills flow. To illustrate
this, let pX,ωq be compact Kähler and denote by A1,1

h the set of h-unitary connections

whose curvature lies in Ω1,1pX, uq. Observe that BA :“ A0,1 for A P A1,1
h defines a

holomorphic structure on E and that A “ Ah,BA is the Chern connection with respect

to that structure and h. Conversely, a holomorphic structure B on E defines a Chern
connection Ah,B, so A1,1

h is in one-to-one correspondence with holomorphic structures

on E. The gauge group U acts by pullback on A1,1
h and since uAh,Bu

´1 “ Au¨h,uBu´1 “

Ah,uBu´1 , the induced action on holomorphic structures is given by upBq “ uBu´1. The
complexified gauge group G of all invertible endomorphisms of E covering the identity on
X does not act by pullback on A1,1

h , since a g P G need not preserve h. It does however

act by pullback on holomorphic structures on E and we define the action of G on A1,1
h

by setting gpAh,Bq :“ Ah,gpBq. We remark that Yang–Mills flow leaves A1,1
h -invariant and

a more detailed analysis shows that if Aptq solves (C.1), with Ap0q “ A0 then Aptq “
gptqpA0q for a suitable path gptq in G starting at the identity. The equation for Yang–
Mills flow in terms of gptq (using that X is Kähler) is given by pBtgqg

´1 “ ´iΛωFgpAq,
which after conjugating by g and expressing A “ Ah,B can be written as

gBtg “ ´iΛωFAg´1¨h,B
.

The action of g´1 on h is given by g´1 ¨h “ hpg¨, g¨q “ hpg˚g¨, ¨q. Setting hptq “ hpg˚g¨, ¨q,
one finds that hptq evolves according to

h´1ptqpBthqptq “ ´2iΛωFAhptq,B ,

which up to a scalar factor and the normalising term λ idE is precisely Hermitian Yang–
Mills flow. Conversely, if hptq satisfies the Hermitian Yang–Mills equation in its above
form, then hp0q´1hptq should correspond to g˚g for a path gptq defining a solution to

Yang–Mills flow via Aptq “ gptqpA0q. Indeed, rgptq :“ php0q´1hptqq
1
2 defines a path of

connections Bptq :“ rgptqpA0q which is gauge equivalent the solution Aptq of (C.1) and
rBptqs can be lifted horizontally to Aptq. This permits to vary the Hermitian metric
whilst keeping the complex structure fixed instead varying a Chern connection via the
complex structure on E for fixed h.

C.2. Construction of the Donaldson functional

In [9] Donaldson constructs the functional M using Chern–Weil theory. The essence of
this construction is explained in the following. Given a holomorphic rank r bundle E over
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a complex manifold X and an AdGlCprq-invariant p-linear totally symmetric function ϕ
on glpr,Cq, one can define a characteristic class representative for any Hermitian metric
h on E:

ϕpiFhq :“ ϕpiFh, ..., iFhq P Ωp,ppXq .

It is possible to construct a primitive of ϕpiFhq in the following sense.

Proposition C.2.1. Denote by k, h any pair of Hermitian metrics on E. There exists

Rph, kq P Ωp´1,p´1pXq{pIm B ` Im Bq

with the following properties:

1. For any three Hermitian metrics h, k, l on E there holds

Rph, lq `Rpl, kq “ Rph, kq .

2. If hptq is a smooth one-parameter family of metrics and k is another metric on E,
then

BtRpk, hptqq “ ´pϕph
´1 9h, iFh, ..., iFhq .

3. There holds

iBBRpk, hq “ ϕpiFkq ´ ϕpiFhq P Ωp,ppXq .

Proof. We just give an outline. If H is the space of Hermitian metrics on E, one defines
a one-form on H (with values in Ωp´1,p´1pXq) by

θhpηq “ ´pϕph
´1η, iFh, ..., iFhq .

The idea is to pick a reference point k P H, set Rpk, kq “ 0 and define Rph, kq to
be the integral of θ along a piecewise smooth path joining k and h. For this to be
well defined modulo Im B ` Im B, the integral of θ along closed loops needs to be in
Im B ` Im B. By Stokes’ theorem, this is case if dθ (this is a two-form with values in
Ωp´1,p´1pXq) evaluated on any two tangent vectors η, ξ (an element of Ωp´1,p´1pXq)
lies in BpΩp´2,p´1pXqq ` BpΩp´1,p´2pXqq. Using the invariant formula for the exterior
derivative, the Bianchi identity for iFh and the invariance of ϕ one checks that this is
indeed the case. This establishes the existence of R with properties 1 and 2. Using
BtiFh “ iBBhph

´1 9hq one checks

BtϕpiFh, ..., iFhq “ pϕpiBBhph
´1 9hq, iFh, ..., iFhq

“ iBBpϕph´1 9h, iFh, ..., iFhq

“ ´BtpiBBRpk, hptqqq

and then integrates along a path from k to h in H to obtain property 3.
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We can now define the Donaldson functional for a holomorphic vector bundle E on a
Riemann surface pX,ωq. Let ϕ1pAq :“ trpAq and ϕ2pA,Bq “ trpABq and let R1, R2 be
the primitives associated to ϕ1 and ϕ2 as constructed above. Set

Mpk, hq :“

ż

X
´

1

2
R2pk, hq ` λR1pk, hq ^ ω .

To see that this is well defined (recall that R was only defined up to Im B` Im B), we use
Stokes’ theorem and the fact that ω is closed. Obviously Mpk, lq `Mpl, hq “ Mpk, hq
holds. To check the variation property, we compute

BtMpk, hptqq “

ż

X
´

1

2
BtR2pk, hptqq ` BtλR1pk, hptqq ^ ω

“

ż

X
ϕ2ph

´1 9h, iFhq ´ λϕ1ph
´1 9hqq ^ ω

“

ż

X
trpiFhh

´1 9hq ´ λ trph´1 9hq ^ ω

“

ż

X
trrpΛωiFh ´ λ idEqh

´1 9hsω .

It remains to show that for a fixed reference Hermitian metric k, the functional Mpk, ¨q is
bounded from below provided that the bundle E Ñ X is stable. This is a consequence of
a convexity property of M . Set hptq “ h0 expptηq for self-adjoint section η. By the vari-
ational property one then has BtMpk, hptqq “

ş

X trpriFhptq ´ λ idE ωqηs. Differentiating
again yields

B2
tMpk, hptqq “

ż

X
i trpηBBhptqηq “

ż

X
i trpBη ^ Bhptqηq “

1

2
¨ }dhptqη}

2
hptq,ω ě 0 ,

where we have used that BtFh “ BBhph
´1Bthq. This implies that choosing h0 to be a crit-

ical point of Mpk, ¨q (which exists by assumption of stability) minimises the Donaldson
functional. Indeed, if h is any Hermitian metric, one can pick η “ log h´1

0 h and finds
Mpk, h0q ďMpk, hq by integration.

Remark. If dhptqη “ 0, then η is a holomorphic section of EndpEq and hence a multiple
of the identity. Consequently, BtMpk, hptqq ą 0 unless hptq is a rescaling of h0. In
particular, this shows that Hermite–Einstein metrics are unique up to scale.

C.3. Blowup Argument

Proposition C.3.1. Let X be a compact n-dimensional Kähler manifold and I Ă R
an interval of the form r0, T r for 0 ă T ď 8. Let hptq a smooth family of Hermitian
metrics on E Ñ X and gptq a smooth convergent family of uniformly equivalent Kähler
metrics with Kähler forms ωptq on X for t P I. Then if hptq and ΛωptqFhptq are uniformly
bounded in C0 for t P I, hptq is uniformly bounded in C1 for t P I.
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Proof. This proof is a more detailed version of Donaldson’s in [9]. We start by clarifying
a technicality.

Remark. There is no natural C1-structure on the space of Hermitian metrics, so we
pick finitely many holomorphic trivialisations (local finiteness would suffice) E|Ui of E
with the Ui covering X. In each of the trivialisations hptq is a family of Hermitian
matrices Hptq smoothly varying in Ui and we can take the gradient ∇Hi with respect
to the metrics gptq on X. We then set |∇hptq|gptqpxq :“ supt|∇Hiptq|gptqpxq |Ui Q xu. A
different choice of holomorphic trivialisations gives other norms, but the same topology.

The C0-topology for the Hermitian matrices Hptq locally representing hptq used in the
following proof is that induced by the Euclidian inner product on the space of square
matrices over C. The arguments in the main text show that Hptq has uniformly bounded
distance from a reference point in the symmetric space metric on Hermitian matrices. We
check that symmetric boundedness implies Euclidean boundedness. Using the triangle
inequality, we can assume that the reference point is the identity matrix 1. Denote by
de the Euclidean and by ds the symmetric distance on the space of Hermitian matrices.
If λi are the eigenvalues of H, then one finds dsp1, Hq

2 “ trplogHq2 “
ř

iplog λiq
2

and dep1, Hq
2 “ trpH ´ 1q2 “

ř

ipλi ´ 1q2. The claim then follows from comparing
x ÞÑ plog xq2 to x ÞÑ px´ 1q2. It is also true that convergence with respect to ds implies
convergence with respect to de.

Suppose the claim of the proposition is false. Then one can find an increasing sequence
ptiq in I and a sequence pxiq of points in X such that for

mi :“ sup
xPX
tďti

|∇hptq|gptqpxq “ |∇hptiq|gptiqpxiq

one has mi Ñ 8. In addition, the compactness of X allows us to assume that pxiq
converges to an x P X. Now define a sequence of metrics on X by

gi :“ m2
i gptiq .

With the rescaling, we have

sup
xPX
tďti

|∇hptq|gipxq “ |∇hptiq|gipxiq “ 1

Set g0 to be the limit metric of the family gptq. We would like to work with open sets
in Cn. In order to do so, fix a ρ ą 0 sufficiently small such that

1. on the geodesic ball Bρpx, g0q the vector bundle E is holomorphically trivial and

2. there is a holomorphic chart µ : Bρpx, g0q Ñ V Ă Cn such that µpxq “ 0 and
dµx : pTxX, g0xq Ñ pCn, gstdq is an isometry.

Set µi :“ µ´ µpxiq and let Si :“ mi id be a rescaling of Cn. Since the µpxiq converge to
0, there exists a neighbourhood D of 0 P Cn that is contained in the images of all µi for
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sufficiently large i. By changing the chart µ we can assume that D is the Euclidean ball
tz P Cn| |z|std ă 1u. Now define φi :“ pSi˝µiq

´1|D (φi can also be defined onmiD, but we
assume mi ě 1 and restrict to D). A computation yields pφ˚i giqz “ pµ

´1˚gptiqqz{mi`µpxiq
for z P D and it is convenient to consider φ˚i gi as a composition of bi : z ÞÑ m´1

i z`µpxiq
with µ´1˚g : w ÞÑ pµ´1˚gptiqqw. Making i large, the maps bi send D to arbitrarily small
neighbourhoods of 0 P Cn in which gstd is increasingly well approximated by µ´1˚gptiq
in C0. We see that φ˚i gi ´ gstd converges to 0 in C0 uniformly on D. Taking spatial
derivatives of µ´1˚gptiq ˝ bi gives

Bαpµ´1˚gptiq ˝ biq “ m
´|α|
i pBαµ´1˚gptiqq ˝ bi ,

where α is a multiindex. The derivative Bαµ´1˚gptiq is bounded on a neighbourhood of
0 P Cn, so if α ‰ 0 then Bαφ˚i gi Ñ 0 uniformly on D. This means that φ˚i gi Ñ gstd in
C8 on D.

Next, fix a holomorphic trivialisation

Ψ: E|Bρpx,g0q Ñ Cr ˆBρpx, g0q

of E over Bρpx, g0q and let Ψy : Ey Ñ Cr be the associated isomorphisms of vector spaces
for y P Bρpx, g0q. Now define

Φi :“ Ψ´1 ˝ pidˆφiq : Cr ˆD Ñ E|φipDq .

For z P D we compute

pΦ˚i hptiqqz “ pΨ
´1˚hptiqqφipzq “ ppidˆµ ˝Ψq´1˚hptiqqz{mi`µpxiq

and express this as a composition of the maps bi and pidˆµ ˝Ψq´1˚hptiq : w ÞÑ ppidˆµ ˝
Ψq´1˚hptiqqw. Since hptiq is by assumption bounded in C0, we can argue that the C0-
distances between Φ˚i hptiq and the constant Hermitian metrics ppidˆµ ˝ Ψq´1˚hptiqq0
become arbitrarily small uniformly on D. As tacitly done before, given ε ą 0 find a
neighbourhood V of 0 P Cn on which |ppidˆµ˝Ψq´1˚hptiqqw´ppidˆµ˝Ψq´1˚hptiqq0| ă ε
independently of i (using any norm on the vector space of Hermitian matrices). Then
find N big enough such that for i ą N the maps bi map D into V .

Continuing preparations, fix a background Hermitian structure h0 on E, write η “
h´1

0 h and recall

∆B,h0,ωη “ ηΛωiFh ` iΛωpBηqη
´1pBh0ηq ´ ηΛωiFh0 .

Setting Hi :“ Φ˚i hptiq and choosing h0 to correspond to the standard Hermitian metric
on Cr in the trivialisation Ψ we get

∆B,H0,φ
˚
i ωi

Hi “ HiΛφ˚i ωi
iFHi ` iΛφ˚i ωi

rpBHiqH
´1
i pBHiqs

over D Ă Cn. Using that Hi and φ˚i ωi are uniformly bounded in i and that by construc-
tion |∇Hi|φ˚i gi

“ 1, we can infer

|∆B,H0,φ
˚
i gi
Hi| ď C ,
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since in the rescaled metrics, |∇Hi|φ˚i ωi
“ 1. Because H0 was chosen to be standard,

∆B,H0,φ
˚
i ωi

on Cr-valued functions on D is just 1{2 times the componentwise d-Laplacian
∆φ˚i gi

defined by the metric φ˚i gi. The lowest eigenvalue of the φ˚i gi is bounded from
below uniformly in i and x P D, so the same holds true for the constants of ellipticity of
the associated Laplacians. In addition, the coefficients of these Laplacians are bounded
uniformly in C8, so in particular the highest order coefficients are bounded in C1 and
the lower order ones in L8. One can then use the interior elliptic estimates for the
operators ∆φ˚i gi

with a constant independent of i (see e.g. [19] p. 235, Theorem 9.11.
Note that a common modulus of continuity of the highest order coefficients can be found
since their uniform boundedness in C1 guarantees equicontinuity):

}u}Lp2pD1,gstdq ď Cp}∆φ˚i giptq
u}LppD,gstdq ` }u}LppD,gstdqq ,

where D1 Ă D is a slightly smaller disc. Applying this to u “ Hi and the fact that
the Hi are uniformly bounded in C0 we get that they are in fact uniformly bounded in
Lp2pD

1, gstdq.
With these preparatory considerations we derive a contradiction as follows. For suf-

ficiently high p there is a compact embedding Lp2 ãÑ C1, so a subsequence of the Hi

converges in C1(on a slightly smaller set) and in particular in C0. By the previous
considerations, the C0-limit is necessarily constant, but the C1-limit cannot be constant
since |∇Hi|φ˚i gi

“ 1.
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D.1. Direct Computation of the Curvature of Op1q Ñ PE

Consider a complex manifold X with a holomorphic vector bundle π : E Ñ X of rank
k ` 1 equipped with a Hermitian metric h. Let U Ă X be an open set over which E is
holomorphically trivialised as E|U – UˆCk`1. The covariant derivative associated to the
Chern connection on pE, hq locally takes the form ∇|U “ d`A with A “ h´1Bh, where
by abuse of notation we also denote by h the family of Hermitian matrices defined by
the Hermitian metric in the local trivialisation. One can describe the Chern connection
in terms of a decomposition of TE into horizontal and vertical parts as follows.

A tangent vector ζ “ pξ, vq P TEpx,zq – TxU ˆ TzCk`1 – TxU ˆ Ck`1 is vertical
precisely if it lies in the kernel of dπ. This is the case if ξ “ 0. A tangent vector
pξ, vq at px, zq is horizontal if it can be realised geometrically as the derivative of a path
pxptq, zptqq through x, z at t “ 0, such that if we interpret zptq as a section of E|U over
xptq, then ∇x1ptqzptq|t“0 “ z1p0q ` Ax1ptqzptq|t“0 “ v ` Aξz “ 0. This is equivalent to
v “ ´Aξz. We recapitulate: pξ, vq P TEpx,zq is

• vertical if and only if ξ “ 0 and

• horizontal if and only if v “ ´h´1pBξhqz.

Next, denote by 0 the zero section of E. One has the commutative diagram

Ez0

p

��

π // X

PE
rπ

==

Consider the relative hyperplane bundle Op1q Ñ PE which inherits a Hermitian met-
ric rh´1. We are interested in its curvature FOp1q,rh´1 . Instead, we compute FOp´1q,rh

which differs from FOp1q,rh´1 only by a sign. For computational convenience we pull

back pOp´1q,rhq via p : Ez0 Ñ PE. In the trivialisation E|U – U ˆ Ck`1, the fibre of
p˚pOp´1q,rhq over px, zq, z ‰ 0 is the line in Ck`1 containing z with Hermitian metric
given by the restriction of h to that line. We trivialise p˚Op´1q over Ez0|U by the
section px, zq ÞÑ z, i.e.

p˚Op´1q|U – U ˆ Ck`1z0ˆ C ,

where the point in the line defined by z is given by λz. In this holomorphic trivialisation
the Hermitian metric rh is a family of Hermitian 1ˆ1-matrices indexed by U ˆ Ck`1z0
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given by the function hpz, zq (where h depends on the U -variable x). The curvature of
p˚pOp´1q,rhq is given by

F
p˚pOp´1q,rhq

“ BB log hpz, zq .

We write this as dα for α “ B log hpz, zq and use the invariant formula for the exterior
derivative to express the curvature as

pdαqpζ1, ζ2q “ dpαpζ2qqpζ1q ´ dpαpζ1qqpζ2q ´ αprζ1, ζ2sq ,

where ζ1, ζ2 P TEpx,zq are locally extended to smooth vector fields. We want to consider
the cases where both arguments lie in V or both in H or one in V and one in H. If
ζ “ p0, vq is vertical, we extend ζ to a local vector field by demanding v be constant
in px, zq. If ζ “ pξ,´h´1pBξhqzq is horizontal, we extend ζ to a local vector field by
demanding ξ be constant in px, zq. Note that the extension remains horizontal and that
quantities involving h depend on x. It is helpful to observe that H Ă kerα. To see this,
simply compute

αpξ, vq “
Bξhpz, zq ` hpv, zq

hpz, zq

where we have used Bvhpz, zq “ hpv, zq (this is since hpz, zq “ hijz
iz̄jq. Clearly this

vanishes if v “ ´h´1pBξhqz. We now individually examine the three aforementioned
cases.

• First case: ζ1 “ p0, vq P V and ζ2 “ pξ,´h
´1pBξhqzq P H.

We have already seen that dpαpζ2qqpζ1q “ 0. In addition, it is αpζ1q “
hpv,zq
hpz,zq , so

dpαpζ1qqpζ2q “
Bζ2hpv, zq

hpz, zq
´

hpv, zq

hpz, zq2
Bζ2hpz, zq `

Bζ2hpv, zq

hpz, zq
´

hpv, zq

hpz, zq2
Bζ2hpz, zq

“
Bξhpv, zq

hpz, zq
`
Bζ2hpz, vq

hpz, zq
´

hpv, zq

hpz, zq2
Bζ2hpz, zq

“
Bξhpv, zq

hpz, zq
,

where we used that Bζ2hpz, vq “ Bζ2hpz, zq “ 0 (for the same reason that αpζ2q “ 0).
Finally, rζ1, ζ2s “ p0,´h

´1pBξhqvq, so

αprζ1, ζ2sq “ ´
Bξhpv, zq

hpz, zq
,

from which we see that pdαqpζ1, ζ2q “ 0, i.e. the horizontal-vertical component of
F
p˚pOp´1q,rhq

vanishes.

Remark. Since the map p : Ez0 Ñ PE is a submersion, we obtain that iFOp1q,rh´1

has no horizontal-vertical component for the connection on PpEq induced by the
Chern connection on E.
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• Second case: ζ1 “ pξ1,´h
´1pBξ1hqzq P H and ζ2 “ pξ2,´h

´1pBξ2hqzq P H.

All terms, but the commutator term vanish. A direct computation yields

rζ1, ζ2s “ p0, dξ1p´h
´1Bξ2hqz ` d´h´1pBξ1hqz

p´h´1pBξ2hqzqq

´p1 Ø 2q

“ p0,´Bξ1ph
´1pBξ2hqzq ´ Bξ1ph

´1pBξ2hqzq ` h
´1pBξ2hqh

´1pBξ1hqzq

´p1 Ø 2q

“ p0,´rBξ1ph
´1pBξ2hqqszq ` rh

´1pBξ1hqh
´1pBξ2hq ` h

´1pBξ2hqh
´1pBξ1hqszq

´p1 Ø 2q

“ p0,´rBξ1ph
´1pBξ2hqq ´ Bξ2ph

´1pBξ1hqqszq

“ p0,´FpE,hqpξ1, ξ2qzq

and hence

F
p˚pOp´1q,rhq

pζ1, ζ2q “ ´αprζ1, ζ2sq “
hpFE,hpξ1, ξ2qz, zq

hpz, zq
.

Recalling that the standard fibrewise moment map on PE was given by

Mph,Aqprzsq “
i

2π

hpAz, zq

hpz, zq

one obtains

i{p2πq ¨ FOp1q,rh´1pξ
#
1 , ξ

#
2 q “ ´Mph, FE,hpξ1, ξ2qq ,

where ξ# denotes the horizontal lift of ξ P TX to TPE (a tangent vector of the
base at x P X gives a horizontal vector field on the fibre of PEx).

• Third case: ζ1 “ p0, v1q P V and ζ2 “ p0, v2q P V .

The commutator term vanishes. For the rest we obtain

pdαqpζ1, ζ2q “ dpαpζ2qqpζ1q ´ dpαpζ1qqpζ2q

“ dv1
hpv2, zq

hpz, zq
´ p1 Ø 2q

“
hpv2, v1q

hpz, zq
´
hpv2, zqhpv1, zq

hpz, zq2
´
hpv2, zqhpz, v1q

hpz, zq2
´ p1 Ø 2q

“
hpv2, v1q ´ hpv1, v2q

hpz, zq
`
hpv1, zqhpz, v2q ´ hpv2, zqhpz, v1q

hpz, zq2

“ 2i
´ Imhpv1, v2q

hpz, zq
` 2i

Imhpv1, zqhpv2, zq

hpz, zq2

“ 2i
Ωhpv1, v2q

|z|2h
´ 2i

Ωhpv1, zqghpv2, zq ` Ωhpv2, zqghpv1, zq

|z|4h
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and hence

p˚FOp1q,rh´1pζ1, ζ2q “ ´2i
Ωhpv1, v2q

|z|2h
` 2i

Ωhpv1, zqghpv2, zq ` Ωhpv2, zqghpv1, zq

|z|4h
.

Compare this to the characterising relation p̂˚σh “ 1{π ¨ ι˚Ωh for the collection of
Fubini–Study metrics on the fibres of PE, where p̂ is the projection from the unit
sphere bundle of pE, hq to PE and ι is the inclusion of the unit sphere bundle of
pE, hq into E. By restricting the right hand side to points on the h-unit sphere
(i.e. |z|2h “ 1) and tangent vectors v1, v2 tangent to the unit sphere (this implies
Ωhpvi, zq “ 0), one obtains

p̂˚FOp1q,rh´1pζ1, ζ2q “ ´2iΩhpv1, v2q “ ´2πi p̂˚σhpζ1, ζ2q

which then implies that i{p2πq ¨ FOp1q,rh´1 evaluated on two vertical vectors (with

respect to the connection on PE induced by the Chern connection on pE, hq) is
the Fubini–Study metric on that fibre.

D.2. Eigenvalues of the Laplacian on Sn and CPk

We need the eigenvalues of the Fubini–Study Laplacian on CPk for the adiabatic expres-
sion of the scalar curvature of ωr on PE. As a preparation we perform the analysis for
the round metric Laplacian on Sn.

D.2.1. Eigenvalues and Eigenfunctions of the Laplacian of the Round
Metric on Sn

Proposition D.2.1. The eigenfunctions of ∆Sn on Sn equipped with the radius 1 round
metric are in one-to-one correspondence with harmonic homogeneous polynomials of
degree l on Rn`1. If P is a harmonic homogeneous degree l polynomial on Rn`1, then
∆SnP |Sn “ lpl`n´1qP |Sn. Conversely, if ∆Snf “ λf , then f extends homogeneously to
a harmonic polynomial on Rn`1. In particular, one has specp∆Snq “ tlpl`n´1q|l P N0u.

Proof. We view Sn Ă Rn`1 as the unit sphere with respect to the standard inner product.
In polar coordinates pr,Θq the Laplacian on Rn`1 is given by

∆Rn`1 “ ´B
2
r ´

n

r
Br `

1

r2
∆Sn , (D.1)

so if P is a harmonic degree l polynomial on Rn`1, then

0 “ pr2∆Rn`1P q|Sn “ p´lpl ´ 1q ´ nlqP |Sn `∆SnP ,

i.e. ∆SnP |Sn “ lpl ` n´ 1qP |Sn .
Conversely, for λ P R, suppose that f is a solution to ∆Snf “ λf . By ellipticity of

∆Sn ´ λ idSn the solution f is automatically smooth, so there is a unique and smooth
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solution u to the Dirichlet problem on the unit ball ∆Rnu “ 0, u|Sn “ f . We explicitly
construct u using the product ansatz upr,Θq “ RprqfpΘq. First remark that by self-
adjointness of ∆Sn the eigenvalue λ is nonnegative. If λ “ 0, then f “ 0. From now
on assume λ ą 0. Equation (D.1) and the eigenfunction equation imply that the radial
factor of a product solution has to satisfy the Euler type equation

rr2Br ` nrBr ´ λsRprq “ 0

provided f is not 0 everywhere, which cannot happen since λ ą 0. Substituting q “ ln r
we find that

rB2
q ` pn´ 1qBq ´ λsRpqq “ 0

for which the general solution is

Rpqq “ a` ¨ e
µ`q ` a´ ¨ e

µ´q , µ˘ “ ˘
a

λ` ppn´ 1q{2q2 ´ pn´ 1q{2

or equivalently

Rprq “ a`r
µ` ` a´r

µ´ .

Since µ´ is always negative, the continuity of u at the origin forces a´ “ 0. Furthermore
a` “ 1, since u has to agree with f if r “ 1, so

upr,Θq “ r
?
λ`ppn´1q{2q2´pn´1q{2fpΘq . (D.2)

One verifies that u is continuous on Rn with up0q “ 0 and smooth away from 0 where
it satisfies ∆Rnu “ 0. Singularity lifting for harmonic functions then implies that u is
harmonic on all of Rn and is indeed the solution to the Dirichlet problem. A generalised
version of Liouville’s theorem states that polynomially bounded harmonic functions on
Rn`1 are themselves polynomials (cf. e.g. [12], p. 342f for a proof). Equation (D.2)
also shows that u is polynomially bounded, so u has to be a homogeneous polynomial
of degree l :“ µ`. In particular l has to be an integer, i.e. λ “ lpn` l ´ 1q.

D.2.2. Eigenvalues and Eigenfunctions of the Fubini–Study Laplacian on
CPk

Proposition D.2.2. The eigenfunctions of ∆CPk on CPk equipped with the Fubini–Study
metric are in one-to-one correspondence with harmonic homogeneous S1-invariant real
polynomials on Ck`1 “ R2pk`1q. The spectrum of ∆CPk is specp∆CPnq “ t4lpk ` lq|l P
N0u.

Proof. We view CPk as the quotient of S2k`1 with the radius 1 round metric by the
isometric S1-action θ ¨ z “ eiθz. The Fubini–Study metric on CPk is the quotient metric
induced by the round metric on S2k`1 (Reminder: Define gCPkpX,Y qrzs by choosing a

z P rzs X S2k`1 and lifting X,Y to rX, rY P pTzS
1qK Ă TzS

2k`1. The lifts are unique.
Then set gCPkpX,Y qrzs :“ gS2k`1p rX, rY qz. Since S1 acts isometrically, this is independent

of the choice of z P rzsXS2k`1). Functions on CPk are in one-to-one correspondence with
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S1-invariant functions on S2k`1 (functions pulled back from CPk via π : S2k`1 Ñ CPk).
One can check that for f P C8pCPkq one has π˚∆CPkf “ ∆S2k`1π˚f (e.g. by using the
local expression ∆f “ ´|g|´1{2Bip|g|

1{2gijBjfq and choosing local coordinates on S2k`1

such that the S1-direction corresponds to B1). This shows that ∆CPk -eigenfunctions
on CPk are in one-to-one correspondence with S1-invariant eigenfunctions of ∆S2k`1 on
S2k`1.

We can write any homogeneous polynomial on R2pk`1q as P “
ř

|α|`|β|“lAα,βz
αz̄β,

where the sum is over multiindices α “ pα0, ..., αnq and zα “ zα0
0 ¨ ¨ ¨ zαnn (similarly for z̄

and β). In this form it is manifest that the S1-invariant homogeneous polynomials are
those for which one only has summands with |α| “ |β| “ l{2. In particular l needs to be
even and one obtains that specp∆CPkq Ă t2jp2j ` p2k ` 1q ´ 1q|j P N0u “ t4jpk ` jq|j P
N0u. To show that this is in fact already the entire spectrum, we remark that for every
k P N, l P N0 one can find S1-invariant homogeneous harmonic real polynomials on
Ck`1 “ R2pk`1q. For instance, consider

P “
k
ÿ

i“0

aiz
pk´i,i,0,...,0qz̄pk´i,i,0,...,0q , ai`1 “ ´

ˆ

k ´ i

i` 1

˙2

ai for i “ 1, .., k´1 , a0 “ 1 .

Remark. The computations here use the full Riemannian d-Laplacian of the Fubini–
Study metric with volume πk{k!. In the main text we mainly use the B-Laplacian which
is half of the d-Laplacian and the integral Fubini–Study metric in c1pOp1qq with volume
1{k!. The spectrum of the B-Laplacian of the integral Fubini–Study metric is

spec∆CPk
“ t2πjpk ` jq | j P N0u .

We now explicitly describe the eigenspace of the first nonzero eigenvalue in detail.

Proposition D.2.3. The eigenspace of the first nonzero eigenvalue of ∆CPk are precisely
zero integral Hamiltonians for the SUpk ` 1q-action on CPk.

Proof. We have seen that the eigenspace of the first nonzero eigenvalue can naturally be
identified with S1-invariant degree 2 homogeneous harmonic real polynomials on Ck`1

by pulling the eigenfunction up to S2k`1 and extending harmonically. These polynomials
are of the form

P “
i

2

k
ÿ

p,q“0

Aqpzpz̄q ,

where harmonicity forces trA “
řk
p“0App “ 0 and real-valuedness Apq “ ´Aqp. This

means that A P supk ` 1q. Next we see that P as a function on Ck`1 is a Hamiltonian
for the action of A on Ck`1. This is a simple computation (rescaling the metric rescales
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the moment map by the same factor):

xµCk`1 , Aypzq “
1

2
ΩpAz, zq

“
i

4

k
ÿ

q“0

dzq ^ dz̄qpAz, zq

“
i

4

k
ÿ

q,p“0

Aqpzpz̄q ´Aqpz̄pzq

“
i

2

k
ÿ

p,q“0

Aqpzpz̄q

“ P pzq .

By construction, P restricted to S2k`1 descends to the Hamiltonian xµCPk , Ay on CPk.
Since A is traceless, that Hamiltonian integrates to 0. This shows that each eigen-
function of ∆CPk to the first nonzero eigenvalue is a Hamiltonian for the infinitesimal
action of A P supk ` 1q. Conversely, such a Hamiltonian is of the form xµCPk , Ayprzsq “
i
2

řk
p,q“0Aqpzpz̄q{|z|

2 which is induced by the S1-invariant homogeneous harmonic real

polynomial i
2

řk
p,q“0Aqpzpz̄q, so xµCPk , Ay is an eigenfunction for the first nonzero eigen-

value of ∆CPk .
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