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1. Introduction

A guiding question in differential geometry is the following: Given a family of geometric
objects, does there exist a best object in that family? It is often not obvious what
qualities should distinguish an object as “best” and the precise definition is tacitly part
of the question which, despite its vagueness, leads to numerous important notions and
problems. Indeed, many facets of differential geometry can be interpreted in terms of the
best object mantra. Examples include harmonic maps as best maps between Riemannian
manifolds, encompassing geodesics and minimal submanifolds, Einstein metrics as best
metrics on certain manifolds, extremal metrics as best metrics in a given Kéhler class,
including Kahler—Einstein metrics or Hermite—Einstein metrics as best Hermitian metrics
on a holomorphic vector bundle over a Kéhler manifold.

In many cases, including the above examples, the problem of finding best objects can
be phrased in terms of an elliptic, typically nonlinear partial differential equation. A
useful tool in the search for solutions is to consider a related parabolic problem leading
to the notion of geometric flows'. While not a priori easier than the original elliptic
problem, passing to the parabolic picture gives access to additional analytical techniques.
Furthermore, one might hope to relate the eventual nonexistence of solutions to the
elliptic equation to singularity formation along the parabolic flow.

A testimony to the utility of geometric flows is G. Perelman’s work on Ricci flow
entailing a proof of Thurston’s geometrisation conjecture via Hamilton’s programme
[28, 29, 24]. Following Perelman’s breakthrough in three-dimensional geometry, it has
been proposed by G. Tian — J. Song that Kéahler—Ricci flow implements a general Kéhler
version of the minimal model programme in algebraic geometry which aims to find the
best representative in the birational equivalence class of a given algebraic variety. It
is conjectured that on a general Kéhler manifold the flow continues through singular-
ities and converges to an analytical minimal model endowed with a possibly singular
Kéahler—Einstein structure [2]. Later, G. Tian — J. Streets proposed symplectic curva-
ture flow as a generalisation of Kéhler—Ricci flow to almost Kéhler and almost Hermitian
geometry with the hope of finding canonical structures in these cases [37]. Other promi-
nent examples are S. Donaldson’s existence proof of Hermite-Einstein metrics on stable
holomorphic bundles over algebraic surfaces using Hermitian Yang-Mills flow [9] or P.
Chrusciel’s use of Calabi flow in the construction of Robinson—Trautman solutions to
Einstein’s equations in general relativity [8].

The principal objects of study in this thesis are twisted Calabi flow and time-dependent
Hermitian Yang—Mills flow which generalise their namesake flows in the sense that they

'Here, the term geometric flow is used in the broader sense and denotes any (parabolic) evolution
equation for geometric quantities. It is not necessarily a gradient flow.
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involve additional external data. In the case of twisted Calabi flow, the Kahler—Ricci
form p is replaced by p + «, where the twist « is a time-dependent family of two-forms.
Time-dependent Hermitian Yang—Mills flow is obtained from Hermitian Yang—Mills flow
by allowing the Kahler metric on the base to depend on the time parameter. Both
arise as first order approximations to Calabi flow on two types of adiabatic fibrations
considered by J. Fine [13] and Y.-J. Hong [22, 21] respectively.

It is shown that on a compact Riemann surface of genus at least one and for smooth
initial data twisted Calabi flow exists for all positives times provided that the twist a(t)
is negative semidefinite and stays within a fixed cohomology class. Moreover, if the twist
converges to a limit ay as t — o0, then the solution converges to the aqy-twisted cscK
metric considered by J. Fine [13, 14] and J. Song — G. Tian [35].

Similar results are obtained for time-dependent Hermitian Yang—Mills flow. If X is a
compact Riemann surface with Kéhler class x and £ — X a holomorphic vector bundle,
then for any smooth family of Kéhler forms w(t) in x and any Hermitian metric hg on
E, Hermitian Yang-Mills flow with respect to w(t) starting at ho exists for all times.
If E — X is k-slope stable and w(t) converges to wy at an exponential rate, then the
solution converges exponentially to a wg-Hermite—Einstein metric.

In addition, the thesis presents several explicit solutions to symplectic curvature flow
which can be grouped into two types: left invariant solutions on nilmanifolds and static
non-Kéhler solutions on twistor fibrations over hyperbolic space. The latter are the first
compact examples of potential limit objects for symplectic curvature flow that do not
admit a Kahler structure.

Remark. By a slight abuse of language, both, complex manifolds admitting Kéhler
metrics and complex manifolds with a given Kahler structure are referred to as Kahler
manifolds. In addition, regarding the complex structure as fixed, the term “Kéahler met-
ric” can refer to a Kéahler form or the corresponding Riemannian metric, understanding
that one uniquely defines the other.



2. Twisted Calabi Flow

2.1. Introduction

One of the key features in the study of compact Kéahler manifolds is that the Kéhler
metrics in a given Kéhler class k can be parametrised by functions. If (X, J, wp) is Kéhler
with wg € &, then owing to the 00-lemma any other Kihler form in s can be written
as wo + 100y with the Kdhler potential p € C*(X,R) being unique up to a constant.
Conversely, the two-form w,, 1= wy + i0d¢ for ¢ € H := {p € CP(X,R) |wy + iddp > 0}
defines a Kéahler metric in x, so the set of Kihler metrics in x can be identified with
H/R. It is, however, often more convenient to work with Kéhler potentials than with
the metrics themselves. As an open subset of C*(X,R), H carries the structure of a
Fréchet manifold, on which

(o= [ fepS8, hifreC™(XR) =T,

defines a Riemannian metric. This metric, independently due to Mabuchi, Semmes and
Donaldson, formally turns H into nonpositively curved symmetric space. In addition,
proving the existence of weak geodesics, Chen [6] showed that #H is a genuine metric
space. These properties play an important role in the search for canonical metrics in
Kahler geometry.

The question if a given Kéahler class contains a canonical representative has been
attributed to Calabi who proposed to look for extremal metrics, i.e. critical points of
the Calabi energy

wTL
Ca: H—-R, gpr—»C’a(gp)zf (S(wg,)—ﬁ)Qﬁ. (2.1)
X .
Here S(wy) denotes the scalar curvature of the metric w, and S the average scalar
curvature which is a cohomological constant and independent of ¢ € H. The variation
of Ca at ¢ € H in direction ¢ € T,H = C°(X,R) is given by
e

(dCa) =2 | (DD S(uwp)) 2% (22)

where the Lichnerowicz operator D, = 0V acting on a function f is defined by applying
the ¢ operator on the holomorphic tangent bundle (TX,.J) to Vf. The L?(X,w,)-
adjoint of D, is denoted by Dg and the subscript indicates that all operations are
performed with respect to the metric g, defined by w,. Integrating by parts, one sees that
ker D7D, = ker Dy, so w,, is extremal precisely if the g -gradient of the scalar curvature
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defines a holomorphic vector field. If X does not admit nontrivial holomorphic vector
fields — or more generally the Futaki invariant of (X, k) vanishes — this is equivalent
to the scalar curvature being constant, i.e. S(w,) = S.

Encompassing constant scalar curvature Kahler and Kahler—Einstein metrics, extremal
Kahler metrics have been the object of extensive study (cf. e.g. [30] for an overview). A
method Calabi himself proposed to find extremal metrics is to deform an initial metric
via a fourth order parabolic evolution equation known as Calabi flow. The Calabi flow
equation reads

drp = —(S(wy) — S) or w = —iddS(w) (2.3)

on the level of Kéahler potentials and Kéhler forms respectively. Calabi flow bears re-
semblance to (normalised) Ricci flow. Both compare variations in the metric defining
quantity — the Kahler potential in the case of Calabi flow and the metric itself in the
case of Ricci flow — to the only natural curvature tensor living in the same space, the
scalar and the Ricci curvature. This analogy, however, is only formal. Analytically, as a
fourth order equation, Calabi flow requires a different set of tools than the second order
Ricci flow. One does, for instance, not have a maximum principle and has to rely on
monotone quantities such as the Calabi energy (which is manifestly nonincreasing under
Calabi flow) to obtain a priori bounds. Calabi flow on compact manifolds has been con-
jectured to smoothly exist for all times and to converge to a constant scalar curvature
Kéhler (cscK) metric at infinity, provided such metrics exist in the given Kéhler class
(in [36] the author states that the long-time existence conjecture is due to Calabi and
attributes the convergence conjecture to Donaldson). J. Streets showed in [36] that the
long-time existence conjecture is true albeit in a very weak sense. A central motivation
for long-time behaviour conjectures is the existence of functional Ma: H — R, called
the Mabuchi energy (or K-energy), whose defining property is
“e.

(@) = | (Stwy) - v % (24)

The right hand side of (2.4) defines a closed one-form which by contractibility of H
has to be exact. If ¢ evolves according to (2.3), then 0,Ma(p) = —Ca(p), so Mabuchi
energy is decreasing and convex along Calabi flow. Moreover, Chen—Tian [7] showed
that Mabuchi energy is bounded from below if the Kéhler class admits cscK metrics.
When H is equipped with the Donaldson—-Semmes—Mabuchi metric, Calabi flow becomes
precisely the gradient flow of Mabuchi energy and in light of H being a nonpositively
curved metric space one might hope the flow to be well behaved [27].

In the case of compact Riemann surfaces, Calabi flow is fairly well understood. Start-
ing at an arbitrary initial K&hler metric, Calabi flow exists for all times and converges at
an exponential rate to a cscK metric of the same volume (that metric is unique except
on the Riemann sphere, where the Mobius group PGI(2, C) acts biholomorphically and
generates a nontrivial family of Fubini-Study metrics, all of which are cscK). This was
first proved by P. Chrusciel [8]. Later, X.X. Chen [5] gave a new proof using a slightly
different approach which has since been refined by M. Struwe [38]. All three authors
exploit the fact that on a Riemann surface any two Hermitian (and thus Kéhler) metrics



2.1. Introduction 13

are conformally equivalent to parametrise Kahler metrics by e“gg for a reference Kahler
metric go of the same volume and rewrite the Calabi flow equation in terms of the log-
arithm u of the conformal factor. For analytical reasons, the authors choose gg to be a
constant scalar curvature Kahler metric, thereby assuming a priori knowledge about the
existence of a suitable limit object provided by the unformisation theorem. S.-C. Chang
[4] later removed this assumption providing a new proof of the uniformisation theorem
using Calabi flow. Another specificity to Riemann surfaces exploited by the authors is
the existence of energy functionals decreasing along Calabi flow, for which it is unclear
whether they generalise to higher dimensions. Chruéciel used a physically motivated
Bondi mass loss formula in addition to the fact that Calabi energy is decreasing in order
to derive a sufficiently strong a priori bound on u to prove long-time existence. In Chen’s
and Struwe’s proof, the analytic role of Bondi mass is fulfilled by the Liouville energy,
another functional on H decreasing along Calabi flow. In additional to being mathe-
matically more natural, the Liouville energy has been conjectured by Chen to admit a
higher-dimensional generalisation which would be useful in the general study of Calabi
flow.

The objective in this chapter is to study twisted Calabi flow on compact Riemann
surfaces of positive genus. Instead of cscK metrics, twisted Calabi flow is designed to
find so called twisted cscK metrics appearing in the work of Fine [13, 14] and of Song—
Tian [35] which can roughly be understood as canonical metrics on the base of certain
fibrations retaining information on the varying moduli of the fibres. More abstractly,
given a closed real two-form a on a Ké&hler manifold (X, J), one can look within a given
Kahler class k for solutions to the equation

Au(p(w) +a) = S, (2.5)

where $ is a cohomological constant, p(w) the Kédhler—Ricci form of the metric w € &
and A, denotes the (pointwise) adjoint of wedging with w. Note that Sis cohomological
and only depends on the first Chern class of (X, .J), the cohomology class of « and the
volume of the Kéahler class [w]. Also observe that Ay,p(w) = S(w) which justifies calling
(2.5) the twisted cscK equation. On a Riemann surface of positive genus this equation
can always be solved uniquely if SX a < 0 and one can ask whether the solution can be
found via the twisted Calabi flow

Orp = —(Aw, (p(wy) + ) = S). (2.6)

For the application in mind (cf. Chapter 4), it is important to allow « to vary in the time
parameter t. We show that on a compact Riemann surface of positive genus for negative
semidefinite twists a(t) in a given cohomology class, the equation (2.6) admits a unique
smooth long-time solution. Furthermore, if «(t) converges to a limiting twist ay in a
suitably strong sense, then the solution to twisted Calabi flow converges exponentially
fast to the a-twisted cscK metric.
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2.2. Notation

2.2.1. Parametrisation of Metrics

Throughout this chapter (X, J, wp) denotes a compact Riemann surface of positive genus
with fixed complex structure J and a smooth background Kéhler metric wy. The back-
ground metric is used to define the space of Kéhler potentials H and the metric corre-
sponding to a potential ¢ € H is denoted by w, = wp + i00¢. In a local holomorphic
coordinate z = x + iy a Riemannian metric g is locally determined by gz, := ¢(0x, 0z),
Gzy = 9(0z,0y) and gyy = g(0y, 0y). If g is J-invariant, then g,, = g,y and g,y = 0, so
any other J-invariant metric ¢’ can be expressed as ¢’ = e%g for u = logg..,/gzz. The
locally defined u is independent of the chosen holomorphic coordinate and defines a real
valued function on X. Since H?(X,R) = R, a Kihler class is uniquely determined by its
volume. These considerations imply that Kéahler metrics in [wp] can also be parametrised
as metrics of the same volume conformally equivalent to wg via

{u e C°(X,R) ’ L e¥ wy = L wo = vol(X, [wo])} .

2.2.2. Geometric Operators and Curvature

On a general Kahler manifold (X,w), wedging with the Kéhler form w defines a map
OPA(X) — QPFLatL (X)) o+ aArw. The (pointwise) adjoint of this map A, : QP9(X) —
OP~1a=1(X) is called contraction with w. On a two-form « it can be computed as the
factor of proportionality between a A w”~!/(n — 1)! and the volume form w™/n!. In the
case of a Riemann surface (X,w), any two-form is of type (1,1) and hence a pointwise
multiple of w, i.e. given a € Q?(X,R), A a is the unique smooth function such that
a = Aya-w. Tt follows from this description that if w and w’ are related by ' = e“w, then
A, = e ™A,. For metrics parametrised by Kéhler potentials ¢ € H, the contraction
Ay, is abbreviated by A.

The 0-Laplacian associated to a Kéhler metric w on functions is defined by A, f =
A,i0df. Tt follows from the Kahler identities that A, is one half of the full Riemannian
Laplacian. As with the contraction one has A, = e A, if W’ = e%w and we abbreviate
Ay, by A, Conformal factor and Kahler potential are related by (1 4+ Agp) = e* if
Wy = wo + 100¢p = ewy.

On a Kéhler manifold (X,w) of complex dimension n, one can conveniently compute
the Kéhler—Ricci form p(w) as the ¢ times the curvature of the Chern connection on the
anti-canonical bundle K)_(l = (T*°X)" endowed with the Hermitian metric h,, := w"
which is locally given by F},, = oh_'0h,, = 00logh,,. The scalar curvature is obtained
from the Kéahler—Ricci form by contracting with w, i.e. S(w) = Ay,p(w). In the case of
a Riemann surface, the Kéhler—Ricci forms of the background metric wy and e“wy are
related by

p(etwo) = iFpup,,, = 100log(e*hy,) = i00u + p(wo)

so for the scalar curvature one has

S(e"wo) = Aeuwop(e'wo) = €™ Ag(i00u + p(wo)) = e~ (Agu + S(wo)) - (2.7)
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Scalar curvature can also be seen as a map
Sc: H — CP(X,R), Sc(p) = S(wy) = Apiddlogw,,

where in the last expression w, is interpreted as a Hermitian product on the holomorphic
line bundle T5°X in a local trivialisation. From here (cf. also Appendix A.3) one obtains

(dSc)y - ¥ = AL — Sc(p) Agt)

for the derivative of the scalar curvature map, which using the relation D3Dyt) = Aiw —
Sc(p)Apth + 3 - go(dSc(p), dib) can be reexpressed as

(45¢)y - 1) = DED — 5g,(dSc(p), di). (28)

2.2.3. Analysis

For various analytic arguments, it is necessary to allow metrics that are not a priori
smooth and to lower the regularity requirements on w. For our purposes the spaces
of interest are C*(X,g) and the Sobolev spaces L¥(X,g) which can be defined as the
completion of C*(X) with respect to the norms

k
lelorx,g) = ZSUPWJ<P|7
=0

(éjfx \VjsOIPcu)p :

where all gradients and pointwise norms are taken with respect to the inner products
induced by the metric g on the respective tensors. To lighten the notation, explicit
mention of the metric is omitted if norms are taken with respect to the background metric
go- The Sobolev embedding theorems provide continuous linear embeddings Lﬁ — L? if

H‘PHL%(X,g)

1 1 k-1
p g
and LY — C! if
1 k-1
7<7
P 2

for integers k,l > 0 and reals p, ¢ = 1. Moreover, the embeddings are compact whenever
the inequalities are strict (the second always is).

Remark. There exists a stronger version of the second embedding into Hélder spaces.
However, we only require the stated version.

As a boundary case of the Sobolev embeddings, L? does not quite embed into C?, but
a function in L? cannot have its LP-norms grow too quickly in p. A precise statement is
provided by the Moser—Trudinger inequality.
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Proposition 2.2.1. If f € L?, then el € L'. Moreover, there exist positive constants
C, 1 such that
113
J efwoéCe# i
X

The Gagliardo—Nirenberg interpolation inequalities, which in their general version per-
mit finer interpolation between Sobolev spaces than the embedding theorems are an
essential tool for the higher regularity analysis. Of interest here is only the following
case.

Proposition 2.2.2. Let 2 < p < w0 and j,m € N with j < m. There exists a constant
C > 0 such that for all f € L?,(X,g) with §+ fwo = 0 the following inequality holds:

12
Qo /P

IV flee < CIV™ 32012, -

Corollary 2.2.3. Let 2 < p < o0 and k,l € N such that 2 < k <1+ 2. There exists a
constant C > 0 such that for all f € le+2 with SX fwo = 0 the following holds:

k—1-2/p

IV flir < € (IV*2 18001 + 1f 1)+ o= ——

Morally, Corollary 2.2.3 is obtained from Proposition 2.2.2 by replacing f by V2f
(which is no longer a function). A proof can be found in [8]. The Sobolev, Moser—
Trudinger and Gagliardo—Nirenberg inequalities are discussed in a more general form in

[1].

2.2.4. Twisted Calabi Flow

The goal of this chapter is to prove the following theorem:

Theorem 2.2.4. Let (X,J) be a compact Riemann surface of positive genus and H the
space of Kdhler potentials for a Kdhler class k with respect to a background metric wg € k.
Let a(t), t = 0 be a smooth one-parameter family of real closed negative semidefinite
two-forms in a fixred cohomology class such that a(t) converges to a real closed negative-
semidefinite two-form oy and di(t) to 0 at exponential rates in C* for all k € Ny.
Denote by S the average scalar curvature and by « the integral of a and set S:=S+a.
Then the a-twisted Calabi flow equation

Orp(t) = —(Sc(p(t)) + Appya(t) — 9) (2.9)

starting at smooth initial data ¢(0) admits a unique long-time solution ¢(t). Moreover,
if oy = e“®uwy, then u(t) converges exponentially to the logarithm of the conformal
factor of the aw-twisted cscK metric in CF for all k € Ny.

Observe that in terms of u, equation (2.9) reads

Oru = e “(0e") = e O (1 4+ Aop) = Aydrp = —Au(Sc(y) + Apa) ,
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which in light of (2.7) can be expressed as
ou = —e “Aple " (Aogu + Scp +Apar)] . (2.10)

This is a quasilinear fourth order parabolic PDE and standard theory guarantees exis-
tence and uniqueness of smooth solutions for small times ¢ € [0, T[. Unless explicit note
is made to the contrary, the background metric gg is taken to be the aq-twisted cscK
metric satisfying Sco +Agas = S, whose existence and uniqueness proof is essentially
that of the uniformisation theorem (cf. Appendix B.1). With this choice of gg, the claim
of Theorem 2.10 then states that u(t) should exponentially converge to 0. Also note that
if e*(Mwy solves twisted Calabi flow with respect to a(t) in the class [wo], then for any
¢ > 0 the path ce®*/“)wyq is a solution of twisted Calabi flow with respect to a(t/c?) in

the class c[wp]. We can hence assume without loss of generality that [wp] has unit volume.

The proof of Theorem 2.2.4 is organised as follows. Twisted versions of Mabuchi,
Liouville and Calabi energy are defined and shown to be uniformly bounded in time
along twisted Calabi flow, which is used to obtain an a priori L3-bound on u. Chrusciel’s
higher regularity arguments are then adopted to improve the uniform bounds on u from
L2 to any C* implying long-time existence of twisted Calabi flow. Lastly, convergence
and its exponentiality are established.

Remark. In our context, a function f on X x [0,7T[ for T €]0, 0] is called uniformly
bounded or controlled in C* or L7 if there exists a constant independent of ¢ € [0, 7]
such that the respective norm satisfies || f| < C. In general, C,C’, etc. denote constants
independent of ¢ whose precise value is allowed to change from line to line.

2.3. Energy Functionals

In their proofs of the long-time existence and convergence of Calabi flow on compact
Riemann surfaces, X.X. Chen [5] and M. Struwe [38] rely on the boundedness of the
Liouville energy, Calabi energy and to a lesser extent of Mabuchi energy along the flow.
Bounds on Liouville and Calabi energy imply an a priori bound on |u|| £3» which turns
out to be sufficient to extend short-time solutions to arbitrary positive times. X.X.
Chen [5] uses the boundedness of Mabuchi energy to show that Calabi energy tends to
zero as t — 00. Both, Mabuchi and Liouville energy, are easiest defined in terms of their
variations, which on a Riemann surface are given by (dMa),-1) = §(S(w,)—S)Y w, and
(dF)g - = {+ 9o(dS(wy), dip) w,. Choosing a reference metric go in 7, the variational
expressions can be integrated to

1
Ma(p) = JX UWy — §§¢Agapwo + (Sco =S)pwo ,

F(p) = JXu[Aou+QSco]w0.

An explicit formula for the Mabuchi energy in arbitrary dimension can be found in e.g.
[30]. The existence of a higher-dimensional version of the Liouville energy has been
conjectured by X.X. Chen (cf. [5]).
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As for regular Calabi flow, the key to obtaining critical a priori bounds for solutions
to twisted Calabi flow lies in the boundedness of certain energy functionals, namely
twisted versions of Mabuchi, Liouville and Calabi energy. Unfortunately, the arguments
in [38, 5] cannot be adopted directly, as the twisted Liouville and twisted Calabi energy
as defined below are not manifestly decreasing under twisted Calabi flow. However,
their time-derivatives are decreasing in leading order and the lower order pieces can
be shown to have uniformly bounded time integral by using a lower bound on twisted
Mabuchi energy. The twist «(t) is assumed to satisfy the assumptions of Theorem 2.2.4
throughout.

2.3.1. Twisted Mabuchi energy

The definition of twisted Mabuchi energy requires a choice of a reference Kéhler metric
go. While not necessary at this point, we choose this to be the same ag-twisted cscK
metric used to define H.

Definition 2.3.1. Twisted Mabuchi energy is the functional on H x Q?(X,R) given by
1. N
Ma(p, ) := J UwWy — §S¢Aog0wo + (Sco +Apar — S)pwy ,
X

where u is understood to depend on ¢ via u = log(1+Age). In this definition, S = S+a
and a depends on the cohomology class of «.

Proposition 2.3.2. Twisted Mabuchi energy is uniformly bounded along twisted Calabi
flow.

Proof. For a = 0, twisted Mabuchi energy reduces to regular Mabuchi energy which
is known to be bounded below on Riemann surfaces [5]. Denote by Ay’ the Green’s
operator seen as a homeomorphism of C§°(X, go) = {f € C¥(X)| § fwo = 0}. Since o
is nonpositive and Aga — a has zero integral we can estimate

1
Ma(p,a) = J uwy = 5 (8 + @)plopwo + (Sco =5 + Aoar —a)pwy
X
(6]
~ Male0) + 2 [ g n+ [ (oo -l

> —C—U (Apa — a)pwy
X

= —C-— U (1+A0@)-A61(A0a—g)wo
X

= —C—Sup|A01(Aoa—Oé)|'f Wy
X X

> — <C+ sup \Aal(Aoa—a)|> )
X,t>0
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By the assumptions convergence assumptions on «(t), the second term is bounded, so
twisted Mabuchi energy has a lower bound depending only on the path «(t).

It remains to find an upper bound. To this end, we individually consider the variations
of Ma in ¢ and in . One computes

N

(6¢Ma)(%a)¢ = L{ Appwy + ulppwy, — 5’¢A0<pwo + &(Sco +Aga — 5) wo
= f VAU — Sgo(l + A()(,O) + (,b(SCo -I-Aoa) wo
X

= f Y[Aou + Sco +Apa — 6“5’] wo
X

~

= L{ @[Sc(p) + Apa — Slw,,,
which in the direction of twisted Calabi flow becomes

(6,Ma) () (—(Sc(i) + Agar — §)) = — JX(SC(Q) L Apa— 8w, <0.

We remark that the expression Ca(p, o) := §,(Sc(e) + Apar — S)2 w, is the twisted
Calabi energy which will be examined later.
For the variation of Ma in direction of a one finds

(baMa)(pa)d = J pAoawy ,
X

so the total time-derivative of twisted Mabuchi energy is

o Ma(p, ) = —Calp, ) +f oAodi o
X

and can be estimated by
OMa(p,a) < f Ao wy

X

< f Agp AalAgdwO
X

= J (1 + Ao(p) AalAgdwO
X

< sup|A;tAdl - f e“wp
X X

= sup|A;tAodl.
X

By the decay properties of «, the integral SSO supy | Ay Agc| dt (depending only on a(t)
and the background metric) is finite and one gets

Ma(g(t), a(t)) < Ma(p(0), a(0)) + fo ) sup| Ay Aod| dt

which bounds the twisted Mabuchi energy from above along twisted Calabi flow. O
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Remark. The upper bound on twisted Mabuchi energy is technically not required for
Theorem 2.2.4, but the details of the proof are used to bound twisted Liouville and
twisted Calabi energy.

2.3.2. Twisted Liouville energy

Like twisted Mabuchi energy, twisted Liouville energy depends on the choice of a back-
ground metric gg. In this case the choice of gg being the ag-twisted cscK metric does
matter.

Definition 2.3.3. Tuwisted Liouville energy is the functional on H x Q?(X,R) given by

F(p.a)i= |

1
u[Aou + 2Apa + 2Scp|wp = = f \du|g wo + 2f u(Aopa + Sco) wo -
X 2 )x X

Proposition 2.3.4. Twisted Liouville energy is uniformly bounded along twisted Calabt

flow.

Proof. To establish a lower bound we want to use the Poincaré inequality to estimate
the second integral appearing in the above right hand side expression for the twisted
Liouville energy in terms of ||du| ;2 and then complete the square with the first integral.
Set u := SX uwg. Since we normalised to unit volume, Jensen’s inequality implies that
u = SXquo < log SX e“wg = 0. With the choice of background metric and the zero-
integral property of Ag(a — a) in mind we can estimate

1
F(p, ) 3 JX |du|? wo + 2 JX u(Agor + Sco) wo

1 &~
= 3 JX |du|dwo + 25 - T +2 JX ulo(a — ap) wo

=0

1
> J |du3wo+2f (u— ) Ag( — ) wo

2 Jx X

1

1 2 ~\2 2

z 5 |dulgwo — 2sup [Ag(a — ax)| (u — )" wo
X X X
1

1 2 -1 2 :
> — | |dulgwo —2sup|Ag(a — a)| A2 |dul|g wo

2 J)x X X

1 2 . ?
= = (J \dulgwo> —2X7 2 sup [Ag(a — ag)| — o\t sup|A0(04—O¢oo)|2
2 X X X

> —an! sup |[Ag(a — Oéoo)|27
X,t=0

where A is the first nonzero eigenvalue of the full go-Laplacian. Since «(t) is bounded in
t, F(¢,a) can be bounded from below by a constant depending on the path «(t).
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An upper bound on twisted Liouville energy can be obtained by estimating its time-
derivative. We again compute the variation in ¢ and in « separately. It is

(5¢F)(%a)gb = 2 JX A¢¢[A0u + Scg +A0a] wo

2 fX Agple(Sc(p) + Apar)]wo
= JX Go(dp, d(Scy +Apa)) wey,
which under Calabi flow becomes
(50 F ) gy (~(5eli) + g = 5)) = = | [d(Scli) + Ago) sy < 0.
The variation in a-direction is

((5O¢F)(%a)0.é = QJ qud wo ,
X

so for the total time-derivative of twisted Liouville energy one has

OtF (p,a) = —f |d(Sc(p) + A¢a)|iw¢ + QJ uMgowy ,
X X
which can be estimated by

1
—0F(p,a) < J ulNog& wo
2 X

J AOU Aglea wo
X —

=m
= J Sc(cp)nwwj Sconwo
X X

J (Sc(@)—i—A@a—S’)nw@—J‘ Awanww—i—S’J nww—f Sconwo -
X X X X

In light of the volume constraint SX wo = § y Wy = 1 the last three terms satisfy

—f Awanww—i—gf nw¢—f Sconwy < sup |n| - | sup \Aga\—&-]S]—i-f | Sco |wo |,
X X X X X

=
. _

K

whereas using Cauchy—Schwarz on the first term gives

=

f (Sc(p) + Apa — Snw, < sup|n| (Calp,a))
X X

1
2

= sup|n| <—8tMa(<p,oz) +J gvodw())
X X
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In the last step we have used the expression for twisted Calabi energy found in the
proof of boundedness of twisted Mabuchi energy (Proposition 2.3.2). Integrating the
expression for ¢, F from 0 to 7 > 0, these estimates give

3P ar) = 5Pe(0).a(0) + 5 | Ao

< C+Kf sup\77|dt+J sup |7| (—atMa—i-J cpAodw()) dt
0 X 0 X X
o T /07 3
< C—i—Kf sup|77|dt+(f sup |77|2dt> <J—8tMa +J @Aodwodt>
0 X 0 X
o :
< C’—i—(f sup\77|2dt> (—Ma( )+ Ma(0 JJ 1+ Agyp) nwodt>
0 X

< C' +0O" <_ a(t) + Ma(0 f J nwwdt>

< O+ " (~Ma(r) + C")?

where we have used Cauchy—Scharz and the convergence assumptions on «. Conse-
quently, the lower bound on twisted Mabuchi energy gives the desired upper bound for
twisted Liouville energy.

O

The boundedness of the twisted Liouville energy along twisted Calabi flow has an
important implication:

Corollary 2.3.5. Along twisted Calabi flow, H’LLHL% is uniformly bounded in t.

Proof. From the computation used to establish a lower bound on twisted Liouville energy
in the proof of Proposition 2.3.4 we recall

1 2
1 3
F(p,a) > - (J \du’g%) —2/\7%8111)\1\0(04—%0)\ — 22" sup [Ag(a — ao)|?.
2 X X X

Uniform boundedness of sup y |[Ag(a—aq)| and the upper bound on F imply the uniform
boundedness of |du|?, = { |dulgwo. Via the Poincaré inequality, this controls u— ] 72
and hence |[u — @12, so in order to obtain a genuine bound on |uf2 it remains to find
an estimate on u. By Jensen’s inequality we already established @ < 0. To find a lower
bound we use the volume constraint and the Moser—Trudinger inequality (Proposition

2.2.1). Tt is
2 iyt u u—7 M”u_ﬂ”iQ
e Y=e e’ wy = e wy < Ce T,
X X

which implies @ > —log C' — pfu — @[%, as desired. O
1
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Unfortunately, control over |ul £2 is not quite sufficient to imply uniform boundedness
of u in L®. However, the Moser—Trudinger inequality allows us to uniformly bound
§x €*"wo along twisted Calabi flow for any s € R by a constant C(s). Indeed, one has

2 2
f et < ce it (2.11)
X
This will be useful in establishing uniform bounds on twisted Calabi energy.

2.3.3. Twisted Calabi energy
Definition 2.3.6. Twisted Calabi energy is the functional on H x Q?(X,R) given by

Ca(p,a) := JX<SC(Q0) +Aya—8)2w,

Proposition 2.3.7. Twisted Calabi energy is uniformly bounded along twisted Calabi
flow.

Proof. Twisted Calabi energy is manifestly nonnegative, so it suffices to find an upper
bound. This is again done by estimating the time-derivative of twisted Calabi energy
and then integrating. Using (2.8), the variation in direction of ¢ can be expressed as

(6,Ca) e = 2 L(sc(gp) t Apa— §)DED,w,

- L(SC(SO) + Apar = §)gp(dSc(p), dp) w,

— 2[ (Sc(e) + Apa — S)AyaAgpw,
X
+ J (Sc(p) + Apa — 8)2Apw,, .
X
Integrating the third term by parts gives

—QJ (Sc(p) + Apa — S)A AP w,
X

~

_ J d(d(Sc(p) + Apa), di) a — J (Sc(9) + Ay — §)g,(dApa, d) w,
X X

and we observe that the second term on the right hand side combines with the second
term of the above expression for (6,Ca)(, )¢ to cancel out the fourth term. What
remains is

(6,Ca) e ($) = 2 L(sc(gp) 1 Apor— §)DEDypuw,

- f 00 (d(Sc(¢) + Aga), dg) a.
X
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Under twisted Calabi flow this becomes

(6,Ca) (p,0) (—(Sc(p)+Apa—8)) = _2|D<P(SC(90>+AGOOC)‘%Q(X,gv)—i_fX’d(Sc((p)—‘rA@a)|§¢a'

Due to the nonpositivity of «, both terms are nonpositive.

Remark. This is the only instance where pointwise nonpositivity of « is used. The fact
that the elliptic problem of finding twisted cscK metrics only requires « be integrally
nonpositive (cf. Theorem B.1.1 in Appendix B.1) suggest one should also be able to
relax the pointwise condition on « to an integral one in the parabolic case.

The variation in the a-direction is

(52Ca) p i = 2 f (Sc(9) + Ava — S)A dw,
X

and can be estimated by

A

1
Caz - (f (Awd)2w<p> i
1 1
2 2
< atMa—i— gvodwo) -sup [Agd] - (J e“w0>
X X

2
< supAoa]< 6tMa+J gvoo'zw()) ,
X

f (Sc(p) + Apa — S)Adw,
X

where in the last step we used that SX e "% wyq is uniformly bounded along Calabi flow by
(2.11). We can thus estimate the total time-derivative of twisted Calabi energy by

1
2
0iCa < Csup | Aoy <—3tMa + f cpAoo'zw())
X
and integration from 0 to 7 = 0 gives

Calp(r),a(r)) = Ca(p(0),a(0)) + JOT&tC’adt

T 2
'+ CJ sup |Aoc] <—6tMa + f Ao w0> dt
0 X X

A

1 - 1
c'+C (J sup |Agcr|? dt> ’ <J —otMa + J YA wy dt) i .
0 X 0 X

By the convergence properties of «, the integral Sgo sup y |Agc|? dt is finite and the same
is true for Sgo SX pAgawg dt as was shown in the proof of the boundedness of twisted
Mabuchi energy (Proposition 2.3.2). Hence

N

Ca(r) < C' + C" (~Ma(r) + Ma(0) + C")?

and twisted Calabi energy is uniformly bounded along twisted Calabi flow. O
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Before the boundedness of twisted Calabi energy can be used to control [u]zz an
intermediate step is required.

Corollary 2.3.8. The logarithm u of the conformal factor is uniformly bounded in C°
along twisted Calabi flow.

Proof. The idea is to use twisted Calabi energy to obtain a bound on [u|,s2. The
2

Sobolev embedding Lg/ 2 <, €Y then proves the claim. Using Holder’s inequality with
p =4 and ¢ = 4/3 and the Moser-Trudinger inequality in the form (2.11) with s = 3 we
estimate

J \Aou\%wo = fe%“|A¢u]gw@
X X

(=) (o)
(o) (fwr-esoe)

< C f 2(Sc(p) + Apor — 5)2 +2(8 — Ay — e Sep)? w¥,>
b's

A

s

< C(2Ca+ )T

The desired uniform bound on |luf s> then follows from elliptic estimates. O
2

Corollary 2.3.9. The logarithm u of the conformal factor is uniformly bounded in L3
along twisted Calabi flow.

Proof. The proof is very similar to that of Corollary 2.3.8. With the uniform C°-
boundedness of v in mind one estimates

L(AOU)QWO = LGU(AW)Q%

< supe”- J (Apu)?w,
X b's
< CJ (Sc(p) — e Sco)? wy
b's
< C’J 2(Sc(p) + Apar — S5)? +2(S — Ay — e Sco)? wy
X
< C(2Ca+C").

Again, the desired bound on |ul| 13 follows from elliptic estimates. O
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2.4. Higher a priori Bounds

The presentation largely follows [8], though some adjustments are necessary to deal with
additional terms appearing in our case. For integers ki, ..., ks and a tensor S we use the
notation

S = “VFy g Vs

to indicate that S is an algebraic expression (possibly involving the metric gg) multilin-
early and nontrivially depending on the k;'' covariant derivatives of u. We also allow
the expressions to contain a factor of a bounded smooth function on X x [0, o[, such as
Apa or derivatives thereof. One has

“URLY b - VR < VM) - VR

where |- | is the pointwise norm on tensors induced by gg. We also recall that the choice
of background metric gy was such that SX wo = 1 and Scg +Agas, = S. All covariant
derivatives are taken with respect to gg. We start with a few preparatory lemmas.

Lemma 2.4.1. Let | € Ny. The time-derivative of Viu can be written as
O Viu = e[ AZVIu — VIAgAg (o — o) + R} + R? + R} + R},

where R} are expressions of the form

Rll = “Vux V37
R? = “(Vu+ (Vu)? + V2u) x V22
R? _ Z “vhu B - - visuw

s=2
ISij <141

it tis <44
4 )
Rl — Z (Lv'buﬂ X

1<i<i+2

Remark. The 0-Laplacian appearing in (2.10) is only half the Hodge-Laplacian acting
on functions, which normally would lead to confusing prefactors in the analysis. In
favour of a cleaner presentation, we redefine V to be 1/4/2 times the metric covariant
derivative and denote by A( acting on tensors 1/2 times the rough Laplacian for the
remainder of the higher regularity analysis.

Proof. This is shown by induction on . Using Ag(fif2) = (Aofi)fe + fi(Aof2) —

g(df1,df2), Aoed = el (Ao f—3|df|3) as well as Sco +Agar = S+ Ag(a— ar) one computes
for I = 0:

dru = —e “Ag(e " (Apu + Sco +Apa))
= e 2[=Afu — Ao(Sco +Aoe) — go(du, dAgu)

1
+ (Aou)2 + §|du]3Aou + (Sco +Aga) Agu — go(du, d(Sco +Aoar))]

e 2 [—A2u — AgAo(a — ay) + RY+ R2 + RS + RJ).
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Now suppose the claim is true for {. Then

oVt = V(6,Vu)
= V(e ®[—A2V'u — VIAGAg(a — ap) + R} +R?+ R} + R}])
= e 2(=2Vu)[-A2VU — VIAgAg(a — ap)+ R + R2+ R} + R} (2.12)
+ e B[-VAIVU — VITLAGAg (o — )] (2.13)
+ e 2[V(R} + R? + R} + R})] (2.14)

The first term in (2.12) is (Vu) - AZViu = “Vu s V4u” and constitutes a part of R} ;.
The second term is (Vu) - VIAgAg(or — ap) = “Vu” and subsumed in R, ;.
fashion (Vu)R] = “(Vu)? » V34" contribues to R?, |, (Vu)R? to R}, |,
R} | and (Vu)R} to R} | and R?, ;.

Commuting A? and V (see e.g. Appendix A.1) one obtains —VA%VZU = —A(%Vl+1u~l—
22131 “VIu” (the curvature terms are all bounded), so (2.13) accounts for the two special

In a similar

(Vu)R? to

terms and a contribution to R?H.
It remains to examine the contributions from (2.14). The first is

VRll = “Vy vl+3u77 + uv?u > Vl+3u77 + “YVu Vl+4u77 ,

where the first term can arise since the notation “S” allowed the appearance of bounded
smooth functions. The first two terms contribute to R12 +1, and the third to Rl1 +1- The
second contribution is

VR? = “(Vu+ (Vu)?+ Vu) x V27
+  YV2u+ (Vu)Vu + V3u) x V27
+ YVu+ (Vu)? + Vi) x VI3

Here, the first term adds to R? .1 and the third to Rl2 1, Whereas the second term con-
tributes to R?H and in the case of [ = 0 also to RIQH. Next one has

VR? = Z “Vig - Vs

s=2
1<i;<2+1
i1+ t+is<I+5

which by definition is subsumed under R?H. Lastly,

VREI _ Z uviun

1<i<i+3

which contributes R;l 1 O

The purpose of the previous lemma is to more precisely describe the lower order terms
of the time-derivative of the functionals

E := J eV u|? wo (2.15)
X

indexed by [ € N.
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Lemma 2.4.2. For the time-derivative of E; under twisted Calabi flow (2.10) the fol-
lowing estimate holds:

0B < =2|V'*Pul 7. + O(®) + 0F + &) + Ce ™ lu—1 1z,

where

B = | VvV,
X

o} = > fWh“""WisuMo,
s>3 X
1<i;<l+1
i 4 Fis<2l+4
o = Z f |V || V72u| wo
1<iy ig<i42 v X
i1 +ip<20+2

and § is a positive constant. Recall that @ was defined to be the average of u with respect
to the background metric.

Proof. 1t follows from Lemma 2.4.1 that

ok = f at(eQ“)]Vlu|2wo+2f (0, V'u, Vu) wo
b's b's

4
2] 2" (Opu) | V'ul? wo — QJ (AgV'u, AgViu) wo + Z QJ (R}, V'u) wo
~ X - X r=1 X

I Hlo 1Ir

l
_ f (V! AoAo(ar — ), Vi)
X

171

We estimate each term individually.
The first term

I = —zf Agu-|Vlu]2w0—2f AoAg(a—aw)-]Vlu|2wo+2f (Ry+RE+ R+ RY)|V'u|? wo
X X X

needs to be examined separately for [ = 1,1 = 2 and the general case [ > 3 to account
for the leading order contributions potentially not stemming from the |V'u|? factor. For
[ =1, one can integrate A3u - |[Vu|? by parts once to obtain an integrand which can be
estimated by |V3u||V2u||Vul, so the integral is of type ®1. The integrand in the second
summand can be estimated by |Vu|?, so the integral is of type ®3. After integrating
R}|Vu|? by parts once to get rid of the third derivative, all contributions of the third
integral in I; can be estimated in terms of ®2. If | = 2, after integrating the fourth
derivative in A by parts, the first and the third term in Iy can be estimated by ®3 and
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the second by ®3. For [ > 3 the first and third summand can directly be estimated by
<I>12 and the second again by (I>l2.

The term I contains the highest order contribution to d;E; and — in light of (A.1)
in Appendix A.1 — can be expressed as

I = —2J 1AV ul? wy = —2[ IV 202w —s—f VI ]2 wp
X X X

It follows that 11} < —2|V'* 2u|2, + C®}.
The term IIll is of the form

I = J “Vu s VI3 0 Vi wy
X
which after integration by parts on the highest order derivative becomes

f “V2q 0 V20 0 Vi 4+ “Va s VP20 VP + 4V s V20 o Vi wy
X

The middle summand is estimated by (I)zl and after another integration by parts to get
rid of the (I+2)"® derivative, the third summand by ®?. The first summand is estimated
by ®; if { = 1 and after an integration by parts by @7 for [ > 2.

For IT 12 one has

I} = J “(Vu + (Vu)? + V) s V2000 Vi wg
In the case of [ = 1 this becomes
f “(VU)Q > VS’U,” + LC(VU)3 >4 VSU” + “VQ’U, >4 VS’U, SRV wo -
X

The last summand is dominated by ®1 and after integrating by parts the third derivative,
the first and second summand are less than C®?. For [ > 2 one can estimate I1? by ®?
after integrating by parts to get rid of the (I + 2)"! derivative.

It follows from the definition of R} that

IIl3 = Z f“vilum oo Vs Vi wy

s=2
Isigsi+l

i1+ Fis<l+d

which can directly be estimated by ®7.
The term IIZ4 is of the form

1T} = Z fX “Viy 0 Vi’ wp

1<i<i+2

which is controlled by <I>?.
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Lastly, consider the remaining term
III, = f (VIAAo(a — ag), Viu) wy .
X

Denoting by V* the L?(X, go)-adjoint of V, define D; to be the differential operator
D, = V*72V! for | > 2 and D; = id. Integrating by parts and applying Cauchy—
Schwarz yields

(11| < | DidoAo(e — axo)| 2| VPul 2 < Ce™u — i 3.,

where the exponentially decaying factor on the right hand side is owing to the assumed
exponential convergence of a to a in C* for any k e N. O

Remark. For our purposes it would have been sufficient to estimate the last term as
IT1L < |[V¥VIAAg(e — aoo)|collul i < Clulg:, but the above estimates in terms
of |u — @z fit in more naturally with the treatment of the other terms. Also, the
exponential decay factor, while nice and a byproduct of the choice of background metric,
is not strictly necessary and will be left out from here on.

Lemma 2.4.3. Forl e N, there exists a finite index set B and constants ag,~yg for each
B € B satisfying 0 < ag < 2 and vg = 2 — ag such that

OB < 2|V Pl + C IV Pl u — 5 + Cllu— g, (2.16)
BeB

where U = Squo.
Proof. We only need to estimate the three terms @7 for » = 1,2, 3 on the right hand side
of the expression for ¢ F; in Lemma 2.4. Starting with <I>ll one can estimate

o = JX |Vl [V | [V 2l wp < [Vl [Vl g V52 e

For the first factor one has [Vu|p+ < Cfu — 13 by the Sobolev embeddings. For the

second factor one can use the Gagliardo-Nirenberg inequality to obtain |V * 1| <
C’HVHQqu;Q*l/Q)/(HZ)Hu - ﬂH;(Hzflp)/(lH). With the obvious inequality |u — @2 <

|u— 1z this combines to

14 br2=1/2 g l+2-1/2
O < CIVF2ul, ™ Ju -l

which is of the required form.
Next we estimate

- Y f|Vi1u]\Vi2u\w0< S Vil ] Veul e
1<ij<ig<i+2 v X 1<iy <ig<i+2
i1 +ig<20+2 i1 +ig<2042
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If 9 = I + 2, then i3 < [ and one can apply Gagliardo—Nirenberg to the i;-term and

. i i 142 1 1+i1/(1+2) ~1—i1/(1+2) S
estimate |[V*iul|p2|V*2ul 2 < C|VT2u,, | — | which is of the form
(2.16) after again estimating |u—ul|z> < [u—1|z. If iz <142, then IV 2 Viu . <

C’Hvl”uH(LinH?)/(HQ) u — ﬂHi;(ilﬂé)/(lH) by application of the Gagliardo—Nirenberg in-
equality to both factors. This also fits (2.16) since i1 + i2 < 21 + 2.

It remains to estimate <I>12. Let
= [ e
X

be the

be a summand of ®?,i.e. s >3, 1< tj<l+landig+---+is <2[+4. Let k>0
j<s—k.

number of i;s for which 7; = 1 and reorder the indices such that i; > 2 for 1 <
Applying Hélder’s inequality to ¥ yields

- f VulF Vit - [Vibu] < CIVulE g [V 0l o1 [Vt s
X

for positive numbers po, ..., ps—r satisfying 1/po + 1/p1 + -+ 1/ps_ = 1. We emphasise
that the indices i;, 1 < j<s—ksatisfy 2<i;<l+1landig + - +i5_p <20 +4— k.
Corollary 2.2.3 of the Gagliardo—Nirenberg inequalities implies

s—k .
~nk l 2, —1— 2/p
W fu— sy [ (1972l — %+ i) . ay = S

j=1
and evaluating the product gives
V<O VTRl al
BeB’

where the total exponent satisfies ag + g = s = 3. In order for this to be of the form
(2.16), we require ag < 2. The largest exponent of |V!*2u/| satisfies

~ 1558 2+4—k s—k_2(1—1/po) _ 20— 1+2/po
amax:Zaj 72 —1- 2/]9]) I l ] < I )

so choosing py > 2 implies ag < amax < 2 as needed. ]

We can now combine the already established uniform bound on w in L3 with the
preceding lemma to show that norms involving higher derivatives of u cannot exhibit
finite time singularities.

Lemma 2.4.4. For k € N there exists a positive constant C such that
0By < —[VF?ulTe + Cllu— 3. (2.17)

Remark. The term on the rightmost side of (2.17) can of course be estimated by a
constant, but the present form turns out to be useful to establish exponential convergence
of 4 — 0 in higher Sobolev norms.
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Proof. The analysis of section 2.3 shows that u is bounded in L2(X,go) for as long as
the flow exists. By Lemma 2.4.3, the time-derivative of Ej is of the form

OBy, < =2|VFul . + C ) [V Rl 5 u — @ 2 + Cfu—1 3 (2.18)
BeB

for a finite index set B and constants ag,yg satisfying 0 < ag <2 and 73 > 2 —ag. An
application of Young’s inequality with e

1 1 1
ab < ed” + —(pe) VP, — 4 - =1
q q p

with p = 2/ag and ¢ = 2/(2 — ag) yields
k k 218/ (2—p)
IV52ul 2w — @l < el VH Pl + Ol B)llu — a3 e

Since 2v3/(2 — ag) = 2, one further estimates
Ju = 27370 = = i

u— i 3 < C'lu — 3.

Choosing ¢ sufficiently small compared to the constant appearing in (2.17) one then has

k k ~
C Y IVE 2l 2 = a5 < IV 2ulfs + C"llu — @l 1,
BeB
so 0iEy, < —|VF 2ul2, + C|lu — Uz as claimed. O

Proposition 2.4.5. Let 0 < T < w0 and u e C([0,T[, L3(X, g0)) be a solution to twisted
Calabi flow (2.10) with smooth initial data u(0) = ug. Then

vte [0, 7T Julz < C(1+1)7,
where the constant C' depends on k and the initial data. In particular, if T < oo, then

sup_|uf g2 < oo
o<st<T

for any k.

Proof. Since uniform boundedness of u in L3 implies uniform boundedness in C°(X),
the estimate

HUH%i < O(Ja)? + | VFu|?,) < C (1 + Sup e jX eQu\Vkquo) < C(1+ Ey)

shows that is suffices to establish Ej, < C'(1+t). But this follows from integrating (2.17)
and the uniform boundedness of |u — U L3 O
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Corollary 2.4.6. Under the assumptions stated in Theorem 2.2.4, twisted Calabi flow
admits a unique long-time solution u e C*(X x [0, 0[).

Proof. For given smooth initial data, let u be the smooth unique short-time solution to
(2.10) provided by standard theory of parabolic equations. Suppose u only exists on
[0, 7] for a maximal existence time 7' €]0,00[. For a sequence t; in [0, T converging
to T consider the sequence u(t;). By Proposition 2.4.5 the sequence u(t;) is bounded
in Li for any k and by the compactness of the embeddings Li o C* has convergent
subsequences in each C*. By passing to such a subsequence, we assume that u(t;)
converges in CY and denote by u(T) its limit. Since u is uniformly bounded in C*, so is
ou in C? and one has

futt) ~ u(Ten < inf (fu(t) — utty)on + uts) — ()
- i?f\lu(t)—u(tj)ﬂco
< nf L (0su)(s) ds
< sup ||Gwulc, - inf [t — ;]

o<st<T J

C-inf [t — 1],
J

which implies that u(t) — u(T) in C°. In addition, u(T) has to coincide with limits
of subsequences converging in C*, so u(T) is in fact smooth (in fact the convergence
u(t) = w(T) is in C*, which can be shown using e.g. Lemma A.2.2 in Appendix A.2).
In particular u(7") can be taken as smooth initial data and the flow can be continued
contradicting the maximality of T'. O

2.5. Convergence and Exponentiality

With long-time existence of twisted Calabi flow established, one can ask how a solution
u(t) behaves as ¢ — 00. We already know that |u—| .z is uniformly bounded in ¢ € [0, o]
and proceed to show that it in fact converges to zero at an exponential rate. Lemma 2.4.4
is then used to show that u(t) converges to zero in each C*. To lighten the presentation
we refer to the solution of a(t)-twisted Calabi flow for fixed initial metric and twist a.(t)
by either w(t), ¢(t) or u(t), where the three are related by w(t) = (1+ Agp)wy = e*Buwy.
In addition, we write C'a(t) instead of Ca(p(t), a(t)) for twisted Calabi energy evaluated
at p(t) and «(t) and extend this notation to other energy functionals.

2.5.1. Convergence in L3(X, go)

We start out by showing that twisted Calabi energy has the right limiting behaviour.

Lemma 2.5.1. Twisted Calabi energy tends to zero along Calabi flow.
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Proof. Recall that twisted Mabuchi energy is bounded along Calabi flow and satisfies

otMa = —Ca +J pAocwyg .
X

The proof of the boundedness of twisted Mabuchi energy (Proposition 2.3.2) also shows
that Sgc §x pAodrwp dt < o0, so

0
J Ca(t)dt < .
0

Also recall from the proof of the boundedness of twisted Calabi energy (Proposition
2.3.7) that

A

0:Ca < 2j (Sc(y) + Apa — S)Agaewy
X

and applying Cauchy—Schwarz gives the estimate ¢;Ca < 2Ca'/? sup x>0 [Aoc| which is
bounded from above by a positive constant K. Now suppose that Ca(t) does not tend
to zero as t — 0. Then there exists a monotone and unbounded sequence (t;) in [0, o[
and € > 0 such that Ca(t;) = ¢ for all i € N. By passing to a subsequence one can
assume that the intervals I; :=|t; — ¢/(2K), t;[ are disjoint and contained in [0, c0[. For

s € I; we estimate

Calts) — Cafs) — r(atcaxt) dt < K - (t — s)

s

which, in light of t; — s < ¢/(2K), implies
Ca(s) = Ca(t;)) — K- (t; —s) > Ca(t;)) —¢/2 = —¢/2 =¢/2.

This construction yields infinitely many disjoint intervals I; < [0, oo[ such that

5.2
= — 9
L Calt)dt >

which contradicts §;” Ca(t) < oo. O

Corollary 2.5.2. Along twisted Calabi flow one has lim;—,o [Aou(t)| L2 (x,g0) = 0-
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Proof. We recall that Scg +Agae = S with S = Scp +Apas = S + a < 0 and estimate

HAOUHQLQ + f Agu - Ao — ap) wo
X

1 -
< JAgul?s + J Aou - Ag(a — ap) wo + |S|J e"|dul? wo
X 20 x
= ||Aoul?s + j Aou - Aol — ap) wp — SJ (" —1)Aguwy
X X
- J (Apu) [Aou + Aol — ayp) — S(e* — 1)] wo
X
= f (Agu) [Aou + Scp +Aga — Se“] wo
D'
- J (Agu)e” [Sc(gp) + Apor — S] wo
b'e
1/2 R 1/2
< (j (Agu)? wo) (J e?(Sc(p) + Aypa — 5)? w())
X X
<

| Agu| 2 - sup e - Ca'/? .
X

Bringing {, Agu - Ag(or — ) wo to the right hand side, applying Cauchy-Schwarz and
dividing by ||Agul| 2 gives

| Agul 2 < C (Cal/2 + [Ao(a — aoo)um) .
The right hand side tends to 0 as ¢ — o0 proving the claim. ]

Corollary 2.5.3. Along twisted Calabi flow, limy_,o |u(t) — ﬂ(t)HL%(X,go) =0 as well as
limy o0 [[u(t)] £2(x,g0) = O-

Proof. The first part of the claim, lim¢o [u(t) —u(t)| 3 = 0, follows immediately from
Corollary 2.5.2 and the estimate |u(t) — ﬁ(t)HLg < C|Aou|z2. For the second part,
observe that

f'—>logf el wo
e

defines a continuous map L3 — R which vanishes at 0. Applying this to f = u(t) — @(t)
gives

t—00 t—00 —00

0=— lim logf D=0 o = — lim (—U(t) + logf e"® wo = lim U(t).
X X

Since [ul|?, = |u — @[3, + ©?, this implies the desired convergence lim; Ju®)]zz —
2 2
0. O
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2.5.2. Exponentiality and Convergence in C*(X, g;)

We now proceed to show that the convergence of [uz and |u — @[z — 0 occurs at an
exponential rate. The following technical lemma in conjunction with Lemma 2.4.4 then
implies exponential convergence of u to zero in C* for any k € Ny.

Lemma 2.5.4. Let f: [0,00[— [0,00[ be a differentiable function satisfying the differ-
ential inequality
é’tf < —CLf + Be_7t

for constants a,y > 0 and B € R. Then for any 0 < § < min{a,~} there ezists a C such
that f(t) < Ce™ 0.

Proof. For B < 0 the nonnegativity of f implies that if f(tp) = 0, then f(¢) = 0 for all
t = to. For the open connected subset of [0,00[ where f(t) # 0 one has d;log f < —a
and integration yields the claim for § = a. If B > 0, then observe that the differential
inequality remains true for any 0 < +' < ~, so we can assume that v < a. Now the
estimate

o€ f) < 7€' f —ae'f + B< B

yields €7 f(t) < f(0) + B - t, so for any 0 < & < v we have
F(t) < (f(0) + B-t)est. e~

Since (f(0) + B - t)e ¢! is bounded uniformly in ¢, setting § := « — ¢ concludes the
proof. O

Proposition 2.5.5. Let ¢(t) be a solution to twisted Calabi flow. Then there exist
positive constants C, 8 such that Ca(t) < Ce %,

Proof. We will show that there exist positive constants C,C’ such that for sufficiently
large times one has the estimate ¢;Ca < —C'Ca + C|Apc| 2. The exponential decay of
|Aoc 2 and Lemma 2.5.4 then prove the claim.

Denote by o(1) for any smooth function of ¢ that tends to 0 as t — co. Since u(t) — 0
in O as t — 00, we have supy e** = 1 + o(1). Observe that for any function f and
metric g, the constant a that minimises |f — a| 12(X,g) 18 given by the average of f with

respect to the metric g. Denoting by S to be the average of Sc(p) + Apa with respect
to the background metric gg, one thus have the estimate

Ca < f (Se(@) + Ay — 8)?wy < (1 + 0(1))]Se() + Agar — 52
X

Combining the Poincaré inequality and the Cauchy—Schwarz inequality one can estimate
If — fllzz < ||Af] 2, which in the case at hand yields

Ca < C(1 + o(1))|A0(Sc(¢) + Apa)| 12 - (2.19)
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Combining this estimate with Ca = o(1) and the Sobolev embedding L3 — L{ we now
have

0iCa = 2J (Sc(y) + Apa — S)(Ai@ﬁp — Sc()ApOip — ApaA,0ip) wy
b's

+ f (Sc(p) + Apa — 8)2ALdipw, + QJ (Sc(p) + Apa — S)Aydw,
X X

N

- L((ALP(SC(@) + Apa = 8)) w, — L{(SC(SO) + Apa — S)?Apdpw,
—-28 L(SC(S@) + Apa — S)Aydipwy, + 2 J;((Sc(go) + Ay — S)Ayaw,
= =2 [ (ASele) + Aga)Pu, + [ (8e(¢) + A= S)d(Sel) + A

1] L d(Sc(p) + Apar — §) 2w, +2 L((Sc(gp) LA — §)Aduw,

< —2infe [ Ao(Sc(yp) + Apa)|72 + [ Se(p) + Aga = S - [d(Sc(p) + Aga)|7a

+2Ca"?|e " Ao 2
< —2infe "|A(Se(p) + A@)|2s + sup e “Cal?|d(Sc(p) + Apa)| 24

X

+C| Ao 2

< (“2infe™" + C'sup e “Ca'’?)| Ao(Sc(p) + Apa)|2s + C|Aoc 2
X

< —2(1 4 o(1))[A0(Sc(p) + Apa) |72 + C|Aod| 2
< —(2=1)C'Ca + C|Aoct| 12

for ¢ sufficiently large such that all instances of o(1) (including that in (2.19)) are small
compared to 1/2. O

Corollary 2.5.6. Let u(t) solve twisted Calabi flow. Then there exist positive constants
C,6 such that |u — Uz < Ce % and lulzz < Ce 0,

Proof. Recall from the proof of Corollary 2.5.2 that

[Aoulz < C (Ca' + Aol — ax)z2 ) -

Proposition 2.5.5 along with the exponential convergence of o — o, implies that
|Agullz2 — 0 at an exponential rate and hence that

Ju— i 3 < Ce™

for suitable C,d < 0. To establish the second claim it remains to show that @(t) tends
to zero exponentially. We write

oo ok R ~
(1 + o) = 1] Y2 7y = (=) = [ (e = e



38 2. Twisted Calabi Flow

and observe that e* — e¥ = (z — y)b(x,y) where b(z,y) is bounded if x,y vary within a
bounded set. If ¢ is sufficiently large, then o(1) lies in, say | — 1/2,1/2[ and one has

| < 2f (" — Mg < cf = @i|wo < Cllu — i g2 < Cedt.
X X

O]

Proposition 2.5.7. Let u(t) solve twisted Calabi flow. Then for any k € Ny there exist
positive constants Cy, 0y such that HuHLi < Cre %!, The same is true for the C*-norms

of u.

Proof. From Lemma 2.4.4 we know that the time-derivative of E; = |e“V'u|?,, I € N is
given by
OBy <~V Pulfs + Clu =i -

By the Gagliardo-Nirenberg inequality (2.2.2) one has

V|2, < OV 2u 2 u — 3397, a=1/(+2)

and applying Young’s inequality with € and p = 1/a to the right hand side gives
l l ~
[V ul72 < Ce| VI 2ulfz + C'(e) |u — @l 7. -

Estimating E; < supy e*|V'u|2, and choosing ¢ sufficiently small, this can be used to
further estimate 0y E; by

OBy < —Ey + Clu =7, + Clu— @3 < =By + C'|u— 1 3.

The rightmost term on the right hand side decays exponentially by Corollary 2.5.6,
so Lemma 2.5.4 can be applied to the above differential inequality. Since |V'u[?, <
supy e~ 2“F), this shows that
V|2, < Ce™0t.
By the exponential convergence u — 0 in L3, this is also true for [ = 0, so summing from
[ =1 to k and taking the smallest occurring ¢ on the right hand side gives HuHiQ < Ce %
k

as claimed. The exponential decay of u in C*-norms follows from the Sobolev embeddings
L%+2(X) — CM(X). [



3. Time-Dependent Hermitian Yang—Miills
Flow

3.1. Introduction

Hermitian Yang—Mills flow is a semilinear parabolic PDE for a path of Hermitian metrics
h(t) on a holomorphic vector bundle E over a Kéhler manifold (X,w) which tries to
deform an arbitrary initial metric hg into a Hermite—Einstein metric with respect to wx,
i.e. a metric h whose curvature Fj, satisfies A, iF}, = Aidg. Hermite-Einstein metrics
can be seen as a best Hermitian metric compatible with a given Kahler metric wy, their
Chern connections are instances of Yang—Mills connections which play an important role
in four-manifold geometry (cf. [10]) and gauge theory (cf. C.1 for more details). In [9]
S. Donaldson used Hermitian Yang—Mills flow to give a proof of the Kobayashi—Hitchin
correspondence on projective algebraic surfaces and compact complex curves, relating
the solvability of the Hermite—Einstein equation — an analytic problem — to the algebro-
geometric condition of Takemoto-Mumford (or slope) stability of the holomorphic bundle
E — X. The analysis in [9] shows that the flow exists for all times over holomorphic
bundles on compact Kéhler manifolds, independently of stability. Donaldson related
convergence to the existence of a lower bound for a functional M, which we refer to
as the Donaldson functional. Hermitian Yang—Mills flow can be seen as the gradient
flow of M and in some sense, the Donaldson functional plays a role similar to that of
Mabuchi energy for Calabi flow. Hermitian Yang—Mills flow was also used in the study
of Higgs—Bundles by Simpson in [34], wherein the author also relates convergence of
Hermitian Yang—Mills flow at infinity to stability of the bundle and the properties of the
Donaldson functional for bundles of base manifolds with arbitrary dimension.

We are interested in the case where the Kahler metric on the base X changes in time
within its cohomology class. The resulting time-dependent Hermitian Yang—Mills flow
(which we sometimes simply refer to as Hermitian Yang-Mills flow or abbreviate as
HYMF) arises naturally in the construction of adiabatic approximations to Calabi flow
on ruled manifolds (Chapter 4 contains a detailed account). For technical reasons we
restrict our attention to the case of complex dimension one. The goal of this section is
to prove the following theorem.

Theorem 3.1.1. Let X a compact Riemann surface with o fized Kdhler class k €
HYY (X, R) and w(t),t € [0,0[ a smooth one-parameter family in k converging to a
limit Kdhler form ws. The convergence is assumed to be exponential in the sense that
the logarithm u(t) of the conformal factor relating w(t) and wy viaw(t) = e*Pwy, as well
as its time-derivative tend to 0 at exponential rates in C*(X, goo) for all k € Ny. Let fur-
thermore E — X be a holomorphic rank r vector bundle assumed to be slope-stable with



40 3. Time-Dependent Hermitian Yang—Mills Flow

respect to the class k. Denote by Fy, the curvature of the Chern connection associated
to a Hermitian metric h on E and by A\ = 2n{[c1(E)], [X])/r Vol(X,Q) the Hermite—
Einstein constant. Then for any smooth initial Hermitian metric hg the time-dependent
Hermitian Yang—Mills flow given by

R () (0eh) (1) = —[Aw(r)iFhey — Aidg] (3.1)

admits a unique smooth long-time solution h(t) with h(0) = hg. Moreover, h(t) con-
verges exponentially fast in each C* for k € Ny to a we-Hermite-FEinstein metric hy
characterised by A, iF},, = Nidg up to a constant factor.

After recalling some general facts, we present the proof in four steps: short-time
existence, long-time existence, convergence and exponentiality of the convergence.

3.2. Preliminaries

3.2.1. Chern Connections on E and End(F)

We recall some fundamental facts about Chern connections on Kéhler manifolds for
future reference. Let h,k be two Hermitian metrics on E. Let n € End(E) be the
endomorphism relating h and k via k(n-,-) = h(-,-) (write h = kn). In a local triviali-
sation h, k are represented by Hermitian matrices which we also denote by h, k. In that
trivialisation one has n = k~'h.

The Chern connection dj, is the unique connection making h parallel and satisfying
d%l = 0. It is locally represented by dj, = d+ Ay, where the connection one-form is purely
of type (1,0) and given by Aj, = h~'0h. Splitting dj, into its type components, we write
d, = 0+ 0y, with 0, = 0+ Ayp,. The curvature of (E, dy,) is given by Fj, = 0A;, = o(h~10h).
If k£ is another Hermitian metric on E related to h by n as above, then the Chern
connections of h and k differ by a global (1,0)-form with values in End(E) given by
dp, — di, = n710,n. Since this is locally just Aj, — Ay, one finds

Fy, — Fy = 0(n " okm) (3.2)

for the difference of the curvatures.

We will frequently deal with associated data on the bundle End(E), so we recall some
basic relations here. The Hermitian product h on E induces the Hermitian product h’
on End(E) which is given by (¢,9), := A (¢,1) = tr(¢"), where ¢, are sections of
End(E) and " denotes the h-adjoint of 1. In addition, End(E) inherits a holomorphic
structure from E which we denote by . The Chern connection dj, on (End(E), k7 )
coincides with the connection dj, on End(F) induced by the Chern connection on E. As
before one has d), = o + @), where locally 0, = 0+ Aj. The connection one-form is
given by A} = ada, = [Ap,-], defining [,-] on @, A*TEX ® End(E) to be given by
the usual commutator on the endomorphism part and the wedge product on the form
part, i.e. if a € AkTéX, B e AZT(’C"X, ¢,v € End(F) (all over the same base point), then
[a®¢, BRY] = arBR[d, ] = (—1)FF LR, a® ¢]. For the curvatures one obtains
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F} = adp, and hence F} — F} = adé(
h'-adjoint of ady is given by ad .

To lighten the notation a bit, we shall drop primes if the context makes it clear whether
we are working on E or End(FE).

n—1oym)- We also remark that for ¢ € End(F) the

3.2.2. Kahler Identities on Vector Bundles

The Riemannian metric g associated to the Ké&hler form w on X endows the (com-
plexified) tangent bundle Tc X and associated bundles — in particular AkTEX — with
Hermitian products (-, -),. These can be expressed by (o, 3), = *(a A #[3), where * is the
Hodge-star operator associated to g. We can combine the Hermitian structures (-, -),, on
APTEX and (+,+), on End(E) to a Hermitian structure (-, -)p ., on @, A*TEX @ End(E)
given by linearly extending

(a®¢7/8®w)h,w = (¢7¢)h : (a76)w .

The pointwise Hermitian structure gives rise to an L2:-product on @), QF(X, End(E)):

{a,byp e = f (a,b)p . dvol,, .
X

The Kéhler (or Nakano) identities relate the operators o, 0 and their formal L?-adjoints
0%, 0y, to the metric data on the base. They read

A Ak

0" =i[Ay, 0], 0), = —i[Aw,0n]. (3.3)
Indeed, ¢* is independent of h, justifying the omission of the subscript. A proof of the
Kahler identities can be found in e.g. [23].

3.2.3. Relating Different Laplacians

If (E,h) is a Hermitian holomorphic vector bundle, one can define various Laplacians
on the space of form-valued sections QF(X, E):

A&hw = a*ah + ah&‘*, Aahw = ézg + %2, Ad,h,w = d;’;dh + dhd;kl .

With the help of the Kéhler identities (3.3) and the relation Fj, = d3 = (00, + 0,0) one
finds

Aonw + B34, = Dahw,
Do = Dspe = [AuwiFp].

Defining the corresponding Laplacians on QF(X,End(E)) in the same manner, the
second identity becomes Ajp. — Az, = [Ay,ad;p,] which reduces to ada,r, on
O°(X,End(E)).
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It will be of importance to know how Laplacians on Q°(X, End(FE)) defined by different
Hermitian metrics h, k are related. For ¢ € Q°(X,End(E)) compute

(Aophw — Dopw)p = iMu0(0h — )
= iA,O[n Ok, ¢
= A [O(n " Okn), ] — ihu[n” Ok, O]
= iAy[Fy, — Fy, ] — iAu[n " 0kn, O]
= adyi(p,—Fy) © — iDu[n” O, O] -

Performing a similar computation or simply using the relations relating Ay and Az one
finds

(Agpw —Dapw)e = —ibu[n~'own, 0],

sy

(Adnw —Darw)p = adpim,—r) —2iAu[n "0, dp].

Finally, all of the three Laplacians acting on Q°(X, E) or Q°(X,End(E)) depend on the
metric via A, = e %A, if w = %W’

3.3. Short-Time Existence

We merely show that the evolution equation (3.1) defines a semilinear parabolic system.
The existence of a unique smooth short-time solution is then guaranteed by standard
theory. Setting n(t) = ho_lh(t), we express (3.1) as

om = —n[Awid(n” Ongn) + AwiFh, — Nidg]
= —[iAwé(?hOn —iA,(0n A 77_15h077) + Ay iFy, —nAidg],

which using the Kahler identities can be rearranged to
(0 + Ah07w7a)77 = ’L'Awén A n_lahon — U[AwiFho — Aidg]. (3.4)

From this we see that time-dependent Hermitian Yang—Mills flow is a semilinear parabolic
PDE (the highest order piece is linear).

3.4. Long-Time Existence

With the exception of higher regularity estimates, most techniques used in this section
are an adaptation of Donaldson’s to the case of a moving base metric. Working over
a Riemann surface grants us the luxury that the contracted curvature A, Fj, already
controls the full curvature F},.

To establish long-time existence we assume that the flow exists only on a maximal
time interval [0,T[, T < oo and show that h(t) converges to a smooth Hermitian metric
as t — T, permitting the flow to be extended beyond the maximal existence time T,
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hence contradicting its maximality. In the case at hand, the proof can be split into three
steps. The first consists in showing that h(t) converges in CY to a continuous metric
h(T). Using a maximum principle argument we then establish an a priori bound on
AyiF), uniform in [0, T'[, which in conjunction with the C°-boundedness also provides a
C'-bound via a blowup argument. Finally, we use a parabolic bootstrapping argument to
establish that A, F}, remains uniformly bounded in C* and infer that this also uniformly
bounds h(t) in C¥ for any k € Ng. The C%limit A(T) then has to be smooth and the
convergence of h(t) to h(T') occurs in C®.

Remark. By maximum principle we refer to the parabolic maximum principle for heat
equations on manifolds with varying metric which can be found in e.g. [40].

Remark. The precise argument for the boundedness in each C* in conjunction with
CP-convergence implying C* convergence is given by Lemma A.2.2 in Appendix A.2
(set E = CF' F=CFand G =C° with S,T being the obvious inclusions).

3.4.1. Convergence in C° for finite time

The first step is to establish the C-convergence of h(t) for t — T. There is a natural
notion of CP-distance between two Hermitian metrics on a complex vector bundle induced
by the symmetric distance of Hermitian inner products on a finite-dimensional complex
vector space which we recall below.

Denote by #H the set of Hermitian inner products on C". The (right) action of Gl(r, C)
on H given by (h-g)(+,-) = h(g-, g-) is transitive and the stabiliser of a point hg € H (we
can take hg to be the standard Hermitian product on C") consists of those g € Gl(r, C)
that are unitary with respect to hg, i.e. H =~ U(r)\Gl(r,C). Writing ho(g-,g9-) =
ho(g*g-,-) leads to another description of H. One shows that the map U(r) - g —
g*g is a bijection between U(r)\ Gl(r, C) to the positive hg-self-adjoint endomorphisms
End;[O (C"). We can endow the homogeneous space U(r)\ Gl(r, C) with a symmetric space
structure by observing that the fixed point set Gl(r, C)? of the involutive automorphism
o(g) := g~'* of Gl(r,C) is precisely U(r). At the identity, this induces the splitting
gl(r,C) = u(r)@iu(r) as the t1-eigenspaces of do. We now identify Ty;(,.y.. U(r)\ GI(r, C)
with 7u(r) and define an Ady,)-invariant inner product on iu(r), say (a,b) := tr(ab*) =
tr(ab) and extend this right-invariantly to a Riemannian metric on H endowing the set
of Hermitian inner products with a symmetric space structure.

We are interested in the geodesic distance in H in the End;{O((C”)—picture. For H €
End; (C") one has Ty End; (C") = Endp,(C") with the inner product given by

(A,Byg = tr(AH'BH™).

To see this, write A = (a*a), B = (b*b) and H = g*g for paths a, b in Gl(r,C) through
g. Since the tangent map of right multiplication by g=* on U(r)\ Gl(r,C) is given by
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a+ (ag~!) and we demanded right multiplication to be an isometry, we get

(A, Byy = {(a*a)’, (b*b) )gxg

{(ag™")*(ag )], [(bg™)* (bg™ )] Dexe
tr(g 1*a*ag g l*b*bgfl)

= tr(AH'BH™)

as claimed. To compute the geodesic distances consider

d(1,exp(A)) = f (Aexp(tA), Aexp(tA)>eXp(tA) dt = tr(AZ)% )

The right invariance of the Riemannian metric implies that for f,g € GI(r,C) one has
d(g*g, f*f) =d@,(fg~H*fg~1). In the End;{o—picture this means that

d(H,K) = d(H2*H?, K2*K2) = d(1,(K2 H 2)*(K2H 2)).

Taking the logarithm of the positive self-adjoint endomorphism (K 2H _%)*(K 2H _%)
and using the formula for d(1,exp(A)) one then obtains

d(H, K) = tr(log((K2 H™2)* (K2 H™%))?)z .
In other words, if A; for ¢ = 1, ..., r are the (positive) eigenvalues of (K%Hfé)*(K%Hfé),
then

%

A(H, K) = d(M, o \) = (Zaog w) .

To reassure ourselves of this computation we check by hand that d is 1n fact Symmetrlc

For convenience we define the map ®: H x H — H by ®(H, K) = (Kz H_’) (KzH_l)
and note that ®(H, K)™! = ®(K, H). Now

N

i

d(K, H) = dA7Y, .. 01 = (Z (log )\il)2> = d(A1, . \) = d(H, K).

We could alternatively observe that d = /o tr o? ologo® = Jotr o2 ologo®~ 1.

An important feature of the metric d on H is its completeness. However, for the pur-
pose of obtaining a C%-bound on h(t) under HYMF, the metric d is somewhat unwieldy
and it is convenient to consider an alternative distance measure o on ‘H. We define

o(H,K) :=tr(HK ) + tr(K'H) — 2n

and observe that much like d, o also factors through ® and ®~! in the sense that
o =tro® + tro®~! — 2n. In terms of eigenvalues of ®(H, K), we have

o(H,K) = o(A1, . M) = DN+ A7 = 2).

)
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Compared to d, o has the disadvantage that it fails to satisfy the triangle inequality and
hence does not define a genuine metric. However, d and ¢ are equivalent in the sense
that they define the same topology on H. In particular, o can be used to determine
whether a given sequence in H is Cauchy. We establish this equivalence by finding
homeomorphisms Z, © of [0, 0| such that d < ZEo 0 and 0 < © od. First observe that
we can assume all eigenvalues A; of <I>(H K) to satisfy \; > 1 since both ¢ and d are
invariant under \; )\ for any 1 < j < r. Let \; be the biggest of the \; > 1. Define
homeomorphisms gb,z/J. [1,00[— [O,oo[ via ¢(x) = logz and ¢(z) = x + 7 — 2. We
estimate

(A1, ey Ar)
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Setting Z = r-19o¢~! and © = r-¢pot~! yields the desired homeomorphisms of [0, oo[.
Now let h(t),k(t) be two one-parameter families of Hermitian metrics on E for ¢ €
[0, T solving equation (3.1). For n = k~1h it was F, — F}, = d(n~'0xn). We compute

drtr(n) = —tr(k™H(0k)k™ ) + tr(k~1(0:h))
tr([AwiFx — Aidg]|n) — tr(n [AyiF, — Nidg))
= —tr(nAwi(Fh — F))
= —tr(nif,d(n ')
= tr(nidon  (@n)n~om)) — tr(nidun " 00kn))
= il tr((@n)n " (Okn)) — tr(Ayiddgn) .

The first term is nonpositive, since it can be written as — tr(n~1iA, (1) (0n)), where
n~' is k-self-adjoint and positive definite while iA,,(3kn)(0n) = Ay (dz A dZ)na 15 =
|dz|2na,m5 is k-self-adjoint and positive semidefinite (we wrote dyn = ng, dz + 13dz,
where 75, and 75 are k-adjoint to one another). The composition of two self-adjoint
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positive semidefinite endomorphisms has nonnegative trace: if A, B are positive semidef-
inite and self-adjoint and U diagonalises A, then tr AB = tr(U*UAU* UB%B%) =
tr(AdiagUB% U*UB3U *) which can be seen to be nonnegative in a straightforward com-
putation. The second term is —tr(As kwn), where Ag o, = 00y, is the d-bundle Lapla-
cian defined by w(t) and h acting on endomorphisms of E. A quick computation shows
that the trace intertwines the bundle Laplacian and the Laplacian on functions, i.e.

trApgwn = tr(Ayiddgn)
= Ayiotr(on + [Ax,1n])
iA,00tr(n)
= Ajwtr(n)

owing to the antisymmetry of the commutator. Here A;, is the 0-Laplacian defined by
the w(t) acting on functions. This permits to estimate

((’7’t + Aw(t)) tl"(77) <0.

Reversing the roles of h and k shows that the same estimate holds for tr(n~!) and
hence also for o(h,k). By the maximum principle we then know that supy o(h, k) is
nonincreasing in t. As a byproduct this also reproves that solutions to (3.1) are unique:
Let h(0) = k(0), then supy o(h,k) = 0 and hence h(t) = k(t) for all t € [0, T7.

We now have what we need to prove

Proposition 3.4.1. If h(t) is a smooth solution to (3.1) on [0,T[, T < o, then h(t)
converges to a continuous Hermitian metric h(T) ast — T.

Proof. Let t; be a sequence in [0, 7] converging to T in [0,7]. The claim is that h(t;)
is Cauchy in the space of Hermitian metrics on E with the complete metric supy d.
Given ¢ > 0, find a § > 0 such that o(h(t),h(t')) < e for any 0 < t,t’ < §. Then
o(h(T —t"),h(T —t)) < e for any 0 < t,t' < 0 since supy o is nonincreasing. Now find
N such that ¢ > N implies T — t; < 4. O

3.4.2. An a priori C°-bound on [A,iF}|;

The first step in controlling A(t) in higher order is to bounding the contracted curvature
|Awt)iFnt) In(r) uniformly in CP. This is done using the maximum principle. In order to
compute 0| Ay )i F] h(t)|i21(t) we need some preparation.

First we remark that since A,iFy, is h-self-adjoint, one has [A,iFy |7 = tr((AyiFy)?).
Less conveniently, the base metric depends on the time parameter and we need to ex-
amine how contraction with the base metric behaves under taking derivates. On a
Riemann surface this is not too complicated since if one writes w(t) = e“@w, then
Ay = e “®A, . For a (1,1)-form «, the time-derivative of A, then simply is
OtApya = —uh,a.

Remark. On a general Kéhler manifold this formula becomes ;Ao = %Aia AW —
Apw - Ay If a = iF},, then the first term could potentially see the full curvature (and
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not only the contracted part) preventing us from applying the maximum principle to
|AwF)|%. On a Riemann surface this difficulty cannot arise.

Next we compute how the curvature behaves under the flow:

O F, = 0,0(h~toh)
= —0((h™"ah)(h™"0h)) + a(h~"a(ah))
—0((h™tosh)(h10n)) + o((h~ton)(htoh)) + do(h™'é:h)
= O([Ap,h ' 0h] + o(h ™ ouh))
= 00n(h™'0th)
= —00n\LiFy,
— —00,F)
= A0,
where in the last two steps we have used that dj, Fj, = 0 (for degree reasons on a Riemann
surface and by the Bianchi identity in general). The identities relating the different

Laplacians derived in 3.2.3 imply 2A5, Fj, = 285 1w F, = AgpwFh, so the curvature
F}, solves the bundle heat equation

(at + Aﬁ,h,w)Fh = (c% + Aé’,h,w)Fh = ((% + 1/2 . Ad,h,w)Fh =0.

In order to examine the behaviour of the contracted curvature under Hermitian Yang—
Mills flow, we use the Kéahler identities to observe

A@,h,wAw§ = Awﬁg,h,oﬁ,
Aah’w/\wf = AwAﬁ,h,wgu
Aghwho = AuAgnu§
for £ € Q?(X,End(FE)). For the contracted curvature one then obtains
1
(8t + A&,h,w)AwiFh = (6t + Aé,h,w)AwiFh = (6t + §Ad7h’w)AwiFh = —uA,iF}, .

As a last preparation, we observe that for ¢ € QY(X,End(E)) there holds

Aonw(9?) = @ Donwp + Donwp @ +ibu(p A Ohp — Onp A Op),
A57h7w(902) = - Aahw@ + Aah,wgo c o+ 1M, (0o A Onp — O A 0p) .
We abbreviate k := A,iF}, (this in not the Kéahler class containing the metrics w(t)

which we also denoted by ) and compute

(0 + Dow) |kl = tr[(0 + A pw)k?]
= 2tr[k(0 + Ao pw)k + iMy (0K A k)]
= —2utr[x?] + 2tr[iA, (0K A OpK)]

= —2i|wl — |dnls .,
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where we used the identity 2 tr[iAy, (O A Ok)] = |dpk|2 , in the last step. Since the sign
is crucial in our case, we take some space to go through the computation in detail. We
prove the more general relation for self-adjoint ¢, € Q°(X, End(E)):

(dnsp, dp ) = i tr[Au(Ope A OU + Opt) A 0p)] .

Write dpp = pzdz + padz. The endomorphisms ¢z and ¢, are then h-adjoint to each
other and the same holds when replacing ¢ by ¥. Recalling (o, 3), = *(a A %5) we
compute

(dne, dnt)nw = (9o, Yo)nldzl3 + (ez. ¥z)nld2[2, = tr[pats + Yows] *i(dz A dz)  (3.5)

on the one hand and

tr[iAy, (O A OU + Opth A 0p)] = tr[paths + Yops]Awi(dz A dZ) (3.6)

on the other. Here, A, and * coincide on the volume form w and hence on all two-forms,
so combining (3.5) and (3.6) yields the result.

The convergence assumptions on u(t) imply that Sgo supy |t| < oo, allowing the use of
the maximum principle to obtain a uniform bound on \/i|,% Indeed, the estimate

(0 + Aow)|klr < 2sup i - [

implies that the solution to J;®(t) = supy || P (t) satisfying the initial condition ®(0) =
supy [AwiFpy|? dominates |k[3, so

ot < 2(0) = 2(0)exo ( [ “sup il (9 is)

By assumption, the right hand side is uniformly bounded in ¢. We now know |Z'Fh(t)|h
and hence the curvature iF} ;) to be uniformly bounded in [0, T, even if T = o0. Since
h(t) converges to a continuous metric h(T) for ¢ — T, k also remains bounded with
respect to any reference metric, e.g. hg. It follows then from the blowup argument (cf.
Appendix C.3) that h(t) is in fact bounded uniformly on [0,7[ in C* with respect to
some fixed C'-structure.

3.4.3. Higher a priori bounds on A iF),

The principal ingredient in our proof for higher regularity is the fact that the contracted
curvature k = A, iF}, satisfies the linear parabolic PDE

1
(515 + 2Ad,h,w> K = —dfﬁ, (3.7)

where we consider the right hand side as an inhomogeneity which is a bounded continuous
section of End(E) over X x [0,T[. The nonautonomous generator 2L := Ay}, can be
expressed as B

Agnw = Ddhow + adp,i(m,-F,,) —200 [ Onym, 0+ ]
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for n = halh. The a priori C%bound on Fj, and the C'-bound on A imply that the
coefficients of L are bounded in C° on X x [0, T'[. In addition, the highest order coefficient
only depends on t via Ag p 0w = €7 “Ag hgwy» SO a constant of ellipticity of L can be found
independently of t. The idea is to use a classical inner LP and Schauder estimates to infer
boundedness of the equation’s solution, x, in higher parabolic Sobolev and Hélder spaces
which in turn will increase control over the coefficients as well as the inhomogeneity. We
will see that one can in fact bootstrap to uniformly bound x in C* for any k € Nj.

We adopt the notation and regularity result of Appendix A.4 (with End(E) taking
the role of the vector bundle E in the appendix). The initial regularity results for the
inhomogeneity —ux and the coefficients of L establish that the hypotheses of Proposition

A.4.3 are satisfied and we obtain HK/HL{Q(XTWJOC,hO) < o (technically, Proposition A.4.3

wonsho) for Xp = X x [¢,T[, but for small times, say 0 <t <¢,

smoothness of x already implies boundedness in C* for any k € Ny). Consequently,
the coefficients of L and the inhomogeneity are also bounded in L]LQ (for any p) and

only bounds HRHLTLQ(X’T

hence in C%% for a sufficiently small o > 0 by the parabolic Sobolev embedding A.4.5.
The Schauder regularity theory in Proposition A.4.4 then implies that x is bounded in
CY2%( X, we, ho), again implying the same regularity on coefficients and inhomogeneity.
Repeatedly using A.4.4, the argument can be iterated to show that s is bounded in
Ck2k: for any k (the bounds may of course grow in k). In particular, « is for any k € Ny
bounded in C*(X, w0, ho) uniformly in ¢ € [0, 7.

It remains to examine how the uniform boundedness of x in C* implies that of h or
equivalently n = hy Lh, provided n is already bounded in C'. The key lies in using (3.2)
and the Kahler identities to write

Aa,ho,wn = nAwiFh + iAw (577)77_1(5%77) - nAwiFho (3'8)

and using elliptic regularity theory in a similar fashion to the parabolic theory used above
to bound k = ALiF), in C*, k € Ny. First observe that the right hand side is bounded
in CY which gives a bound in L% of 5. For sufficiently high p, L) embeds into C**%, so
the right hand side is in fact uniformly bounded in C%“. Elliptic Schauder theory then
bounds 7 in C% and the right hand side in C%®. A bootstrapping argument then gives
the desired uniform bound on 1 in C*, k € Nj.

Remark. As an alternative to the parabolic regularity theory, one can also follow Don-
aldson’s approach and apply the maximum principle to |V*x]| hw and use induction on
k to show that V¥ is exponentially bounded. The advantage of our method is that it
also works to establish uniform C*-bounds on  uniform in ¢ € [0, ool.

3.5. Convergence for t — «©

To show convergence of h(t) as t — o0 in C*® we proceed in three steps. The first one
is to show that h(t) remains bounded in C° which is achieved by solving Hermitian
Yang—Mills flow for very special initial conditions (which require slope stability of E)
yielding a convergent one-parameter family of metrics k(t) and using the fact that o (h, k)
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is nonincreasing. In the second step we use the Donaldson functional M to construct a
sequence of times (¢;) — oo for which k(¢;) converges to Aidg in L? and conclude that
h(t) converges in C! to a wy-Hermite-Einstein he metric on E. Finally, a variation
of the parabolic regularity argument used to show long-time existence provides uniform
bounds on & in C¥, k € Ny implying that the convergence of h(t) to hy occurs in C®.

3.5.1. Uniform C°-boundedness of h(t)

We exploit that we are working over a Riemann surface by writing w(t) = By,
(as before) and the fact that [w]-slope stability implies the existence of a wy-Hermite—
Einstein metric ho. They key observation is that the conformal class of Hermitian
metrics containing he, — that is the set of metrics el ho, for a smooth real valued function
f on X — is stable under Hermitian Yang Mills flow. More specifically, if kg = ef0h,
then solving the original flow equation

k7 ok = —[e A, iF), — Midg]
is equivalent to finding an f(t) satisfying
(O + Do) f =1 —e™)A, (3.9)

with initial condition f(0) = fo. Too see this, observe that F.r, = Fj, + 0dfidg. If f
solves (3.9), set k = e/ hy and compute

ok = o.fidg
—Ayy fidp +(1 — e ") Aidg
= Ay fidp—e Ay, iFy, + Aidg
= —[Ayw (iFh, +i00fidg) — Nidg]
= —[Au@)iFr@ — Mdg].

The evolution equation (3.9) for f is just heat flow on functions with an inhomogeneity
(1—e™*) A decaying exponentially to 0 (in C®), so f converges exponentially to a constant
function and k(t) to a multiple of hy in C®. Since adding a constant to a solution of
(3.9) gives a new solution, we can arrange for this multiple to be one.

Now if h(t) with arbitrary initial condition hg is a long-time solution to HYMF, then
we can consider the C-distance measure o(h(t), k(t)), where k(t) is a solution to HYMF
starting in the conformal class as ho,. We already know that o(h(t), k(t)) is decreasing,
SO we can compute

d(h(t), heo) < d(h(t), k(1)) + d(k(t), hoo) < E(o(h(t), k(1)) +

[1]

(@ (k(t), heo))

where Z: ]Rar — Ra’ is a orientation preserving diffeomorphism comparing d to o. The
first term on the right hand side is decreasing and the second tends to 0, hence h(t) is
bounded in C? uniformly for ¢ € [0, co[.
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3.5.2. Convergence of h(t) to hy in C?

For the Kéahler metric ws we consider the Donaldson functional M defined on pairs of
Hermitian metrics which satisfies the following properties:

e for Hermitian metrics h, k, [ one has

M(h,1)+ M(l,k) = M(h, k),
e the variational property

oM (ho,h)-n = J tr[(Awy, iFp — )\idE)h_ln]woo
X

e and boundedness of M (hg,h) from below for a fixed reference metric hy and h
varying, i.e.

i%fM(ho, h) = —C(ho) .
The last property uses stability of the bundle £ — X. For a construction of M, see
Appendix C.2.
The variation of M (hg,-) in direction of Hermitian Yang—Mills flow is
atM(ho, h(t)) = - j tr[(Aww’L’Fh — )\idE)(Aw(t)iFh — )\ldE)] Woo
X
= —f tr[(AwwiFh — )\idE)(AwooiFh - )\ldE)] Woo (310)
X
— J tr[(Aw(t) — Awoo)iFh (AwmiFh — )\ldE)] Weo -
X

Reexpressing (A, — Aw,) = (e*® —1)A,,, and using the Cauchy-Schwarz inequality
on the trace in the second integral, we estimate

oM (ho,h(t) < — thr[(AwwiFh—AidE)Q]woo

ST

Waoo

+sup(e® — 1) sup(tr[(Awah(t))Q]%)f tr[(Aw, iF), — Aidg)?]
X Xt X

N

_J [ (Aw, iFjy — Nidp)?] we
: !
+C sup(eu(t) -1) (j tr[(Awy, i Fp — )\idE)Q] woc)
X X
— —A’+BA
— _A(A-B)

with A = (§ tr[(Aw,iFp—Aidg)?] ww)% and B = C'supy (e“!) —1). By the assumptions
on the convergence properties of u(t), one deduces B(t) = Csupy(e*) —1) — 0. We
consider two cases:
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o Vt > 03t' > t: A(t') — B(t') < 0. In this case there exists a sequence of times
t; — oo such that 0 < A(t;) < B(t;), so A(t;) converges to 0.

e Jt' > OVt > t': A(t) — B(t) > 0. In this case ;M (ho, h(t)) is negative for t > t'.
Since M (ho, h(t)) is bounded from below, we then know that there exists a sequence
of times t; — oo such that d;M (ho, h(t;)) converges to 0, but reexamining (3.10),
we see this is only possible if A(t;) goes to 0 (the other summand already tends to
0).

Either way, we find a sequence t; — o0, such that A(t;) = [Aw, iFp¢,) — MdE [ L2(x hwe)
converges to 0. The pointwise inner product on End(F) depends of course on h,
but since A(t) remained uniformly bounded for all times, we also have [Ay, iFp@,) —
)\ldE HLQ(X,ho,woc) — 0.

We can now rely on the usual arguments to obtain further information about h(t) as
t — 0. Since h and A F}, are bounded in C°, the blowup argument in Appendix C.3
gives boundedness of h in C*. Recall from (3.8) that

Ap howt = NAWiE, + 1Ay ()0 (Ongn) — NAwiFh, -

The right hand side is bounded in C°, so by elliptic regularity it follows that h(t) is
bounded in L (for any p). We turn back to the sequence ¢; — oo for which we had
that Aw, Fi,) — Aidg in L2. Since LY — C' compactly (for sufficiently high p), we
can assume h; to be convergent in C! by passing to a subsequence. The same formula
then implies that Ay, ,1(t;) converges in L?, so by elliptic regularity h(t;) converges in
L3. Since h(t;) is a sequence satisfying Ao Fpi) — Aidp in L?, the limit has to be a
Hermite-Einstein metric hq,. Looking again at the convergence properties of h(t), we
observe that for the particular sequence h(t;) constructed above, o(h(t;), k(t;)) converges
to 0 (after a rescaling of k(t), so that its limit is hy). But o(h(t), k(t)) is decreasing, so
h(t) converges to hy in C°. Now since h(t) is bounded in L% which embeds compactly
into C, the convergence h(t) — hy occurs in C' (by Lemma A.2.2 in Appendix A.2).

3.5.3. Convergence of Ai(t) in C*

In order to establish the convergence of h(t) in C® we show boundedness of x in C*
for any k£ € Ny by slightly modifying the argument used to show uniform bounded-
ness of k in ¢ € [0,T[. Recall that the maximum principle argument in 3.4.2 showed
boundedness of ||, uniformly for ¢ € [0,00[. Since h(t) converges in C!, this im-
plies uniform boundedness of |k|p,. By equation (3.8) Ap,n is thus bounded uni-
formly in C° for all times. Now cover {t € R|t > 0} by intervals I; = [4,5 + 2[,
7 € Ng. On each of the intervals we invoke the L]f,Q regularity estimates of Proposi-
tion A.4.3 to obtain bounds H”HLZI’Q(XX[j+s,j+2[,woc,ho) < C with a constant C' indepen-

dent of j. Since the intervals overlap and x is bounded for finite times in any CF,
we obtain that H/iHsz’Q(XX[j’j+2[7wm7h0) < C. Using the parabolic Sobolev embedding

A.4.5 then gives |k[co0.a(xx[jj+2[woho) < C- Now repeating the argument with the
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Schauder estimates of Proposition A.4.3, one has [ 5[ cr.2k.0(x < [j,j+2[we,ho) < C and in-
deed [ K] cn2k0(x % [0,00[wem,ho) < C for any k € No. In particular, h(?) is bounded in C*.
Lemma A.2.2 in Appendix A.2 then implies that the convergence of h(t) as t — oo occurs

in C%.

3.6. Exponentiality of Convergence

The main result of this section is the following exponentiality result:

Proposition 3.6.1. Under the assumptions in Theorem 3.1.1, the renormalised con-
tracted curvature defined by a solution h(t) to time-dependent Hermitian Yang—Mills
flow, k := AyiFy — ANidg = k — Aidg, tends to zero at an exponential rate in each
C'. More precisely, for each | € N there exist positive constants Cj, oy, such that
HAwiFh — Aidg HCL(X) < Clefalt.

The idea of the proof is to show that the positive L2-products (%, Ak/%>h7w decay
exponentially and deduce that all L%—norms of K tends to 0 exponentially fast. Sobolev
embeddings into C! then give the behaviour as claimed.

Once the exponential decay of % is established, one then deduces exponential conver-
gence of h(t) as follows. Fix a k € Ny. Since h(t) is bounded in C* and ;h = —h#,
one obtains that 0;h and its k' spatial derivatives tend to zero at an exponential rate.
Estimating heo — h(t) = §°(0;h)(s) ds then implies that h(t) — he and its kP spatial
derivatives also tend to zero exponentially.

Some technical preparation is required to establish the claimed decay properties of &.

3.6.1. Poincaré-Inequality on Q°(X,End(F))

Throughout this section let A = Ay, denote the full d-Laplacian on QY(X, End(E)) or
occasionally on Q!(X,End(E)) defined by w and h. We claim that A*%(t), k > 0 is L2-
orthogonal (with respect to the metrics w(t), h(t)) to the kernel of dj for any t € [0, oof.
For k > 0 this follows from the self-adjointness of A and for k = 0 from the fact that the
only holomorphic endomorphisms of [w]-stable bundles over compact Kéahler manifolds
(X,w) are multiples of idg. As the kernel of dy, is contained in H(X,End(E)), we find
ker dy: Q°(X,End(E)) — QY(X,End(E)) = {cidg |c € C} and compute

<I~€,idE>h7w = f tr(AwiFp — Aidg)w =0
X

to prove our claim. The importance in this observation lies in the fact that we have
Poincaré-inequalities

IR 12y < CLAWAR 2 pss [dRAME] 12 < CIARR] 12,

where the constant C' can be chosen independent of ¢t since convergence of the metrics
h(t) and w(t) in C* implies convergence of the spectrum of their associated Laplacians.

Furthermore one has elliptic estimates of the form
k ~
hew < K[AYE[ L2 4,

Il3,
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where K depends on k but can again be chosen independently of ¢.

3.6.2. Time dependence of the Laplacian

When taking the pointwise inner product of endomorphisms «, 8 € Q°(X,End(E)), the
real part of (a, 8)p,, is given by the product of the self-adjoint parts of a and 3 while the
imaginary part is the product of their skew-adjoint parts. The mixed products vanish.
The same is true for the L?-product. In our case we will only care about the real part
and it is useful to split time-derivatives of A¥% into self-adjoint and skew parts.

Let a(t) be a smooth one-parameter family in Q°(X,End(E)). If h is a smooth path
of Hermitian metrics on E with h=1d;h = p, then

(0e)" = ar(a”) + [p,a"].

If in addition «(t) is h(t)-self-adjoint for each ¢, then

dror = <8toz + %[p, a]> - %[p, ol

where the first summand is the h-self-adjoint and the second the h-skew-adjoint. In our
case we have p = —K and a computation gives

1 1
Ao = [—HAQ + A <0'z - 2[/@,04]) + 1Ay [dpk, dha]] + 5[%, Aa],

where the two summands represent again the self- and skew-adjoint parts. Now induction
on k shows that

k—1 k
—%Akﬂn + > AiA[dyk, dp AR R = AT (uM—jn)] +
j=0 j=0

oAk = [k, AFK] .

N

(3.11)
Note that one can replace x by K in this formula and that the first summand is again
self-adjoint while the second is skew. Using the Kéahler identities we can simplify the
expression 1A, [dyr, d,A¥ 7177 k] a bit. One finds that for o, 3 € Q°(X, End(E)) it is

iAw[dhaa dhﬁ] = d;':[(g - ah)aa 6] + [adﬁ a, B] )
which in the case at hand gives

iN[dpk, dn AR R = dE[(0 — o)k, AFTITTR]. (3.12)

3.6.3. Time-derivatives of (7, A*%), ,

We use (3.11) to compute the time-derivative of the positive expression fj, := (&, A* R)hw-
The positivity stems from the self-adjointness of the Laplacians which permits to write
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the L%-product as |AF/2%|2 if k is even or |dAF~D/2k|2 if k is odd. One obtains
(omitting the subscripts of the pointwise inner product (-,-)) that

R, Aoy = & f (7, AFR) w
X

f(&tf%, AFR)w +J (R, O AFR) w +f (&, A*R)uw
X X

k
- f (7, A Ry w — > f (R, A (WA TR)) w (3.13)
X j=0JX
k—1 ‘ '
+ ] f (R AiA[dpi, dy AF TR w .
i=0"X

FExamining the terms a bit closer one can find the symmetries

J (R, A (GAR 7)) w :J (7, AF (4ATR)) w (3.14)
X X

via integration by parts. Less obvious are the symmetries

f (R, AiM,[dpf, dy AF 1T R]) w :f (7, AR=YZ0GA L [dp e, dp A R)) w (3.15)
X X

One way to see them is to compute
k
AR, ARy, = —f (7, AR w — Y] f (R, AT (AR 7)) o
X Reur W p'e

-1
+ ] f (AP E A [dp i, dp AT R]) w
m=0"vX

k—I—1
+ ] J(A”m/%,iAw[dh/%,dhAk_l_l_m/%])w.
m=0 YX

As the left hand side and the first two terms on the right hand side agree for all [ =
0,---,k, so do the remaining terms. Taking their difference for [ = j and [ = j 41 yields
the desired relations.

We now estimate the terms of (3.13) separately.

e For the leading order term — § (%, AFIR) w = — f.41 we simply use the Poincaré-
inequality fr < Cfri1, SO

—f (7R, AF R w < —C7L .
X



56 3. Time-Dependent Hermitian Yang—Mills Flow

e To estimate the absolute value of the second term, we can estimate each summand
§y (%, AJ (@A) w individually. Using the symmetry (3.14) we may assume
Jj=k/2. If k =2q is even, then

JX (7, A (AR 7)) w

L(Aqa, ATTUUA2TIR)) w

< A% 12| ATTGAMTIR) 1
< LPNAIR| g

< S elilag-o A% Ry,
< £ el g0 |17l 2

< S PeK i oai-0 | AT 2

cK|li] a0 - fio-

Similarly, if £ = 2¢ + 1 is odd, then

f (7, A (AFT 7)) w = J (A7, dy AT~ (GA2TT 7))
X X

< dRATR (2] dp AT @AY TR 1
1/2) - A2q—j =

< fi |luA "LHLég-_q)H
1/2 - —Jg

< fRPeliloa-on |A% TRl
1/2 4. pa

< fk/ C\|u\|c2(j—q)+1H“HLﬁ+1

1/2 . .
< fPPeK il cag-o |dn AR 12
= CKHQHC2(J‘7¢1)+1 k-
We keep in mind that ||i]|o1 — 0 as ¢ — oo for any .

e The remaining terms can be estimated quite crudely by recalling that we already
know that |A'%| — 0 as t — oo for any . We use the symmetry (3.15) to assume
that j < (k—1)/2. If k = 2¢ + 1 is odd, then using (3.12) we compute

f(/%,AjiAw[th,dh%qu_j/%])w _ f (dy AT, [(3 — Op)F A2T7])
X X

. _ B
< HdhA]ffH[; (J ‘adAQq—jg(a — 8h)f?a]2w>
X
1
. 2 12 2
< il ([ Jadsar - i)
X
< | dp AR 2 | di R 12 S;p | ada2a—i7 |op
< Cldp A% 12| dp AR 12 sup | ad a2a-i7 |op
X
<

C Sup | ad a2a-i |op - fi -
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If £ = 2q is even and ¢ > 1, it suffices to simply replace all instances of 2q — j by
2¢—1—j in the previous computation. Note that the prefactor C'supy |adaz¢—iz |op
of fi is also a function tending to 0 as t — 0.

Combing the estimates for each term one finally obtains

Orfe < —C i +71- fi,

where 7 is a smooth function of ¢ converging to 0 as t — 0. Pick t’ sufficiently big such
that for all ¢ > ' one has —C~! + r(t) < —C~!/2. Then for ¢t > ' one has

1

Orfr < 50

Tk

implying fr < Ae™ with a = 1/2C and A sufficiently big such that the inequality also
holds for 0 < ¢t < ¢’. This means that H'%HLi,h,w tends exponentially to 0. Again, w(t)
and h(t) converge in C®, so ||&| L2 how, €Xhibit the same exponential decay. Choosing k
sufficiently large so that L% < (! proves exponential convergence in C* for any k € Ny

concluding the proof of Proposition 3.6.1.






4. Geometric Motivation and Adiabatic
Limits

4.1. Introduction

The objective of this chapter is to motivate the development of twisted Calabi flow and
time-dependent Hermitian Yang—Mills flow carried out in chapters 2 and 3 by showing
that they arise naturally in the construction of adiabatic approximations to Calabi flow
on certain fibrations.

Given a holomorphic submersion 7: Z — X between two compact complex manifolds,
the fibres Z, := 7~ ({x}) are complex submanifolds of Z. Fibres over different points
are always diffeomorphic, but need not be biholomorphic — their complex structures can
change along the base. Assuming that X is Kéhler and that there exists a holomorphic
line bundle . — Z admitting a Hermitian metric with fibrewise positive curvature, one
can construct Kahler structures on Z as follows. Let wy be a Kéhler form on the base
and h be a Hermitian metric on L with curvature F}, such that wg := iF} /27 is positive
when restricted to the fibres. For r € R sufficiently big, w, := wg + 7*rwx is a closed
and positive (1,1)-form on Z and hence Kéhler. Moreover, with growing r, the base
becomes approximately flat and one expects the curvature of (Z,w,) to be dominated
by that of the fibres. Indeed, formally expanding the scalar curvature S(w,) into powers
of 1, one finds that the leading order r’-coefficient is given by the scalar curvature of
the fibre whereas the scalar curvature of the base appears in the coefficient of 1.

If the fibres Z, admit cscK metrics in ¢1(L|z,), one might attempt to find a cscK
metric on the total space Z by having wq restrict to the canonical metrics on each fibre
and making r very large, hoping to be able to perturb w, to a cscK metric using the
inverse function theorem. However, this procedure turns out to be too naive. The reason
for its failure lies in the interplay of the adiabatic geometry of (Z,w,) and the analytic
details of the inverse function theorem. Roughly speaking, if ®,.: A — B are the maps
from a suitable Banach space A of perturbations of w, to a Banach space B such that the
norm of ®,(¢)) measures the deficiency of the metric w, perturbed by 1 having constant
scalar curvature, then a cscK metric on Z corresponds to a zero of ®,. The curvature
analysis can be translated to ||®,(0)|p = O(r~!) and provided that (d®,)o is surjective,
the inverse function theorem guarantees the existence of a ball around ®,.(0) onto which
®,. maps surjectively. It turns out that the radius of that ball decreases like r—* for some
s > 0, so one cannot guarantee that it contains 0 € B, no matter the size of r. In order to
make the inverse function argument work, one needs to construct better approximations
wyk, such that the corresponding maps satisfy ||®, (0)|5 = O(r~*+b) for k > s — 1.

A more precise analysis of the 7~1 coefficient of S(w,) reveals that it is the sum of the
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scalar curvature of (X,wy) and a term reflecting how the moduli and fibrewise metrics
change along the base. To construct the next best approximation w1, one thus needs
to modify the base metric to account for this basepoint dependence of the fibrewise
structures. This amounts to solving a nonlinear elliptic equation that resembles that
characterising a canonical metric on the base, modified by a twist reflecting the structure
of the fibres. Subsequent approximations w,j, k& > 1 can then be obtained by solving
linear elliptic PDEs.

These ideas have been exploited by Fine [13, 14] and Hong [22]. Using the above
adiabatic scheme, Fine constructed cscK metrics on the total space of Kodaira surfaces,
i.e. X and the fibres of Z — X are Riemann surfaces of genus > 2, while Hong does
the same on projectivised stable holomorphic vector bundles over compact Kahler man-
ifolds. We consider a parabolic version of the adiabatic limits in these cases, where
the elliptic problems of finding metrics w,; approximating a cscK metric up to order
O(r~F) are replaced by the parabolic problems of finding paths of metrics wy, i (t) rep-
resenting O(r~*) approximations to Calabi flow on Z. The w, 1 (t) are given as exact
solutions to approximative equations which are defined by demanding that the defect
Orwr g (t) + 1005 (wrs(t)) of wyx(t) solving Calabi flow be O(r~*+1). The precise forms
of the approximative equations are derived below. We show that the 15 order approxi-
mations wy 1 (t) naturally lead to twisted Calabi flow in the case of Kodaira surfaces' and
time-dependent Hermitian Yang-Mills flow in the case of ruled manifolds (projectivised
bundles).

4.2. General Adiabatic Setup

We want to establish a precise notion of adiabatic limits in a general context and compute
a pointwise expansion of scalar curvature of the adiabatic metrics w, in powers of .
Some preparation is required.

4.2.1. Notation and Basic Properties

Denote by Z, X compact connected complex manifolds and by 7: Z — X a holomorphic
submersion. The fibres Z, = 7 !({z}) are complex submanifolds of Z whose holo-
morphic inclusions Z, < Z are denoted by t,. The wvertical bundle V := kerdn is a
holomorphic subbundle of T'Z and its fibrewise restrictions ¢;V are isomorphic to the
tangent bundle T'Z, of the fibres. With the help of a real (1,1)-form wp on Z whose
fibrewise restrictions are nondegenerate one can define a complement to V in T'Z:

H:={weTZ|VveV:wy(w,v)=0}.

Lemma 4.2.1. A fibrewise nondegenerate two-form wq induces a splitting TZ =V ® H
of complex vector bundles.

!Unfortunately, the results of Chapter 2 are not strong enough. It is not evident that the twist appearing
in the adiabatic analysis should be negative semidefinite. In addition, its cohomology class may vary
in time.
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Proof. The pointwise splittings TZ, = V, @ H, are linear algebra, but it remains to
see that the splitting is one vector bundles. As the kernel of dm, V is manifestly a
holomorphic subbundle of TZ. Over suitable open subsets U < Z one can find smooth
frames of V' given by local sections {x;} and {y;} of T'Z such that wy(z;,y;) = d;; (one
way to do this is to write Z as a local product of an open set of X with the underlying
real manifold N of the fibres Z,. In product charts, one can then simply Gram—Schmidt
the coordinate vector fields of the N-coordinates with respect to the pseudo Riemannian
metric wo(-, J+) with the X-coordinates as a parameter). For a tangent vector ( € TZ
set

D (wol=i, Qyi — wolyi, i)

%

pry/(¢)
prY = id—pr{ .

This defines local projection maps of T'Z to V and H respectively which in fact do not
depend on the chosen coordinates so long as wo(x;, y;) = 6;; and hence extend to smooth
sections pry, and pry of End(7'Z). Checking that H = ker pry, then shows that H is
a real subvectorbundle of T'Z. Since wy is J-invariant, so is H, making it a complex
subvectorbundle of T'Z. O

We call H the horizontal bundle and remark that splitting TZ = V @ H defines a
decomposition of differential forms induced by A*(V*@H*) = @, =k AV*QA H*. For
a two-form o we write @ = ayy +agg + ay g for its decomposition into vertical-vertical,
horizontal-horizontal and vertical-horizontal components.

For later use we also observe that the splitting of T'Z into horizontal and vertical
subspaces defines a connection on the fibration 7: Z — X. In particular, one can define
its curvature to be the two-form F' on X with values in vertical vector fields (sections
of V') constructed as follows. Given £1,&2 € Tr(,) X, extended locally to vector fields, set

F(&,&) = [El, {ﬂvm = [El, 52] — [E,\{g], where 2 denotes the unique horizontal lift of
& € TX to H. This corresponds to the notion of curvature as infinitesimal holonomy
around loops on the base.

For the adiabatic setup, a suitable wy should in addition be closed, of type (1,1) and
positive on each fibre in addition to being fibrewise nondegenerate. In the two cases we
consider, such forms arise as the curvature of a holomorphic line bundle over Z:

Definition 4.2.2. A holomorphic line bundle L — Z is called relatively positive if there
exists a Hermitian structure h on L whose curvature wy = i/(2m)F}, is positive on each
fibre Z, of Z.

Forms wg with these properties can be used to construct Kahler metrics on Z provided
that the base X is Kahler.

Lemma 4.2.3. If wy is a closed (1,1)-form on Z which is fibrewise positive and wx 1is
a Kdhler form on X, then for all sufficiently large r, w, := wo +r7*wx defines a Kihler
form on Z.
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Proof. The forms wg and wx are closed and J-invariant. Since 7 is holomorphic and
the exterior derivative commutes with pullbacks, the same is true for 7*wx and hence
for w,. The vertical-horizontal decomposition of w, is given by w, = woyy + (Wogy +
rm*wx). Note that by definition of H, w, has no vertical-horizontal component. As the
decomposition TZ = V @ H is J-invariant, it suffices to check that both the vertical-
vertical piece wgyy and the horizontal-horizontal piece wopy + rm*wx are positive for
sufficiently large r. For wgy -y this is true by assumption. For the horizontal-horizontal
component consider the compact unit tangent bundle UT X < T X with respect to the
metric gx = wx (-, J,-) and pull it back to UTX < H via horizontal lifts. Since the fibres
of Z are compact, this is a compact subset of H and it suffices to check positivity of
wogy +rr¥*wx on UTX. Denote by a the minimum of the function w — wog g (w, Jw)
on UTX and choose r > —a. Then (wogg +rmwx)(w, Jw) > 0 on UTX and hence on
all of E. O

The cohomology classes k, := [wp] + r[r*wx] are called adiabatic classes. Assuming
wo is the curvature of a relatively positive line bundle L — Z and the base X is polarised
by a line bundle @ — X such that wx € ¢1(Q), then Z is polarised by the line bundle
L®7m*Q" and k, = ¢1 (L ® 7m*Q") for r large enough to imply that «, is a Kéhler class.
We shall henceforth make these assumptions.

4.2.2. Geometry of the Vertical-Horizontal Splitting

Via the splitting TZ = V@ H one can define several geometric operations that are useful
in computing the scalar curvature of the metrics w, in terms of data on the base and
on the fibres. Let n be the (complex) dimension of X and n + k that of Z. We denote
by 0, = tiwp the fibrewise restriction of wy to Z, and permit the occasional omission of
the basepoint-specifying subscript as well as the identification woyy = o. For o € A2V*
and B € A2H* define the vertical and horizontal contractions as

a Aokl
Ava = kik,
o
B A W*w’j‘{l
ApB = n——p—"—
W

and the corresponding vertical and horizontal Laplacians by

Avf = Ay(iddf)vv,
Agf = AH(Zéaf)HH

for a function f on Z. One has the compatibility rules Agn*g = 7*A,,, g for g € C*(X)
and Ay, (¢5f) = E(Ay f) for f e C*(Z), where A,, is the Laplacian on the fibre Z,
defined by the metric o,. This is to say that Ay are the fibrewise Laplacians with respect
to the metrics o on the fibres and Ay is the pullback of the Laplacian on X. Next we
examine how Ay, Ay, Ay and Ay behave under changes of the adiabatic parameter r.
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Lemma 4.2.4. For a € A2°T*Z one has
Ay, = Ayayy + r ' Agapn + O(T_Q) .

Proof. In light of the splitting w, = wyyy + wrgy = 0 + (r7T*wx + wogy) it is

n+k n+k
w,’?+k = ( ; )wr{f/vAwr?{H=< " >0k/\(r7r*wx+w0HH)”
n+k—1
Wtk = ( . )akA(rﬂ*wX+w0HH)"l
n+k—1
< b1 )Jk_lA(rW*wX—i—oJOHH)",

with which one obtains

a A w;}+k—1

A, = (n+k
( ) w;z+k

avy AP A (rmfwyx + wore)"

= k
ok A (rm*wx + wogp)™

agg Aok A (rr*wx + wOHH)"_l

ok A (rr*wx + wors)™
= Avayy + Arﬂ*wx-i-onHO‘HH .

Setting s = 7! the second term can be written as

 CLHH N of A (rm*wx + wore)" ! o HH (m*wx + swopm)"
(m*wx + swog )"

ok A (rm*wx + wopg)”
from where differentiation at s = 0 yields
Aprtos +wogn @ =1 "Agagm + O(r™?)
as claimed. 0

Lemma 4.2.5. The w,-Laplacian on functions satisfies the following adiabatic expansion

property:
A, = Ay +r 1Ay +0(r7?).

Proof. Ttis Ay, f = Ay, i00f. The claim follows from the adiabatic expansion properties
of Ay, O

4.2.3. Scalar Curvature Expansion of Adiabatic Metrics

We now derive the scalar curvature expansion of the adiabatic metrics w, into inverse
powers of the adiabatic parameter r. Recall that on a K&hler manifold (Y, w) of dimen-
sion n the Ricci curvature is J-invariant and defines a closed (1, 1)-form, the Kahler—Ricci
form p(w), which is related to the Ricci tensor in the same way the Kéhler form w is
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related to the metric g. Moreover, p(w) can be computed as i times the curvature of the
anticanonical bundle K* = A™(TY, J) endowed with the Hermitian metric h = (n!)~tw"
given by the volume form seen as a section of K ® K (here K means reversing the sign
of the complex structure).

Lemma 4.2.6. The scalar curvature of w, satisfies
S(wr) = 8(0) +r ' [r*S(wx) + Av(Agwopn) + iMgFaryg ) + O %), (41)

where Fyky , is the curvature of the vertical anticanonical bundle ARV with Hermitian
metric induced by o.

Proof. We define Hermitian metrics on A*V and A™H by

hy = (k)" Hwn)by = (k)"
hg = ()N w)fg = ()7 (rmfwx + worn)”,
hx = (n)'n*w%.

The Kéahler—Ricci form of Z is 7 times the curvature of the anticanonical bundle K* =
A"V ® A"H with Hermitian metric hy ® hy which is locally given by

p(w,) = iddloghy @ hy
= i0dlog hy + i00log(m*wx + r twory)"”
= i00log hy + i0dlog((m*wx)™ + nr twopy A Wyt + O™ ?))
= i0dloghy +id0log([1 + r 'Agwory + O(r~)]hx)
= i00loghy + iddloghx + r Yidd(Agwory) + O(r~?).

Observing that i00loghy = 7*p(wx) is purely horizontal-horizontal and in light of
Lemma 4.2.4 one then computes

S(wr) = Aw.p(wr)
= Avpw)vyv + 1 Agp(wr) g + O(r?)
= Ay(iddloghy)vv
+ AV (i80(Anwo ) vy + A (id01og hy )i + Agiddlog hy] + O(r2)
= S(o)+r Ay (Agworn) + NG Fpkyo gy + 7S (wx)] + O(r2)

which is as claimed. O

Remark. It will later occur that wy and wx individually depend on r. In this case,
one can first use the above expansion of S(w,) ignoring the individual r dependencies
of wp and wyx and subsequently expand each term still depending on r into powers of
r~1. Owing to the analyticity of all involved operations, the resulting terms can then be
grouped according to their powers of 7~! to yield the full expansion of S(w;). In essence,
this is just the chain rule for composite functions.



4.3. Adiabatic Scheme for Kodaira Surfaces 65

We want to use this expansion to construct approximations to Calabi flow on Z in the
adiabatic classes k, = ¢1(L® 7*Q").

Definition 4.2.7. Let k € Ny. A family of smooth paths of Kéhler metrics w, () in &,
is said to be a (pointwise) order k or O(r~*) approximation to Calabi flow with initial
condition w; if

Owr g (t) + 1008 (wy k(1)) = (’)(r_(k+1))
and wy.x(0) = wy.

Remark. The term “initial condition” might be slightly confusing in this context, as
the initial metric depends on the adiabatic parameter r. However, this dependence is
given by w, = wp + rr*wx and fixing both wy and wyx prescribes initial data w, in each
class k. From here on, if no explicit mention is made to the contrary, the initial data
are understood to be of this form.

The following sections exploit specific features of two types of complex manifolds Z
fitting into the adiabatic framework and outline the construction of approximations to
Calabi flow of arbitrary order in 7~! in these cases. The first type consists of Kodaira
surfaces and the second of ruled manifolds. In light of the wealth of geometric data in
both cases, it is useful to think of the construction of approximations w x(t) in terms of
a scheme indexed by 7:

e A fibrewise positive two-form wg and a Kahler form wx on the base define the
following data: the metric w, = wg + ro7*wx, the splitting TZ = V @ H and the
corresponding contractions and operators, a family of fibrewise metrics o and the
scalar curvatures of the base, the fibres and the total space. The forms wy and wx
may also individually depend on 7.

e From this data elements in the tangent spaces to wy and wx are constructed
prescribing their infinitesimal evolution. The construction of infinitesimal changes
may explicitly depend on r.

e After the infinitesimal evolution, the forms wy and wx have changed and along
with them all dependent quantities outlined in the first point, in particular w..

4.3. Adiabatic Scheme for Kodaira Surfaces

In [13] J. Fine used elliptic adiabatic techniques to construct cscK metrics on Kodaira
surfaces, i.e. compact complex surfaces Z admitting a holomorphic submersion 7: Z —
X to a Riemann surface. The additional requirement that the fibres have genus at least
2 ensures that the fibres admit no nonzero holomorphic vector fields and that the cscK
metrics thereon are unique in each Kéhler class. In an analysis similar to that of [13],
we derive for each k£ € N parabolic equations for families of metrics w, (t) that agree

(pointwise) with Calabi flow up to order k in 7%,
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For the remainder of this section 7: Z — X denotes such a Kodaira surface with high
genus fibres and base. We begin by showing that Z admits a relatively positive line
bundle and the previously presented adiabatic framework can be applied.

Proposition 4.3.1. Denote by V := ker dn the vertical bundle of the fibration 7w: Z —
X. The relative canonical bundle V* — Z is relatively positive.

Proof. The restriction of V* to a fibre Z, is the canonical bundle of that fibre which
is positive owing to the genus assumption g(Z;) > 2. Indeed, it is §, c1(Kz,) =
—§, c1(Z:) = —=2x(Z2) = 4(g — 1) > 0 and hence ¢1(Kz,) € H"' (X, Z) is positive. By
the uniformisation theorem, there exists a unique Kéahler metric with constant negative
scalar curvature in ¢ (Kz,) which can be interpreted as a negatively curved Hermitian
structure on 7'Z,. The induced Hermitian structure on Ky, = T*Z, thus is positively
curved. It is standard that the constant scalar curvature metrics with given volume on a
Riemann surface depend smoothly on the complex structure, so the induced Hermitian
structures on Kz, smoothly piece together to a Hermitian structure on V* (cf. e.g.
[14]).

Alternatively, one can pick any J-invariant Riemannian metric g on Z such that its
fundamental two-form w has fibrewise restrictions o, := w|z, € ¢1(Kz, ). Since the
restriction of g to a fibre is necessarily Kéhler, one has that o, > 0. The two-form w
itself need not be closed, but making a smooth choice of Hermitian metrics hy on V*|z,
such that i/(27)Fj, = 0, and then gluing the h, to a Hermitian metric h on V* yields
a closed two-form wy € ¢1(V*) with fibrewise restrictions o. O

We fix an initial Hermitian metric h on V* with curvature wg := i/(27)F}, having
fibrewise positive restrictions. It is also natural to assume that the initial base metric
lies in 1 (Kx) € H“'(X,Z) (this can be achieved by rescaling). The Kéhler manifold Z
is then polarised by V* ® 7* K’ for large r. Lemma 4.2.6 is applicable to the metrics
wy 1= wo + rr*wy € ¢ (V* @ m* K% ) and the scalar curvature expansion can be used to
define approximations to Calabi flow on Z.

4.3.1. 0*" Order Approximation to Calabi Flow

The order O(r°) approximation to Calabi flow on Z is given by fibrewise Calabi flow. For
z € X denote by h; the Hermitian product on the line bundle Kx, — Z, obtained by
restricting h and V* to Z,. By assumption o, = i/(27)F}, is a Kéhler form on Z, and
Calabi flow on that fibre is given by 6,0, = —i00S(0,,). Locally expressing the curvature
of h, as Fj,, = ddlog h,, fibrewise Calabi flow can be written as d;h, = 2mS(0,)h,. By
[8] and [5], that flow exists for all times and its solution h;(t) depends smoothly on the
initial conditions and the complex structure on the fibre. This implies that the hy(t)
piece together to a smooth Hermitian metric h(t) on V*. Denote by wo(t) = i/(27) Fj,)
the rescaled curvature of h(t) and set

wro(t) := wo(t) + rr¥wx .
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It remains to check that wy.o(t) is the desired O(r?) approximation to Calabi flow. Indeed,

Droro(t) + 1008 (wro(t)) iach +1008 (wro(t))

i h
= 5005 + 1008 (wro (1))

= 100(=S(0) + S(wro(t)))

= O(T_l) )
where in the last step we used the scalar curvature expansion of Lemma 4.2.6. As the
fibrewise restrictions hy(t) converge for t — o0, so does h(t).

Remark. As the horizontal-horizontal parts of wy(t) can change, it is not a priori clear
that wyo(t) remains positive for all t. However, since wp(t) converges, its horizontal-
horizontal part varies in a compact family. The arguments in Lemma 4.2.3 can thus
be adapted to hold uniformly in ¢, albeit for a possibly larger threshold for r. Similar
situations arise throughout the analysis and we tacitly treat them the same way without
explicit mention.

4.3.2. 1% Order Approximation to Calabi Flow
Denote by 11 the r~! term in the expansion of S(w;. o) which is given by
Y1 = 1*S(wx) + Av(Apworn) + iIAgFve gy -

The fibrewise metrics o define an r-independent, L?(Z,w,)-orthogonal decomposition
C*(Z) = m*C*(X) @ CT(Z) of functions on Z into functions pulling back from the
base and those having fibrewise zero integral. Let ¢y = 1| 1+ x 1 be the corresponding
decomposition of 1. The part pulling back from the base is given by

bxa(@) = Vol(Zo) ' [ w1 0w = 7S () + Vol(Z,) ! f (AiFyo ) O
A T

The rightmost term can be expressed as A;lAwXW*(iFuU A o), where A, = Vol(Z;)
and m, denotes the pushdown of forms on Z to forms on X which is characterised by
§x 0 Amen =§,7%0 A n for forms 6 € Q/(X) and n e Q*(Z). We set

=AM (iFv, A o) € QX(X)

and observe that a depends only on the fibrewise restrictions o of wg. Suppose wx solves
the twisted Calabi flow equation

(Quwx)(t) = =r~2i00(S (wx (1)) + Ay ma(t))
then the path of Kéhler metrics
Wg = wo(t) + rr*wx (t)

satisfies B B
Opwy. o + 1008 (wy.g) = r1idow, 1 + O(r?)

and thus gives an O(r~1) approximation to Calabi flow up to the remaining term t ;.
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Remark. Unfortunately, the results of Chapter 2 are not directly applicable, since we do
not know whether the twist « is pointwise nonpositive or stays within a given cohomology
class.

To deal with this remaining error at r—!, we add a time-dependent Kéhler potential
¢1.1 with Szx ¢1,10: = 0to wy, and set

Wr1 1= Wy + r1iddg, 1 .

The effect of adding the Kahler potential r~1¢ 1,1 on the scalar curvature can be deter-
mined by expanding

S(wr1) = S(wyg) + r1d SCur L1+ o(r ).

Using the general equation for the linearisation of the scalar curvature map found in
Appendix A.3 and expanding the r-dependent quantities into powers of r using Lemma
4.2.5 and the formulae in Lemma 4.2.6 one finds that

i00¢1 1 A p(w.o)

2
dScy d11 = AL du1— S(w o)Ay br1+2 —
5 T, s T,O

AVoL1—S(0)Avry+ O™, (4.2)

so in leading order, the linearisation of the scalar curvature map is the linearised fibre-
wise scalar curvature. Setting Do := Aj, — S(0)Ay, this implies S(wy1) = S(w).) +
r_lDogbL,l +O(r=2), so if @11 solves the linear parabolic equation

(0t + Do)pr1 = —v11 (4.3)
with initial condition ¢ 1(0) = 0, then one has
Qw1 + 1008 (wp1) = 17 1i00(0ep 11 + Dodry + 1) + O(r?) = O(r~?)
and wy.1 is the desired O(r~!) approximation to Calabi flow.

Remark. The fibres have no holomorphic vector fields, so generically ker Dy consists
of fibrewise constant functions and the inhomogeneity —1| ; is orthogonal to kerp,.
Moreover, as the fibrewise metrics o(t) converge as t — o, so does the generator Dy of
(4.3). The solution ¢ ; to (4.3) can thus be expected to converge.

4.3.3. 2" Order Approximation to Calabi Flow

Denote by 15 the 72 coefficient function of the expansion of S(wy,1) into powers of r~*
and by ¥s = 1x 2 + 1| 2 its decomposition according to C*(Z) = n*C*(X) @ CF(Z)
defined by o(t). Each of the two terms will be dealt with by adding appropriate Kéahler
potentials to wy 1. This requires more detailed knowledge of how Kahler potentials in
m*C*®(X) and CP(Z) affect the scalar curvature.
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Since the leading order term of the scalar curvature expansion (4.1) is the fibrewise
curvature S(o), adding a potential r~7idd¢, to w;. o with ¢, € CF(Z) entails a change
in the total scalar curvature whose lowest order contribution in 7 is given by the lin-
earisation of the fibrewise scalar curvature map, i.e. 77 Dopy = r~7 (A2, — S(0)Av)d, .
Higher orders in 7~! of course also undergo changes. This is merely a slight variation of
the required modification for passing from W;,O to wyr 1.

The situation changes if the Kéhler potential is pulled back from the base. Adding
a potential i00¢x to wéo = wy + ro*wy is the same as replacing the base metric wy
by wx + r1iddf, where f satisfies 7*f = ¢x. The lowest order in which the scalar
curvature of wy. ; is sensitive to the base metric is 71, so the addition of r~1iddf to wx

2

affects S(wy0) only from order =2 onwards with the change being the r=2 part of

rH[r*S(wx +r7Yidof) + Ay (Ngworn) + iMNg Fve ]

where A is horizontal contraction defined by wx + r~1400f. Linearising the above
expression shows that this 72 part is given by

(AL f = S(wx)Auy f) + (Av(Agworn) + iAgFyg )7 Auy f
and we set Dx¢x to be the 7*C*(X) part of this, i.e.

Dxox = Ayox — 7 S(wx)Agdx + *me(Av (Apworrs) + iMg Fuo ) Andx -

The upshot of this analysis is that the modification of w%o by i00¢x entails an O(r—2)

change in the scalar curvature, the 7*C%(X)-part of which is Dx¢x in order r~2.

Adding the Kihler potential r—7i00¢x instead, all changes to the scalar curvature are
O(r~U+2) with the order r~U*2) change in 7*C*(X) being Dx¢x.
With these preparations we can define second and higher order order approximations
to Calabi flow. Set
w%l =wr1 + iéa(ﬁxg

with ¢x 2 € 7*C®(X) solving the fourth order linear parabolic equation

(515 + Dx)gbxg = _wX,Q (4.4)

with initial condition ¢x2(0) = 0. By construction one has dw); + i00S(w) ;) =
r72i00y o, + O(r=3), where /| , is the sum of 1| o and the additional error term in

CP(2) at r~2 due to the Kihler potential ié(?d)x,g. Now have ¢ o solve the linear
parabolic equation

(0t + Do)p12 = =) o,
again with initial condition ¢ 2(0) = 0. The path of Ké&hler metrics

Wrg 1= w;J + T_Qi(?@qbig

)

then is an O(r~2) approximation to Calabi flow.
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4.3.4. Higher Order Approximation to Calabi Flow

The method for obtaining the 2°4 order approximation can be used inductively to con-
struct higher order approximations. Suppose that

k k
Wrk = Wyg + Z rYiddp) | + 2 r*(lfz)z?&qﬁxyl
=1 =2

is an O(r~*) approximation to Calabi flow, where the 1) 1, have fibrewise zero integral
and ¢x,; are pulled back from the base. Denote by ¥ny1 = ¥x 41 + Y1 g4+1 the de-
composition of the r~**1) term in S(w,;) into summands in 7*C®(X) and C¥(Z).
Have ¢x j4+1 solve (0; + Dx)¢pxr+1 = —¥xk+1 with zero initial condition and set
w;’k = Wk + r_(k_l)igagb)(,kﬂ. As for the corresponding correction term in the 274
order approximation, the addition of the Kahler potential ¢x ;11 at order r—* =1 only

affects the scalar curvature at order (k + 1) and higher in r~!. Denote wli,kﬂ to be

the order 7~(**1) term in the scalar curvature of w;’k and let ¢ ;11 be the solution to
(0t + Do)d1 k41 = _¢l7k+1- Thenx

. / —(k+1) -7
Wr k41 = Wpg + 7 (ke )za&m,m

is an O(r~(*+1)) approximation to Calabi flow.

4.4. Adiabatic Scheme for Ruled Manifolds

Another case in which adiabatic techniques have successfully been used to construct
cscK metrics is that of ruled manifolds. A ruled manifold is the projectivisation of a
holomorphic vector bundle £ — X, i.e. a holomorphic fibration 7: PE — X where
the fibres are copies of complex projective space. Suppose that the base X is compact
with no holomorphic vector fields and that  is a Kéhler class on X admitting a cscK
metric. Further suppose that the bundle £ — X is slope stable with respect to k.
Using elliptic adiabatic techniques, Hong proved the existence of cscK metrics on PE
n [22]. In [21], the construction was extended to certain ruled manifolds coming from
polystable bundles. Later, in [3] Bronnle considered the case of E splitting into a direct
sum of stable bundles with pairwise different slopes and proved the existence of non-cscK
extremal Kahler metrics on PE.

With the objective of outlining a parabolic version of the adiabatic analysis, we adopt
the setting in [22]. To this end, we consider a compact connected Kéhler base manifold X
with no nonzero holomorphic vector fields and Kéahler class k containing a cscK metric on
which Calabi flow is assumed to admit a converging long-time solution. The holomorphic
vector bundle F is assumed to be a k-slope stable SU(k + 1)-bundle. In order to produce
a suitable adiabatic class of Kahler metrics, we specify a relatively positive line bundle
on PE.

——

Proposition 4.4.1. The relative hyperplane bundle O(1) — PE obtained by gluing
together the hyperplane bundles O(1) over each fibre is a relatively positive holomorphic
line bundle on PE.
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Proof. The holomorphic local trivialisations E|y =~ CF*! x U for U < X open induce
holomorphic local trivialisations PE|y = CP* x U. Setting O(1)|y := O(1) x U gives a
holomorphic line bundle over PE|y;. The holomorphic transition functions between local

—~—

trivialisations E|y and El|y induce holomorphic transition functions between O(1)|y

—_— —_—

and O(1)|y which establishes that O(1) is a holomorphic line bundle. To show that
O(1) is relatively positive, observe that a choice of Hermitian metric h in E defines a

Hermitian structure A~! on the relative hyperplane bundle C3(\1/) — PE whose curvature
wo(h) := i/(2m)F;_, restricts to the Fubini-Study metric on each fibre PE, defined by
hatxeX. O

Remark. The holomorphic submersion 7: PE — X inducing local holomorphic triv-
ialisations is not a generic feature. As seen in the case of Kodaira surfaces, a model
holomorphic fibre need not exist. In contrast to high genus Riemann surfaces, complex
projective spaces don’t have moduli and CP" serves as a model fibre for 7: PE — X.

Remark. We shall lighten the notation by also denoting the relative hyperplane bundle
and its powers by O(l), | € Z.

We now fix an initial K&hler metric wy € x and a Hermitian metric A~ on E and
consider the adiabatic metrics

wr = wo(h) + rr*wx

as initial data for the to be constructed approximations to Calabi flow. As the fibre-
wise metrics have constant scalar curvature, the constant path of Kahler metrics defined
by w, is already an O(r?) approximation to Calabi flow. Constructing higher order
approximations to Calabi flow, however, is slightly more involved than in the case of
Kodaira surfaces, owing to the presence of nontrivial holomorphic vector fields on the
fibres. Their existence entails the nonuniqueness of fibrewise cscK metrics in their co-
homology class and the kernel of the linearised fibrewise scalar curvature map contains
strictly more than fibrewise constant functions. The corresponding terms in the scalar
curvature expansion into powers of r~! need to be treated separately when constructing
approximative flows. A detailed discussion requires some background on the parametric
geometry of PE.

4.4.1. Notation and Parametric Geometry of PE

We first recall some standard theory of complex projective space and its symplectic
geometry. Let CFT! be equipped with the standard Hermitian product (inducing the
standard inner product on R%*2 as its real part) and U(k + 1) the unitary group with
respect to that Hermitian product. We consider CP* = (C*+1\{0})/C*. The U(k + 1)-
action on CF*! commutes with the C*-action, so the action of U (k+1) descends to CP*.
The quotient p: C¥+1\{0} — CP* factors through the unit sphere S?#+1 = R?*+2 ~ Ck+!
via

CkJrl\{O} ﬂ S2k+1 ﬁ% (CIPk,
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where the map p; is given by z — z/|z| and ps is the obvious quotient map. The fibre
py L({1}) in S?*+1 over a point | € CP* consists of those z € [ with |z| = 1 and hence
is a copy of S'. This allows for an elegant description of a Fubini-Study form in the
symplectic picture. Denote by Q = %Z?:o dzj n dz; = Z?:o dxr; A dyj the standard
symplectic form on CF*! =~ R?%*2 The (symplectic geometric) Fubini-Study form on
CP* with standard Hermitian metric is the unique U(k + 1)-invariant closed two-form
such that piw’ = 1*Q, where ¢: S?%*1 — C?*2 is the inclusion map.

To define ' at 1 € CP* we set w](u,v) := Q.(,?) for a choice of z € p,*({I}) and
lifts %, % of u,v € TICP* to T.5%+1. We need to show that this is well defined, i.e.
independent of the choice of z € p; ' ({I}) = 1 n S**! and independent of the choice of
lift %,9. First fix a z € [ n S?**1. The orthogonal (Euclidian) complement to 7}, S?++1
inside T,CF*1! is just the real line Rz, so the symplectic complement with respect to £
is iRz. Since the S' orbit of z is {¢®z}, its tangent space at z is also given by iRz. This
implies that 2, as a map

QZ: T252k+1 ~ TZS2k+1 SR

descends to a map T,S5%+1/T,S! x T,5%+1/T,S1 — R. Hence Q(%,7?) is independent
of the choice of lifts. Furthermore, since  is U(k + 1)-invariant, it is in particular S'-
invariant, so Qe (%, %) = Q, (%, 7). The relation piw’ = *Q holds by construction
and w’ is U(k + 1)-invariant since Q is. In addition w’ is closed since pidw’ = 1*dQ = 0
and p* is injective. The latter injectivity also gives uniqueness of w’ with the property

piw’ = 1*Q.

Remark. It turns out that the symplectic geometric Fubini-Study form w’ obtained
this way is not the most natural from a Kéahler geometric viewpoint. The description
of CP* as a Riemannian quotient my: S%**1 — CP* with fibre S' < R?*2 implies
Vol(S%k+1) = Vol(CP*,w') - Vol(S'). Since Vol(S%¢*1) = 27 - 7% /k!, the volume of CP*
with respect to the volume form w’*/k! induced by the Fubini-Study metric defined
as above is Vol(CP*,w’) = 7% /k!, so w’ does not lie in an integral class. Rescaling w’
by setting w := w’/7 yields a Fubini-Study form satisfying w € ¢;(O(1)) which can
alternatively be described as w = i/(27)F, where F' is the curvature of the Hermitian
metric on O(1) induced by the standard Hermitian structure of C**'. From now on
we shall work with the integral Fubini-Study form w and we remark that w satisfies
prw =1/ *Q.

Next, we want to show that the U(k+1)-action on CP* is Hamiltonian and describe the
moment map. Let A € u(k + 1) be a skew-Hermitian endomorphism. The infinitesimal
action of A on CF*! is given by the vector field X2 = 0;]j—g(e*2) = Az € CF! =~
T,Ck+1. The map

1
(s, A: CHT SR, 2 59:(42,2)



4.4. Adiabatic Scheme for Ruled Manifolds 73

defines a moment map for the U(k + 1)-action on C**1. One computes

(dlperr1, A))z(w) (Q(Aw, 2) + Q,(Az,w))
(Q(w, A*2) + Q,(Az,w))
(= (w, Az) + Q,(Az,w))

(Q(Az,w) + Q,(Az,w))
2(Az,w)
= (LXAQ)Z(w) )

DN RN RN DN -

where ¢ x4 denotes contraction with the vector field X“ (the double use if ¢ as a con-
traction of tensors and an inclusion of S2¥*1 < C*+! should not cause any ambiguity).
To see that pck+1 is equivariant, let U € U(k + 1) and compute

1 1
(e (Uz), Ay = iQ(AUZ, Uz) = §Q(U_1AUZ,Z) = (uor1(2), Ady-1 A).

The moment map for the U(k + 1)-action on C**1 can be used to construct one for the
action on CP*. We set

1 Q.(Az,2)

e (D) 4) 1= == = S0, (A (). ().

It is apparent that this is well defined and one has ucpr([2]) = 1/7 - per+1(p1(2)). In
essence, the moment map on CP* at [z] is given by the restriction of pcx+1 to S27F!
evaluated at any unit length representative of [2]. Observe that if w € S?*1 then
X£ = Aw € T;,8%*1, Keeping this in mind we compute

d({ucpr 0y A))z = 1/ - d({ugner, A))py (2 - (dp)s
= 17 (txaQ)p,(2) - (dp1)2
= /7 (txat™Q)p,(2) - (dp1):
= (txap*w)p,(z) - (dp1)2
= (tapxaw)pz) - (dp)z -
Since dpX4 is the vector field on CP* representing the infinitesimal action of A € u(k+1)
on CP*, this affirms that pcpe is indeed a moment map. Equivariance of jucpr follows

from the equivariance of pcr+1.
A computation shows that for A € u(k + 1) one has

wk 1 trd
AV = 7
ka<“@’“’ T (k+1)!"

so the Hamiltonians of the SU(k + 1)-action on CP* have zero integral.
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Remark. The fibrewise Hamiltonians automatically having zero integral is the reason
we chose to work with an SU(k + 1)-bundle E. One could modify the moment map pcpr
by subtracting the trace term to obtain a moment map for U(k + 1)-bundles with the
same property, but as we will see this turns out to be unnatural when considering the
parametric geometry of PE.

We finish this summary by C-linearly extending jcpr to a map CP¥ — gle(k 4 1)*
(using the decomposition gl (k + 1) = u(k + 1) @ iu(k + 1)). Concretely, this extension
is given by
i hsa(Az, z)

(uepn ([2]), A) = ﬂm )

where hgg is the standard Hermitian product on CF+! (with C-linearity in the first
argument) of which  is the negative imaginary part.

We now introduce a parametric moment map for the fibration PE — X, where each
fibre carries the Fubini-Study metric induced by the Hermitian metric A in E on that
fibre. Given an element u € I'(X,u(E, h)), i.e. a smooth section of the bundle u(E, h) —
X of h-skew-adjoint endomorphisms of E, we get fibrewise Hamiltonians {upg, , u, ) with
zero integral over the fibre PE, (with respect to the Fubini-Study metric induced by
hy) for each x € X.

Proposition 4.4.2. The fibrewise Hamiltonions {upg,,u,) glue to a smooth function
M(h,u) € C*(PE) on the total space.

Proof. Let U < X be an open set over which F is trivialised by a ®: E|y — U x Ck*!
such that for each z € U the associated fibre map ®,: (Ey, hy) — (CFF hyyg) is a
unitary isomorphism. The induced trivialisation ¢: PE|y — U x CPF then has fibre
maps ¢, : PE, — CP* that are holomorphic isometries with respect to the respective
Fubini-Study metrics. We use @ to locally interpret u as a smooth map U — U(k + 1),
more precisely set

WU ->Uk+1), z— du,d L.

For each x € U the action of @i, on CP* has the zero-integral Hamiltonian

M (hyu)y := {ppp,  usy 0 65

This should be clear since ®, and ¢, preserve all relevant structure. For a more detailed
proof denote by o, w the Fubini-Study forms on PE, and CP* respectively and compute

AM (hyu)o(-) = d(upp,,us)) - doy ()
= op(X",dg; )
(65 o) (dps X, )
= w(Xb )

The zero integral property of M (h,u), follows from that of M (h,u), by the diffeomor-
phism invariance of the integral of forms. We observe that the right hand side of the
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moment map relation for M is a smooth family of one-forms on CP* indexed by U. Ap-
plying d* (the formal L2-adjoint of d with respect to the Fubini-Study metric on CP¥)
to both sides of the equality gives

AM(h,u)y = d*w(X %)
and since M (h,u), has zero integral, we can invert the Laplacian and obtain
M(h,u)y = A d*w(X 0, .).

The right hand side defines a smooth function on U x CP*, so the same is true for

—~

M (h,u),. We immediately infer that the collection of fibrewise moment maps M (h,u), 1=

{upg,, gy = M(h,u)q o ¢ is smooth in x. This is independent of the choice of U and
@, so M(h,u) € C*(PE) as claimed. O

As in the nonparametric model case we can C-linearly extend M (h,-) to a map
M(h,-): I'(X,End(E)) - C*(PE,C)
and even more generally to a map
M(h,-): QP(X,End(E)) — QP(PE)
by applying M (h,-) to the endomorphism factor and pulling back the form part to PE.

With these preparations we can now describe wy(h) = i/ (QW)FO(l) 71 in terms of the
horizontal-vertical decomposition of TPE = H® V.

Proposition 4.4.3. In the decomposition wo(h) = wo(h)yy + wo(h) gy + wo(h) gy, the
vertical-vertical component wo(h)y,, is given by the fibrewise Fubini-Study metrics o
defined by the Hermitian metric h. The horizontal-horizontal component is wo(h) gy =
—M (h, Fg ), where Fgp € Q*(X,u(E, b)) is the curvature of the Chern connection on
(E,h). The mized component vanishes.

Proof. The restriction of wg(h) to a fibre PE, is the Fubini-Study metric on that fibre
defined by hy, ie. wo(h)yy, = o and the mixed part vanishes by definition of the
connection TPE = H @ V. It remains to show that wo(h)yy = —M(h, Frp).

The calculation in Appendix D.1 computes the decomposition of wy(h) in terms of the
connection TPE = H' @ V' on PE that is induced by the Chern connection on (FE,h)
(one has V = V', the prime merely indicates that the projections TPE — V might
a priori differ). It is shown that with respect to that decomposition wo(h)y» = o,
wo(h) gy = 0 and woprgr = —M (h, Fgp). In particular, the two connections on PE
coincide and wopgy = —M(h, Fgp). O

We can now derive an explicit form of the scalar curvature expansion (4.2.6) for
wr = wp(h) + rr*wyx on PE.
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Proposition 4.4.4. The expansion of w, in powers of r—' is given by
S(wy) = 2mk(k + 1) + 7 [—4n(k + 1)M(h, Ayy Frp) + 7*S(wx)] + O(r™2)  (4.5)

Proof. The order r¥ term is just the fibrewise scalar curvature S(o), which is constant
for the Fubini—Study metric. The integral Fubini—Study metric is Kéhler—Einstein with
p=2n(k+1)w, so S(c) = 2rk(k+1). Apart from the pulled back scalar curvature of the
base, the r—! term consists of two parts, the vertical Laplacian applied to the contracted
horizontal-horizontal part of the curvature of O(1), AyAgwomy, and horizontal con-
traction of the curvature of the vertical anticanonical bundle iAg Fyry, o . Proposition
4.4.3 shows that Agwo(h)yy = —M(h,Auy Frp) and since the fibrewise SU(k + 1)-
Hamiltonians constitute the first eigenspace of the Fubini-Study Laplacian with eigen-
value 27 (k + 1) (cf. Proposition D.2.2 and the following remark in Appendix D.2), one
has Ay Agwopy = —2m(k+1)M(h, Ay, Fr ). For the second term, observe that AFV =
O(k + 1) (the canonical bundle of CP* is O(—k — 1)) and that the Hermitian metric on
ARV induced by o corresponds to h~®*+1)  Since by definition i/(ZW)FO(l)ﬁ,l = wo(h)
this implies iIAg Fyry oy = 27(k + D)Agwo(h) gy = —2n(k + 1)M(h, Auy Fp ). The
total O(r~!) term is given by —4n(k + 1)M (h, Auy Frp) + 7S (wx) as claimed. O

4.4.2. 1°* Order Approximation to Calabi Flow

To define an O(r~!) approximation to Calabi flow we first need to understand how wy(h)
evolves if h(t) is a smooth path of Hermitian metrics on E.

Lemma 4.4.5. Let h(t) be a smooth family of Hermitian metrics on E and u(t) :=
ih=1(t)(0:h)(t) (this is an element of T'(X,u(E, h(t))) for eacht). Then wo(h(t)) satisfies

o (h(t)) = i0OM (h(t), u(t)) .

Proof. First consider the nonparametric case of E being a vector space with a family of
Hermitian structures h(¢) (we omit ¢ from here on) with reference structure hy. Each
h defines a real scalar product g, and a symplectic from ; on E via g, = Reh and
Qp, = —Imh. (in this convention one has gp(u,v) = Q4 (u,iv) and Q = >, dx; Ady; in a
gp-orthonormal R-basis {z;,v;} with y; = ix;). The moment map for the U(E, h)-action
on PE with integral Fubini-Study metric defined by A is given by

(e, A([2) = ;TQ;LEA))
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If A=ih~'(6;h), then

Cp i @ ([]) = L AT @)z, 2)

27 h(z, z)
1 Imh(ih~1(0:h)z, 2)
- or h(z, z)
1 Imi(6th)(z, 2)
- or h(z, z)
1 @h)2)
21 h(z,z)

Keeping this in mind, we define a family of positive functions e/® on PE by setting

Sl _ M=)
hO(Za Z)

The derivative of f(¢) with respect to the parameter ¢ is then given by

(0th)(z, 2) '

@D =505

If =1 and %a ! denote the induced metrics on O(1) — PE, then one finds that they

are related by h=! = e_fhal, so their curvatures satisty F;_, = Fj-1 — 00f. Putting
0

everything together one finds that

OyiFy_, = —i00(0,f) = 2midd upp, ih™" (;h)) .

For the parametric case (F — X now being a vector bundle), observe that the change
of moment map and the change of the Hermitian metric h~! on O(1) occur fibrewise,
so the nonparametric computation also applies in this case up until hl=ef %E L The
curvature relations also hold for O(1) — PE, sowg(h) = i/(2m)F;_, = wo(ho)—i/(2m)00f
and

drwo(h) = i00M (h, u(t))

as claimed. O

We can now derive equations for paths in metrics on the base wx (t) and Hermitian
metrics h(t) on E whose solutions will make w,(t) = wo(h(t)) + ra*wx(t) an O(r~1)
approximation to Calabi flow. Comparing

Oywr(t) = i00M (h,ih™'0:h) + ro*Oiwx

to the scalar curvature expansion from Proposition 4.5

i00S(wy) = rYiod[—4n(k + 1)M (h, Awy Frp) + 7*S(wx)] + O(r?)
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shows that if wx (¢) solves Calabi flow on the base, i.e. dwx = —iddS(wx) and if h(t)
solves the time-dependent Hermitian Yang-Mills flow

ihilath = 4w (k + 1)wa(t/r)FE,h , (4.6)

then
w1 = wo(h(t/r)) + rr*wx (t/r?)

defines the desired approximation.

Remark. The O(r~!) approximation to Calabi flow being given by Hermitian Yang-
Mills flow with respect to an evolving base metric is the reason why we have assumed
the bundle E — X to be slope stable. This assumption guarantees the existence and
convergence of the Hermitian Yang—Mills flow, at least when the base is a Riemann
surface. In the general case, slope stability is a necessary and sufficient condition for the
existence of a suitable limit object (a Hermite—Einstein metric) by the Hitchin—Kobayashi
correspondence.

4.4.3. 2" Order Approximation to Calabi Flow

In the adiabatic scheme for Kodaira surfaces, higher order approximations to Calabi flow
in 7~! could be obtained by solving linear parabolic equations for two types of perturba-
tions of w,, one for each summand in the decomposition C*(Z) = 7*C*(X) ® CT(Z)
of functions on Z into functions that are fibrewise constant and those that have zero
integral on each fibre. The addition of a path of Kahler potentials on the base could com-
pensate for the failure of the O(r~*) approximation w,.j to be O(r=*+1) in 7*C*(X)
and the subsequent addition of a K&hler potential with fibrewise zero integral correcting
to remaining error term in C%(X) would then give an O(r~*+1)) approximation wy. x4 1
to Calabi flow.

In the case of ruled manifolds, similar techniques can be used. However, one cannot
hope to correct the full failure of w,.; being an O(r~2) approximation to Calabi flow in
the L2-complement to 7*C*(X) in C®(PE) via the addition of fibrewise mean value
zero Kahler potentials. The reason for this is that the cscK metrics on the fibres are
not unique — the gradients of Hamiltonians for the U(k + 1)-action define holomorphic
vector fields, so the pieced together fibrewise Hamiltonians for the action of sections
in I'(X,u(E, h)) lie in the kernel of the linearised fibrewise scalar curvature map. The
corresponding error terms need to be treated separately.

We split the O(r=2) term 19 of S(wy1(t)) into three parts, 12 = P¥xa + y2 + ¥ 2
according to the splitting

C*(PE) = 7*C*(X)® M (h,T(X,uw(E, h))) @ CT,

where the second summand consists of mean value zero Hamiltonians for infinitesimal
isometries of the fibre (with respect to the Fubini-Study metric depending on h) and the
last summand is the L? orthogonal complement to the other two. The decomposition
only depends on the Hermitian metric h(t). Each of the three O(r~2) error terms
necessitates a specific correction of wy. ;.
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e Yxo € T C¥(X) is dealt with by perturbing Calabi flow on X. This correction
introduces a new error term in M (h, T'(X,u(E, h))) at r~2 which we subsume along
with the original 7~ term ty 2 to ¢} , € M (h,T(X,u(E, h))).

o o€ M(h,T(X,u(E,h))) requires an adjustment of h(t),
e o€ W*th is compensated for by a Kéhler potential in CT°(PE).

These changes accumulate to give the desired O(r~?2) approximation w2 of Calabi flow.

A key features of the adjustments is that they leave the scalar curvature in lower order

unchanged, i.e. the scalar curvatures of w,; and wy 2 agree up to (including) order r—1,

only their higher order parts differ.
The 7*C*(X)-Correction

Set wx 1 = wx + r Liddf and wé}l = Wy + T¥i00f = wo(h) + rr*wx 1. Passing from
S(wr1) to S(wy.;) amounts to replacing wy by wx 1 in the scalar curvature expansion
(4.5), so the change in scalar curvature caused by the addition of the Kéhler potential 7* f
is O(r=2). The precise change at 72 in the scalar curvature is obtained by linearising
the quantities at r~! involving w x,1- We expand

Swx1) = Swx)+ ril(dSc)wa +0(r ?),

2 WX

1 _
Mog Fepn = Aoy Fpp+r! [A2 Frp Aidof — Ay Frp - waf] +0(r ?),

which gives

S(wyy) = S(wr1) +r 2 [7*(dSc)uwy f]
— r722m(k+1) [M(h, A2 Fpp ni0df) — 2M (h, Ay Fp) - T Duy f]HO(r ).

Observe that the third term lies in M (h,I'(X,u(E,h))). Now define g € C*(X) by
m*g = ¥ x 2 and have f solve the linear parabolic PDE

(at + dSCWX(t))f = _g(r2t>

with zero initial condition. Then w],; with h evaluated at ¢/r and wx,, evaluated at ¢/r”
satisfies

Oww,. + 1008 (wy.y) = 17 %100[Y] 5 + Y1 2] + O(r™?),
where ¢ o =19 = 2m(k + 1) [M(h, A2, Fgp A i00f) = 2M(h, Ay Fip) - 7 Auy f]-

The M (h,T'(X,u(E, h)))-Correction

Adjust h(t) by setting
hi(t) := h(t)(idg +r19(t))
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for a family of h(t)-self-adjoint endomorphisms 9(¢) € iu(E,h(t)) of E. We derive an
evolution equation for ¥ such that the new family

wy 1 (t) == wo(h1) + r7¥wx 1,

again with hy evaluated at t/r and wx; evaluated at t/r2, is an O(r~2) approximation
to Calabi flow up to a part in sz. Using Lemma 4.4.5 to compare the time-derivatives
of w;.; and wy; yields

Oy — Gy =1 1i00[ M (hy,ihy ™' 0hy) — M(h,ih ™ 0;h)] . (4.7)
On the other hand,

Sw)y)=S(w)y) = —r~tm(k+1)[M(h1, Auy Fgp,) — M (h, Ay Fpp)]+O(r™%), (4.8)

r,1

where the remainder term is O(r~3) because the entirety of the r~2 term stems from
the linearisation of the r~! term. Expressing the linearisations of M (hy,ih; ' d;h1) and
MW, Ay Frp,) inr—t as

M(hy,ihy " Y0thy) = M(h,ih™10:h) + r1Q(h) (9, 0:9) + O(r~2)
M(h1, Aoy Frpy) = M(h,Fgp)+r 'P(R)W) + O(r~?)

we can combine (4.7) and (4.8) to
Oy g + ié@S(w;’?l) = 1r7200[Q(h) (9, 8,9) — 4w(k + 1) P(h)(¥) + Vo + 1] + O(r3).
It remains to compute P and () and to check that the linear equation
Q(h)(V,09) — 4n(k + 1)P(h)(9) + 1/1{[’2 =0 (4.9)
is parabolic and can be solved. In order to do this we need to linearise M as a map
M: H x gle(FE) - C*(PE,C),

where H = Glc(E)/ U(E, hg) is the space of Hermitian inner products on E parametrised
by the transitive Glc(F)-action on a reference product hyg. As M only depends on
fibrewise restrictions of the relevant quantities, it suffices to think of E as a vector
space.

Remark. The reason to look at the C-linear extension of M (h,-) is that the space of
arguments glc(F) = u(E, h) @ w(E, h) does not itself depend on h making calculations
conceptionally easier.

With respect to the group action of Glc(E) on H via g - h := h(g~'-,g~"), the
adjoint action on gl(E) and precomposition by ¢,-1 (the action of Glc(E) on PE) on
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C*(PE), the map M is equivariant. Recalling M (h, A)([z]) = i/(27) - h(Az, 2)/h(z, 2)

one computes

onon - [
_ i[h(Ag_lzvg_lz)}
21 | h(g~'z,g712)
= M(h,A)(g™" - [2])

We now compute the derivatives D1 M and DoM of M with respect to the H and the
glc(F)-argument. Since M is linear in the second argument, we have

(D2M)(ho, A)(B) = M(ho, B) .

Computing the derivative with respect to the first argument is done by differentiating
the equivariance property. Using the transitive action Glc(FE) with stabiliser U(E, hy)
at ho on H, we identify the tangent space Tj,H with iu(E, hy) (Note: Instead of the
transitive Glc(FE)-action one can parametrise H via ho( for a positive hg-self-adjoint (.
The resulting identification of Tj,H with ‘u(E, h) differs from the previous one by a
factor of —2). Let ¢+ be a path in U(k + 1) with go = idg and (0tgt)|t=0 = 7 = My + Nin €
w(E, ho) @ iu(E, hg). Differentiating the left hand side of the equivariance property for
gr at t = 0 yields

Otlt=oM (gt - ho, Adg, A) = (D1 M)(ho, A)(Otlt=09t - ho) + (D2M)(ho, A)(Ot|t=0 Ady, A)
= (D1M)(ho, A)(ni) + M (ho, [n, A]) .
On the other hand
Otlt=0M (gt - ho, Adg, A) = O¢lt=0(dg—1)*M(h, A)
3t\t=0(¢;1)*M(h07 A)
= _gX"?M(h(bA)v

where X" is the holomorphic vector field generated by 7 (which is Killing and symplectic
if 7y = 0). Combining the two gives

(D1M)(ho, A)(Niw) = —ZLxn M (ho, A) — M (ho, [1, A]) - (4.10)

It seems as if though the right hand side seems to “see more” of 1, but this is resolved by
observing that for a path g; in U(E, hg), we have g; - hg = hg and n = 1. The invariance
property then gives just the usual U(F, hg)-equivariance property of the moment map
M (h, ) which reads

LxmM (ho, A) + M (ho, [nu, A]) = 0,

so (4.10) reduces to the more natural looking form

(DlM)(h(), A) (771'11) = —gxan(ho, A) — M(h(), [mu, A]) . (4.11)
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Now let hs be a family of paths in Hermitian metrics of the form hy = ho(idg +s19) for
I(t) € iu(E, ho(t)). We want to compute 0s|s—oM (hs,ih; 1 (dths)). Since the derivative
only depends on hg up to first order in s we can instead look at hy = hge®¥ which has
the advantage that we can write hy = g5 - ho for gs := € =359 One computes

Osls=0M (hs,ihg (0ihs)) = (D1M)(ho,ihg " (@tho))(0s]s=0gs - ho)
+(DaM)(ho, ihg ' (0:ho)) (05 |s oihy (0rhs))
- %XXﬁM(ho,iho (0rho)) + M(ho,w ihe (o))
+ M (ho, [ihg (2ho), ])—l—M(ho,zatz?)
_ %fxﬂM(ho,iho (0cho)) + M (ho, i6,9)

—%M(hm [0, ihy L (0cho)]) -

The fact that the last summand doesn’t directly cancel in the computation is not a
mistake, but it vanishes nonetheless. The easiest way to see this is to observe that the
left hand side and all other summands on the right hand side are real, whereas the last
summand is purely imaginary since [6,ihg ' (0:ho)] is ho-skew-adjoint. Another way to
see this is to explicitly compute

Clema (st @b (=) = Pl [ PO )
_ i [(9tho(zﬁz,z)  Otho(2, 2) ho(iVz, 2) ho(iamz,z)]
2 | ho(z,2) ho(z,z)  ho(z,z) ho(z, z)

, i |1d i(04ho)(e*? 2, e572)
= M{ho,i0:0) + [2 ds|,_y ho(ez,e7z)

M (hg, i0:9) + 1/2 - Lo M (ho,ihy *(0tho)) -

In this computation the term M (ho, [¢,ihy L(0¢ho)]) does not even appear. Applied to
our case this computation yields

Q(h) (¥, 0,9) = M (h,id40) +1/2 - Lyo M (h,ih™'0;h). (4.12)
In order to determine P, consider

Fgn, = 0(hy'0ns)
= Fgp, + s[—0(9hy '0ho) + d(hy  d(ho?))] + O(s?)
= Fgp, +50[00 + [hy '0ho, 9]] + O(s?)
= Fgpp, + sé&hoﬁ + (9(52) ,

which implies

AwXFE,hS = AwXFE,hg — 815 9+ 0(82) ,

0,ho,wx
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where A3 howy 1S the 0-bundle Laplacian on End(E) defined by wx and hg. Again using
hs = gs - hg with g5 = ¢~ 2% instead of hs = (idg +s9), the desired first order expansion
of M(hs, Ay F p,) can be computed via
aS’SIOM(hS7 AwXFE,hS) = (DIM)(hO7 AwXFE,ho)(as|s=Ogs : hO)
+  (D2M)(ho, Awx FE no) (0sls=0Awy i, )

1 1

= szﬂM(ho, AwXFE,ho) + QM(h07 [19, AwXFE,hO])

— M(ho Dgpy o i0)
1 .

= igXﬁM(hm AwXFE,ho) — M(ho, Aﬁ,ho,wxug)

which yields
1 .
P(R)(9) = 5 LxoM(h, My Fig) = M(h, A, 19). (4.13)

With the expression (4.13) and (4.12) for P and @, the equation (4.9) for the correction
¥ becomes

M (h,i0:0) + 4m(k + 1)M(h, Az, , i0) + Py o
1
+5-Zxo [M(h,ih~'0,h) — Am(k + 1)M (h, Ayy Frp)] = 0

and in light of (4.6) the Lie-derivative term vanishes automatically. Writing 1%72 =
M(h,iA(t)), this equation is satisfied if and only if

(0 + 4m(k +1)Az, )0 = —A(t), (4.14)

which is a bundle valued heat equation and indeed parabolic. If we have a solution
with initial value ¥(0) = 0, then the corresponding w;/; solves

(3tw7'f71 + ié&S(w;’J) = T72i§a¢L,2 + O(T*?’) .

The C{°(PE)-Correction

To correct the remaining deficiency of w;fyl not solving Calabi flow up to (and including)

order =2, we use the same technique as in the case of Kodaira surfaces and modify w”,

by a Kahler potential ¢ € C(PE). Set

)

Wr2 i= Wiy + 21006

and observe from equation (4.1) (cp. also (4.2)) that the addition of the Kéhler potential
r~2i00¢ changes the scalar curvature at order 7—2 by the linearised fibrewise curvature
dScp, i.e.

S(wr2) = S(w)y) + 77 2(dScr)ed + O(r?).

Observe that (dScp)s restricted to C(PFE) has trivial kernel. This is due to C7°(PE)
being orthogonal to 7*C*(X) @ M (h,I'(uw(E, h))) and the fibrewise linearisations of
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the scalar curvature taking place at cscK metrics, so ker(d Scp), is precisely C*(X) @
M(h,T'(uw(E, h))). The linear parabolic equation

(0tp + (dScr)s)p = =12

should thus be solvable and taking ¢ to be its solution with zero initial condition makes
w2 the desired O(r~3) approximation to Calabi flow.

4.4.4. Higher Order Approximation to Calabi Flow

The procedure described in 4.4.3 can adapted inductively to arbitrarily high orders. Set

P
wx + ié&Zr_lfl,

=1
p
hlidg + Z r=ly, |
=1

p
-1 -1
e, =71 Zr 0]
I=1

WX,p

>
<
Il

and suppose that
wrp(t) = wo(hp_1(t)r)) + rr*wx p 1 (t/r?) + i00®,_1(t)
solves Calabi flow up to order r7P, i.e.
Oywrp + 1008 (wrp) = 1~ Pi00(x pi1 + Yupsr + 1 pe1) + O(r~PF))

where the 7~®+1) error has been decomposed according to C*PE = 7*C*(X) @
M(h,I'(X,u(E,h))) ® CP(PE). The corrections 9,, f, and ¢, such that the corre-
sponding wy p41 is an order r~ P+ approximation to Calabi flow are found exactly as
before. For completeness, we state the equations that need to be solved (with zero initial
conditions) and refer to the discussion of the second order approximation for details.

e Set wxy = wxp-1 + ié&r_pfp and w;7p(t) = wo(hp—1(t/r)) + rﬂ'*wx,p(t/ﬂ) +

i00®,_1(t), write ¥x p+1 = 7*g and have f, solve
(0 + (dSC)uy 1) fr = —g(r?t).
Then
dnwry, + 1008 (w),) = v~ PHida(yy 4y + YL pra) + O~ PH),

where ¢ ) =11, —2m(k +1) [M(h, A2 Fpp Aidofy — 20wy FEnDuy fp)]-
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o Set hy :=hy 1 + 17 Phid, and W), (t) == wo(hyp(t/r)) + ro*wx p(t/r?) +i00®, 1 (t),
write ¢y, 11 = M(h,iA) and have ¥, solve

(O +4m(k +1)Az,, , )0 = —A.

Then
Oy, +1008 (w)y) = r=WHVid0Y ) pyr + O~ H2).

o Set @, := &, 1+~ P, and w1 (t) 1= wolhy(t/r) +rr*wx p(t/r?) +i00,(t).
Having ¢, solve
(0t + (dScr)o)bp = =11 pt1

gives the desired O(r~®*1)) approximation to Calabi flow:

4.5. Outlook

The adiabatic analysis presented here does not constitute a complete proof of the ex-
istence and convergence of Calabi flow on Kodaira surfaces and projectivised stable
bundles with initial condition given by w, for sufficiently large r; it has been included
in this thesis to motivate the development of twisted Calabi flow and time-dependent
Hermitian Yang—Mills flow in the previous chapters. However, it should be possible to
extend the analysis to give a full proof. We present a brief account of the work required
to fill in the gaps.

4.5.1. The Inverse Function Theorem

The Banach space version of the inverse function theorem states that if ®: A — B is a
continuously differentiable map between Banach spaces A, B and d®g is an isomorphism,
then there exists an open ball Bs(®(0)) € B and an open neighbourhood U < A of 0,
such that ®|y: U — Bs(®(0)) is bijective. Moreover, the size of § is controlled by
1(d®)g lop — the smaller |(d®)y*||,p, the larger 4.

As outlined in the introduction, the intended application of the inverse function the-
orem is to perturb a sufficiently good approximation w;; to Calabi flow to a genuine
solution. Writing the approximative metrics as wy,, = w;(0) +i00p; ,,(t), define the map
P, by

D n(¥) = 0t(prn + ) + Sc(@rpn + ) = S,

where Sc denotes the scalar curvature map of the background metric w,(0) and S, is the
average scalar curvature of the adiabatic class x,. By construction @, , (1)) measures the
failure of wy.,, + 1001 to satisfy Calabi flow. To invoke the inverse function theorem, the
®,.,, need to be set up as maps between suitable Banach spaces A, , and B, , such that
the following criteria are satisfied:

1. The maps ®,,: A, — B, are differentiable with invertible derivative at 0.
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2. The sequences ®,.,(0) measuring how close wy,, is to being a solution to Calabi
flow in B, satisfy |®,,(0)|s, < Cr~("=% for constants C,a independent of
and n.

3. The operator norms of the inverse of (d®,,,)o (controlling the size 9§, , of the balls
onto which ®,,, maps surjectively) grow at most at a rate such that §,, > Cr—?
with constants C, b independent of r and n.

4. The topologies of A, , and B, , are strong enough to ensure that ®,,(¢) = 0
implies that w,, +100¢ is a classical solution to Calabi flow.

The first three conditions ensure that by choosing n > a + b one has that J§-balls around
®, ,,(0) onto which a suitable restriction of ®,,, maps bijectively contain 0 for all suffi-
ciently large r. The last condition then implies that the metric given by the preimage
of 0 defines a classical solution to Calabi flow.

Good candidates for A,, and B,, are parabolic Sobolev spaces P,S .1 (the upper
0 means zero initial value) and P, whose norms are comprised of L?-norms of mixed
derivatives up to order 4k, where a time-derivative counts for four spatial derivatives and
the spatial L?-norms are taken with respect to Wy (an exponential damping term in ¢ is
possibly necessary to account for the noncompactness of [0, 00[). For sufficiently high k,
parabolic Sobolev embeddings guarantee that condition 4 is satisfied. Condition 1 can be
verified by setting up the theory of linear parabolic PDEs in a suitable matter. Condition
2 requires the translation of the pointwise estimates for the O(r~") approximations w;.
to genuine estimates in P;. In the elliptic case, this can be achieved by estimates
in suitably constructed local models (see [13] and also [3]) and a similar construction
should work in the parabolic case. One of the difficulties lies in the fact that most
corrections used to define the approximative flows depend themselves on r — a nuisance
we clandestinely ignored in our analysis (for instance h(t) defined via (4.6) depends on
r via the rescaling of time in wy). The construction of the local model requires that
this dependence can be controlled uniformly in r. In many cases this can be reduced
to analysing the behaviour of solutions to linear parabolic PDEs under rescaling of the
time parameter in the inhomogeneity and the elliptic generator at different rates. Lastly,
condition 3 amounts to controlling the operator norm of (d®,.,), L. For this, one has to
solve the linear parabolic PDEs dy) + (dSc),,,, - ¥ = f and establish estimates of the
form [[¢]4,, < C’ | £l B,..» Which requires precise control over the coefficients of the
generator (d Sc),, ,, and the norms on both sides. The resulting estimate |[(d®;.,)q Yop <
C'r? then needs to be translated into the desired control over 0, with C, b depending
on C', V.



5. Symplectic Curvature Flow

5.1. Introduction

In this chapter we present explicit non-Kéahler solutions to symplectic curvature flow
(or SCF) recently introduced by J. Streets and G. Tian in [37]. Symplectic curvature
flow on an almost Kéhler manifold (M, wy, Jy) of real dimension 2n is given by a system
of coupled evolution equations for the symplectic structure w and the almost complex
structure J with initial conditions w(0) = wp, J(0) = Jo. Explicitly,

6tw = —2P,
&) = 27t [PEOHOD] LR

Here, P denotes the Chern—Ricci form given by 2¢ times the curvature of the Chern
connection on the almost anticanonical bundle A™9(TM) and PZ9+02) is the sum of
the (2,0) and (0,2)-part of P. The musical isomorphism ¢g~! raises the second index,
ie. g(g tPR0+02¢ py — pRO+02)(¢ p). Finally, R := [Re,J] is the J-antilinear
part of Rc, where Rc denotes the Riemann—Ricci curvature tensor Ric viewed as an
endomorphism of the tangent bundle via g.

Key properties of this flow proved in [37] include parabolicity, short-time existence
and preservation of the almost Kéahler property of w and J. Furthermore, if the initial
Jo is integrable, i.e. (M, wy, Jp) is Kéhler, then P is the Ké&hler—Ricci form and d;J = 0,
so in this case SCF reduces to Kéhler—Ricci flow.

Seeing symplectic curvature flow as a generalisation of Kéhler—Ricci flow to almost
Kaéahler geometry, one might hope to study canonical structures on almost Kahler mani-
folds in terms of limiting objects of the flow. In section 5.2 we show that SCF on certain
twistor fibrations over hyperbolic space leads to compact non-Kéhler static solutions,
thus providing first examples to limiting structures of symplectic curvature flow that
are genuinely outside the realm of Kéhler geometry and K&hler—Ricci flow. Section 5.3
concerns certain invariant structures on nilmanifolds for which the flow equations reduce
to an ODE. For these structures we solve the flow explicitly and compute the asymptotic
behaviour of the Riemann and the Nijenhuis tensors.

5.2. Compact non-Kahler Static Solutions to SCF

The SCF equations can be readily solved if diw = Awg, 0;J = 0, A € R, in which case the
flow acts by rescaling the metric: w(t) = (1 + At)wp, J(t) = Jy. Such solutions are called
static and in the Kahler setting this behaviour is exhibited by Kéahler—Einstein metrics.
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We present examples of compact static solutions to SCF in dimensions n(n + 1) which
cannot be Kéahler if n > 1. They are constructed from the twistor fibrations

T Zopy — H?™,

where the fibre over each point in 2n-dimensional hyperbolic space H?" consists of all
almost complex structures compatible with the standard hyperbolic metric on H?" and
inducing a fixed orientation. These spaces are examples of symplectic twistor spaces
described by A. Reznikov in [32]. J. Fine and D. Panov showed in [15] that Zy, can be
realised as a coadjoint orbit. We follow their approach to define a symplectic structure
w and a compatible almost complex structure I on Zy, and show that (Za,,w,I) is a
static solution to SCF. Furthermore, these static solutions descend to compact quotients
of Zy, with hyperbolic fundamental group which cannot support any Kéhler structures
if n > 1. We find that the flow shrinks the metric if n > 2, expands it if n = 1 and
leaves it invariant in the case n = 2.

5.2.1. Coadjoint Orbit Description

Consider SO(2n, 1), the identity component of the group of isometries of R?"*! with
Lorentzian metric. Its Lie algebra is given by

s0(2n,1) = {(u,A) - (3 ‘j)

In this description, SO(2n) can be seen as a subgroup of SO(2n, 1) defined as the stabiliser
of (1,0) € R x R?™ = R?"*1 A choice of almost complex structure Jy € s0(2n) on R?"

defines an element
0 0
& = (0 Jo) € s0(2n,1)

and singles out a copy of U(n) inside SO(2n) < SO(2n, 1) as the stabiliser of £, under
the adjoint action (the matrices in SO(2n,1) commuting with &, are precisely those
A € SO(2n) < SO(2n,1) with AJy = JpA). Denote by

ueR?, Ae 50(2n)} .

O(0) = SO(2n,1)/U(n)

the adjoint orbit of £. The Killing form on so(2n,1) is nondegenerate and defines
an isomorphism s0(2n,1) = so(2n,1)* intertwining the adjoint and coadjoint action of
SO(2n,1), so O(&) can be seen as a coadjoint orbit. Standard theory then endows O(&p)
with a SO(2n, 1)-invariant symplectic structure w.

An explicit description of the tangent space of O(§p) can be given with the help of the
following lemma.

Lemma 5.2.1. As a U(n) representation space, s0(2n,1) admits the equivariant decom-
position

s0(2n,1) = u(n) @ A*(C*)* @ C",
where C* = (R?", Jp).
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Proof. We only sketch the proof here and refer to [15] for details. Let U € U(n) <
SO(2n) < SO(2n, 1). The adjoint action of U on so(2n,1) is given by

0 u\ [0 (Uu!
Ady (u A> - (Uu UAU' )
ie. Ady(u, A) = (Uu,Ady A), from which the equivariant splitting so(2n,1) =~ so(2n)®
C™ can be inferred. Those elements in so0(2n) commuting with Jy constitute u(n) as a

subset of s0(2n). The U(n)-invariant complement of u(n) in so(2n) can be naturally
identified with A%2(C")* giving the desired decomposition. O

Viewing O(&p) as SO(2n,1)/U(n), the lemma implies that
TeyO(&0) = Tr.u(m) (SO(2n,1)/U(n)) = TgSO(2n,1)/TpU(n) = A*(C*)* @ C",

where E denotes the identity in SO(2n,1). It is apparent that the (real) dimension of
O(&) is n(n + 1). Since O(&y) is a homogeneous space, the same description is valid
for the tangent spaces at other points as well. However, the almost complex structure
J determining the identification C* =~ (R?",.J) will depend on the chosen point. The
following consideration makes this clearer.

Observe that the different points in the adjoint orbit of £ under SO(2n) < SO(2n, 1)

are of the form
¢ = 0 0
~\0 J)”

where J = AJoA~! with A € SO(2n). The stabiliser of ¢ under the SO(2n)-action is
again U(n), so the orbit is given by SO(2n)/U(n), which amounts to all possible choices
of orientation preserving almost complex structures compatible with the given inner
product on R?".

From a slightly different point of view this can be formulated as follows: The inclusion
U(n) — SO(2n) induces a fibre map 7 : O(§) = SO(2n,1)/U(n) — SO(2n,1)/SO(2n) =~
H?" with fibre isomorphic to SO(2n)/U(n); the adjoint orbit O(&y) fibres over hyper-
bolic space with the fibre over a point & € H?" consisting of all almost complex struc-
tures compatible with the hyperbolic metric on H?" at z. This gives the identification
Zon, = O(&p). From here on, Zy, will be used to denote the adjoint orbit O(&p), the cor-
responding coadjoint orbit, the homogeneous space SO(2n,1)/U(n) and the total space
of the twistor fibration 7 : Zs, — H?".

If (z,J) € Z3, with z € H?" and J in the fibre over z, the tangent space at (z,.J) is

TioZan = A*(CM)*@®C™, C" = (R*,J).

We endow Z3, with an almost complex structure I by demanding this identification
to be C-linear with respect to the usual linear complex structure on C" and the sign-
reversed linear complex structure on A%2(C")*. The resulting almost complex structure
is the “Eells—Salamon” structure of the twistor space Za, — H?". (cf. [11]).

As a coadjoint orbit, Zs, has already been endowed with SO(2n,1)-invariant sym-
plectic form w. It follows from homogeneous space description that SO(2n, 1)-invariant
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forms on Zs,, are in one-to-one correspondence with U(n)-invariant forms on T¢, Zo, =
A?(C™)* @ C™. In the following, we will show that the space of closed U(n)-invariant
real two-forms on A?(C")* @ C" is one-dimensional.

Lemma 5.2.2. For n > 1 the space of U(n)-invariant real two-forms on C" @ A?(C")*
1$ two-dimensional. Invariant forms are linear combinations of the standard Hermitian
forms on P := C" and on Q := A>(C")*. If n = 1, U(n)-invariant real two-forms are
multiples of the standard Hermitian form on P.

Proof. Let Q2 be a real invariant two-form on P @ (. In the obvious notation ) can be

written as
O- < Qpxp | Qoxrp >
Qpxq | Qoxq /)

As U(n) is compact, P and @ are equivalent to their dual representations. Furthermore,
if n > 1, P and @ are irreducible and inequivalent, so by Schur’s lemma we have
Qoxp =0, Qpxg = 0 and Qpxp = A1 and Qgxg = A2fla, where 1 and €3 are the
standard Hermitian forms on P and @) respectively. Since 2 is real, so are A1, Aa.

If n =1, then @ = 0 and the above argument shows that Q2 = A1 for \; € R. O

Lemma 5.2.3. The “Eells-Salamon” almost complex structure I on Zo, is compatible
with the symplectic structure w.

Remark. If n = 2, this is a special case of Theorem 4.4 in [16].

Proof. At &, I is given by the U(n)-invariant linear complex structure of (A%(C™)*, —i)®
(C™,4), with respect to which the standard Hermitian forms on A?(C")* and C" are
invariant. Being a linear combination of the latter two, w is I-invariant at &g.

A direct computation shows that we,(/-,-) is positive definite. More precisely, for
(u, A), (v, B) € s0(1,2n) one finds

wg,(I(u, A), (v, B)) =2(2n — 1)[(u,v) + tr AB'Y],

so w is compatible with I at . By SO(2n, 1)-invariance of w and I, the compatibility
is global. O

Proposition 5.2.4. The space of closed SO(2n,1)-invariant real two-forms on Zay, is
one-dimensional consisting of real multiples of the standard symplectic form w on the
adjoint orbit Zo,.

Proof. Standard theory endows the adjoint orbit Zs, = O(§y) with a SO(2n, 1)-invariant
symplectic form w and a moment map u : Zz, — s0(2n,1) which is the inclusion of
the adjoint orbit. Let w’ be another SO(2n,1)-invariant symplectic form on Zs, and
assume it is not a real multiple of w. As SO(2n,1) is semisimple, its symplectic action
on the simply connected space (Za2,,w’) admits a moment map u' : Zs, — s0(2n,1)
whose image is the adjoint orbit of & := p/(&). The elements & and & are linearly
independent in so(2n,1) for &) = A would imply p/ = Ay and hence w’ = Aw. Their
span is a two-dimensional subspace of s0(2n, 1) on which the isotropy group U(n) of &
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acts trivially, but the space of all elements in s0(2n, 1) on which U(n) acts trivially is one-
dimensional, consisting of imaginary multiples of the identity matrix in u(n) < so(2n, 1)
(cf. Lemma 5.2.1). This is a contradiction, so w’ is a real multiple of w.!

In terms of U(n)-invariant real two-forms Q = A\1Q; + X202 on C"@®A?(C")* for n > 1,
this means that closedness imposes a fixed ratio between A1 and Ao. In particular, neither
Q1 nor s can be closed and the only closed invariant real two-forms are real multiples
of w. The case n =1 is trivial. O

5.2.2. Symplectic Curvature Flow on (Z;,,w)

In order to run SCF on Zy, with the SO(2n, 1)-invariant almost Kéhler structure (w, I)
serving as initial data, the Chern—Ricci curvature and the I-anti-invariant part of the
Riemann—Ricci tensor need to be determined.

The Riemann—Ricci tensor Ric is determined by a U(n)-invariant metric, so it is itself
invariant. This is enough to see that Ric has to be I-invariant: If multiplication by (—i, )
on A%(C")*®C" were represented by an element in U(n) this would be immediate. This
is not the case, but there is an easy work-around. Set 2% := z' A 27 and consider the
basis (2%, z;,) of A2(C")* @ C". Since Ric is symmetric bilinear, it is determined by
its values on ((2,0), (z/7",0)), ((0, z&), (0, ziy)) and ((z7,0), (0, z)). For each of these
pairs of arguments there exists an element diag(e'™,...,e"*n) € T* < U(n) acting by
multiplication by (—4,4), so Ric has to be I-invariant. Consequently, R = [Rec, I] = 0.

The Chern-Ricci tensor P is a closed SO(2n, 1)-invariant two-form, so by Proposi-
tion 5.2.4, P is a multiple of w. In [15] J. Fine and D. Panov determined the first Chern
class of Zop: ¢1(Z2n) = (n — 2)[w]. As (1/47)P represents the first Chern class (P is
2i times the curvature of the Chern connection on the anticanonical bundle, i/27 times
which represents the first Chern class), we have P = 47(n — 2) - w. In particular, P has
no (2,0) and (0, 2)-parts.

With this result, SCF for (Z2,,w) becomes

ow(t) =8m(2 —n) - w(0), ol =0.

It is manifest that SCF collapses (Zay,,w) in finite time if n > 2, expands it if n = 1 and
leaves the almost Kéahler structure unchanged if n = 2.

5.2.3. Non-Kahler Quotients

The symplectic form w and the almost complex structure I on Zy, are SO(2n,1)-
invariant, so the almost Kéahler structure will descent to quotients of Zs, by subgroups
I' = SO(2n,1). In the adjoint orbit description of Zs,, I' acts by conjugation. Viewing
Zon, = SO(2n,1)/U(n) (U(n) acting from the right), this corresponds to I" acting by left
multiplication, so the actions of U(n) and I on SO(2n,1) commute.

Choosing I" € SO(2n, 1) to be the fundamental group of a compact hyperbolic manifold
M of dimension 2n, one obtains two quotients: T'\H?" =~ I'\SO(2n,1)/SO(2n) =: M

"We thank M. Cahen for this moment map trick.
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and T\ Zy, = I'\SO(2n,1)/U(2n). The action of I' on Zy, and H?" commutes with
the projection 7 : Za, — H?", so I'\Zy, fibres over M with fibre SO(2n)/U(n). This
shows that I'\ Zy, is a fibre bundle with compact base and fibre, so it is itself compact.
Furthermore, the fibre SO(2n)/U(n) is connected and simply connected, so I'\ Za,, and
M have isomorphic fundamental groups m(I'\Z2,) = 7 (M) = I', but compact Kéhler
manifolds cannot have fundamental group isomorphic to that of a compact hyperbolic
manifold in dimension greater than 2 (see e.g. [39]). Hence, I'\ Za,, cannot be Kéahler if
n > 1.

5.3. SCF on Left-invariant Structures on Select Nilmanifolds

In the case of left-invariant almost Kéahler structures on a nilpotent Lie group, SCF
reduces to an ODE on the corresponding nilpotent Lie algebra. Moreover, if the structure
coefficients of a connected, simply connected Lie group’s Lie algebra can be chosen
rational, the Lie group admits cocompact lattices (Theorem 7 in [27]). As non-abelian
nilpotent Lie algebras are never (cf. [20]), taking quotients by such lattices results in
compact non-Kéhler manifolds on which we can hope to explicitly solve SCF.

This section presents such explicit solutions for SCF on three different nilalgebras.
For the computations involved, the expression for the Chern—Ricci form provided in the
following lemma is useful.

Lemma 5.3.1. Let (M, g, J,w) be an almost Kihler manifold. Denote by A the connec-
tion one-form of the Levi-Civita connection in a local complex frame (a local frame in
which J is constant). In that frame the Chern—Ricci form has the following expression:

P =dtr(AJ).

Proof. The Chern connection on an almost Hermitian manifold (M, g, J,w) is the unique
connection V with respect to which g and J are parallel and whose torsion has vanishing
(1,1)-part. In the almost Kihler case it is given by VxY = DxY — LJ(DxJ)Y, where
D denotes the Levi—-Civita connection. If A and C are the connection one-forms of the
Levi—Civita connection and the Chern connection in a local complex frame, then the
formula for the Chern connection can be expressed as

1 1 1
Denote by F' the full curvature tensor of V given by the endomorphism-valued two-
form F = dC + C A C. The Chern-Ricci tensor is derived from F via Py = w¥ Fijp,

where ij are the endomorphism indices (i lowered via the metric) and &l the form indices.
Omitting the form indices, a brief calculation yields

P =w'Fy = wyF" = gy JIF" = JIF! = t2(JF) .

Application of the two-form C A C' to a pair of tangent vectors u, v gives (CAC)(u,v) =
[Cy,Cy]. The fact that for two endomorphisms A, B one has tr(AB) = tr(BA) in
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conjunction with [J, C'] = 0 implies
(tr JC A C)(u,v) = tr(J[Cy, Cy]) = tr(JC,Cy) — tr(JC,C,) =0,

i.e. tr(JC A C) = 0. Since dJ = 0, the remaining contribution to the Chern—Ricci form
is

1
P =tr(JdC) = dtr(JC) = id [tr(JA) + tr(AJ)] = dtr(AJ)
as claimed. O
We want to apply this result to left-invariant almost Kéahler structures on Lie groups,
in which case left-invariant frames are complex frames. With the help of the next lemma,

the Chern—Ricci form P can be expressed directly in terms of the Lie algebra and the
almost complex structure.

Lemma 5.3.2. Let G be a Lie group and (g, J,w) a left-invariant almost Kdhler struc-
ture. If A is the connection one-form of the Levi—Clivita connection in a left-invariant
frame, then for any left-invariant vector field Z € g one has

1
trAzJ = itr(adz oJ +Joady) —tradyyz .

Proof. Viewing the almost K&hler structure (g, J,w) as algebraic data on the Lie algebra

g of G, the condition that the alternating bilinear form w = g(J-,-) be closed means that

0=dw(X,Y,Z) = —w([X,Y],Z2) +w([X,Z],Y) —w([Y,Z],X) for any X,Y,Z € g.
Now let (e;) be an orthonormal left-invariant frame of g. Using the Koszul formula

29(}/7 AZX) = g([Z7 X],Y) - g([Zv Y]a X) - g([Xa Y]> Z) )
the desired result follows from a straightforward computation:

2trAzJ = 2 g(ei, Azle;)
= Zzg([Z, Jeil,ei) — g([Z, e, Jei) — g([Jei, e, 2)
= ig(adz oJ(ei),ei) + g(J cadz(e), &) — g([Jei, €], Z)
= t;(adz oJ + Joady) — Zg([Jei, eil, Z).

We use the closedness of w to express the second term on the right as —2tradjz:
29([‘]6i’6i]’z) = Zw([Jeiaei]7‘]Z)
i i

= Zw([Je,-, JZ]),e;) —w(lei, JZ], Je;i)

ZQ(J[J% JZ),ei) —g(Jlei, JZ], Je;)

Zg(adjz Jei, J€Z> + g(adJZ €;, 6,‘)

= 2tradyy .
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d

Since for any left-invariant one-form 6 € g* and X,Y € g the relation df(X,Y) =
—0([X,Y]) holds, Lemmas 5.3.1 and 5.3.2 combine to

1
P(X)Y) = (dtr AJ)(X,Y) = —tr Ajx y1J = —5 tr(adx,y) oJ+Joadx,y])+trad jx,y] -

This has a very useful consequence:

Proposition 5.3.3. (L. Vezzoni)! All left-invariant almost Kdhler structures on two-
step nilpotent Lie groups are Chern—Ricci flat.

Proof. Let G be a two-step nilpotent Lie group with fixed almost Kéahler structure and g
the Lie algebra of G. The assumption that G is two-step then means that [[g, g], g] = 0,
Le. for any X,Y € g we have ad[yy] =0, so

1
P(X,Y) = 3 tr(adjx,yjo/ + Joad[xy)) + trad;xy] = +tradxy] -

Now choose an orthonormal basis (e;) of g with the property that each e; lies either in
[g,9] or in [g,g]*. Then the summands of

trady = ZQ([Z e, ei)

vanish since either e; € [g, g] and therefore [-, ¢;] = 0 (two-step property) or e; € [g, g]*
and g([-,e;],¢e;) = 0. O

It should be noted that on manifolds with Chern—Ricci flat almost Kéhler structure
symplectic curvature flow reduces to anti-complexified Ricci flow introduced by H.V. Le
and G. Wang in [25].

5.3.1. Kodaira—Thurston Manifold

The simplest example of a symplectic nilmanifold is the Kodaira—Thurston manifold
which can be realised as a product of S! and the quotient of the three-dimensional
Heisenberg group

1 Tr1 I3
H3 = 0 1 xTo 371,$2,$36]R
0 0 1

by the obvious integral lattice I' := Hs n Gl(3,Z) < Hs. Topologically, the Kodaira—
Thurston manifold is a S'-bundle over a three-torus where the fibers are given by the
central direction in H3 and the base by the two unpreferred directions in H3 and the
additional S'-direction.

'This was brought to the our attention by Luigi Vezzoni in a private conversation. His proof will be
published in A note on canonical Ricci forms on 2-step nilmanifolds in Proc. AMS.
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The Lie algebra hs @ R of H3 x R is given by generators ey, ...,e4 with [e1,e2] = e3
as the only nontrivial Lie bracket. Equivalently, of the dual basis vectors e, ...,e* of
(hs@®R)* the only one whose corresponding left invariant one-form is not closed is e® with
de? = —e' A e?. By Proposition 5.3.3, any left-invariant almost Kihler structure defined
on the 2-step nilalgebra hs @ R is Chern—Ricci flat and SCF leaves the symplectic form
of an initial left-invariant almost Kéhler structure unchanged. The evolution equation
then is just 0;JJ = R or equivalently 0;g = — Ric + Ric(J+, J-) (the equivalence can be
seen by observing 0 = dww = (0:g)(J-,-) + g(O¢J-, ).

Consider the following two-parameter family of almost Kahler structures (matrices
interpreted in the e;/e/ basis) with positive parameters «, 3:

w=e red—e? net,

0 0 —-a 0 a0 0 0

_(7in_| O 0 0 g .. |l o ptoo
J=(J) = o1 0 0 0 9 = (9ij) = 0 0 a 0
0o -8t 0 o0 0 0 0 B

Computing the connection one-form A of the Levi-Civita connection D via the Koszul
formula gives

0 a’ed o?e? 0

A 1 —aBe? 0 —apel 0
2 —e? el 0 0

0 0 0 0

The Ricci Tensor is then given by Ricj, = R’fj w» Where R = dA + A A A is the full
Riemann curvature tensor:

—af 0 0 0

) 0 -2 0 0
Ric = 0 0 a®*8 0
O 0 0 0

Finally, SCF is determined by d;g = — Ric + Ric(J-, J+), so

a0 0 0 2a8 0 0 0
ol 0 B 00l 10 o 0 0
o 0 a0 210 0 =228 0
0 0 0 g 0 0 0 —a?3?
The resulting equations 0, = —a33, 93 = —%a2,82 can easily be integrated observ-

ing that 6,5((1_%5%) = 0. The general solution for initial values a(0) = ap, 5(0) = fp is
given by

a(t) = ao (14 Jadsa-t) . B = o 1+ Jadh 1)

Geometrically, this means that symplectic curvature flow shrinks the central directions of
Hj3 x R while expanding the unpreferred directions at inverse rates. The shrinking of the

1
5
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central direction in Hg and that of R occur at different rates, the former collapsing faster
than the latter. The corresponding unequal expansion of the unpreferred directions ey, eo
is due to the choice of symplectic form which couples e, e3 and es, e4.

Two quantities whose behaviour under SCF might be of interest are the (pointwise)
norms of the Nijenhuis tensor and the Riemann curvature tensor. One finds

11 11 432
R L —

804(2)50

N|?=8a%8= —F2" —
IV = 8% = bt

Symplectic curvature flow on the Kodaira—Thurston manifold has also been considered
in [25] as an instance of anti-complexified Ricci flow, but it appears the example therein
is faulty (e.g. the given solution does not satisfy the initial conditions) and we felt it
would be worth including our own computation.

5.3.2. Sum of two Heisenberg algebras

The computation is similar for the product of two Heisenberg groups. The generators
€1, ..., e¢ of its Lie algebra can be chosen such that [e1,e3] = e5 and [es, eq4] = eg. The
Lie algebra h3 @ b3 is two-step, so Lemma 5.3.3 can be applied. In the following, all
matrices are with respect to the e;/e’ basis.

Consider the following three-parameter family of almost Kéahler structures for positive
parameters «, 3,7:

w = €1A€5+€2A€4+63/\66,
g = a_161®61+ﬁ_162®e2+7_163®63+ﬂe4®e4+ae5®e5+766®66,
0 —a 0
03 -8 0 0
B 0 0 —x
d 0o Bt o0
al 0 0 03
0 0 ~°!

As in the case of h3@R, the flow equation of SCF can be written as d;g = — Ric + Ric(J+, J-),
where the Ricci tensor is computed from the connection one-form of the Levi-Civita con-
nection via the full Riemann curvature tensor. We obtain

—af 0 0 0 0 0
0 —a? 0 0 0 0
.11 0 0 —p !t o0 0 0
Rie=21 0 o 0 -2 0 0
0 0 0 0 a33 0

0 0 0 0 0 ~3871



5.3. SCF on Left-invariant Structures on Select Nilmanifolds 97

and
20 0 0 0 0 0
0 —?824+a® 0 0 0 0
o — 1[0 0 231 0 0 0
=51 0 0 0 —a282++2 0 0
0 0 0 0 —2a3p 0
0 0 0 0 0 —2y3371

The resulting equations for «, 3, are

1 1 -
da=—a’B, AP =—ca’F+q% Ay =8

with initial conditions a(0) = ag,5(0) = Bo,v(0) = 7. The equation for J;5 can be
rewritten as 20; log 8 = 0 log /7, so B/5y = (a/ao)%('y/fyo)fé. With this expression for
5 the other two equations read

da = —Laiy"3,  dy=-L'y3a77,
where L = fo(70/a0)?.

In the case By = vo/a0, these equations can be integrated without much difficulty and
the solutions are

a(t) =040(1+204070't)_%, B(t) = Bo, y(t) :’70(1+20é070't)_%-

As on the Kodaira—Thurston manifold, symplectic curvature flow shrinks the central
directions in each of the copies of H3 and expands the base direction coupled to the
central ones by the symplectic form at the inverse rate.

For general initial conditions, integration of the equations for o and v becomes more
difficult. One may substitute & := L™'a™3, 5 := Ly™3. Then 0,6 = 01, so & = n + ¢,
where ¢ = L_loza 3 L~y 3. The case ¢ = 0 corresponds exactly to the “easy” case
considered previously. The equation for n reads

om = 3 (n + ¢)% .

Integration is possible in terms of hypergeometric series, but we have not pursued the
analysis. Qualitatively, the behaviour is expected to be similar to the easy case with the
central directions collapsing, the two base directions coupled to the central directions by
the symplectic form expanding at inverse rates and the remaining two base directions
coupled to each other tending to a finite scale.

The pointwise norms of the Nijenhuis and Riemann tensors are given by

INJ? = 8(a%6 + 9287, IRI? = - (a'6? + 4157

In the case where 5y = vp/ap, these reduce to

2 (1 + 2a000 - t)2 ’

@070 H HQ 11 Oé(%’yg

N|? = 16ay = 16— 2070 -
H ” il 14+ 200 -1
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5.3.3. The Nilalgebra n,

The situation changes for the nilalgebra n, with generators e, ...,e4 and [e1,e2] = e3
and [eg, e3] = e4 as the only nonvanishing commutators. This nilalgebra is three-step,
so Lemma 5.3.3 does not hold and SCF turns out to evolve both w and J nontrivially.

The initial almost K#hler structure considered is wg = e! A €3 + €% A e* and Jy =
e3@el teg®e? —eg®ed —ea®e?, e € ni. The symplectic form wy is closed since
de! = de? = 0 and de® = —e! A e? and de* = —e? A €3.

To run symplectic curvature flow, d;(w,J) needs to be known on a sufficiently large
space of almost Kéahler structures on ngy. For computational convenience the following

familiy of almost Kahler structures was chosen:

0« vV 0
_ 1,32 4 1,2 ~fa 0 0 ¢
=e Ae’+e ne +ye ne”, J= b 0 0 d
0 ¢ d 0

The matrix J is to be understood as an endomorphism of g in the e;/e/ basis. The fact
that .J is an almost complex structure imposes algebraic relations on a, b, c,d,a’, b, ¢, d':

aa + bb' = —1, ac+bd =0
ad' +ccd = —1, ad +bd =0
bb' +dd = —1, ab +d=0
e +dd = —1, ab+cd =0.

The equations on the right hand side are all equivalent in light of the ones on the
left, of which only three are independent. Furthermore, the compatibility condition
w(J-,J) = w fixes v by Vv = a’ + d, so the above defines a four-dimensional space of
almost Kéahler structures on ny.

The metric associated to w,.J in the e;/e’ basis is given by

g1 O 0 gua b+ va 0 0 —a
v 0 g2 g3 0 | 0 c—va —a 0
(9i1) = 0 g3 gz O | 0 —a =0 0
gua 0 0 gug —a 0 0 -

Infinitesimal changes of these almost Kéhler structures under SCF are determined by
the Chern-Ricci form and the Ricci curvature (more precisely, the (2,0) + (0, 2)-part of
the Ricci curvature, since 2g~* Ric(20+(0.2) — JR).

To compute them, let D denote the Levi—Civita connection of the left-invariant metric
g. Tts connection one-form A in the e;/e’ is the element of End(ns) ® nj given by

29(ex, De,e;) = 2g(ex, Aljer) = g([ej, eil, ex) — g([ej, ex], ei) — g([es, exl, €5)



5.3. SCF on Left-invariant Structures on Select Nilmanifolds 99

or, more explicitly, by

0 0 0 0
0 —g23(933 — g14)dia  —g33(933 — g1a)dia O | 4
2d14do3 A = e
1 0 g22(933 — g14)dia 923(g33 — g14)d1a O
0 0 0 0
0 0 0 0
n 0 g23944d1s  g33944d1s O ol
0 —g22944d1s  —G23944d1a 0O
0 0 0 0
0 2g23944da3 93394423 0
n —923(933 — g14)d14 0 0 923944d14 o2
—(das + 922914 — 935)d1a 0 0 —922944d14
0 —2¢23g14d23  (d14 — g14933)das 0
0 933944da3 0 0
4| ss (933 — g14)d14 0 0 933944d14 o3
923(933 — g14)d14 0 0 —g2394ad14 '
0 —(d14 + g14933)daz 0 0

Here d14 = 911944 *9%4 and dog = 22933 fg%?). Observe dy4daz = det g;; = det w;; - det J.
For w, J in the considered family, it is detw = 1 and det J = det Jy = 1, so di4does = 1.

With A known, the Riemann curvature Fp is then given by the endomorphism valued
two-form A A A+ dA. The Ricci curvature viewed as an endomorphism of ng by means
of g turns to out to be

—932,3944 0 0 0
“1p: 0 —gua(g25 + d1a) 0 0
Re = g 'Ric = 33
g 0 2923933944 g14(935 — d14) 0
914(935 + d1a) 0 0 gaadi4

Computing the commutator [Re, J]| and expressing the g;; in terms of entries of J yields
for 2R:

0 (l/C/(b/2 — d14) b/Cl(Qb/Q — d14) 0
ac’(b’2—|—2d14) 0 0 c? (b/2 +2d14)
—2aa't'd —bc (2b"*—d14) +ad (b'? +dyg) O 0 —2ca'b'd —d' (V*—2d14)
0 —ad (V*+d1s) —cc (0'*+2d14) +2da’'t' ! —al! (V?+d14) +dc (b'*—2d14) 0
(5.1)

The second quantity required to write out the SCF equations explicitly is the Chern—
Ricci tensor P, for which a convenient expression was derived in Lemma 5.3.1:

P = tr(JdA).
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With the A given above it is P = c/e! A €?. Furthermore,

0 -v'd 0 0
_ c? 0 0 0
_2g 1P(270)+(072) — d/cl + acl 0 O 0/2 . (52)

0 vd +ab b 0

Along with the expression for R found in equation (5.1) this constitutes the evolution
equation 0;.J = —2¢g~ 1 P(20+(0:2) L R Setting y(t) = (1+5/2-t)"/5, the explicit solution
to this ODE with the initial condition J(0) = Jp is given by

a =y l-y?, b= 27—y,
c = 2y—y ', d = —y+y ',
a = —y+y, Vo= -y,
J _y—3 d = y—l _ y—S.
For the evolution of w according to diw = —2P with w(0) = wy one obtains

wt)=e red+e? net +2(1y7 —1)el A e?

and the metric evolves as

2y — 2y Ly 3 0 0 —y 4 y3
B B 0 20 =2y +y b oy—yt 0
_yfl +y73 0 0 y73

The Nijenhuis tensor (N;;) in the e;/e/ basis is given by

0 2y =y O)(e2+es) —(y =y ©)(ea+es) y (er—eq)
—(2y =y %) (ea+e3) 0 —y 2(e1—es) —(y =y ) (e2+es)
( =y %) (ea+es) y 2 (e1—eq) 0 —y O(ez+e3)
—y*(e1—e4) (y =y %) (e2+es) y O (ea+es) 0

from which its norm can be computed with a bit of work. The leading order turns out
to be y~° or equivalently t~! as in the Kodaira-Thurston case.

5.4. Outlook

It has been conjectured in [37] that SCF exists for as long as long as the cohomology
class of w(t) stays inside the symplectic cone C = H?(X,R). In the case of left-invariant
almost Kéhler structures on Lie groups, the tangent bundle is trivial and the first Chern
class, represented by a multiple of P, vanishes. This means that the symplectic class is
stable under SCF and the conjecture then says that the flow should exist for all times.
We have confirmed the long-time existence for the examples examined in the second part
of this chapter and it would be interesting to see whether this is true in general for SCF
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on left-invariant almost Kéhler structures on Lie groups. In any case, one might hope to
express the limiting structure or the singularity formation in terms of the initial data,
ideally of the symplectic class and the Lie algebra.

Is is known that, topologically, compact Nilmanifolds are iterated torus bundles (cf
[33]). In the cases examined in this chapter, it seems that — in some imprecise sense —
these fibres collapse under SCF. Studying the interaction between the iterated bundle
structure and the flow might help answer the questions on the limiting structures and
long-time existence of SCF.






A. Background Material

The material presented here is standard. It can be found in textbooks or is folklore.

A.1. Some Riemannian Geometry

Let (M,g) be a Riemannian manifold. Using summation convention, a (p, ¢)-tensor in
local coordinates is given by

r= TJlll JlZ&xll ® - Oy, ®@dalt - @ dala .

When dealing with tensors, abstract index notation is used, i.e. indices of lel ;" are
interpreted as open arguments of 7. When a given quantity does not define a tensor,
indices are interpreted as concrete indices, i.e. coefficients of a coordinate representation.
Let V be the Levi-Civita connection on M. Locally, the connection one-form is given

by the Christoffel symbols
k 1
Iy = 5(51‘9]‘1 + 059i1 — 019i5)
(this does not define a tensor). With this, the covariant derivative of a (p, ¢)-tensor 1" is
V Tzl dp _ a Tzl zp Z Tzl ip—1ligg1 zprlk _ i T“Zp ' ' Fl

J1dq J1-Jq J1dq J1de—1likr1dq- Mk
k=1

Note that even though not every term on the right hand side defines a tensor, their sum
does. The Riemannian curvature tensor is given by
!
Uk a F]k a I; ik + Flm ik — F]m ik
from which the Ricci and scalar curvature are derived via
Rjx = Rijx', R=¢""Rjx=R)].

If M is a surface, the full Riemannian curvature is already determined by the scalar
curvature. One has

1
Rz]k <5lg]k 5;9%) s Rjk = ijok .

The following relations concern commutators of covariant derivatives

q

i1-1p i1-ip 2 7,1 g1 lig41ip Z 11 “ip
ViV le -Jq =V VTJl “Ja Rzﬂ JiJq Wk J1 Jk—1lik+1dq
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Observe that the left hand side is a priori second order in 7', but the left hand side is in
fact zeroth order. The tensor-Laplacian (or rough Laplacian) is defined by

AT = —giV, VT — iy, T

J1Jq Jidq

It is possible to commute (higher) covariant derivatives and the rough Laplacian acting
on tensors and in general the difference

. RANCI . i1eip
vkl vkTA,‘TJl"'Jq Avkl vaT‘]l"']q

will be an expression depending on the curvature, its covariant derivatives and linearly
on T in up to r covariant derivatives.
The pointwise inner product induced on (p, ¢)-tensors by the metric g is given by

.y .y PRI R LY 14
= ¢Vt .. glddag. ., ...q o, TIPSR
(T,8)g =g g 19514, gzpz;le...jq Sji"'jf; .

Of special interest is the case where one of the tensors is a covariant derivative of a
(p,q — 1)-tensor. For notational convenience we omit the covariant indices and the
corresponding contraction with the metric. If 7" is a (p,q — 1)-tensor and S a (p, q)-
tensor, then

gy, (g2t .. -giqi@Tig---iqSi;...%) = (VT,8), + (T,8S),,

where 08 is the (0,q — 1) tensor given by g% Viy Sy...ir . Defining the vector field X =
g --~giqi/qﬂ2...iq5i/1,,,i;, the left hand side can be written as divX = V,;X* and a
computation shows that div X - dVol, = d(txdvoly). Stoke’s theorem then implies the
relation

J (VT,S), dVol, = ff (T,55), dVoly ,
M M

which is valid for (p, g)-tensors S and (p,q — 1)-tensors 7. A consequence of this is that
for (p, q)-tensors S and T one has

J (AT, S), dVol, :J (VT,VS), dVol,
M M

and in particular the rough Laplacian is self-adjoint. Suppressing superfluous indices,
the formulae for commuting covariant derivatives and integrating by parts imply that
the difference

JM(AT, AS), — (V*T,V?8),4Vol, (A.1)
= f 99 Y [(VaVT, V' ViS)y — (VaVu T, Vy Vi S),] dVol,
M

is an expression of two orders lower involving the curvature of the metric g.
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A.2. Some Functional Analysis

Lemma A.2.1. Let E be a Banach space, x € E and (x;) a sequence in E such that
every subsequence of (x;) has a subsequence converging to x. Then (x;) converges to x.

Proof. Suppose (z;) does not converge to x, i.e. there exists € > 0 and a subsequence
(z;,) such that |z;, — x| > € for all j. But (x;;) has a subsequence converging to x, a
contradiction. O

Lemma A.2.2. Let E,F,G be Banach spaces, T: E — F a compact operator and
S: F — G a linear bounded injection. If (z;) is a bounded sequence in E such that
(STz;) converges in G, then (Tx;) converges in F'.

Proof. Denote z € G the limit of (STx;). By compactness of T, any subsequence of
(T'z;) has a convergent subsequence in F' whose limit point maps to z under S owing to
the continuity of S. By injectivity of S, the limit points of (T'x;) have to be y := S~!(2)
and hence (T'z;) converges to y by Lemma A.2.1. O

A.3. Linearisation of the Scalar Curvature Map

We compute the linearisation of the scalar curvature as a map
Sc: H — CP(X), Sc(p):=S(wo + iddyp)

from Kéahler potentials H on a n-dimensional compact Kéhler manifold X with reference
metric wy to C*(X). A metric w, = wy + 100¢p induces a volume form Q, := 1/n!- W]
which can be seen as a Hermitian metric on the anticanonical bundle K* = A"T(10) X
The Kéhler—Ricci form p,, of wy, is then given by the curvature of the Chern connection
of Qy, i.e. p, = 100log Ny, and the scalar curvature by Sc(p) = Ayp,. We fix a tangent
direction ¥ at ¢ = 0 € ‘H and note that for small enough s, the function s defines a
Kahler potential. Using the subscript s instead of st we expand Qg and A, into powers
of s:

Qs = 1/n! - (wo + 5i00Y)" = Qo + sAgiddy - Qo + O(s%) = Qo + sAgy - Qo + O(s?),

a w1
Ao = n——2—
wy
a A i0oYh A w2 anw Lidoy A wl Tt
= MNa+s [n(n —1) ¢n 0 p? ! L4 = +O(s?)
) wo “o

= Apa+s[1/2- Ao A id0Y — Aga - Ag] + O(s%),

which is valid for any two-form «. We have also used that the k' power of the adjoint
of wedging with w is given by

nl o oag Ao AR

(n—k)! wn

1/k!’A£O&1/\~‘AO&]€=
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for two-forms aj, ..., . This follows from the linear algebra in e.g. [23]. For the scalar
curvature one can compute locally

Scs, = A4iddlog
= A, [i001og Qo + sidoNeY + O(s%)]
= Agiddlog Qo + s [AJY + 1/2 - Ajiddlog Qo A 100y — Ngiddlog Q- Agy] + O(s?)
= Sco +s [A% — Sco A + 1/2 - Ajpo A i00y] + O(s?),

SO

(dSc)o -1 = Al — Sco Aot + 1/2 - Alpo A i00Y .

A.4. Parabolic Holder and Sobolev Norms on Manifolds

The role of this appendix is to outline a proof of how to transfer parabolic estimates
in Sobolev and Schauder spaces (adapted to 2"d order equations) from flat domains in
R™ to compact manifolds. We denote by (X, g) a compact n-dimensional Riemannian
manifold with Levi-Civita connection V9 and by (E, h) a rank m vector bundle over X
with inner product h and a connection V" with respect to which h is parallel. For T' > 0
set X7 := X x [0,T[ and define I'(X7, E ® (T*X)®*) to be smoothly time-dependent
C%-sections of £ ® (T*X)®* over X. On I'(X7, E ® (T*X)®) we have the norms
| [ zr(x7.g.n) defined by

T 1/p
s ® Plro(xp.g,n) = (L JX(\S@)P\g,h)p dvol,, dt)

for s a section of F and P a section of (T*X)®*. Here |- |, denotes the pointwise
norm on E ® (T*X)®* given by |s ® P|, 5 = |s|n|P|y. The Levi-Civita connection V9
and the connection V" induce a connection on E ® (T*X)®* denoted by V. We define
the parabolic Sobolev space LY ,(X7,g,h) as the completion of I'(X7, F) with respect
to the norm ’

1/p
k
HSHL’l’)Q(XT,g,h) = <at5|1zp(XT7g,h) + Z v Sip(XT,g,h)> .
k<2

Remark. The generalisation to higher regularity parabolic Sobolev spaces is straight-
forward, though mixed derivatives have to be allowed with one time-derivative counting
for two spatial ones. We only need L11772, however.

Defining parabolic Holder spaces takes a bit more preparation. We first set the spaces
C’k’Qk(XT, g, h) to be the completions of I'( X7, F) with respect to the norms

ol
HSHC’%%(XT,g,h) = Z sup |8§V 3|g,h~
0<2j+i<2k XT
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The parabolic distance between points (z,t.), (y,t,) € Xr is defined by d((z,t.), (y,ty)) :=
(dg(,y)? + |tz — t,])"/?, where d, is the geodesic distance on X defined by g. The con-
nection V on E® (T*X)®* defines a parallel transport maps for paths on X. We denote
by Zpy: B @ (T*X)%* > B, ® (T"‘X)?lC the parallel transport maps along a minimis-
ing geodesic joining x to y. Should y lie in the cut locus of x, this might not be well
defined, but for the purpose of defining Hélder norms, the only relevant case is that of y
being close to z. For a €]0, 1[ and s, P sections as above, we can now define the Holder
seminorms as

s —w (s ® P)iz.tu) — 55 (5® P) gty lgn
5@ Ploxron= wp A1), 06y

(@,te)#(y,ty)EXT
and obtain parabolic Holder spaces C*:2k. (X1,9,h) as the completion of I'( X7, F') with
respect to the norms

HSHC’ﬂvzkv&(XT,g,h) = Hchkvzk(xﬂgm + Z [@?Vls]a,xzr,g,h-
2j+1=2k

Observe that both parabolic Sobolev and Holder norms makes sense when replacing
X by a geodesically convex subset U < X. The main ingredient in transferring estimates
on open sets in R™ to M is the following lemma:

Lemma A.4.1. For k € Ny there exists a finite collection of points x;, coordinate charts
wi: Ui — Q; about the points z; and trivialisations ®;: E|y, — R™ x U; and a constant
K such that the U; are geodesically convex with smooth boundary and there holds

1/ K| s, HC’“%*“(Q < sl g2, @ (Usp,g,h) = < K500, cn o2, ()

for all s € I'(Xp, E). Here s, ,, = pryo®;oso cpi_lz Q; — R™ {s the section s locally
understood as a function on Q; with values in R™ wvia the chart p; and the trivialisation
®;. The norms C*2%2(Q;1) are the parabolic Hélder norms on functions from Qg to

R™ with respect to the Fuclidian metric gg on R™ and the standard inner product hy on
R™.

Proof. We only give a detailed outline of the proof and use a less precise, but also less
convoluted notation. About each point z € X construct charts ¢: U; — Q via geodesic
coordinates. These charts have the property that g coincides with gg at x and that
the connection one-form of the Levi-Civita connection (Christoffel symbols) vanishes at
x € X. Making the charts U smaller if necessary, one can then use parallel transport on
E along outward geodesics to construct a trivialisation ®: E|y — R™ x U such that the
connection one-form of V" vanishes at z (i.e. TU corresponds to the horizontal subspace
at x). By the continuity of g, h and the connections, given § > 0, one can make the U
yet smaller such that on each chart ¢ with trivialisation ® of E one has that

1. go and g are d-close in C° (with respect to say go),

2. hg and h are d-close in CY
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3. The connection one-forms of the Levi—Civita connection and the connection on F
are d-close to zero in CO.

Here g and h are to be understood as the structures of X and E transferred to €); via
p; and ®;. By compactness of X we can choose finitely many points z; such that the
corresponding U; with ¢; and ®; satisfy the above property. The properties 1 and 2
guarantee that for sufficiently small § in each of the (U;, ¢;, ®;), the pointwise norms on
time-dependent sections s ® P of E® (T*M)®* defined by g, h and go, ho are uniformly
equivalent on £;7, i.e.

1/Csup s @ Plghg < 5up |s ® Plgn < Csup |s ® Plgyno

T T iT

where we have identified s ® P with a function Q; — R™ x Rk» using ¢; and ®;. The
local difference between ordinary derivative and covariant derivative Ds — Vs is an
algebraic expression in s and the connection one-form. It follows by induction that the
local expressions for Vs — D!s are a sum of derivatives of connection one forms and
derivatives of s up to order [ — 1, where the derivatives of s can be expressed either as
ordinary or as covariant derivatives. Applying the pointwise estimates then gives

l

l
sup |V's|gn < K sup Y [D's|gyny s sup |D's|gyne < Ksup Y [Vis|gn,
i 925 Qr Qir ;20

where the constant K arises as a product of the constant C' in the pointwise estimates
and the supremum over derivatives of the connection one form up to order I — 1. The
same estimates holds true for time-derivatives of s and one obtains

J Ml J 7l J 1yl
1/K Z sup |0} D" s|go.ho < Z sup [0} V's|gn < K Z sup |0} D" s 49,1 -
0<2jtl<2k Shir 0<2j1l<2k ST 0<2j1l<2k ST

As presented, the constants K depend on 7, but taking their supremum over the finitely
many indices shows that they can be chosen independently of the i. Comparing [¢7 Vis] a,g,h
to [Q{ D's]a.go.ho 18 slightly more complicated, owing to the involvement of parallel trans-
port and geodesic distances. However, parallel transport is localy defined via an ordinary
differential equation whose coefficients are given by the connection one-form of V. By
property 3 they can be assumed to be arbitrarily small, so parallel transport in the
charts (U;, p;, ®;) can be uniformly compared to the trivial transport defined by the flat
connections on 7°€2; and R™. The same argument works for geodesic distances. This can
be used to show that

1/K[angS]a,go,ho < [agvls]a,g,h < K[angS]a,go,ho
proving the claim. O

An analogous result holds for szjg—norms.
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Lemma A.4.2. For k € Ny there exists a finite collection of points x;, coordinate charts
i Ui = Q; about the points x; and trivialisations ®;: E|y, — R™ x U; and a constant
K such that the U; have smooth boundary and there holds

VEK|sa,0l1z ) < I8l12 ,@wip.gh) < Klsoieilr ,@ir)

or all s € 7,F). Here iT) 1S defined with respect to an carrying their
llse(Xy, E). Here LY 5(Qur) is defined with t to R™ and R™ ing thei
canonical structures.

Proof. The proof of A.4.1 can be adapted to this case (as there is no parallel transport,
it is not even necessary to work with local geodesic coordinates). We merely remark that
the volume forms on U;r defined by g and gg differ by functions which are uniformly
bounded from above and from below by a positive constant. ]

We now proceed to show that local parabolic regularity results also apply to compact
manifolds.

Proposition A.4.3. Denote by - contraction in tensor indices. Let L(x,t) = Aa(x,t) -
V2 + Ai(z,t) - V + Ag(x,t) be a strongly elliptic linear second order operator acting on
sections of E. Assume the coefficients A; to be bounded continuous sections of End(F)®
(TX)® over Xp. Then there exists a constant C such that for all strong solutions
uE€ L?Q(XT, g, h)ioe (the subscript loc indicates that u has the required reqularity, but that
we do not assume a priori boundedness of the global LIiQ—norm) of the linear parabolic
equation (0y + L)u = f on Xp for a continuous section f of E over Xp, one has the
estimate

lullre ,xr.gm) < CllulLeer gn) + 1 lzrxr,gm)

where X7. is a set of the form X x]e,T| for e > 0.

Proof. We glue local versions of interior parabolic L{”Q-estimates which can be found
in e.g. [31]. The results therein concern parabolic systems on domains in @ < R"
assumed to have BMO (bounded mean oscillation) coefficients and inhomogeneity in LP.
The bounded continuous coefficients and inhomogeneity satisfy these assumptions and
the result in [31] of relevance to us can be phrased as follovvs It A;’J , Al and Ag are
bounded continuous functions from Q7 — End(R™) for 1 < i,j < m, where Ay satisfies
the ellipticity condition

(—AY&E0,0) = NEP?], YEeR™ veR",

for a fixed A > 0 uniformly in Q7 and Q. < Qr is of the form ., = Q' x]e, T for an
open subset 2’ such that the closure of ' is contained in Q (what matters here is that
QV is at a positive distance from the parabolic boundary Q x {0} U 0Q x [0,T]), then
for strong solutions u of the equation

(at+ > A 00 +2A 0; +A0> —f (A.2)

3,j=1 =1
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with f: Qp — R™ a bounded continuous function, one has the estimate
lullre ,q) < CllulLe@r) + 1Flzr@r)) - (A.3)

Now let u e LY (X7, g, h) be a solution of (0, + L)u = f as in the hypothesis. We cover
X by finitely rilany charts and trivialisations (U;, ¢;, ®;) in which the metric estimates
of Lemma A.4.2 hold and find open subsets U/ with closure contained in U; which still
cover X. Denote the corresponding domains in R” by €; and ;. The sections u,, o, in
local charts solve equations of the form (A.2) and the estimates (A.3) hold, where the
constant can be taken to be independent of i. Set U, := U/ x]e, T[, and €} := Q. x]e, T'[
and estimate

HUHLﬁ’J(X'T,g,h) < Z HUHLQ’,Q(U/T,Q,}Z)
;
< KZ |ug, o, HL’l”Q(Qi’T,go,ho)
5
< CKZ (s ;[ Lo (@i sgosh0) + 1fiori | L2 (@urgosho))
5
< O (Il oy + 11 pxrgn)

which proves the claim.

Remark. The author of [31] makes assumptions on the dimension of 2 restricting at-
tention to odd n = 3. These restrictions can be circumvented by adding a phantom
direction z €] — e,¢[ and extending u, f to «/, f’ trivially in that direction in the case
of even n > 2. The operator L is extended parabolically to L' by adding —d2. If u
solves (0 + L)u = f, then (0; + L')u’ = f’ and the estimates can be applied to the
latter systems. Estimates for the primed quantities translate directly to estimates for
the unprimed ones.

O
The analogous estimates hold for parabolic Holder spaces.

Proposition A.4.4. Let L(x,t) = As(x,t) - V2 + Ay(x,t) - V + Ag(x,t) be a strongly
elliptic linear second order operator taking sections of E to sections of E. Assume that
for k € Nqy the coefficients A; lie in C**(Xp, g, h) (with the natural extension of
the definition of parabolic Hélder spaces to sections of End(E) ® (TX)®'). Then there
erists a constant C' such that for all strong solutions u € Cr+1L2k+2.0( X0 g h)ioe (here
the subscript loc indicates that éfVlu for 25 +1 < 2l + 1 are Hélder continuous with
coefficient o, but no boundedness assumption of the global C*+12k+2:2 norm, is made) of
the linear parabolic equation (0; + L)u = f on Xr for f e C*2%%(Xp, g, h), one has the
estimate

lullonrenzaixs g < C (HuHC’kanv“(XT,g,h) + Hf”ck,zkva(xm,h)) ,

where X7. is defined as in Proposition A.4.5.
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Proof. The statement of this theorem for domains {2 < R™ can be found in the classical
paper [18]. Though stated slightly differently (see the remark below), the results [18]
imply that replacing bounded continuity of the coefficients Aé’j and the inhomogeneity
f in the domain estimates in the proof of Proposition A.4.3 by the condition that they
be in C¥2% (with values in End(R™) and R™ respectively), on has estimates analogous
to the LP case, i.e.

Jullgrrasaciay) < C (lulgrane@py + 1florsmoan)

where u € CF+1.2k+2.2(Q)1) is a classical solution the parabolic equation on Q7 defined
by the A; with inhomogeneity f. As in the LP case, R” and R" are endowed with their
canonical structures. The transfer of the domain estimates to estimates on X now works
exactly as in the proof of Proposition A.4.3, with one additional subtlety: the seminorms
[s ® Pla,g,n are not local in the sense that their definition involves taking a supremum
over X7 x X7\A (A being the diagonal). One has

|ullorsrzere(xr gny < ZHUHCHL?H?(U/T,g,h)
i

< KE Hugai,@iHC’“"’1’2’“+2(91‘/T,907’10)
7
< KE Hutpi,{%HC’“+1’2’“+2""(91"T7907710)
7
< CKZ (Hugpi’q;iHck,2k,a(QiT’go7h0) + [l fos 0, ”Ckv%vo‘(ﬂm,go,h0)>
%
< ' (uloranaergm + floramagengn) - (A4

For the Hoélder seminorms we distinguish two cases. Denote by § the infimum of the
radii r about points in x € X such that the geodesic distance ball of radius r about x is
entirely contained in one of the U/. By compactness of X, 0 is strictly positive. Now if
(z,tz), (y, ty) € X} such that 0 < d((z,ts), (y,ty)) < 0, then we can suppose that both
points are contained in the same U;/» and estimate for 25 + 1 = 2k + 2

Avls == ik
‘(agv u>(x’t”) _ Hxv?l/(agv u)(y7ty)‘g,h HUHCkH 2k+2,a (7.1 g h
d((‘r7t$>7 (yaty))a ’ ’ ( i8> )

KHu”0k+1,2k+2,a(Q

A

A

ir90,h0)

N

CK <\|uuck,2k,a(gi% go.ho) T IS \Iommmi;,go,hw)

N

CK? ([ull ey m + 1 lcrssowip.gm )

N

O (Julkamexrgm + | Florasacergm) -
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On the other hand, if d((z,t.), (y,ty)) = J, then using (A.4) yields

|2V ) (1.10) — B (0 VFU) 1,
d((x, tm): (ya ty))a

g,h

< HuHckJrl,2k+2(X%’g7h) -0

< O (Jullerara g + Iflorasecxnon)

Combing the two cases, taking the supremum over X/, x XZ\A, summing over 2j + [ =
2k + 21 and adding (A.4) one obtains

Jullgrnrnn ey gm < C (Iulorama g + 1 Floxenacergm)

as claimed.

Remark. The parabolic Holder norms in [18] explicitly take into account the distance
of a given point to the parabolic boundary. Working with the domains ;. which are a
fixed distance away from the parabolic boundary of ;1 allows translation of Friedman’s
parabolic Holder estimates on domains to the ones used in the above proof.

O

Lastly, we translate a certain parabolic Sobolev embedding to compact manifolds.

Proposition A.4.5. Let p > (n +2)/2 and 0 < a < min{1,2 — (n + 2)/p}. Then
L} o(X1,9,h) embeds continuously into CO0( Xy, g,h).

Proof. This follows directly from the metric estimates in Lemmas A.4.3, A.4.4 and the
corresponding domain result found in e.g. [41] (page 27, theorem 1.4.1). O
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B.1. Twisted cscK Metrics on Riemann Surfaces

For the sake of completeness we prove the existence and uniqueness of twisted cscK
metrics with unit volume on compact Riemann surfaces of positive genus. These twisted
cscK metrics serve as limit objects for twisted Calabi flow and a priori knowledge of
their existence is assumed in several proofs of Chapter 2 concerning the flow’s long-
time behaviour. The existence and uniqueness proofs of twisted cscK metrics closely
resemble those of the uniformisation theorem and can be found e.g. in the doctoral
thesis of J. Fine.

Theorem B.1.1. Let X be a compact Riemann surface of positive genus with smooth
reference Kdihler-metric wy and o € Q*(X,R) a smooth two-form with nonpositive inte-
gral. Then there exists a unique smooth Kdahler-metric w in the cohomology class of wy
such that S(w) + Aya = S is constant (twisted cscK metric).

The cohomological constant S is given by S - Vol = SX p(w) + a and in particular
S < 0. Parametrising metrics in the class wy via e“wy, the twisted cscK equation is

equivalent to )
Agu + |S|e* = —(Sco +Aoa) , (B.1)

where the subscript 0 indicates that the corresponding quantity is defined by the ref-
erence metric wg. If § = 0, then SX Sco +Apawy = 0 and the equation (B.1) can be

uniquely solved by inverting the Laplacian. From now on we assume S # 0 and rescale
the metrics such that S = —1. We consider the map

F: LE(X, go) — L%(X, 90), F(u)=Aou+ exp(u)

and need to solve the nonlinear elliptic problem F'(u) = ¢ for ¢ € A, where

Jquwo > 0}.

This is done via a continuity argument: We show that im ' < A is open, closed and
nonempty, so by connectedness of A, im F' then has to be A.

A:= {¢eL§

Remark. Sobolev multiplication works in Li for k > 2 and u! € L% if ue Lz for any

I € Ny. Moreover, 2, ul/l! is absolutely convergent in L2, so exp(u) € L? if u € L2. By

. . [l 2
rescaling the L?-norms one can achieve that e 2 Se Lk

We first show uniqueness
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Lemma B.1.2. The map F: L? — L2 is injective, i.e. solutions to F(u) = ¢ are
UNIQUE.

Proof. There are Sobolev embeddings L3(X) — C?(X) and L3(X) — C°(X), so it
suffices to show that classical solutions to F(u) = ¢ are unique. Let ¢_, ¢, € C?(X)
and u_,u; € C? solutions F(uy) = ¢+. We claim that if ¢_ < ¢, then u_ < u,,
where < means consistently either < or <. Indeed, Au4+ + e¥* = ¢4 and ¢_ < ¢
imply A(u_— —uy) < et —e¥. Now if (u— —uy) attains a global maximum at g € X,
then A(u— —uy)(zg) = 0 and hence e~ (zg) < €+ (xg) which is equivalent to u_(z¢) —
us(zo) < 0. But zp was a global maximum of u— —u4, so u— —uy < (u— —uy)(xg) <0
and thus u_ < uy. The claimed uniqueness follows from this. O

Lemma B.1.3. The image of F is open in A.

Proof. This can be proved by an inverse function theorem argument. We show that
F: L? — L2 is a submersion and hence locally surjective thus proving the claim. We
first observe that the Laplacian as a map

A: L2 — L2

is bounded linear and hence Fréchet differentiable with derivative (dA),v = Av at any
ue L3. A small calculation for u,v € L? shows that

(%

% k
exp(u + v) — exp(v) = exp(u) - v + exp(u) (Z (k‘> 02
k=0

+1)!

The linear map v + exp(u) - v from L2 to L3 is bounded and the remainder term
pu(v) 1= exp(u) Y7L v /(k + 1)! - v? satisfies lpu(W)lr2/lvlzz — 0 for v — 0 in L3
Hence u — exp(u) is Fréchet differentiable with derivative (dexp),v = exp(u) - v. Also
observe that (dexp),: L3 — L3 is compact since it factors as a bounded linear map
L3 — L3 composed with the compact inclusion L} < L%. We conclude that F is Fréchet
differentiable with

(dF)yv = Av + exp(u) - v

being a compact perturbation of the zero-index Fredholm operator A: L3 — L3 and
thus is itself Fredholm with index zero. In particular (dF), is surjective if and only if it
is injective, so it remains to show that the equation

Av +exp(u)-v =0

has v = 0 as a unique solution. The uniqueness can be established by a slight modifica-
tion of the maximum principle argument used to prove Lemma B.1.2. O

Lemma B.1.4. The image of F is closed in A.
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Proof. Let (¢;) be a sequence in im F' converging to ¢ € A. The claim is that ¢ € im F'.
Let (u;) be a sequence in L3 such that F(u;) = ¢;. We shall show that a subsequence of
the (u;) converges to a limit v in L? and that F(u) = ¢. This amounts to establishing
appropriate a priori bounds on (u;) and using compactness of Sobolev embeddings to
extract a convergent subsequence.

We begin by showing that (u;) and e% are bounded in L. Denote by (E := {y pwo/Vol >
0 the average of ¢ and by g € LZ the unique solution to Ag = ¢ — gz~5 with Sngo = 0.
Set

Uu_ = g—m)zgxg—l—i—log(z,

Uy = log(m)?xgb +1).

The functions u_,u, € C? are constructed to satisfy F(u_) < ¢ and F(u;) > ¢. Indeed
one has

F(U_) =Ag+ egfmaxnglJrlog(g = ¢— QZ"‘ egfmaxnglgg <¢ and
F(uy) = elogmaxx o+1) m}:{ixcb = 0.

Note that ¢; — ¢ in L2 implies convergence in C°, so for almost all i € N one has
the estimate F(u_) < ¢; < F(us). Applying the arguments in the proof of Lemma
B.1.2 this implies u_ < u; < uy, so the sequences u; and €% are bounded in C° and in
particular in L2.

From here standard elliptic estimates for the Laplacian can be used to bound wu; in
L. Via

luilz < C(|Aui| 2 + [uilr2) < C(l ¢l r2 + le* (2 + |uill 22)

one sees that (u;) is bounded in L. Since |e“i Iz < e“uiHLg, the same holds true for e*:.
From here one can use

luil g < CUlAw Lz + lluil2) < C(l @il g + e [z + uil 12)

to see that (u;) is bounded in L2. By compactness of the embedding L? < L2, one can
extract from u; a subsequence (also denoted by w;) converging in L3 to a limit u. Since
exp: L3 — L2 is continuous, e% converges to e*. The estimate

lui = ujllz < Cllgi = S5llnz + le™ — ]z + llui — uj2)

implies that (u;) is Cauchy in L? and hence that (u;) — u in L2. Lastly, by continuity
of F: L3 — L3, one has F(u) = F(limu;) = lim F(u;) = lim ¢; = ¢. O

The Lemmas B.1.2, B.1.3 and B.1.4 imply that the equation F'(u) = ¢ admits a unique
solution u € L2 whenever ¢ € L2 has positive integral. With this we can prove Theorem
B.1.1.
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Proof. By assumption the smooth function ¢ := —(Sco+A,) has nonnegative integral
and the case of zero integral was already treated. If { y @wo > 0, there exists a unique
u € L2, such that

Agu + |Sle" = ¢

and the metric e“wy is twisted cscK. It remains to show that u is in fact smooth. This
is a local property, so we can — at the cost of replacing A by a general elliptic second
order operator L with smooth coefficients — assume that v and ¢ are functions on an
open ball B;(0) = R2. Let ¢, be a family of mollifiers with support in the closure of the
ball B.(0). We also assume again that S = —1. For n > 2, the smoothened functions
Up = Uk @), and ¢y, 1= %@y, satisfy Lu, +e"" = ¢, on By 5(0). Moreover (u,) — u
in L% and (¢,) — ¢ in L2 for any k. Let U; R? be a family of open sets satisfying
B1/4(0) = Up € By5(0) and U1 < Uj. Interior elliptic estimates for L give

tn = il iz wpry < Cu(lL(un — )z + Ittn — thnl 220r)

< Cillon = bz, + €™ = el 2wy + lun — umlr2wy))

and an induction argument starting at k = 4 shows that (u,) is Cauchy in any L3 (B 4(0)).
It follows that u € L3 (By/4(0)) for any k. In particular u is smooth.
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C.1. Relation Between Yang—Mills Flow and Hermitian
Yang—Mills Flow

Hermitian Yang—Mills flow can be seen a gauge fixed version of Yang—Mills flow on Kéhler
manifolds. We loosely follow the discussion in [10]. Let (X, g) be a compact Riemannian
manifold and (E,h) a complex vector bundle with fixed Hermitian structure. One can
define a best connection in the space Aj of h-unitary connections on (E,h) to be a
critical point of the Yang—Mills functional

YM: A, - R, YM(A) ::J |Fal? 5, dvoly
X

Recall that Ay, is an affine space over the space Q'(X, u) of one-forms on X with values
in the Lie algebra of the group of unitary gauge transformations /. The variation of the
Yang-Mills functional in direction of a € Q'(X,u) is given by

(dYM)g-a= QJ (d4Fa,a)pdvoly ,
X
where (-,-), denotes the real inner product on End(F)-valued forms induced by h,g
and d% the adjoint of the extension d4 of the connection to Q°(X,End(FE)). It follows
that critical points A of the Yang—Mills functional are characterised by the Yang—Mills
equation d% F4 = 0. In order to find critical points, one can consider Yang-Mills flow,
the downward gradient flow of Y M, which (up to a factor) is given by

QA+ d5Fy = 0. (C.1)

If uw € U is a unitary gauge transformation of (F,h), then u acts on unitary connection
by pullback, i.e. u(A) = uAu~! and it turns out that the Yang-Mills functional and thus
the Yang—Mills equation are invariant under this action. In particular, the Yang—Mills
equation is not elliptic and the Yang—Mills flow not parabolic. The gauge invariance,
however, is the only obstruction to parabolicity of the Yang—Mills flow and one can
construct parabolic flows on Aj, that induce the same flow on gauge equivalence classes
Ap/U via gauge fixing. The classical way of doing this is to write A(t) = Ag + a(t) for
a path a(t) in Q'(X,u) and consider the equation

OA+ dyFa + dadiia =0 (C.2)

which can be shown to be parabolic and to be gauge equivalent to (C.1) (The tangent
space of gauge orbits is given by TaAldA = d4Q°(X,u)). In addition, it is possible to pass
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from a solution B(t) of (C.2) to a solution A(t) of (C.1) by endowing the U-principal
fibration A — Ap/U (some additional technical assumptions are required for the action
to be free) with the connection given by defining the horizontal space in T4 A to be
the L2-orthogonal complement to Tal{ A and setting A(t) to be the horizontal lift of the
path [B(¢)] in Ap/U.

In the Kahler case, this gauge fixing can be achieved by considering Hermitian Yang—
Mills flow which in a suitable sense is gauge equivalent to Yang—Mills flow. To illustrate
this, let (X,w) be compact Kéhler and denote by .A;L’l the set of h-unitary connections
whose curvature lies in Q%!'(X,u). Observe that 04 := A% for A € A,ll’l defines a
holomorphic structure on £ and that A = Ah@‘ is the Chern connection with respect
to that structure and h. Conversely, a holomorphic structure ¢ on E defines a Chern
connection Ah,év SO .A}L’l is in one-to-one correspondence with holomorphic structures
on E. The gauge group U acts by pullback on .,4,11’1 and since uAh;u_l =A, hadu-1l =
Ah,uéufl’ the induced action on holomorphic structures is given by u(0) = udu=!. The
complexified gauge group G of all invertible endomorphisms of E covering the identity on
X does not act by pullback on A,ll’l, since a g € G need not preserve h. It does however
act by pullback on holomorphic structures on E and we define the action of G on A,ll’l
by setting g(4, 3) := 4, g(@)- We remark that Yang-Mills flow leaves A}L’l—invariant and
a more detailed analysis shows that if A(¢) solves (C.1), with A(0) = Ag then A(t) =
g(t)(Ap) for a suitable path g(t) in G starting at the identity. The equation for Yang—
Mills flow in terms of g(t) (using that X is Kihler) is given by (d:;g)g~! = —iMwFy(a),
which after conjugating by g and expressing A = Ah,§ can be written as

gatg = _iAwFAQ,Lh; .

The action of g~! on h is given by g~ -h = h(g-, g-) = h(g*g-,-). Setting h(t) = h(g*g-,-),
one finds that h(t) evolves according to

RN 6)(@h) () = —2iMuFy, 5,

which up to a scalar factor and the normalising term \idg is precisely Hermitian Yang—
Mills flow. Conversely, if h(t) satisfies the Hermitian Yang-Mills equation in its above
form, then h(0)~'h(t) should correspond to g*g for a path g(t) defining a solution to
Yang-Mills flow via A(t) = g(t)(Ao). Indeed, g(t) := (h(O)_lh(t))% defines a path of
connections B(t) := §(t)(Ap) which is gauge equivalent the solution A(¢) of (C.1) and
[B(t)] can be lifted horizontally to A(t). This permits to vary the Hermitian metric
whilst keeping the complex structure fixed instead varying a Chern connection via the
complex structure on E for fixed h.

C.2. Construction of the Donaldson functional

In [9] Donaldson constructs the functional M using Chern—Weil theory. The essence of
this construction is explained in the following. Given a holomorphic rank r bundle E over
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a complex manifold X and an Adg,(,-invariant p-linear totally symmetric function ¢
on gl(r,C), one can define a characteristic class representative for any Hermitian metric
h on E:

o(iFy) == @(iFp, ...,iF}) € QPP(X) .
It is possible to construct a primitive of ¢(iF},) in the following sense.

Proposition C.2.1. Denote by k, h any pair of Hermitian metrics on E. There exists
R(h,k) e QP~LP~1(X) /(Im 0 4 Im 0)
with the following properties:

1. For any three Hermitian metrics h, k,l on E there holds

R(h,1) + R(l,k) = R(h, k).

2. If h(t) is a smooth one-parameter family of metrics and k is another metric on E,
then
B R(k, h(#)) = —pp(hh, By o iF)

3. There holds
i?&R(k, h) = (iFy) — o(iFy) € QPP(X).

Proof. We just give an outline. If H is the space of Hermitian metrics on E, one defines
a one-form on H (with values in QP~1P~1(X)) by

On(n) = —po(h™ "1, iFy, .., iFy) .

The idea is to pick a reference point k € H, set R(k,k) = 0 and define R(h,k) to
be the integral of 6 along a piecewise smooth path joining k£ and h. For this to be
well defined modulo Im @ + Im d, the integral of § along closed loops needs to be in
Imo + Imd. By Stokes’ theorem, this is case if df (this is a two-form with values in
OP~1P=1(X)) evaluated on any two tangent vectors n,¢ (an element of QP~LP~1(X))
lies in o(QP~2P~1(X)) + 0(QP~1P=2(X)). Using the invariant formula for the exterior
derivative, the Bianchi identity for ¢F} and the invariance of ¢ one checks that this is
indeed the case. This establishes the existence of R with properties 1 and 2. Using
OpiFy, = igah(h_lh) one checks

Oup(iFh, ., iFy) = pp(i00n(h~'R),iFy, ..., iF)
i0opp(h™ h,iFy,, ..., iF})
—04(i00R(k, h(t)))

and then integrates along a path from k to h in H to obtain property 3. O
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We can now define the Donaldson functional for a holomorphic vector bundle E on a
Riemann surface (X,w). Let p1(A) :=tr(A) and ¢2(A, B) = tr(AB) and let Ry, Rs be
the primitives associated to ¢ and @2 as constructed above. Set

Mk, h) ::J —%Rg(k,h) AR B) A

X
To see that this is well defined (recall that R was only defined up to Im 0+ Im d), we use
Stokes’ theorem and the fact that w is closed. Obviously M (k,l) + M(l,h) = M (k,h)
holds. To check the variation property, we compute

oM (k,h(t)) = L —%@Rz(k‘, h(t)) + O ARy (k, h(t)) A w
- L p2(h" Ry iFy) — Ap1(hMh) A w
= f tr(iFh  h) — Atr(h™'h) A w
X
— J tr[(AwiF}, — Aidp)h ™ 'h]w.
X

It remains to show that for a fixed reference Hermitian metric k, the functional M (k, -) is
bounded from below provided that the bundle E — X is stable. This is a consequence of
a convexity property of M. Set h(t) = hgexp(tn) for self-adjoint section 7. By the vari-
ational property one then has ;M (k, h(t)) = {y tr([iF}) — Aidpw)n]. Differentiating
again yields

. - . Y 1
OfM (k, h(t)) = L i tr(n00hpyn) = JX itr(0n A Opyn) = 3 ldnynll .0 =0,

where we have used that 0;F}, = 00,(h~'0;h). This implies that choosing hg to be a crit-
ical point of M (k,-) (which exists by assumption of stability) minimises the Donaldson

functional. Indeed, if h is any Hermitian metric, one can pick n = loghy 'h and finds
Mk, ho) < M(k,h) by integration.

Remark. If dj,;)n = 0, then 7 is a holomorphic section of End(£) and hence a multiple
of the identity. Consequently, ;M (k,h(t)) > 0 unless h(t) is a rescaling of hg. In
particular, this shows that Hermite—Einstein metrics are unique up to scale.

C.3. Blowup Argument

Proposition C.3.1. Let X be a compact n-dimensional Kahler manifold and I < R
an interval of the form [0,T[ for 0 < T < co. Let h(t) a smooth family of Hermitian
metrics on E — X and g(t) a smooth convergent family of uniformly equivalent Kahler
metrics with Kihler forms w(t) on X forte I. Then if h(t) and Ay ) F) are uniformly
bounded in CO fort € I, h(t) is uniformly bounded in C forte I.
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Proof. This proof is a more detailed version of Donaldson’s in [9]. We start by clarifying
a technicality.

Remark. There is no natural Cl-structure on the space of Hermitian metrics, so we
pick finitely many holomorphic trivialisations (local finiteness would suffice) E|y, of E
with the U; covering X. In each of the trivialisations h(t) is a family of Hermitian
matrices H(t) smoothly varying in U; and we can take the gradient VH; with respect
to the metrics g(¢) on X. We then set |Vh(t)|y (7) := sup{|VH;(t)|g)(z) [ Ui 3 x}. A
different choice of holomorphic trivialisations gives other norms, but the same topology.

The C°-topology for the Hermitian matrices H (t) locally representing h(t) used in the
following proof is that induced by the Euclidian inner product on the space of square
matrices over C. The arguments in the main text show that H(¢) has uniformly bounded
distance from a reference point in the symmetric space metric on Hermitian matrices. We
check that symmetric boundedness implies Euclidean boundedness. Using the triangle
inequality, we can assume that the reference point is the identity matrix 1. Denote by
d. the Euclidean and by d; the symmetric distance on the space of Hermitian matrices.
If \; are the eigenvalues of H, then ome finds ds(1, H)? = tr(logH)? = Y. (log\;)?
and de(1,H)? = tr(H — 1)? = 3,(A\; — 1)2. The claim then follows from comparing
x — (logz)? to o — (z — 1)2. It is also true that convergence with respect to ds implies
convergence with respect to d..

Suppose the claim of the proposition is false. Then one can find an increasing sequence
(t;) in I and a sequence (z;) of points in X such that for

mi := sup [VA(E)|g0) () = [VA(ti)lg(e,) (2:)

t<t;

one has m; — o. In addition, the compactness of X allows us to assume that (x;)
converges to an z € X. Now define a sequence of metrics on X by

gi == mig(ti).
With the rescaling, we have

sup [Vh(0)],(2) = [Vh(t)], (1) = 1

t<t;

Set go to be the limit metric of the family g(¢). We would like to work with open sets
in C". In order to do so, fix a p > 0 sufficiently small such that

1. on the geodesic ball B,(z, go) the vector bundle £ is holomorphically trivial and

2. there is a holomorphic chart p: B,(z,g90) — V < C" such that u(z) = 0 and
dpg: (Tp X, goz) — (C", gsrq) is an isometry.

Set p; := p— p(z;) and let S; := m;id be a rescaling of C™. Since the u(z;) converge to
0, there exists a neighbourhood D of 0 € C™ that is contained in the images of all y; for
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sufficiently large ¢. By changing the chart ;1 we can assume that D is the Euclidean ball
{z € C"||2|stq < 1}. Now define ¢; := (S;ou;)~t|p (¢; can also be defined on m; D, but we
assume m; > 1 and restrict to D). A computation yields (¢Fg:) = (W™ *g(t:)) 2 /mi+pu(as)
for z € D and it is convenient to consider ¢ g; as a composition of b;: z — m, L.+ p(x;)
with = g: w — (u1*g(;))w. Making i large, the maps b; send D to arbitrarily small
neighbourhoods of 0 € C™ in which gyyq is increasingly well approximated by pu~'*g(t;)
in C%. We see that ¢g; — gsq converges to 0 in C° uniformly on D. Taking spatial
derivatives of u~'*g(t;) o b; gives

(g (t:) 0 bi) = m; (@ g(t:)) 0 by,

where « is a multiindex. The derivative 0%u~*g(t;) is bounded on a neighbourhood of
0e C", soif a # 0 then 0%¢}g; — 0 uniformly on D. This means that ¢;g; — gsq in
C® on D.

Next, fix a holomorphic trivialisation

v E]Bp( — C" x By(z, g0)

%90)
of E over B,(x,go) and let ¥,,: E, — C" be the associated isomorphisms of vector spaces
for y € B,(x, go). Now define

®; := Ul o (idxg;): C" x D — Ely,(p-

For z € D we compute

(RFR(t:)). = (U7 R(ti)) gy(2) = ((d x 0 W) *R(E0) 2 jmat ()

and express this as a composition of the maps b; and (id x o W)™ *h(t;): w — ((id x o
U)~1*Rh(t;))w. Since h(t;) is by assumption bounded in C°, we can argue that the C°-
distances between ®*h(t;) and the constant Hermitian metrics ((id xp o W)™ h(¢;))o
become arbitrarily small uniformly on D. As tacitly done before, given £ > 0 find a
neighbourhood V of 0 € C" on which |((id x o W)~ 1*A(t;))w — ((id x po W) ~1*Rh(t;))o| < €
independently of ¢ (using any norm on the vector space of Hermitian matrices). Then
find N big enough such that for ¢ > N the maps b; map D into V.

Continuing preparations, fix a background Hermitian structure hg on E, write n =
hy 'h and recall

A&,ho,wn = nAwiFh + iAw (577)7771(5}“)77) - nAwiFho .

Setting H; := ®}h(t;) and choosing hg to correspond to the standard Hermitian metric
on C" in the trivialisation ¥ we get

Ao o g Hi = Hil\ g 1 Fir, + i g, [(0H;) H; (0H;))

over D < C". Using that H; and ¢;w; are uniformly bounded in 7 and that by construc-
tion [V H;| g, =1, we can infer

|A87H07¢f9iHi’ <C,
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since in the rescaled metrics, |V H;| oFw; = 1 Because H( was chosen to be standard,
Ap Hodw; O1 C"-valued functions on D is just 1/2 times the componentwise d-Laplacian
A¢* defined by the metric ¢} g;. The lowest eigenvalue of the ¢;g; is bounded from
below uniformly in ¢ and x € D, so the same holds true for the constants of ellipticity of
the associated Laplacians. In addition, the coefficients of these Laplacians are bounded
uniformly in C®, so in particular the highest order coefficients are bounded in C! and
the lower order ones in L®. Omne can then use the interior elliptic estimates for the
operators Ay« . with a constant independent of (see e.g. [19] p.235, Theorem 9.11.
Note that a common modulus of continuity of the highest order coefficients can be found
since their uniform boundedness in C! guarantees equicontinuity):

HUHLS(D,,gStd) < C(HA(b:kgL(t)uHLp(ngstd) + HUHLP(ngstd))7

where D' < D is a slightly smaller disc. Applying this to u = H; and the fact that
the H; are uniformly bounded in C° we get that they are in fact uniformly bounded in
LIQ)(D/a gstd) :

With these preparatory considerations we derive a contradiction as follows. For suf-
ficiently high p there is a compact embedding L5 < C?, so a subsequence of the H;
converges in C!(on a slightly smaller set) and in particular in CY. By the previous
considerations, the CO-limit is necessarily constant, but the C'-limit cannot be constant
since |VHi|¢;kgi =1 O
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D.1. Direct Computation of the Curvature of O(1) - PE

Consider a complex manifold X with a holomorphic vector bundle 7: E — X of rank
k + 1 equipped with a Hermitian metric h. Let U < X be an open set over which FE is
holomorphically trivialised as E|y = U xC*+1. The covariant derivative associated to the
Chern connection on (E, h) locally takes the form V|y = d + A with A = h=10h, where
by abuse of notation we also denote by h the family of Hermitian matrices defined by
the Hermitian metric in the local trivialisation. One can describe the Chern connection
in terms of a decomposition of T'E into horizontal and vertical parts as follows.

A tangent vector ¢ = (§,v) € TE(,.) = T,U X T,Ck1 ~ T,U x CF+! is vertical
precisely if it lies in the kernel of dm. This is the case if £ = 0. A tangent vector
(&,v) at (x, z) is horizontal if it can be realised geometrically as the derivative of a path
(x(t),z(t)) through z, z at t = 0, such that if we interpret z(t) as a section of E|y over
x(t), then Vypy2(t)i=o = 2'(0) + Ay pz(t)|li=0 = v + A¢z = 0. This is equivalent to
v = —A¢z. We recapitulate: (§,v) € TE (z,2) 18

e vertical if and only if £ = 0 and
e horizontal if and only if v = —h~!(0¢h)z.

Next, denote by 0 the zero section of E. One has the commutative diagram

E\0—"— X

b A

PE

Consider the relative hyperplane bundle O(1) — PE which inherits a Hermitian met-
ric h~1. We are interested in its curvature Fo(l) 7-1- Instead, we compute F, O(-1)7

which differs from FO(l)

back ((’)(—l),%) via p: E\O — PE. In the trivialisation E|y =~ U x C**!, the fibre of
p*(O(—1),h) over (z,2),z # 0 is the line in C¥*! containing z with Hermitian metric
given by the restriction of h to that line. We trivialise p*O(—1) over E\O|y by the

section (z, z) — z, i.e.

_, only by a sign. For computational convenience we pull

*O(=1)|y 2 U x CH1\o x C,

where the point in the hne defined by z is given by Az. In this holomorphic trivialisation
the Hermitian metric h is a family of Hermitian 1x 1-matrices indexed by U x CF+1\0



126 D. Supplement to Chapter 4

given by the function h(z,z) (where h depends on the U-variable z). The curvature of
p*(O(—1),h) is given by

Fp*(o(_l)ﬁ) = 0ddlogh(z,z2).

We write this as da for a = dlogh(z, z) and use the invariant formula for the exterior
derivative to express the curvature as

(da)(C1, G2) = d(a(C2))(Cr) — d(e(G1))(C2) — a([¢1, ¢:2D)

where (1, (2 € TE(, ) are locally extended to smooth vector fields. We want to consider
the cases where both arguments lie in V' or both in H or one in V and one in H. If
¢ = (0,v) is vertical, we extend ¢ to a local vector field by demanding v be constant
in (z,2). If ¢ = (& —h1(0¢h)z) is horizontal, we extend ¢ to a local vector field by
demanding & be constant in (z, z). Note that the extension remains horizontal and that
quantities involving h depend on x. It is helpful to observe that H < ker a. To see this,

simply compute
_ 0ch(2,2) + h(v, 2)

where we have used 0,h(z,2) = h(v,z) (this is since h(z,2) = h;;j2'z7). Clearly this
vanishes if v = —h™1(d¢h)z. We now individually examine the three aforementioned
cases.

e First case: (1 = (0,v) € V and (2 = (§,—h~!(0¢h)z) € H.

We have already seen that d(«((2))(¢1) = 0. In addition, it is a((;) = 282, SO

dlataic) = S - MO o e St M g e

_ %h(v.2) | Oh(zv)  h(vz) =
~ h(z2) " h(z, z) h(z,z)QaCQh( %)
Och(v, 2)

h(z,z) ’

where we used that ¢, h(2,v) = 0¢,h(z, 2) = 0 (for the same reason that a((2) = 0).
Fina'ny7 [CbCZ] = (07 _h_l(afh)v)a S0

Och(v, )

a([¢r,¢2]) = TThza)

from which we see that (da)((1,(2) = 0, i.e. the horizontal-vertical component of
Fp*(o(il) 3 vanishes.

Remark. Since the map p: F\0 — PF is a submersion, we obtain that iFO(l) -1

has no horizontal-vertical component for the connection on P(F) induced by the
Chern connection on FE.
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e Second case: (1 = (&, —h71(0gh)2) € H and (o = (&, —h™1(0e,h)2) € H.

All terms, but the commutator term vanish. A direct computation yields

[C1,G2] = (0,dg, (—h™'0g,h)z + d—h*l(aglh)z(—hfl(5£2h)2))

~(12)

= (07 _561 (h_1(6£2h)z) - 561 (h_1(6§2h)z) + h_l(a&h)h_l(&&h)z)
~(12)

= (0, ~[3¢, (A (g, h))]2) + [A™H (9, h)h ™ (O, h) + B (O, h)h ™ (9, h)]2)
“(1e?)

= (0, ~[0¢, (h™"(Ogy)) — gy (™' (0, 1))]2)
= (0, —Fign)(&1,&2)2)

and hence

h(Fgn(&1,62)2,2)
h(z,z) '

Fp*( (C17C2) O‘([CLCZ]) =

Recalling that the standard fibrewise moment map on PE was given by

M A)[D = -
one obtains
i/(2m)  Fp 5 (€7 €6)) = =M (h, Fpp(&1,%)),

where €7 denotes the horizontal lift of ¢ € TX to TPE (a tangent vector of the
base at x € X gives a horizontal vector field on the fibre of PE;).

e Third case: (1 = (0,v1) € V and (3 = (0,v2) € V.

The commutator term vanishes. For the rest we obtain

(da)(Cr,G2) = d(a(G))(C) — d(a(C))(¢2)

_ h(ve, 2) 14

= dy h.2) (1< 2)

_ h(ug,v1)  h(ve, 2)h(vi,z)  h(vg, 2)h(z,v1) -

 h(z,2) h(z,2)? h(z,2)? (12)

_ h(ve,v1) — h(vi,v2) N h(vi, 2)h(z,v2) — h(ve, 2)h(z,v1)
h(z, 2) h(z,2)?

_ 22,—111];(};(71)21)7 v2) N 2Z,Im h(Zl(Zli)Lgvg,z)

_ o tmunve) o Qn(v1,2)gn (2, 2) + Qn(v2, 2)gn(v1, 2)

|13 Edh
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and hence

Qp(v1,v2)

Q Q
P Foppy 2 (Gt Ga) = 20 (01, 2)gn(v2, 2) + Qn(v2, 2)gn(v1, 2)

+ 2
ElFs Elrs

Compare this to the characterising relation p*op, = 1/7 - 1*Qy, for the collection of
Fubini—Study metrics on the fibres of PE, where p is the projection from the unit
sphere bundle of (E,h) to PE and ¢ is the inclusion of the unit sphere bundle of
(E,h) into E. By restricting the right hand side to points on the h-unit sphere
(i.e. |z|2 = 1) and tangent vectors v1, vy tangent to the unit sphere (this implies
Qp(vi, z) = 0), one obtains

P Fo) i1 (C1, G2) = =2iQ(v1, v2) = —2mi p*on(Cr, C2)

which then implies that i/(27) - F o(1) -1 evaluated on two vertical vectors (with
respect to the connection on PE induced by the Chern connection on (E,h)) is
the Fubini-Study metric on that fibre.

D.2. Eigenvalues of the Laplacian on S" and CP*

We need the eigenvalues of the Fubini-Study Laplacian on CP* for the adiabatic expres-
sion of the scalar curvature of w, on PE. As a preparation we perform the analysis for
the round metric Laplacian on S™.

D.2.1. Eigenvalues and Eigenfunctions of the Laplacian of the Round
Metric on 5™

Proposition D.2.1. The eigenfunctions of Agn on S™ equipped with the radius 1 round
metric are in one-to-one correspondence with harmonic homogeneous polynomials of
degree | on R™"*1. If P is a harmonic homogeneous degree | polynomial on R"*1, then
AgnP|gn = I(l+n—1)P|gn. Conversely, if Agnf = \f, then f extends homogeneously to
a harmonic polynomial on R™"*1. In particular, one has spec(Agn) = {I(I+n—1)|l € Np}.

Proof. We view S™ c R"*! as the unit sphere with respect to the standard inner product.
In polar coordinates (r,©) the Laplacian on R™*! is given by

Agns1 = —02 — gar + T%Asn , (D.1)
so if P is a harmonic degree | polynomial on R"*!, then
0= (r?Agn+1P)|gn = (—=I(I — 1) = nl)P|gn + Agn P,
i.e. AgnP|gn =1(l+n—1)P|gn.

Conversely, for A € R, suppose that f is a solution to Agn f = Af. By ellipticity of
Agn — Aidgn the solution f is automatically smooth, so there is a unique and smooth
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solution u to the Dirichlet problem on the unit ball Agnu = 0, u|gn = f. We explicitly
construct u using the product ansatz u(r,©) = R(r)f(0). First remark that by self-
adjointness of Agn the eigenvalue A is nonnegative. If A = 0, then f = 0. From now
on assume A > 0. Equation (D.1) and the eigenfunction equation imply that the radial
factor of a product solution has to satisfy the Euler type equation

[+20, +nrd, — \|R(r) =0

provided f is not 0 everywhere, which cannot happen since A > 0. Substituting ¢ = Inr
we find that

[52 + (n—1)dg — A]R(q) =0

for which the general solution is

R(g) = ay - "+ a_ -, p=+\/A+((n—1)/2)° — (n—1)/2

or equivalently
R(r) =aprt*t +a_rt—.

Since p— is always negative, the continuity of u at the origin forces a— = 0. Furthermore
a4 = 1, since u has to agree with f if r = 1, so

u(r, ©) = pVAH(=D22=(=1)2 £ (@) (D.2)

One verifies that u is continuous on R™ with «(0) = 0 and smooth away from 0 where
it satisfies Agnu = 0. Singularity lifting for harmonic functions then implies that u is
harmonic on all of R™ and is indeed the solution to the Dirichlet problem. A generalised
version of Liouville’s theorem states that polynomially bounded harmonic functions on
R™"! are themselves polynomials (cf. e.g. [12], p.342f for a proof). Equation (D.2)
also shows that u is polynomially bounded, so u has to be a homogeneous polynomial
of degree [ := . In particular [ has to be an integer, i.e. A =1I(n+1—1). O

D.2.2. Eigenvalues and Eigenfunctions of the Fubini—-Study Laplacian on
CP*

Proposition D.2.2. The eigenfunctions of Acpe on CP* equipped with the Fubini-Study
metric are in one-to-one correspondence with harmonic homogeneous S*-invariant real
polynomials on CF1 = R2E+D - The spectrum of Acpr is spec(Acpn) = {4l(k + )|l €
No}.

Proof. We view CPF as the quotient of S?*1 with the radius 1 round metric by the
isometric S'-action 6 - z = ¢’ z. The Fubini-Study metric on CP¥ is the quotient metric
induced by the round metric on S?*! (Reminder: Define gcps (X ,Y)[21 by choosing a
z € [2] A 821 and lifting X,Y to X,Y € (T.SY)L < T.$%+1. The lifts are unique.
Then set gepr (X, Y )] 1= g2 (X, Y),. Since S' acts isometrically, this is independent
of the choice of z € [2]n.S?#*1). Functions on CP* are in one-to-one correspondence with
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Slinvariant functions on S2**1 (functions pulled back from CP* via 7: S?¢+1 — CP¥).
One can check that for f € C®(CP¥) one has 7*Acpr f = Agees1m* f (e.g. by using the
local expression Af = —|g|_1/26i(|g|1/2gij&’jf) and choosing local coordinates on S2F+1
such that the S'-direction corresponds to 0;). This shows that Agpe-eigenfunctions
on CP* are in one-to-one correspondence with S'-invariant eigenfunctions of A g2k+1 Ol
SQkJrl_

We can write any homogeneous polynomial on R2(++1) a5 P = ZIQH 8= Aaﬁz%ﬁ,
where the sum is over multiindices o = (a, ..., @) and z* = 2% - - - 25" 8simﬂarly for z
and B3). In this form it is manifest that the S'-invariant homogeneous polynomials are
those for which one only has summands with |a| = |5| = /2. In particular [ needs to be
even and one obtains that spec(Acpr) < {25(25 + (2k +1) —1)|j € No} = {4j(k +j)|j €
No}. To show that this is in fact already the entire spectrum, we remark that for every
k € N,I € Ny one can find S'-invariant homogeneous harmonic real polynomials on
Ck+1 = R2(k+1) | For instance, consider

k .\ 2

o o k—i ‘

P — Z aiz(k Z,’L,O,.‘.yo)z(k 7471707.--70) , ai+1 = — < - a; for 1 = 1, . k_l , ag = 1 .
=0

Remark. The computations here use the full Riemannian d-Laplacian of the Fubini—
Study metric with volume 7*/k!. In the main text we mainly use the ¢-Laplacian which
is half of the d-Laplacian and the integral Fubini-Study metric in ¢;(O(1)) with volume
1/k!. The spectrum of the d-Laplacian of the integral Fubini-Study metric is

speca , = {2mj(k +7) |7 € No}.
We now explicitly describe the eigenspace of the first nonzero eigenvalue in detail.

Proposition D.2.3. The eigenspace of the first nonzero eigenvalue of Acpr are precisely
zero integral Hamiltonians for the SU(k + 1)-action on CP*.

Proof. We have seen that the eigenspace of the first nonzero eigenvalue can naturally be
identified with S'-invariant degree 2 homogeneous harmonic real polynomials on CF+1
by pulling the eigenfunction up to S?**1 and extending harmonically. These polynomials
are of the form

.k
1 _
P = 3 2 Agp2pZq
p,q=0

where harmonicity forces tr A = Z’;ZO Appy = 0 and real-valuedness A,, = —Ag,. This
means that A € su(k + 1). Next we see that P as a function on C**! is a Hamiltonian
for the action of A on C*¥+1. This is a simple computation (rescaling the metric rescales
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the moment map by the same factor):
(nerrr, A)(z) = )

O(Az, z
i k
= Z dzg ndzy(Az, z)
q=0

N |

= |

k
= Z AgpzpZq — AgqpZpg
q,p=0
.k
) A _
) Z qp@p=q
P,q=0
= P(z).

=~ .

By construction, P restricted to S?¢*! descends to the Hamiltonian {ucpr, AY on CPF.
Since A is traceless, that Hamiltonian integrates to 0. This shows that each eigen-
function of Acpr to the first nonzero eigenvalue is a Hamiltonian for the infinitesimal
action of A € su(k + 1). Conversely, such a Hamiltonian is of the form (ucpr, A)([2]) =
%ZZ g=0 Aaqp2pZq/ |z|? which is induced by the S'-invariant homogeneous harmonic real

polynomial % ZI; 40 AapzpZq, s0 {ucpr, A) is an eigenfunction for the first nonzero eigen-

value of Acpk. O
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