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Abstract

The present thesis is divided into three parts. In Part I we address a
problem within Higher-Spin Gauge Theory in dimension three: namely,
that of computing the asymptotic symmetry algebra of supersymmetric
models, describing an infinite spectrum of integer and half-integer higher-
spin fields. In Part II we investigate higher-spin theories in dimension four
or greater, where we classify the consistent cross interactions between free
gauge fermions of arbitrary spin and a photon or a graviton. A third part
supplements the bulk of the manuscript with technical appendices.

Part I is concerned with the Higher-Spin Theory extending the anti-de
Sitter orthosymplectic Supergravity in three dimensions. After recalling
the construction of the latter we exhibit the structure of the former, and
then explain how to generalize the boundary conditions for Supergravity
to the higher-spin case. Following the usual procedure, we compute the
form of the residual gauge parameter and then identify the Poisson-bracket
algebra governing the asymptotic dynamics. It is found to be a nonlinear,
supersymmetric algebra of the W∞ type with same central charge as
pure Gravity in the Virasoro sector, which is a subalgebra thereof. The
simply supersymmetric case is treated explicitly whereas the details of the
extended cases are relegated to the appendices.

Part II deals with the interaction problem for gauge fermions coupled
to Electromagnetism and Gravity in flat spacetime of arbitrary dimension.
First we recall the so-called BRST-Antifield techniques, which reformulate
the deformation problem as a cohomological one, recasting the familiar
Noether procedure for finding out interactions in a mathematically system-
atic way. We then use these methods to classify and obtain expressions
for the gauge-invariant cubic couplings between a symmetric tensor-spinor
and a spin-1 and spin-2 gauge field. With no input from previous works,
we find the complete list of interaction terms with minimal assumptions
and in particular shed light on the quartic obstructions to full consistency.
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General Presentation

The last few years have witnessed a great renewal of interest in the field of
Higher-Spin Gauge Theory. For example, the earliest investigations of the
now rich and fruitful framework of so-called Minimal Model Holography
dates back only to 2010, when two collaborations independently computed
the asymptotic symmetry algebra of some AdS3 Higher-Spin Gravity models
[1, 2], which were found to be of the W-type previously investigated in the
late eighties and early nineties by many authors [3, 4]. Following these ideas,
a few months later M. Gaberdiel and R. Gopakumar proposed a conformal
dual for those higher-spin gravities: the so-called Minimal Models, which
were known to enjoy W-symmetry [5] — Minimal Model Holography was
born, and has been under intensive study ever since [6]. And for good
reason: the higher-dimensional equivalent of Minimal Model Holography,
relating Vasiliev Theory in AdS4 to Conformal Vector Models in dimension
three, was already being addressed before, but the level of computational
intricacy on the bulk side was somewhat back-setting. By working, instead,
with the much simpler AdS3 version of Vasiliev Theory, and also taking
advantage of the control granted by the boundary W-symmetry, one hopes
to explore the promising field of Higher-Spin Holography in a more tractable
setup.

It was, however, the so-called Vector Model Holography [7, 8] — the
higher-dimensional parent of Minimal Model Holography — which actually
triggered the immense interest in Higher-Spin Holography, and to some
extent in Higher-Spin Theory in general. More precisely, it was the first
non-trivial checks of the correspondence between a version of Vasiliev
Theory in AdS4 and a Conformal Vector Model for the O(N) group which
really sparked the whole field in 2009, thanks to impressive computations
by S. Giombi and X. Yin [9]. In fact, at that time the proposal of applying
the ideas of Holography to higher spins had been around for quite some
time, and a fruitful version of the correspondence in that context was
conjectured by various authors, starting with the insightful contributions
made during 2000–2002 [10–14]. However, the intricacy inherent to the
formulation of Vasiliev Theory had to wait for the aforementioned authors

1



to successfully tackle it. The interest in such a version of Holography is
easily understood: it held inside the promise of being a different and not-
too-trivial framework to test the ideas put forward by J. M. Maldacena and
developed also by others toward the end of the past century [15–17], and
which were first applied to more complicated bulk theories such as Type IIB
String Theory compactified on AdS5×S5. Indeed, it is very tempting to be
able to explore the holographic principle without having to deal with the
full-fledged String Theory [18]. Moreover, one further hopes to investigate
Holography without the aid of Supersymmetry, since non-supersymmetric
versions of Vasiliev Theory exist, perhaps thus unveiling the precise role
played by Supersymmetry in the context of the correspondence.

Holography is, however, just one among many interesting aspects of
Higher-Spin Theory. For example, the study of the Lagrangian formulation
of Vasiliev Theory, already initiated by Fradkin and Vasiliev in the
vierbein formalism [19, 20], has been studied more recently with other
techniques, such as the so-called ambient-space formalism, with which the
investigations have partially returned to a metric-like form, for example in
[21]. Moreover, the cubic couplings in Minkowski space have also been the
subject of a renewed attention, and a systematic study initiated in 2006
[22–24] has been followed by many contributions, aiming at understanding
precisely the reason for the no-go theorems in flat spacetime, among
other things. Other interesting works include the first precise calculations
relating String Theory and Higher-Spin Theory [25], where flat-space
couplings have been obtained from the tensionless limit of open, bosonic
String Theory in non-critical Minkowski spacetime. Another recent area of
investigation is that of higher-spin black holes [26, 27], the understanding
of which should shed light on the nature of higher-spin gauge symmetries,
also called generalized diffeomorphisms. As for the ‘coupling-classification’
program at the level of the Lagrangian, the aforementioned perturbative
approach shall certainly provide further insight into the structure of the
interactions. At any rate, in the AdS case it may bring us closer to an
action principle for Vasiliev Theory, and in the flat setup it could lead to a
better understanding of its relation with String Theory. It is the author’s
belief that gaining control over Higher-Spin Theory should be a prime
concern Mathematical Physics in the years to come.

Higher-Spin Theory is, however, far from being a novelty, and indeed it
has a rather long history. In fact, the very meaning of the word ‘higher’
in the term Higher-Spin has changed over the past century. One has in
mind, of course, the Rarita–Schwinger theory, developed for the description
of fields of spin 3

2 or higher in 1941 [28]. In particular, the spin- 3
2 field
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already exhibits some of the features characterizing higher-spin fields, as for
example the obstruction to minimal electromagnetic coupling of massless
fields in flat space. Nowadays, given the consistent incorporation of the
Rarita–Schwinger field in standard theories such as Supergravity, it is no
longer regarded as a higher-spin field in the standard lore. However, when
it was first introduced no such thing as Supersymmetry had been invented
yet, and the concept of a field of spin 3

2 or higher was truly regarded as
exotic. Interestingly, what W. Rarita and J. Schwinger did was really to
reformulate the 1939 Fierz–Pauli theory of particles of arbitrary half-integer
spin [29, 30] in terms of the usual symmetric tensor-spinors we are now
so used to. Anyhow, the very first steps into the direction of describing
particles of spin higher than a half were taken even before, first of all by
E. Majorana in 1932 [31], in Italian, and subsequently by P.A.M. Dirac
in his paper of 1936 [32], where he himself states that the present paper
will have no immediate physical application. [...] Further, the underlying
theory is of considerable mathematical interest.

As explained above, the tensor-spinor equations describing higher-spin
gauge fields were determined a long time ago, at the beginning of the
forties. However, the Lagrangian then remained a problem for more than
thirty years, and we had to wait until 1978, when J. Fang and C. Fronsdal
finally cleared out the issue of the Lagrangian formalism applied to gauge
fields of arbitrary spin [33, 34]. In fact, the stage for their work was set
by L. P. S. Singh and C.R. Hagen in 1974 [35, 36], when they constructed
Lagrangians for the massive fields. Also, one should recall that the latter
investigations were themselves made possible by the previous breakthrough
of E. P. Wigner and V. Bargmann, who found positivity of the energy in
Field Theory to be equivalent to the requirement that one-particle states
carry irreducible and unitary representations of the Poincaré group [37, 38].
Those Lagrangians obtained in the seventies were either free or coupled to
external electromagnetic fields, and such works then triggered the search
for higher-spin interactions, which began on four-dimensional Minkowski
space with the work of A. Bengtsson, I. Bengtsson and L. Brink [39] on
spin-3 couplings in the Light-Cone gauge and the covariant approach used
by F. Berends, G. Burgers and H. van Dam [40, 41]. These works gave
the remarkable result that spin-3 gauge fields could have consistent cubic
self-couplings, which opened the door for the more advanced investigations
to come. The consistency to all orders of a theory involving such cubic
couplings was discussed only marginally, and at the same time many no-go
theorems were proved that forbid, under some assumptions, the existence of
a fully consistent theory in flat spacetime [42–44], thereby complementing
the earlier prediction by S. Weinberg that low-energy exchanges of particles
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with spin higher than two are incompatible with the physical requirement
that spurious polarizations do not contribute to the S-Matrix [45]. However,
as flat-space Higher-Spin Theory was being found to be more and more
constrained, the efforts of M. Vasiliev began with the reformulation of free
higher-spin dynamics along the lines of the vierbein formulation of Gravity,
first in flat spacetime in 1980 [46], and then on constant-curvature spaces
in 1987 [47].

This formalism was then used by the same author, together with
E. S. Fradkin, to build AdS interactions in a striking fashion: the inter-
actions terms were seen to come with inverse powers of the cosmological
constant [19] ! Albeit strange at first glance, this feature nonetheless
provided an explanation for the difficulty in constructing higher-spin
interactions in Minkowski spaces. In AdS spacetimes, the no-go theorems
did not apply, and by the early nineties the basics of Vasiliev Theory were
laid out. This theory describes infinitely many gauge fields of increasing
spin coupled to a massless spin-2 tensor in a four-dimensional anti-de Sitter
background [48–50]. However, despite such an amazing breakthrough the
enthusiasm regarding these theories remained rather discrete, much like
what happened with the Rarita–Schwinger Theory. Amusingly, in full
analogy with the latter, Vasiliev Theory only provides the equations of
motion, and not the associated action. Perhaps the latter feature, together
with the complexity pertaining to the so-called unfolded formulation
in which Vasiliev Theory is cast, contributed to the lack of attention
during the nineties. As aforementioned, it was partly after the turn of the
century, with the tools of AdS/CFT at hand, that the skepticism regarding
Vasiliev’s work was overcome and that the role Higher-Spin Theory might
play began to be appreciated.

Nowadays the physics community has largely overcome the prudence
regarding Higher-Spin Gauge Theory, and indeed a great deal of informa-
tion has been gathered — see [51–53] for recent reviews. However, despite
the enormous progress, one cannot help the feeling that much is still to be
uncovered, and indeed many promising research directions are open. The
most pressing and intriguing issue is perhaps that of the relation between
Higher-Spin Gauge Theory and String Theory, the investigation of which
started with [54]. As is well known, String Theory contains infinite towers
of higher-spin states in its spectrum, which instead are massive. A bridge
between the two is yet to be discovered, but we point out, however, the
recent and interesting investigation in that direction carried out in [55].
Then, with the motivation of String Theory in mind, one is inevitably
led to supersymmetric higher-spin theories and their properties, and it is
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important per se to gain as much insight as possible about supersymmetric
setups. Such is the standpoint of this thesis, in which we use different
approaches to have different supersymmetric higher-spin theories under
better control. The manuscript is divided into three parts: in Part I we
tackle supersymmetric Higher-Spin Theory in dimension three, while in
Part II we study higher-dimensional setups. Finally, a third part contains
technical appendices, referred to in the main text.

In Part I we study a supersymmetric three-dimensional Higher-Spin
Gravity model with infinite spectrum of gauge fields. Just like pure Gravity,
higher-spin gauge fields are also topological in dimension three. This is
reflected in the fact that one can cast the action in the form of a Chern–
Simons term [56], in full analogy with what one can do for Einstein–Hilbert
Gravity and Supergravity [57, 58]. Because they propagate no local de-
grees of freedom, one is led to study the boundary dual theory — at
least when one considers AdS3 as a background, which is our primary
interest. One should thus study first the asymptotic symmetry algebra,
which should govern the asymptotic boundary dynamics. Such is precisely
the aim of the first part, namely, to consider the supersymmetric version
of the model studied in [1] and explore its asymptotic symmetries, thereby
unveiling a nonlinear, supersymmetric version of the previously-found
W∞-algebra. The first chapter contains pedagogical material, where we
recall the construction of higher-spin theories in dimension three via the
Chern–Simons formulation [59], which is followed by a chapter containing
the explicit computation of the asymptotic symmetries that preserve gen-
eralized Henneaux–Maoz–Schwimmer boundary conditions for the gauge
connection one-form [60]. In the last and third chapter we then comment
on our results [61] and on related topics. An ‘invitation’ to the first half of
this thesis is found at the beginning of Part I.

In Part II we address higher-spin theories in generic dimension greater
than three, by considering gauge fermions of arbitrary spin together with a
photon or a graviton. Unlike in three dimensions, where the vanishing of the
Weyl tensor allows for minimal coupling of higher-spin fields with Gravity,
in dimension four and greater minimal coupling is inconsistent in flat space.
However, higher-derivative couplings may still exist, and a careful and
systematic study of the cubic vertices is thus needed. To do so, we use the
powerful machinery of the so-called BRST–BV formalism: it conveniently
recasts the interaction problem into a deformation one, which can then
be formulated in precise cohomological terms. In this instance we are
interested in flat spacetime propagation of our gauge tensor-spinors, which
again is partly motivated by the potential relation with String Theory. Also,
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despite the many studies on higher-spin couplings in dimension greater or
equal to four, one may notice a ‘gap’ concerning fermions, with [25] and
[62] among the exceptions. With the assumptions of Poincaré invariance,
locality and parity invariance, and with no input from previous works, we
thus find out and classify all the consistent couplings of a spin-s gauge
tensor-spinor of the symmetric type and a photon, which is carried out in
the second chapter [63]. The third chapter then reproduces the analogous
computations in the case of gravitational coupling, to find noticeably more
complicated yet neat and appealing results [64]. The last and fourth chapter
discusses the implications of our results and their connection with previous
works, where among other things we note that our findings are in complete
agreement with the restrictions imposed on the allowed vertices by the
works of Metsaev [62]. The reader will also find an ‘invitation’ to this
second half of the manuscript at the beginning of Part II.
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Part I

Dimension 3



It was in old days, with our learned men,
an interesting and oft-investigated question,

‘What is the origin of light ?’
and the solution of it has been repeatedly attempted,

with no other result than to crowd our lunatic asylums
with the would-be solvers. [...]

I - alas; I alone in Flatland - know now only too well
the true solution of this mysterious problem;
but my knowledge cannot be made intelligible

to a single one of my countrymen;
and I am mocked at - I, the sole possessor of the truths of Space

and of the theory of the introduction of Light
from the world of three Dimensions -
as if I were the maddest of the mad !

From the book Flatland: A Romance of Many Dimensions [65],
by Edwin Abbott Abbott, under the pseudonym of ‘A Square’.



Invitation

Over the past few decades, the study of Gravity in dimension 3 has proved
most fruitful (see [66] for a review), one of the main reasons being the
1986 discovery of the Brown–Henneaux central charge in its asymptotic
symmetry algebra [67]. Let us recall that three-dimensional Gravity is
topological, which can be seen as the key feature making it less complicated
than its higher-dimensional versions. Moreover, the reformulation of it as
a Chern–Simons gauge theory in the late nineties [57, 58] made its study
easier and even more appealing. This is also one of the prime reasons
for the study of three-dimensional Higher-Spin Gauge Theory: it is still
topological and hence simpler than the corresponding higher-dimensional
setups [68], which is reflected in that the Chern–Simons formulation
still holds [56]. The insights provided by the study of three-dimensional
Gravity, the necessity of understanding higher-spin theories better and the
importance of exploring the AdS/CFT correspondence in new setups are
all good reasons to study Higher-Spin Theory in dimension 3, which is the
topic of the first part of this thesis.

Foremost among the many interesting aspects of three-dimensional
Higher-Spin Theory is perhaps that of the holographic correspondence,
the so-called Minimal Model Holography (see [6] for a review), relating
the bulk theory to the so-called W-minimal models, which stand among
the best-understood interacting conformal field theories. The subject is
still relatively young (see General Presentation above) but it has already
witnessed a rather high degree of attention, and many advanced features
have now been uncovered which go beyond the matching of the classical
symmetries, which are described by so-called W-algebras. For example,
the spectrum of the boundary minimal models, the agreement at the level
of three-point functions [69–72], some aspects of higher-spin black holes
[73–75], partition functions [76–78], the quantization of the symmetries
[79, 80] and other features are nowadays better understood [6]. Nonetheless,
the fact that the boundary dynamics are governed by a W-type algebra is
remarkable in itself. Indeed, those algebras had been studied before, and
were seen to appear in many other areas of physics [4]. Therefore, on top
of the usual, holography-driven motivations for studying the asymptotic
symmetry algebra of three-dimensional higher-spin models, the presence
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of W-algebras at spatial infinity thereof further calls for a systematic and
thorough investigation in this direction.

In the case of higher spins, the corresponding supersymmetric setups
have been less intensively addressed. With the latter motivations spelled
out, however, it seems important to have access to supersymmetric
versions of Minimal Model Holography [81–91], and in particular to the
asymptotic symmetries of higher-spin supergravities in D = 3. Moreover,
the possibility of relating the bulk theories to string embeddings further
nurtures the need for supersymmetric versions of the bosonic investigations
(see e.g. [61]). The aim of this first part is, precisely, that of exhibiting the
asymptotic symmetries of some higher-spin supergravities [61], which we
do in Chapter 2, after recalling the procedure for computing asymptotic
symmetries in the Chern–Simons formalism for the case of pure Gravity.
More precisely, we deal explicitly with the osp(1, 2|R)-based models
involving an infinite tower of gauge fields and then comment on the
extended higher-spin supergravities. The basics of three-dimensional
Higher-Spin Theory as well as their construction from the Chern–Simons
standpoint are recapitulated in Chapter 1.

We find the boundary dynamics to be governed by some supersymmetric
W∞-algebra, which we do by means of employing the oscillator realization
of our bulk higher-spin gauge algebra, recalled first. In fact, the latter W-
algebra is found to be nonlinear, in agreement with previous results which
we generalize [1]. Nevertheless, we shall prove that the isometry algebra
of the bulk vacuum solution is a subalgebra thereof, up to nonlinearities.
Other subalgebras are investigated, and we also give a closed form for the
first nonlinear commutation relations in the simply supersymmetric case.
The generalization of the results to the extended case is then sketched, and
in Chapter 3 we discuss our findings and comment on various related topics,
touching upon bulk symmetries and subalgebras, λ-deformations, previous
approaches to W∞ algebras, etc. In particular, the role of nonlinearities
and Supersymmetry is emphasized, as well as the comparison with previous
approaches dealing with similar algebraic structures [4].
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CHAPTER 1
Higher Spins in

Dimension 3

In Chapter 2 we compute the asymptotic symmetry algebra of higher-spin
supergravities in three dimensions, taking ample advantage of the Chern–
Simons reformulation of the latter as a gauge theory for a connection
one-form valued in the superalgebra of the vacuum isometries. In the
present chapter we thus recall such a formulation, and for the sake of
pedagogy we start with the simplest case of pure Gravity in Section 1.1, for
which we recall the frame formalism and then switch to the gauge picture
[57]. Higher spins are only introduced in Section 1.2, where the same logic
is followed, albeit at the free level. Interactions are then introduced in the
Chern–Simons context, by means of finite- or infinite-dimensional higher-
spin algebras [56]. In fact, our interest is in (supersymmetric) higher-spin
theories describing infinitely many gauge fields of arbitrarily-high spin,
and accordingly we deal with infinite-dimensional algebras.

The following material is meant to be somewhat pedagogical, and the
reader familiar with three-dimensional Gravity in its Chern–Simons form
shall find it harmless to skip Section 1.1. Similarly, the reader familiar with
three-dimensional Higher-Spin Theory may move to Chapter 2 without
much loss of valuable information. As mentioned in the above invitation,
our focus is on Supersymmetry, and in Chapter 2 it is the supersymmetric
higher-spin models that we are interested in. However, in the sequel of
this introductory chapter we shall mostly approach the material leaving
fermions out for the sake of conciseness, only quoting the corresponding
supersymmetric versions at the end of each section.
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CHAPTER 1. HIGHER SPINS IN DIMENSION 3 14

1.1 Gravity as a Gauge Theory in Dimension 3

What shall be done in Section 1.2 for higher-spin fields is here reviewed
in the context of Gravity and Supergravity. In Subsection 1.1.1 we shall
recall first, in generic dimension, the formulation of Gravity in terms of
the vielbein and the spin-connection and will then specialize to three-
dimensions, which Subsection 1.1.2 will start with to then make contact
with the gauge formulation of Gravity as a Chern–Simons theory. After
this rather pedestrian introduction without supersymmetry we quote the
final results for non-extended as well as for extended AdS3 Supergravity in
Subsection 1.1.3, namely, we display the rewriting of the latter as a Chern–
Simons action term for some gauge superalgebra and give the definition of
the superconnection in terms of the Supergravity fields.

Let us stress that, in the case of (super-) gravity, all of the aforemen-
tioned reformulations will be carried out at the non-linear level, whereas
for higher spins we will only introduce interactions once the Chern–Simons
formulation is at hand. Note, however, that it is in principle possible to
introduce interactions at the level of the metric-like formulation for higher
spins, but it is perhaps less clean than doing it in the gauge picture [92].

1.1.1 The Frame Formulation of Gravity
This subsection relies, among others, on [93], which we recommend to the
reader unfamiliar with the subject, for only a pragmatic review is provided
in the present introduction. Many other references on this subject are
available, among which we shall highlight the mathematically-oriented
one [94] as well as the rather earlier one [95]. Note that only the three-
dimensional version of the present subsection will be of use for us but, as
it is not much effort to do so, for the sake of completeness we shall start
in general dimension D and will only particularize to D = 3 at the end of
the subsection.

The Vielbein

Pure Gravity [96] is described by the Einstein–Hilbert action inD spacetime
dimensions with cosmological constant Λ (here for c = 1, which we assume
throughout this presentation unless otherwise specified):

Seh ≡ Seh[g] ≡ 1
16πG

∫
MD

(R− 2Λ)
√
−g dDx, (1.1)

where G is the D-dimensional Newton constant, g is the determinant of
the metric gµν , R is the Ricci scalar andMD is the spacetime manifold.
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The equations of motion one derives from the above action read

Gµν + Λgµν = 0, (1.2)

where Gµν ≡ Rµν − 1
2gµνR is the Einstein tensor and R ≡ gµνRµν is the

Ricci scalar, the contraction of the Ricci tensor with the inverse metric gµν .
The usual rewriting of the above equations without involving the Ricci
scalar is then

Rµν = 2
D−2gµνΛ. (1.3)

Let us now introduce the so-called vielbein by the relation

gµν ≡ eaµebνηab, (1.4)

with our conventions for the signature of the Minkowski metric ηab being
(− + · · ·+). The Latin indices are usually referred to as ‘frame’ indices.
The relation is, however, invariant under the so-called local Lorentz trans-
formations (LLTs) of the vielbein

eaµ(x)→ Λab(x)ebµ(x), (1.5)

with the matrix Λ(x) ∈ SO(D − 1, 1) (the Lorentz group) at all spacetime
points x. Now, the vielbein is a D ×D matrix at each spacetime point,
of which we can eliminate as many components as the dimension of the
Lie algebra so(D − 1, 1) (at each spacetime point), that is, D(D − 1)/2,
which leaves us with D(D + 1)/2 independent components: the number of
independent components of the D-dimensional metric. Thinking of (1.4)
as a mere change of variables for Gravity, the transformation law (1.5)
simply originates in that the change of variables is not one-to-one and
some redundancy is introduced (which we just saw can be ‘gauged away’
using LLTs).

Our vielbein is a hybrid object; it has both a spacetime and a frame
index. We already displayed its transformation rules with respect to its
frame index (LLTs), which resulted from a redundancy in our change of
variables. With respect to its spacetime index, the tensor nature of the
metric forces it to transform as a covector under the diffeomorphism group.

The spacetime indices are always raised and lowered using the metric
gµν and its inverse, but the metric governing the frame indices is always the
Minkowski one ηab. This is actually related to a conceptually important
fact: the so-called tangent frame defined by the vielbein is orthogonal at
any spacetime point, as the following relations illustrate:

eaµe
µ
b = δab , eaµe

ν
a = δνµ, (1.6)
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where the Latin indices have been raised and lowered with ηab. The vielbein
eµa , with both indices swaped, is called the inverse vielbein (and it is indeed
so if we think of it as a matrix). Also note the useful relations

ηab = gµνe
µ
ae
ν
b ,
√
−g = e ≡ det(eaµ). (1.7)

We thus see that, at every spacetime point, the vielbein is providing us with
some frame in which the metric looks flat (the tangent frame), and those
vielbeins should be really thought of as being the matrices implementing
a change of basis. For a more in-depth understanding of the geometrical
interpretation of this object we refer to [94].

The Spin-Connection

Working in the tangent frame will force us to consider various objects
having frame indices, such as the vielbein, that we already encountered,
and we want to be able to derive such objects. For simplicity, let us first
focus on a frame vector, that is, an object having only one frame index
(upstairs), V a. Proceeding in an analogous way to what is done in metric-
like Gravity, we require the derivative of our tangent frame vector to be a
tangent frame tensor, which uniquely leads us to introducing the so-called
spin-connection ωabµ ; a hybrid object having the following transformation
rules under local Lorentz transformations (avoiding to spell out spacetime
indices, which remain unaffected by such transformations):

ω′ab(x) = (Λ−1)ac(x)dΛcb(x) + (Λ−1)ac(x)ωcd(x)Λdb(x), (1.8)

which ensure that the tangent frame covariant derivative,

DµV
a = ∂µV

a + ωabµV
b, (1.9)

is an ‘LLT tensor’ (transforms covariantly under LLTs). The resemblance
with standard Gravity is manifest, as the above transformation law for
the spin-connection bears much resemblance with that of the Christoffel
symbols (spacetime connection) of Gravity in its metric formulation.
However, let us again insist on that, in the above transformation rule,
spacetime indices are not affected, and hence nor are the coordinates.

Some comments are now in order. First, the above derivation rules —
for both spacetime and tangent frame indices — of course contain more
terms when one derives higher-order tensors (see [93]). Second, both rules
are to be combined when deriving hybrid objects (such as the vielbein or
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the spin-connection). That ‘full’ derivation will be noted ∇̂. This will help
us distinguish all three types of derivation rules one could use to derive
a hybrid object: one could derive it with respect to its spacetime indices
(∇), with respect to its tangent frame indices (D), or with respect to both
(∇̂). As an example, we give

∇̂µeaν = ∂µe
a
ν + ωabµe

b
ν − Γρµνeaρ, (1.10a)

Dea = dea + ωab ∧ eb, (1.10b)

where the Γ’s are the familiar Christoffel symbols for Gravity and ∧ is
the wedge product on spacetime indices. In fact, the last expression
above can be seen to be the torsion of our connection, while the first one
is the so-called ‘vielbein postulate’ [93] (a rewriting of the the relation
between the Christoffel symbols and the spin-connection). We now want
to solve for the spin-connection, that is, to impose conditions such that we
can uniquely find some ω = ω[e]. In the metric formalism, one imposes
metric-compatibility as well as zero-torsion (Tµ ≡ ∇dxµ) for the spacetime
connection, which uniquely leads to the well-known Christoffel expression
for Γµνρ in terms of the metric and its derivatives. A similar thing happens
in the tangent frame. Indeed, imposing metric-compatibility as well as
zero torsion (setting to zero the last expression above) one uniquely finds

ωabµ [e] = 2eν[a∂[µe
b]
ν] − e

ν[aeb]σeµc∂νe
c
σ. (1.11)

Let us also display the condition of metric compatibility, which in spacetime
means ∇µgνρ = 0 and translates to the tangent frame as Dη = 0. Note,
however, that the latter is simply equivalent to ωabµ = −ωbaµ .
Remark : it is interesting to notice that, in spacetime, it is the zero-torsion
condition which is equivalent to the symmetry of the connection (in its two
lower indices), whereas in the frame it is the metric-compatibility condition
which implies antisymmetry in the two Latin indices.

Although we are not giving all the details of how to arrive at (1.11) (see
[93]), the key point here is that one can solve for ω = ω[e] and, furthermore,
the conditions uniquely leading to the solution are precisely the ‘tangent
frame translation’ of the conditions one usually imposes in standard gravity.
This analogy between the frame picture and the usual metric formulation
can actually be pushed further, which we do in the sequel. In fact, as
we have stressed above, the vielbeins can be seen as a change of basis.
Quantities such as the torsion (or the curvature, defined below) can be
defined intrinsically, and one can then write them in a frame basis or in a
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coordinate one — those will be two expressions for the same object. For
more information and, in particular, for intrinsic definitions of geometrical
quantities we refer to [97].

The Curvature

Recalling the known expression for the Riemann tensor R[Γ], one is natu-
rally led to consider the following object, called the curvature, and which
shall be proved to be the rewriting of the Riemann tensor in a mixed basis
(see below):

Rab[ω] ≡ dωab + ωac ∧ ωcb. (1.12)

It is a conceptually important point that we are also led to such an
expression if we simply notice that the spin-connection transforms under
LLTs just like a standard Yang–Mills gauge potential, and indeed, the
above expression is precisely the standard Yang–Mills field strength for ω.
It is therefore a hybrid object we are dealing with, and we further note
that it has two spacetime indices and two tangent-frame ones, and that it
is a tensor with respect to both types of indices (under diffeomorphisms
and LLTs respectively). This ‘dual nature’ goes even further, for the above
tensor is blessed with two Bianchi-like identities:

R[ω]ab ∧ eb = R a
(µνρ)cycl.

= 0, (1.13a)

dR[ω]ab + ωac ∧R[ω]cb −R[ω]ac ∧ ω b
c = D(µR

ab
νρ)cycl.

= 0, (1.13b)

the first one being ‘purely gravitational’ (with no analogue in Yang–Mills
Theory), and the second one being the standard gauge-theory identity
simply stemming from the definition of the field strength. These Bianchi
identities are heavily reminiscent of the ones endowing the Riemann curva-
ture tensor. Actually, it is one of the most important basic results of the
frame formulation of gravity that the following relation holds:

R[Γ]ρµνσ = R[ω]µνabeaρebσ. (1.14)

Note that, knowing the relations linking the spacetime connection and the
spin-connection to the metric and vielbein respectively, a direct check of
such a relation seems doable but incredibly tedious. However, there exists
a trick, which is the mere evaluation of [∇µ,∇ν ]eρa = 0 and which leads
to the result more easily. In fact, as aforementioned, the above equation
simply expresses the change of basis for two of the indices of the Riemann
tensor !
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Another analogy between both formulations of the curvature is their
transformation under a variation of Γ and ω respectively. Those read

δR[Γ]ρµνσ = ∇µ(δΓρνσ)−∇ν(δΓρµσ), (1.15a)
δR[ω]µνab = Dµ(δωνab)−Dν(δωµab), (1.15b)

the latter of which will be useful in the sequel, when going back from the so-
called first-order formalism to the 1.5-order formalism. Finally, let us point
out that, as it should be, R[Γ] and R[ω] both appear when one considers
the commutator of two covariant derivatives (D and ∇ respectively), which
is really the object characterizing the curvature of spacetime, that is, how
much it fails to be flat — and we again refer to [93]. Thus, just as the
spin-connection is a rewriting of the familiar spacetime connection in a
mixed basis (also called ‘non-holonomic’), so is the above curvature R[ω]
simply an expression for the Riemann tensor with some indices changed to
the frame basis provided by the vielbeins.

The Action

We are finally ready to rewrite the Einstein–Hilbert action (1.1) in terms
of the vielbein. Indeed, the relation (1.14) leaves us only with the problem
of rewriting the infinitesimal spacetime volume element, but, fortunately,
the following relations are easily derived:

edDx = e0 ∧ · · · ∧ eD−1 = 1
D!εa1...aDe

a1 ∧ · · · ∧ eaD

= e

D!εµ1...µDdx
µ1 ∧ · · · ∧ dxµD ,

(1.16)

our conventions being ε0...D−1 ≡ 1. Indeed, plugging the above rewriting
of the infinitesimal volume element dV as well as relation (1.14) in the
action (1.1), and further using

ea1 ∧ · · · ∧ eap ∧ eb1 ∧ · · · ∧ ebq = −εa1...apb1...bqdV, (1.17)

we finally find (for the Λ = 0 case),

Seh[g[e]] = 1
(D − 2)!16πG

∫
MD

εabc1...cD−2e
c1 ∧ · · · ∧ ecD−2 ∧R[ω[e]]ab

≡ Sso[e, ω[e]] ≡ Sso[e],
(1.18)
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which in three dimensions reads (now including the obvious contribution
from the cosmological constant)

Sso[e] = 1
16πG

∫
M3

εabc e
a ∧

(
Rbc[ω] + 1

3Λeb ∧ ec
)
, (1.19)

and where ‘SO’ stands for ‘second-order’ formalism, meaning that the
spin-connection is thought of as depending on the vielbein, so that the
action really depends only on the latter, which obeys a second-order
differential equation. As the Einstein equations are also second-order
equations in the metric, this terminology is also sometimes used to
refer to the standard metric-like (Einstein–Hilbert) formalism. For the
three-dimensional epsilon symbol we also use the convention ε123 ≡ 1.
Note that the dependence of the spin-connection on the vielbein is usually
dropped when writing the action, just as we did for the last expression
above. It is rather clear that, because the actions are equivalent, finding
the equations of motion for the vielbein that the above action yields
and going back to the metric formulation one should find the Einstein
equations. This is a nice exercise that we shall not comment on more.

A natural thing to do now is to consider the same action, but forgetting
about the relation between the spin-connection and the vielbein, that is,
both objects are treated independently. Then, the variational principle
yields equations for ω as well, in addition to those for the vielbein. As it
turns out, these ‘equations of motion’ for ω are precisely the zero-torsion
condition. Therefore, if we further demand that ω be antisymmetric in
its two frame indices (which is equivalent to requiring it to be a Lorentz
connection), its equation of motion allows us to solve for it, obtaining
the expression (1.11). This way of thinking about the frame formulation
of the action is called the ‘first-order’ formalism, because now the spin-
connection is to be thought of as an auxiliary field (for which we can
solve), and before integrating it out the vielbein thus obeys a first-order
differential equation (which gives back Einstein equations if we plug in
it the functional dependence of the spin-connection on the vielbein). To
stress that it depends on e and ω independently and to distinguish it from
the second-order action (1.19), the first order action will be noted Sfo[e, ω],
but it looks exactly like (1.19) except for the fact that ω is no longer to be
understood off-shell as a function of the vielbein and its derivatives.

Note that, in order to find the equations of motion for the spin-
connection, one first uses the aforegiven formula (1.15b). Then, combining
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the vielbein postulate (1.10a) with the integration formula∫
dDx
√
−g∇µV µ =

∫
dDx ∂µ(

√
−g V µ) +

∫
dDx
√
−g T ννµV µ, (1.20)

one obtains that some combination of the torsion is equal to zero; an
equation that one has to act on with vielbein fields in order to get the
zero-torsion condition.

Particularizing to Dimension 3

From now on we shall work in three dimensions, where we can perform
the standard ‘dual’ rewriting

R[ω]a ≡ 1
2εabcR[ω]bc ⇔ R[ω]ab = −εabcR[ω]c, (1.21)

and do the same for ωa itself, thus obtaining

R[ω]a = dωa − 1
2εabc ω

b ∧ ωc. (1.22)

The action (1.19) at Λ = 0 can then be rewritten as

Sfo[e, ω] = 2
16πG

∫
M3

ea ∧R[ω]a, (1.23)

which we recall can only be written down in three dimensions. Note that
we have moved to the first-order formalism, for it is the one we shall start
from in order to pass to the Chern–Simons formulation.

Before moving on to the next subsection, let us display the linearized
equations of motion corresponding to the first-order formalism. The reason
why we only need display the linearized equations of motion is that, in
Section 1.2, we shall start from a linearized higher-spin theory in order
to try to build its non-linear completion. The linearized higher-spin
equations of motion will thus be expressed in the frame formalism and,
in order to have something to compare them to, we give hereafter the
linearized equations of motion in the frame formalism for the s = 2 case.
In linearizing the vielbein, we have adopted the notation e→ ē+ v, where
ē is the background dreibein associated with the background metric (that
of three-dimensional anti-de Sitter spacetime for example) via the usual
formula (1.4). As for the spin-connection, we have used ω → ω̄ + ω, where
ω̄ is some background, related to ē via the usual zero-torsion condition
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(the background is on-shell), that is, via equation (1.11). We find these
excitations to satisfy

dωa + εabcω̄b ∧ ωc − Λεabcēb ∧ vc = 0, (1.24a)
dva + εabcω̄b ∧ vc + εabcēb ∧ ωc = 0, (1.24b)

which can be rewritten as

Dωa − Λεabcēb ∧ vc = 0, (1.25a)
Dva + εabcēb ∧ ωc = 0, (1.25b)

where the first one above is the linearized zero-torsion condition for the
metric-compatible spin-connection ωa and the second one is simply the
linearized equation of motion for the dreibein. One may check that the
above equations are invariant under linearized diffeomorphisms as well as
infinitesimal local Lorentz transformations, as they should be.

1.1.2 Gravity as a Chern–Simons Theory in Dimension 3
As has been argued in the previous subsection, three-dimensional pure
Gravity can be rewritten in the so-called first-order formalism, with the
vielbein and the spin-connection being independent variables (the latter
being an auxiliary field). Starting from the latter formulation, we shall
now discuss the Achúcarro–Townsend–Witten result [57, 58] in which yet
another formulation of Gravity is found (in three-dimensions), namely that
of a gauge theory described by a Chern–Simons action with a connection
one-form Aµ taking values in the Lie algebra of isometries of the vacuum
solution. The vacuum solution being either Minkowski, anti-de Sitter or
de Sitter, the relevant Lie algebras underlying our yet-to-be-formulated
gauge description of D = 3 Gravity will be respectively iso(2, 1), so(2, 2)
or so(3, 1).

The way in which we shall proceed is backwards, that is, we will
start from the gauge theory we claim to be equivalent to three-dimensional
Gravity and will then show it to be so. Much like in the previous subsection,
we try to be as pedagogical as possible but will remain rather pragmatic in
spirit, referring the reader to [57] for a more detailed and very enlightening
discussion.

Intuitive Arguments

The frame formulation of Gravity has made many physicists try to combine
the vielbein and the spin-connection into some iso(D−1, 1)-valued one-form



CHAPTER 1. HIGHER SPINS IN DIMENSION 3 23

gauge field. Indeed, the vielbein (resp. the spin-connection) looks like an
appealing candidate for the role of the coefficient of the gauge connection
A corresponding to the translation generators (resp. Lorentz generators) of
iso(D − 1, 1). This is so because, as mentioned in the previous subsection,
when formulated in terms of the vielbein and spin-connection Gravity
already has some of the taste of a Yang–Mills-like gauge theory. However,
there is an easy intuitive reason why this is likely to fail in dimension four
[57] (or at the very least be somewhat unnatural). Indeed, looking back at
(1.18) for D = 4 we see that it is of the schematic form (for Λ = 0)

S ∼
∫
M4

e ∧ e ∧ (dω + ω ∧ ω), (1.26)

so that the corresponding Yang–Mills-like action should look somewhat
like

S ∼
∫
M4

Tr
(
A ∧A ∧ (dA+A ∧A)

)
, (1.27)

which does not exist in gauge theory (it is not gauge invariant).1 However,
in D = 3, we have the well-known Chern–Simons action, which roughly
looks like

S ∼
∫
M3

Tr
(
A ∧ (dA+A ∧A)

)
. (1.28)

It is precisely what one feels like trying when looking at (1.19) for Λ = 0
in dimension three !

The other indication that the three-dimensional scenario is specially
suited for establishing such a correspondence has to do with bilinear forms
on the relevant Lie algebras. Indeed, if one is to build a Chern–Simons
action (or any Yang–Mills-like action) for some Lie algebra, one should
first make sure that there exists some invariant, non-degenerate, symmetric
and bilinear form on it. In the Λ = 0 case, it turns out that iso(D − 1, 1)
admits such a form only for D = 3. Let us note, however, that despite
the aforementioned difficulties in formulating Gravity in dimension four
and higher as a gauge theory for the Poincaré group, past investigations
nevertheless arrived at interesting results [98–100]. In fact, these works
later inspired Vasiliev and other authors in their formulation of higher-spin
dynamics [19, 47, 101] (see General Presentation).

1 The same direction of investigation was explored in AdS spaces too [98, 99].
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The Gauge Algebras

Let us start by considering the gauge algebras that we will have to work
with in the sequel, which will also allow us to fix the conventions thereof.
From now on we stick to D = 3, for which the commutation relations of
our three different gauge algebras can be packaged into

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = λεabcJ
c, (1.29)

where the Latin indices a, b, c = 1, 2, 3 are raised and lowered with the
three-dimensional Minkowski metric2 ηab and its inverse ηab, which are
also chosen to have signature (−+ +). Note that we have used again the
‘three-dimensional rewriting’

Ja ≡ 1
2εabcJ

bc ⇔ Jab ≡ −εabcJc, (1.30)

where Jab are the usual Lorentz generators (Pa are of course the translation
ones). For λ = 0, λ < 0 and λ > 0, the above relations describe respectively
iso(2, 1), so(2, 2) and so(3, 1).

As aforementioned, iso(D− 1, 1) admits a non-degenerate and invariant
(symmetric and real) bilinear form3 only for D = 3, which is unique in the
space of such forms.4 It reads

(Ja, Pb) = ηab, (Ja, Jb) = (Pa, Pb) = 0. (1.31)

As for so(D − 1, 2) and so(D, 1), they admit a non-degenerate, invariant
bilinear form for any D, the particularization of which to D = 3 reads

(Ja, Jb) = ηab, (Ja, Pb) = 0, (Pa, Pb) = ληab. (1.32)

For D 6= 3 they are both simple and the higher-dimensional equivalent of
the above form is therefore unique (up to normalization) and proportional
to the Killing form. For D = 3, however, the AdS one becomes semi-simple
and undergoes the splitting

so(2, 2) ' sl(2|R)⊕ sl(2|R), (1.33)

so that, in addition to the above form they also admit (1.31).
Remark : note that (1.32) is degenerate for λ = 0, which is the reason
iso(D− 1, 1) only admits a non-degenerate form for D = 3, (1.31), which is

2 This is important since if one takes the indices to be euclidean the commutation
relations would describe, e.g. for λ = 0, iso(3) instead of iso(2, 1).

3 For a general treatment of Lie algebras we recommend for example [102].
4 It is not the Killing form, which is degenerate because iso(2, 1) is not semi-simple.
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a specificity of the three-dimensional case, as can be seen by noting that it
corresponds to the invariant εabcJabP c. The latter can only be constructed
in three-dimensions, and it is thus the ‘epsilon magic’ which is really at
work here.

In the Λ ≥ 0 case we do not have any choice for the bilinear form to
use, but for Λ < 0 we do have the freedom of choosing our bilinear form
among the two above ones. However, it seems somewhat more natural to
use also in that case the one which also endows the isometry algebra of
three-dimensional Minkowski spacetime. This choice will not be further
justified in the present work (except by the fact that it will lead to a Chern–
Simons action which will indeed reproduce the Einstein–Hilbert one),
and we refer the interested reader to [57] for more discussions on the subject.

As we shall be most interested in the AdS case, let us already point
out that the splitting (1.33) of so(2, 2) explicitly reads

[J+
a , J

+
b ] = εabcJ

+c, [J−a , J−b ] = εabcJ
−c, [J+

a , J
−
b ] = 0, (1.34)

where
J±a ≡ 1

2
(
Ja ± 1√

λ
Pa
)
. (1.35)

Before moving to the next subsection we also note that, when expressed in
terms of the J± generators of so(2, 2), the above form (1.31) reads

(J+
a , J

+
b ) = 1

2ηab, (J−a , J−b ) = − 1
2ηab, (J+

a , J
−
b ) = 0, (1.36)

which we recall corresponds to the Λ < 0 case.

The Action

Now that the algebraic aspects have been dealt with, let us work out the
equivalence at the level of the actions between some Chern–Simons term
with a connection one-form Aµ living in one of the above three-dimensional
isometry algebras and three-dimensional Einstein–Hilbert Gravity with
corresponding cosmological constant.

We begin by proving the equivalence in the Λ = 0 case. The identifica-
tion of the off-shell degrees of freedom is the following:

Aµ ≡ eaµPa + ωaµJa, (1.37)

where the generators Ja, Pa of iso(2, 1) satisfy (1.29) at λ = 0. If we now
plug this expansion into the Chern–Simons action term below and use
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(1.31) for the scalar product (trace) a straightforward computation yields

Scs[A] ≡ κ
∫
M3

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

= κ

∫
M3

ea ∧R[ω]a

≡ κ16πGSfo[e, ω],

(1.38)

where we have used εabcε
ade = δebδ

d
c − δdb δ

e
c . We thus conclude that,

upon using our identification (1.37), Scs[A] = Sfo[e, ω] provided we set
κ = 1/16πG, which is called the Chern–Simons level. We also note that
the matching of the actions assumes that the vielbein is invertible. We
shall not dwell on this interesting issue here, and refer to [57] for an
interesting discussion.

Before moving to the next subsection, let us work out — for we shall
need them— the equations of motion derived from the above Chern–Simons
action. In terms of the gauge connection they read

F [A] ≡ dA+A ∧A = 0, (1.39)

as is well known, and in terms of e and ω we easily find the corresponding
expressions:

Dµe
a
ν −Dνe

a
µ = 0, (1.40a)

∂µω
a
ν − ∂νωaµ + εabcωbµωcν = 0, (1.40b)

where we use the standard abuse of notation Dµe
a
ν ≡ (Dµeν)|Pa , with |Pa

meaning taking the component along the Pa generators. Note that, as it
should be, the above equations of motion do coincide, at the linearized
level, with the Λ = 0 version of (1.24).

The Gauge Transformations

There is a last non-trivial check to do before one can safely claim the two
theories to be equivalent; namely, we need verify the gauge transformations
on both sides to be the same. Indeed, while both the frame formulation and
the Chern–Simons actions are manifestly invariant under diffeomorphisms,
in the first-order formulation we also have the local Lorentz transfor-
mations as gauge symmetries, whereas in the Chern–Simons picture we
have instead the full iso(2, 1) gauge symmetries. As we shall demonstrate,
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the homogeneous part of the iso(2, 1) gauge symmetries are easily seen
to correspond to the LLTs in the first-order formalism but, as for the
infinitesimal gauge translations of iso(2, 1), one has to show that they
are not extra gauge symmetries (which would be bad for our rewriting of
the action would then eliminate degrees of freedom in some sense) but,
rather, that they correspond to some combination of the symmetries of
the first-order formalism action.

The gauge transformations in the Chern–Simons picture are
parametrized by a zero-form gauge parameter taking values in the gauge
algebra,

u ≡ ρaPa + τaJa, (1.41)

with ρa and τa being infinitesimal parameters, and the transformation law
for the gauge connection (sitting in the adjoint representation of the gauge
algebra) is A→ A+ δA with

δAµ = ∂µu+ [Aµ, u]. (1.42)

Upon now plugging the expression for u and the decomposition of A in
terms of the dreibein and spin-connection in the above equation we can
read off the variations of e and ω, which are all the (infinitesimal) local
symmetries of the action in the gauge (Chern–Simons) picture and they
can be decomposed into those generated by ρa, and those generated by
τa. Moreover, as we already explained, the Chern–Simons term is also
manifestly invariant under diffeomorphisms because it is written in terms
of forms. Then, when dealing with the first-order action we also have the
local Lorentz transformations, which act on e and ω as in (1.5) and (1.8)
respectively.

Now, as shown in Appendix C.1, the later LLTs are quite easily seen to
be in one-to-one correspondence with the gauge transformations generated
by the parameters τa on the Chern–Simons side. As for the infinitesimal
gauge transformations of the gauge picture generated by the ρa’s the story
is a little more subtle, and indeed at first sight one wonders what they
could correspond to in the frame formulation. Actually, we will show
that the gauge transformations generated by the ρa’s are in fact not extra
gauge transformations but, rather, they are simply some combination of
diffeomorphisms and LLTs up to so-called trivial gauge transformations
(see Appendix C.1). As already stated, this is well, since the point was
to check that there are no extra gauge symmetries. Let us also stress
that this fact is truly a three-dimensional feature and does not happen
in dimension four and greater. Actually, this is precisely what prevents
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one from writing Gravity in dimension four and greater as a gauge theory
simply by gauging the isometry group of the vacuum and employing a
gauge-connection valued therein. Thus, we might say that ‘only in three
dimensions is Gravity a true gauge theory’, and even there, we see that
its action is that of Chern–Simons, which is not of the Yang–Mills type
that we are more used to in standard gauge theory. Further note that a
Yang–Mills action term in three dimensions would propagate scalar degrees
of freedom, unlike Gravity which propagates none in dimension three.

This achieves the proof of the equivalence for the λ = 0 = Λ case.
Three-dimensional gravity is thus a gauge theory for iso(2, 1), the Poincaré
algebra in dimension 3 for zero cosmological constant.
Remark : as we just said in dimension four and greater the first-order
action (1.23) is only invariant under the homogeneous Poincaré group
so(2, 1), not under the whole of iso(2, 1) — that is, gauge translations do
not leave the action invariant. The action (1.23) is of course invariant under
coordinate reparametrization (diffeomorphisms), but those Lie derivatives
do not correspond (in the first order formalism at least) to gauge transla-
tions. Only in three-dimensions does that happen, thus allowing to rewrite
three-dimensional gravity as a gauge theory for the whole Poincaré group.
More information can be found in [93, 95] and we do not further dwell on
that point.

Cosmological Constant and Chiral Copies

As announced, what we shall be interested in is the case with negative
cosmological constant. Following the same reasoning as in the λ = 0
case (with same identifications of e and ω via (1.37) and same bilinear
form on the algebra) the equivalence can again be proven between the
frame formulation and the Chern–Simons one based on so(2, 2). As this
calculation is really close to the one we have just performed we shall not go
through it again and we just quote what is different in the Chern–Simons
picture, that is, the gauge transformations now read

δeaµ = ∂µρ
a + εabcebµτc + εabcωbµρc, (1.43a)

δωaµ = ∂µτ
a + εabcωbµτc + λεabcebµρc, (1.43b)

and the way in which they correspond to diffeomorphisms and LLTs is the
same as before. Further note that the identification of the actions now
requires one to set

κ = l

16πG (1.44)
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and
λ = Λ, (1.45)

so that the parameter λ appearing in (1.29) is indeed the cosmological
constant Λ and l is the AdS radius defined in the usual way by Λ ≡ −1/l2.
Note that κ is often parametrized as k/4π in the literature, which implies
k = l/4G in the AdS case.

The splitting (1.33) of so(2, 2) into two chiral copies of sl(2|R) makes it
is possible to rewrite the Chern–Simons action term for Γµ ∈ so(2, 2) as the
sum of two Chern–Simons actions, each of them having their connections
A and Ã in the first and second chiral copy of sl(2|R) respectively. In the
sequel we shall only deal with the first chiral copy but we wanted to still
call the connection thereof A, which is why we have changed notations at
this point. Actually, the decomposition of Γ in terms of e and ω is quite
helpful in formulating this splitting precisely, for we see that

Γ = eaPa+ωaJa =
(
ωa+ ea

l

)
J+
a +

(
ωa− e

a

l

)
J−a ≡ AaJ+

a +ÃaJ−a ≡ A+Ã,
(1.46)

where the J±a ’s are defined by (1.35). Now, taking into acount both the
commutation relations (1.34) and the bilinear form (1.36) written in terms
of J±a , we see that the Chern–Simons action term for so(2, 2) can be split
as follows

Scs[Γ = A+ Ã] = Scs[A] + S̃cs[Ã] ≡ Scs[A, Ã], (1.47)

with each chiral copy having prefactor κ = l/16πG. Note that for the
splitting of the kinetic piece one needs only notice that (J±a , J∓b ) = 0,
whereas also [J±a , J∓b ] = 0 is needed to prove the splitting of the interaction
piece. Both chiral copies Scs[A] and S̃cs[Ã] are the same actions except for
one difference, which is that the J+

a ’s and J−a ’s are equipped with bilinear
forms having opposite signs (1.36). Equivalently, if one prefers to have
both chiral copies equipped with the same bilinear form, one can instead
declare

A ≡
(
ωa + ea

l

)
Ta, (1.48a)

Ã ≡
(
ωa − ea

l

)
Ta, (1.48b)

with the Ta generators of sl(2|R) satisfying the same commutation relations
and scalar products as the J+

a ones (we changed notations not to confuse
the reader). The decomposition of the action then reads

Scs[Γ = e/l + ω] = Scs[A]− Scs[Ã] = Scs[A, Ã]. (1.49)
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It is of course no longer true that Γ = A+ Ã (nor does it make sense to
write so anymore), but this decomposition, in which the connections A
and Ã both lie in the first chiral copy of sl(2|R) (to put it that way) is
handier as the two action functionals are the same now also when seen
as functionals of the components Aa and Ãa — they are truly the same
action functionals now. This formulation, where the metrics on both
copies of sl(2|R) have the same signature, will be of much use in the sequel,
where we shall only treat the first chiral copy for many of our purposes.
This is also the formulation that is most often encountered in the literature.

Note that the equations of motion now read

F [A] = 0, F [Ã] = 0, (1.50)

which, when combined as F [A] ± F [Ã] = 0 and subsequently linearized
are seen to yield those written in (1.24) (in the linearized limit). Also
note that the gauge transformations are also split now, but we shall not
display them here for the sake of conciseness. For future reference, let us
also display the constraints of the theory, called the Chern–Simons–Gauss
constraints, which read

Ga ≡
k

4π (Ta, Tb)εijF [A]bij = k

8πηabε
ijF [A]bij ≈ 0, (1.51)

where the indices i and j are spatial indices, and the ‘≈’ symbol here
stands for weak equalities (on the constraint surface [103]). The other
copy’s constraints read similarly.

1.1.3 Supergravity
As mentioned in the introduction to the present chapter, our goal is to ar-
rive at a Chern–Simons formulation for Higher-Spin Supergravity on AdS3,
which we do in Section 1.2. In this subsection we thus comment on how to
rewrite the various Supergravity theories in terms of a superconnection
valued in some gauge algebra governed by a Chern–Simons action term.
As announced at the beginning of this section, given that the rewriting
of Supergravity as a gauge theory follows the same lines as that of pure
Gravity we shall only quote the final results hereafter.

A Chern–Simons action for a gauge connection valued in the superal-
gebra of isometries of the vacuum solution of some Supergravity theory
reproduces the dynamics of the latter, provided one identifies the field
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components appropriately [58]. In Chapter 2, the emphasis will be on
the most common (and arguably simplest) Supergravity, namely the non-
extended one describing a graviton and a complex gravitino ψµ, built upon
an osp(1, 2|R) ⊕ osp(1, 2|R)-invariant vacuum state. The osp(1, 2|R) Lie
superalgebra contains, in addition to the familiar sl(2|R) sector, the odd
generators R±, which obey the commutation relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

[H,R+] = R+, [E,R+] = 0, [F,R+] = R−,

[H,R−] = −R−, [E,R−] = R+, [F,R−] = 0, (1.52)
{R+, R+} = −2iE, {R−, R−} = 2iF, {R+, R−} = iH,

with the scalar product reading like

STr(Γ) ≡ Γ11 − Tr (Γsp(2)) = Γ11 − Γ22 − Γ33 = −Γ22 − Γ33, (1.53)
(Γ,Γ′) ≡ STr(ΓΓ′). (1.54)

More information on the superalgebras of extended and non-extended
Supergravity can be found in Appendix B, where the conventions pertaining
to the above commutation relations and scalar products are also given. The
Chern–Simons action S[Γ, Γ̃] = Scs[Γ]− Scs[Γ̃] for Γµ ∈ osp(1, 2|R) then
reproduces the Supergravity action [93] provided the correct identification
is made in the fermionic sector [58]. In fact, because of the commutation
relations and scalar product above, the action Scs[Γ] splits as

Scs[Γ] ≡ k

4π

∫
M3

STr
(
Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ
)

(1.55)

= k

4π

∫
M3

[
Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

+ iTr
(
Ψ̄ ∧ dΨ + Ψ̄ ∧A ∧Ψ

)]
,

where Γ = A + Ψ, with A ∈ sl(2|R). As in the pure-Gravity AdS3 case,
the coefficient k is a dimensionless, real-valued coupling constant of the
theory, and it is related to the three-dimensional Newton’s constant G
and the AdS radius of curvature ` through k = `

4G . The cosmological
constant is Λ ≡ − 1

`2 , and with k real the action is real-valued. Also, one
can again prove that the gauge transformations ‘match’, much in the
spirit of the pure-Gravity case (see previous subsection). The same result
holds for all the other Supergravity cases, with similar identifications
of the field components, and the complete list of AdS3 supergravities
can be found in Appendix B. However, in the present work will shall
be mainly concerned with the osp(1, 2|R) and osp(N, 2|R) supergravities
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as well as with the higher-spin extensions thereof, and comments on
higher-spin theories stemming from extending other supergravities are
made in Chapter 3. We note that, in the extended osp(N, 2|R) case,
the above action contains extra terms involving the internal-algebra
components of Γµ ∈ osp(N, 2|R), which for N = 1 (resp. N = 2) is
trivial (resp. abelian) [58]. Let us also recommend reference [60] for a
detailed treatment of the above rewriting in the extended-Supergravity
case, where it is also noted that one can cast the action in the Chern–
Simons form for all cases listed in Appendix B and not just for osp(N, 2|R).

A property worth highlighting is the following: we know that super-
gravity ‘contains’ gravity, that is, it describes a (non-propagating) graviton
together with other, lower-spin fields. At the algebraic level, the corre-
sponding statement is that sl(2|R) is a subalgebra of osp(N, 2|R), so that
one is assured to be able to rewrite the Γµ ∈ osp(N, 2|R) Chern–Simons
action as a Aµ ∈ sl(2|R) Chern–Simons term (Einstein–Hilbert) plus the
fermion term, plus some interaction (cross) terms — provided the identifi-
cation of the components of Γµ in the sl(2|R) subsector with the dreibein
and spin-connection is the same as that of Aµ. Thus, in exactly the same
way, a Chern–Simons term for a ‘higher-spin algebra’ containing sl(2|R)
(resp. osp(N, 2|R)) as a subalgebra and with correct identification of the
components in the Gravity (resp. Supergravity) sector will be a good
candidate for a Higher-Spin Gravity (resp. Supergravity) theory. However,
first we should find an identification of the higher-spin components such
that the higher-spin free kinematics are reproduced in the linearized limit
of such an action term. The following section is concerned with precisely
these matters.

1.2 Higher-Spin Gravity as a Gauge Theory in D = 3

What has been done for pure gravity in the previous section will now
be carried out for higher-spin fields (s > 2). However, the formulation
of interacting higher-spin fields (with themselves and with gravity) is
notoriously tricky and plagued by many obstructions [52]. Nevertheless, as
we shall now expand on a little, all the renowned difficulties in building
interactions are evaded in dimension 3.

First of all, as noted in [42], in flat spacetime the generically non-
vanishing Weyl tensor in D ≥ 4 precludes the existence of so-called ‘Hyper-
gravity’ (a spin- 5

2 field minimally coupled to gravity; in some sense the first
non-trivial gravitational higher-spin interaction). Moreover, although the
higher-spin fields may have cubic multipoles with Gravity, a fully consistent
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theory is incompatible with locality of the Lagrangian, at least for a finite
number of fields — in fact, Part II of the manuscript is concerned with
precisely this problem. One can nevertheless have fully consistent theories
on AdS backgrounds, as a long-term effort by Vasiliev ended up proving.
However, the formulation thereof, which calls upon a generalized frame
formalism, requires so-called ‘extra fields’ and ‘extra gauge symmetry’ —
these are auxiliary fields and associated gauge symmetries one is forced to
introduce in order to formulate higher-spin fields in the frame formalism
in dimension four and greater [46, 47]. These facts essentially complicate
the introduction of interactions, although as we know Vasiliev’s equations
do exist [50, 104, 105].

In D = 3 these two complications do not arise. Indeed, the Weyl
tensor vanishes in three dimensions, which does allow for interaction terms
involving the minimal coupling to Gravity. Also, as noted for example
in the first sections of [2], the frame formulation of three-dimensional
higher-spin fields does not require so-called ‘extra fields’ and ‘extra gauge
symmetry’, so that the construction of interactions in the AdS case via
the generalized frame formalism is also made easier. In full analogy
with the previous section, we should therefore present the interacting
three-dimensional theory of higher-spin fields and then translate it to
the Chern–Simons form. However, as we shall explain, for interacting
higher spins in three dimensions the Chern–Simons rewriting is not only a
reformulation of an existing, interacting theory. It is actually a way to
introduce interactions, which one could also introduce at the level of the
frame formulation [106–108] (and to some extent at the level of the metric
formalism [92]) but which are much more easily treated in the gauge picture.

As we shall describe in Subsection 1.2.1, one can formulate higher-spin
fields in some analogue of the frame formalism for Gravity that we reviewed
in Subsection 1.1.1 (at the free level) and then from there move on, in
Subsection 1.2.2, to the Chern–Simons picture for higher spins — much in
the spirit of what was done for pure gravity. The problem of introducing
interactions will then be easily dealt with, as it will be equivalent to the
purely algebraic problem of finding suitable higher-spin Lie algebras (see
also the end of the previous section). The formulation one then arrives
to, firstly introduced by Blencowe [56], namely a Chern–Simons gauge
theory for some (finite or infinite-dimensional) gauge algebra containing
so(2, 2) (in the AdS3 case), is the basis for almost every study of three-
dimensional Higher-Spin Gravity today, and is what the present section
is devoted to reach and then generalize to include fermions. Just as in
Section 1.1, we first develop the material without supersymmetry in quite a
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detailed way, and in Subsection 1.2.3 display the corresponding higher-spin
supergravities, which are the ones we study the asymptotic symmetries of
in Chapter 2.

1.2.1 The Frame Formulation of Free Higher Spins
As aforementioned, some analogue of the frame formalism for Gravity also
exists for higher-spin fields, and we now present it. Let us stress that all
of what we shall present in this subsection takes place at the linearized
level. Although we shall be mainly interested in the AdS3 case, we shall
develop as much of the material as possible in arbitrary dimension and in
a generic constant-curvature background spacetime. Part of the material
exposed in this subsection is also reviewed in [53].

The Metric Formalism

Let us review the Fronsdal (or metric) formulation of (free) higher-spin
fields [33]. The Fronsdal equations of motion for a spin-s gauge field
described by a rank-s symmetric tensor ϕµ1...µs and propagating in the
Minkowski D-dimensional background are given by

Fµ1...µs ≡ �ϕµ1...µs − s∂(µ1∂
λϕµ2...µs)λ + 1

2s(s− 1)∂(µ1∂µ2ϕ
λ

µ3...µs)λ = 0,
(1.56)

where F is the so-called Fronsdal tensor, which should be thought of as a
higher-spin equivalent of the linearized Ricci tensor (which it boils down
to for s = 2). Our symmetrization parenthesis have weight one, so that e.g.
2A(ij) ≡ Aij + Aji. The above equations are invariant under the gauge
transformations

δϕµ1...µs = s∂(µ1ξµ2...µs), with ξλλµ3...µs−1
= 0. (1.57)

One can verify that the above equations of motion are equivalent to the
ones obtained from varying the action

S =
∫

dDxϕµ1...µs
(
Fµ1...µs − 1

4 (s− 1)sη(µ1µ2F
λ

µ3...µs)λ
)
, (1.58)

where the expression in parenthesis is the higher-spin analogue of the
linearized Einstein tensor. In fact, the gauge invariance of the above
Lagrangian requires the double-trace constraint ϕλρλρµ5...µs

= 0 to
hold. As one can check, this condition can be obtained by considering
derivatives of the Fronsdal tensor F (which is on-shell zero), so that
on-shell it is automatically imposed, as for example at the level of the
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equations of motion. However, at the level of the action (off-shell) we
need to impose this constraint separately, and one can verify that it is
preserved by the above gauge symmetries. The above action is thus the
higher-spin analogue of what we would obtain if we were to linearize
the Einstein–Hilbert action (1.1) (in brackets we find the analogue of
the linearized Einstein tensor), and the above equations of motion (1.56)
are the higher-spin counterparts of the linearized version of (1.3) (at Λ = 0).

Let us then move to fields propagating on constant-curvature back-
grounds. We are thus looking for equations that should now be invariant
under

δϕµ1...µs = s∇(µ1ξµ2...µs), with ξλλµ3...µs−1
= 0, (1.59)

where∇ stands for the covariant derivative (see previous section) associated
with the background metric ḡµν (that we will choose to be anti-de Sitter
later on). The equations of motion are now

F̂µ1...µs ≡ Fµ1...µs + Λ
(
[(s2 + (D − 6)s− 2(D − 3)]ϕµ1...µs

+ s(s− 1)ḡ(µ1µ2ϕ
λ

µ3...µs)λ
)

= 0,
(1.60)

where F̂ is the ‘AdS Fronsdal tensor’ and the Fronsdal tensor F itself is
now understood as in (1.56) but with all derivatives replaced by covariant
derivatives with respect to the background metric. Again imposing the
double trace constraint on our field the free Lagrangian is fixed by the
requirement of gauge invariance and reads exactly as (1.58) but with F
replaced by F̂ . The analogies with (1.1) and (1.3) are again clear.

It is important to note that the above equations of motion and La-
grangians are fixed by the requirement of invariance under the correspond-
ing gauge transformations. As explained e.g. in [109], the interactions
are ‘even more’ constrained and although Vasiliev’s equations do exist
and are fully non-linear, they still lack a satisfactory corresponding action
principle.5

Remark : in three spacetime dimensions, the usual notion of spin for
massless particles (the helicity) reduces to a mere distinction between
bosons and fermions, that is, the little group is trivial. Nonetheless, one
may wish to consider the same four-dimensional free equations describing

5 An interesting action principle was proposed in [110]. It is, however, non-standard in
the sense that it is formulated in a higher-dimensional spacetime that includes twistorial
directions. In particular, it does not reproduce Fronsdal’s action upon linearization.
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some tensor field but in dimension three. It is then easy to see that, apart
from the scalar (dual to the spin 1) and the spin- 1

2 field, no degrees of
freedom can propagate [111]. In particular, higher-spins do not propagate
any local degree of freedom in dimension three, and neither does a graviton
or a Rarita–Schwinger field. However, one may still wish to call a fully
symmetric rank-s tensor satisfying the D = 3-projected Fronsdal equation
a spin-s field. That is, of course, what we mean by a higher spin in three
dimensions. In [56], Blencowe obtained precisely that object (or, rather,
its translation in terms of the generalized dreibein and spin-connection)
by means of projecting directly the four-dimensional equations written in
terms of the frame fields onto three dimensions.

The Vielbein and Spin-Connection

Let us now try to formulate the above higher-spin free kinematics along
the lines of the frame formulation of Gravity. However, in Subsection 1.1.1
the reformulation of Gravity in terms of the vielbein and spin-connection
was carried out at the non-linear level, whereas here we only have a linear
theory to start from (see comments at the end of the previous subsection)
so that we shall remain at the linearized level. Therefore, instead of the
relation (1.4), what we are trying to generalize to the higher-spin case,
rather, is its linearized version

ϕµν = 2ēa(µvν)a, (1.61)

which is simply derived by plugging gµν ≡ ḡµν + ϕµν in (1.4) and defining
ē to be the background vielbein, associated with ḡµν , and defined together
with vaµ by e ≡ ē+ v. The above relation is now invariant under

δvaµ = αabē
b
µ, (1.62)

because αab ∈ so(D − 1, 1) (remember that Latin indices are raised and
lowered with ηab).

The above change of variables is then generalizable to higher-spin fields.
Indeed, let us introduce some generalized vielbein e

a1...as−1
µ . Of course,

we have no higher-spin analogue of the full metric at hand, so that the
only thing we can do is declare this object to be its own excitation (that
is, we assume that the background generalized vielbeins vanish6) and try

6 As the generalized (or higher-spin) vielbeins have no background values, we shall
stick to the notation ea1...as−1

µ .
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to relate it to ϕµ1...µs in a sensible way that generalizes (1.61). This was
done in the founding paper [46], resulting in the arbitrary-spin expression

ϕµ1...µs ≡ sē
a1
(µ1

. . . ēas−1
µs−1

eµs)a1...as−1 , (1.63)

which is invariant under

δea1...as−1
µ = ēbµα

b,a1...as−1 , (1.64)

for
α(b,a1...as−1) = 0. (1.65)

Note that, because Latin indices are raised and lowered with the Minkowski
metric the last condition above indeed coincides, in the s = 2 case, with
the matrix (αab) ∈ so(D − 1, 1). Now, in the standard frame approach to
higher spins the generalized vielbein is chosen to be an irreducible Lorentz
tensor in its frame indices, that is, we choose it to be symmetric and
traceless in those same indices, i.e. we impose the conditions

ea1...as−1
µ = e(a1...as−1)

µ , e
ba1...as−3

µb = 0, (1.66)

the latter of which ensures the double-trace constraint on the field ϕµ1...µs .
Now, with such a choice of generalized vielbeins, our generalized LLT
parameter α will have to satisfy

αb,a1...as−1 = αb,(a1...as−1), αb,a1...as−3c
c = 0, (1.67)

which, together with (1.65) implies

α
b,(a1...as−1)

b = 0. (1.68)

Then, much like in Gravity, the vielbein is just a covector with respect
to its spacetime index, and in the present formulation our generalized
vielbein will have covariant transformation rules under the ‘generalized
diffeomorphisms’ (1.59) such that its application to (1.63) reproduces (1.59).
What we obtain is simply

δea1...as−1
µ = (s− 1)ē(a1

ν1
. . . ēas−1)

νs−1
∇µξν1...νs−1 . (1.69)

Again proceeding along the lines of what is known for Gravity one
introduces some generalized spin-connection ωa,b1...bs−1

µ , satisfying the same
conditions (1.65), (1.67) and (1.68) as the parameter α:

ωb,a1...as−1
µ = ωb,(a1...as−1)

µ , ωb,a1...as−3c
µ c = 0, ω(b,a1...as−1)

µ = 0, (1.70)
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which together imply
ω
b,(a1...as−2)
µ b = 0. (1.71)

Note that for s = 2 the condition ω
(b,a1...as−1)
µ = 0 = α(b,a1...as−1) is

implied by the antisymmetry in the two only Latin indices then carried by
ω and α.

The last comment we shall make in the present subsection is that, in
dimension 3, a ‘dual’ rewriting analogous to (1.21) can also be performed
in the arbitrary-spin case so that, ultimately, our first-order formalism
will deal with the generalized dreibein e

a1...as−1
µ and a generalized spin-

connection ωa1...as−1
µ .

The Action and the Equations of Motion

In his pioneering work [46], Vasiliev identified a first-order action for the
generalized vielbeins and spin-connections such that, when solving for the
auxiliary field ω in terms of e and further recalling the definition (1.63),
one recovers an action functional coinciding with that of Fronsdal (1.58).
For the sake of conciseness we only give here its four-dimensional spin-s
expression at Λ = 0, which reads

S =
∫

d4x εµνρσεabcσω
i1...is−2

ρ,b,a

(
∂µeν,i1...is−2c − 1

2ωµ,ν,i1...is−2c

)
. (1.72)

Such an action, if we believe it to be equivalent to the Fronsdal one (which
it is), will be invariant under generalized LLTs as well as generalized
diffeomorphisms. However, as one can check, it is also invariant under an
extra gauge transformation, acting only on the spin-connection [46]. That
extra gauge parameter can be checked to vanish in the s = 2 case but,
most importantly, in the arbitrary-spin case it also vanishes in D = 3 ! The
reason why this is a key point is that one of the difficulties in formulating
higher-spin theories stems from the fact that this extra gauge symmetry
calls for so-called ‘extra (gauge) fields’ associated with it (much like we
can think of the spin-connection as the gauge field associated with the LLT
gauge symmetry), and one is actually led through an iterative procedure
which introduces several such auxiliary fields. Dealing with them is a
notorious source of inconveniences in the higher-spin context, and the fact
that they are not needed in three dimensions can be thought of as being
one of the reasons why the three-dimensional case is simpler to deal with.

Actually, reference [46] only deals with the four-dimensional Minkowski
case, and one has to refer to [47] in order to get the corresponding (A)dS
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expression, and to [112] for the fermionic treatment (see also [101] for the
generic-dimension case). As for the three-dimensional scenario, it was first
treated in [56], where the usual frame expressions for free higher-spin fields
were projected onto three-dimensional spacetimes and then completed to
yield a fully interacting theory. Before giving its expression, note that we
shall not display frame-index contraction explicitly when it is thought to
be obvious (see below). On the AdS3 spacetime background, that we are
most interested in, the obtained spin-s expression is thus (now in terms of
the ‘dualized’ spin-connection):

S =
∫
e ∧Dω + 1

2ε
abcēa ∧ (Λeb ∧ ec − ωb ∧ ωc) , (1.73)

and the corresponding spin-s equations of motion thus read7

Dωa1...as−1 − Λεaba1 ēa ∧ e a2...as−1
b = 0, (1.74a)

Dea1...as−1 + εaba1 ēa ∧ ω a2...as−1
b = 0, (1.74b)

and indeed one can verify that they enjoy no extra gauge invariance of any
sort — only diffeomorphisms and local Lorentz transformations. Regarding
our notation for index contraction, note for example the first term in the
above action, where evidently contraction of all the indices of e with all
the indices of (the dualized) ω is implied, their index structure being the
same. The same goes, for example, for both terms within the brackets
in the action; we assume contraction of all indices except the ones that
are displayed (and which are contracted with the epsilon tensor). Let us
further stress that, since the spin-2 dreibeins are denoted respectively by
ēa (background) and va (excitation), there can be no confusion with some
higher-spin dreibein of which we display only one frame index, as in the
above action — recall that the higher-spin dreibeins and spin-connections
are always assumed to have zero background values. Finally, let us point
out that the background spin-connection for the spin-2 enters the action
via the covariant derivative D.

Although we don’t give the proof [2] that the above action is indeed
equivalent to the Fronsdal one we point out the enlightening similarity of
the above equations with the linearized equations (1.24); the structure is
really the same, and all we have done is deal with the extra indices in the
only possible way. Let us also make it clear that the apparent discrepancy
one might seem to notice between the above action and (1.72) simply lies
in the fact that (1.72) is given on a flat background, where ē is the trivial
matrix and ω̄ is zero.

7 For s = 2 these equations of course boil down to those given in (1.24), only recalling
that in that case the excitation is ascribed the letter va.
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1.2.2 A Chern–Simons Action for Higher-Spin Gravity
The idea is now that, much in the spirit of what we did for pure Gravity,
we shall rewrite the above action (1.73) for higher spins as a Chern–Simons
term whose gauge connection one-form takes values in some Lie algebra,
the coefficients of which shall be identified with the generalized dreibein
and spin-connection. Once again we shall proceed backwards, that is, we
shall display some Chern–Simons action together with some identification
of the components of its connection and then show how our action (1.73)
is reproduced therefrom (at the free level).

Requirements at the Linearized Level

From the previous section it should be obvious that the action we are
now looking for is some Chern–Simons term for a gauge connection taking
values in an algebra containing sl(2|R). What is now to be investigated
is what requirements are imposed on such an algebra by the matching
with (1.73) at the linearized level. Note that the action we look for is
the difference of two copies of the Chern–Simons action for independent
combinations of the dreibein and spin-connection, like in (1.49). However,
as we shall see, much of the discussion can be carried out considering only
the first copy (at least the purely algebraic considerations).

Let the Ta’s be the spin-2 generators of (1.48). Now, as we have seen
in the previous subsection, the higher-spin off-shell degrees of freedom8 we
need to accommodate for come in the form of the generalized dreibeins
ea1...as−1 and spin-connections ωa1...as−1 , which are symmetric in their
(frame) indices as well as traceless. The combination ea1...as−1 + ωa1...as−1

is therefore to be identified with the coefficient of some higher-spin generator
Ta1...as−1 , that we may assume to be symmetric and traceless in its indices
(and correspondingly for the other copy). As is easy to check, the number
of independent spin-s generators Ta1...as−1 is precisely 2(s− 1) + 1, that is,
the dimension of a spin-s (or, rather, s− 1) representation of sl(2|R). The
nice thing about it is that, because of the isomorphism sl(2|R) ' so(2, 1),
the components of our Chern–Simons connection corresponding to the
spin-s field come in the right number to form an irreducible spin-(s− 1)
representation of the three-dimensional Lorentz group, so(2, 1). Actually,
this is exactly what we shall assume, namely that the spin-s generators
behave as irreducible Lorentz tensors, which can be seen to translate to

[Ta, Ta1...as−1 ] = εca(a1
Ta2...as−1)c. (1.75)

8 The adjective off-shell is used to stress again that in dimension three there are no
on-shell degrees of freedom.



CHAPTER 1. HIGHER SPINS IN DIMENSION 3 41

The higher-spin algebra we are looking for is therefore some algebra
containing sl(2|R) and, besides, the higher-spin generators Ta1...as−1 up
to some spin, sitting in irreducible representations of the Lorentz algebra
according to the above formula. Note that the mismatch between the spin
of some generators and the representation of so(2, 1) they sit in comes
from the fact that, on top of the frame indices, the connection further
carries a spacetime index. The generators Ta1...as−1 , that we have said to
have spin-s, are also sometimes said to have conformal spin s− 1.

Two important comments are now in order. Firstly, it should be noted
that, whatever our higher-spin algebra is in the end, in order to make sense
of the Chern–Simons term it should be equipped with an invariant and
non-degenerate bilinear form. If the searched-for algebra is semi-simple,
then we know that the Killing form, which always exists, is non-degenerate
(Cartan’s Criterion). Moreover, if the algebra is simple, the Killing form
is unique in the space of invariant bilinear forms. Interestingly, one can
check that the only possibility for a bilinear form is9

(Γ,Γ) =
N∑
s=1

csΓa1...as−1Γa1...as−1 , (1.76)

where the coefficients cs are left undetermined by the requirement of
invariance under the commutation relations we already have at hand,
namely those of sl(2|R) as well as those in (1.75). The commutation
relations among the higher-spin generators can potentially fix (some of)
those coefficients, but for semi-simple Lie algebras there is at least one
form (the Killing form) which corresponds to all the above coefficients
being non-zero.
Remark : in the following we study finite- and infinite-dimensional alge-
bras. Let us note, then, that in the infinite-dimensional case the definition
of being simple is less clear. At any rate, the point is really to be able to
construct a bilinear form with the desired properties, which we shall do
anyhow, even for infinite dimension (see below).

The second comment to be made is that, assuming all cs’s to be non-
zero, whatever algebra we find will do the job. Namely, if we write a
Chern–Simons theory for a gauge connection living in some higher-spin
algebra containing sl(2|R) and whose higher-spin generators satisfy (1.75),

9 Note that the unicity of such a form assumes, implicitly, that its formulation is
covariant.
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the linearization thereof shall yield precisely the action (1.73) (upon identifi-
cation of the components along the lines of A = e+ω, and correspondingly
for the second copy). This last point is really the key one, so let us
phrase it differently: when one linearizes the Chern–Simons action with
proper identification of the degrees of freedom as above, the commutator of
higher-spin generators with themselves is not used. Only the commutators
of higher-spin generators with spin-2 ones, and of course those of spin-2
generators with themselves are used. The reason for this is simple and lies
in the fact that the higher-spin dreibeins and spin-connections have been
assumed to have zero background values, as is easy to note trying to do the
exercise. Another nice feature is that the coefficients cs are not used either
when linearizing the action; indeed, at the free level the Chern–Simons
term for our higher-spin algebra splits into a sum of free actions for the
different spins which are involved, with the corresponding cs coefficients in
front, which therefore play no role in recovering the Fronsdal system.
Remark : to be precise, it is the absolute value of the cs coefficients
which plays no role in recovering the Fronsdal system. The relative signs
of the coefficients are of some importance. Indeed, if the relative sign for
the spin-2 and spin-3 sector is minus then the kinetic terms of both those
sectors will have opposite signs, which is non-standard. This means that
our above statement about the fact that the ‘higher-higher’ commutators
do not affect the linearized limit of the theory should be refined: those
commutators may constrain the bilinear form, which in turn may yield
non-standard relative signs for the kinetic terms (if it is not degenerate).
The example of the two non-compact real forms of sl(3), treated below,
illustrates this point well.

The conclusion is thus that any Lie algebra containing sl(2|R) whose
higher-spin generators are irreducible Lorentz tensors and whose invariant
bilinear form is non-degenerate shall yield a Chern–Simons action (with
proper identification of the degrees of freedom) which, at the linearized
level, agrees with the aforegiven free higher-spin system [113]. The beauty
of it is that we have reduced the quest for an interacting higher-spin theory
in three dimensions to an algebraic problem: that of finding some Lie
algebra satisfying the above requirements.

Two points now deserve a clear stating. The first is about simplicity
and the second is about diversity, and we shall expand on them in the
following. The ‘simplicity’ aspect is that something as common and easy
to deal with as sl(n|R) fits into the above scheme. The ‘diversity’ aspect
is that many other Lie algebras satisfy the requirements. We shall now
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proceed to expanding on those two points. However, let us already point
out that we shall primarily be interested in infinite-dimensional algebras,
so that the following part on finite-dimensional algebras is included for
the sake of generality and so that one can compare it to the treatment of
infinite-dimensional ones, addressed afterward. Moreover, in Chapter 2 we
are interested in supersymmetric Lie algebras (of infinite dimension), and
in Subsection 1.2.3 we use the construction explained hereafter for bosonic,
infinite-dimensional algebras in order to construct our supersymmetric
theories.

Finite-Dimensional Algebras

To the reader unfamiliar with the subject it might now come as a (good)
surprise that, as we just said, something as ‘simple’ as sl(n) fits in this
scheme [2]. Its usual presentation is the set of n × n traceless matrices
(which is really the n-dimensional representation of it), but there exists
another presentation. Indeed, consider the n-dimensional representation
of sl(2|R) and define the higher-spin generators to be the symmetrized
products of the corresponding number of spin-2 generators (in their n-
dimensional representation) minus the corresponding trace projections.
One can then prove that the resulting algebra is in fact sl(n), where n− 1
is the maximum number of spin-2 generators we allow ourselves to take
products of. As an example we give the commutation relations of sl(3) in
this way:

[Ta, Tb] = εabcT
c,

[Ta, Tbc] = εma(bTc)m,

[Tab, Tcd] = σ(ηa(cεd)bm + ηb(cεd)am)Tm,
(1.77)

where the Ta’s are defined to be the sl(2|R) generators in their three-
dimensional representation and the Tab’s are defined as

Tab ≡ T(aTb) − 1
3ηabTcTd η

cd = Tba, (1.78)

a definition implying not only that ηabTab = 0 identically but also that the
Tab’s themselves are traceless matrices (as can be checked), so that we are
indeed reproducing some Lie algebra of traceless matrices, as is sl(3).

Note the presence of the σ parameter in the commutator of two spin-3
generators, which labels the real form which is chosen. In fact, its absolute
value can be changed by rescaling the generators, but its sign cannot;
σ < 0 corresponds to sl(3|R) while σ > 0 corresponds to su(1, 2), the other
non-compact real form of sl(3). As we have already pointed out, the last



CHAPTER 1. HIGHER SPINS IN DIMENSION 3 44

commutator hereabove does not affect the linearized limit, except for the
relative sign of the spin-2 and spin-3 kinetic terms, with σ < 0 yielding a
non-standard minus sign. Apart from those considerations (see below), any
real form is thus a priori acceptable. Also, as can be checked, the bilinear
form (1.76) is in this case non-degenerate, because sl(3) is simple.

The above scheme of things actually extends to the arbitrary-n case of
sl(n), of which any non-compact real form is suited (a priori) to describe
an interacting theory of higher spins up to spin n. The most used form,
however, is sl(n|R). The reason for this is partly that it is simple to handle,
and partly that for other real forms some of the kinetic terms for different
higher-spins would have opposite relative signs [102].
Remark : of course since no on-shell degrees of freedom are propagated
by our three-dimensional action one might wonder how relevant is the
requirement that different higher-spin kinetic terms have the same relative
sign (which is usually required to preserve unitarity). However, other
pathological features may be seen to show up when using those different
real forms, such as non-unitarity of the associated boundary theory [114].

What about other Lie algebras ? As is well known, any non-compact
simple algebra contains sl(2|R) as a subalgebra and, moreover, all semi-
simple Lie algebras admit non-compact real forms. However, one might
still wonder about the spectrum, that is, the requirement of containing,
besides sl(2|R), higher-spin generators forming irreducible representations
of the three-dimensional Lorentz group. Actually, this is also guaranteed !
The argument is the following: consider any Lie algebra containing sl(2|R)
as well as other generators, that we collectively denote TA. Assuming
that our algebra is of finite dimension, the generators TA form a direct
sum of finite-dimensional representations of sl(2|R). The reason for it is
the following: all of the TA’s, taken together, certainly form some (finite-
dimensional) representation of sl(2|R) (which can be seen by considering
the matrices corresponding to the sl(2|R)-generators in the adjoint repre-
sentation). Then, either this representation is irreducible, in which case
we are done, or it is not, in which case it will split in some direct sum of
irreducible representations (because of Weyl’s theorem stating that any
finite-dimensional representation of a semi-simple Lie algebra is completely
reducible [102]).

The outcome of this analysis is thus that any non-compact form of any
simple Lie algebra beyond sl(2|R) is suited to describe some higher-spin
theory via the Chern–Simons picture. Of course, and this is an important
precision, some of them might actually contain higher-spin generators for
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only some spins beyond spin 2, that is, the spectrum might not be that of
one irreducible representation of every spin up to some value. Furthermore,
the spectrum might even contain spins below spin-2, and moreover the
kinetic terms may in general enter the action with some relative signs (see
below).

As a final comment before moving on to the infinite-dimensional higher-
spin algebras we shall point out that, given some non-compact algebra,
in general one may declare different sets of (three) generators to be the
sl(2|R) subalgebra describing pure gravity. Making such a choice is called
choosing some ‘embedding’ of sl(2|R) into the higher-spin algebra. Among
all possible embeddings, there is a special one, called ‘principal embedding’,
which has the property that all the other generators split into irreducible
representations with multiplicity one.10 Differently put, it means that
the rest of the generators should organize as (1.75), once for each spin
present in the spectrum. In the case of sl(3), for example, there is only
one non-principal embedding, corresponding to the splitting of sl(3) as
8 = 3⊕2×2⊕1, whereas the principal embedding that we have presented
in (1.77) corresponds to the splitting 8 = 3⊕ 5 (the representations are
denoted in boldface by their dimensions). Let us note that non-principally
embedded sl(2|R)’s have also been studied and seem somewhat more
difficult to analyze. In particular, the properties of the corresponding
boundary theory seem to present some subtleties — see e.g. [114, 116]. In
the sequel, when we study infinite-dimensional higher-spin algebras, the
gravitational sl(2|R) subalgebra shall be principally embedded therein.

Note that all sl(n) Lie algebras admit a non-compact form such that
sl(2|R) can be principally embedded thereof. Actually, some embeddings
of sl(2|R) may not be compatible with some non-compact real forms of
whatever higher-spin algebra we use. For example, we point out that for
the case of sl(n) the principal embedding thereof is only compatible with
the maximally non-compact real form, sl(n|R), as well as with su(n2 ,

n
2 )

(or su(n−1
2 , n+1

2 ) if n is odd). Let us also mention that the maximally
non-compact real form is compatible with any embedding and, conversely,
the so-called ‘normal’ embedding is compatible with any real form. Last
of all we also point out that one switches non-compact real forms for the
principal embedding by multiplying all odd-spin generators by a factor of
i, and for more information on such algebraic aspects we refer to [102].

10 An equivalent definition [115] is that the number of irreducible representations
appearing in the spectrum is smaller than the rank of the algebra (which is n for sl(n)).



CHAPTER 1. HIGHER SPINS IN DIMENSION 3 46

Infinite-Dimensional Algebras

In the previous paragraphs we have been concerned with finding some
completion to the commutation relations of sl(2|R) together with (1.75).
However, explicitly or implicitly, so far we have confined ourselves to
exploring finite-dimensional Lie algebras. In the following we address the
question of infinite-dimensional higher-spin algebras, which are the type of
algebras underlying the theories we study in Chapter 2. For pedagogical
purposes we stick to bosonic algebras, and supersymmetric extensions
thereof, which are our actual interest, are introduced in Subsection 1.2.3.

The idea is that, along the lines of the construction of the sl(3) higher-
spin generators in terms of products of spin-2 ones (see above), we may
very well consider the same construction without limiting the degree
of the products thereof. In such a way one would generate an infinite
tower of higher-spin generators in representations of sl(2|R). Such a
construction of an infinite-dimensional (associative) algebra is actually
rather standard and bears the fancy name of universal enveloping algebra,
and it is denoted by U(sl(2|R)). Moreover, the universal enveloping algebra
is some abstract construction [117] in which we build the higher-spin
generators as products of the original ones for some abstract associative
product, without considering the latter to be in some representation.11

This is why, before obtaining our infinite-dimensional higher-spin algebra
out of such a construction, there is one last step we need to perform;
namely, quotienting by some value of the sl(2|R)-Casimir C2 ≡ TaTbη

ab.
The Lie algebra we are looking at is thus

B[λ] ≡ hs[λ]⊕ I ≡ U(sl(2|R))
〈C2 − 1

4 (λ2 − 1)I〉
, (1.79)

where hs[λ] is the standard infinite-dimensional higher-spin algebra in
three dimensions, first introduced in [118] and then firstly explored by
the authors of [119–124]. Note that in the above expression we have also
removed the identity, which is strictly speaking included in the universal
enveloping construction, but which forms an ideal we are not interested
in. Also note that, at this point, as defined by the above equation hs[λ]
is only an associative algebra, because so is U(sl(2|R)). However, in the
sequel we shall equip it with the natural bracket (the antisymmetrization
of the associative product) so to make it a Lie algebra, and we shall keep
the same notation hs[λ], which indeed usually denotes the Lie structure.

Quotienting as in the above relation is precisely the equivalent of
considering the original sl(2|R) generators to be in some representation,

11 The universal enveloping techniques can be applied to any Lie algebra [117].
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in which C2 thus has some value λ,12 and then taking products thereof.
The parameter λ is usually referred to as the deformation parameter, for
reasons that shall become clear in the following. Let us further note
that, in a theory of infinitely many scalar-coupled higher-spin fields in
dimension three, the deformation parameter is related to the mass of the
scalar [125, 126].

Differently put, we also need to match the desired spectrum, namely
that of the correct number of generators (2s+ 1) at each spin-level s, hence
the need for quotienting. Indeed, if one does not quotient, the algebra
actually contains an infinite number of spin-s generators for a given s.
That is because, if one does not identify C2 with some value, then the
trace of a spin-s generator will be something transforming as a spin-(s− 2)
generator but independent of those built by taking products of s − 3
spin-2 ones (and one can take further traces). By quotienting one precisely
relates those two kinds of objects, and a non-degenerate spectrum is thus
obtained. Yet another way to understand the need for quotienting is to
note that, otherwise, the Casimir would generate an ideal and the scalar
product thereon (to be defined below) would then be degenerate. Let us
also refer to [127] for a treatment of the universal enveloping construction
in AdSD.

As is guaranteed by the universal enveloping technique, sl(2|R) is a
subalgebra of hs[λ], just as in the case of sl(3) described above. Moreover,
the algebra hs[λ] contains higher-spin generators in irreducible representa-
tions of sl(2|R): thanks to the quotienting by some value of the Casimir,
there are 2(s− 1) + 1 spin-s generators for each s = 2, 3, . . . — the sl(2|R)
generators being understood as having spin 2, as before. In this way we
thus manage to build suitable higher-spin algebras (up to the existence
of appropriate bilinear forms thereon), and one might even think about
universally enveloping other Lie algebras containing sl(2|R), such as sl(3|R).
This would potentially yield higher-spin theories with different spectra.
However, this approach has been largely ignored in the literature, with
[128] among the exceptions (see also [127]). Higher-spin theories based on
hs[λ] are the most commonly studied among the infinite-dimensional ones.
Remark : it is of course wrong that any Lie structure comes from some
associative one, and therefore on top of the aforementioned generalizations
one could formally wonder about higher-spin Lie algebras whose Lie bracket
is not the commutator of some associative product. Although in dimension
four and greater it has been shown that such situations cannot arise [129], in

12 The λ parameter is also sometimes denoted by µ.
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dimension three, where at any rate one seems to have much more freedom,
no such result has been obtained.

Besides infinite-dimensional subalgebras, one may of course wonder
about the relation between hs[λ] and its finite-dimensional cousins. How-
ever, it is an important point that sl(n) is not a subalgebra thereof for
n ≥ 3. In fact, even for general λ, there is no finite-dimensional subalgebra
of hs[λ] apart from sl(2|R) [122]. However, let us point out that for integer
values λ = N , hs[λ] does decompose into the sum of sl(n|R) and an
infinite-dimensional ideal one can then quotient by [122]. As we shall be
working at λ = 1

2 we do not dwell on that point any longer, and shall
simply point out that such is the reason why hs[λ] can be sometimes
thought of as the ‘analytic continuation’ of sl(n|R). Note that there are
infinite-dimensional subalgebras, such as the well-known one consisting of
only the even-spin generators (odd powers of the spin-2 ones), that one
can restrict oneself to in a consistent fashion.

Let us now turn to describing a way of realizing hs[λ]. Indeed, our higher-
spin algebra hs[λ] is compactly defined by the above universal enveloping
expression, but the latter does not grant one with any convenient way
of handling it. Of course, one can always work out the commutation
relations among higher-spin generators from the above definition (along
the lines of the sl(3|R) case), but such an approach is far from handy. A
far more convenient mean of treating our algebra is the so-called oscillator
realization, which can be thought of as a refinement of the universal
enveloping procedure (in the sense that it automatically imposes non-
trivial conditions on the spectrum), and we now introduce it. The starting
point is to notice that the spin-2 sector, sl(2|R), can be realized in the
following way. Consider a pair of commuting ‘oscillators’ qα, with α = 1, 2,
satisfying the following relation:

[qα, qβ ]? ≡ 2iεαβ , (1.80)

where εαβ = −εβα is the two-dimensional ε-symbol with conventions
ε12 ≡ 1 = ε12, with which we raise and lower the spinor indices of the qα’s.
The ?-symbol denotes the associative product which the above Lie bracket
corresponds to, and one can also formulate the above definition in terms
of that product:

qα ? qβ ≡ qαqβ + iεαβ , (1.81)
which is called the ?-product [130, 131]. One then defines the quadratic
combinations to be

Tαβ ≡ − i
4q(α ? qβ) = − i

4qαqβ , (1.82)
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where only three of them are independent, because T12 = T21. The key
observation is now that the Lie algebra of the quadratic generators Tαβ is
precisely sl(2|R). Indeed, with the above definitions one easily checks that

[Tαβ , Tµν ]? = − 1
8 (ενβTµα + εµβTνα + εναTµβ + εµαTνβ), (1.83)

which can be seen to reproduce the familiar sl(2|R) commutation relations
upon performing redefinitions (see Appendix B).

Evidently, such a realization does not make the handling of sl(2|R)
any simpler — quite the contrary — but it allows us to generalize it in
the following, natural way. Let us no longer restrict our attention to
quadratic combinations of our oscillators and allow instead for generators of
arbitrary degree (higher than two) in the q’s. Having in mind the universal
enveloping construction, we shall nonetheless restrict the degree of the
generators to be even (and the identity component is not included). In this
way one generates an infinite dimensional Lie algebra, and one can check
that it corresponds to hs[λ] for some value of λ. Indeed, the higher-spin
generators defined as symmetric products of the oscillators (of even degree)
do correspond to taking symmetrized products of our spin-2 generators, so
that the construction is really a reformulation of the universal enveloping
technique. Moreover one can verify that the above higher-spin generators
do form irreducible representations of the spin-2 sector. However, one
may wonder where is the deformation parameter, λ, in such an oscillator
construction. In fact, in the latter realization the quotient is automatically
taken ! The reason why this can happen is because we have specified more
than the product (or commutation) relations among the Tαβ ’s: we also
know about how the qα oscillators themselves commute to each other. To
be fully convinced we should compute the Casimir C2 in this formulation,
the comparison of which with the universal enveloping construction tells
us that the above oscillator realization corresponds to λ = 1

2 . Such a value
of the deformation parameter is called the undeformed case, for reasons
that shall me made clear hereafter. Thus, we can realize our higher-spin
algebra at λ = 1

2 as the algebra of linear combinations of our generators
Tα1...αs of even degree s in the qα’s under the Lie bracket derived from
(1.80).

Although we shall be primary interested in the so-called undeformed
(supersymmetric) case, at this point we owe it to the reader to answer the
following question: what about hs[λ] at λ 6= 1

2 ? The answer is positive:
there is a way to deform the oscillator relations (1.80) in such a way as to
generate, upon considering generators of arbitrary (even) degree, hs[λ] at
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generic λ [122]. The so-called deformed oscillator relations read

[qα, qβ ]? ≡ 2i(1 + (2λ− 1)K)εαβ , (1.84)

where K ≡ (−)Nq is the so-called Klein operator and Nq counts the number
of q oscillators to its right, so that K behaves as (−)Nqqα = −qα(−)Nq .
One can check that the quadratic sector still reproduces sl(2|R) and is
independent of λ, but the higher commutation relations will of course
depend on the deformation parameter. One might ask, however, whether
the hs[λ] algebras at different values of λ are really different algebras or
whether they are isomorphic, and it was shown that they differ [119, 120].
Evidently, at λ = 1

2 one recovers the undeformed commutation relations of
(1.80).

We have thus managed to realize a set of generators of the hs[λ] algebra
as powers of our deformed oscillators qα (we keep the same notation).
However, it might be felt that the above approach is not making the
handling of hs[λ] particularly simple. Indeed, the procedure to compute
the ?-product (or ?-commutator) of two higher-spin generators involves
successively making use of the formula (1.81) and identifying the produced
generators. The structure of the ?-product of two higher-spin generators is
clear but the details have to be worked out in quite a painful manner. As
it turns out, there is a simpler way to deal with the oscillators, but which
only works for the undeformed case: instead of taking our generators to
be defined as symmetric ?-products of the oscillators we define them as
simple products of the qα’s, and we further define the ?-product of any
two polynomials f and g in the qα’s to be

(f ? g)(q′′) ≡ exp
(
i εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′)

q=q′=q′′ , (1.85)

where f(q) ≡ f(q1, q2) and so on. In this way we have ‘solved’ for the
?-product, and one can check the above formula to imply the relations
(1.80). Moreover, we define the Lie bracket defining our Lie algebra of
q-polynomials to be

[f, g]? ≡
1
2i (f ? g − g ? f) , (1.86)

where the prefactor is a matter of conventions. It might seem as if the
definition of the ?-product is now more complicated (it involves the expo-
nential of differential operators), but it is really simpler, in the sense that
we now have an explicit expression for it. Moreover, the above product
law is in fact the so-called Moyal bracket, more familiar in the context
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of Quantum Mechanics. Again, one checks that the relations (1.80) and
(1.81) are reproduced, so that the algebra is indeed the same. We further
point out that in the following we shall often switch to the basis

X(p,q) ≡ X1 . . . 1︸ ︷︷ ︸
p

2 . . . 2︸ ︷︷ ︸
q

≡ 1
p!q! (q1)p(q2)q, p+q

2 ∈ N0. (1.87)

Our algebra is thus simply the space of polynomials of even degree (but
zero) in the oscillators qα, equipped with the above Lie bracket. A downside
of the latter standpoint is that it cannot be generalized to arbitrary λ,
namely, an explicit expression such as (1.85) cannot be obtained in the
deformed case.13 To the best of our knowledge, this curious fact still lacks
a deeper justification, if there is any. Anyhow, as we shall be primarily
interested in the undeformed case we are much content with the above
formulation.

We are almost ready to move to the next and last subsection of this
chapter, where we address the supersymmetrization of this setup, but
first let us discuss the reality conditions and bilinear forms on the above
realization. First we discuss the reality conditions: so far the aforedefined
algebras are complex, namely, the coefficients of the polynomials in the
qα variables are arbitrary in C. Actually, since one starts with sl(2|R)
and then constructs its universal enveloping algebra, our hs(1, 1) already
‘comes in some real form’, and it is actually the maximally non-compact
one — the analogue of sl(n|R). As it turns out, starting from there one
may multiply all odd-spin generators (even powers of the spin-2 ones)
by a factor of i and obtain another real form, this time the analogue of
su(n2 ,

n
2 ). Note, however, that it is the maximally non-compact real form

which is usually referred to when speaking of hs(1, 1), as it is the (only)
one compatible with the universal enveloping technique if one assumes
real coefficients.14 Furthermore, one can actually prove that there are no
other real forms thereof [122]. Let us also make clear that sl(2|R) is, by
construction, ‘principally embedded’ in hs(1, 1).15 The analogy with the
finite-dimensional case is therefore complete (see above). Also note that
in the oscillator realization presented above the maximally non-compact

13 There is a way to achieve this but one needs use a different set of oscillators [128].
14 Indeed, taking products of sl(2,R) generators and considering linear combinations

with real coefficients thereof does not leave any freedom and in such a way one always
produces the maximally non-compact one.

15 Although, as should be noted, there is no clear notion of principal embedding for
infinite-dimensional algebras.
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real form is obtained by restricting to linear combinations of the X(p,q)
generators of (1.87) with real coefficients. The reason why this clashes
with (1.82), where the sl(2|R) generators have been defined with an ‘i’ in
front, is because of our normalization convention (1.86), which includes i.

Last but not least we display the bilinear, symmetric, invariant and
non-degenerate bilinear form one can define on hs(1, 1), namely

STr(f) ≡ 2f(0), (1.88)

where the factor 2 is again a matter of convention. As can be checked, this
definition coincides with the bilinear form of sl(2|R) in the spin-2 subsector.
More details about hs(1, 1) can be found in Appendix B.

1.2.3 Higher-Spin Supergravity
As aforementioned, in the following we are interested in infinite-dimensional
supersymmetric models, and we thus look for supersymmetric extensions
of hs(1, 1). For the sake of generality we might want to wonder about
supersymmetric versions of hs[λ] but, however, as it turns out the deformed
algebra hs[λ] at λ 6= 1

2 cannot be supersymmetrized in any obvious way be-
yond N = 2. Differently put, one may supersymmetrize the non-deformed
version, hs(1, 1), thereby obtaining some infinite dimensional higher-spin
superalgebra, but the latter does not admit a simple deformation anymore,
except when the number of supersymmetries N is one or two. Indeed, one
may realize osp(N, 2|R) in terms of oscillators, along the lines of the above
realization of sl(2|R): on top of the qα oscillators, which are Grassmann
even, we add the Grassmann-odd oscillators ψi with i = 1, . . . , N . The
superalgebra osp(N, 2|R) is then obtained by considering the polynomi-
als of total degree 2 in all the oscillators (and imposing suitable reality
conditions on the coefficients) and redefining the ?-product as

(f ? g)(z′′) ≡ exp
(
i εαβ

∂

∂qα

∂

∂q′β
+ δij

~∂

∂ψi

~∂

∂ψ′j

)
f(z)g(z′)

z=z′=z′′ . (1.89)

In Appendix B we show that such a construction indeed reproduces the
familiar osp(N, 2|R) commutation relations, and if one considers polyno-
mials of all (even) degrees but zero with some reality conditions it yields
the supersymmetric shs(N, 2|R) higher-spin algebra — the N -extended
supersymmetric version of hs(1, 1). The obstruction regarding deformation
now stems from the fact that, if one deforms the oscillators along the lines
of (1.84), the osp(N, 2|R) commutation relations are no longer reproduced
for N ≥ 3, unlike what happens for sl(2|R) (for N = 1, 2 the internal
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algebra of osp(N, 2|R) is abelian and the deformed oscillator realization
still holds good).

One might think about forgetting the oscillator realization and simply
considering the universal enveloping algebra of osp(N, 2|R) further quo-
tiented by some ideals of the latter. Indeed, there is no a priori obstruction
to doing this, even for N ≥ 3 and at arbitrary value of λ. However, as N in-
creases the superalgebra osp(N, 2|R) possesses more than one Casimir, and
other complications also arise [127]. In fact, a definition akin to (1.79) in the
case of osp(N, 2|R) would yield shs(N, 2|R) (defined in terms of its oscillator
realization) for N = 1 only, with C2 replaced by the osp(1, 2|R) quadratic
Casimir [6]. Moreover, the latter statement holds for any value of the
deformation parameter, so that even the undeformed versions shs(N, 2|R),
which exist at least in terms of the above oscillator realization, are difficult
to reproduce from the universal enveloping standpoint.
Remark : there is an intuitive way of understanding the difficulty in
bringing together the deformation and the supersymmetrization, which is
the following. Let us consider Prokushkin–Vasiliev Theory, which couples
the infinite tower of higher-spin gauge fields associated with hs[λ] to a
scalar field whose squared mass is m2 = − 1

4 (λ2 − 1
4 ). In the deformed

case λ 6= 1
2 the scalar field is massive, and in a supersymmetric theory

with more than two supersymmetries this would imply the presence of
massive fields of spin 3

2 or higher, much in contrast with the gauge theory
Prokushkin–Vasiliev is supposed to be [125, 126].

As we shall be interested in the generic case of extended supersymmetric
models with N ≥ 1, we shall simplify our task by dropping the deformation
parameter, and consider the shs(N, 2|R) superalgebras generated by the
above oscillators. In full analogy with hs(1, 1), they are realized as the
space of polynomials of total even degree (but zero) in the oscillators qα
and ψi, equipped with the above ?-product, and with appropriate reality
conditions imposed on the coefficients. More details about shs(N, 2|R) are
given in Appendix B, and we shall only point out here that the bilinear
form is defined in exactly the same way as for hs(1, 1) (see previous
subsection).

In fact, in Chapter 2, when we compute asymptotic symmetries of these
models, the case we shall explicitly treat is the non-extended supersymmet-
ric case, that is, shs(1, 2|R) ≡ shs(1, 1) (the corresponding results are only
sketched for the extended version and the details of the corresponding com-
putations are relegated to Appendix C). As it turns out, the non-extended
supersymmetric algebra shs(1, 1) admits an alternative realization, which
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forgoes the Grassmann-odd oscillators and deals with the bosonic ones
only, the qα’s. It will be the final word of this chapter to present such an
alternative formulation, which is the one we make use of in Chapter 2.

The alternative, simpler realization of shs(1, 1) is achieved by consider-
ing the same construction as for hs(1, 1) but relaxing the condition that
the degree of the polynomials should be even. We now allow for all degrees
to appear in the spectrum, and work with the basis

X(p,q) ≡ X1 . . . 1︸ ︷︷ ︸
p

2 . . . 2︸ ︷︷ ︸
q

≡ 1
p!q! (q1)p(q2)q, p+ q ∈ N0, (1.90)

where q1, q2 are the two commuting spinor variables used above. Let us
stress again that, as the above definition states, we do not consider the
(unique) generator with no indices (zero degree polynomials). The product
is the one displayed in (1.85), and the commutator of (1.86) now becomes
a graded bracket:

[f, g}? ≡
1
2i (f ? g − (−)πfπgg ? f) , (1.91)

where πf is the parity of f (assumed to have definite degree in the oscil-
lators), defined to be 0 when f is of even degree and 1 otherwise. The
reality conditions on the even-degree polynomials are the same as in the
hs(1, 1) case, which is again expressed as taking linear combination of
the above basis with real coefficients. Let us note that, in the sequel, we
shall often take our coefficients to satisfy Grassmann-parity conditions
(in the ‘physical’ Grassmann algebra) according to their parity, and we
shall thus use the standard Lie bracket 1.86, which of course boils down to
the above superbracket when the Grassmann coefficients are pulled out.
More information about these algebras and, in particular, about reality
and parity conditions is given in Appendix B.3.

The generators (basis elements) with n = p+ q indices above are said
to carry spin n/2 + 1 (conformal spin n/2). The generators with two
and one indices are thus carrying spin 2 and 3/2 (conformal spin 1 and
1/2), which is indeed consistent with the fact that upon truncation to
p+ q ≤ 2, shs(1, 2|R) is seen to reduce to osp(1, 2|R) (see below), which we
know is (half of) the superalgebra describing type-(1, 1) three-dimensional
Supergravity, which in turn is known to contain the graviton and the
gravitino: fields of spin 2 and 3/2 respectively (conformal spin 1 and 1/2).



CHAPTER 2
Asymptotic Symmetries

In the previous chapter we have introduced Higher-Spin Theory in dimen-
sion 3 or, rather, higher-spin theories in dimension 3. As these theories are
all topological, a natural way of studying those living on AdS spacetimes
is via the holographic principle, and a first step one should take therefore
is the computation of the asymptotic symmetries of these models, which
is what this chapter is devoted to. Let us argue that, because the full
holographic correspondence between higher-spin theories in AdS3 and
two-dimensional conformal models is not only quite involved but also
currently an ongoing topic of investigation [6], in the present manuscript
we have chosen to focus on the asymptotic symmetries and shall touch
upon the full holographic setup towards the end of the chapter.

We thus start by reviewing the asymptotic symmetry algebra of pure
Gravity in AdS3 and how one can obtain it in the Chern–Simons gauge
picture, arriving at the famous Virasoro algebra with Brown–Henneaux
central charge at the end of Section 2.1. With such a reminder of the spin-2
case in mind, in Section 2.2 we then move on to studying the asymptotic
symmetry superalgebra of our favorite higher-spin model: that which is
based on shs(1, 1), thus unveiling the supersymmetric W∞-algebra which
is found to govern the asymptotic dynamics of our theory. The latter
case is treated quite explicitly and also encompasses in some sense the
undeformed bosonic case. The extended corresponding asymptotic results
are commented on at the end of the chapter, and a discussion of our
results as well as comments on their relation to other topics are found in
Chapter 3.
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2.1 Asymptotics for the Spin-2 Connection

Our manifold M3 on which we integrate is assumed to have topology
R×D2, where R is parametrized by the time coordinate t ≡ x0 ≡ xt and
D2 is our two-dimensional spatial manifold parametrized by θ ≡ x1 ≡ xθ
and r ≡ x2 ≡ xr, which we assume to have at least one boundary we focus
the following asymptotic analysis on and which we call ‘asymptotic infinity’
or more loosely ‘infinity’. This boundary will be assumed to correspond to
r →∞.

We now describe the asymptotic form (boundary conditions) of our
sl(2|R)-connection Aµ. We first start by recalling the Brown–Henneaux
boundary conditions [67] in the metric formalism, and after commenting
on how they were originally obtained we derive their translation in terms of
the Chern–Simons gauge potential. We then proceed with the computation
of the asymptotic symmetries in that picture and obtain the centrally-
extended Virasoro algebra, on which we comment at the end of the section.

2.1.1 Boundary Conditions
The first step in the computation of asymptotic symmetries for any theory
is the determination of the asymptotic behavior which we decide to impose
on our fields. This is, in fact, far from being evident in general and we
thus find it useful to recall below how the asymptotic conditions were first
obtained in the metric formalism for Gravity, and shall then translate them
to our Chern–Simons description, with which we work for the rest of this
part.

Metric Formalism

As aforementioned, natural and consistent boundary conditions for three-
dimensional pure gravity with negative cosmological constant were first
given by J. D. Brown and M. Henneaux in [67] in the metric formalism,
for which they read

gtt = − r
2

`2 +O(1),

grr = `2

r2 +O(1/r4),
gφφ = r2 +O(1),
gtr = O(1/r3),
gtφ = O(1),
grφ = O(1/r3),

(2.1)
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where the O functions are allowed to depend on t and θ, and for the
pure-AdS3 case they take a specific form, which one can infer from
Appendix A.1 where the AdS metric is given in the same coordinates.
Note that the O(1/r3) terms in the above asymptotics can be ‘gauged
away’ so to yield simpler boundary conditions,1 which are the ones we
will use in the sequel. Now, specifying boundary conditions is always a
delicate procedure, since these are not uniquely dictated by the theory one
considers.2 Therefore, we find it instructive to briefly recall here how the
above boundary conditions were obtained.

The first thing to realize is that there is no obvious definition of a
spacetime being ‘asymptotically anti-de Sitter’, nor is it obvious what we
should expect or require from such a geometry [132]. A legitimate thing to
wish for is that the asymptotic symmetry algebra contains the symmetry
algebra of AdS, that is, so(2, 2) ' sl(2)⊕ sl(2), which amounts to say that
acting with so(2, 2) on an ‘asymptotically anti-de Sitter’ spacetime should
yield an ‘asymptotically anti-de Sitter’ spacetime (whatever the definition).
Another legitimate requirement would be that global AdS be ‘asymptot-
ically anti-de Sitter’, and a natural procedure for generating boundary
conditions that could serve as a definition for being ‘asymptotically anti-de
Sitter’ would then be to act on the asymptotic form of the global AdS
metric with a general element of so(2, 2), which is precisely how the above
boundary conditions were obtained.

Naively, one might expect them to yield so(2, 2) as the asymptotic
symmetry algebra or, at least, that some refinement of this procedure
would indeed produce it. However, as we will see, the algebra which arises
then is not so(2, 2) but the conformal algebra in two dimensions (more
precisely a central extension thereof), which admits so(2, 2) as a subalgebra,
and it is also seen to be both difficult and unnatural to restrict the above
boundary conditions so to shrink the asymptotic conformal algebra down
to so(2, 2). The general conclusion is then that we should not try to define
‘asymptotically something’ spaces by the asymptotic symmetry algebra we
expect it to have. Rather, we should try to generate boundary conditions
in a way which implements some basic natural requirements and then
compute the corresponding asymptotic algebra, allowing for surprising
enlargements of the bulk symmetry algebra at asymptotic infinity. Let

1 The ‘gauge transformations’ we are referring to here are the ones generated by
the part of the Killing vectors with which there are no associated charges and whose
generators in the canonical formalism vanish weakly, that is, the so-called ‘proper’ gauge
transformations among the Killing symmetries [67].

2 As M. Henneaux once put it, boundary conditions is actually something of an art.
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us also point out that a third basic requirement for the definition of
‘asymptotically anti-de Sitter’ geometries is that the fall-off conditions
make the associated surface charges finite which, in fact, is the case for
the above asymptotics. Finally, we also note that in dimension four such
an enlargement of the bulk isometries at infinity does not occur [132].

Natural and consistent boundary conditions having been determined,
we should now turn to computing the corresponding asymptotic symmetry
algebra, i.e. the Poisson-bracket Lie algebra formed by the canonical
generators corresponding to (infinitesimal) vector fields which preserve
the form of the above boundary conditions under Lie transport. This
is precisely what was carried out in [67]. The whole process, however,
in addition to being rather long and complicated, is full with subtleties.
Although the reading of the original paper is highly recommended to all
interested readers, especially because of those subtleties it conveniently
highlights, as announced we shall instead switch to the Chern–Simons
formalism in which the derivation goes much more easily.

Chern–Simons Translation

In the gauge picture we work with the sl(2|R)-connection Aµ of Section
1.1.2, so that the first thing we ought to do is translate the asymptotic
form (2.1) into boundary conditions for A (and Ã). Upon translating the
above boundary conditions to the Chern–Simons formalism one finds, to
leading order,3

A+ = O
( 1
r

)
σ+ + rσ−, A− = 0, Ar =

(
O
( 1
r3

)
+ 1

r

)
σ3, (2.2a)

Ã− = O
( 1
r

)
σ− + rσ+, Ã+ = 0, Ãr =

(
O
( 1
r3

)
− 1

r

)
σ3, (2.2b)

where we have changed coordinates for the spacetime, setting x± ≡ t ±
lθ, and we refer to Appendix B for details about the basis of sl(2|R).
Note that, because of Local Lorentz Invariance (see Subsection 1.1.1),
the translation from the metric-like form to the above Chern–Simons
expression is not unique and requires some guess work. One can easily
check, however, that the above formulas reproduce the original Brown–
Henneaux asymptotics (up to some terms which we can gauge away), which
one does unambiguously.

3 Note that the above fall-off conditions correspond the asymptotics (2.1) with the
O(1/r3) terms gauged away. We also note that the translation is not unique, because
of the freedom to perform local Lorentz transformations (see Subsection 1.1.1).
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Now, performing a gauge transformation conveniently allows us to
eliminate the r dependence from the above asymptotics (to leading order).
From now on we mostly work with the first chiral copy only. The gauge
generator is

Ω ≡ exp
(
σ3 ln(r)

)
, (2.3)

and acts via the global version of (1.42), that is,

Ai → A′i = Ω∂iΩ−1 + ΩAiΩ−1. (2.4)

In order to perform that computation it is convenient to use the matrix
representation of our generators for sl(2|R), given in Appendix B, in which
we have

Ω =
(
r

1
2 0

0 r−
1
2

)
, (2.5)

and thus

A′+ = O(1)σ+ + σ−, A′− = 0, A′r = O( 1
r3 )σ3. (2.6)

Therefore, the only asymptotically non-vanishing part of A is given, in this
gauge, by

A′+|leading order ≡ (Lσ+ + σ−) ≡ B, (2.7)

where L is the function forming the leading part of the O(1) term in A′+,
and which depends on x± only. Note that similar steps for the other chiral
copy lead to the following non-vanishing piece

Ã′−|leading order ≡ (L̃σ− + σ+) ≡ B̃. (2.8)

2.1.2 Asymptotic Symmetry Algebra
Now that we have determined fall-off conditions for our Chern–Simons
connection we proceed with the computation of asymptotic symmetries:
first we determine the general form of the residual gauge parameter which
preserves the asymptotics and then we extract the Poisson-bracket algebra
therefrom. Again, we shall be mostly concerned with the first chiral copy,
and the computation for the other one is really analogous. Let us also point
out Reference [133], where the asymptotic symmetries of pure Gravity in
the Chern–Simons formalism were first obtained.



CHAPTER 2. ASYMPTOTIC SYMMETRIES 60

Residual Gauge Transformations at Asymptotic Infinity

We now want to act with a general element4 Λ ∈ sl(2|R) on the above
asymptotics for the connection Aµ, require the transformed asymptotics to
have the same form as the original ones and from that derive the conditions
such a requirement yields on Λ (if any). By ‘the same form’ as the original
asymptotics we mean the transformed B reads exactly as (2.7) except for
the form of the functions multiplying the σ+ generators, which is allowed
to change (but we do not allow introducing r dependence). Obviously,
we also mean A′− and A′r remain zero (to leading order). Because the
aforegiven asymptotics for Aµ have a very particular form, we expect this
requirement of asymptotic gauge invariance of the boundary conditions to
yield severe restrictions on the form of Λ.

The infinitesimal gauge transformation with parameter Λ acts on B by
the adjoint action, i.e.

B → B + δB (2.9)

with
δB = ∂+Λ + [B,Λ], (2.10)

where ∂+ ≡ ∂/∂x+, and the same relation holds for A′− and A′r. From the
requirement that δA′− and δA′r be zero, taking into account that these are
initially zero, the above relation states that Λ cannot depend on either
x− or r. Note that this already implies that no r dependence will be
introduced in B by such a Λ parameter, as required. With such a Λ free
of all r (and x−) dependence, our requirement of boundary conditions
invariance amounts to ask for the coefficients of the σ− and σ3 generators
in δB above to be zero. Note that we don’t allow the appearance of the
σ3 generator, even though it is present in (2.7), because its coefficient in
the later expression is just a fixed number and not a function.

Our goal is now to compute the expression (2.10) and derive the form
that Λ must have so that no σ− and σ3 generators appear in it. As always,
such requirements of asymptotic invariance of the boundary conditions will
determine some of the components of Λ in terms of the other, left-arbitrary
ones. Let us denote the components in the following way:

Λ ≡ Λ+σ+ + Λ−σ− + Λ3σ3. (2.11)

First we note that

δB = (∂+Λ+−LΛ3)σ++(∂+Λ−+Λ3)σ−+(∂+Λ3+2LΛ−−2Λ+)σ3, (2.12)
4 Note that this Λ has nothing to do whatsoever with the cosmological constant.
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from which we deduce

Λ+ = − 1
2∂

2
+Λ− + LΛ−, (2.13)

Λ3 = −∂+Λ−. (2.14)

Therefore, the conditions on Λ ∈ sl(2|R) translating the requirement
that the form of the given boundary conditions (2.7) be preserved by in-
finitesimal gauge transformations with parameter Λ (asymptotic invariance
under residual gauge transformations) can be understood as leaving Λ−
arbitrary, the other components being functions of the later (and of B).
The asymptotic symmetries, i.e. the searched-for residual gauge trans-
formations preserving the aforegiven boundary conditions are therefore
spanned by Λ elements of the form

Λ ≡
(
− 1

2∂
2
+Λ− + LΛ−

)
σ+ + Λ−σ− − ∂+Λ−σ3. (2.15)

Generators of Asymptotic Symmetries

We now want to compute the commutation relations for the algebra of
asymptotic symmetries, which are spanned by Λ’s of the above form. The
commutation relations we are talking about are the Poisson brackets among
the generators of these asymptotic symmetries, and we thus need to identify
these generators first. Actually, because there is only one left-arbitrary Λ
component, there will be only one generator of the asymptotic symmetry
algebra.

In the above paragraph, our use of the word ‘generator’ is not the same
as previously in this text. Let us be more specific: as usual, when we
speak of the asymptotic symmetry algebra, what we are interested in is
the algebra of transformations (‘symmetries’) on phase-space functions
corresponding to the subset of the ‘gauged’ sl(2|R) which5 is associated
with the residual gauge symmetries at asymptotic infinity (r →∞). We
thus want to study gauge transformations of phase-space functions at
asymptotic infinity, which form an algebra we call asymptotic symmetry
algebra and the basis elements of which we now also call ‘generators’, but
those are of course functions and not elements of sl(2|R), so that we dare
say confusion is unlikely.

5 We say ‘gauged’ because an element of sl(2|R) is a linear combination of its
generators with constant coefficients. Allowing the coefficients to be spacetime functions
turns it into a gauge symmetry, but we shall still call the latter sl(2|R), writing e.g.
Λ ∈ sl(2|R), but from the context it should be evident that the Λi are functions.
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The usual way to identify the generators of any symmetry algebra of
transformations of phase-space functions corresponding to a given gauge
symmetry of the action, like sl(2|R), is the following: a gauge transfor-
mation with parameter Λ ∈ sl(2|R) acts on any phase-space function O
through

O → O + δO (2.16)

with
δO = {O, G[Λ]}pb, (2.17)

where {· , ·}pb is the usual equal-time Poisson bracket providing phase-space
functions with a Lie-type algebraic structure. According to the general
principle of gauge theory, the functional G[Λ] is (in our case) given by

G[Λ] ≡
∫

d2x
(
Λ+G+ + Λ−G− + Λ3G3

)
+ S∞, (2.18)

where G±,3 are the Chern–Simons–Gauss constraints of (1.51) (given in
a different basis here) and S∞ is a boundary term at asymptotic infinity
defined by the requirement that G[Λ] must have well-defined functional
derivatives with respect to the fields [134], i.e. δAG[Λ] contains only
undifferentiated field variations under the given boundary conditions for
Aµ. To identify the generator, one must now compute the above expression,
use if necessary that some Λ components depend on the arbitrary one and
then identify in G[Λ] the function coefficient multiplying the arbitrary Λ
component, which is the searched-for generator.6

We thus want to find an explicit form for G[Λ]. By definition, the
bulk term in (2.18) involving the constraints vanishes on the constraint
surface of our theory (‘on-shell’), on which G[Λ] therefore reduces to the
boundary term S∞, which we can compute by explicitly implementing
the requirement that no differentiated field variations appear in δG[Λ]
and integrating by parts. From now on we will place ourselves on this
constraint surface, so that we find

G[Λ] = S∞ = k

2π

∫
dθ χL, (2.19)

where we have renamed Λ− ≡ χ, as that component plays a special
role. We thus see that the generator of our asymptotic symmetry algebra
(the coefficient of χ in G[Λ]) is actually the non-trivial component of our

6 The generators are really the Fourier modes contained in those function coefficients,
but we will use the word generator also for the function coefficients themselves.
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asymptotic connection (boundary conditions) up to a factor of k/2π, and
we recall that k = l/4G.

To be precise, the Poisson brackets are only defined for the ‘full’ genera-
tors (2.18), containing both the bulk and the boundary term. As explained
hereabove, in the sequel we shall drop the bulk term. However, we shall
still call our brackets Poisson brackets, which is formally wrong. The
complete explanation of what we do is the following: the Poisson bracket of
two well-defined generators is another, well-defined generator [103], which
again has a bulk term and a boundary one. However, as we know the
boundary part is really what is responsible for the asymptotic symmetries:
a (well-defined) generator lacking such a boundary term would only trans-
form phase-space functions in the interior of our spacetime. The important
point is then that, as one can check, the surface term corresponding to the
Poisson bracket of two generators only depends on the respective surface
terms of the two generators that we have taken the bracket of.
Remark : one might also wonder about gauge fixings. If one fixes the
gauge, the system of constraints (which now includes the gauge conditions)
is no longer first class, and in particular the Chern–Simons constraints are
no longer first class. One may thus set them to zero strongly and rightfully
use only the boundary terms, but the Poisson bracket has now become
a Dirac bracket, because of the gauge fixing [103]. Nonetheless, one can
demonstrate that, because the system of original constraints is first class
the Dirac bracket coincides with the Poisson one at least when considered
on gauge-invariant observables (such as our generators).

This L (up to a factor) is thus the generator of the asymptotic symme-
tries of phase-space functions under the given boundary conditions. Note
that G[Λ] turned out to be already expressed in terms of the arbitrary
components of Λ only and we needed not use any relation of the type
(2.13). Those relations will have to be used, however, in the following
Poisson-brackets computations.

Poisson-Bracket Algebra

We now aim at computing the Poisson bracket of two L generators in order
to recognize the asymptotic symmetry algebra we are dealing with. The
‘trick’ we will employ to compute these Poisson brackets is the following:
the formula (2.17) holds of course for any phase-space function, and in
particular for our generator L. However, because this generator is precisely
the component (up to a factor) of the asymptotic form of our connection,
we already know from (2.10) how it transforms under an infinitesimal gauge
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symmetry with parameter Λ, and we are therefore naturally led to exploit
the equality

{L,G[Λ]}pb = ∂+Λ+ + [B,Λ]|σ+ , (2.20)

that is, using the relations (2.13),

k

2π

∫
dθ′χ(θ′){L(θ), L(θ′)}pb = −1

2∂
3χ+ ∂(Lχ) + L∂χ (2.21)

=
∫

dθ′δ(θ′ − θ)
(
− 1

2∂
3χ+ ∂(Lχ) + L∂χ

)
,

where we have made it explicit for the angular dependence at a fixed
time (recall the B components are functions of x± whereas the Λ ones are
functions of x+ only), the right hand side of the first line depending only
on θ, whereas in the parenthesis of the second line everything depends
on θ′. Note that we have also renamed ∂+ ≡ ∂. Let us point out that
this equality is completely natural. Indeed, all the above equation means
is that the boundary conditions are preserved under the action of the
Poisson bracket (2.17) when treated as phase-space functions (as opposed
to components of the connection), which is not only natural but of course
also needed for consistency.

Now, because χ is arbitrary, integrating by parts the terms in the last
member of the above equation allows us to read-off the Poisson brackets
among the L’s. This yields, upon rescaling L → k

2πL (but we rename it
L),

{L(θ), L(θ′)}pb = k

4π δ
′′′(θ − θ′)−

(
L(θ) + L(θ′)

)
δ′(θ − θ′), (2.22)

where our derivatives ‘· ′’ are with respect to the arguments (this has
nothing to do with θ′, which is just a second angular variable). As expected,
the above relations match the ones defining the conformal algebra or,
rather, a central extension thereof: the Virasoro algebra !

Let us recast the asymptotic result obtained so far into Fourier modes.
We will use so-called quantum-mechanical notations, setting

A(θ) ≡ 1
2π
∑
n∈Z

Aneinθ (2.23)

for any function of θ and using the correspondence {· , ·}pb = −i[· , ·], where
the later is defined as the usual commutator on Fourier modes An, i.e. it
is defined as the antisymmetrization of the product of modes. Let us recall
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that we shall be taking advantage of the mode expansion of the Dirac delta
function

δ(θ − θ′) = 1
2π
∑
n∈Z

ein(θ−θ′), (2.24)

so that its k-th derivative δkc(θ − θ′), appearing in the above Poisson
bracket is easily calculated in terms of modes.

A straightforward computation then shows that the Fourier mode
analogue of the Poisson bracket (2.22) is

[Ln,Lm] = 1
2kn

3δn+m,0 + (n−m)Ln+m, (2.25)

where δa,b is the usual Kronecker symbol (equal to zero except for a = b,
in which case it has value 1). The most used convention in the literature is
that the coefficient of n3δn+m,0 is equal to c

12 , where c is the central charge.
This, combined with k = `

4G (which is a consequence of our normalization
for the generators of the gauge algebra), leads to the well-known result

c = 3`
2G , (2.26)

the celebrated Brown–Henneaux central charge at asymptotic infinity
of pure Gravity with negative cosmological constant Λ = − 1

`2 [67]. Let
us further note that the sl(2|R) algebra is a subalgebra of the above
Virasoro algebra, corresponding to the generators {L0, L±1}, up to the
presence of the central charge. However, one can perform the following
field redefinition:

L0 → L0 − 1
4k, (2.27)

which turns the commutation relations into

[Ln,Lm] = 1
2kn(n2 − 1)δn+m,0 + (n−m)Ln+m, (2.28)

where we now explicitly see that the central charge vanishes for the
{L0, L±1} sector. In fact, the above redefinition of L0 has a deeper inter-
pretation: indeed, the generator L0 is a global charge, and the redefinition
(2.27) is equivalent to requiring the redefined generator to vanish on the
AdS3 solution, as can be seen by looking at (C.22) — let us recall that the
generators are always defined up to a constant. Thus, (half of) the isometry
algebra of the bulk vacuum solution, sl(2|R), is indeed a subalgebra of
the asymptotic symmetry algebra (provided we set the vacuum charges
to zero), as it should be. Finally, we point out that the computation goes
along the same lines for the second chiral copy, and one again finds a
corresponding Virasoro algebra with same central charge.
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2.1.3 Superconformal Virasoro Algebra
In Section 2.2 we shall be interested in computing the asymptotic symme-
tries of Higher-Spin Gravity models on AdS3 spacetimes. More specifically
we shall focus on supersymmetric theories which extend three-dimensional
Supergravity with gauge algebra osp(N, 2|R) (for one chiral sector). There-
fore, hereafter we quote the equivalent of the above pure-Gravity result for
the case of extended osp(N, 2|R) Supergravity [60] (see also [135]).

As explained in Subsection 1.2.3, we can formulate the Supergravity
we are interested in as a Chern–Simons action based on two copies of the
osp(N, 2|R) superalgebra, in full analogy with the Einstein–Hilbert case.
This means that, e.g. for N = 1 our connection one-form Γµ also has
components along the R± generators of (1.52), and in the extended case it
also has internal components along the Jij generators of Appendix B (then
the R± generators further carry an internal index, so that they become the
R±i given therein). Accordingly, we should define the asymptotic behavior
of these extra components — the fall-off conditions on the sl(2|R) subsector
are of course kept as in (2.2a). In [60] the methods previously applied to
pure Gravity were used again to generate boundary conditions for the full
osp(N, 2|R) connection, and for the first chiral copy of the generic-N case
they read

Γ′+|leading order =
(
L(x±)σ+ +Qi(x±)R+

i +Bij(x±)Jij + σ−
)
, (2.29)

where we have already performed the gauge redefinition leading to (2.7).
In the fermionic sector we thus impose a condition analogous to that for
Aµ, while in the internal sector we allow for any generator to appear
asymptotically. In fact, the generators R±i and Jij beyond sl(2|R) come
into irreducible representations of the sl(2|R) subalgebra: the R±i ’s form
N irreducible representations7 of spin 3

2 and the Jij ’s have spin 1 (see
Appendix B). With this point of view in mind one sees that the above
asymptotics correspond to allowing for one arbitrary function of x± for
every highest-weight generator (the R+

i ’s and σ+), except in the internal
sector where we allow for one arbitrary function for all generators, because
they have no spin. As we will see in Section 2.2, this is actually the logic we
shall follow in order to determine boundary conditions for the higher-spin
generators, which shall complement the above osp(N, 2|R) algebra so to
make it a higher-spin algebra extending standard Supergravity.

7 Recall that in our terminology the conformal spin of the generator is the spin of
the sl(2|R) representation it is in, and the spin of a generator is lifted by one unit with
respect to the conformal spin.
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The computation now proceeds as in the Gravity case, each arbitrary
function in (2.29) giving rise to an asymptotic current, denoted with the
same letter (up to a factor). Let us only quote the asymptotic symmetry
result [60], which in the non-extended case reads

{L(θ), L(θ′)}pb = k

4π δ
′′′(θ − θ′)−

(
L(θ) + L(θ′)

)
δ′(θ − θ′), (2.30a)

{L(θ), Q(θ′)}pb = −
(
Q(θ) + 1

2Q(θ′)
)
δ′(θ − θ′), (2.30b)

i{Q(θ), Q(θ′)}pb = −k
π
δ′′(θ − θ′) + 2L(θ)δ(θ − θ′). (2.30c)

Note that, in principle, there is a term proportional to δ(θ − θ′)Q(θ)Q(θ′)
appearing in the right-hand side of the first line above, but it is zero because
of the Grassmann parity of Q (see Appendix B.3). In the extended case
we also have commutators involving the currents Bij corresponding to the
function-coefficients of Jij in (B.22), and for the sake of conciseness we refer
to [60] for further details. Let us point out, however, an important feature
of the extended case, which is that of quadratic terms in the B’s appearing
in the right hand side of the above anticommutator of two (conformal)
spin- 1

2 currents. Indeed, in the extended case the last relation hereabove
becomes, schematically:

i{Q(θ), Q(θ′)}pb = −k
π
δ′′(θ − θ′) + 2L(θ)δ(θ − θ′) + ‘B ×B ’. (2.31)

These nonlinearities, which only appear in the extended case, spoil the
standard Lie structure and the resulting relations form what is called a
nonlinear deformation of a Lie algebra (in this case infinite dimensional).
As we shall see in Section 2.2, the appearance of nonlinearities in the
asymptotic commutation relations is also a feature common to higher-spin
models, albeit not only for the extended versions thereof.

The above relations are recognized as the defining relations of the
centrally-extended superconformal algebras in two dimensions, which are
also called the super-Virasoro algebras. In Fourier modes we then obtain

[Ln,Lm] = 1
2kn(n2 − 1)δn+m,0 + (n−m)Ln+m, (2.32a)

[Ln,Qm] =
( 1

2n−m
)
Qn+m, (2.32b)

{Qn,Qm} = 2k
(
n2 − 1

4
)
δn+m,0 + 2Ln+m, (2.32c)

and similarly for the extended case. One could also wonder about the
asymptotic symmetry algebra corresponding to the other extended su-
pergravities, listed in Appendix B. In fact, it was shown in [60] that the
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structure of the symmetries at asymptotic infinity is the same for all types
of supergravities, and only the detailed coefficients in the right hand sides
notice the change. In Chapter 3 we shall also comment on higher-spin
theories extending these other supergravities, but in the next section we
focus on the orthosymplectic version.

As is well known, the Virasoro algebra is a subalgebra of the above
superalgebra, which stems from the fact that sl(2|R) is a subalgebra of
osp(N, 2|R). Moreover, one again sees that osp(N, 2|R) is a subalgebra
of the above superconformal algebra: in the above example of the non-
extended case one easily sees that the relations close for the generators
{Q±1/2, L0,±1}, for which the central charges also vanish (in (2.32) the
redefinition (2.27) has already been performed). We also point out that the
central charge in the Virasoro sector still has the standard Brown–Henneaux
value (2.26), while in the fermionic sector we notice the appearance of
a new central charge, which is nonetheless proportionally related to the
Brown–Henneaux one (it is not parametrized independently). Finally, we
note that according to the standard terminology [4], the L generators
indeed have spin 2 and the Q ones have spin 3

2 , as the presence of the
term proportional to n (resp. n

2 ) indicates in the above adjoint action of L
on itself (resp. on Q), which one can also see at the level of the relations
(2.30).

2.2 Asymptotic Symmetries Beyond Spin 2 and W∞
In the previous section we have recalled the way in which one obtains the
asymptotic symmetry algebra of pure Gravity and Supergravity in AdS3,
and this will now serve us as a guideline for computing the asymptotic
symmetry algebra of three-dimensional higher-spin models. As indicated
earlier in Section 1.2, we shall be interested in those theories which are based
on the shs(N, 2|R) algebras, which contain osp(N, 2|R) as a subalgebra.
More precisely, in the sequel we explicitly go through the computation
of asymptotic symmetries in the shs(1, 2|R) ≡ shs(1, 1) case and only
comment on the extended results at the end of the section, relegating the
corresponding computations to Appendix C, where we sketch the extended
version of the procedure.

In Subsection 2.2.1 we first generalize the boundary conditions of the
Supergravity case (2.29) to include higher spins, and in Subsections 2.2.2
and 2.2.3 we then proceed along the lines of Subsection 2.1.2 in order
to obtain the corresponding asymptotic symmetry superalgebra, which
is found to be a nonlinear deformation of some supersymmetric so-called
W∞-algebra, which we comment on in Chapter 3.
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2.2.1 Higher-Spin Superconnection Fall-Off Conditions
As explained in Subsection 1.2.3, our Higher-Spin Theory is described by
(two copies of) a Chern–Simons term whose gauge connection one-form Γµ
takes values in the shs(1, 1) superalgebra, and the latter algebra is realized
as the space of polynomials of all degrees in the qα’s (with suitable reality
conditions) equipped with the Lie bracket (1.91), where the ?-product is
given in (1.85). Moreover, a useful basis for such a space is that which
is displayed in (1.90), and which we shall work with hereafter. With our
normalization conventions for the Lie superbracket (1.91), the superalgebra
shs(1, 1) is realized as the space of linear combinations of the basis elements
X(p,q) of (1.90) with real coefficients. Let us, then, define the components
of the shs(1, 2|R)-valued connection one-form Γµ as

Γ ≡
∑

p+q∈N0

Γ(p,q)X(p,q) ≡
∑

p+q∈N0

Γ(p,q)
µ X(p,q)dxµ, (2.33)

where µ = +,−, r is a three-dimensional spacetime index referring to the
coordinates introduced in Section 2.1: x± ≡ t ± `θ, xr ≡ r, and we will
work with AdS radius ` = 1, so that x± ≡ t± θ. Let us also recall we don’t
consider the p+ q = 0 sector, according to the sum in the above equation
(see Subsection 1.2.3).

We now want to extend the fall-off conditions given in (2.29) to all
the components of the above shs(1, 2|R) connection, and recall that the
osp(1, 2|R) sector is encoded in the generators with p+ q = 1, 2, which are
proportional to the R± and H,E, F generators of (1.52) (see Appendix
B). However, a priori it is not clear how to extend the low-spin asymptotic
behavior to the higher-spin sector. Inspired by the strategy used in [60]
to generalize the boundary conditions of [67] on the sl(2|R) sector to
the osp(1, 2|R) superalgebra,8 we might want to carry out an analogous
procedure here, namely acting on the osp(N, 2|R) asymptotics with a
general transformation of shs(1, 2|R) and postulating the resulting form
to be our boundary conditions for the full connection. However, we shall
adopt a more ‘heuristic’ attitude, described hereafter, which was also used
in the previous study of the bosonic case [1].
Remark : in fact, the ‘strategy used in [60]’ seemingly fails to generate
the boundary conditions which we work with in the sequel (see below).
Noticeably, such a procedure already fails in the case of pure Gravity in
its Chern–Simons form, or at least it does not work in the most naive way.

8 Note that this strategy was originally proposed in [132].
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As explained in Subsection 2.1.1, determining boundary conditions
may require some guess work and in the present case, much like in [1] we
postulate the following form: as only X(1,0) and X(2,0) appear in the low-
spin asymptotics of (2.29) (where we call them R+ and σ+), we postulate
rather intuitively that the X(n,0) generators are the only ones appearing
in the asymptotics for the full-fledged connection, that is,

Γ+
r→∞−→ ∆+ ≡ ∆ (at leading order) (2.34)

with

∆ = −X22 + ∆1(x±)X1 + ∆11(x±)X11 + ∆111(x±)X111 + · · ·

= −X22 +
∑
i∈N0

∆(i,0)(x±)X(i,0), (2.35)

also setting ∆− and ∆r (the asymptotic forms of Γ− and Γr) to zero.9
This condition has an algebraic justification, which is anticipated at the
end of Subsection 2.1.3: only the highest-weight X(n,0) generators appear
in the asymptotics ! Indeed, let us again recall that under the sl(2|R) sub-
algebra of shs(1, 1), the higher-spin generators of degree n form irreducible
representations of spin s = n

2 , and those are said to have spin s + 1 or
conformal spin s (see Appendix B). The equivalent of (2.35) for the second
chiral copy would evidently be

∆̃ = X11 + ∆̃2(x±)X2 + ∆̃22(x±)X22 + ∆̃222(x±)X222 + · · ·

= X11 +
∑
i∈N0

∆̃(0,i)(x±)X(0,i), (2.36)

with ∆̃ ≡ ∆̃− and ∆̃+ = ∆̃r = 0. As in the Gravity case, the latter
asymptotic behavior is not the same as the one of the first chiral copy but
it will, however, lead to the same asymptotic symmetry algebra, so that
we shall again restrict our attention to the first chiral sector in the rest of
this chapter.

2.2.2 Asymptotic Symmetries for Higher-Spin Currents
We now follow the steps presented in Subsection 2.1.2 for the case of Gravity,
namely: we want to act with a general element Λ ∈ shs(1, 1) on the above
asymptotics for the connection Γ, require the transformed asymptotics have

9 Note that, as in [1], the whole of Γ−(r →∞) is zero while only the leading part
∆r of Γr(r →∞) is zero.
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the same form as the original ones and therefrom derive the conditions such
requirement yields on Λ. The Poisson-bracket symmetry algebra is then
extracted along the lines of Subsection 2.1.2. As we will see, the difference
will lie in the determination of the conditions yielded on Λ. Again, by ‘the
same form’ as the original asymptotics we mean the transformed ∆ reads
exactly as (2.35) except for the form of the functions multiplying the X(n,0)
generators, which is allowed to change (but we do not allow introducing r
dependence). Obviously, we also mean ∆− and ∆r remain zero.

Residual Gauge Symmetries

The infinitesimal gauge transformation with parameter Λ acts on ∆ by the
adjoint action, i.e.

∆→ ∆ + δ∆ with δ∆ = ∂+Λ + [∆,Λ]?, (2.37)

where ∂+ ≡ ∂/∂x+ and the same relation holds for ∆− and ∆r. From the
requirement that δ∆− and δ∆r be zero, taking into account that these
are initially zero, the above relation states that Λ cannot depend on either
x− or r. Note that this already implies that no r dependence will be
introduced in ∆ by such a Λ parameter, as required. With such a Λ free
of all r (and x−) dependence, our requirement of boundary conditions
invariance amounts to ask for all the coefficients of the generators with
at least one index 2 in δ∆ above to be zero. Note that we don’t allow
the appearance of the X(0,2) generator, even though it is present in (2.35),
because its coefficient in it is just a fixed number and not a function. Also
note that, although we should write our Lie superbracket as [ ·, ·}? we shall
often abuse the notation and denote it as a standard Lie bracket, as in
the above equation. Furthermore, the ? symbol in subscript shall often be
dropped.

In order to further proceed let us first write Λ in an ‘ordered’ way we
will take advantage of in the following:

Λ ≡
∑

p+q∈N0

Λ(p,q)X(p,q) (2.38)

=
∑
i∈N0

Λ(0,i)X(0,i)+
∑
i≥1

Λ(1,i−1)X(1,i−1) +
∑
i≥2

Λ(2,i−2)X(2,i−2)

+
∑
i≥3

Λ(3,i−3)X(3,i−3) +
∑
i≥4

Λ(4,i−4)X(4,i−4) + · · · ,

where we stress again that the components Λ(p,q) are functions of x+ only
and that we do not include the spin-1 (zero indices) generator. This
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rewriting will allow us to use the fact that ∆ has a specific form, namely
only the X(n,0) generators appear therein.

As aforesaid, our goal is now to compute the expression (2.37) and
derive the form that Λ must have so that no generators with indices
equal to 2 appear therein. As in the low-spin case, such requirements of
asymptotic invariance of the boundary conditions will determine some
of the components of Λ in terms of the other left-arbitrary ones. Now,
if one is to determine all the commutation relations of the asymptotic
algebra, one needs the complete form that these ‘dependent’ components
take in terms of the arbitrary ones. However, in the following we shall
only compute the Poisson-bracket relations among some of the (yet-to-be
identified) generators of the asymptotic symmetries, hence we will only
need the form of some of the dependent components of Λ. Therefore, we
shall not carry out here the derivation of the form of all the dependent
components of Λ. Rather, we shall confine ourselves to showing which
ones are left arbitrary, for this we always need to know in order to identify
the phase-space generators (see Subsection 2.1.2), and will indicate the
procedure allowing to determine the other ones in terms of the latter.

Let us show what Λ components can be thought of as being left arbitrary
and at the same time sketch a procedure one can follow in order to compute
the form of all the dependent Λ components. First, let us give a name to
the components of (2.37):

δ∆ ≡
∑

p+q∈N0

c(p,q)X(p,q) ≡
∑

p+q ∈N0

∂Λ(p,q)X(p,q) +
∑

p+q∈N0

[∆,Λ](p,q)X(p,q),

(2.39)
where ∂ ≡ ∂+ and we sum on all possible generators for a priori all of them
could appear. The requirement that the form of the asymptotics (2.35) be
preserved by residual gauge transformations now evidently reads

c(p,q) = 0 ∀ p ∈ N, q ∈ N0. (2.40)

The strategy that will now allow us to determine which coefficients
Λ(p,q) can be left arbitrary is to impose the above equations step by step
in a certain order, namely

c(0,n) = 0 ∀ n ≥ 1,
c(1,n−1) = 0 ∀ n ≥ 2,
c(2,n−2) = 0 ∀ n ≥ 3,
c(3,n−3) = 0 ∀ n ≥ 4,

(2.41)
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etc.10 Note that, as it should be, by following the above strategy we
never set any c(n,0) coefficient equal to zero because of the lower bounds
on n, which at each step are adjusted so to ‘spare’ those highest-weight
generators, which obviously should not be set to zero because these are
allowed (note the shift by one unit with respect to the lower bounds on the
summing indices of (2.38), in which all components can a priori appear).
Let us now apply the above strategy step by step and see how the structure
of Λ emerges. We further point out that all we are doing is consistently
apply a generalized version of the procedure employed in [1] for the bosonic
case.
First Step: one can easily convince oneself that the supercommutator in

(2.37) only yields generators with all indices equal to 2 via [∆, X(0,i)},
so that using (B.37a) for r = n odd (m even) one finds

c(0,n) = ∂Λ(0,n) + nΛ(1,n−1) +
∑
i∈N

(−)i

(2i+ 1)!∆
(2i+1,0)Λ(0,n+2i+1)

≡ ∂Λ(0,n) + nΛ(1,n−1) + f0(∆(i,0),Λ(0,j)),
(2.42)

where the second term in the right hand side above comes from
[−X22,Λ]. From the expression above, we see that the condition
c(0,n) = 0 can be thought of as determining Λ(1,n−1) in terms of the
coefficients ∆(i+1,0), Λ(0,n+i) with i ∈ N. Note that with our writing
for f0 it looks like a priori it depends on all of the ∆(i,0) and Λ(0,j)

functions, while it clearly does not. However, this will not matter
much in the sequel and we thus keep this simple notation for f0,
as we will do for the other f i’s below. This is also why we have
not labeled f0 by an index depending on n. More loosely, we will
thus say that the Λ(1,m) coefficients are determined in terms of the
∆(i,0), Λ(0,j) ones, m ∈ N (and similarly below).
Note that, even though the f i’s contain an infinite number of terms
(see equations above), one can check that each f j contains only
a finite number of terms involving Λ(0,j) for a given j, so that in
principle all Poisson brackets are unambiguously computable.

Second Step: one can also convince oneself that the supercommutator
in (2.37) only yields generators with all indices equal to 2 except one

10 So that, in a sense, we start with the ‘worse’: we begin by setting to zero the
coefficients with all indices equal to 2, then the coefficients with all indices equal to 2
except one of them, then the coefficients with only indices ‘2’ except two of them, ...
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via [∆, X(0,i)} and [∆, X(1,j)}, so that one finds

c(1,n−1) = ∂Λ(1,n−1) + (n− 1)Λ(2,n−2) + f1(∆(i,0),Λ(0,j),Λ(1,k)),
(2.43)

with a similar structure to the one found in the previous step. Note
that we do not give the expression for f1 as it is somewhat more
involved than f0 and we do not need it now. We see that the
conditions of this step can be thought of as determining the Λ(2,m)

coefficients in terms of the ∆(i,0),Λ(0,j),Λ(1,k) ones, m ∈ N. However,
the Λ(1,k) coefficients where determined at the previous step in terms
of the ∆(i,0),Λ(0,j) coefficients so that this step, performed after the
first one, really determines the Λ(2,m) coefficients in terms of the
∆(i,0),Λ(0,j) ones only.

Third Step: now the supercommutator in (2.37) only yields generators
with all indices equal to 2 except two via [∆, X(0,i)}, [∆, X(1,j)} and
[∆, X(2,k)}, so that one finds

c(2,n−2) = ∂Λ(2,n−2)+(n−2)Λ(3,n−3)+f2(∆(i,0),Λ(0,j),Λ(1,k),Λ(1,l)),
(2.44)

which we can again see (by a reasoning similar to the one of the
previous step) as determining the Λ(3,m) coefficients in terms of the
∆(i,0),Λ(0,j) ones (m ∈ N). The procedure continues on and on but
we stop here, the important thing being the triangular pattern of the
procedure, which has been made clear.

Note that, as pointed out before, the above procedure yields no conditions
of the above kind on the c(n,0) coefficients, which is normal since these are
allowed to appear in (2.37), and those we therefore need not constrain.
Rather, they can be determined in terms of ∆(i,0), Λ(0,j) and they them-
selves determine the allowed-for variation of ∆ under the asymptotic gauge
transformations through

c(n,0) = δ∆(n,0) ≡ ∂Λ(n,0) + [∆,Λ](n,0) ∀ n ∈ N0, (2.45)

as it is obvious by considering

δ∆ =
∑
i∈N0

δ∆(i,0)X(i,0), (2.46)

which itself is trivially derived from (2.35).
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It is now clear from the pattern emerging from the above procedure
that the conditions on Λ ∈ shs(1, 2|R) translating the requirement that the
form of the given boundary conditions (2.35) be preserved by infinitesimal
gauge transformations with parameter Λ (asymptotic invariance under
residual gauge transformations) can be understood as leaving all the
Λ(0,n) components (functions) arbitrary, the other ones being functions
of the later and of the components of ∆. Also, it is in principle possible
to determine the form of these dependent components by following the
above procedure, which we postpone. The asymptotic symmetries, i.e.
the searched-for residual gauge transformations preserving the aforegiven
boundary conditions are therefore spanned by Λ elements of the form

Λ =
∑
i∈N0

Λ(0,i)X(0,i) +
∑

p∈N0,q∈N
Λ(p,q)(∆(k,0),Λ(0,j))X(p,q)

≡
∑
i∈N0

ΛiX(0,i) +
∑

p∈N0,q∈N
F (p,q)X(p,q),

(2.47)

where the F (p,q) ≡ Λ(p,q)’s depend on the Λj ≡ Λ(0,j) (and ∆i) functions,
which we have stressed by denoting them with the letter F . Note that we
have also simplified the notation for the Λ(0,j) components, as those now
play a special role (they are the arbitrary ones). Similarly, we will also
simplify the notation for the components of ∆: ∆i ≡ ∆(i,0), as they will
also be seen to play a special role hereafter.

We now want to compute the commutation relations for the super-
algebra of asymptotic symmetries, which are spanned by Λ’s of the
above form. The commutation relations we are talking about are the
(super-)Poisson brackets of the generators of these asymptotic symmetries
on phase-space functions, and we thus need to identify these generators
first.

Generators and Low-Spin Brackets

Following the strategy outlined in Section 2.1, we recall that a gauge
transformation with parameter Λ ∈ shs(1, 2|R) acts on any phase-space
function O through

O → O + δO with δO = {O, G[Λ]}pb, (2.48)

where {· , ·}pb is the Poisson bracket and the functional G[Λ] is given by

G[Λ] ≡
∫

d2x
∑

p+q ∈N0

Λ(p,q)G(p,q) + S∞ ≡
∫

dθdr
∑

p+q∈N0

Λ(p,q)G(p,q) + S∞,

(2.49)
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where G(p,q) are the Chern–Simons-Gauss constraints of the theory (they
are defined by (1.51), where the Latin indices therein are now the (p, q)
indices) and S∞ is a boundary term at asymptotic infinity, again defined
by the requirement that G[Λ] must have well-defined functional derivatives
with respect to Λ [134]. To identify the generators, one computes the above
expression, uses the dependency relations among the Λ components and
then identifies in G[Λ] the function coefficients multiplying the arbitrary
ones, which are the searched-for generators.

Going again to the on-shell surface (constraint surface) we find the
explicit form

G[Λ] = S∞ = − k

2π

∫
dθ
( ∑
n∈N0

i3n

n! Λn∆n
)
, (2.50)

where we have used (B.35), the X(n,0) generators being the only ones
appearing in ∆. In full analogy with the pure-Gravity case we thus see
that the generators of our asymptotic symmetry algebra are actually the
components of our asymptotic connection, up to a factor. In order not to
make the following discussion too cumbersome and to get closer to the
usual notation in the literature we set

Nn ≡ − k

2π
i3n

n! ∆n ≡ αn∆n, (2.51)

so that
G[Λ] =

∫
dθ

∑
n∈N0

ΛnNn. (2.52)

These Nn are the generators of the asymptotic symmetries of phase-space
functions under the given boundary conditions. Note that G[Λ] turned out
to be already expressed in terms of the arbitrary components of Λ only,
and we needed not use any relation eventually derived from the strategy
discussed in the previous subsection.

We now compute the Poisson brackets between the above Nn generators
in order to recognize the asymptotic symmetry superalgebra we are dealing
with. The technique we employ is the same as in Section 2.1, that is, we
use

δNn = αn
(
∂Λ(n,0) + [∆,Λ](n,0)) (2.53)

in order to derive

{Nn(θ),
∫

dθ′
(∑
i∈N0

Λi(θ′)N i(θ′)
)
}pb = αn

(
∂Λ(n,0) + [∆,Λ](n,0)), (2.54)
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and we recall that the ∆ components are functions of x± whereas the Λ
ones are functions of x+ only, and the right hand side depends only on
θ. Now, the procedure carried out above determines the coefficient c(n,0)

(which is the parenthesis in the right hand side of the above equality) in
terms of Λi and ∆j (equivalently N j), so that identifying the coefficients
of the Λi parameters on both sides of the equation (2.54) above makes it
possible to read off the Poisson brackets

{Nn(θ), Nm(θ′)}pb, n, m ∈ N0. (2.55)

Note that this identification is possible only because the Λi functions are
arbitrary, and we need to use the strategy of the previous section in order
to determine the form of the non-arbitrary Λ components appearing in the
right-hand side of (2.54) for whatever Poisson bracket we want to compute.
We stress that, as it is clear from (2.54) and from the definition (2.39) of
c(n,0), the expressions for {Nn(θ), Nm(θ′)}pb are closed, i.e. they depend
on the N i functions only. We also point out that some terms generated in
the above Poisson brackets are nonlinear polynomials in the N i functions,
which appear because of the nonlinearities in the fn functions, themselves
introduced when we use the dependency relations for the non-arbitrary Λ
components. This means that the asymptotic symmetry algebra is actually
not an algebra but a nonlinear deformation thereof. However, the Jacobi
identity for the above Poisson bracket still holds, because they are Poisson
brackets ! We will speak of a nonlinear Lie algebra, and we comment on
this point and others in Chapter 3.

We now turn to computing the expressions (2.55). First, let us confine
ourselves to the osp(1, 2|R) sector (Λ and ∆ are now truncated to belong
to this subsuperalgebra). Applying the first three steps of the procedure of
the previous subsection to this case one finds (f1 is now easily computed)

c(0,1) = 0 = ∂Λ1 + Λ(1,0) + ∆1Λ2, (2.56a)
c(0,2) = 0 = ∂Λ2 + 2Λ(1,1), (2.56b)
c(1,1) = 0 = ∂Λ(1,1) + Λ(2,0) − i∆1Λ1 + ∆2Λ2, (2.56c)

which allows us to determine Λ(1,0), Λ(1,1) and Λ(2,0) in terms of Λ1, Λ2,
∆1 and ∆2:

Λ(1,0) = −∂Λ1 −∆1Λ2, (2.57a)
Λ(1,1) = − 1

2∂Λ2, (2.57b)
Λ(2,0) = 1

2∂
2Λ2 + i∆1Λ1 −∆2Λ2. (2.57c)
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Using (2.54) together with the definition of c(p,q) as well as the super-
commutation relations (B.34) for the osp(1, 2|R) sector one further finds

{N1,

∫
dθ′(Λ1N1 + Λ2N2)}pb = ik

2π
(
∂Λ(1,0) + ∆1Λ(1,1) + ∆2Λ1),

(2.58a)

{N2,

∫
dθ′(Λ1N1 + Λ2N2)}pb = k

4π
(
∂Λ(2,0) − 2i∆1Λ(1,0) + 2∆2Λ(1,1)),

(2.58b)

where everything depends on θ except for the functions in the integral,
which evidently depend on θ′. Now, using the expressions (2.57) for Λ(1,0),
Λ(1,1) and Λ(2,0), the above brackets allow us to read off the Poisson
brackets within the osp(1, 2|R) sector upon identifying the coefficients of
the Λ1, Λ2 components in them. As was expected, the result matches
with the centrally-extended superconformal algebra given in (2.30) upon
renaming the low-spin generators as N1 ≡ Q, N2 ≡ L.

Let us point out that the above commutation relations, that we have
shown to be valid within the osp(1, 2|R) sector, are also valid if we consider
the whole shs(1, 2|R) algebra, that is, allowing higher spin components does
not add any terms to the above relations, which one can easily convince
oneself of.

2.2.3 Supersymmetric W∞ Algebra
As was anticipated, the low-spin part of our asymptotic symmetry algebra
reproduces the super-Virasoro commutation relations. Let us now explore
‘higher’ commutators, in order to gain insight into the structure of the
asymptotic symmetries. We begin by computing the generic ‘low-higher’
Poisson brackets, that is, those involving an L or Q generator and a higher-
spin one. We then compute the first ‘higher-higher’ brackets, namely those
involving no low-spin generators. As the procedure leading to the Poisson-
bracket algebra has been exposed several times in the above considerations
we shall allow for some sketchiness in the sequel.
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Low-Higher Poisson Brackets

Let us first compute {L(θ), Nn(θ′)}pb and {Q(θ), Nn(θ′)}pb. We begin by
the Poisson bracket for L, first deriving∫

dθ′
∑
n∈N0

Λn(θ′){L(θ), Nn(θ′)}pb =
∫

dθ′δ(θ′ − θ)
( k

4π∂Λ(2,0)

+
∑
l∈N0

(−)llN lΛ(1,l−1)
)
,

(2.59)

where everything in the parenthesis depends on θ′ (the derivative also being
with respect to θ′). We thus need to find the Λ(2,0) and Λ(1,i) components
in terms of the Λj functions. These we find to be given by

Λ(1,n−1) = − 1
n
∂Λn + δ1,|n|2

2iπ
nk

∑
l∈N

N2l+1Λn+2l+1, (2.60)

Λ(2,0) = 1
2∂

2Λ2 − 2π
k

∑
l∈N0

(−)llN lΛl, (2.61)

where we have used the previously derived relation Λ(1,1) = − 1
2∂Λ2 to

later reinsert it in the expression for Λ(2,0), in order to find for the later
an expression in terms of the arbitrary components only. Also note that
we employ the notation |j|2, meaning the value of j modulo 2. Using the
above expressions in (2.59) and identifying the coefficients of Λn in the
right-hand side of it now yields, for n ≥ 3,

{L(θ), Nn(θ′)}pb = −δ′(θ − θ′)
(
Nn(θ) + 1

2nN
n(θ′)

)
, (2.62)

where we see that the current Nn has conformal dimension s = 1 + n
2 .

We point out that, as in the case of {L(θ), L(θ′)}pb where we had to use
Q(θ)Q(θ) = 0, to derive the above formula we have used

bn2 c−1∑
l=0

Nn−2l−1(θ)N2l+1(θ) = 0 ∀n, (2.63)

which in principle appears in the above Poisson bracket (for even n),
multiplied by δ(θ − θ′). Note that, as expected, the subspace of bosonic
generators (n even) forms an asymptotic symmetry subalgebra with respect
to the above relation, and our results thus contain the results of [1] (observe
the shift in n operated in [1] in order to rewrite the commutator, which
we have not performed here).
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Let us now turn to computing our second ‘low-higher’ Poisson bracket,
{Q(θ), Nn(θ′)}pb. The procedure is now assumed to be clear also for this
kind of commutator, and we only quote the result, again forgoing the
super-Virasoro sector:

i{Q(θ), Nn(θ′)}pb = + (−)n+1(n+ 1)δ(θ − θ′)Nn+1(θ)δ|n|2,1 (2.64)
+ i(−)n+1δ′(θ − θ′)

( 1
nN

n−1(θ) +Nn−1(θ′)
)
δ|n|2,0.

This is a completely new result in the sense that it does not appear at all
in the bosonic analysis of [1], and in particular we notice that Q indeed
acts like the supercharge. Alternatively, upon particularizing to n even or
odd one may rewrite the above brackets more simply. We obtain:

{Q(θ), Nn(θ′)}pb = −δ′(θ − θ′)
( 1
nN

n−1(θ) +Nn−1(θ′)
)

(n even),
(2.65a)

i{Q(θ), Nn(θ′)}pb = +(n+ 1)δ(θ − θ′)Nn+1(θ) (n odd).
(2.65b)

The Fourier mode form of the above Poisson brackets is easily computed
and turns out to be, for s ≥ 3:

[Ln,Nsm] =
( 1

2sn−m
)
Nsn+m, (2.66a)

[Qn,Nsm} = (s+ 1)δ|s|2,1N
s+1
n+m + δ|s|2,0

(
n− 1

sm
)
Ns−1
n+m. (2.66b)

Higher-Higher Poisson Brackets and Extended Supersymmetry

In order to gain further insight into the structure of our asymptotic
symmetry superalgebra, we find it worth it to compute some of the ‘higher-
higher’ Poisson brackets, i.e. brackets between two higher-spin generators
(more than spin 2). Let us compute for example {N3(θ), N3(θ′)}pb and
{N4(θ), N4(θ′)}pb, the brackets among the spin- 5

2 and spin-3 currents,
N3 ≡ R and N4 ≡M . For the first one we find:

{R(θ), R(θ′)}pb = α3

6 δ′′′′ + α3

12α6 (N6(θ) +N6(θ′))δ − 5α3

6α2 (L(θ) + L(θ′))δ′′

+ 3α3

2(α2)2L(θ)L(θ′)δ + iα3

6(α1)2Q(θ)Q(θ′)δ′

− α3

3α2 (L′(θ)− L′(θ′))δ′, (2.67)
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and the second one turns out to be

{M(θ),M(θ′)}pb = α3

24 δ
′′′′′ − iα3

2(α1)2 (Q′(θ)Q(θ) +Q′(θ′)Q(θ′))δ′

+ 2iα3

3(α1)2Q(θ)Q(θ′)δ′′ + α3

6α6 (N6(θ) +N6(θ′))δ′

− α3

4α2 (L′(θ)− L′(θ′))δ′′ − 5α3

12α2 (L(θ) + L(θ′))δ′′′

+ α3

(α2)2 (L2(θ) + 2
3L(θ)L(θ′) + L2(θ′))δ′, (2.68)

and we recall that the numerical factors αn are defined in (2.51). Note
that, for the sake of readability, we have used the compact notation
δkc ≡ δkc(θ − θ′).

As can be seen, the nonlinearities, which were absent in the ‘low-higher’
Poisson brackets, start appearing as soon as one considers ‘higher-higher’
commutators for conformal spins higher than 1 (spin higher than 2). Given
the defining relations of aW-algebra [4], it is clear from the above relations
that our asymptotic symmetry algebra is a W∞ algebra, but it is not
clear a priori which one it is — as noted in [4], although the structure
is quite rigid when only a finite number of currents are included, for an
infinite number thereof one can have different structures. We shall dwell on
these matters in Chapter 3, where we also formulate our other comments
on the structure unveiled above and on its relation to the existing literature.

Before moving on to Chapter 3, where we discuss the results obtained so
far, let us comment on the extended expressions corresponding to the N = 1
relations above. In the N ≥ 2 case the algebra shs(1, 1) ≡ shs(N, 2|R) be-
comes shs(N, 2|R), and we thus need to generalize the boundary conditions
of (2.35) to the case where our connection one-form Γµ lives in the extended
higher-spin superalgebra. The details are relegated to Appendix C, where
we exhibit again the procedure leading to the asymptotic symmetries, this
time including extended indices. Let us mention, though, that the only
added complication is the presence of the internal indices, labeling the
Grassmann-odd oscillators ψi of Subsection 1.2.3 and which account for the
extended supersymmetry (see also Appendix B). Inspired by Reference [60]
where, as explained in Subsection 2.1.3, the boundary conditions do not
constrain the internal indices, and the extended version of the computation
is really akin to the non-extended one.

Note that, for the sake of conciseness, in Appendix C we do not explicitly
give the extended version of the above commutation relations, which could
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be obtained straightforwardly. However, we point out that the salient new
features that arise are:

1. There are now fields ∆0;i1,··· ,iN of conformal dimension 1 (see Ap-
pendix C). These are the currents of the internal symmetry, and
they form an affine subalgebra. Their brackets with the other gener-
ators reflect how these other generators transform under the internal
symmetry.

2. In full analogy with the case of Supergravity, in the extended case
we also see the appearance of additional nonlinearities involving the
internal indices in the right-hand sides of the commutation relations,
and a so-called Sugawara redefinition of the Virasoro generator L
must be performed, as already found in [60] for extended AdS3
Supergravity.

3. There is more than a single current at each conformal dimension,
and the degeneracy of each non-zero conformal weight is equal to
2N−1, while the degeneracy of conformal dimension 0 is 2N−1 − 1
(internal currents). In particular, the Virasoro currents are no longer
the only ones with conformal dimension 2.



CHAPTER 3
Discussion

Let us discuss our results and put them into perspective. Unless otherwise
specified, the comments below apply equally well to the extended and
non-extended case, and we often formulate them in the non-extended
language.

Summary of Results

Exploiting the powerful realization of asymptotic symmetries as a Poisson-
bracket algebra we have computed the asymptotic symmetry algebra
of the three-dimensional Higher-Spin Theory based on the undeformed
gauge superalgebra shs(1, 1), and we have highlighted the main differences
which would endow the extended case for which the bulk gauge algebra
is shs(N, 2|R). We find the symmetries at asymptotic infinity to be of
the nonlinear, supersymmetric W∞ type, also denoted nonlinear sW∞, or
even sŴ∞ [136]. We have explicitly computed the brackets among the
spin-2 and spin- 3

2 generators, which reproduce the superconformal Virasoro
algebra with non-zero central charge(s). The bracket of the higher-spin
current of spin s with the spin-2 one as well as with the spin- 3

2 current
have also been explicitly worked out, and in Fourier modes they read, for
s > 2,

[Ln,Nsm] =
( 1

2sn−m
)
Nsn+m, (3.1)

{Qn,Nsm} = (s+ 1)Ns+1
n+m (n odd), (3.2a)

[Qn,Nsm] =
(
n− 1

sm
)
Ns−1
n+m (n even). (3.2b)

These are the defining features of a supersymmetric W∞ algebra [4].
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The nonlinearities start making their appearance at the level of the
brackets involving two higher-spin generators, such as {R(θ), R(θ′)}pb and
{M(θ),M(θ′)}pb, which we have computed in (2.67) and (2.68). A priori,
the sW∞ superalgebra we have unveiled is thus of the nonlinear type, and
we note that in the extended case the nonlinearities are present in the
low-spin sector already [60]. There is an infinite number of Lie brackets we
have not computed explicitly, so that we have not given all the structure
constants. However, the procedure has been presented in great detail,
thereby making the Lie bracket between any two asymptotic generators
computable. We also note that, a priori, we have a central charge for each
sector, and not only in the Virasoro subalgebra, which is a feature shared
by the super-Virasoro algebra. To be precise, however, one really has only
one central charge, in the sense that all central elements are parametrized
by the value of the Brown–Henneaux one.

Subalgebras and Truncations

In order to gain insight into the structure of our sW∞, let use explore
its subalgebras and truncations. First of all, the super-Virasoro algebra
is a subalgebra,1 because we find the spin-2 and spin- 3

2 generators to
satisfy precisely the commutation relations of the superconformal algebra
with Brown–Henneaux central charge in the Gravity sector. This might
have been expected, since the osp(1, 2|R) superalgebra is a subalgebra of
shs(1, 1), and we know the former yields the super-Virasoro algebra at
asymptotic infinity [60] (and similarly for the extended case). However,
the possibility of having nonlinearities in the right-hand sides of the com-
mutation relations — in Appendix C.2.3 we prove that such is the generic
situation — makes such expectations wrong in general. For example, as
we shall comment on more below, although hs(1, 1) is a subalgebra of
shs(1, 1), the W∞ algebra found in [1] is not a subalgebra of our sW∞.
In light of these considerations, one might thus ask why it is that the
super-Virasoro sector does form a subalgebra. The answer is that, by
simple dimensional analysis, one can check that no nonlinear terms can
appear in the right-hand side of the super-Virasoro commutators (in the
non-extended case), except for δ(θ − θ′)Q(θ)Q(θ′), which can formally
appear but is identically zero, as was noted in Subsection 2.1.3.

Let us then comment on the bosonic W∞ algebra, found for the first
time in [1] from the asymptotic symmetry standpoint. Having in mind
the above reasoning, we now expect that the latter is not a subalgebra

1 In the extended case the analogous conclusion seems to be difficult to reach for a
large number of supersymmetries.
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of our supersymmetric W∞. This is indeed the case: because of the
nonlinearities in the right-hand side of the commutators, the latter is not
truly a subalgebra. However, the bosonic W∞ algebra is nonlinear to start
with, and one thus wonders what exactly spoils the ‘subalgebra property’ at
infinity. One notices that the presence of nonlinearities allows, in particular,
for fermionic generators (such as the supercharge Q) to appear on the
right-hand side of a bracket between two bosonic ones, which would be
impossible otherwise. In general, ‘throwing away’ generators spoils the
Jacobi identity, but, because hs(1, 1) is a subalgebra of shs(1, 1), it might be
felt that a ‘miracle’ should happen, namely that the Jacobi identity should
hold good even with the nonlinear terms involving the fermionic generators
brutally set to zero. This is precisely what happens. Note, however, that
when comparing our spin-3 currents self bracket with the expression given
in [1], we find a mismatch not only because of our nonlinearities involving
the fermionic currents. This is because, in [1], the expression is given for
the case when the hs(1, 1) algebra is truncated down to sl(3|R).2

Another natural question is that of WN algebras, which have been
obtained independently e.g. in [137] from sl(n|R) Chern–Simons models.
Are they contained, in any sense of the word, in our structure ? As
explained in [1], the W3 nonlinear algebra of [138] is ‘almost’ a subalgebra
of the bosonic W∞, found therein. In fact, it is again not really a
subalgebra, and one needs to brutally set to zero some nonlinearities in
the right hand side of the bracket of two spin-3 ones for W∞ in order to
reproduce the W3 commutation relations. Therefore, as we just argued
that W∞ is not a subalgebra of sW∞, W3 cannot possibly be a subalgebra
of our supersymmetric sW∞. It is clear, however, that by artificially
setting to zero some terms in the right-hand side of the bracket (2.68) one
reproduces the correct commutator for the W3 structure. What about
WN algebras for N ≥ 4 ? As explained in [1], the procedure cannot be
repeated, and the reason is that the ‘miracle’ which happens for N = 3,
that sl(3|R) can be obtained by truncating hs(1, 1), does not hold in
general for sl(N |R). Therefore the corresponding asymptotic statement
does not hold either, and one cannot truncate W∞ to obtain WN at
N = 4 or greater. In the supersymmetric case we should expect a similar
conclusion with respect to the supersymmetric W3 algebras, studied e.g.
in [139] as asymptotic symmetries of models with sl(N |N − 1) gauge
invariance. Namely, although the latter algebras (see also [140, 141]) are
not true subalgebras of our sW∞, it should be that by truncating artificially

2 sl(3|R) is not a subalgebra of hs(1, 1), but one can nevertheless truncate the latter
to obtain the former [1].
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the commutation relations obtained above one recovers the relations of sW3.

Let us now comment on the so-called wedge subalgebra of sW∞. The
bulk gauge algebra is the ‘local version’ of shs(1, 1) (the coefficients depend
on spacetime coordinates). The vacuum solution is AdS3, which can be
seen to be left invariant by the rigid part of the gauge algebra, that
is, by the constant gauge parameters Λ ∈ shs(1, 1). By definition, such
parameters close to shs(1, 1), which is thus the isometry of the vacuum.
Now, one always expects the isometry part to be included in the asymptotic
symmetries.3 This is the case in our analysis, but it is not obvious, since
the Λ = Λ0 constant gauge parameter is not a particular case of the general
relation among the components of the residual gauge parameters, found
in (2.15). The reason is that the expression (2.15) corresponds to the
background in a non-zero form, and in Appendix C.2 we detail this feature
and explain that the exact background symmetries, when considered in the
correct gauge, correspond to the part of the asymptotic generators forming
the so-called wedge sector, that is, the generators Nsn with |n| ≤ s− 1. For
example, in the low-spin sector it would correspond to Q−1/2,Q1/2 and
L−1,L0,L1, which can indeed be seen to close to the osp(1, 2|R) algebra,
forming a subalgebra of the superconformal algebra.

The superconformal algebra is linear (it is a true algebra), so that the
wedge sector forms a subalgebra thereof. However, in the higher-spin case
of shs(1, 1), the wedge part does not form a subalgebra, again because of
the nonlinearities. It is easy to see that the linear piece of the commutation
relations indeed reproduces the shs(1, 1) superalgebra. Furthermore, the
central charges all vanish when restricted to this sector. We thus say
that the wedge sector closes to shs(1, 1) up to nonlinearities. This is the
precise sense in which the exact background symmetries are embedded
into the asymptotic symmetries. In fact, in order for the aforementioned
identification to work properly one needs to further set the generators
to zero when evaluated on the AdS connection. This is what is done in
(2.27), where the rescaling of L0 contributes to the central-charge piece so
to make it vanish when restricted to the wedge. Note that, as explained
in [143], it is really the fact that we are looking at an exact symmetry of
the background which ensures this property. Let us further note that the
existence of the wedge subalgebra as well as its relation with the exact
symmetries is something that was noticed previously, e.g. in [121, 144],
and the fact that it reproduces the exact symmetries is a general result

3 In recent investigations, asymptotic symmetries have been obtained among which
one does not find all the bulk isometry generators [142].
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known within the so-called Drinfeld–Sokolov reduction [145, 146] (see also
[147]). Here we have provided a ‘geometrical’ proof within the asymptotic
symmetry analysis.

Our last digression on subalgebras will be about linear W∞ (super-)
algebras. As we explain below, in the early days ofW-Symmetry,W∞ alge-
bras and superalgebras were constructed that were linear [121, 145, 148, 149]
(see also [4] and references therein). Those are not subalgebras of our
nonlinear structures, of course, because the latter are nonlinear. More
importantly, the linear part of our commutation relations does not repro-
duce the linear brackets obtained previously (except inside the wedge).
Interestingly, the cause of the latter discrepancy can be argued to be the
presence of central charges in our realization of asymptotic symmetries.
Indeed, without the latter, linear terms in the Jacobi identity for our
Poisson-brackets would only receive contributions from the linear part of
the commutation relations. This would mean that, upon removing all the
nonlinear pieces from the right-hand sides of our commutators the Jacobi
identity would boil down to its linear part. Now, previously-found linear
W∞’s were precisely obtained by solving the Jacobi identity for a linear
Ansatz,4 and the solutions were argued to be unique. Therefore, we would
expect that throwing away all nonlinearities would reproduce precisely
those structures. The presence of central charges crucially spoils this rea-
soning: the linear part of the Jacobi identity equation receives contributions
from the nonlinear part of the commutation relations ! The nonlinear pieces
are essential for the closing of the Jacobi identity, and as we have explained
there is a non-trivial interplay between nonlinear terms and central charges.

At this point, and given the added complications brought in by the
nonlinearities, one might wonder whether quadratic nonlinear deformations
are the only type of deformations that can occur. In Appendix C.2.3 we
show that this is not the case: quadratic nonlinearities are not restricted
by general arguments, and nor are higher-order ones. We further comment
on the nonlinear terms in the paragraphs below.

Deformations and Other Higher-Spin Theories

In the main text we have been concerned with undeformed Higher-Spin
Theory or, differently put, undeformed higher-spin algebras (λ = 1

2 ).
So-called deformed algebras also exist, at least in the bosonic case: they

4 Another way of obtaining them was via the N →∞ limit of WN -algebras, at the
same time performing some rescaling.
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are noted hs[λ]. As explained in the main text, the supersymmetrization
of the undeformed cases goes without much trouble — it is the case we
have treated explicitly —, with or without extended supersymmetry, but
the deformed bosonic algebras hs[λ] are less easily deformed (at least
for N > 1). Regardless of these issues, we argue that the deformed
equivalent of W∞ is also a nonlinear W∞-algebra. This was checked
explicitly in the bosonic case in [137, 147], and for the supersymmetric
N = 1 deformed case in [150]. This opens the door to a supersymmetric
version of Minimal Model Holography, and it has been conjectured
recently that the holographic equivalents thereof should be the so-called
Kazama–Suzuki models in the large-N limit [81, 83–86, 89, 90] (see also [6]).

In this work we have investigated three-dimensional higher-spin su-
pergravities extending Supergravity theories of the most standard type,
namely those which are based on the osp(N, 2|R)⊕ osp(N, 2|R) superal-
gebra. However, as stated in the text, one may think about higher-spin
theories extending other types of (extended) supergravities, the list of
which can be found in Appendix B.2.2. Indeed, it would in principle suffice
to proceed again along the lines of the universally enveloping technique,
which yields shs(1, 1) starting from osp(1, 2|R) (for the undeformed case),
but considering as the starting point one of the Lie superalgebras of Table
B.2.2. This can always be done, but one might further wonder whether an
oscillator realization is available for all cases. The answer is positive: as
explained in [151, 152], all the superalgebras of AdS3 extended Supergravity
theories can be realized in terms of quadratic combinations of oscillators,
along the lines used to build osp(N, 2|R) in the bulk of this work. One then
obtains the associated Higher-Spin superalgebra by relaxing the condition
of being quadratic in the oscillators, thereby allowing for higher-degree
polynomials. The asymptotic superalgebra would again be of the sW∞
type. Indeed, the general structure of the commutators would remain the
same, so that at infinity one would recover the usual action of the Virasoro
generators on the higher-spin ones. Furthermore, as we have explained
above, the (super-)Virasoro sector would remain intact.

Finally, we also note that in three dimensions we can perform the same
analysis for flat-space higher spins, thereby obtaining a different asymptotic
symmetry algebra [153, 154], which should be related to some W structure
by contraction.

Comparison with Past Approaches and Nonlinearities

The existence of algebras of the W∞ type is not a novelty. In fact, in the
late eighties and early nineties they were under intense investigation, which
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started with the seminal paper of Zamolodchikov [138], where the Virasoro
algebra was first extended to include generators of higher conformal spin
(for a review we refer to [4]). It is not their appearance, but rather their
reappearance in the higher-spin context which is appealing, and which was
first noticed in two triggering papers in 2010 [1, 2]. Accordingly, there is
quite an amount of ‘old’ literature to be found aboutW-algebras in general,
dating from the turn of the last decade of the past century, and one should
feel compelled to compare the structures found to govern the asymptotic
dynamics of three-dimensional higher-spin models with those unveiled in
the years following the publication of [138]. Indeed, although it is clear
that our asymptotic symmetries form a sW∞ algebra it is not clear a priori
which sW∞ structure that is (as explained in [4] when infinitely many
currents are considered there is some freedom in determining the structure).
We now attempt at carrying out such a comparison. Needless to say,
the following comments should not be expected to be exhaustive in any way.

When investigating the older literature on W-algebras, the first thing
one notes is that the presence of nonlinearities in the right-hand side of the
commutation relations is mostly confined to WN -like algebras, possessing
only a finite number of higher-spin currents [4]. Indeed, in the finite-N case
such nonlinearities are unavoidable when going beyond the Virasoro sector,
whereas they can be avoided by considering an infinite number of higher-
spin currents. This can be intuitively understood in a simple manner:
consider some (nonlinear) WN algebra and declare any quadratic term in
the right-hand side of the commutation relations to be some higher-spin
current of higher conformal spin. In such a way one evidently linearizes the
algebra, but a number of currents are added to the spectrum, and further
commutation relations involving the latter are thus to be considered. The
procedure, if it succeeds in the closing of all the commutation relations,
never terminates and one ends up with a linear Lie algebra, but it now
contains an infinite tower of higher-spin currents. This linearization by
addition of an infinite number of currents was implemented by taking the
limit N →∞ of WN -algebras, and it was noticed that upon performing
non-trivial rescalings, the nonlinearities are lost in the limit.

Such observations do not underline an obstruction to building nonlinear
W∞-algebras — we just did it ! —, and if one takes the limit ofWN -algebras
in a naive way the nonlinearities are typically present. Nevertheless,
the past literature on nonlinear W∞-algebras is scarce, and only a few
considerations can be found in [136, 155–166]. The simple reason for such a
lack of interest is that of intricacy; nonlinear deformations of Lie algebras
are much more hardly constructed and dealt with, and do not benefit
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from any mathematically well-developed theory allowing to tackle their
structure. In particular, the construction of representations is made highly
non-standard by the nonlinear terms, but perhaps another reason for the
lack of work on nonlinear W∞-like structures is the apparent absence of
the following key property which they were expected to have: one hoped
that some nonlinear W∞ could be built such that it would contain all
WN -algebras upon truncation or contraction (linearW∞-algebras were not
suited for that purpose because they could hardly reproduce the nonlinear
part of the WN -brackets). Such so-called ‘universal’ algebras could be
useful, but the conclusions of the program consisting in their construction
are seemingly mitigated, regardless of Supersymmetry, albeit nontrivial
relations were found to exist among different (linear and nonlinear) W∞
structures [136].

Furthermore, if references dealing with nonlinear versions of W∞-
algebras are rare, the supersymmetric equivalents are even harder to find,
and to our knowledge the exceptions include [166]. It is the author’s opinion
that such lack of investigation, thought of as originating in the difficulty in
building them, adds importance to our result. Indeed, in our approach the
algebra is guaranteed to satisfy the Jacobi identity (because it is a Poisson-
bracket algebra), and any commutator can be straightforwardly computed.
Moreover, as we have said above the presence of nonlinearities is rather
independent of the particular bulk gauge algebra one chooses to work with.
Now, given the variety of higher-spin algebras one can conceive of (one can
at least universally envelop all the extended Supergravity algebras), this
implies the existence of a vast landscape of nonlinear (supersymmetric)
W∞-like algebras. In a pinch, the asymptotic symmetry machinery, when
viewed as a procedure for constructing consistentW-algebras, seems rather
powerful, if not convenient. The comparison of the structure obtained
in this work with previously-found nonlinear, supersymmetric versions
such as those of [166] should be interesting. Let us further note that, in
mathematical terms, the asymptotic procedure for determining symmetry
algebras is just a rephrasing of the well-known Drinfeld–Sokolov reduction
procedure [4, 167].

Other Related Topics

Many more comments can be made on our findings, and relations with many
other areas of physics exist. However, the scope of the present work must
be finite and we thus refer the reader to [61], among others, for additional
comments on black holes with W∞ hair, String Theory embeddings, Self-
Dual Gravity in dimension four, W-strings, the Drinfeld–Sokolov reduction
procedure and other topics (see also [6]).





Part II

Dimension D



It is an error to believe that rigor is the enemy of simplicity.
On the contrary we find it confirmed by numerous examples that

the rigorous method is at the same time the simpler
and the more easily comprehended.

The very effort for rigor forces us to find out simpler methods of proof.

David Hilbert



Invitation

In Part I of this thesis we have lived in spacetime dimension three which,
as often, has proved to be a fruitful yet workable laboratory for the
study of Gravity and related issues [66]. However, as we have seen, the
three-dimensional models lack some properties which crucially characterize
higher-spin theories in dimension four or greater. The central difference is
that of interactions: while in dimension D ≥ 4 interacting higher spins are
very much constrained [52], in three dimensions one has a whole variety
of consistent, non-linear higher-spin theories to choose from. In order to
fully understand the dynamics of particles with spin larger than two it is
therefore mandatory to address the higher-spin problem in dimension four
at least, which is what this second part of the text is devoted to.

Nowadays, most of the research investigating higher-spin couplings is
carried out on AdS backgrounds where, among other things, one wishes
to gain insight into the structure of the Vasiliev system and its three-
dimensional conformal dual. Moreover, as the many no-go theorems for
interacting higher spins concern flat spacetime [42–45, 168], it is natural to
investigate constant-curvature backgrounds, where fully consistent gauge
theories are known. Nonetheless, in the present work we shall be concerned
with flat spacetime propagation and interaction of higher-spin gauge fields.
On the one hand, despite the no-go results precluding the existence of a
fully consistent theory of higher spins on flat spacetime (at least when
locality and finiteness of the spectrum are insisted on), one feels inclined
to exploring precisely to what extent that is true and what exactly the
obstruction is. On the other hand, the perspective of an interplay between
Higher-Spin Theory and String Theory — see e.g. [25, 169, 170] —, which
contains (massive) higher spins and is under best control on Minkowski
spacetimes, calls for an understanding of flat-space higher-spin interactions
as refined as possible.

With the latter motivations in mind it seems one cannot dispose of
fermions. Indeed, they are required by Supersymmetry, which in turn
is instrumental in proving String Theory to be consistent. Also, besides
Supersymmetry, fermions are present in nature (albeit they are massive),
so that studying higher-spin theory with fermions should be interesting at
any rate. An understanding of fermionic higher-spin gauge interactions
in Minkowski spacetimes is thus necessary, and should complement the
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bosonic study, typically carried out first. In [63, 64] the electromagnetic
and gravitational cubic couplings of higher-spin gauge fermions were
analyzed in detail, thus partially filling a gap in the literature, which so
far had been dealing primarily with bosons — with [25, 62, 171] among the
exceptions. Those are the results which this second part is concerned with,
namely, 1−n

2−
n
2 and 2−n

2−
n
2 gauge-invariant couplings for arbitrary n in

flat spacetime of generic dimension D ≥ 4. All such couplings are derived
in a systematic way in Chapter 5 and 6, and we obtain explicit, neat and
off-shell forms for them in the metric-like formalism. The methods we
will employ to achieve the classification and exhibition of our vertices are
the so-called BRST-Antifield techniques, and they are recalled in Chapter 4.

Our results will be seen to be in agreement with the String Theory-
inspired expressions obtained in [25, 171] as well as with the Light-Cone
analysis of [62]. However, we derive our off-shell couplings in a totally
independent manner; we take no input from any other work and make
only minimal hypothesis. Also, in line with the various no-go theorems
[42–45, 168], we prove the obstruction to cubic minimal coupling and also
to making a theory involving non-minimal couplings consistent to second
order in perturbation theory. More precisely, full consistency will be seen
to be obstructed if one insists on locality and on the original spectrum.
Finally, we comment on the link between the obtained interactions and
various topics, such as N = 2 Supergravity, String Theory, massive higher
spins, non-locality, AdS backgrounds, bosonic fields, etc. They are found,
together with a summary of our results, in Chapter 7.
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CHAPTER 4
BRST Techniques

In Chapters 5 and 6, the techniques used to find out and classify interaction
vertices are the so-called BRST–BV1 ones. This formalism, which we
originally owe to Bechi, Rouet, Stora, Tyutin as well as to Batalin and
Vilkovisky was first discovered in a quantum setup [172–175], and it was
realized only later on that one could use it also at the classical level to
consistently search for deformations of given gauge theories [176–179],
which is the application we are interested in and present below. Also,
as shall be made clear, it is not the most general case that shall be
recalled, but that which considers as the starting point a free theory.
The literature on the BRST-Antifield reformulation of the deformation
problem is nowadays somewhat extent, and includes in particular the very
good review [180]. We also point out the algebraically and geometrically
oriented lectures [181], the report [182] as well as the comprehensive book
[103], which all go beyond the scope of the present introduction.

The following guide to the BRST-Antifield formulation is meant to be
pedagogical. However, as it is only given here so that the reader can follow
the next chapters, many demonstrations and historical considerations have
been left out, so that the reader might sometimes feel it to be a little ad hoc.
Nonetheless, albeit meant to be but a mere vade mecum for understanding
the subsequent investigations, we have tried to make the naturalness of the
formalism all the more salient by means of a step-by-step structure, further
complemented by qualitative arguments. We hope this shall help the reader
to grasp the essence of the BRST reformulation of the deformation problem
as well as its beauty.

1 Also called BRST-Antifield, or simply BRST — which we shall use interchangeably.
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4.1 A Rationale for the Noether Procedure

Let us begin by some more introductory words. The skeptical or unfamiliar
reader might be wondering what the need is for the formalism presented
in Section 4.2. Indeed, if our goal is to find out and classify consistent
vertices which may deform a given free theory, why do we not simply use
the (more) familiar Noether method ? The answer is: because we can
do better. Indeed, as we shall see the BRST–BV framework is basically
a reformulation of the Noether procedure, but it does so in a way that
presents many an advantage.2 In a nutshell, the advantage is that the
off-shell search for interactions is made more systematic by relating the
consistent deformations, as well as the obstructions (including second-order
ones), to cohomology classes of nilpotent operators acting on an enlarged
space of fields. By so formalizing the problem one can use the powerful tools
of homological theory — a well developed area of mathematics — which
allow one to severely constrain the search. Also, as we shall see, many
of the mathematical objects and cohomology classes introduced below
actually have either a geometrical or a physical meaning.

Moreover, practically speaking an important upside is the possibility of
addressing the problem of consistently deforming a free theory backwards.
What we mean is the following: suppose one finds a tentative vertex, to
be added to some free theory. If the said vertex is non-abelian, then it
deforms the original, abelian gauge transformations (of the free theory),
and the deformed ones thus contain terms of first order in the coupling
constant when compared with the original ones. Then, one needs verify
whether or not the deformed gauge transformations close to some deformed
gauge algebra. If they do, then one needs to determine the algebraic
structure thereof, and the procedure needs be repeated for every putative
vertex. In the BRST setup, one does the exact opposite, namely, the
formalism makes it very natural for one to start with the classification of
the possible deformations of the gauge algebra. The advantage then is that
the possible deformations of the gauge algebra are much constrained, and
in our formalism those conditions are easily stated and translated to precise
cohomological statements, so that we are assured to be exhaustive. Then,
one needs only follow a systematic procedure — the so-called consistency
cascade — based on solving cohomology equations in order to find out
whether the tentative algebra deformation is consistent or not, and the
obstructions to consistency are again related to precise cohomology classes.
If the algebra deformation is consistent, the procedure also yields the

2 Albeit we try and argue our way to this point, it should nevertheless be said that
this is merely the author’s opinion, and others might disagree.
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corresponding gauge-symmetry and Lagrangian deformations.

Another way of phrasing what the cohomological approach does for us
is the following. The difficulty in the problem of constructing non-abelian
vertices can be traced back to two simple facts. The first fact is that one
poses two questions at the same time and seeks a common answer, that
is, we look for a vertex which will possibly deform the Lagrangian and
the gauge transformations at the same time. The second fact is that one
is interested in gauge-invariant deformations but should also take into
account the redundancy brought in by the possibility of performing field
redefinitions, which is not necessarily a simple task. As we shall explain,
the BRST reformulation cleverly deals with both these difficulties. On
the one hand, instead of using the standard (free) action it constructs a
so-called (free) master action, which on top of the original action contains
terms with explicit information about the gauge transformations. That
‘unified’ object is what we then deform, thus naturally dealing at the same
time with the problem of deforming the Lagrangian as well as the gauge
transformations in a consistent way. On the other hand, and perhaps more
importantly, a so-called BRST operator is constructed which implements
at the same time the gauge transformations and the field redefinitions,
and relates them to precise cohomology classes. Thus, one is ensured to
have used all the freedom granted by field redefinitions when classifying
different gauge-invariant vertices. One says that the field redefinitions
are fully accounted for in this way when passing to the cohomology of
gauge-invariant quantities.

Evidently, all these advantages come at a price, namely, that of having
to introduce ‘auxiliary’ fields (so-called antifields and ghosts), thus much
enlarging the original phase space. Such is, however, the philosophy: in this
enlarged phase space, to be defined below, it will be possible to precisely
reformulate many statements and properties such as gauge invariance and
on-shell triviality into cohomological considerations. In particular, the
usual properties of consistency and non-triviality will be related to the
two familiar aspects of cohomological calculus: computing the kernel of a
nilpotent operator as well as the trivial part therein. In a first approach, the
formalism presented here may therefore seem excessive, but we nevertheless
think it not only extremely useful but also, as aforementioned, quite natural
in fact. As a final word let us further stress that the formalism is intrinsically
off-shell in spirit, and no gauge-fixing is required nor implied.
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4.2 BRST and Antifields

Let us now enter the details of the aforementioned scheme. As aforemen-
tioned, we restrict ourselves to presenting the reformulation in the case
where the theory we start with is free, which is what we need in the next
chapters, but in principle the same framework can be used to address the
problem of deforming a theory which is not free — see e.g. [181]. We
point out that the main added difficulty in the latter case3 is that the
BRST differential will no longer simply be the sum of the Kozul–Tate
differential plus the longitudinal differential along the gauge orbits, to be
defined below.

Another assumption we make is that of irreducibility of the free gauge
theory, which again is the case we encounter when addressing free higher
spins — see next chapters. This means that we start from a free, irreducible
gauge theory of a collection of fields {φi}, with m gauge invariances

δεφ
i ≡ Riαεα, α = 1, 2, . . . ,m, (4.1)

which leave the free action S(0)[φi] invariant. Evidently, the Riα may be
(and usually are) differential operators. We shall present the formalism
without any assumption of the dimensionality of spacetime, and such will
also be the spirit of the following chapters, where interactions are classified
in generic dimension D.

We shall now proceed to introducing seven steps of formalism, which
shall set up in a simple way the essential tools we will need to address the
consistency of the couplings. The seven steps are the following:

Step 1: Replacing Gauge Parameters by Ghosts ,
Step 2: Introducing Antifields to Source Gauge Variations,
Step 3: Implementing Gauge Variations via Γ Operator,
Step 4: Implementing Field Redefinitions via ∆ Operator,
Step 5: Combining Γ and ∆ into the BRST Differential s,
Step 6: Finding Deformations via Consistency Cascade ,
Step 7: Second-Order Consistency and the Antibracket.

3 More precisely, the BRST differential will contain additional pieces when at least
one of the following characterizes the starting theory: the gauge symmetries are not
abelian or they form an open algebra [181].
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In Step 1 and 2 we enlarge the phase space of our original fields φi. Step 1
replaces gauge parameters by ghosts, which are added to the configuration
space, whereas Step 2 introduces the so-called antifields, which source the
gauge invariances in some generalized action called themaster action. Then,
in Step 3 and 4 we reformulate two important concepts in cohomological
terms. The first one, dealt with in Step 3, is gauge invariance, and it will
connect with Step 1. The second, addressed in Step 4, is field redefinitions,
and it will relate to Step 2. Step 5 then combines both reformulations
of these concepts into a single, unified operator: the BRST differential,
conveniently implementing both the EoMs and the gauge symmetries.
Once the correct operator has been identified, in Step 6 we explain how to
search for consistent interactions in this formalism, exploiting the so-called
consistency cascade and the possibility of classifying potential deformations
at the level of the algebra. Finally, Step 7 is concerned with second-order
consistency and quartic vertices. In the latter, we shall discover the so-
called antibracket; a symplectic structure on our enlarged phase space
which not only allows for an easier analysis of second-order consistency
but also for a rather geometrical reformulation of the deformation problem
in general, which we shall briefly touch upon.

As announced earlier, although we shall be concise and practical we
shall nevertheless try to give the reader a feel of why we think this formalism
is quite the natural one.

Step 1: Replacing Gauge Parameters by Ghosts
The first step is merely a rewriting, almost a relabeling: each gauge
parameter εα is replaced by a corresponding ghost field Cα, so that the
gauge transformations (4.1) now read

δφi ≡ RiαCα, α = 1, 2, . . . ,m. (4.2)

However, Cα is now declared to have the same algebraic symmetries but
opposite Grassmann parity as εα. This means that, e.g. if some gauge
parameter is bosonic (as for example that of a spin-1 gauge field), the
corresponding ghost is Grassmann odd, and vice versa. Calling them ghosts
is therefore appropriate !
Remark : in this reminder we do not spell out spacetime indices, and the
index α in Cα is accounting for the different ghosts (replacing the different
gauge parameters). As no assumption is made on the spin of the fields and
their associated gauge parameters, it should be kept in mind that each of
the latter can have spacetime indices, but we treat them all generically.
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When we say that the ghosts have the same algebraic symmetries as the
original fields they correspond to, we are referring to those spacetime
indices.

The ghosts are now included in the phase space, thus enlarging that of
the original fields, and all of them are sometimes collectively also called
fields, which we denote by {ΦA} ≡ {φi, Cα}. To be able to keep track of
the nature of each of the fields we further introduce a grading, called the
pure ghost number, defined to be 0 for the original fields and 1 for the
ghosts:

pgh(φA) ≡ 0, (4.3a)
pgh(Cα) ≡ 1. (4.3b)

The reason why we define the ghosts to be of opposite Grassmann parity
to the corresponding original fields will be made clear in Step 3, where an
operator Γ, implementing the gauge variations is built. Anticipating a little,
and from a pragmatic standpoint, we might say that the parity properties
of the ghosts are chosen so to make Γ nilpotent of degree two, that is,
Γ2 = 0, which is the key property allowing us to define an associated
cohomology (see below)

Step 2: Introducing Antifields to Source Gauge Variations
We now want to define the so-called (free) master action, corresponding to
the original, free action S(0)[φi]. As we anticipated in the previous section,
the point is to build some generalized action which, on top of containing
information about the (original) Lagrangian will also contain explicit
information4 about the gauge transformations. It is such a free master
action, denoted S0 (note the subtle change in notations), which we will try
to deform later on. The idea is the following: in addressing the deformation
problem for non-abelian vertices, one is not looking for deformations of the
Lagrangian invariant under the original gauge transformations. Rather,
one needs to allow for the gauge transformations to get deformed too. One
virtue of the master action is that it contains explicit information about
both these aspects, and the deformation problem, when formulated in
terms of it, will automatically take into account both these features in a

4 We use the word explicit for the following reason: given some standard (free) action
one can always work out the corresponding gauge symmetries, so that this information
is already contained in the action functional, albeit in an implicit manner.



CHAPTER 4. BRST TECHNIQUES 103

way which ensures consistency and exhaustivity. The free master action is
defined as follows:

S0 ≡ S(0)[φi] +
∫

dDxφ∗iR
i
αCα, (4.4)

where the φ∗i are the so-called antifields, which are seen to play the role of
sources for the gauge variations in the master action.

The configuration space is thus further enlarged by introducing, for each
field (original fields and ghosts), an antifield Φ∗A, which is again defined to
have the same algebraic properties as ΦA but opposite Grassmann parity
(which correctly makes the above master action Grassmann even). Thus,
our phase space now is given by {ΦA,Φ∗A}, where {Φ∗A} ≡ {φ∗i , C∗α}. Note
that, in Step 1, the gauge parameters are replaced by ghosts and those are
then added to the phase space. Here, rather, we supplement the phase
space with antifields corresponding to the fields.

Note that the antighosts do not enter the above master action, and
at this stage one can think of them as being added too for the sake of
democracy — their role will be clarified in the sequel. As for the antifields,
besides sourcing the gauge variations in the master action, in Step 4 we
shall see that they have another role to play. However, for the moment let
us be content with the explicit presence of information about the gauge
symmetries in the master action. Our simple rule will be that, whatever
multiplies the antifields in the master action is the gauge transformation
of the corresponding field. This will be of much use when deforming the
free theory.
Remark : a word of caution about the interpretation of the above action
should be added. For the unfamiliar reader, it might be tempting to
consider the antifields and the ghosts as auxiliary fields in the usual sense
of Field Theory. The corresponding paradigm is that the EoMs which
follow from variating the action with respect to those auxiliary fields allow
one to solve for them, hence integrating them out when plugging their
algebraic expressions (in terms of the dynamical fields) back into the action.
However, such is not the way in which one should understand the master
action. Rather, the latter is really a tool, allowing to keep gauge invariance
(and other things, as will be explained) under control, and should by no
means be thought of as a standard action.

Finally, as we have introduced new (anti-)fields we need a new grading
to keep track of who is who in the new, enlarged configuration space of all
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the fields and antifields. We thus define the antighost number as

agh(ΦA) ≡ 0, (4.5a)
agh(Φ∗A) ≡ pgh(ΦA) + 1. (4.5b)

Also, we need to extend the definition of the pure ghost number to the
antifields, and the correct definition is pgh(Φ∗A) ≡ 0.

Step 3: Implementing Gauge Variations via Γ Operator
As explained at the beginning of the present section, this third step has to
do with Step 1. What is done is to define an operator, Γ, implementing
the (free) gauge variations on our enlarged phase space. The definition is
the following:

Γφi ≡ RiαCα, (4.6)

that is, Γ is the ‘longitudinal derivative along the gauge orbits’ [103]. Now,
from the above definition one sees that Γ must be Grassmann odd, and
from there it is found that Γ2 = 0, and hence that ΓCα = 0. To finish
implementing the gauge variation, one needs to further define the action
of Γ on the antifields and the antighosts, and the correct definition is
ΓΦ∗A ≡ 0. We point out that one can also check the nilpotency of Γ by
acting twice on any of the fields and directly obtaining zero.

As for every nilpotent operator (of degree two), it is natural to consider
the cohomology of Γ, H(Γ), that is,

H(Γ) ≡ {X ∈ phase space | ΓX = 0, X 6= ΓY }. (4.7)

The physical interpretation is clear: the cohomology of Γ is the set of
gauge-invariant combinations that are not themselves gauge variations
of something else (‘pure gauge’, one might say). With this definition we
are really beginning our formalization of the properties that are crucial
for us. Indeed, all the above definition does is formalize the definition of
what ‘being an observable’ means — to be refined in Step 5. We cannot
possibly stress enough that this approach is at the core of the present
reformulation, and in fact it is precisely the idea of associating physical
quantities with cohomological classes of nilpotent operators which the
BRST approach put forward for the first time [172–174]. Note that Γ has
pure ghost number equal to 1 but leaves the antighost number unchanged.

Before moving on to Step 4 we should add a few words about terminology
and notation. In the language of cohomology, a combination which is
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annihilated by some operator is said to be closed, and one that can be
expressed as the application of the operator to some other quantity is
said to be exact. An equivalent way of phrasing things is to declare any
closed object a cocycle and any exact one a coboundary. We shall switch
back and forth between both terminologies, although we prefer the former.
The cohomology of Γ, for example, will be said to be the space of all
Γ-closed combinations which are not Γ-exact. Also, a Γ-exact element
shall sometimes be said to be trivial in the cohomology, and therefore we
shall sometimes drift towards the standard abuse of terminology according
to which ‘being in the cohomology’ is understood as being Γ-closed and
Γ-exactness is expressed as being trivial in H(Γ). We believe, however,
that confusion is unlikely for the attentive reader.

Let us also comment on the content of H(Γ). Indeed, the reader may
now be wondering about the fact that, manifestly, on top of familiar
gauge invariant quantities built out of the original fields (such as the
curvatures, when our original fields are photons or gravitons), quantities
such as combinations of the antifields and antighosts also belong to the
cohomology of Γ. As such, and given our interpretation of it, those
quantities — e.g. φ∗i itself — should be declared to be gauge invariant
objects or ‘observables’, but they have no clear interpretation in terms
of our familiar fields. Therefore, when we shall solve for the first-order
deformation of the free master action by requiring it to be gauge invariant
(up to field redefinitions), those quantities will be part of the solution.
However, as we have seen, the master action gives a role to the antifields
as well, and hence those combinations containing them shall simply be the
part of the deformation which concerns the gauge symmetries, whereas
the quantities containing the original fields only shall be the deformations
of the original, free Lagrangian. Furthermore, as shall be made explicit
below, such a first order deformation of the free master action will have to
obey certain restrictions at the level of the gradings we have introduced,
so that any quantity shall not even be acceptable a priori.

With this being said, for the sake of completeness we should probably
comment on the role of the antighosts, but we shall simply anticipate here
that, much like the terms proportional to the antifields in the master action
are understood as being the gauge symmetries, the terms multiplying the
antighosts shall be seen to correspond to the deformations of the gauge
algebra ! Note that this fits quite nicely with the fact that the free master
action S0 does not contain any such terms, for the algebra of the free
theory is abelian.
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Step 4: Implementing Field Redefinitions via ∆ Operator
Step 3 had to do with Step 1, and the present step has to do with Step 2,
that is, with the antifields. Indeed, so far we have dealt with the gauge
invariance, and we further need to address the freedom granted by field
redefinitions. Again, this will be done by the introduction of an odd
operator, this time named ∆. The possibility of field-redefining our
deformations may sound like one which can be handled easily even in the
standard approach, but it is not, and although one may like to think of Γ
as being the main ingredient of the ultimate BRST differential s = Γ + ∆
(see Step 5), the inclusion of ∆ is in fact crucial. It will ensure that no
such redundancy is left unconsidered when passing to the cohomology of s,
describing our gauge invariant observables.

In order to properly deal with fields redefinitions we again follow the
fruitful paradigm according to which ‘physical’ combinations should be
associated with elements of the cohomology of our nilpotent operator ∆.
More precisely, this means that the quantities we wish to consider as
redundant (defining some equivalence class) should be associated with
trivial elements of the cohomology. The analogy with the previous step,
concerned with gauge invariance, is thus clear: in the same way as Γ-exact
objects are gauge variations of something else, which are the redundancies
corresponding to the possibility of performing gauge transformations; ∆-
exact objects will be associated with combinations which are on-shell zero,
that is, with field redefinitions. We thus would like to define the action of
∆ on our phase space in a way such that the EoMs for our original fields
are equal to ∆-variations of something else. Actually, the correct definition
is:

∆φ∗i ≡ Ei(φj), (4.8)

where Ei is defined to be precisely the EoM for φi, that is, δS(0) ≡ Eiδφi.
Moreover, starting from the above definition, the Bianchi identities (zeroth-
order Noether identities) endowing the EoMs are easily seen to enforce the
following relations:

∆(Riαφ∗i ) = 0. (4.9)

Then, it can be shown that having objects such as Riαφ∗i in the cohomology
of ∆ leads to inconsistencies in the formalism [181]. However, the cure to
this problem is obvious: if an object is ∆-closed and we wish to exclude it
from the cohomology, the way out is to make it ∆-exact. Accordingly, we
define

Riαφ
∗
i ≡ ∆C∗α. (4.10)
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Our antighosts finally get to play a role ! Note that, from the relation (4.8)
one concludes that ∆ is also Grassmann odd, just like Γ, and its nilpotency
is thus again guaranteed (and can be checked explicitly on any field).

The last definitions may have come as being a little ad hoc for the
reader, and we now comment on them. We begin with the last equation
hereabove. As we have pointed out, the necessity of having Riαφ

∗
i be

∆-exact comes from rather involved considerations about the consistency
of the formalism [103]. However, one might ask whether other options than
setting it to ∆C∗α exist. The obvious answer to this is that, in fact, it is
only for the sake of democracy that the antighosts have been introduced
before, and as a matter of fact we have never needed them so far. Thus,
one might think of the above relation in the following way: we are just
adding the antighosts to the game (assuming they had not been added
before) in order to express Riαφ∗i as a ∆-exact quantity, mush in the same
way as we simply added the antifields because we needed an object that
could source the gauge variations in the master action (see Step 2). Also,
let us point out that, given the index structure of the fields at hand, there
was no other option one could have thought of (this time considering the
antighosts as introduced beforehand).

Similarly, although the need for the EoMs to be ∆-exact is clear enough,
we have not justified why the antifields are precisely the ones appearing in
(4.8). The ‘sloppy’ answer to the previous question still applies, namely,
arguing that there is no other object we could have used. There is, of
course, a deeper answer behind the scenes but it is beyond the scope
of this presentation, and we thus refer again to [181] for further information.

The action of the ∆ operator on the rest of the original fields is derived
by acting with it on (4.8), which yields ∆φi = 0, and the action on
the ghosts then follows from applying ∆ to (4.6) and noticing that ∆
anticommutes with Γ, for they are both Grassmann odd. We are ready to
formulate our second cohomology, that of ∆:

H(∆) = {X ∈ phase space | ∆X = 0, X 6= ∆Y }. (4.11)

The physical meaning is, again, quite clear: the cohomology of ∆ is the
space of all quantities built out of the ΦA which are not themselves the
∆-variation of something else, namely, which are not proportional to the
EoMs (equivalently, which are not field redefinitions, or on-shell zero). We
are making progress towards a complete and refined formalization of what
we mean by an observable: a non-trivial, gauge invariant quantity identified



CHAPTER 4. BRST TECHNIQUES 108

with others up to field redefinitions and gauge variations. Evidently, the
correct operator which will compute for us the ‘physical’ cohomology
will need to combine both ∆ and Γ. That operator is called the BRST
differential, and is formally introduced in Step 5 below.

Finally, before going to the next step, let us note that as far as the
gradings are concerned, ∆ has agh(∆) = −1 and pgh(∆) = 0, as is easily
deduced from its action on the various fields and antifields.

Step 5: Combining Γ and ∆ Into the BRST Differential s
With the above considerations in mind we can finally construct our ultimate
nilpotent operator: the BRST differential s. The aim is that its cohomology
should correctly describe the notion of an observable. Differently put, H(s)
should be associated with the space of inequivalent, gauge-invariant and
non-trivial deformations S1 of the free master action S0. The definition
which computes the correct cohomology is the obvious one, namely:

s ≡ Γ + ∆, (4.12)

and one can again check its nilpotency, either by noticing that Γ and ∆
anticommute or directly. Its cohomology,

H(s) = {X ∈ phase space | sX = 0, X 6= sY }, (4.13)

is exactly the one computing all the consistent deformations up to field re-
definitions. Indeed, it is the space of combinations which are on-shell gauge
invariant but which are not themselves the gauge variation of something
else or a field redefinition of something else, as follows from simply inves-
tigating the cohomology conditions in light of the decomposition s = Γ+∆.

Let us now consider a consistent deformation of the free master action
into some deformed master action S, that is,

S = S0 + gS1 + g2S2 + · · · , (4.14)

where the ellipses stand for higher order deformations. In the generic case
where the deformation is possibly non-abelian, the gauge transformations
also get deformed in such a perturbative way, and S0 is assumed to be
invariant under the zeroth-order gauge transformations. As aforementioned,
we shall primarily address the problem of first-order deformations. Now,
as it is well known and also easy to check, for the first order piece S1 the
requirement of perturbative gauge invariance is really that of being invariant
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under the free gauge symmetries — this is equally true whether one
considers the master action or the original action. Thanks to this fact, that
we have implicitly used until now, we can analyze the problem of finding
out and classifying the consistent deformations by means of the BRST
differential s, which implements all at once the necessary requirements
of (free) gauge invariance and (free) on-shell triviality. The condition our
first-order deformation of the free master action must satisfy is then simply
expressed in purely cohomological terms:

S1 ∈ H(s). (4.15)

Finding all the consistent first-order deformations up to equivalency is
thus tantamount to computing the cohomology of s, which is a well-defined
mathematical problem. However, we shall now proceed to introducing
one last refinement of the cohomology we want to compute, and that is
the one of partial integration. Indeed, we shall always assume that the
deformations we seek are local,5 that is, they are spacetime integrals of
functionals of our phase space variables (the fields, antifields, . . . ) and of
derivatives thereof, provided the derivatives appear up to finite order only.
Our notation goes

S1 ≡
∫
a. (4.16)

Therefore, our problem can be (and will be) reformulated in terms of a,
namely, at the level of the (master) Lagrangian instead. Consequently,
provided we are interested in the local dynamics only, to which boundary
terms in the action never contribute, we have the freedom of performing
integrations by parts. Therefore, the relevant cohomology is not H(s)
but, rather, the cohomology of s modulo d, noted H(s|d), which is defined
as H(s) but with the extra freedom of performing partial integrations
when computing the BRST variations. The ultimate condition that our
deformation must satisfy then reads

a ∈ H(s|d), (4.17)

which is both necessary and sufficient. On top of this condition, our
deformation a might of course be required ‘by hand’ to preserve certain
global symmetries, such as Lorentz invariance or parity.

5 The fact that locality is compatible with the formalism was an issue at the time,
which the work [183] cleared out, giving a positive answer to the question of compatibility.
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Before we can start analyzing the above condition in detail there is one
more grading we need to introduce, namely, the total ghost number (or
simply the ghost number), equally defined on all fields as the pure ghost
number minus the antighost number. That we do so now is not an accident.
Indeed, the BRST differential s does not have neither definite pure ghost
number nor definite antighost number, as is inferred from the properties
of Γ and ∆. The correct quantum number which keeps track of the action
of s is the (total) ghost number, and in fact we find gh(s) = 1. The ghost
number of the various fields and antifields are straightforwardly computed,
and also given in Table 4.2 at the end of the section, together with the
action of the various operators on the various fields and antifields.

With our last quantum number, the total ghost number at hand, it is
time we mention a condition on the deformation we have been neglecting
so far, and it is that of the quantum numbers which it must have. Firstly,
let us note a simple yet important fact: just like s the free master action
does not have definite pure ghost or antighost number, but it has total
ghost number 0, which the reader shall easily verify. Note that this further
indicates that the BRST differential is the right operator to consider when
deforming the free master action but, more importantly, it means that S1,
and hence a must have total ghost number 0. While this condition has
been derived almost trivialy, its content is nevertheless not empty, and it
will much restrict the possible ingredients one may use to build a tentative
deformation term. Also, as we shall see the elements of H(s|d) with higher
ghost number shall also enter the game at some point. The subset of H(s|d)
having ghost number equal to k is called the cohomology at ghost number
k and it is denoted by Hk(s|d). The final word about the deformation is
thus the following:

a ∈ H0(s|d) . (4.18)

This condition repackages all the requirements of consistency and non-
triviality of the deformation

Step 6: Finding Deformations via Consistency Cascade
Having formulated in a precise way the cohomology we wish to compute,
we now explore how to do so in a clever way. An obvious thing to do is to
use the gradings we have introduced to further inspect the problem. It is
found that the antighost number is most useful in doing so, and the main
reason for that is the following theorem: let

a = a0 + a1 + a2 + · · · , (4.19)
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where agh(ai) ≡ i (note negative antighost numbers cannot occur). The
theorem, proved in [178] under very generic assumptions, states that
ai = 0 ∀ i > 2. This result is, in general, very strong and as we shall
see below it will be crucial in being able to analyze the deformation in
a systematic way. We point out, though, that for cubic deformations
the theorem is trivially proved, in the sense that there is no gh# = 0
combination of three of our fields and antifields of antighost number higher
than 2, as one can directly observe by considering the various quantum
numbers we have assigned each of our fields. In the sequel we shall confine
ourselves to cubic deformations.
Remark : as we are addressing first-order deformations anyway, the
reader might wonder what it means to further confine ourselves to cubic
deformations. Could one think of e.g. quartic first-order deformations ? In
fact, albeit this situation never arises in physics it is nevertheless a logical
possibility. In [184] it has been proved that such deformations never occur,
up to spin 5 and argued to be true for all spins. In the present approach
we shall not prove the analogous result and simply make the assumption
that our first-order deformations are cubic, further arguing this hypothesis
to be very reasonable.

The above result is more useful than it might seem at first glance.
First of all, the interpretation of the three pieces appearing in the above
decomposition of a is much clear: a0 is the deformation of the Lagrangian,
a1 is the deformation of the gauge symmetries and a2 is the deformation of
the gauge algebra ! This can be verified by noticing that a0 contains only
the original fields (agh# = 0), a1 contains one original field, one ghost and
one antifield (agh# = 1) and a2 contains two ghosts and one antighost
(agh# = 2) — and once again recalling that a has total ghost number
zero.

Secondly, with the above decomposition in mind the cohomology condi-
tion

sa+ d(...) = (Γ + ∆)(a0 + a1 + a2) + d(...) = 0, (4.20)
when analyzed antighost number by antighost number, gives rise to three
independent conditions:

Γa2
.= 0, (4.21a)

∆a2 + Γa1
.= 0, (4.21b)

∆a1 + Γa0
.= 0. (4.21c)

These conditions form what is known as the consistency cascade, and we
have used a new notation: ‘ .=’ is understood as the standard equality up to
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total derivatives. Moreover, another general theorem [178] teaches us that
one can always assume Γa2 = 0, which is stronger than the same condition
up to total derivatives.

The above consistency cascade will be our main tool in finding out
consistent deformations, and it is worth commenting on. The equation
(4.21c) for a0 is familiar: it expresses the fact that the deformation of
the Lagrangian, a0, is invariant up to field redefinitions ∆a1 and total
derivatives. The two remaining equations are less easily interpreted, but
their role is to ensure first-order consistency of the deformation of the
Lagrangian. Intuitively, the situation is clear: (4.21b) involves a1 and a2,
and is thus ensuring that the deformation of the gauge symmetries induced
by a0 closes to a gauge-algebra deformation a2. Then, Equation (4.21a)
ensures consistency of the gauge-algebra deformation a2. In fact, one
can check that (4.21b) is the first-order projection of the condition that
the gauge symmetries close to some algebra and (4.21b) is a consistency
condition for the gauge-algebra deformation, again projected to first order
in the deformation.

Having established the above consistency cascade, we are in principle
ready to attack the problem of computing H0(s|d). However, as mentioned
at the beginning of this section, the BRST formalism will allow us to
tackle that problem backwards. This means that, instead of classifying
the a0’s satisfying Equation (4.21c) and then working our way up the
consistency cascade, we shall rather classify the a2 satisfying Equation
(4.21a) and from there make progress all the way down to the corre-
sponding, consistent a0. Such is the power of the BRST framework: we
classify the consistent gauge-algebra deformations first and from there
extract, by solving the consistency cascade (first for a1 and then for a0),
the corresponding Lagrangian deformations. In this fashion the search
for consistent deformations is rendered systematic and involves only the
solving of precise cohomology equations. Also note that, by construction,
a byproduct of this method is that the gauge-symmetry and gauge-algebra
deformations corresponding to some found a0 are readily available.

Let us discuss non-abelian vertices first. The strategy is the following:
classify all the a2 satisfying Equation (4.21a). Take a linear combination
of all of them with arbitrary coefficients and plug it into Equation (4.21b).
Then solve Equation (4.21b) for a1. Finally, plug the found a1 into Equation
(4.21c) and solve for a0: it is the non-abelian deformation of the Lagrangian
we were looking for.
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Actually, the classification of a2 is further constrained by an equivalence
relation. Indeed, two different a2, both satisfying Equation (4.21a), might
yield the same a0. This simply stems from the fact that, so far, in addressing
the computation of H0(s|d) we have only analyzed the condition that a
should be s-closed modulo d, and in (4.20) we have expanded it in antighost
number. The condition of non-triviality in the cohomology should also be
taken into account, and this means that the a candidates are defined up to
the equivalence relation given by the addition of s-exact terms modulo d,
that is, terms of the form sm+ dn. Now, as the reader shall easily verify
upon recalling that m and n should also have total ghost number zero (and
also stop at antighost number 2), such an equivalence relation yields the
following three equivalence relations (∼) for the different components of a:

a′2 ∼ a2 + Γb2 + dc2, (4.22a)
a′1 ∼ a1 + ∆b1 + dc1, (4.22b)
a′0 ∼ a0 + ∆b0 + dc0. (4.22c)

This means that, when listing all the a2 satisfying Equation (4.21a) we do
so up to the above equivalency, and indeed one straightforwardly checks
that two a2’s differing by Γ-exact terms modulo d yield the same a0, if any.
Those would thus be two equivalent ways of writing down the gauge-algebra
deformation induced by some given a0.

We now address abelian vertices, that is, deformations a for which
the a2 part is trivial, i.e. Γ-exact up to total derivatives. Now comes
of use another theorem: when a2 is trivial one can always choose it to
be zero, and hence the consistency cascade starts one step lower, with
Equation (4.21b) at a2 = 0, that is, Γa1

.= 0 [179]. Even better, the
theorem further guarantees that one can chose a1 to be exactly Γ-closed,
and not only modulo d. The abelian vertices which nonetheless deform the
gauge transformations are thus found by classifying all the inequivalent
a1’s which are Γ-cocycles. Again, two equivalent a1’s, differing by ∆-exact
terms up to total derivatives, are seen to yield the same a0.

Last of all we address the ‘completely’ abelian vertices, namely, those
that not only preserve the gauge algebra but also leave the gauge trans-
formations undeformed. This kind of deformations will have zero a2 and
trivial a1, that is, the a1 piece will be ∆-exact modulo d. In that case one
can evidently remove a1 so to be left with only Equation (4.21c) at a1 = 0,
to be solved for a0, i.e. Γa0

.= 0, which is to be solved in light of the equiva-
lence relation for a0, simply given by field redefinitions and total derivatives.
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We are almost at the end of our step-by-step guide to the BRST-
Antifield reformulation of the deformation problem (in the free, irreducible
case), and shall now make some comments about it. One point worth
highlighting is the crucial role played by the cohomology of Γ at antighost
number 2, which is indeed the one computing the inequivalent a2 candi-
dates in the non-abelian case.6

Also, there is a subtlety in the non-abelian case which we should
comment on right away, and which we have overlooked so far in order
not to crowd our first approach of the consistency cascade, but which is
nonetheless an important point. Let us consider some Γ-closed a2 and
plug it into Equation (4.21b) in order to solve for a1. The subtlety is the
following: the solution for a1, if it exists, is in fact defined up to Γ-closed
terms only. Indeed, if two a1’s differ by Γ-closed terms they will correspond
to the same a2. The solution a1, if it exists, is then usually denoted as

a1 = â1 + ã1, (4.23)

where the Γ-closed term ã1 is called the ambiguity and the non-ambiguous
piece â1 is the solution found to solve Equation (4.21b) for our candidate
a2. Now comes the complication: when plugging the above a1 into the
last consistency equation, ∆a1 + Γa0

.= 0, it might be that a solution for
a0 only exists for some ambiguity ã1, and in general that is the case. In
fact, this is the way the ambiguity is fixed. The computational intricacy
is then that, in general, it might be difficult to either guess the correct
ambiguity or express it into its most general form to then plug it into
the last equation. For non-abelian vertices the situation is thus usually
the following: determining whether a candidate a2 has a corresponding a1
is usually not extremely difficult but, if there is such an a1, finding out
the correct ambiguity (or establishing that no a0 solves the last equation
for the found a1) can be tricky, and it is the most non-trivial part of the
procedure. Although this part of the procedure is still ‘systematic’, in
the sense that one can just try the most general Γ-closed ã1 (with correct
quantum numbers) and then plug it into ∆a1 + Γa0

.= 0 in order to solve
for a0, it is nonetheless the least algorithmic part of the work.

Finally, before addressing second-order consistency in the next step, let
us comment on a procedural point, having to do with abelian vertices. For
the latter, the equation to solve is Γa0

.= 0, as we have just seen. However,
it might not be the easiest one to solve and, as it usually turns out, it

6 Actually, as has been emphasized, one can choose a2 to be strictly Γ-closed, and
not only Γ-closed modulo d.
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is easier to allow for ∆-exact terms in Γa0. It is then easier to find the
inequivalent a0’s satisfying an equation of the form Γa0

.= ∆(...). However,
the corresponding a1 is then in general not equal to zero, but one can
check that, because a1 is trivial, it can always be canceled by the addition
of ∆-exact terms in a0. By performing field redefinitions at the level of
our vertex one can thus render manifest the invariance of it up to total
derivatives only (or do the inverse thing). Differently put, depending on
the chosen ‘representation’ for our vertex, the absence of deformation of
the gauge transformations (triviality of a1) may appear explicitly (a1 = 0)
or not (a1 6= 0).

Step 7: Second-Order Consistency and the Antibracket
Everything we have mentioned so far had to do with first-order consistency.
In the completely abelian case, when only the Lagrangian is deformed, no
quartic or higher-order terms are needed and the consistency is automatic
to all orders in perturbation theory. However, as is well known, in the non-
abelian case (and in the ‘intermediate’ case too) the situation is different;
either the vertex is consistent to second order only up to the addition of a
quartic term, S2, or it is obstructed. In general, determining whether a
non-abelian vertex is obstructed or not and, in the latter case, determining
the quartic term that needs be added in order to render the theory fully
consistent is rather tedious. However, it is remarkable that the BRST-
Antifields also provides one with just the right tool to deal with this issue,
and that tool is called the antibracket, which we now introduce.

One defines the following odd, symplectic structure on the space of
functionals of our fields and antifields:

(X,Y ) ≡ dRX
dΦA

dLY
dΦ∗A

− dRX
dΦ∗A

dLY
dΦA . (4.24)

This definition gives (ΦA,Φ∗B) = δAB , which is real. Because a field and
its antifield have opposite Grassmann parity, it follows that if ΦA is real,
Φ∗B must be purely imaginary, and vice versa. Note that the antibracket
satisfies the graded Jacobi identity.

To understand the usefulness of the antibracket, we first note the
following peculiar and a priori anodyne fact: the action of the free BRST
differential s can be rephrased as taking the antibracket with the free
master action S0, that is,

sF = (S0, F ), (4.25)
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for any phase-space functional F . For the reader unfamiliar with the
BRST formulation in the context of quantizing gauge theories, this relation
might come as a surprise, even after proving it to be true (which is of
little difficulty). In fact, there is even more to it as we shall see and
the antibracket will shed a whole new light on the framework we have
introduced so far. Indeed, one can actually prove the equivalent of the
above statement for the fully deformed theory too ! Let us denote the
completely deformed BRST differential by s, so that7

s ≡ s+ s1 + s2 + · · · , (4.26)

where for example s1 is the sum of some Γ1, implementing the deformed
piece brought in by a1, and some ∆1, which implements the contribution
to the free EoMs induced by a0. The full statement is then

sF = (S, F ), (4.27)

which can be seen to hold by virtue of the Noether identities and the
higher-order gauge-structure equations [181].

We are now ready to formulate an equation which has been the cor-
nerstone of the BRST approach to Gauge Theory. Indeed, the full master
action S is invariant under the full BRST differential s which, by virtue of
the above relation reads

(S, S) = 0. (4.28)

It is the so-called (classical) master equation, which contains all the infor-
mation about the Noether identities and the higher-order gauge structure
equations. It remarkably repackages all the conditions defining a fully
consistent deformation into a ‘single’, geometrical equation. This structure
allows for a rephrasal of many a property. For example, in this way one can
see the nilpotency of s as a mere consequence of the graded Jacobi identity
for the antibracket. Furthermore, let us also point out that the above odd
structure is somehow related to the more familiar Poisson bracket, and
to other structures as well [185], but in the present reminder we shall not
dwell on these interesting questions.

To see how this new structure helps addressing the problem of second-
order consistency let us split the master equation above in terms of the
coupling constant g by inserting in it the perturbative expression (4.14).

7 Note that, to be homogeneous in our use of notation we should have called the
full BRST operator s = s0 + s1 + · · ·, but as the zeroth-order part is the most often
used piece we have chosen to be more economical.
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The first orders give us

(S0, S0) = 0, (4.29a)
(S0, S1) = 0, (4.29b)
(S1, S1) = −2(S0, S2). (4.29c)

The first equation hereabove is satisfied by assumption: it can be rewritten
as sS0 = 0, which is simply the statement of invariance of the free master
action under the (free) BRST differential. The second equation translates
to sS1 = 0, which is the integrated version of the cohomological condition
written down in (4.18). As for the third one, it expresses in a compact
way the condition that S1 must satisfy so to be consistent at second order,
where it is completed by a quartic term S2. It determines whether or
not, in a local theory, a consistent first-order deformation gets obstructed
at the second order. One thus sees that the second-order consistency is
controlled by the local cohomology group H1(s), for (S1, S1) can be seen
to be of ghost number 1. More precisely, one easily checks that (S1, S1) is
BRST-closed (by the graded Jacobi identity), and what the third equation
hereabove does is to further require it to be trivial in H1(s). Keeping in
mind that s annihilates (S1, S1), one may thus rewrite the second order
consistency condition as

(S1, S1) /∈ H1(s). (4.30)

Moreover, it can be shown that H1(s) is also the cohomology group
controlling higher-order deformations. However, more often than not in
gauge theory a deformation is either fully consistent, that is, to all orders,
or consistent only at the cubic level, and hence fails to satisfy the above
requirement. Note that in the above condition it is truly the cohomology
of s which is used, not the cohomology modulo d, so that one should
expect strong conditions to arise from it.

Now, the introduction of the antibracket structure for the sole purpose
of addressing the second order consistency may seem excessive to the
reader. However, as we shall see, the second order problem will be straight-
forwardly solved upon using the above condition (see next chapters). But
there is (even) more to the antibracket, as we have mentioned already.
Indeed, with such a symplectic structure one can actually reformulate the
whole problem of deformation of the free master action. Indeed, as we
have seen the free master action does satisfy the master equation (4.28),
and the full deformation should also fulfill it. The problem of consistently
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deforming a free theory can thus be reformulated as the problem of
deforming the solution S0 to the master equation, and this allows for a
different mathematical approach to the problem, which has proved much
useful [186]. More generically speaking, the BRST reformulation presented
here has allowed for a systematic study of many aspects of Gauge Theory,
as for example that of [187], where the above techniques are used to
discard as inconsistent theories involving a colored graviton. Let us also
point out the work [188], where the simplest four-dimensional Supergravity
is proved to be unique by making use of the formalism presented here.

We end this section with a reminder of the quantum numbers for our
fields and antifields as well as the action of the different operators on them.
In the free, irreducible case of interest to us they read as follows.

Table 4.1: Properties of the Various Fields, Antifields and Operators

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
φi RiαCα 0 0 0 0 0
Cα 0 0 1 0 1 1
φ∗i 0 Ei[φj ] 0 1 −1 1
C∗α 0 Riαφ

∗
i 0 2 −2 0

4.3 QED: a Pedagogical Example

The BRST-Antifield reformulation of the interaction problem has been
introduced in the previous section for free, irreducible theories. Albeit we
have tried to make such an introduction as pedagogical as possible, we
believe the explicit treatment of a familiar example could be of use to the
reader, before moving to the next chapters where we deal with higher-spin
fields. Indeed, in Chapter 5 we begin by studying the electromagnetic
couplings of a spin-3

2 Rarita–Schwinger field, where some features typical
of higher-spin couplings will already appear, and in the present section
we thus address the more familiar setup of QED. In fact, albeit the term
‘higher spin’ is usually understood as referring to spins greater than two,
the spin 3

2 is somewhat exceptional: it is somewhat ‘standard’ regarding
its gravitational coupling (found in Supergravity) but it counts as ‘higher’
when its electromagnetic coupling is addressed. These considerations are
expanded on in the corresponding chapters below. Also, to be completely
honest we should point out that the following example of QED is perhaps
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a little treacherous, in the sense that there is no gauge invariance for the
fermion and hence the problem of building consistent interactions becomes
much, much simpler as we shall see. We believe it is nevertheless a good
place to start applying our formalism, and it is certainly interesting, if only
because it provides a point to compare our forthcoming higher-spin study
with.

Let us, then, construct all the off-shell 1−1
2−

1
2 cubic vertices by employing

our beloved BRST–BV cohomological methods. Our assumptions are
Lorentz invariance, Parity invariance and locality. The starting point is
the free theory, which contains a photon Aµ and a massless electron field
ψ, described by the action

S(0)[Aµ, ψ] =
∫

dDx
(
− 1

4F
2
µν − iψ̄ 6∂ψ

)
, (4.31)

which enjoys the abelian gauge invariance

δλAµ = ∂µλ, (4.32)

and no gauge invariance for ψ.
For the Grassmann-even bosonic gauge parameter λ, we introduce

the Grassmann-odd bosonic ghost C, and no ghost corresponding to ψ is
introduced for the latter enjoys no gauge invariance.8 Therefore, the set of
fields becomes

ΦA = {Aµ, C, ψ}. (4.33)

For each of these fields, we introduce an antifield with the same algebraic
symmetries in its indices but opposite Grassmann parity. The set of
antifields thus reads

Φ∗A = {A∗µ, C∗, ψ̄∗}. (4.34)

Now we construct the free master action S0, which is an extension of
the original gauge-invariant action (5.1) by terms involving ghosts and
antifields. Explicitly,

S0 =
∫

dDx
(
− 1

4F
2
µν − iψ̄ 6∂ψ +A∗µ∂µC

)
. (4.35)

Notice how the antifields appear as sources for the ‘gauge’ variations, with
gauge parameters replaced by corresponding ghosts. It is easy to verify
that (5.5) indeed solves the master equation (S0, S0) = 0. The different
gradings and Grassmann parity of the various fields and antifields, along
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Table 4.2: Properties of the Various Fields & Antifields (n = 1)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
Aµ ∂µC 0 0 0 0 0
C 0 0 1 0 1 1
A∗µ 0 −∂νFµν 0 1 −1 1
C∗ 0 −∂µA∗µ 0 2 −2 0
ψ 0 0 0 0 0 1
ψ̄∗ 0 −iψ̄ ~6∂ 0 1 −1 0

with the action of Γ and ∆ on them, are given in Table 4.3 below.

The cohomology of Γ is isomorphic to the space of functions of

• The undifferentiated ghost C,

• The antifields {A∗µ, C∗, ψ̄∗} and their derivatives,

• The curvature Fµν and its derivatives,

• The field ψ.

Let us now classify the consistent couplings. We start by the non-
abelian ones. In fact, it is easily seen that there can be no consistent
non-abelian (cross) coupling in the present setup. Indeed, the construction
of a candidate a2 involving either ψ or ψ̄∗ fails at the level of the quantum
numbers already, as can be derived by looking at the above table and
further recalling that a2 must be a cubic combination of total ghost number
zero and antighost number two. From those considerations only, one sees
that any a2 should be of the schematic form ghost × ghost × antighost,
and as we have no ghost corresponding to ψ (because it enjoys no gauge
invariance) one can only construct self-coupling a2 candidates for Aµ. We
are not interested in those (which lead to the familiar Yang–Mills cubic
term [189] when the photon is colored), and wish to look at cross couplings
only. Therefore, the non-abelian case is covered, and we have found no
consistent such couplings.

Let us now address the abelian couplings. As mentioned in the previous
section, we should first investigate vertices which do not deform the gauge

8 Here is where our setup is a little misleading in illustrating the BRST methods, for
only one ghost needs be introduced, and that will drastically simplify certain aspects.
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algebra but nevertheless deform the gauge transformations, and then move
on to ‘completely’ abelian ones, namely those vertices which deform only
the Lagrangian. In fact, in Section 5.4 we prove that the ‘in-between’
case cannot occur for the electromagnetic coupling of higher-spin gauge
fermions. However, the present setup evades that theorem because of the
absence of a ghost for the fermion field, and we shall find hereafter that
there exists indeed a coupling which deforms the gauge transformations
but is nevertheless abelian.

In order to search for the latter couplings with trivial a2 but non-trivial
a1, let us classify the possible gauge-transformations deformations. They
should have antighost number 1 and total ghost number zero, and further
be cubic in our fields and antifields. Evidently, it should also be Lorentz
invariant and have all spinor indices contracted (and we further require it
to preserve Parity). The only zero-derivatives such combination is easily
concluded to be

a1 = gψ̄∗ψC, (4.36)

If such a gauge-symmetry deformation indeed does not deform the gauge
algebra, it should satisfy Γa1

.= 0 (see previous section), which indeed it
does. If it corresponds to a vertex, it must also be such that ∆a1 +Γa0

.= 0.
One easily realizes that, only when the coupling constant g is imaginary
does the above deformation get lifted to a Lagrangian vertex. Indeed,
making use of partial integration the cohomology equation is easily solved
for a0, which is found to be

a0 = igψ̄ 6Aψ. (4.37)

One should now investigate the fate of a1 candidates containing deriva-
tives. However, those are immediately ruled out as trivial. To see it, let
us first make clear that the antifield in a1 can always be assumed to be
undifferentiated, as a1 is defined up to total derivatives only. Now, if a
derivative acts on the ghost, it would produce the gauge variation of Aµ,
which is by definition a Γ-exact object, and because Γ does not act on ψ
nor ψ∗, this situation would correspond to a Γ-exact a1 (one can pull out
Γ to make it act on the whole a1 above), and this would correspond to a
∆-exact a0, which is trivial (see Step 6 of the previous Section). If, on the
other hand, a derivative acts on ψ, the following argument can be used: this
derivative cannot come alone (because of Lorentz invariance), and there are
no indices on the involved fields, so that it must be contracted either with
another derivative or with a γ-matrix. Now, because no derivatives can
act on the ghost (see above) and because � = 6∂ 6∂, both these situations
give rise to the EoMs in a1, that is, to ∆ψ∗ = −iψ∗ ~6∂ or combinations
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thereof. This does not generically make the whole deformation ∆-exact,
because the ∆-operator acts on ψ̄∗, but one can check that the cohomology
equation ∆a1 + Γa0

.= 0 is then either not satisfied (g ∈ C\R), or it is
satisfied (g ∈ R) but the resulting a0 is ∆-exact. Considering even more
derivatives only makes it worse, and we thus conclude that there is only
one vertex (4.37) which deforms the gauge transformations, and it has zero
derivatives.

Our search is now narrowed down to the couplings which preserve the
gauge transformations. The only part of the deformation that we need
care about is thus a0, and the a1 piece can always be chosen to be zero
(see previous section). We are left with the equation Γa0

.= 0 to be solved,
and as explained in the steps above we shall alternatively use the weaker
equation Γa0

.= ∆(...). We start with vertices containing no spacetime
derivatives. We directly see that the only Lorentz-invariant possibility is

a0 = ψ̄ 6Aψ, (4.38)

which obeys Γa0
.= ∆(...). This is the vertex we have already found above.

Note that, if we had not found this vertex previously, we could be tempted
to conclude that the latter is completely abelian. However, because we
have used the ‘weaker equation’ Γa0

.= ∆(...) here, that is not guaranteed,
and in this instance it is of course not true. We thus take this opportunity
to recall that, when using the ‘weaker equation’, one should check whether
the corresponding a1 is trivial, that is, whether it can be canceled by field
redefinitions at the level of the Lagrangian.

We then address the vertices containing one derivative. An obvious
possibility is the term built in terms of the curvatures (in this case there is
only one curvature, namely that of Aµ, for the fermion has no spacetime
indices):

a0 = ψ̄ 6Fψ, (4.39)

which is strictly gauge invariant (not even modulo d). The only other
Lorentz-invariant combination with one derivative is ∂ · A ψ̄ψ, but it is
easily seen to violate the consistency equation Γa0

.= 0. Furthermore,
it is easily proved that there are no higher-derivative candidates, for all
such Lorentz-invariant combinations would be on-shell trivial up to partial
integration, as the reader shall easily convince himself of.

Let us comment on the nature of the vertices. The last one is clearly
the Born–Infeld-like one, namely, it is a product of curvatures and is
strictly gauge invariant. The other one is seen to be different: whatever
field redefinition we perform on it the best we can do is bring it to a
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form in which it is on-shell gauge invariant modulo d. That vertex is also
the one which completes the free kinetic term for the fermion, turning
it into the familiar expression involving the covariant derivative: ψ̄ 6Dψ,
with Dµ ≡ ∂µ − igAµ. The said cubic coupling is thus the one resulting
from covariantizing the derivatives in the fermion kinetic term, namely, the
so-called minimal coupling, which in the present setup has zero derivatives.

As we shall see in Chapter 5, for higher-spin fields the situation is very
different, and in fact minimal couplings thereof will never exist on their
own. Such a feature of higher-spin interactions is actually generic on flat
spacetimes, and as we will see it also holds true for gravitational couplings,
studied in Chapter 6. Furthermore, in the following study of higher-spin
interactions with Electromagnetism and Gravity, there will be no couplings
which deform the gauge transformations but not the gauge algebra (see
Section 5.4 and Appendix D.4). Albeit simple, for future comparison it is
useful to summarize the results of the present section, and we give them
in the table hereafter.

Table 4.3: Summary of 1− 1
2−

1
2 Vertices

# of derivatives Vertex Nature Exists in
0 ψ̄ 6Aψ 1

2 -Abelian D ≥ 4
1 ψ̄ 6Fψ Abelian D ≥ 4





CHAPTER 5
Electromagnetic Vertices

In this chapter, we consider the coupling of a massless fermion of arbitrary
spin to a U(1) gauge field, in flat spacetime of dimension D ≥ 4. We do
not consider mixed-symmetry fields, and restrict our attention to totally
symmetric Dirac fermions ψµ1...µn of spin s = n+ 1

2 . For these fields, we
employ the powerful machinery of the BRST–BV cohomological methods
(recalled in the previous chapter) to construct systematically consistent
interaction vertices, with the underlying assumptions of locality, Poincaré
invariance and conservation of Parity, and without relying on other
methods. The would-be off-shell 1−s−s cubic vertices will complement
their bosonic counterparts constructed in [184].

The organization of the chapter is as follows. We construct consistent
off-shell 1−s−s vertices in the following three Sections. In particular,
Section 5.1 considers the massless spin-3

2 field, while Section 5.2 pertains
to s = 5

2 , and Section 5.3 generalizes the results, rather straightforwardly,
to arbitrary spin s = n+ 1

2 . Then, in Section 5.4, we prove an interesting
property of the vertices under study: an abelian 1−s−s vertex, i.e. a
1−s−s vertex that does not deform the original abelian gauge algebra
never deforms the gauge transformations. Finally, Section 5.5 investigates
whether there are obstructions to the existence of second-order deforma-
tions corresponding to the non-abelian vertices, i.e. if they are consistent
beyond the cubic order. Our comments are found, together with those
concerning Chapter 6 about gravitational couplings, in Chapter 7. Various
appendices present some useful technical details, much required for the
following calculations.

125
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5.1 Electromagnetic Coupling of Spin 3/2

In this section we construct parity-preserving off-shell 1− 3
2−

3
2 vertices by

employing the BRST–BV cohomological methods. The spin- 3
2 system is

simple enough so that one can implement the BRST deformation scheme
with ease, while it captures many non-trivial features that could serve as
guidelines as one moves on to higher spins. As the formalism has been
recalled in Chapter 4 and, moreover, the simple example of QED has been
treated explicitly in Section 4.3, we shall introduce the BRST elements in
a rather straightforward way hereafter.

The starting point is the free theory [190], which contains a photon Aµ
and a massless Rarita–Schwinger field ψµ, described by the action

S(0)[Aµ, ψµ] =
∫

dDx
(
− 1

4F
2
µν − iψ̄µγµνρ∂νψρ

)
, (5.1)

which enjoys the two abelian gauge invariances:

δλAµ = ∂µλ, δεψµ = ∂µε. (5.2)

For the Grassmann-even bosonic gauge parameter λ, we introduce the
Grassmann-odd bosonic ghost C. Corresponding to the Grassmann-odd
fermionic gauge parameter ε, we have the Grassmann-even fermionic ghost
ξ. Therefore, the set of fields becomes

ΦA = {Aµ, C, ψµ, ξ}. (5.3)

For each of these fields, we introduce an antifield with the same algebraic
symmetries in its indices but opposite Grassmann parity. The set of
antifields is

Φ∗A = {A∗µ, C∗, ψ̄∗µ, ξ̄∗}. (5.4)

Now we construct the free master action S0, which is an extension of
the original gauge-invariant action (5.1) by terms involving ghosts and
antifields. Explicitly,

S0 =
∫

dDx
(
− 1

4F
2
µν − iψ̄µγµνρ∂νψρ +A∗µ∂µC + (ψ̄∗µ∂µξ − ∂µξ̄ψ∗µ)

)
,

(5.5)
where the antifields appear as sources for the gauge variations, with gauge
parameters replaced by the corresponding ghosts. It is easy to verify
that (5.5) indeed solves the master equation (S0, S0) = 0. The different
gradings and Grassmann parity of the various fields and antifields, along
with the action of Γ and ∆ on them, are given in Table 5.1.
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Table 5.1: Properties of the Various Fields & Antifields (n = 1)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
Aµ ∂µC 0 0 0 0 0
C 0 0 1 0 1 1
A∗µ 0 −∂νFµν 0 1 −1 1
C∗ 0 −∂µA∗µ 0 2 −2 0
ψµ ∂µξ 0 0 0 0 1
ξ 0 0 1 0 1 0
ψ̄∗µ 0 − i

2 Ψ̄αβγ
αβµ 0 1 −1 0

ξ̄∗ 0 ∂µψ̄
∗µ 0 2 −2 1

For the spin- 3
2 field the Fronsdal tensor is

Sµ = i [ 6∂ψµ − ∂µ 6ψ] = −iγνΨµν , (5.6)

i.e. the γ-trace of the curvature. The cohomology of Γ is isomorphic to
the space of functions of

• The undifferentiated ghosts {C, ξ},

• The antifields {A∗µ, C∗, ψ̄∗µ, ξ̄∗} and their derivatives,

• The curvatures {Fµν ,Ψµν} and their derivatives,

and we recall that this cohomology is discussed in detail in Appendix E.
Let us now address the deformations of the above free master action.

In Subsection 5.1.1 we address non-abelian vertices, while in Subsection
5.1.2 we turn to the abelian ones.

5.1.1 Non-Abelian Vertices
The non-abelian vertices are the ones that deform the gauge algebra, that
is, the ones for which to corresponding a2 is non-trivial. As explained in
Chapter 4, we shall start by classifying all such gauge-algebra deformations,
on the basis of quantum numbers and non-triviality, and shall then work our
way down the consistency cascade (4.21) in order to find the corresponding
a1 and a0, if any.
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Gauge-Algebra Deformation

Let us consider, for the first-order deformation, the most general form of a2 —
the term with agh# = 2, that contains information about the deformation
of the gauge algebra. a2 must satisfy Γa2 = 0, and be Grassmann even
with gh(a2) = 0. Besides, we require that a2 be a parity-even Lorentz
scalar. Then, the most general possibility is

a2 = −g0C
(
ξ̄∗ξ + ξ̄ξ∗

)
− g1C

∗ξ̄ξ, (5.7)

which is a linear combination of two independent terms: one contains both
the bosonic ghost C and the fermionic ghost ξ, while the other contains
only ξ but not C. The former one potentially gives rise to minimal coupling,
while the latter could produce dipole interaction. This can be understood
by first noting that the corresponding Lagrangian deformation, a0, is
obtained through the consistency cascade (4.21a)–(4.21c). From the action
of Γ and ∆ on the fields and antifields, it is then easy to see that the
respective a0 would contain no derivatives and one derivative respectively.

Deformation of Gauge Transformations

Next, we would like to see if a2 can be lifted to certain a1, i.e. with the
given a2, if one could solve (4.21b) for some a1. Indeed, one finds that 1

∆a2 = + g0C
[
(∂µψ̄∗µ)ξ − ξ̄(∂µψ∗µ)

]
+ g1(∂µA∗µ)ξ̄ξ

=− g0
[
ψ̄∗µ∂µ(Cξ)− ∂µ(Cξ̄)ψ∗µ

]
− g1A

∗µ∂µ(ξ̄ξ) + d(...)
=− Γ

[
g0(ψ̄∗µψµ + ψ̄µψ

∗µ)C + g0(ψ̄∗µAµξ − ξ̄Aµψ∗µ)
+g1A

∗µ(ψ̄µξ − ξ̄ψµ)
]

+ d(...).

(5.8)

Therefore, in view of Eq. (4.21b), one must have

a1 = g0
[
ψ̄∗µ(ψµC + ξAµ) + h.c.

]
+ g1A

∗µ(ψ̄µξ − ξ̄ψµ) + ã1, Γã1 = 0,
(5.9)

where the ambiguity, ã1, belongs to the cohomology of Γ. Its most general
form will be

ã1 =
[
ψ̄∗µXµνρΨνρ

]
C +

[
ψ̄∗µYµνρF

νρ + Ψ̄µνZµνρA
∗ρ] ξ + h.c., (5.10)

where X,Y and Z may contain derivatives and spinor indices.
1 Here one also needs ∆ξ∗ = −∂µψ∗µ, Γψ̄µ = −∂µξ̄, which follow from Table 5.1.
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Lagrangian Deformation

We note that ∆a1 must be Γ-closed modulo d, since

Γ(∆a1) = ∆(−Γa1) = ∆ [∆a2 + d(...)] = d(...). (5.11)

Condition (4.21c), however, requires that ∆a1 be Γ-exact modulo d. The
∆-variation of neither of the unambiguous pieces in a1 is Γ-exact modulo
d, and the non-trivial part must be killed by ∆ã1, if (4.21c) is to hold
at all. But such a cancellation is impossible for the first piece, i.e. for
the would-be minimal coupling, simply because ã1 contains too many
derivatives. Therefore, minimal coupling is ruled out, and we must set
g0 = 0. Thus, we have

∆a1 = −Γ(g1ψ̄µF
µνψν)− 1

2g1F
µν(Ψ̄µνξ − ξ̄Ψµν) + ∆ã1 + d(...). (5.12)

The second term on the right-hand side is in the cohomology of Γ modulo
d, and must be canceled by ∆ã1. To see if this is possible or not, we make
use of the identity

ηµν|αβ ≡ 1
2
(
ηµαηνβ − ηµβηνα

)
= 1

2γ
µνγαβ−2γ[µην][αγβ]− 1

2γ
µναβ (5.13)

to rewrite the term as

Fµν(Ψ̄µνξ − ξ̄Ψµν) = + 1
2
(
6Ψ̄ 6F − 4Ψ̄µνγ

µF νργρ
)
ξ

− 1
2 ξ̄
(
6F 6Ψ− 4γµFµαγβΨαβ

)
− 1

2
(
Ψ̄µνγ

µναβFαβξ − ξ̄FµνγµναβΨαβ

)
= + 1

2
(
6Ψ̄ 6F − 4Ψ̄µνγ

µF νργρ
)
ξ (5.14)

− 1
2 ξ̄
(
6F 6Ψ− 4γµFµαγβΨαβ

)
+ Γ

(
ψ̄µγ

µναβFαβψν
)

+ d(...).

Notice that we have rendered the second line in the first step Γ-exact
modulo d by virtue of the Bianchi identity ∂[µFνρ] = 0. We now plug
Eq. (5.14) into (5.12) and obtain

∆a1 =− Γ(g1ψ̄µF
+µνψν) + ∆ã1 + d(...) (5.15)

− 1
4g1

[(
6Ψ̄ 6F − 4Ψ̄µνγ

µF νργρ
)
ξ − ξ̄

(
6F 6Ψ− 4γµFµαγβΨαβ

)]
.

Now, the most important point is that, the terms in the second line of the
above expression are ∆-exact, so that it is consistent to set

∆ã1 = 1
4g1

[(
6Ψ̄ 6F − 4Ψ̄µνγ

µF νργρ
)
ξ − ξ̄

(
6F 6Ψ− 4γµFµαγβΨαβ

)]
.

(5.16)
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This is tantamount to setting

ã1 = ig1
(
ψ̄∗µγνFµν − 1

2(D−2) 6 ψ̄
∗ 6F
)
ξ + h.c., (5.17)

which, of course, is in the cohomology of Γ. Eq. (5.15) then reduces to

∆a1 = −Γ(g1ψ̄µF
+µνψν) + d(...), (5.18)

so that we have a consistent Lagrangian deformation a0. To summarize,
we have

a0 = g1ψ̄µF
+µνψν , a1 = g1A

∗µ(ψ̄µξ − ξ̄ψµ) + ã1, a2 = −g1C
∗ξ̄ξ.
(5.19)

5.1.2 Abelian Vertices
Now that we have exhausted all the possibilities for a2, any other vertex
can only have a trivial a2. In this case, as we will show in Section 5.4, one
can always choose to write the vertex as the photon field Aµ contracted
with a gauge-invariant current jµ:

a0 = jµAµ, Γjµ = 0, (5.20)

where the divergence of the current is ∆-exact:

∂µj
µ = ∆M, ΓM = 0, (5.21)

so that one has a1 = MC. If, however, M happens to be ∆-exact modulo
d in the space of invariants, one can add a ∆-exact term in a0, so that
the new current is identically conserved [177, 178]. In the latter case, the
vertex does not deform the gauge symmetry at all (see Section 5.4).

Now the most general vertex of the form (5.20) contains the current

jλ = Ψ̄µν X
µναβλ Ψαβ , (5.22)

whose divergence is required to obey the condition (5.21). Here X may
contain Dirac matrices as well as derivatives. It is not difficult to see
that, if X contains more than one derivative, a0 is ∆-exact modulo d, i.e.
trivial. First, if X contains the Laplacian, 2, the contribution is always
∆-exact, by the EoM 2Ψµν = 0. We can also forgo the Dirac operator, 6∂,
because by using the relation 6∂γµ = 2∂µ − γµ 6∂ one can always make 6∂
act on the curvature to get ∆-exact terms, thanks to the EoM 6∂Ψµν = 0.
Therefore, any derivative contained in Xµναβλ must carry one of the five
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indices. Given the EoM ∂µΨµν = 0, the antisymmetry of the field strength
Ψµν , and the commutativity of ordinary derivatives, the only potentially
non-trivial way to have more than one derivative is

a0 =
(
Ψ̄µα

~∂ν γ
λ ∂µΨαν

)
Aλ. (5.23)

However, algebraic manipulations show that this vertex is actually ∆-
exact modulo d, i.e. trivial. To see this, we use Ψαν = ∂αψν − ∂νψα to
rewrite (5.23) as

a0 =
(
Ψ̄µα

~∂ν γ
λ ∂µ∂αψν − 1

2 Ψ̄µα
~∂ν γ

λ ∂νΨµα
)
Aλ.

While the first term is identically zero, in the second term one can use the
so-called 3-box rule, 2∂µX∂µY = 2(XY )−X(2Y )− (2X)Y , so that

a0 = − 1
4
[
2
(
Ψ̄µα γ

λ Ψµα
)
−
(
2Ψ̄µα

)
γλ Ψµα − Ψ̄µα γ

λ
(
2Ψµα

)]
Aλ.

In the above, the last two terms are ∆-exact, whereas in the first term a
double integration by parts gives 2Aλ, which is equal to ∂λ(∂ ·A) by the
photon EoM. One is then left with

a0 = − 1
4
(
Ψ̄µα γ

λ Ψµα
)
∂λ(∂ ·A) + ∆-exact + d(...).

Now, upon integrating by parts w.r.t. ∂λ, this indeed becomes ∆-exact
modulo d:

a0 =
(
Ψ̄µα

~∂ν γ
λ ∂µΨαν

)
Aλ = ∆-exact + d(...). (5.24)

The only possibilities are therefore that X contains either no derivatives
or one derivative. In the former case, we have the candidate Xµναβλ =
−2ηµν|αβγλ, which gives

M = −4iΨ̄µν∂
µ
(
ψ∗ν − 1

D−2γ
ν 6ψ∗

)
− h.c., (5.25)

which is obviously gauge invariant: ΓM = 0. However, explicit computation
easily shows that M is actually ∆-exact modulo d. Therefore, one can
render the current identically conserved by adding a ∆-exact term to it.
In fact, in view of identity (5.13), our candidate jµ is

jµ = 1
2 Ψ̄µν

(
γµναβγλ + γλγµναβ

)
Ψαβ + ∆-exact. (5.26)

Then, it is clear from the identity
1
2γ

µναβγλ + 1
2γ

λγµναβ = γµναβλ (5.27)
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that our 2-derivatives vertex is actually off-shell equivalent2 (≈) to

a0 ≈
(
Ψ̄µν γ

µναβλ Ψαβ

)
Aλ. (5.28)

This vertex does not deform the gauge symmetry, and is gauge invariant
up to a total derivative only. Note that the vertex does not exist in D = 4,
because of the presence of γµναβλ. This is in complete agreement with
Metsaev’s results [62].

Finally, we are left with the possibility of having just one derivative in
X, which would correspond to a 3-derivatives vertex. The only candidate
is Xµναβλ = 1

2η
µν|αβ ~∂~ λ, which is equivalent to − 1

4γ
µναβ ~∂~ λ up to ∆-exact

terms, thanks to the identity (5.13). We have

a0 = 1
2
(
Ψ̄µν η

µν|αβ ~∂~ λ Ψαβ

)
Aλ = 1

2
(
Ψ̄µν∂

λΨµν− Ψ̄µν
~∂ λ Ψµν

)
Aλ. (5.29)

In this case too, our candidate current reduces on-shell to an identically
conserved one, so that the vertex actually does not deform the gauge
symmetry. To see it we use the Bianchi identity ∂λΨµν = −∂µΨνλ+∂νΨµλ

to write the vertex as

a0 =
(
− Ψ̄µν∂

µΨνλ + Ψ̄ λ
ν

~∂µΨµν
)
Aλ.

Then, thanks to the EoM ∂µΨµν = 0, up to ∆-exact terms, the current
reduces to the total derivative of a fermion bilinear, which is identically
conserved:

a0 ≈ 2∂ν
(
Ψ̄ [µ
α Ψν]α)Aµ. (5.30)

Lastly, upon integration by parts the above expression is seen to be just a
3-curvatures term (Born–Infeld type),

a0 ≈ Ψ̄µαΨα
νF

µν . (5.31)

This exhausts all possible 1− 3
2−

3
2 vertices. In Chapter 7, Table 7 presents

a summary of our vertices.
Let us parenthetically comment about the nature of the abelian vertices.

As it turned out, the vertices that do not deform the gauge algebra do not
deform the gauge transformations either. In other words, if a2 is trivial, so
is a1. This is not accidental at all: in fact, in Section 5.4 we are going to
show that, for a massless particle of arbitrary spin s = n+ 1

2 coupled to a
U(1) vector field, the cubic couplings that do not deform the gauge algebra
actually do not deform the gauge transformations either, and hence only
deform the Lagrangian.

2 What we mean is that our proof of equivalence is off-shell, and did not require
using the equations of motion nor any gauge fixing condition.



CHAPTER 5. ELECTROMAGNETIC VERTICES 133

5.2 Massless Spin 5/2 Coupled to Electromagnetism

Now we move on to constructing parity-preserving off-shell cubic vertices
for a spin- 5

2 gauge field, which is a symmetric rank-2 tensor-spinor ψµν .
The original free action is

S(0)[Aµ, ψµν ] =
∫

dDx
[
− 1

4F
2
µν − 1

2
(
ψ̄µνRµν − R̄µνψµν

)]
, (5.32)

where the tensor Rµν is related to the spin- 5
2 Fronsdal tensor Sµν as

follows:
Rµν = Sµν − γ(µ 6 Sν) − 1

2η
µνS ′, S ′ ≡ Sµµ . (5.33)

Here the photon gauge invariance is as usual, while the fermionic part is
gauge invariant under a constrained vector-spinor gauge parameter, εµ,

δεψµν = 2∂(µεν), 6ε = 0. (5.34)

Then, the corresponding Grassmann-even fermionic ghost, ξµ, must also
be γ-traceless:

6ξ= 0, (5.35)

and so will be its antighost. The set of fields and antifields under study
are given below.

ΦA = {Aµ, C, ψµν , ξµ}, Φ∗A = {A∗µ, C∗, ψ̄∗µν , ξ̄∗µ}. (5.36)

The free master action, S0, takes the form

S0 =
∫

dDx
[
− 1

4F
2
µν − 1

2
(
ψ̄µνRµν − R̄µνψµν

)
+A∗µ∂µC

+ 2(ψ̄∗µν∂µξν − ∂µξ̄νψ∗µν)
]
.

(5.37)

The properties of the various fields and antifields are given in Table 5.2.
Note that the spin- 5

2 curvature tensor is the 2-curl (see Appendix E for its
properties),

Ψµ1ν1|µ2ν2 = [∂µ1∂µ2ψν1ν2 − (µ1 ↔ ν1)]− (µ2 ↔ ν2). (5.38)

The cohomology of Γ is isomorphic to the space of functions of (again see
Appendix E)

• The undifferentiated ghosts {C, ξµ} and the γ-traceless part of the
1-curl of the spinorial ghost, ξ(1)

µν = 2∂[µξν],
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Table 5.2: Properties of the Various Fields & Antifields (n = 2)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
Aµ ∂µC 0 0 0 0 0
C 0 0 1 0 1 1
A∗µ 0 −∂νFµν 0 1 −1 1
C∗ 0 −∂µA∗µ 0 2 −2 0
ψµν 2∂(µξν) 0 0 0 0 1
ξµ 0 0 1 0 1 0
ψ̄∗µν 0 R̄µν 0 1 −1 0
ξ̄∗µ 0 2∂ν χ̄∗µν 0 2 −2 1

• The antifields {A∗µ, C∗, ψ̄∗µν , ξ̄∗µ}, and their derivatives,

• The curvatures {Fµν ,Ψµ1ν1|µ2ν2}, and their derivatives,

• The Fronsdal tensor Sµν , and its symmetrized derivatives.

Note that, because the spin of the fermion field has increased by one unit,
the divergence ∂νRµν is no longer zero, but is proportional to γµ.3 Because
of this, when ∆ acts on the fermionic antighost ξ̄∗µ, the result is more
than a simple divergence of the antifield ψ̄∗µν . This property, detailed in
Appendix E, will not be crucial for the following electromagnetic couplings
but will play an important role in their gravitational counterpart, studied
in Chapter 6. Explicitly,

∆ξ̄∗µ = 2∂ν χ̄∗µν , χ̄∗µν ≡ ψ̄∗µν − 1
D 6 ψ̄
∗ν
γµ. (5.39)

5.2.1 Non-Abelian Vertices
The set of all possible non-trivial a2’s falls into two subsets: Subset 1
contains both the bosonic ghost C and the fermionic ghost ξµ, while
Subset 2 contains ξµ but not C.

Subset 1:
{
C
(
ξ̄∗µ ξ

µ + ξ̄µ ξ
∗µ) , C(ξ̄∗(1)

µν ξ(1)µν + ξ̄
(1)
µν ξ∗(1)µν)},

Subset 2:
{
C∗ξ̄µ ξ

µ, C∗ξ̄
(1)
µν ξ(1)µν

}
.

3 The action is still gauge invariant, however, thanks to the γ-tracelessness of the
gauge parameter εµ.
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One can easily verify that other possible rearrangements of derivatives or
other possible contractions of the indices, e.g. by γ-matrices, all give trivial
terms thanks to the γ-tracelessness of the fermionic ghost and its antighost.
Here, the term C ξ̄∗µ ξ

µ corresponds to potential minimal coupling and the
other candidate a2’s to higher-derivative interactions.

To see which of the a2’s can be lifted to some a1, let us solve Eq. (4.21b).
Now, a computation similar to what leads one from (5.7) to (5.9) shows
that both elements of Subset 1 above enjoy such a lift, thanks to the
relations (E.49)–(E.50) among others. Explicitly,

a2 =
{
C ξ̄∗µ ξ

µ

C ξ̄
∗(1)
µν ξ(1)µν → a1 =

{
−ψ̄∗µν (ψµνC + 2ξµAν) + ã1

−ψ̄∗(1)µν‖ρ(ψ(1)
µν‖ρC + 2ξ(1)

µν Aρ) + ã1,

(5.40)
and similarly for the hermitian conjugate terms. Here ã1 is the usual
ambiguity, satisfying Γã1 = 0.

To see whether these could be further lifted to a0’s, we write

∆a1 =
{
−R̄µν (ψµνC + 2ξµAν) + ∆ã1

−R̄(1)µν‖ρ(ψ(1)
µν‖ρC + 2ξ(1)

µν Aρ) + ∆ã1.
(5.41)

It is important to notice that, up to total derivatives, the ∆a1’s have an
expansion in the basis of undifferentiated ghosts, ωI = {C, ξµ}. Because
Γ(∆ã1) = −∆(Γã1) = 0, the coefficients αI in the expansion of the ambi-
guity will be Γ-cocycles, i.e. they will be ‘invariant polynomials’. Clearly,
this is not the case for the unambiguous pieces, which are only cocycles
of H(Γ|d).4 However, their expansion coefficients βI are such that their
Γ-variation is not the total derivative of a Γ-exact object. Schematically,

∆a1 =
(
αI + βI

)
ωI + d(...), ΓαI = 0, ΓβI 6= dΓ(...). (5.42)

Now, Γa0 is a pgh# = 1 object that can be expanded, up to a total
derivative, in the basis of {∂µC, ∂(µξν)}. Then, obviously, one can also
expand it in the undifferentiated ghosts ωI :

Γa0 = − (∂ · J)I ωI + d(...). (5.43)

Let us then plug the respective expansions (5.42) and (5.43) for ∆a1
and Γa0 into the consistency condition (4.21c), and subsequently take a
functional derivative w.r.t. ωI = {C, ξµ}, finding

αI + βI = ∂ · JI = d(...). (5.44)
4 But still, because of Eq. (5.11) one must have βIωI ∈ H1(Γ|d), and indeed this is

the case.
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But, if this is true, then Γ(αI+βI) = dΓ(...), which is in direct contradiction
with the properties of αI and βI given in (5.42) above. The conclusion
is that none of the a2’s in Subset 1 can be lifted all the way to a0. It is
important to notice that this obstruction originates from the very nature
of the a2’s themselves, namely each of them contains both the ghosts.
Remark : For the would-be minimal coupling, the impossibility can also
be seen as a consequence of αI containing too many derivatives compared
to βI , which is the argument we have used for spin 3

2 .
For Subset 2, the analysis simplifies because only the second term

therein, with the maximum number of derivatives, can be lifted to an a1.
For the other term we have

∆
(
C∗ξ̄ν ξ

ν
)

= A∗µ
(
ξ̄ν∂µξν + ∂µξ̄ν ξ

ν
)

+ d(...), (5.45)

and because one can write ∂µξν = ∂[µξν] + ∂(µξν), which is the sum of a
non-trivial and a trivial element in the cohomology of Γ, the right-hand side
of the above equation cannot be Γ-exact modulo d. Hence the candidate
C∗ξ̄µ ξ

µ is ruled out. However, for the second term of Subset 2 one finds
that

∆
(
C∗ξ̄ (1)

µν ξ
(1)µν) = A∗ρ

(
ξ̄ (1)µν∂ρξ

(1)
µν + ∂ρξ̄

(1)
µν ξ

(1)µν)+ d(...) (5.46)

= Γ
[
A∗ρ

(
ψ̄

(1)
µν‖ ρ ξ

(1)µν − ξ̄ (1)µν ψ
(1)
µν‖ ρ

)]
+ d(...),

thanks to the relation (E.50). Thus, indeed, C∗ξ̄ (1)
µν ξ(1)µν gets lifted to an

a1:

a2 = C∗ξ̄ (1)
µν ξ

(1)µν → a1 = −A∗ρ
(
ψ̄

(1)
µν‖ρ ξ

(1)µν − ξ̄ (1)µν ψ
(1)
µν‖ρ

)
+ ã1.

(5.47)
To see if this a1 can be lifted to an a0, we compute its ∆ variation,

∆a1 = Γ
(
ψ̄

(1)
αβ‖µ F

µνψ(1)αβ‖
ν

)
+ 1

2Fµν
(
Ψ̄µν|αβ ξ

(1)
αβ − ξ̄

(1)
αβ Ψµν|αβ)

+ ∆ã1 + d(...). (5.48)

This equation bears striking resemblance with its spin- 3
2 counterpart,

Eq. (5.12). We recall that, in the latter, cancellation of non-Γ-exact
terms was possible by the insertion of identity (5.13) in the contraction
of curvatures, the Bianchi identity ∂[µFνρ] = 0 and the fermion EoMs in
terms of the curvature, γµΨµν = 0, γµνΨµν = 0. In the present case as
well, as shown in Appendix E, the fermion EoMs can be written as the
γ-traces of the curvature, γµΨµν|αβ = 0, γµνΨµν|αβ = 0. Therefore, the
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non-Γ-exact terms from the unambiguous piece in the above expression
can indeed be canceled by the ∆ variation of a Γ-closed ambiguity,

∆ã1 = − 1
4
(
6Ψ̄αβ 6F − 4Ψ̄µν|αβγ

µF νργρ
)
ξ(1)αβ + h.c. (5.49)

We thus have a lift all the way to a0, the latter being a 3-derivatives
non-abelian vertex,

a0 = −ψ̄ (1)
αβ‖µ F

+µνψ(1)αβ‖
ν . (5.50)

5.2.2 Abelian Vertices
All the statements (5.20)–(5.21) still hold good in this case, and the current
in the vertex a0 = jµAµ is an invariant polynomial, which takes the most
general form

jλ = Ψ̄µ1ν1|µ2ν2 X
µ1ν1α1β1λµ2ν2α2β2 Ψα1β1|α2β2 . (5.51)

Notice that the Fronsdal tensor, although allowed in principle, cannot
appear in the current simply because it would render the vertex ∆-exact.
In view of the spin- 5

2 EoMs and the symmetry properties of the field
strength, one can show, like in Subsection 5.1.2, that Xµ1ν1α1β1λµ2ν2α2β2

can contain at most one derivative, which must carry one of the indices.
When X does not contain any derivative, the corresponding vertex will

contain 4. In this case, we have the candidate

Xµ1ν1α1β1λµ2ν2α2β2 = −2ηµ1ν1|α1β1ηµ2ν2|α2β2γλ, (5.52)

but again, the identities (5.13) and (5.27) tell us that the resulting vertex
deforms nothing. It reads:

a0 ≈
(
Ψ̄µ1ν1|µ2ν2γ

µ1ν1α1β1λΨ µ2ν2
α1β1|

)
Aλ. (5.53)

Finally, the 1-derivative candidate is

Xµ1ν1α1β1λµ2ν2α2β2 = 1
2η
µ1ν1|α1β1ηµ2ν2|α2β2 ~∂~ λ, (5.54)

which is equivalent to a 5-derivatives and 3-curvatures term (Born–Infeld),

a0 ≈ Ψ̄µ1ν1|µ2ρΨ
µ1ν1|ρ

ν2
Fµ2ν2 . (5.55)

In Table 7 of Chapter 7 we present a summary table for all possible 1−5
2−

5
2

vertices.



CHAPTER 5. ELECTROMAGNETIC VERTICES 138

5.3 Arbitrary-Spin Couplings

The set of fields and antifields in this case is given by

ΦA = {Aµ, C, ψµ1...µn , ξµ1...µn−1}, (5.56a)
Φ∗A = {A∗µ, C∗, ψ̄∗µ1...µn , ξ̄∗µ1...µn−1}. (5.56b)

For n > 2, there is an additional constraint that the field-antifield are
triply γ-traceless:

6ψ′µ1µ3...µn−3
= 0, 6 ψ̄∗′µ1µ3...µn−3

= 0, (5.57)

where prime denotes the trace w.r.t the Minkowski metric. Besides, the
rank-(n− 1) fermionic ghost and its antighost are γ-traceless:

6ξµ1...µn−2 = 0, 6 ξ̄ ∗µ1...µn−2
= 0. (5.58)

The properties of the various fields and antifields are given in Table 5.3
below, and we also recall that the antifield χ̄∗µ1...µn is given by Eqs. (E.34)–
(E.35).

Table 5.3: Properties of the Various Fields & Antifields (∀n)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
Aµ ∂µC 0 0 0 0 0
C 0 0 1 0 1 1
A∗µ 0 −∂νFµν 0 1 −1 1
C∗ 0 −∂µA∗µ 0 2 −2 0

ψµ1...µn n∂(µ1ξµ2...µn) 0 0 0 0 1
ξµ1...µn−1 0 0 1 0 1 0
ψ̄∗µ1...µn 0 R̄µ1...µn 0 1 −1 0
ξ̄∗µ1...µn−1 0 2∂µn χ̄∗µ1...µn 0 2 −2 1

The rank-n tensor-spinor Rµ1...µn appearing in the spin-s EoMs is an
arbitrary-spin generalization of (5.33); it is related to the Fronsdal tensor
by

Rµ1...µn = Sµ1...µn − 1
2nγ(µ1 6 Sµ2...µn) − 1

4n(n− 1) η(µ1µ2S
′
µ3...µn). (5.59)

The cohomology of Γ has already been given in the lower-spin cases
treated in Section 5.2 and 5.1, with the details appearing in Appendix E.
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Then, one can immediately write down the set of all possible non-trivial
a2’s, and again, they fall into two subsets: Subset 1 contains both the
bosonic ghost C and the fermionic ghost ξµ1...µn−1 , while Subset 2 contains
only ξµ1...µn−1 .

Subset 1:
{
C ξ̄
∗(m)
µ1ν1|...|µmνm‖νm+1...νn−1

ξ(m)µ1ν1|...|µmνm‖νm+1...νn−1
}

,

Subset 2:
{
C∗ξ̄

(m)
µ1ν1|...|µmνm‖νm+1...νn−1

ξ(m)µ1ν1|...|µmνm‖νm+1...νn−1
}

.

Note that in Subset 1 the hermitian conjugate of the displayed expression
should be added too, and we have given the subsets for 0 ≤ m ≤ n − 1.
As a straightforward generalization of the spin- 5

2 case, one finds that each
element in Subset 1 gets lifted to an a1:

a1 =− ψ̄∗(m)µ1ν1|...|µmνm‖νm+1...νnψ
(m)
µ1ν1|...|µmνm‖νm+1...νn

C + ã1 (5.60)

− n ψ̄∗(m)µ1ν1|...|µmνm‖ νm+1...νn ξ
(m)
µ1ν1|...|µmνm‖ (νm+1...νn−1

Aνn) + h.c.

Now, one can compute ∆a1 and expand it in the basis of pgh# = 1 objects
in the cohomology of Γ, namely

ωI =
{
C, ξ

(m)
µ1ν1|...|µmνm‖νm+1...νn−1

| 0 ≤ m ≤ n− 1
}
. (5.61)

Upon comparing the expansion coefficients for the unambiguous piece and
the ambiguity ã1, again one can conclude that none of these a1’s can be
lifted to an a0. On the other hand, for the elements of Subset 2, one notices
that

∆
(
C∗ξ̄ (m) · ξ(m)) = A∗ν ξ̄ (m) · ∂νξ(m) + h.c. + d(...), (5.62)

where we have used the notation

ξ̄ (m) · ξ(m) ≡ ξ̄ (m)
µ1ν1|...|µmνm‖νm+1...νn−1

ξ(m)µ1ν1|...|µmνm‖νm+1...νn−1 . (5.63)

Then, in view of Eqs. (E.49) and (E.50), it is clear that the right-hand
side of (5.62) is Γ-exact modulo d only for m = n − 1, which rules out,
in particular, the would-be minimal coupling corresponding to m = 0.
Therefore, one is left with the lift:

a1 = −A∗νn ψ̄ (n−1)
µ1ν1|...|µn−1νn−1‖νn ξ

(n−1)µ1ν1|...|µn−1νn−1 + h.c. + ã1, (5.64)
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whose ∆-variation is given by

∆a1 = Γ
(
ψ̄

(n−1)
µ1ν1|...|µn−1νn−1‖µnF

µn
νn ψ

(n−1)µ1ν1|...|µn−1νn−1‖ νn
)

+ 1
2F

µnνn
(
Ψ̄µ1ν1|...|µnνn ξ

(n−1)µ1ν1|...|µn−1νn−1 + h.c.
)

(5.65)
+ ∆ã1 + d(...).

In view of Eq. (5.12) and (5.48), pertaining respectively to the spin- 3
2

and spin- 5
2 cases, and the subsequent steps, we realize that it is possible

to cancel the non-Γ-exact terms in the above expression by inserting
identity (5.13) in the contraction of curvatures, thanks to the Bianchi
identity ∂[µFνρ] = 0, and to the fermion EoMs in terms of curvatures
(see Appendix E), γµ1Ψµ1ν1|...|µnνn = 0, γµ1ν1Ψµ1ν1|...|µnνn = 0. In other
words, ∆a1 is rendered Γ-exact modulo d by an appropriate choice of the
ambiguity ã1, just like in the previous examples, so that one finally has

a0 = −ψ̄(n−1)
µ1ν1|...|µn−1νn−1‖µnF

+µn
νnψ

(n−1)µ1ν1|...|µn−1νn−1‖νn , (5.66)

which is the (2n− 1)-derivatives non-abelian vertex containing the (n− 1)-
curl of the fermionic field.

For an abelian vertex a0 = jµAµ, the gauge-invariant current does not
contain the Fronsdal tensor nor its derivatives, since their presence would
render the vertex ∆-exact. Again, non-triviality of the abelian deformation
allows for only two possible values for the number of derivatives in the
vertex: 2n and 2n+ 1. The off-shell vertices can be obtained in exactly the
same way as for spins 3

2 and 5
2 , considered in Subsections 5.1.2 and 5.2.2

respectively. A summary of all possible 1−s−s vertices is given in Table 7
in Chapter 7.

5.4 Abelian Vertices and Gauge Symmetries

In the present section we prove an important result: abelian vertices
also preserve the gauge symmetries. Differently put, this means that a
given vertex either deforms both the gauge symmetries and the gauge
algebra or none of them (hence deforming only the Lagrangian). This
property has been verified explicitly in the previous sections dealing
with the various electromagnetic couplings, and here we prove it in
full generality. We note, however, that the result demonstrated below
is valid in our context only (that is, for our set of fields, etc.), and
examples exist in the literature of ‘in-between’ vertices, deforming the
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gauge symmetries but not the gauge algebra; see e.g. [191], or [192] for a
treatment of the Freedman–Townsend model within the BRST formulation.

Abelian vertices are those that do not deform the gauge algebra, i.e.
they can only have a trivial a2. As mentioned in Chapter 4, for such a
vertex it is always possible to choose a1 to be Γ-closed [177, 178]:

Γa1 = 0, (5.67)

and if it gets lifted to an a0, one has the cocycle condition (4.21c),

∆a1 + Γa0 + db0 = 0. (5.68)

Now, for the 1−s−s vertices under study, one can always write a vertex
as the photon field Aµ contracted with a current jµ, which is a fermion
bilinear:

a0 = jµAµ, (5.69)
and one can always choose the current such that it satisfies

Γjµ = 0, ∂µj
µ = ∆M, ΓM = 0. (5.70)

To see this, let us note that the a1 corresponding to (5.69) has the general
form

a1 = MC +
(
P̄µ1...µn−1ξ

µ1...µn−1 − ξ̄µ1...µn−1P
µ1...µn−1

)
+ a′1, (5.71)

where M and Pµ1...µn−1 belong to H(Γ), with pgh# = 0, agh# = 1, and
a′1 stands for expansion terms in the ghost-curls. Given (5.69) and (5.71),
the condition (5.68) reads

Γ (jµAµ) + ∆MC +
(
∆P̄µ1...µn−1ξ

µ1...µn−1 − ξ̄µ1...µn−1∆Pµ1...µn−1
)

+ ∆a′1 + db0 = 0. (5.72)

Now, Pµ1...µn−1 consists of two kinds of terms: one contains the antifield
A∗µ and its derivatives, and the other contains the antifield ψ∗ν1...νn and
its derivatives. The former one also contains (derivatives of) the Fronsdal
tensor Sν1...νn , or (derivatives of) the curvature Ψρ1ν1|...|ρnνn , while the
latter one contains (derivatives of) the electromagnetic field strength Fµν .
One can choose to get rid of derivatives on A∗µ and Fµν by using the
Leibniz rule,

Pµ1...µn−1 = A∗µ
(
~P (S)ν1...νn
µ, µ1...µn−1

Sν1...νn + ~P (Ψ)ρ1ν1|...|ρnνn
µ, µ1...µn−1

Ψρ1ν1|...|ρnνn
)

+ Fµν
(
~P (ψ∗)ν1...νn
µν, µ1...µn−1

ψ∗ν1...νn

)
+ ∂µnpµ1...µn , (5.73)



CHAPTER 5. ELECTROMAGNETIC VERTICES 142

where Γpµ1...µn = 0 and the ~P ’s are operators acting to the right. Notice
that the quantity in the parentheses in the first line is both Γ-closed and
∆-exact 5. Now, one can take the ∆-variation of (5.73), and then add a
total derivative in order to cast it in the form

∆Pµ1...µn−1 = 1
2F

µν∆Q[µν], µ1...µn−1 + ∂µn∆qµ1...µn , (5.74)

where ΓQ[µν], µ1...µn−1 = 0, Γqµ1...µn = 0. Therefore, we have

ξ̄µ1...µn−1∆Pµ1...µn−1 = Aµ∆
[
∂ν
(
ξ̄µ1...µn−1Q

[µν], µ1...µn−1
)]

(5.75)

− ξ̄µ1...µn−1
~∂µn∆qµ1...µn + d(...).

The second term on the right side is Γ-closed, and can be broken as a
Γ-exact piece plus terms involving the ghost-curls. The latter can always
be canceled in the cocycle condition (5.72) by appropriately choosing the
similar terms coming from a′1. Thus,

∆MC + Γ
[
jµAµ + 1

n∆
(
ψ̄µ1...µnq

µ1...µn + h.c.
)]

(5.76)
−Aµ∆

[
∂ν
(
ξ̄µ1...µn−1Q

[µν], µ1...µn−1
)

+ h.c.
]

+ d(...) = 0.

The ∆-exact term added to the original vertex jµAµ is trivial, and therefore
can be dropped. Now we are left with

Aµ
[
Γjµ −∆

(
∂ν
(
ξ̄µ1...µn−1Q

[µν], µ1...µn−1
)

+ h.c.
)]

+ (∆M − ∂µjµ)C .= 0,
(5.77)

and we point out that we have started to use the notation ‘ .=’ to denote
equality up to d-exact terms. Then, taking a functional derivative w.r.t.
C produces part of the sought-after conditions (5.70):

∂µj
µ = ∆M, ΓM = 0, (5.78)

while the functional derivative w.r.t. Aµ gives

Γjµ = ∂ν
(
ξ̄µ1...µn−1∆Q[µν], µ1...µn−1

)
+h.c., ΓQ[µν], µ1...µn−1 = 0. (5.79)

The expression for Γjµ has to be Γ-exact. This demands that
∂νQ

[µν], µ1...µn−1 be ∆-closed and that Q[µν], µ1...µn−1 have the interchange
symmetry ν ↔ µi, i = 1, ..., n− 1. It follows that

jα = j̃α + ∆
( 1
n ψ̄µ1...µnQ

[αµ1], µ2...µn + h.c.
)
, Γj̃α = 0. (5.80)

5 ∆-exactness of the first term is manifest, while in the second, the presence of
the curvature admits only ∆-exact terms, like its own γ-traces and divergences (see
Appendix E).
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Therefore, by field redefinitions, the current can always be made gauge
invariant:

Γjµ = 0. (5.81)
This completes the proof of (5.70), and from (5.68) one then obtains the
lift:

a1 = MC. (5.82)
Now we will show that M must be ∆-exact modulo the derivative of

a Γ-cocycle.. We recall that M belongs to the cohomology of Γ, with
pgh# = 0, agh# = 1. It will contain (derivatives of) the fermionic
antifield and (derivatives of) the Fronsdal tensor Sν1...νn or the curvature
Ψρ1ν1|...|ρnνn . However, one can again choose to have no derivatives of the
antifield by using the Leibniz rule, yielding the following general form for
M :

M = ψ̄∗µ1...µn
(
~M (S)ν1...νn
µ1...µn Sν1...νn + ~M (Ψ)ρ1ν1|...|ρnνn

µ1...µn Ψρ1ν1|...|ρnνn
)

+ ∂µmµ − h.c., (5.83)

where Γmµ = 0 and the operators ~M ’s act to the right. Now, the first
term in the parentheses is manifestly ∆-exact, while the second one must
contain either a γ-trace and or a divergence of the curvature, which are
∆-exact too (see Appendix E). Therefore, M must be ∆-exact modulo
dΓ(...). This means that a1, given in (5.82), can be rendered trivial by
adding a ∆-exact piece in a0, and so the vertex will be gauge invariant up
to a total derivative:

Γa0 + db0 = 0. (5.84)
In other words, one can always add a ∆-exact term in a0 so that the new
current is identically conserved [177–179]:

jµ → j′µ = jµ + ∆kµ = ∂νAµν , Aµν = −Aνµ. (5.85)

Thus we have proved that no abelian vertex deforms the gauge transfor-
mations.

5.5 Second-Order Consistency

The cubic vertices have all been classified in previous sections. Let us
now turn to the analysis of the second-order consistency of the found first-
order interactions. From Chapter 4 we recall that consistent second-order
deformation requires (S1, S1) to be s-exact:

(S1, S1) = −2sS2 = −2∆S2 − 2ΓS2. (5.86)
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For abelian vertices, this antibracket is zero, so that the first-order defor-
mations always go unobstructed. Non-abelian vertices, however, are more
interesting in this respect.

We can see that there is an obstruction for the non-abelian vertices
we have obtained, which do not obey the above condition. We prove our
claim by contradiction. If Eq. (5.86) holds, then the most general form of
the antibracket evaluated at zero antifields is

(S1, S1)|Φ∗
A

=0 = ∆M + ΓN, (5.87)

whereM = −2 [S2]C∗α=0 and N = −2 [S2]Φ∗
A

=0. Note thatM is obtained by
setting to zero only the antighosts in S2. Furthermore, the equality (5.87)
holds precisely because S2 is linear in the antifields. The Γ-variation of
the above condition is therefore ∆-exact:

Γ(S1, S1)|Φ∗
A

=0 = Γ∆M = −∆ (ΓM) . (5.88)

It is relatively easier to compute the left-hand side of (5.88) for our
non-abelian vertices. For spin 3

2 we recall that

a2 = −C∗ξ̄ξ, a1 = A∗µ(ψ̄µξ − ξ̄ψµ) + ã1, a0 = ψ̄µF
+µνψν ,

ã1 = i
(
ψ̄∗µγνFµν − 1

2(D−2) 6 ψ̄
∗ 6F
)
ξ + h.c. (5.89)

To compute the antibracket of S1 =
∫

(a2 + a1 + a0) with itself, we notice
that a field-antifield pair shows up only in

∫
a1, and between

∫
a0 and

∫
a1,

so that it reduces to

(S1, S1) = 2
( ∫

a0,

∫
a1
)

+
( ∫

a1,

∫
a1
)
. (5.90)

Now, the second antibracket on the right-hand side necessarily contains
antifields, while the first one will not contain any. Thus we have

(S1, S1) |Φ∗
A

=0 = 2
( ∫

a0,

∫
a1
)
. (5.91)

Notice that, while the unambiguous piece in a1 contains the antifield A∗µ,
the ambiguity, ã1, contains instead the antifield ψ̄∗µ. Correspondingly,(∫
a0,
∫
a1
)
will contain two distinct kinds of pieces: 4-Fermions terms and

Fermion bilinears. Explicitly,

(S1, S1) |Φ∗
A

=0 =
∫

dDx
[
4(ψ̄µξ − ξ̄ψµ) ∂ν

(
ψ̄[µψν] + 1

2 ψ̄αγ
µναβψβ

)]
+
∫

dDx
[
iψ̄µF

+µν(2γρFνρ − 1
(D−2)γν 6F

)
ξ + h.c.

]
. (5.92)
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Now, if the vertex is unobstructed and Eq. (5.88) holds, the Γ-variation of
each of these terms should independently be ∆-exact. Let us then consider
the Fermion bilinears appearing in the second line of the above expression,
originating from

(∫
a0,
∫
ã1
)
. It is easy to see that their Γ-variation is

not ∆-exact. We conclude that the non-abelian 1− 3
2−

3
2 vertex gets ob-

structed beyond the cubic order. The proof for arbitrary spin is very similar.

Our non-abelian electromagnetic couplings are therefore inconsistent in
a complete theory under the assumptions of locality. Another underlying
assumption is that of the spectrum: as we know, adding dynamical degrees
of freedom might change the above conclusion, and these matters are
discussed in Chapter 7, together with other issues.





CHAPTER 6
Gravitational Couplings

In Chapter 5 we have constructed all the consistent cubic vertices of the
form 1−s−s, and we now address the perhaps more interesting generaliza-
tion of such a result to spin-2 couplings. That is, we study couplings of
the form 2−s−s, and the employed methods are again those of BRST–BV,
reviewed in Chapter 4. As we shall see, the gravitational interactions
are substantially more difficult to analyze than the electromagnetic ones.
Interestingly, this can be thought of as stemming from the crucial difference
between the photon EoMs and the graviton ones: the former are expressed
as the divergence of a gauge-invariant tensor, ∂µFµν , while the latter
are not (the Einstein tensor Gµν is of course gauge invariant but it is
not the divergence, or even the derivative of a gauge-invariant object).
Nevertheless, we manage to obtain fully off-shell and neat expressions for
all the couplings, and second-order consistency of our non-abelian vertices
is again seen to require either a wider spectrum or non-locality.

The chapter is organized as follows: in Section 6.1 we consider in
great detail s = 5

2 , which serves as a prototype for the arbitrary-spin
case. Treating the gauge-algebra-deforming/preserving cases separately,
we explicitly construct all the 2− 5

2−
5
2 vertices, and cast them into various

off-shell forms to make some desired properties manifest. Section 6.2
is then a straightforward arbitrary-spin generalization that mimics the
spin- 5

2 setup. The proof that our non-abelian vertices face obstructions in
a local theory beyond the cubic order is, this time, relegated to Appendix
D.5, and other appendices again supplement the main text to provide
useful technical details. A discussion of the results, together with those of
Chapter 5, is relegated to Chapter 7.

147
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6.1 Gravitational Coupling of Spin 5/2

In this Section we construct parity-preserving off-shell 2− 5
2−

5
2 vertices by

employing the BRST-BV cohomological methods. The starting point is
the free theory, which contains a graviton field hµν and a massless spin- 5

2
tensor-spinor field ψµν , described by the action

S(0)[hµν , ψµν ] =
∫

dDx
[
Gµνhµν + 1

2
(
R̄µνψµν − ψ̄µνRµν

)]
, (6.1)

which enjoys two abelian gauge invariances

δλhµν = 2∂(µλν), δεψµν = 2∂(µεν), with 6ε = 0. (6.2)

For the Grassmann-even bosonic gauge parameter λµ, we introduce the
Grassmann-odd bosonic ghost Cµ, and corresponding to the Grassmann-
odd fermionic gauge parameter εµ, we have the Grassmann-even fermionic
ghost ξµ, which is of course γ-traceless. Therefore, the set of fields becomes

ΦA = {hµν , Cµ, ψµν , ξµ}. (6.3)

For each of these fields, we introduce an antifield with the same algebraic
symmetries in its indices but opposite Grassmann parity, the set of which
is

Φ∗A = {h∗µν , C∗µ, ψ̄∗µν , ξ̄∗µ}. (6.4)

Now we construct the free master action S0, which is an extension of
the original gauge-invariant action (6.1) by terms involving ghosts and
antifields. Explicitly,

S0 =
∫

dDx
[
Gµνhµν + 1

2
(
R̄µνψµν − ψ̄µνRµν

)
(6.5)

− 2h∗µν∂µCν + (ψ̄∗µν∂µξν − ∂µξ̄νψ∗µν)
]
,

which is easily seen to satisfy the master equation (S0, S0) = 0. Again,
the antifields appear as sources for the ‘gauge’ variations, with the gauge
parameters replaced by the corresponding ghosts. We spell out in Table
6.1 below the different gradings and Grassmann parity of the various fields
and antifields, along with the action of Γ and ∆ on them.

For the spin- 5
2 field, the Fronsdal tensor is Sµν = i(6∂ ψµν − 2∂(µ 6ψν)),

and it is related to the original EoMs via

Rµν = Sµν − γ(µ 6 Sν) − 1
2η
µνS ′, S ′ ≡ Sµµ . (6.6)
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Table 6.1: Properties of the Various Fields & Antifields (n = 2)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
hµν 2∂(µCν) 0 0 0 0 0
Cµ 0 0 1 0 1 1
h∗µν 0 Gµν 0 1 −1 1
C∗µ 0 −2∂νh∗µν 0 2 −2 0
ψµν 2∂(µξν) 0 0 0 0 1
ξµ 0 0 1 0 1 0
ψ̄∗µν 0 R̄µν 0 1 −1 0
ξ̄∗µ 0 2∂ν χ̄∗µν 0 2 −2 1

As already stated in the previous chapter, an important property is that
the divergence ∂νRµν is not zero, unlike that of the Einstein tensor, but is
proportional to γµ. The details are found in Appendix E, and they will
affect the following computations non-trivialy so that we give, explicitly,

∆ξ̄∗µ = 2∂ν χ̄∗µν , χ̄∗µν ≡ ψ̄∗µν − 1
D 6 ψ̄
∗ν
γµ. (6.7)

The cohomology of Γ is isomorphic to the space of functions of

• The undifferentiated ghosts {Cµ, ξµ}, the 1-curl of the bosonic ghost
Cµν and the γ-traceless part of the 1-curl of the fermionic ghost ξµν ,

• The antifields {h∗µν , C∗µ, ψ̄∗µν , ξ̄∗µ} and their derivatives,

• The curvatures {Rµνρλ,Ψµν|ρλ} and their derivatives,

• The Fronsdal tensor Sµν and its symmetrized derivatives.

Note that, because of the spin of the graviton (one unit higher than that
of the photon), the subsequent demonstrations lead to a proliferation of
curls, and we have therefore adopted a simplified notation for this chapter:

hµν||ρ ≡ h
(1)
µν||ρ, Cµν ≡ C(1)

µν ψ... ≡ ψ(m)
... ξ ... ≡ ξ(1)

... . (6.8)

Let us also point out, finally, that we shall continue using the symbol .= to
denote equality up to total derivatives.
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6.1.1 Non-Abelian Vertices
Non-abelian vertices are those that deform the gauge algebra. They
correspond to deformations of the master action with nontrivial terms at
agh# = 2. In other words, a2 is a nontrivial element in H(Γ|d) (see Chapter
4). Notice that a2 is Grassmann even, hermitian and has gh(a2) = 0.
Besides, we require that a2 be a parity-even Lorentz scalar.

It is then clear that any a2 will consist of a single antighost and two
ghost fields. Let us note that two a2’s are equivalent iff they differ by
Γ-exact terms modulo total derivatives. Without loss of generality, we
can thus choose the antighost to be undifferentiated. Furthermore, any
derivative acting on the ghost fields {Cµ, ξµ} can be realized as a 1-curl
{Cµν , ξµν} up to irrelevant Γ-exact terms (see Appendix E). Because the
derivative of a ghost-curl is Γ-exact, a nontrivial a2 can never contain
more than 2 derivatives, which already poses an upper bound of 3 on the
number of derivatives in a non-abelian vertex.

To be more explicit, let us write down all the inequivalent a2’s. In
view of the actions of Γ and ∆ on various (anti)fields, given any a2, the
consistency cascade (4.21) unambiguously counts the number of derivatives
p contained in the corresponding vertex a0. Thus we can classify a2’s
based on the value of their corresponding p. Also, the set of all possible
nontrivial a2’s again falls into two subsets: Subset 1 contains the bosonic
antighost C∗µ, while Subset 2 contains the fermionic one ξ∗µ. In Subset 1
we have

a2 =


p = 1 : igC∗µξ̄αγµξα,

p = 2 : igC∗µξ̄µνξ
ν + h.c.,

p = 3 : igC∗µξ̄αβγµξαβ .

(6.9)

It is easy to see that this list is indeed complete. First, it follows from
Lorentz invariance that if p is odd (resp. even), the number of γ matrices
is also odd (resp. even), and the latter can be chosen simply to be 1 (resp.
0). This is because if more γ matrices are there, one can anti-commute
them past each other using the Clifford algebra to see that only terms with
1 (resp. 0) γ-matrix survive, while other terms are either killed (because
6ξ= 0) or made trivial (because γαξαβ = Γ-exact).

Note that the p = 1 candidate, igC∗µξ̄αγµξα, is easily ruled out as
inconsistent. To see this, we simply take its ∆ variation and integrate
by parts to find ∆a2

.= 2igh∗µν∂ν(ξ̄αγµξα), which contains nontrivial
elements of H(Γ|d) involving the ghost-curl ξ̄αν . Therefore, the consistency
condition (4.21b) cannot be satisfied.
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Next we consider Subset 2, whose a2’s contain the (undifferentiated)
fermionic antighost. Again, the a2’s can be classified based on the value p
of the number of derivatives in the corresponding vertex a0. The complete
list is

a2 =


p = 0 : gξ̄∗µγαξµCα + h.c.,
p = 1 : gξ̄∗µ(ξνCµν + α1ξµνC

ν + α2γ
αβξµCαβ) + h.c.,

p = 2 : gξ̄∗µγαξβµCαβ + h.c.,
(6.10)

where α1 and α2 are dimensionless constants. Because both 6 ξ and 6 ξ∗
vanish, and γαξαβ = Γ-exact, any γ-matrix must be contracted with the
bosonic ghost or with its curl. Then one can easily verify that the list (6.10)
indeed gives all possible inequivalent Lorentz scalars.

Here it is easy to rule out the p = 0 candidate, g ξ̄∗µγαξµCα + h.c.,
as inconsistent. Again, we simply take its ∆ variation and integrate
by parts to obtain ∆a2

.= −2g χ̄∗µν∂ν (γαξµCα) + h.c., which contains
nontrivial elements of H(Γ|d) involving the ghost-curls ξνµ and Cνα. Hence
consistency condition (4.21b) cannot be satisfied.

Absence of Minimal Coupling

A possible minimal coupling would correspond to a 1-derivative vertex.
The most general a2 can be written as (dropping the already-ruled-out
candidate containing C∗µ)

a2 = g ξ̄∗µ (ξνCµν + α1ξµνC
ν + α2γ

ρσξµCρσ) + h.c., (6.11)

where α1 and α2 are dimensionless constants. Then we have

∆a2
.= Γ-exact− g χ̄∗µα (ξανCµν + α1ξµνCα

ν + α2γ
ρσξαµCρσ) + h.c.,

(6.12)
where we recall that χ̄∗µα ≡ ψ̄∗µα − 1

D 6 ψ̄
∗α
γµ. The nontrivial elements of

H(Γ|d) appearing on the right-hand side can actually be canceled by the
choice α1 = −1 and α2 = 1

4 . The only subtlety are the terms containing
the γ-trace 6 ψ̄∗ of the fermionic antifield, for which one needs to use the
identity γµγρσ = γρσγµ + 4ηµ[ργσ]. With the cocycle condition (4.21b)
thus satisfied, the unambiguous piece in a1 reads

â1 = −2
(
g χ̄∗µρψµν‖ρC

ν + h.c.
)

+ YµνCµν + · · · , (6.13)

where the ellipses stand for terms involving the fermionic ghost ξµ but not
Cµ. This gives

β̂µ ≡ δ

δCµ
∆â1 =

(
2g∆χ̄∗αβ ψµα‖β + h.c.

)
+ 2∆∂νY [µν]. (6.14)
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Similarly, because the ambiguity ã1 belongs to H(Γ), we have

β̃µ ≡ δ

δCµ
∆ã1 = Γ-closed. (6.15)

Now the cocycle condition (4.21c) is fulfilled if

∆â1 + ∆ã1
.= −Γa0

.= 2Cµ∂νTµν + · · · (6.16)

for some a0
.= hµνT

µν . Taking a functional derivative w.r.t. Cµ then yields

β̂µ + β̃µ = 2∂νTµν . (6.17)

Using Eqs. (6.14) and (6.15), and taking a Γ variation one is thus lead to
the necessary condition

Γβ̂µ = ∂β
(
2g∆χ̄∗αβ ξαµ + h.c.

)
+ ∂ν

(
2Γ∆Y [µν]) = ∂ν (2ΓTµν) . (6.18)

In D ≥ 4, this condition can never be satisfied, since the terms inside the
brackets are not Γ-exact modulo d. Thus we conclude that there is no
1-derivative 2−5

2−
5
2 vertex, i.e. a massless spin- 5

2 field cannot have minimal
coupling to gravity in flat space, thereby reproducing the result of [42, 43]
in an independent manner.

The 2-Derivatives Vertex

Having ruled out minimal coupling, we are lead to consider the next
possibility — the 2-derivatives vertex, for which the corresponding a2 reads

a2 =
(
ig C∗µξ̄µνξ

ν + h.c.
)

+
(
g̃ Cµν ξ̄

∗
ργ

µνραβξαβ + h.c.
)
, (6.19)

where the coupling constants g and g̃ are a priori complex, but will soon
be required to be real. Notice that, for future convenience, we wrote the
term with fermionic antighost with five γ-matrices, instead of just one, as
it appears in (6.10). The equivalence of the two forms, although rather
obvious, is made explicit in Appendix D.3.1 for interested readers. To find
a possible a1, we take the ∆ variation of the above equation and integrate
by parts, thereby obtaining, up to total derivatives:

∆a2
.= 2
[
ig h∗µν∂ν ξ̄µλξ

λ + h.c.
]

+ 2
[
g̃ χ̄∗ρσ∂

σ
(
Cµνγ

µνραβξαβ
)

+ h.c.
]
.

(6.20)
Now, in view of Eqs. (E.43) and (E.46), the Γ-exactness of the second
piece on the right-hand side is manifest, while in the first piece one can
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also use Eq. (E.44) to extract Γ-exact terms. Then, the contributions that
are nontrivial in H(Γ) cancel each other only if g is real. Therefore, the
cocycle condition (4.21b) is satisfied and we get, up to an ambiguity ã1,

a1 = a1g + a1g̃ + ã1, (6.21)

where Γã1 = 0 and the other terms are unambiguously determined to be

a1g = ig h∗µν
(
ξ̄µλψν

λ + ψ̄ν
λξµλ − 2ξ̄λψµλ‖ν − 2ψ̄µλ‖νξλ

)
, (6.22a)

a1g̃ = 2g̃
(
Cµν χ̄

∗
ρσγ

µνραβψαβ‖
σ − hµν‖

σχ̄∗ρσγ
µνραβξαβ

)
+ h.c. (6.22b)

We will now compute the ∆ variations of the above quantities. From
Eq. (6.22a) one finds

∆a1g
.= ig ξ̄λ

[
2Gµν∂λψµν − 3∂µ

(
Gµνψν

λ
)

+ ∂ν
(
Gλµψµν

)]
+h.c., (6.23)

which does not contain the bosonic ghost Cµ. Note that neither can ∆ã1
give rise to terms containing Cµ, because if the ambiguity ã1 contains Cµ
or its curl, then it must also contain the Fronsdal tensors1 and thus be
∆-exact, so that ∆ã1 = 0. This fact puts restrictions on ∆a1g̃ : it may
contain Cµ only in the form of symmetrized derivatives, ∂(µCν), up to
total-derivative terms. Otherwise, ∆a1 will have nontrivial pieces belonging
to H(Γ|d), and the condition ∆a1

.= −Γa0 may never be satisfied.
With the above observations in mind, we compute the following useful

quantity:

βµC ≡
δ

δCµ
∆a1g̃ = −4g̃∆∂[ν χ̄

∗
ρ]σγ

µνραβψαβ‖
σ − 4g̃∗ψ̄αβ‖σγµνραβ∆∂[νχ

∗
ρ]σ.

(6.24)
The right-hand side, if non-zero, must be the divergence of a symmetric
tensor: ∂νX µν with X µν = X νµ. As shown in Appendix D.3.1, this is
possible only if g̃ is real, and it yields

X µν = 2ig̃ ψ̄ρσ‖λ γµρσαβ, νλγ ψαβ‖γ + (µ↔ ν). (6.25)

Then, the bosonic ghost Cµ will appear in ∆a1g̃ only through Γ-exact
pieces. Explicitly,

∆a1g̃ + Γ
( 1

2hµνX
µν
) .= 1

2hµνΓX µν − 2g̃
(
hµν‖

σ∆χ̄∗ρσγµνραβξαβ + h.c.
)
.

(6.26)
1 Also, it cannot contain only curvatures, because then there are too many derivatives

in ∆ã1 to possibly correspond to a vertex with p = 2.
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One can now simplify the right-hand side, which does not contain the
bosonic ghost Cµ, but just the fermionic one ξµ. The result is (again see
Appendix D.3.1)

∆a1g̃ + Γ
( 1

2hµνX
µν
) .= −ig̃ ξ̄λ (Rµνρσγµνλαβ, τρσ ψαβ‖τ)+ h.c. (6.27)

It is easy to see that the right-hand side is a nontrivial element of H(Γ|d).
Only if it can be written, up to Γ-exact pieces and total derivatives, in
terms of ∆ã1 plus possibly ∆a1g, for some choice of g̃, can one fulfill the
condition ∆a1

.= −Γa0 and thus obtain a vertex. After a tedious but
straightforward calculation, shown in Appendix D.3.1, one can write

∆a1g̃ + Γ
( 1

2hµνX
µν
) .= −8ig̃ Γ

(
ψ̄µαR

+µναβψνβ + 1
2

¯6ψµ 6R
µν 6ψν

)
−∆a,
(6.28)

where R+µναβ ≡ Rµναβ + 1
2γ

µνρσRρσ
αβ and ∆a is given below. The

next step is to relate the latter quantity with ∆ã1 and ∆a1g up to total
derivatives, and as we prove in Appendix D.3.1, this can be achieved. We
find

∆a
.= 8
( g̃
g

)
∆a1g + ∆ã1, (6.29)

for some ambiguity ã1 spelled out in Eq. (D.89). Then one can choose

g̃ = 1
8g (6.30)

in order to fulfill the cocycle condition (4.21c). That is, Eq. (6.28) takes
the form

∆a1g + ∆a1g̃ + ∆ã1
.= −Γa0, (6.31)

where the vertex a0 is given by

a0 = ig
(
ψ̄µαR

+µναβψνβ + 1
2

¯6ψµ 6R
µν 6ψν + 1

4hµνψ̄ρσ‖λ γ
µρσαβ, νλγ ψαβ‖γ

)
.

(6.32)
We emphasize that it is a unique linear combination in Eq. (6.19),

with g̃ = 1
8g being real valued, for which the a2 gets lifted to a vertex

a0 through the consistency cascade. The 2-derivatives vertex is therefore
unique. While it simplifies in dimension 4, for the last term in the above
expression then vanishes, the vertex is non-zero in any D ≥ 4. We also
point out the role played by the combination R+

µναβ , and its resemblance
with the spin-1 analogous quantity F+

µν .
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The 3-Derivatives Vertex

In this case, as we see from (6.9) and (6.10), there is just one candidate
for a2, namely

a2 = −igC∗λ ξ̄µνγλµναβξαβ . (6.33)
Again, for future convenience, we have written it with five γ-matrices,
instead of just one as it appears in (6.9), and the equivalence of the two
forms is again made explicit in Appendix D.3.2. Acting with ∆ on Eq. (6.33)
and integrating by parts one evidently produces only Γ-exact terms, thanks
to the relations (E.46). The corresponding a1 is thus easily seen to be

a1 = −2igh∗σλ
(
ξ̄µνγ

λµναβψαβ‖σ − h.c.
)

+ ã1, (6.34)

for some ambiguity ã1 such that Γã1 = 0.
Now we address the problem of finding the lift to a0. Acting on the

above expression with ∆, one again obtains the Einstein tensor, which can
be written as Gσλ = 2∂[ρh

ρσ‖
λ] − 1

2δ
σ
λR. Thus one ends up having

∆a1 = −2ig
(
∂ρh

ρσ‖
λ− ∂λhρσ‖ρ− 1

2δ
σ
λR
) (
ξ̄µνγ

λµναβψαβ‖σ − h.c.
)

+ ∆ã1.
(6.35)

The term proportional to the Ricci scalar is simply zero because of the
Bianchi identity ψ[αβ‖σ] = 0, while the term containing ∂λ is a total deriva-
tive, thanks again to the Bianchi identities ∂[λξ̄µν] = 0 and ∂[λψ̄αβ]‖σ = 0,
enforced by the presence of the antisymmetric 5-γ product. Finally, the
term containing ∂ρ can be integrated by parts to give, up to the hermitian
conjugates,

∆a1
.= 2ighρσ‖λ

(
∂ρξ̄µν γ

λµναβ ψαβ‖σ + 1
2 ξ̄µν γ

λµναβ Ψαβ|ρσ − h.c.
)
+∆ã1.
(6.36)

The first term in the parentheses and its hermitian conjugate combine into
a Γ-exact term modulo d, since the Γ variation of the graviton curl is zero
up to a total derivative, again by the Bianchi identities ∂[λξ̄µν] = 0 and
∂[λψαβ]‖σ = 0. In the second term, on the other hand, one can pull a
derivative out of the ghost-curl and integrate by parts to obtain

∆a1 + 2ig Γ
(
hρσ‖λψ̄µν‖ρ γ

λµναβ ψαβ‖σ
) .= igRµνρσ

(
ξ̄λ γ

λµναβ Ψαβ|
ρσ
)

+ 1
2∆ã1 + h.c.. (6.37)

Now, as shown in Appendix D.3.2, the right-hand side can be rendered
precisely Γ-exact modulo d for some choice of the ambiguity, given by
(D.98), and for that right-hand side we thus get

− ig Γ
(
hρσ‖λψ̄µν‖γ γ

λµναβ, ρσγδ ψαβ‖δ
)
. (6.38)
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The two Γ-exact pieces then combine to fulfill the condition ∆a1 + Γa0
.= 0

for
a0 = ig ψ̄µν‖

ρ
(
h+
ρσ‖λ γ

λµναβ + γλµναβ h+
ρσ‖λ

)
ψαβ‖

σ, (6.39)

where
h+ρσ‖λ ≡ hρσ‖λ + 1

2γ
ρσαβhαβ‖

λ. (6.40)

The above 3-derivatives vertex vanishes in D = 4, and this fact is manifest
from the presence of the antisymmetrized product of five γ-matrices. Let
us also note the appearance of the above combination of the graviton field,
which is some version of R+

µνρλ with one curl less.

6.1.2 Abelian Vertices
Having exhausted all the nontrivial a2’s, we are only left to consider vertices
with trivial a2. In this case, as we show in Subsection 6.2.2 for generic
spin, one can always choose to write a vertex as the graviton field hµν
contracted with a gauge-invariant2 current Tµν ,

a0 = Tµνhµν , ΓTµν = 0, (6.41)

where the divergence of the current is the ∆ variation of a Γ-closed object:

∂νT
µν = ∆Mµ, ΓMµ = 0. (6.42)

The gauge-invariant current Tµν is a bilinear in the fermion fields,
which cannot be ∆-exact since otherwise the vertex (6.41) would be trivial.
This leaves us with considering only bilinears in the curvature Ψµν|ρσ.
Schematically, the current is of the form

Tµν = Ψ̄M ÔµνMNΨN , (6.43)

where M,N are compound indices and Ô is an operator built out of
derivatives, γ-matrices and the metric tensor. This immediately implies
that an abelian vertex will contain at least four derivatives — two from
both curvatures with Ô containing no derivative.

To find the possible tensor structure of Ô, let us first note that we
can forgo contractions of any pair of indices in the same curvature tensor
since the result is always ∆-exact, if not zero. Moreover, it is sufficient
to consider in Ô no more than one γ-matrix, which must carry either the
µ index or ν. To see this, notice that if a γ-matrix carries one of the

2 Gauge invariance of Tµν is the whole point here: one can always write a vertex as
a0 ≈ Tµνhµν , but in general Tµν will not be strictly gauge invariant.
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indices of the curvatures — any from the sets M and N — one can use the
Clifford algebra to anticommute it past other possible γ-matrices, ending
up producing a γ-trace of the curvature, which is ∆-exact. This leaves us
with only γµ and γν which, however, cannot appear simultaneously because
their symmetrization would eliminate them both. A similar reasoning rules
out the appearance of the operator 6∂, and therefore of 2, in Ô.

How many derivatives may Ô contain ? If it contains one derivative,
there will be one γ-matrix carrying either the index µ or ν, say γµ. One
can always choose the other index ν to appear on the derivative under
consideration. In the only other nontrivial possibility, the latter index
is contracted with, and therefore appears on, a curvature on which the
derivative must act. Then one can pull out the derivative ∂ν by using
the second Bianchi identity and symmetry properties of the curvatures.
Similarly, when Ô contains more derivatives, one can forgo the appearance
of the indices µ and ν on the curvatures. However, the number of derivatives
cannot exceed two. To see this, let us consider the possibility of having
three derivatives or more:

Tµν = Ψ̄M ~∂ρP̂µνMN
~∂ρΨN ,

where P̂ is a 1- or higher-derivative operator. Then one can use the so-
called 3-box rule: 2∂ρX∂ρY = 2(XY )−X2Y −Y2X, integrate by parts,
and drop ∆-exact terms to write

a0 ≈ 2hµν
( 1

2 Ψ̄M P̂µνMNΨN
)
≈
( 1

2∂µh
′ − ∂ · hµ

)
∂ν
(
Ψ̄M P̂µνMNΨN

)
,

where the last equivalence comes from Rµν ≡ 2hµν − 2∂(µ∂ · hν) + ∂µ∂νh
′

being a ∆-exact quantity. Therefore, the vertex is trivial since the diver-
gence of the fermion bilinear is ∆-exact. The latter fact originates from
∂νT

µν = ∆Mµ, and from that the divergence is blind to the presence of the
extra derivatives ~∂ρ~∂

ρ in Tµν . On the other hand, if the extra derivatives
carry any indices belonging to the sets M and N , one must keep in mind
that a divergence of the curvature is ∆-exact. Given the hermiticity of Tµν ,
the commutativity of covariant derivatives, the antisymmetry of paired
indices and the Bianchi identities obeyed by the curvature it is then easy to
convince ourselves that this vertex is always equivalent to the previous one,
which we already ruled out. This proves our claim that Ô may contain at
most two derivatives, and hence sets an upper bound of 6 on the number
of derivatives in Tµν , and hence also in a0.

The 4-Derivatives Vertex

When the operator Ô in Eq. (6.43) does not contain any derivatives, the
corresponding vertex (6.41) is a 4-derivatives one. The generic form of the
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current is

Tµν = ig
(
Ψ̄(µ

λ|αβΨν)λ|αβ + αηµνΨ̄ρσ|αβΨρσ|αβ), (6.44)

where the parameter α is to be fixed by requiring that ∂νTµν be ∆-exact.
Now the divergence of the above equation contains nontrivial pieces in
H(∆), which are given by

∂νT
µν = ∆Mµ+ig

( 1
2 Ψ̄νλ|αβ∂νΨµ

λ|αβ+αΨ̄ρσ|αβ∂µΨρσ|αβ−h.c.
)
. (6.45)

By using the Bianchi identity ∂[νΨµ
λ]|αβ = 1

2∂
µΨνλ|αβ , the first term in

the parentheses is rendered the same as the second one. These terms cancel
each other if we set α = − 1

4 . Thus, there is just one 4-derivatives vertex,
given by

a0 = ig
(
hµν − 1

4ηµνh
′) Ψ̄µ

λ|αβΨνλ|αβ

≈ − i
2g
(
hµν − 1

4ηµνh
′) Ψ̄µ

λ|ρσγ
ρσαβΨνλ|

αβ ,
(6.46)

where the last equivalent form owes its existence to the identity (D.61),
which can be rewritten as ηρσ|αβ = − 1

2γ
ρσαβ + 1

2γ
ρσγαβ − 2γ[ρησ][αγβ],

and to the EoMs (E.19) and (E.20).
Now let us compute the quantity ∆Mµ = ∂νT

µν from Eq. (6.46). One
gets

∆Mµ = − i
4g Ψ̄µ

λ|ρσγ
ρσαβ∂νΨνλ|

αβ + h.c. (6.47)

One can then use the identity (E.22) for the divergence of the curvature,
thereby obtaining

∆Mµ = − 1
2g Ψ̄µλ|

ρσγ
ρσαβ 6∂ ∂[αSβ]λ + 1

4g Ψ̄µλ|
ρσγ

ρσαβ∂λ∂[α 6 Sβ] + h.c.
(6.48)

In the first term on the right-hand side, one can make use of the identity
γρσαβ 6∂ = (2γρσαβτ − γτγρσαβ)∂τ and then integrate by parts w.r.t. ∂τ ,
noticing that the 5-γ piece is killed by a Bianchi identity. In the second
term, on the other hand, one can integrate by parts w.r.t. ∂λ, which results
in

∆Mµ = 1
2g ∂τ

(
Ψ̄µλ|

ρσγ
τγρσαβ∂[αSβ]λ

)
+ 1

4g ∂λ
(
Ψ̄µλ|

ρσγ
ρσαβ∂[α 6 Sβ]

)
− 1

2g Ψ̄µλ|
ρσ

~6∂ γρσαβ∂[αSβ]λ − 1
4g Ψ̄µλ|

ρσ
~∂λ γ

ρσαβ∂[α 6 Sβ] + h.c.
(6.49)

The first line on the right-hand side is a double divergence, because one
can pull out the ∂α from the Fronsdal tensor, and make it a total derivative
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by using the Bianchi identities. That is, the first line plus its hermitian
conjugate reduces to the form ∂α∂τYµατ1 , where

Yµατ1 = 1
2g
(
Ψ̄µλ|

ρσγ
τγρσαβSβλ + 1

2 Ψ̄µτ |
ρσγ

ρσαβ 6 Sβ + h.c.
)
, (6.50)

which is both Γ-closed and ∆-exact. On the other hand, the second
line of Eq. (6.49) contains bilinears in the Fronsdal tensor by virtue of
the EoMs (E.21) and (E.22). The first piece contains the double curl,
∂[µ∂[ρS̄σ]

λ], while the second one includes ∂[ρS̄σ]
µ ~6∂. In the former of

these, one pulls out ∂µ to integrate by parts, while in the latter one uses
~6∂ γρσαβ = ~∂τ (2γρσαβτ − γρσαβγτ ) and then integrates by parts w.r.t. ∂τ .

The last step produces 6∂ ∂[α 6 Sβ], which then can be replaced, thanks to
Identity (E.23), by 2∂λ∂[αSβ]λ. The same step also gives a total derivative:
∂τ (∂[ρS̄σ]

µγρσαβγτ∂[α 6 Sβ]), which can be turned into a double divergence
by pulling out ∂α and integrating by parts. When hermitian conjugates
are taken into account, the end result is that the second line of Eq. (6.49)
reduces to the form ∂νX (µν)+∂α∂τYµατ2 , where X and Y2 are both Γ-closed
and ∆-exact:

Yµατ2 =− i
2g
(
∂[ρS̄σ]

µγρσαβγτ 6 Sβ − h.c.
)
, (6.51a)

X (µν) =− i
4g
(
∂[ρS̄σ]

µγρσαβ∂[αSβ]
ν + ∂[ρS̄σ]

νγρσαβ∂[αSβ]
µ
)

(6.51b)
+ i

4g η
µν
(
∂[ρS̄σ]

λγρσαβ∂[αSβ]λ + 1
4∂[ρ ¯6 Sσ]γ

ρσαβ∂[α 6 Sβ]
)
.

Thus, we have shown that ∆Mµ can be rewritten as

∆Mµ = ∂νX (µν) + ∂α∂τ (Yµατ1 + Yµατ2 ) . (6.52)

This, along with Eqs. (6.50)–(6.51), fulfills the sufficient condition (D.112)
for the triviality of a1. That is, the vertex does not actually deform the
gauge transformations: one can make it strictly gauge-invariant modulo d,
by adding ∆-exact terms, which are spelled out in (D.115).

Although not manifest, this vertex actually vanishes in D = 4. In fact,
one can find the following form for the vertex:

a0 ≈ − i
8g hµνΨ̄ρσ|τλ γ

µρσαβ, ντγ Ψαβ|γ
λ, (6.53)

which makes the triviality in dimension 4 manifest. To see that this is indeed
equivalent to the vertex (6.46), let us use the γ-matrix identity (D.76) in the
vertex (6.53) in order to break it into terms containing only antisymmetric
products of six γ-matrices or two. The former kind of terms all vanish
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because of either the Bianchi identities or the symmetry in the indices
carried by the graviton. On the other hand, the terms containing two γ-
matrices are actually equivalent to terms containing none. This is because
the symmetry in the graviton indices requires that at least one γ-matrix
be contracted with a spin- 5

2 curvature; then the Clifford algebra gives a
γ-trace of the curvature, which is ∆-exact. Thus we get

a0 ≈ − i
8ghµ

ν Ψ̄ρσ|λ
τ
(
12 δβρσντγ η

µα + 24 δµρβντγ η
σα − 12 δσαβντγ η

µρ
)

Ψαβ|
λγ .

Having gotten rid of γ-matrices, it is now straightforward to carry out
the computation; the number of possible terms are greatly reduced by the
symmetry properties of the associated fields and curvatures, and one can
also drop traces of the curvatures, since they are ∆-exact. Thus, one ends
up with the first form of the vertex presented in (6.46).

The 5-Derivatives Vertex

When the vertex contains five derivatives, the operator Ô in Eq. (6.43)
includes one. As we discussed already, the form of Ô is much restricted.
Indeed, we have just one possibility:

Tµν = ig Ψ̄ρσ|αβγ(µ ~∂~ν)Ψρσ|αβ , (6.54)

where the operator ~∂~µ ≡ ~∂µ − ~∂µ plays a crucial role in eliminating from
∂νT

µν terms that are not ∆-exact. The vertex is given, by virtue of
Eq. (6.41), as

a0 = ighµνΨ̄ρσ|αβγ(µ ~∂~ν)Ψρσ|αβ ≈ −ig hµν‖λΨ̄µ
τ |ρσ γ

λ Ψντ |ρσ. (6.55)

To see the equivalence with the second form, let us remove therein any
derivatives on the graviton field by partial integration. This gives a
derivative of the spin- 5

2 curvatures: the divergence is ∆-exact, while in
the gradient one can use the second Bianchi identity and the symmetry
properties of the curvatures to pull out a derivative with an index of the
graviton field. The equivalence of the vertices then follows immediately.

We can write the second equivalent form as
1
2hµν‖λΨ̄µτ |

ρσ

(
ηρσ|αβγλ + γληρσ|αβ

)
Ψν

τ |αβ . (6.56)

Then the identity ηρσ|αβ = − 1
2γ

ρσαβ + 1
2γ

ρσγαβ − 2γ[ρησ][αγβ] is again
helpful, for it helps us drop some ∆-exact pieces, thanks to Eqs. (E.19)–
(E.20), so to be left with 1

2 (γρσαβγλ + γλγρσαβ) = γλρσαβ . Therefore, we
have another equivalent form of the vertex:

a0 ≈ i
2g hµν‖λΨ̄µτ |

ρσ γ
λρσαβ Ψν

τ |αβ . (6.57)
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The virtue of this latter form is twofold. First, the presence of an antisym-
metric product of five γ-matrices manifestly renders this vertex trivial in
D = 4. Second, because of Bianchi identities, the gauge variation of the
vertex is just a total derivative, which means that it does not deform the
gauge transformations, and that feature is also quite manifest in the above
expression.

The 6-Derivatives Vertex

There is a unique 6-derivatives hermitian current whose divergence is
∆-exact. It reads

Tµν = igΨ̄ρσ|αβ(~∂µ~∂ν + ~∂µ ~∂ν − ηµν ~∂λ~∂λ
)
Ψρσ|αβ . (6.58)

While the vertex is simply given by Tµνhµν , one can also cast it into a
more ‘geometrical’ form that involves the product of all three curvatures:

a0 ≈ igRµνρσΨ̄ρσ|αβΨαβ
µν . (6.59)

This form is strictly gauge invariant in a manifest way, and the vertex
exists in all D ≥ 4. To see the equivalence with the two forms of the vertex,
let us remove in the vertex above all the derivatives from the graviton field,
by integrations by parts. Dropping divergences of the spin- 5

2 curvature,
that are ∆-exact, we thus arrive at

a0 ≈ 4ighµνΨ̄µα|ρσ ~∂β~∂αΨν
β|ρσ

≈ 4ighµν
(
−Ψαβ|ρσ ~∂µ + Ψ̄µβ|ρσ ~∂α

)
~∂αΨν

β|ρσ,
(6.60)

where the second equivalence results from the Bianchi identity. The
first term in the above parentheses imposes the useful Bianchi identity
∂[αΨν

β]|ρσ = 1
2∂

νΨαβ|ρσ, whereas the second term enables us to use the
3-box rule, so that we can drop ∆-exact terms, like 2Ψµβ|ρσ, and integrate
by parts to obtain

a0 ≈ −2ighµνΨ̄αβ|ρσ ~∂µ~∂νΨαβ|ρσ + 2ig2hµνΨ̄µβ|ρσΨν
β|ρσ. (6.61)

Now, let us replace 2hµν by 2∂(µ∂ · hν) − ∂µ∂νh′, since their difference
is Rµν = ∆-exact. In the resulting expression, let us remove all the
derivatives from the graviton field, which yields

a0 ≈− 2ighµνΨ̄αβ|ρσ ~∂µ~∂νΨαβ|ρσ

+ 2ig
(
hµν − 1

2ηµνh
′)∂ν(Ψ̄λβ|ρσ~∂λΨµ

β|ρσ − h.c.
)
.

(6.62)



CHAPTER 6. GRAVITATIONAL COUPLINGS 162

In the second term, we can again use ∂[λΨµ
β]|ρσ = 1

2∂
µΨλβ|ρσ to find that

some of the resulting pieces cancel the first term. The remaining part adds
to the form Tµνhµν , with Tµν given precisely by (6.58). Hence the vertices
are equivalent. The summary of our couplings for this setup is given in
Table 7

6.2 Arbitrary-Spin Couplings

The sets of fields and antifields for the arbitrary-spin case are given by

ΦA = {hµν , Cµ, ψµ1...µn , ξµ1...µn−1}, (6.63a)
Φ∗A = {h∗µν , C∗µ, ψ̄∗µ1...µn , ξ̄∗µ1...µn−1}. (6.63b)

For n > 2, there is a triple γ-trace constraint on the field and antifield, i.e.

6ψ′µ1...µn−3
= 0, ¯6ψ∗′µ1...µn−3

= 0. (6.64)

The rank-(n− 1) fermionic ghost and its antighost are γ-traceless as usual:

6ξµ1...µn−2 = 0, 6 ξ̄ ∗µ1...µn−2
= 0, (6.65)

and the spin-s Lagrangian EoMs are given by the rank-n tensor-spinor
Rµ1...µn , which we have already introduced in Chapter 5 and we recall its
expression:

Rµ1...µn = Sµ1...µn − 1
2nγ(µ1 6 Sµ2...µn) − 1

4n(n− 1) η(µ1µ2S
′
µ3...µn). (6.66)

Let us recall once again that an account of the cohomology of Γ is given in
Appendix E, and in Table 6.2 below we spell out some important properties
of the various fields and antifields.
Again, the antifield χ̄∗µ1...µn is given by Eqs. (E.34)–(E.35), while the
BRST-closed free master action for the arbitrary-spin case now reads:

S0 =
∫

dDx
[
Gµνhµν + 1

2
(
R̄µ1...µnψµ1...µn − ψ̄µ1...µnRµ1...µn

)]
(6.67)

+
∫

dDx
[
−2h∗µν∂µCν + 1

2n
(
ψ̄∗µ1...µn∂µ1ξµ2...µn − ∂µ1 ξ̄µ2...µnψ

∗µ1...µn
)]
.

Now we are ready to construct the 2−s−s cubic vertices. Having worked
out the spin- 5

2 case as a prototypical example, our job has become easy,
since many of the statements made for spin 5

2 will translate verbatim to
arbitrary spin.
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Table 6.2: Properties of the Various Fields & Antifields (∀n)

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)
hµν 2∂(µCν) 0 0 0 0 0
Cµ 0 0 1 0 1 1
h∗µν 0 Gµν 0 1 −1 1
C∗µ 0 −2∂νh∗µν 0 2 −2 0

ψµ1...µn n∂(µ1ξµ2...µn) 0 0 0 0 1
ξµ1...µn−1 0 0 1 0 1 0
ψ̄∗µ1...µn 0 R̄µ1...µn 0 1 −1 0
ξ̄∗µ1...µn−1 0 2∂µn χ̄∗µ1...µn 0 2 −2 1

6.2.1 Non-Abelian Vertices
Let us recall that any a2 consists of two ghost fields and a single antighost,
and that the latter can be chosen to be undifferentiated without loss
of generality. As explained in Appendix E, a single derivative acting
on the ghost Cµ can be realized as a 1-curl Cµν modulo irrelevant Γ-
exact terms, while two or more derivatives are never nontrivial. For the
fermionic ghost ξµ1...µn−1 , on the other hand, one can choose any m-curl
ξµ1ν1|...|µmνµ‖µm+1...µn−1 with m = 1, 2, ..., n − 1, and more than n − 1
derivatives give Γ-exact terms. Clearly, a nontrivial a2 cannot contain
more than 2n− 2 derivatives. This sets an upper bound of 2n− 1 on the
number of derivatives in a non-abelian vertex given the actions of Γ and ∆
on various (anti)fields and the consistency cascade (4.21).

Again, all nontrivial a2’s fall into two subsets: Subset 1 contains the
bosonic antighost C∗µ, and subset 2 the fermionic one ξ∗µ1...µn−1 . Subset
1 has the form a2 = C∗µXµ, where Xµ is some bilinear in the fermionic
ghost-curls. Then we have: ∆a2

.= 2h∗µν∂(µXν), which must be Γ-exact
modulo d if the cocycle condition (4.21b) is to be satisfied. Then, because
Γ does not act on the antifields, a functional derivative w.r.t. h∗µν gives

∂(µXν) = Γ-exact. (6.68)

Now, the symmetrized derivative of Xµ can be schematically written as

∂X ∼ ∂
(
ξ̄(m1)ξ(m2) ± ξ̄(m2)ξ(m1)) (6.69)

∼ Γ(...) + ξ̄(m1+1)ξ(m2) + ξ̄(m1)ξ(m2+1) ± (m1 ↔ m2).

When m1 and m2 are equal, we have the plus sign for a nonzero X, and
nontrivial elements of H(Γ) are absent only when m1 = m2 = n − 1.
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When they are unequal, let us take m1 > m2, and then ∂X is Γ-exact
with the minus sign if m1 = m2 + 1 = n − 1. The only a2’s that pass
the condition (4.21b) thus contain 2n − 3 and 2n − 2 derivatives. More
explicitly,

a2 =
{
p = 2n− 2 : igC∗µ(ξ̄(n−1)

µ ··· ξ
(n−2) ··· − ξ̄(n−2) ···ξ

(n−1)
µ ··· ),

p = 2n− 1 : igC∗µξ̄(n−1) ···γµξ
(n−1)
··· ,

(6.70)

where the ellipses mean contracted indices. The similarity with the spin- 5
2

case is manifest.

Subset 2, on the other hand, involves the (undifferentiated) fermionic
antighost. In this case, the a2 has the form a2 = ξ̄∗µ1...µn−1Yµ1...µn−1 +h.c.
Symmetry is imposed in the indices of Y , which comprises both of the ghosts
and curls thereof. Following the same logic as presented for spin 5

2 , it is
clear that a2 can contain at most two derivatives: one in Cµν and the other
in the 1-curl ξµ1ν1‖ν2...νn−1 , as higher-curls of the latter are incompatible
with the symmetry of the indices. At this point the possibilities (all to be
ruled out) are thus:

a2 =


p = 0 : gξ̄∗µ ···γαξµ ···Cα + h.c.,
p = 1 : gξ̄∗µ ···(ξν ···Cµν + α1ξ

(1)
µν‖···C

ν + α2γ
αβξµ ···Cαβ) + h.c.,

p = 2 : gξ̄∗µ ···γαξβµ‖···Cαβ + h.c.
(6.71)

However, one can derive quite similarly a counterpart of condition (6.68),
namely

∂(µ1Yµ2...µn) = Γ-exact, (6.72)

and when n > 2 it is impossible for any element in the list (6.71) to fulfill
this condition, because ∂Y will always contain nontrivial elements of H(Γ).
This rules out all of them.

The (2n-2)-Derivative Vertex

In this case, one can proceed along the same lines as for the 2-derivatives
spin- 5

2 vertex, and to make the steps go verbatim we add a trivial term to
the first element of (6.70), thus writing

a2 = igC∗µ
(
ξ̄

(n−1)
µ ··· ξ

(n−2) ··· − ξ̄(n−2) ···ξ
(n−1)
µ ···

)
+ 1

8gCµν
(
ξ̄
∗(n−2)
···‖ρ γµνραβξ(n−1)···‖

αβ − h.c.
)
,

(6.73)
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which looks quite similar to the spin- 5
2 counterpart (6.19), given the

relation (6.30). To obtain the vertex, one can now simply redo the steps of
Subsection 6.1.1, and consequently find

a0 = ig
(
ψ̄

(n−2)
···‖µαR

+µναβψ(n−2)···‖
νβ + 1

2
¯6ψ(n−2)
···‖µ 6R

µν 6ψ(n−2)···‖
ν

)
+ i

4g hµν ψ̄
(n−1)
···ρσ‖λ γ

µρσαβ, νλγ ψ(n−1)···
αβ‖γ

(6.74)

as the searched-for non-abelian 2−s−s vertex containing 2n− 2 derivatives.
Again, let us notice the striking similarity with its spin- 5

2 counterpart,
given in (6.32), including the appearance of the R+

µναβ combination.

The (2n-1)-Derivative Vertex

Here one starts with the second element of (6.70). In order to have a direct
generalization of (6.33) we use five γ-matrices instead of one, thus writing

a2 = −ig C∗λξ̄
(n−1)
···|µν γ

λµναβ ξ(n−1)···|
αβ . (6.75)

One can then proceed in the same way as in Subsection 6.1.1 to find:

a0 = igψ̄
(n−1)
···µν ‖

ρ
(
h+
ρσ‖λ γ

λµναβ + γλµναβ h+
ρσ‖λ

)
ψ(n−1) ···

αβ‖
σ, (6.76)

which is our non-abelian 2−s−s vertex with 2n− 1 derivatives. Again, the
comparison with the spin- 5

2 counterpart (6.39) reveals that they are very
similar, and in particular the ‘+’ operator again plays a role.

6.2.2 Abelian Vertices
Abelian vertices are those that do not deform the gauge algebra. Such a
vertex corresponds to a trivial a2, and therefore to an a1 which can always
be chosen to be Γ-closed [177, 178],

Γa1 = 0, (6.77)

and which is related to the vertex a0 through the cocycle condition (4.21c),
that is:

∆a1 + Γa0
.= 0. (6.78)

Now, in full analogy with the electromagnetic case, one can again prove in
this instance that abelian vertices do not deform the gauge algebra. The
gravitational-case proof is analogous to its electromagnetic counterpart, so
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that the former is to be found in Appendix D, and we shall thus hereafter
assume a1 to be trivial.

The arguments presented in the beginning of Subsection 6.1.2 then go
verbatim for arbitrary spin, except that now the number of derivatives in
the abelian vertex can take the values 2n, 2n+1 and 2n+2, since the spin-s
curvature tensor contains n derivatives (s = n + 1

2 ). The corresponding
currents can be written as direct generalizations of those for spin 5

2 , given
respectively by Eq. (6.44) with α = 1

4 and by Eqs. (6.54) and (6.58).
Explicitly, the vertices are:

p = 2n : a0 = ig(hµν − 1
4ηµνh

′)Ψ̄µ
···Ψν ···, (6.79a)

p = 2n+ 1 : a0 = ighµνΨ̄ ··· γ(µ ~∂~ν)Ψ···, (6.79b)

p = 2n+ 2 : a0 = ighµνΨ̄ ···
(
~∂µ~∂ν + ~∂µ ~∂ν − ηµν ~∂λ~∂λ

)
Ψ··· . (6.79c)

None of these vertices deform the gauge transformations. The 2n-
derivatives vertex can be shown to fulfill the sufficient condition (D.112)
in order for its a1 to be trivial, and the proof follows exactly the same
steps as in the spin- 5

2 case. On the other hand, one can render the
(2n+ 1)-derivatives vertex manifestly Γ-closed modulo d by casting it into
a generalization of the expression (6.57), while the (2n+ 2)-derivatives one
takes the 3-curvatures form akin to that of (6.59). These proofs are also
straightforward generalizations of the spin- 5

2 case.
Finally, direct generalizations of the prototypical spin- 5

2 example also
show that the 2n- and (2n+ 1)-derivatives vertices are trivial in D = 4,
while the (2n+ 2)-derivatives, 3-curvatures vertex exits in all D ≥ 4. More
comments are found in the following chapter, where we also comment on
quartic consistency. In the case of gravitational coupling, the proof that
our non-abelian cubic vertices are obstructed at higher-order is relegated
to Appendix D.5. Again, a summary of our results is given in Table 7 of
the following chapter.



CHAPTER 7
Conclusions

In this last chapter, after summarizing our results, we comment on them
and discuss their relation to other works.

Summary of Results

Making use of the BRST-Antifield reformulation of the deformation prob-
lem we have obtained the exhaustive list of 1−s−s and 2−s−s consistent
couplings in Minkowski spacetime of dimension D ≥ 4, for all gauge
fermions of spin s = n+ 1

2 . The assumptions have been locality, Lorentz in-
variance and parity invariance. The vertices have been obtained in their full
off-shell form, and no gauge fixing or on-shell condition has been imposed.
Moreover, for those vertices that are non-abelian, the corresponding gauge-
algebra and gauge-transformation deformations have been given explicitly.
For spin s = n+ 1

2 , we find that the possible number of derivatives in a
cubic 1−s−s vertex is restricted to only three values: 2n−1, 2n and 2n+ 1,
while for the 2−s−s vertices they are five: 2n− 2, 2n− 1, 2n, 2n+ 1 and
2n+2, with only one inequivalent vertex for each value, displayed hereafter.

Our notation is as follows: by ‘NA’ we mean that the vertex is non-
abelian; ‘CS’, which stands for Chern–Simons, means that the vertex
is displayed in a form where it is manifestly gauge invariant up to total
derivatives; and by ‘BI’, which stands for Born–Infeld we mean the vertex is
strictly gauge invariant, without use of partial integration (and is displayed
in that form). The number of derivatives is noted p.

167
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The electromagnetic couplings of the Rarita–Schwinger read as follows.

Table 7.1: Summary of 1− 3
2−

3
2 Vertices with p Derivatives

p Vertex Nature
1 ψ̄µF

+µνψν D ≥ 4, NA

2
(
Ψ̄µν γ

µναβλ Ψαβ

)
Aλ D ≥ 5, CS

3 Ψ̄µαΨα
νF

µν D ≥ 4, BI

We note the appearance of the ‘geometric’ quantity

F+µν ≡ Fµν + 1
2γ

µνρλFρλ (7.1)

in the non-abelian vertex with one derivative. Let us note that the defor-
mation with two derivatives has been put in a form AµJ

µ, where Jµ is the
gauge-invariant current, bilinear in the fermion curvatures and containing
the maximum possible number of γ-matrices. Also, we point out that the
strictly gauge-invariant vertex with three derivatives is simply a product
of curvatures — the only one that can be written down, actually.1 One
also notices that the ‘Chern–Simons’ vertex vanishes in D = 4, as is made
manifest in the given expression. Finally, it is instructive to compare the
above to the spin- 1

2 couplings, given in Table 4.3: one observes that for
s = 1

2 (n = 0), the bounds 2n− 1, 2n, 2n+ 1 on p would formally give rise
to vertices with 1, 0 and −1 derivatives. This means that the non-abelian
coupling thereof does not exist, as Table 4.3 indeed shows, whereas there
is, in that case, a deformation without derivatives, which is the minimal
coupling — absent for s ≥ 3

2 .
Note that minimal coupling is usually defined as the cubic term pro-

duced by the covariantization of derivatives in the corresponding kinetic
term. In our context, where we deal with fermions, the minimal coupling
would have zero derivatives, because the free EoMs are of order one in the
derivatives. As aforesaid, we have demonstrated that such vertices do not
exist for higher-spin gauge fermions.

1 Such higher-derivative vertices for higher spins were noticed to exist at an early
stage already, e.g. in [193].
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For the spin- 5
2 field, the couplings with the photon are given below.

Table 7.2: Summary of 1− 5
2−

5
2 Vertices with p Derivatives

p Vertex Nature
3 ψ̄

(1)
αβ‖µF

+µνψ
(1)αβ‖

ν D ≥ 4, NA

4
(
Ψ̄µν|ρσ γ

µναβλ Ψ ρσ
αβ|

)
Aλ D ≥ 5, CS

5 Ψ̄αβ|µρΨ
αβ|ρ

νFµν D ≥ 4, BI

Interestingly, the expressions are really akin to those for the Rarita-
Schwinger, and one simply adds the necessary indices by taking curls
wherever the fermion appears and contracting the additional indices in the
only possible way. The structure of gauge invariance, together with the
dependence on the spacetime dimension, is the same as for s = 3

2 , and so
is the appearance of the various curvatures.

Having in mind the above cases, it is no surprise that the generic
couplings of a spin-s gauge fermion with a vector field are as follows.

Table 7.3: Summary of 1−s−s Vertices with p Derivatives

p Vertex Nature
2n− 1 ψ̄

(n−1)
µ1ν1|...|µn−1νn−1‖µnF

+µn
νnψ

(n−1)µ1ν1|...|µn−1νn−1‖νn D ≥ 4, NA

2n
(
Ψ̄µ1ν1|µ2ν2|...|µnνnγ

µ1ν1α1β1λΨ µ2ν2|...|µnνn
α1β1|

)
Aλ D ≥ 5, CS

2n+ 1 Ψ̄µ1ν1|µ2ν2|...|µnαΨµ1ν1|µ2ν2|...|ανnFµnνn D ≥ 4, BI

Again, the pattern very much resembles that of the simplest non-trivial
case, namely the spin- 3

2 one. However, we see another interesting feature
emerge: the s = n+ 1

2 non-abelian vertex contains the (n− 1)-curls of the
fermion field, whereas the tensor F+µν still appears in the same way.

We now move on to recalling our results which concern the gravitational
couplings. Unlike in the electromagnetic case, a higher-spin gauge fermion
can couple to a graviton in five different ways, not three.
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The simplest gravitational higher-spin vertices are given hereafter.

Table 7.4: Summary of 2− 5
2−

5
2 Vertices with p Derivatives

p Vertex Nature
2 iψ̄µαR

+µναβψνβ + i
4hµνψ̄ρσ‖λ γ

µρσαβ, νλγ ψαβ‖γ + TT D ≥ 4, NA

3 iψ̄µν‖
ρ
(
h+
ρσ‖λ γ

λµναβ + γλµναβ h+
ρσ‖λ

)
ψαβ‖

σ D ≥ 5, NA

4 ihµνΨ̄ρσ|τλ γ
µρσαβ, ντγ Ψαβ|γ

λ D ≥ 5, A

5 ihµν‖λΨ̄µτ |
ρσ γ

λρσαβ Ψν
τ |αβ D ≥ 5, CS

6 iRµνρσΨ̄ρσ|αβΨαβ
µν D ≥ 4, BI

The transverse-traceless terms in the 2-derivatives vertex, denoted ‘TT’,
are given by

i
2

¯6ψµ 6R
µν 6ψν . (7.2)

The vertex with the highest number of derivatives is again a product of
curvatures, whereas the p = 5 and p = 4 ones only contain the fermion
curvatures. Moving down in number of derivatives we face one of the
two non-abelian vertices, where we start seeing the appearance of the ‘+’
operator, which turns a tensor with two indices into the equivalent of (7.1),
where the tensor is F . Finally, the deformation with two derivatives is seen
to involve a term with the tensor R+

µναβ , which is really the spin-2 analogue
of F+

µν for the photon field, and that term is seen to be a straightforward
generalization of the non-abelian electromagnetic dipole term. However,
in the gravitational case this term is dressed by another one, which can
be seen to vanish in the traceless, transverse gauge and which we give
hereabove with the correct normalization. Again, we see that only the
vertices with the highest and the lowest number of derivatives survive in
dimension 4, just like for the electromagnetic case. Let us also point out
that the four-derivatives vertex has been given in a form where it is not
gauge invariant (up to total derivatives) off-shell, and one needs to use the
equations of motion.2

2 Of course, since we know it does not deform the gauge transformations (its
associated a1 is trivial), it is possible to perform field redefinitions on it so that it will
be strictly gauge invariant up to partial integration only, but we chose not do so.



CHAPTER 7. CONCLUSIONS 171

Last of all, we give the gravitational couplings for arbitrary spin s.

Table 7.5: Summary 2−s−s Vertices with p Derivatives

p Vertex Nature
2n− 2 ig ψ̄

(n−2)
···‖µαR

+µναβψ(n−2)···‖
νβ (TT, D ≥ 5) D ≥ 4, NA

2n− 1 ig ψ̄
(n−1)
···µν ‖

ρ
(
h+
ρσ‖λ γ

λµναβ + γλµναβ h+
ρσ‖λ

)
ψ(n−1) ···

αβ‖
σ D ≥ 5, NA

2n ig
(
hµν − 1

4ηµνh
′) Ψ̄µ

···Ψν ··· D ≥ 5, A

2n+ 1 ig hµνΨ̄ ··· γ(µ ~∂~ν)Ψ··· D ≥ 5, CS

2n+ 2 ig hµνΨ̄ ···
(
~∂µ~∂ν + ~∂µ ~∂ν − ηµν ~∂λ~∂λ

)
Ψ··· D ≥ 4, BI

Just as for the vector-field couplings we observe that, in the given form, the
generalization to generic spin proceeds in a trivial manner, by simply adding
indices in the only way compatible with the symmetry of the tensors — and
for the non-abelian vertices those extra indices have been hidden hereabove.
We note that the non-abelian vertex with 2n−2 derivatives is given here in
the traceless, transverse gauge in four dimensions, while the full expression
would be obtained by adding to the latter the terms

i
2g

¯6ψ(n−2)
···‖µ 6R

µν 6ψ(n−2)···‖
ν + i

4g hµν ψ̄
(n−1)
···ρσ‖λ γ

µρσαβ, νλγ ψ(n−1)···
αβ‖γ . (7.3)

Our results also include a cohomological proof of the following facts.

Minimal coupling: the well-known fact that in flat space a massless
spin- 3

2 (resp. spin- 5
2 ) field cannot have minimal coupling to Electro-

magnetism (resp. Gravity) has been demonstrated.3

Abelianity: we have given a generic proof that the abelian vertices pre-
serve the gauge symmetries (and not only the gauge algebra), which
we have checked explicitly on the above expressions.

Second-order: our analysis of second-order consistency reveals that in
a local theory, without additional degrees of freedom, our vertices
cannot be made fully consistent by the addition of quartic terms.

Let us also note that our results heavily rely, among other things, on
the use of γ-matrix identities, for which we have sometimes used the most
useful Mathematica package ‘GAMMA’ [194].

3 This result generalizes easily to higher-spin fermions of any spin.
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Light-Cone Approach

A larger class of couplings, involving the 1−s−s and 2−s−s fermionic cases
studied here, have been investigated in [62] by means of the Light-Cone
formulation, where it was found that there is one and only one cubic s′−s−s
vertex (up to equivalency) for each of the following number of derivatives
it contains: 2n− s′, 2n− s′ + 1, . . . , 2n+ s′ − 1 and 2n+ s′, where s′ is
the spin of the bosonic gauge field and s = n+ 1

2 is that of the fermionic
tensor-spinor, such that s′ ≤ n. These restrictions evidently coincide with
those derived in the present work and reported hereabove. Moreover, the
vanishing in D = 4 of the vertices containing 2n−s′, 2n−s′+1 to 2n+s′−1
derivatives, also stated in [62], is in full agreement with our expressions.

As the Light-Cone approach is a complete gauge fixing, it can be
said that it is somewhat the opposite of our procedure, which is not
only covariant but also fully off-shell, and the full agreement between the
outputs of both techniques gives further confidence in the validity of the
result. On the other hand, different techniques allow for different features
to be within reach. For example, in the Light-Cone approach of [62] the
gauge-algebra and gauge-symmetry deformations are not discussed, but the
analysis is extended beyond the gravitational coupling and is more generic
in that sense. With our methods we only addressed the electromagnetic
and gravitational cases, and although one may think of considering e.g.
3−s−s couplings, at the present moment we have not yet found a way to
straightforwardly generalize our results to s′−s−s vertices for arbitrary s′.

String Theory Lessons

The couplings we have obtained in this work were obtained before in [25],
and we now comment on the comparison. The analysis performed in that
reference is remarkable: previously, all attempts at extracting information
from some tensionless limit of String Theory mainly resulted in obtaining
information about free higher-spin gauge fields. Indeed, if one is too naive
in taking the tensionless limit α′ → ∞, the typical situation is that the
interactions among the massive (higher-spin) modes, made massless, are
lost. However, the authors of [25] found a way of taking the tensionless
limit of tree-level amplitudes for the open, bosonic string in such a way as
to allow for consistent gauge cubic couplings to be extracted therefrom.
The expressions are naturally extracted in an on-shell form, and then
completed to form a cubic off-shell interaction. The results, of course,
agree with the number-of-derivatives bounds found in [62] and with the
results of [184].
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Given that our cubic couplings also agree with the restrictions imposed
by [62] on the number of derivatives contained in the vertex, it should
come as no surprise that we find an agreement between our expressions
and those of [25]. The match between both versions of the results is worked
out in Appendix D.2, where for simplicity we address the electromagnetic
couplings only. In fact, our proof that both expressions coincide is off-shell
only for the spin- 3

2 electromagnetic couplings, and for the other 1−s−s
interactions we give a proof of agreement in the transverse-traceless gauge
up to EoMs. The zealous reader shall easily extend such demonstrations
to the off-shell case, and also work out the equivalent proof for the
gravitational couplings. Let us point out that the fact that the work of
[25] gives all the possible cubic couplings is remarkable. Indeed, although
it was to be expected that the tensionless limit of String Theory contains
some of these couplings, there is a priori no reason why it should contain
them all (which our work has again made certain in the fermionic sector).

Another related and interesting observation is the following: in [25],
the various couplings that we have obtained appear with related coupling
constants, that is, the prefactors to all the couplings depend on one
parameter only. This observation was made in the said works already,
where it is noticed that String Theory makes use of the exponential of
some differential operator in order to act on the generating function of all
the couplings. It is the presence of the exponential, then, which relates
all the coupling constants, and the authors of [25] pointed out that there
was a priori no reason why String Theory should use the exponential
and not another function of the differential operator they write down.
In our work, we see that cubic-order consistency does not relate the
coupling constants (as usual). However, it is well known that higher-order
consistency may require them to be related to one another [103], and
as the consistency of String Theory is not restricted to the first order
the observation made in [25] is not surprising. It thus seems as if String
Theory needs all the couplings for consistency. At any rate, String Theory
may not be the unique consistent theory of higher-spin fields. If this is
true, other possible choices of the cubic couplings would pertain to other
consistent theories, which from the standpoint of [25] would amount to us-
ing another functional of their differential operator and not the exponential.

Once again, we see that different approaches to the same problem have
different advantages. For example, the work of Sagnotti and Taronna is
impressive in that a generating functional is given from which one can
easily extract all the s−s′−s′′ couplings, both bosonic and fermionic,
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whereas our methods did not allow for such a general treatment so far.
On the other hand, when one reads off the couplings extracted from the
generating functional given in [25] in the most naive way, they are seen
to contain many terms, and a ‘geometric’ repackaging thereof is far from
simple. Moreover, features such as the vanishing of some interactions in
D = 4 are hardly visible in that approach. With our methods, for the
cases dealt with, we have obtained simple and rather appealing forms for
all our couplings, and all their properties are made manifest. Finally, let
us highlight other references where the relationship between String Theory
and flat-space higher spins is investigated, such as [195–198].

Second-Order Consistency

Our non-abelian vertices have been found to be inconsistent beyond the
cubic order. The precise meaning of this statement is that there is no
quartic term, built in terms of our original fields, that one can add to
the theory so to make it fully consistent. However, as is well known, an
enlargement of the spectrum sometimes cures this obstruction. A rather
famous example is that of the Pauli term in N = 2 Supergravity [199, 200],4
which is precisely our non-abelian 1− 3

2−
3
2 vertex. Needless to say, N = 2

Supergravity is a fully consistent theory, and one thus wonders how to
reconcile that fact with the quartic obstruction we have unveiled here.
The answer, of course, lies in the presence of the graviton5 in N = 2
Supergravity, and indeed one can observe that the gauge invariance of
the full Lagrangian thereof involves cancellations between the (first-order)
deformed gauge variation of the Pauli term and the (zeroth-order) gauge
variation of quartic terms which involve the graviton.

Let us point out that the chosen example hereabove is rather peculiar,
and that a quartic completion (by an enlargement of the spectrum) is
possible in that case because the spin- 3

2 field is somewhat in between
pertaining to standard Field Theory and Higher-Spin Theory. In general,
however, in the field of higher-spin couplings, the typical situation is
that no such cure is available, and sometimes even the inclusion of an
infinite number of additional degrees of freedom is vain [201]. In that
case, a fully consistent theory including those cubic vertices is necessarily
non-local. Indeed, the underlying but crucial assumption in all our
studies is that of locality. An interesting perspective on the matter, again

4 Recall that N = 2 SUGRA allows massless gravitini to have dipole and higher-
derivative couplings, but forbids a non-zero U(1) charge in flat space.

5 Recall the spectrum of N = 2 Supergravity is that of a photon, a graviton, and a
complex Rarita–Schwinger tensor-spinor.
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based on the example of N = 2 Supergravity, is to try to recover from
the latter a consistent theory of the Pauli term without involving the
graviton. This is impossible if one insists on locality: if one decouples
Gravity therefrom by taking Mp → ∞, the Pauli term therein vanishes
because the dimensionful coupling constant is nothing but 1/Mp, the
inverse of the Planck mass. Alternatively, one could integrate out the
massless graviton to obtain a system of spin- 3

2 and spin-1 fields only: this
time the resulting theory surely contains the Pauli term, but it is neces-
sarily non-local, because one has integrated out massless degrees of freedom.

In fact, one can even show that, if locality is not insisted on, then any
consitent cubic vertex admits a quartic completion to a fully consistent
theory [176]. For higher spins in flat space of dimension four or greater, it
might thus be that non-locality is a crucial ingredient, and in fact one can
see signs of it already at the free level, when formulated in its ‘geometric’
form [202–206]. Moreover, other investigations further confirm that non-
locality necessarily creeps in beyond the cubic order in (the tensionless
limit of) String Theory [171]. If one has to give up locality, one way of
continuing the study of higher-spin interactions is a formulation that does
not require locality as an input. In that line of thought, it seems as if
modern approaches that do not assume a Lagrangian formulation may have
lessons in store concerning the systematic search of consistent interactions
of massless higher-spin particles in Minkowski space of dimension four [207–
209]. On the other hand, non-local Lagrangians are still a largely unexplored
topic in field theory. The reason behind the usual lack of interest in the
field is the standard lore according to which a non-local Lagrangian would
yield non-unitary or causality-violating amplitudes. However, as pointed
out in [171], this is not necessarily true in all cases and, in particular,
having an infinite number of degrees of freedom to accommodate for might
change that paradigm. It is the author’s belief that Higher-Spin Theory,
and more generally Field Theory may benefit from a more systematic study
of non-local Lagrangians. Moreover, let us point out that quartic couplings
and their consistency has also been studied, for example in [171, 210, 211].

Bosonic Counterparts

Let us briefly comment on the comparison between our results and their
bosonic analogues, obtained in [24, 184] via the same cohomological meth-
ods6 and which also obey the corresponding restrictions on the number

6 Note that these bosonic flat-space couplings, originally obtained in [39, 212] in the
Light-Cone gauge, were also found via the Noether procedure in [213, 214].
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of derivatives [62, 215]. For arbitrary spin, we should compare a fermion
of spin s = n + 1

2 with a boson of spin s = n, for those would have the
same number of (symmetric) spacetime indices. The number-of-derivatives
bounds on the electromagnetic couplings of a spin-s boson are 2s − 1
and 2s+ 1, which is a different structure from that which is found in the
fermionic case. However, in the case of bosons, the structure changes as one
moves to the gravitational interactions, for which we have the possibilities
2s − 2, 2s and 2s + 2. Interestingly, our gravitational deformations for
fermions are also bounded by 2n− 2 and 2n+ 2, but the jump in p is by
one unit and not two, because of the freedom to use γ-matrices.

Also, the nature of bosonic vertices is very similar to that of fermionic
ones: the (2s+ 2)-derivatives one is of the Born–Infeld type and thus exists
also in D = 4: the p = 2s− 2 is the only non-abelian one and survives in
dimension 4 as well, whereas the one with 2s derivatives is zero in four
dimensions and is abelian but not strictly gauge invariant. In dimension
four we thus have the same number of vertices for a boson and a fermion;
one of them is abelian and the other is simply the product of curvatures.
In D ≥ 5 the fermion exceeds the boson by two vertices: an abelian one
and a non-abelian one.

In a similar fashion, our electromagnetic deformations resemble their
bosonic counterparts: the number of derivatives they may contain are
bounded from above and below by the same numbers, 2n−1 and 2n+1 (or
2s− 1 and 2s+ 1), but the fermion has an additional p = 2n deformation,
which requires making use of at least one γ-matrix.

Anti-de Sitter Setups

The relation between flat-space vertices and those existing in AdS is rather
insightful. In anti-de Sitter spacetimes, for the bosonic couplings of the
graviton, the Fradkin–Vasiliev construction [19, 20] yields a cubic vertex
with derivatives ranging from 1 to 2s− 2. In Minkowski spacetimes, as we
have just seen, 2s− 2 is the minimum number of derivatives a gravitational
interaction with a spin-s field can contain, whereas minimal coupling never
exists. In [184], it was proved that a suitable flat limit can be taken where
the cosmological constant Λ → 0 and where only the piece with 2s − 2
derivatives survives, thus yielding the non-abelian coupling of the spin-s
boson in flat space.

The ‘fermionic analogue’ of the work [184] does not exist yet, but it
is expected that the behavior of fermions is alike to that of bosons. In
fact, the study of gravitational interaction vertices of a massive spin- 5

2
field in AdS was actually carried out in [216], where it was noticed that
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what survives in the massless flat limit is only a 2-derivatives vertex when
D = 4, or a 3-derivatives one when D > 4. These must precisely be our
flat-space highest-number-of-derivatives non-abelian cubic vertices in the
respective dimensions.

It would be interesting to extend our systematic analysis to (A)dS
spaces. There are certain technical difficulties, though, in extending the
applicability of the BRST deformation scheme to spaces of constant cur-
vature. One may use the ambient-space formulation [217–219] for AdS
space, in particular, to avoid these issues. Then one could construct co-
variant higher-spin vertices in AdS, and the results could be compared
with those obtained recently e.g. in Refs. [21, 220, 221] for symmetric fields.
This would help us understand better the rather intricate structure of the
Vasiliev higher-spin systems [50, 104, 105], possibly by leading us a step
closer to a yet-to-be-found standard action.

Massive Fields

What connection may our vertices have with the massive theories ? For a
massive spin- 5

2 field, coupled to gravity in flat space, it was noticed in [222]
that suitable non-minimal couplings improve the high-energy behavior
of the theory by pushing higher the scale at which tree-level unitarity is
violated. The simplest of these terms has two derivatives, and in dimension
four it reads ψ̄µαR+µναβψνβ up to on-shell terms. Interestingly, this is
nothing but the first piece in our 2-derivatives vertex (6.32) — the part
surviving in the transverse-traceless gauge. This may not come as a surprise:
after all, consistent massive theories are expected to originate from massless
ones. In fact, a similar thing happens for the spin- 3

2 electromagnetic
coupling: the gauge-invariant Pauli term improves the tree-level unitarity
of the aforementioned massive theory [223] and shows up in the consistent
N = 2 broken Supergravity theory [224–227].

Let us also discuss the relation with electromagnetic, massive higher-
spin couplings in flat space, which have been studied a little more, for
example in [228–239] and in references therein. In a nutshell, if Lorentz,
parity and time-reversal symmetries hold good, a massive spin-s particle
will have 2s+ 1 electromagnetic couplings [239], and this immediately sets
for the possible number of derivatives in a 1−s−s vertex an upper bound,
which remains the same in the massless limit. Then, the assumption of
Light-Cone helicity conservation in D = 4 uniquely determines all the
couplings. However, only the highest-p vertex survives in an appropriate
massless, chargeless scaling limit. This observation is in harmony with our
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results, since all of our low-p vertices either vanish in D = 4 or are not
consistent by themselves in a local theory (because of their non-abelian
nature).

Outro: Back to Dimension 3

As a final word, we comment on the following, legitimate question: in
Part I, three-dimensional higher-spin theories are built which interact, and
we have pointed out that they reproduce the minimal coupling of Gravity
with higher-spin fields. Such minimal coupling, as we have demonstrated
in the present part, does not exist in dimension four or greater. However,
as can be checked, in dimension three the proof given in Subsection 6.1.1
that minimal coupling is absent is no longer valid, because of the many
dimension-dependent identities (e.g. among γ-matrices) which hold good
in dimension three.
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APPENDIX A
Notation Conventions

We summarize our conventions and notations so that they are easily found.

A.1 Dimension 3

We denote AdS3 radius as `. We adopt the global coordinates of AdS3:

(x) = (x0, x1, x2) = (t, `θ, r), (A.1)

n the former system, the AdS3 metric reads

ds2 = −
(

1 +
(
x2

`

)2)
(dx0)2+

(
1 +

(
x2

`

)2)−1

(dx2)2+
(
x2

`

)2

(dx1)2.

(A.2)
To leading order at infinity, the ‘1’ is negligible and one can replace
asymptotically the metric by that of the zero mass black hole [240, 241],

ds2 = −
(
x2

`

)2

(dx0)2 +
(
x2

`

)−2

(dx2)2 +
(
x2

`

)2

(dx1)2. (A.3)

The Light-Cone coordinates are defined by

(x) = (x±, x2) = (t± `θ, r). (A.4)

Unless otherwise specified we always work with AdS radius ` = 1. We
also recall our notation ∂ means ∂/∂x+ and · ′ means the derivative with

183
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respect to the argument, whereas ‘d’ is the exterior spacetime derivative.
Spinor indices are raised and lowered with a spinor metric

(εαβ) ≡ (εαβ) ≡
(

0 1
−1 0

)
, α, β ∈ {1, 2}, (A.5)

and we use so-called ‘North-West/South-East’ conventions such that
qα = qβεβα. Our spinor indices are denoted by Greek letters from the
beginning of the Greek alphabet and take values in {1, 2}, whereas
spacetime indices are denoted by Greek letters such as µ, ν, etc. and take
values in {0, 1, 2}.

The conventions and notations having to do with the various algebras
which are dealt with in the main text are found in Appendix B below.

A.2 Dimension 4 and Higher

Clifford Algebra and Symmetrization
The flat metric ηµν on the Minkowski spacetime of dimension D is taken
to be of ‘mostly-positive’ signature and our spacetime indices run from 0
to D − 1. The Clifford algebra is

{γµ, γν} = +2ηµν , (A.6)

where {·, ·} is the anticommutator and γµ generically denotes the γ-matrices
of Dirac, whose hermitian conjugate is taken to be γµ † ≡ ηµµγµ (without
summation on the repeated indices). Furthermore, the Dirac adjoint is
defined as ψ̄µ = ψ†µγ

0. The D-dimensional Levi-Civita tensor, εµ1µ2...µD ,
is normalized as ε01...(D−1) = +1. We define γµ1....µn ≡ γ[µ1γµ2 ...γµn],
where the notation [i1...in] means totally antisymmetric expression in
all the indices i1, ..., in with the normalization factor 1

n! , and the totally
symmetric expression (i1...in) has the same normalization. In particular,

γµγν = γµν + ηµν . (A.7)

We also use the slash notation γµQµ ≡ 6Q , which applied to a partial
derivative gives the Dirac operator 6∂, the square of which is the Klein–
Gordon operator 2 ≡ ∂α∂α. For antisymmetric tensors of rank 2, Qµν ,
we also sometimes use the double-slash notation, γµνQµν ≡ 6Q . Another
operation on such tensors is that which yields the following expression:

T+
µν ≡ Tµν + 1

2γµναβT
αβ , (A.8)
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which we often use, together with the double-slash, on the linearized
Riemann tensor as well as on the Faraday field strength.1 When a rank-2
tensor is symmetric the double-slash is in fact the trace, which we simply
denote with the original letter but foregoing the indices, or alternatively by a
prime, that is ηµνSµν ≡ S ≡ S′, and for higher-rank tensors multiple primes
if multiple traces are taken. The ‘anticommutator’ of two antisymmetric
products of γ-matrices is denoted as γµ1...µm, ν1...νn ≡ 1

2{γ
µ1...µm , γν1...νn},

and we also use the following symbol:

ηµν|ρσ ≡ η[µν]|[ρσ] = ηρσ|µν ≡ 1
2 (ηµρηνσ − ηµσηνρ) . (A.9)

Curvatures and Curls
For any totally symmetric tensor (or tensor-spinor) of rank n, Tµ1...µn ,
its curvature is defined as the rank-2n tensor of mixed symmetry type
obtained by taking n successive antisymmetrized gradients of T without
normalization factor, i.e.

Tµ1ν1|...|µnνn ≡ [... [ [∂µ1 ...∂µnTν1...νn − (µ1 ↔ ν1)]− (µ2 ↔ ν2)] ...]
− (µn ↔ νn). (A.10)

Similarly, we also define the m-th curl of T as the rank-(m + n) tensor
of mixed symmetry type obtained by taking only m successive antisym-
metrized derivatives of T , that is,

T
(m)
µ1ν1|...|µmνm‖νm+1...νn

≡ [... [ [∂µ1 ...∂µmTν1...νn − (µ1 ↔ ν1)]− (µ2 ↔ ν2)]]

− (µm ↔ νm). (A.11)

Evidently, for a rank-n tensor the curvature is the n-curl, while the zeroth
curl is the original tensor itself. For the fields that are most used the
notation shall sometimes be simplified by not displaying the order of
the curl explicitly, and instead changing font (see below). We further
note that any curl (including the curvature) is antisymmetric under the
exchange of two paired indices (such as µ1 and ν1), and symmetric under
the exchange of two pairs — the inexperienced reader shall have in mind
some generalization of the symmetries of the Riemann tensor. Let us also
point out the two following Bianchi identities:

∂[ρT
(m)
µ1ν1]|...|µmνm‖νm+1...νn

= 0, (A.12a)

T
(m)
µ1ν1|...|[µmνm‖νm+1]νm+2...νn

= 0, (A.12b)

1 The Riemann tensor is not of rank 2, and has two such blocks of indices, but it is
symmetric under the exchange of its two blocks, so there is no notation ambiguity.
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which holds for any m = 1, . . . , n. Another relation is the simple identity

∂[ρT
(m)
µ1]ν1|...|µmνm‖νm+1...νn

= − 1
2∂ν1T

(m)
ρµ1|...|µmνm‖νm+1...νn

, (A.13)

which is ubiquitous in our computations.

The curvature for the spin-1 field is its 1-curl,

Aµν ≡ ∂µAν − ∂νAµ ≡ Fµν , (A.14)

which is just the electromagnetic field strength. For the spin-2 field, which
has one more spacetime index, the curvature is given by the 2-curl,

hµν|
ρσ ≡ 4∂[µ∂

[ρhν]
σ] ≡ Rµνρσ, (A.15)

which we know as the linearized Riemann tensor. Because of the extra
index, there is an ‘intermediate’ curl for the graviton field, namely its
1-curl h(1)

µν‖ρ ≡ 2∂[µhν]ρ ≡ hµν‖ρ.
As for the fermion fields, the curvatures are denoted with the letter Ψ.

Given that only the spacetime indices are concerned by such operations as
those that we have just recalled, the structure for the spin- 3

2 (resp. spin- 5
2 )

field is the same as that of the photon (resp. the graviton). In general, for
arbitrary spin s ≡ n+ 1

2 , the so-called Weinberg curvature [242–244] for
the tensor-spinors are thus given by

Ψµ1ν1|...|µnνn ≡ [... [ [∂µ1 ...∂µnψν1...νn − (µ1 ↔ ν1)]− (µ2 ↔ ν2)] ...]
− (µn ↔ νn), (A.16)

and when n ≥ 2 one can again consider intermediate m-curls
ψ

(m)
µ1ν1|...|µmνm‖νm+1...νn

≡ ψµ1ν1|...|µmνm‖νm+1...νn .

The relation between the equations of motion and the various curvatures
and curls for the fermion fields as well as for the spin-1 and spin-2 tensors
are discussed in Appendix E, where the gauge invariance of the quantities
defined hereabove is also discussed. Here we simply point out that the
fermionic curvatures (but not the other curls) are gauge invariant under
the unconstrained gauge parameters.2 However, other quantities built out

2 This is true for the bosonic ones as well, but the (trace) constraints on the bosonic
gauge parameters appear when considering the spin-3 field only, simply because the
graviton gauge parameter has only one index.
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of the original tensor-spinors are gauge invariant under the constrained (γ-
traceless) gauge parameter only, and those are all functions of the Fronsdal
tensor [34]

Sµ1...µn ≡ i
(
6∂ψµ1...µn − n∂(µ1 6ψµ2...µn)

)
. (A.17)

In particular, there is one combination of S which gives the original
equations of motion (those derived from varying the Lagrangian):

Rµ1...µn ≡ Sµ1...µn − 1
2nγ(µ1 6 Sµ2...µn)− 1

4n(n− 1) η(µ1µ2S
′
µ3...µn). (A.18)

More details can be found in Appendix E.





APPENDIX B
Algebras in Dimension 3

Let us recall the conventions and the properties pertaining to the various
Lie algebras we make use of in this work. In section B.1 we start by
recalling the properties of sl(2|R), which is (half of) the algebra of pure
AdS3 Gravity. Then, in section B.2 we move on to recapitulating the
relations defining the osp(N, 2|R) superalgebra, which underlies the type
of Supergravity which we focus on in the text, and end the ‘low-spin’
reminders with the list of all extended AdS3 Supergravity superalgebras,
found in Subsection B.2.2. Finally, Section B.3 first details the structure
of the non-extended shs(1, 1) higher-spin superalgebra, which characterizes
the higher-spin theory which we explicitly deal with in the main text, and
then ends this appendix with quite an in-depth treatment of its extended
version shs(N, 2|R), which is only briefly touched upon in the bulk of this
thesis.

B.1 Pure Gravity

Starting from the basic isomorphism so(2, 2) ' sl(2|R)⊕sl(2|R) we give here-
after different sets of generators for sl(2|R) ' sp(2|R) ' so(1, 2) ' su(1, 1).

The real algebra sl(2|R) can be realized as the real vector space of 2× 2
traceless real matrices equipped with the usual Lie bracket

[M,M ′] ≡MM ′ −M ′M, (B.1)

where the multiplication is the matrix multiplication. Such matrices have
the form (

a b
c −a

)
(B.2)

189
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with a, b, c real. For the standard (Chevalley–Serre) generators

H ≡
(

1 0
0 −1

)
, E ≡

(
0 1
0 0

)
, F ≡

(
0 0
1 0

)
, (B.3)

we find the commutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, (B.4)

with the usual matrix trace defining a scalar product

(M,M ′) ≡ Tr(MM ′), (B.5)

which yields the non-zero projections

(H,H) = 2, (E,F ) = (F,E) = 1. (B.6)

Another quite useful basis is obtained by performing the redefinitions

E ≡ T1 + T2, F ≡ T1 − T2, H ≡ 2T3, (B.7)

which yield the relations

[Ta, Tb] = εabcT
c, (B.8)

where it should be noted that Latin indices are raised and lowered with
the Minkowski metric ηab and its inverse, with a, b, c = 1, 2, 3. The trace
defined above now reads

(Ja, Jb) = 1
2ηab. (B.9)

Finally, we also sometimes use a slightly different basis than {E,F,H},
noted

σ+ = T1 + T2, σ− = T1 − T2, σ3 = T3, (B.10)
which implies

[σ3, σ±] = ±σ±, [σ+, σ−] = 2σ3, (σ3, σ3) = 1
2 , (σ+, σ−) = 1.

(B.11)
Moreover, a matrix representation of the latter generators is given by

σ3 ≡
( 1

2 0
0 − 1

2

)
, σ+ ≡

(
0 1
0 0

)
, σ− ≡

(
0 0
1 0

)
, (B.12)

which we also make use of.
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B.2 Supergravity

B.2.1 Orthosymplectic Supergravity
The Non-Extended Case

The orthosymplectic osp(1, 2|R) superalgebra can be realized in the fol-
lowing way: the real vector space of even (grading-preserving) 3 × 3
supermatrices acting on 1 commuting real Grassmann-even variable x
and 2 anticommuting real Grassmann-odd variables θ1 and θ2 and which
preserve the quadratic form

x2 + 2iθ1θ2 = x2 + iεαβθ
αθβ (B.13)

as well as the real character of the coordinates — equipped with the usual
Lie bracket

[Γ,Γ′] ≡ ΓΓ′ − Γ′Γ, (B.14)

where the multiplication is the matrix multiplication. Such supermatrices
have the form 0 iµ −iλ

λ a b
µ c −a

 , (B.15)

with a, b, c real and commuting, while λ and µ are real and anticommuting.
We identify the generators:

H ≡

0 0 0
0 1 0
0 0 −1

 , E ≡

0 0 0
0 0 1
0 0 0

 , F ≡

0 0 0
0 0 0
0 1 0

 ,

R− ≡

0 i 0
0 0 0
1 0 0

 , R+ ≡

0 0 −i
1 0 0
0 0 0

 , (B.16)

in terms of which we find the supercommutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

[H,R+] = R+, [E,R+] = 0, [F,R+] = R−,

[H,R−] = −R−, [E,R−] = R+, [F,R−] = 0,
{R+, R+} = −2iE, {R−, R−} = 2iF, {R+, R−} = iH,

(B.17)

where the anticommutator is defined as always by {Γ,Γ′} ≡ ΓΓ′ + Γ′Γ.
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The supertrace and scalar product are defined as

STr(Γ) ≡ Γ11 − Tr (Γsp(2)) = Γ11 − Γ22 − Γ33 = −Γ22 − Γ33, (B.18a)
(Γ,Γ′) ≡ STr(ΓΓ′), (B.18b)

where Γsp(2) is the submatrix generated by E, F and H (‘spacetime’ alge-
bra), and there is no internal algebra because N = 1. In our representation,
the fermionic sector is thus encoded in the Γ1a and Γa1 components of
the matrices and the sp(2) subalgebra of osp(1, 2|R) thus lies in the Γab
components, with a, b = 2, 3.

The Extended Case

The orthosymplectic osp(N, 2|R) superalgebra can be realized as the real
vector space of even (grading-preserving) (N + 2)× (N + 2) supermatrices
acting on N commuting real Grassmann-even variables xi and 2 anticom-
muting real Grassmann-odd variables θ1 and θ2 and which preserve the
quadratic form

N∑
i=1

(xi)2 + 2iθ1θ2 = δijx
ixj + iεαβθ

αθβ (B.19)

as well as the real character of the coordinates — equipped with the usual
Lie bracket

[Γ,Γ′] ≡ ΓΓ′ − Γ′Γ, (B.20)

where the multiplication is the matrix multiplication. Such supermatrices
have the form 

iµ1 −iλ1

Oij
...

...
iµN −iλN

λ1 · · · λN a b
µ1 · · · µN c −a

 , (B.21)
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with Oij = −Oji, a, b, c real and commuting, and λi, µi real and anticom-
muting. We identify the generators:

H ≡


0 0

0
...

...
0 0

0 · · · 0 1 0
0 · · · 0 0 1̄

 , E ≡


0 0

0
...

...
0 0

0 · · · 0 0 1
0 · · · 0 0 0

 , F ≡


0 0

0
...

...
0 0

0 · · · 0 0 0
0 · · · 0 1 0

,

Jij ≡


0 1 0 0
. . .

...
...

1̄ 0 0 0
0 · · · 0 0 0
0 · · · 0 0 0

 , (B.22)

R−i ≡



0 0
...

...
0 0 ī

...
...

0 0
0 · · · 1 · · · 0 0 0
0 · · · 0 · · · 0 0 0


, R+

i ≡



0 0
...

...
0 i 0

...
...

0 0
0 · · · 0 · · · 0 0 0
0 · · · 1 · · · 0 0 0


,

where in R+
i and R−i (odd generators) the i factors sit in the i-th line and

the 1 factors in the i-th column, and in Jij the 1 (resp. −1) factors sit in
the position (i, j) (resp. (j, i)). We find the supercommutators

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H,

[H,R+
i ] = R+

i , [E,R+
i ] = 0, [F,R+

i ] = R−i ,

[H,R−i ] = −R−i , [E,R−i ] = R+
i , [F,R−i ] = 0,

i{R+
i , R

+
j } = 2δijE, i{R−i , R

−
j } = −2δijF, i{R+

i , R
−
j } = Jij − δijH,

[Jij , E] = 0, [Jij , F ] = 0, [Jij , H] = 0, (B.23)

[Jij , R+
k ] = δjkR

+
i − δikR

+
j , [Jij , R−k ] = δjkR

−
i − δikR

−
j ,

[Jij , Jkl] = δjkJil + δilJjk − δikJjl − δjlJik,

with the supercommutator again defined in the usual way (see non-extended
case).
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The supertrace and scalar product are defined as

STr(Γ) ≡ Tr (Γso(N))− Tr (Γsp(2)), (B.24a)
(Γ,Γ′) ≡ STr(ΓΓ′), (B.24b)

where Γso(N) is the submatrix of Γ generated by the Jij basis elements
(internal algebra) and Γsp(2) is the submatrix generated by E, F and
H (‘spacetime’ algebra). In our representation, the fermionic sector is
thus encoded in the Γia and Γai components of the matrices, the sp(2)
subalgebra of osp(N, 2|R) thus lies in the Γab components while the internal
so(N) algebra is formed by the Γij components, with i, j = 1, . . . , N and
a, b = N + 1, N + 2.

B.2.2 Other Extended Supergravities
A few, very basic requirements very much constrain the gauge superalgebras
one can use to build extended supergravities on AdS3 — recall that the
latter can be reformulated in terms of a Chern–Simons theory with a
connection one-form valued in some gauge superalgebra [58], so that all the
local (bulk) information about the theory is really encoded in that algebra —
and in [151, 245–247] it was proved that only seven (families of) candidates
satisfy those requirements. We give them in Table B.2.2 below, where A is
the (extended) superalgebra, G is the corresponding internal subalgebra, ρ
is the representation of G (denoted in boldface by its dimension) in which
the spinors transform and D is the dimension of G. Note that, evidently,
one is to consider two chiral copies of each of the candidates below to
construct the corresponding supergravity gauge superalgebra. The first
four superalgebras belong to the osp(m, 2n) and spl(m,n) infinite families
while the last three are ‘exceptional’ Lie superalgebras.

Table B.1: Superalgebras of Extended AdS Supegravities in Dimension 3.

A G ρ D
osp(N |2,R) so(N) N N(N − 1)/2
su(1, 1|N), N > 2 su(N) ⊕ u(1) N + N N2

su(1, 1|2) / u(1) su(2) 2 + 2 3
osp(4∗|2N) su(2) ⊕ usp(2N) (2,2N) N(2N + 1) + 3
D1(2, 1|α) su(2) ⊕ su(2) (2,2) 6
G(3) G2 7 14
F(4) spin(7) 8s 21
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In fact, each one of these (families of) superalgebras can be associated
with a (family of) superconformal algebra(s) in dimension 2 with quadratic
non-linearities, which is not an accident at all, as was unveiled in [60],
where the said superconformal algebras were found to be precisely the
asymptotic symmetry algebras of supergravity models based on the above
superalgebras.

B.3 Higher-Spin Algebras

Let us detail various properties of some higher-spin infinite-dimensional
algebras in dimension 3, which we present in their oscillator realization.
For the sake of simplicity, and also because such is not the focus of
the present work, we shall keep the oscillators undeformed, that is, we
shall proceed with λ = 1

2 , and we refer to [119, 120] for the treatment of
the deformed cases. The bosonic higher-spin algebra hs(1, 1) has been
somewhat introduced in Subsection 1.2.2 of the main text, and here we
mostly comment on its supersymmetric, undeformed versions shs(1, 1) and
shs(N, 2|R).

B.3.1 The Algebra shs(1, 1): the Non-Extended Case
In this section we give a detailed account of the structure of the superal-
gebra shs(1, 1) ' shs(1, 2|R) using its oscillator realization. In [56], the
superalgebra shs(1, 2|R) was not directly recognized as the relevant one for
the three-dimensional higher-spin supergravity problem. Rather, it was
first showed that the relevant superalgebra should be some real form of
the complex superalgebra shs(1, 2|C) of Vasiliev [130], after which a real
form of the later is chosen. Thus, we shall first exhibit the construction of
the realization of shs(1, 2|C) in terms of oscillators and then recall how to
chose a real form of the later.

Supercommutator on Polynomials

A handy realization of shs(1, 2|C) has been given in [130] in terms of
polynomials of all degrees but zero in two real commuting spinors (the so-
called oscillators) with coefficients in G, the ‘physical’ Grassmann algebra —
see below for conventions — , and with a commutator built out of the
?-product on these polynomial functions (also called Moyal product). This
is the so-called oscillator realization we work with. More precisely, our
polynomials are functions on which the ?-bracket is defined as

[f, g]? ≡
1
2i (f ? g − g ? f) , (B.25)
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where ‘?’ is the star-product of two polynomials f and g, defined by

(f ? g)(q′′) ≡ exp
(
i εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′) | q=q′=q′′ , (B.26)

where f(q) ≡ f(q1, q2) and so on. The 1/2i factor will be explained below.
Let us make it clear that in the f(q)g(q′) term of the right-hand side of
the above equation the Grassmann product in G of the coefficients of the
polynomials f and g is implicit. Also observe that in the above expression
the real commuting spinors q1 and q2 are packaged into qα, these indices
being understood as raised and lowered with spinor metric

(εαβ) ≡ (εαβ) ≡
(

0 1
−1 0

)
, α, β ∈ {1, 2}, (B.27)

using the so-called ‘North-West/South-East’ convention (see Appendix A).
Note that (1.86) is the usual definition of a Lie bracket on an associative
algebra with some product ? (up to a normalization explained below).
Furthermore, our coefficients are not arbitrary in G. Rather, they are
restricted to be Grassmann even (resp. odd) in G when they multiply
monomials of even (resp. odd) degree in the qα’s. Our commutator thus
yields

[f, g]? = sin
(
εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′) | q=q′=q′′ when πfπg = 0,

(B.28a)

[f, g]? = −i cos
(
εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′) | q=q′=q′′ when πfπg = 1,

(B.28b)

where our parities πf take values 0, 1 (0 being the bosonic case), and are
defined to be the degree of f modulo 2.

In the ‘supercommutator description’ of this superalgebra, the coef-
ficients of the polynomials take values in C and the Lie bracket (1.86)
becomes a Lie superbracket1

[f, g}? ≡
1
2i (f ? g − (−)πfπgg ? f) , (B.29)

1 The definition (B.29) holds for polynomials f and g with definite parity only, but
as always this is straightforwardly extended to the whole vector space of polynomials.
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satisfying the graded Jacobi identity. As always, in this description we
find the Lie superbracket to yield the same expression as the Lie bracket
acting on Grassmann-like objects, that is,

[f, g}? = [f, g]? = 1
2 (f ? g − g ? f) (B.30a)

= sin
(
εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′) | q=q′=q′′ when πfπg = 0,

[f, g}? = {f, g}? = 1
2 (f ? g + g ? f) (B.30b)

= −i cos
(
εαβ

∂

∂qα

∂

∂q′β

)
f(q)g(q′) | q=q′=q′′ when πfπg = 1.

Let us further point out that our Lie bracket does not produce constant
polynomials, so that our restriction to polynomials of all degrees but zero
is consistent with the Lie structure.

Basis

We will work with the following basis of our realization:

X(p,q) ≡ X1 . . . 1︸ ︷︷ ︸
p

2 . . . 2︸ ︷︷ ︸
q

≡ 1
p!q! (q1)p(q2)q, p+ q ∈ N0, (B.31)

where q1, q2 are the two commuting spinor variables used above. Let us
stress again that, as the above definition states, we do not consider the
(unique) generator with no indices (zero degree polynomials). The elements
of our superalgebra shs(1, 2|C) are thus the linear combinations of the
above generators, with coefficients in G (resp. C) in the description in
which the Lie bracket (1.86) (resp. Lie superbracket (B.29)) is used. We
also recall that, when in G, the coefficients also have to satisfy certain
parity conditions, namely they are even (resp. odd) when they multiply
basis elements of even (resp. odd) degree in the q’s.

The generators (basis elements) with n = p+ q indices above are said
to carry spin n/2 + 1 (conformal spin n/2). The generators with two
and one indices are thus carrying spin 2 and 3/2 (conformal spin 1 and
1/2), which is indeed consistent with the fact that upon truncation to
p+ q ≤ 2, shs(1, 2|R) is seen to reduce to osp(1, 2|R) (see below), which we
know is (half of) the superalgebra describing N = (1, 1) three-dimensional
supergravity [58], which in turn is known to contain the graviton and the
gravitino: fields of spin 2 and 3/2 respectively (conformal spin 1 and 1/2).
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Real Form of shs(1, 2|C)

As always, the number of anticommuting generators of our Grassmann
algebra G is left arbitrary [103] and these are assumed to be real with
respect to a certain conjugation operation on G that we denote by ‘ ∗ ’. We
shall use conventions according to which our Grassmann product satisfies
(ab)∗ = b∗a∗ and (a∗)∗ = a for any two elements a, b ∈ G, so that the
subspace GR of real elements of G is not a subalgebra for the Grassmann
product, as the product of two real anticommuting elements is imaginary.

We now want to extract a real form shs(1, 2|R) of shs(1, 2|C), i.e.
the subsuperalgebra of fixed points under some conjugation operation
on shs(1, 2|C) (we now think in terms of Grassmann-like objects). One
rather natural candidate is the operation which acts semilinearly on our
polynomials and on the coefficients acts as ∗ on G (and on the qα variables
does nothing). This operation we denote by >, and we see that its fixed
points are simply the polynomials (of all degree but zero in the qα’s) with
coefficients in GR.

We have not yet checked that > is a proper conjugation operation,
and we now do so. From its definition and from the properties of ∗, it is
evidently a semilinear and involutive operation, so that it only remains
to be checked that the Lie bracket preserves the reality condition, which
is easily seen to be true by inspection of (B.30) if we recall that our
coefficients are even or odd in G according to the degree of the monomial
they multiply, and that with our conventions the Grassmann product of
two real anticommuting numbers is imaginary (so the i factor in the second
line of (B.30) actually makes the anticommutator of two real elements a
real element of the algebra).

In the superbracket description of shs(1, 2|R) the coefficients are real
numbers, in R, and we thus see that the anticommutator (of two real
elements) is imaginary. As always, this is consistent with our reality
conditions, because in physical computations the anticommutator is always
multiplied by a product of two real odd elements of G, so that physical
quantities are real (because a product of two real odd elements of G is
imaginary).

Supertrace

For the chosen realization, the construction of a (real) non-degenerate,
supersymmetric and invariant bilinear application turns out to be quite
easy. Indeed, defining the supertrace as

STr(f) ≡ 2f(0), (B.32)
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we easily check that the following bilinear form on shs(1, 2|R) satisfies all
the asked-for properties:

(f, g) ≡ STr(f ? g). (B.33)

It is easily verified that this bilinear form is also consistent, so that the
above expression provides us with a non-degenerate inner product on
shs(1, 2|R).2

Low-Spin and Bosonic Truncation

By ‘low-spin truncation’ we mean retaining only the spin-2 and spin-3/2
generators (conformal spin 1 and 1/2), and one can easily convince oneself
that this truncation yields a subsuperalgebra isomorphic to osp(1, 2|R).
Indeed, in this sector one finds the non-zero Lie superbrackets

[X11, X12] = 2X11, [X11, X22] = X12, [X12, X22] = 2X22,

{X1, X1} = −2iX11, {X2, X2} = −2iX22, {X1, X2} = −iX12,

[X1, X22] = X2, [X2, X12] = −X2, [X1, X12] = X1,

[X2, X11] = −X1, (B.34)

which can be seen to agree with the commutation relations of osp(1, 2|R).
In fact, upon setting X11 ≡ E, X22 ≡ −F , X12 ≡ −H, X1 ≡ R+ and
X2 ≡ R− the above supercommutation relations can be seen to match
the supercommutation relations given in Appendix B.3.2. Note that we
have dropped the subscript ? for the supercommutators, as will be also
sometimes done in the sequel.

Also note that the bosonic algebra hs(1, 1) can be seen to be a sub-
algebra of shs(1, 1). Indeed, upon retaining only the generators with an
even number of indices the commutator (B.29) never produces odd-degree
generators, and the commutation relations thus close on the bosonic sub-
sector.

Scalar Products and Higher-Spin Commutators

It is easily checked that the expression (B.33) for the scalar product
implies that elements with different number of indices (different spin) are
orthogonal, so that in particular it is indeed consistent, as aforesaid. Also,

2 We call inner product any (real) consistent, invariant and supersymmetric bilinear
form on a superalgebra.
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it is rather straightforward to show that the X(n,0) generators have non-
zero scalar products only with the X(0,n) generators (and conversely) and
that these are given by

(X(n,0), X(0,n)) = 2 i
n

n! , (B.35)

which at the first levels yield the non-zero projections

(X1, X2) = 2i,
(X11, X22) = −1, (X12, X12) = 2,

(X111, X222) = −i/3, (X112, X122) = i, (B.36)
(X1111, X2222) = 1/12, (X1112, X1222) = −1/3, (X1122, X1122) = 1/2.

The shs(1, 2|R) superalgebra can thus really be thought of as being
composed of ‘layers’ of definite spin, all orthogonal to the others, with
generators X(n,0) and X(0,n) spanning an orthogonal subspace (but not
a subalgebra) for each n. We point out that, as always, because of the
supersymmetric invariance of the scalar product, the norm (scalar product
with itself) of all fermionic generators is zero. Also observe that the
scalar product of two odd generators is an imaginary number, which is
consistent with the fact that the scalar product of two elements of the
algebra belongs to GR0 , for such ‘odd-odd’ scalar products are multiplied
by two real anticommuting elements of G.

In the above discussion we say that shs(1, 2|R) can be viewed as com-
posed of layers, or levels of different spin. However, this picture is only
valid as far as the scalar product is concerned, and the supercommutator
evidently mixes different layers, which can be seen for example by the
following supercommutation relations, of which not all are useful for the
derivation of the asymptotic symmetries described in the main text but
which are also given to provide further insight into the structure (recall we
don’t consider the spin-1 generator, i.e. the one with no indices at all).

{X(n,0), X(0,m)}? = −i
r−1

2∑
j=0

(−)j

(2j)!X(n−2j,m−2j) (n,m both odd),

(B.37a)

[X(n,0), X(0,m)]? =
f(r)∑
j=0

(−)j

(2j + 1)!X(n−2j−1,m−2j−1) (n and/or m even),

(B.37b)
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where r ≡ min(n,m) and

f(r) ≡ r − 21−πr

2 . (B.38)

Note that the X(i,0) generators are produced in the commutator above
when r = m is odd (n even) only, and the X(0,j) are produced when r = n
is odd (m even) only. This is actually of much use in the computation of
the corresponding asymptotic symmetries.

B.3.2 The Algebra shs(N, 2|R): the Extended Case
Constructing the oscillator realization for the extended version of the
superalgebra shs(1, 1) explored above involves considering Grassmann-odd
oscillators, which arguably adds a qualitative technical complication to it
[130]. Thus, although quite similar in spirit to its non-extended version
we proceed hereafter with the construction, again from scratch, of the
shs(N, 2|R) superalgebra in terms of oscillators. Much like in the previous
section, we begin by constructing the complex version of the latter and
then take a real form thereof.

Supercommutator on Polynomials

Consider the following N + 2 Grassmann variables: two commuting ones,
qα (α = 1, 2), together with N anticommuting ones, ψi (i = 1, . . . , N).
Adapting to the terminology used in the literature, we refer to the index i
as the ‘color’ or ‘internal’ index (sometimes also as the ‘Latin’ index). As
such,

qαqβ = qβqα ∀ α, β = 1, 2, (B.39a)
ψiψj = −ψjψi ∀ i, j = 1, . . . , N, (B.39b)
qαψi = ψiqα ∀ α = 1, 2 & i = 1, . . . , N. (B.39c)

These variables are all taken to be real-valued, q∗α = qα, ψ∗i = ψi. We
construct polynomials in these N + 2 variables, with coefficients which
can be themselves commuting or anticommuting, i.e. which belong also
to a different Grassmann algebra G (the ‘physical’ Grassmann algebra).
Thus, we formally consider the (graded) tensor product A = G ⊗ P of
the polynomial algebra P in qα, ψi with the Grassmann algebra G. The
sign in the commutation relations for the multiplication of elements in
the graded tensor product is dictated by the total grading, so that odd
elements of G and P anticommute. The Grassmann parity used below
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will always be the total grading. A complex conjugation is assumed to be
defined in G, and can be extended to A taking into account that qα and
ψi are real, and we systematically use the convention (ab)∗ = b∗a∗.

Let AE be the subalgebra of Grassmann-even polynomials in qα, ψi
containing only monomials of even degree and no constant term. A general
element of AE thus reads

f = fαβqαqβ + fα,iqαψi + f ijψiψj

+ fαβγδqαqβqγqδ + fαβγ,iqαqβqγψi + fαβ,ijqαqβψiψj + . . .

+ fαβγδεηqαqβqγqδqεqη + . . .

+ · · · ,

(B.40)

where terms of arbitrarily high power are allowed. The coefficients in
this expansion are completely symmetric (respectively antisymmetric) in
the Greek (respectively Latin) indices. They are commuting (respectively
anticommuting) whenever they multiply an even (respectively odd) number
of ψ’s.

A ?-product is defined on A as follows:

(f ? g)(z′′) ≡ exp
(
i εαβ

∂

∂qα

∂

∂q′β
+ δij

~∂

∂ψi

~∂

∂ψ′j

)
f(z)g(z′) | z=z′=z′′ ,(B.41)

here f(z) ≡ f(qα, ψi) and so on. In this expression, f(z)g(z′) is the
standard Grassmann product, and left and right derivatives with respect
to the anticommuting variables are defined by

δf = δψi
~∂f

∂ψi
, (B.42a)

δf =
~∂f

∂ψi
δψi, (B.42b)

and the conventions for the use of the epsilon symbol are again the same
(see Appendix A).

The above ?-product is well known to be associative. However, it does
not preserve the reality condition, in the sense that f ? g is not real even
if f and g are so. On the other hand, one can check that if f and g are
both real elements of AE, or both purely imaginary elements of AE, of
respective order 2n and 2m, then the homogenous polynomials appearing
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in the expansion of f ? g,

f ? g =
m+n∑
j=0

h2(m+n−j), (B.43)

are alternatively real and imaginary. More precisely, the homogeneous
polynomial h2(m+n−j) of degree 2(m+ n− j) in qα and ψi is:

• real and symmetric for the exchange of f and g when j is even,

• imaginary and antisymmetric under exchange of f and g for j odd.

We then define the ?-commutator as

[f, g]? ≡ f ? g − g ? f, (B.44)

which fulfills the Jacobi identity since the ?-product is associative. From
what we have just seen, [f, g]? is purely imaginary whenever f and g are
both real or both pure imaginary.

The Lie superalgebra shsE(N, 2|R) ' shs(N, 2|R) is the real subspace
of pure imaginary elements of AE equipped with the ?-bracket3. A general
element of shs(N, 2|R) is thus of the form

f = fαβqαqβ + fα,iqαψi + f ijψiψj

+ fαβγδqαqβqγqδ + fαβγ,iqαqβqγψi + fαβ,ijqαqβψiψj + . . .

+ fαβγδεηqαqβqγqδqεqη + . . .

+ · · · ,

(B.45)

but the coefficients are further restricted so as to make f imaginary. For
instance, the coefficient fαβ is imaginary while fα,i and f ij are real. Also,
one can alternatively rewrite (B.44) as

[f, g]?(z′′) =
[
2i sin

(
εαβ

∂

∂qα

∂

∂q′β

)
cosh

(
δij

~∂

∂ψi

~∂

∂ψ′j

)
(B.46)

+ 2 cos
(
εαβ

∂

∂qα

∂

∂q′β

)
sinh

(
δij

~∂

∂ψi

~∂

∂ψ′j

)]
f(z)g(z′) | z=z′=z′′ .

3 One could equivalently insert a factor of i in the definition of the ?-bracket, which
would no longer coincide with the star commutator, and define shs(N, 2|R) as the
subspace of real polynomials equipped with that alternative bracket. Either convention
has its own advantages.
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It should be stressed that the polynomial [f, g]? starts at highest
polynomial degree 2(n + m − 1). Note also that the lowest polynomial
degree term in the expansion (B.43) is h2(|m−n|) so that there is a term
of degree zero in (B.43) only if n = m, in which case j = 2m is even.
This implies that the term of degree zero (when present) is symmetric for
the exchange of f with g and in particular that the constant term (when
present in f ? g) drops from the ?-commutator so that [f, g]? has indeed
no constant term and belongs to shs(N, 2|R).

Basis

A basis of shs(N, 2|R) is given by the monomials

Xp,q; i1,i2,··· ,iN ≡
ib
K+1

2 c

2 i p! q!q
p
1q
q
2ψ

i1
1 . . . ψiNN , (B.47)

where p, q ∈ N and ik ∈ {0, 1}. The degree of Xp,q; i1,i2,··· ,iN , which is
p+ q +K, must be even and positive, where K = ΣNk=1ik is the degree in
the ψ’s. The power of i has been inserted in such a way that the elements
of even Grassmann parity are imaginary, while those of odd Grassmann
parity are real.

With this choice, a general element of shsE(N, 2|R) is of the form∑
µp,q; i1,i2,··· ,iNXp,q; i1,i2,··· ,iN , (B.48)

where µp,q; i1,i2,··· ,iN is real and of Grassmann parity (−1)K = (−1)p+q.
Note that the above generators are antisymmetric under the exchange of
any two indices ia, ib. Also observe that the X(p,q) (N = 0) generators
above are the X(p,q) generators of the non-extended case (and when N = 0
they will always we written like that). We also point out that, as the ψ’s
are anticommuting, all the ia indices in one of the above generators have
to be different for the corresponding generator to be non-zero.

Supertrace and Scalar Products

The supertrace of a polynomial in the q’s and the ψ’s is defined by its
component of degree zero:

STrf(q, ψ) = 8f(0). (B.49)

Although STrf = 0 ∀f ∈ shs(N, 2|R), it turns out that STr(f ?g) may differ
from zero even if f, g ∈ shs(N, 2|R). One thus defines a scalar product on
shs(N, 2|R) by

(f, g) ≡ STr(f ? g). (B.50)
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The scalar product is evidently bilinear, real and symmetric (given our
discussions in the previous subsection). Using the symmetry together
with the associativity of the ?-product, we further conclude that it is also
invariant:

([f, g]?, h) = (f, [g, h]?). (B.51)

In addition, it is non-degenerate. It is non-zero only when f and g have
same degree in both the ψi’s and the qα’s. It is this scalar product that is
used to define a Chern–Simons action term.

Low-Spin Truncation and Internal Subalgebra

The subspace of quadratic polynomials is a subalgebra isomorphic to
osp(N, 2|R), as is known from the familiar oscillator realization of
osp(N, 2|R) [151]. Renormalizing and relabeling4 the quadratic basis ele-
ments as

Yαβ = − i
2qαqβ , Xαi = 1

2qαψi, Xij = 1
2ψiψj , (B.52)

one finds that the non-zero Lie superbrackets read explicitly

[Yαβ , Yγδ]? = εαγYβδ + εαδYβγ + εβγYαδ + εβδYαγ , (B.53a)
[Xαi, Yβγ ]? = εαβXγi + εαγXβi, (B.53b)

i{Xαi, Xβj}? = δijYαβ + εαβXij , (B.53c)
[Xij , Xαk]? = δjkXαi − δikXαj , (B.53d)
[Xij , Xkl]? = δilXjk + δjkXil − δikXjl − δjlXik. (B.53e)

which, upon performing the redefinitions

E ≡ 1
2X11, F ≡ − 1

2X22, H ≡ −X12,

R+
i ≡ X1i, R−i ≡ X2i, Jij ≡ Xij

(B.54)

are seen to match the relations given in appendix B.2.1. Hence, one goes
from shs(N, 2|R) to osp(N, 2|R) by restricting the ?-algebra of polynomials
of even degree in the q’s and the ψ’s to the ?-subalgebra of polynomials
of degree two. Conversely, one goes from osp(N, 2|R) to shs(N, 2|R) by
relaxing the condition that the polynomials should be quadratic, i.e. by
allowing arbitrary (pure imaginary) polynomials of even degree modulo a
zero-degree term.

4 Note that we have changed the letter X to Y for the generators with no ψ’s since
these differ from the corresponding X’s by a factor.
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The finite-dimensional subalgebra of polynomials involving only ψ’s
and no q’s is called the internal subalgebra U. The internal subalgebra U
contains so(N) as the subalgebra generated by the quadratic monomials
Xij , which we know is the internal subalgebra of osp(N, 2|R). To identify
U completely, we recall that the ψi’s are the generators of a Clifford algebra,
which implies

U = su(2
N−2

2 )⊕ su(2
N−2

2 )⊕ u(1) (N even), (B.55a)

U = su(2
N−1

2 ) (N odd), (B.55b)

and one can indeed check that so(N) is indeed a subalgebra thereof for all
values of N .

Non-Extended Case: Alternative Description

For N = 1 supersymmetry, an alternative description of the superalgebra
is available. Since there is only one ψ, any element of shs(N, 2|R) can be
decomposed as

f = P0 + p1, (B.56)
where P0 is a Grassmann-even polynomial in the q’s containing no ψ while
p1 is linear in ψ and reads

p1 = iP1ψ. (B.57)
Here, P1 is a Grassmann-odd polynomial in the q’s. Furthermore, P0
contains only terms of even degrees in the q’s while P1 contains only terms
of odd degrees. We can associate to f a polynomial F in the q’s with no
constant term as follows:

f = P0 + p1 7→ F = P0 + P1. (B.58)

Here, F is pure imaginary and contains both even (P0) and odd (P1)
powers in the q’s. The even part P0 is also Grassmann-even, while the
odd part P1 is Grassmann-odd. In terms of this new representation, the
?-product reads

(F ? G)(q′′) ≡ exp
(
i εαβ

∂

∂qα

∂

∂q′β

)
F (q)G(q′) | q=q′=q′′ , (B.59)

and the ?-bracket becomes

[F,G]? = 2i sin
(
εαβ

∂

∂qα

∂

∂q′β

)
(F0(q)G0(q′) + F1(q)G0(q′) + F0(q)G1(q′)) |...

+ 2 cos
(
εαβ

∂

∂qα

∂

∂q′β

)
(F1(q)G1(q′)) | q=q′=q′′ . (B.60)
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The N = 1 super-algebra she(1, 2|R) is thus isomorphic to the super-
algebra shs(2|R) ' shs(1, 1), defined to be the superalgebra of imaginary
polynomials in the q’s with no constant term but with both even and
odd powers (the coefficients of the even — respectively odd — powers
being Grassmann-even — respectively Grassmann-odd), equipped with
the ?-bracket (B.60). The above basis (B.47) becomes in this alternative
description

X(p,q) ≡ X1 . . . 1︸ ︷︷ ︸
p

2 . . . 2︸ ︷︷ ︸
q

≡ 1
2 i p! q! (q1)p(q2)q, p+ q ∈ N0. (B.61)

Spin Structure

For any N -extended supersymmetry, the superalgebra shs(N, 2|R) contains
the spacetime algebra sl(2,R) ' su(1, 1) under which it decomposes as a
direct sum of irreducible representations. To exhibit this decomposition, it
is convenient to write

shs(N, 2|R) = ⊕j≥0Vj , (B.62)

where j is a non-negative integer or half-integer, and Vj is the vector
subspace containing the polynomials in the q’s of degree 2j (with no
restriction on the degree in the ψ’s, which are spacetime scalars). The
subspaces Vj are invariant under the action of sl(2,R) and are reducible
for N > 1. More precisely,

V0 = D0 ⊗ E ′, (B.63a)
Vj = Dj ⊗O (j half-integer ≥ 1

2 ), (B.63b)
Vj = Dj ⊗ E (j integer ≥ 1), (B.63c)

where Dj is the (2j+ 1)-dimensional space of the sl(2,R)-spin j irreducible
representation. Furthermore, E is the space of polynomials of even degree
in ψi, E ′ is the space of polynomials of even degree in ψi with no constant
term, and O is the space of polynomials of odd degree in ψi. The subalgebra
sl(2,R) appears in V1, as D1 times the constants. The subspaces E , E ′ and
O have respective dimensions displayed in Table B.3.2 below. For N ≤ 1,
the space E ′, and hence also the space V0, is trivial. Hence, for N ≤ 1,
the spin-0 representation does not occur. Furthermore, the spaces O and
E are then one-dimensional, so that the subspaces Vj are irreducible and
each value of the spin appearing in the theory is non-degenerate. Neither
of these features holds for N > 1.
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Table B.2: Dimensions of the Internal Subspaces of shs(N, 2|R)

dim (N = 0) dim (N > 0)
E 1 2N−1

E ′ 0 2N−1 − 1
O 0 2N−1

To summarize, one encounters the following higher spin superalgebras
as one increases the number N of supersymmetries:

• shs(0, 2|R) ' hs(2|R) ' hs(1, 1) is the bosonic higher spin algebra
involving only integer spins ≥ 1 (no Supersymmetry). Each value of
the spin is non-degenerate.

• shs(1, 2|R) ' shs(2|R) ' shs(1, 1) is the higher spin superalgebra for
simple Supergravity. It contains osp(1, 2|R), which in turn contains
sl(2|R), and has no non-trivial internal subalgebra. It involves both
half-integer and integer spins ≥ 1

2 . Each value of the spin is again
non-degenerate.

• shs(N, 2|R) is relevant for the extended models. It involves both
half-integer and integer spins ≥ 3

2 . Spin 0 is degenerate 2N−1 − 1
times, while spins ≥ 1

2 are degenerate 2N−1 times.

At infinity, by the boundary conditions discussed in the text, each
sl(2|R)-representation Dj yields a generator of conformal dimension j + 1.



APPENDIX C
Details in Dimension 3

In this appendix we detail some computations supporting some of the
claims made in the text. In Section C.1 we start by the simple but perhaps
useful presentation, in detail, of the matching of the gauge symmetries
between the frame formalism and the Chern–Simons gauge picture for
pure Gravity on flat spacetime. When higher spins are included, those
symmetries are extended to some higher-spin algebra and in Section C.2
we study how the supersymmetric version thereof is embedded into the
corresponding asymptotic symmetry algebra. The computation of the
latter has been performed explicitly in the text for the non-extended,
supersymmetric case and in Section C.3 we sketch extended version of the
computation.

C.1 Minkowskian Gravity in the Gauge Picture

There is a last non-trivial check to do before one can safely claim the
frame formalism and the Chern–Simons formalism to be equivalent for
Gravity; namely, we need verify the gauge transformations on both sides
to be the same. Indeed, while both the first-order formulation and the
Chern–Simons action are manifestly invariant under diffeomorphisms, in
the first-order formulation we also have the local Lorentz transformations
as gauge symmetries, whereas in the Chern–Simons picture we have the full
iso(2, 1) gauge symmetries. As we shall now show, the homogeneous part
of the iso(2, 1) gauge symmetries are easily seen to correspond to the LLTs
in the first-order formalism but, as for the infinitesimal gauge translations
of iso(2, 1), one has to show that they are not extra gauge symmetries
(which would be bad for our rewriting of the action would then eliminate

209
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degrees of freedom in some sense) but, rather, that they correspond to
some combination of the symmetries of the first-order formalism action.

The gauge transformations in the Chern–Simons picture are
parametrized by a zero-form gauge parameter taking values in the gauge
algebra,

u ≡ ρaPa + τaJa, (C.1)
with ρa and τa being infinitesimal parameters, and the transformation law
for the gauge connection (sitting in the adjoint representation of the gauge
algebra) is A→ A+ δA with

δAµ = ∂µu+ [Aµ, u]. (C.2)

Upon now plugging the expression for u and the decomposition of A in
terms of the dreibein and spin-connection in the above equation we can
read off the variations of e and ω, which are given by

δeaµ = ∂µρ
a + εabcebµτc + εabcωbµρc, (C.3a)

δωaµ = ∂µτ
a + εabcωbµτc. (C.3b)

These are all the (infinitesimal) local symmetries of the action in the gauge
(Chern–Simons) picture and they can be decomposed into those generated
by ρa,

δeaµ = ∂µρ
a + εabcωbµρc, (C.4a)

δωaµ = 0, (C.4b)

and those generated by τa,

δeaµ = εabcebµτc, (C.5a)
δωaµ = ∂µτ

a + εabcωbµτc. (C.5b)

Moreover, as we already explained, the Chern–Simons term is also man-
ifestly invariant under diffeomorphisms because it is written in terms of
forms. The diffeomorphisms act by the well-known formula

δAµ = ξν∂νAµ +Aν∂µξ
ν , (C.6)

where ξν is some infinitesimal spacetime vector. We may again use the
identification (1.37) to now simply find

δeaµ = ξν∂νe
a
µ + eaν∂µξ

ν = ξν(∂νeaµ − ∂µeaν) + ∂µ(eaνξν), (C.7a)
δωaµ = ξν∂νω

a
µ + ωaν∂µξ

ν = ξν(∂νωaµ − ∂µωaν ) + ∂µ(ωaνξν), (C.7b)
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which are the usual diffeomorphism transformations in the frame picture.
Then, when dealing with the first-order action we also have the local Lorentz
transformations, which act on e and ω as in (1.5) and (1.8) respectively,
the infinitesimal version of which is

δeaµ = −αabebµ, (C.8a)
δωaµ = −αabωbµ + 1

2ε
abc∂µαbc, (C.8b)

as is easily derived taking αab to be an element of the Lorentz algebra
with coefficients depending on spacetime coordinates. These are the local
symmetries of the frame formulation.

Now, the later LLTs are quite easily seen to be in one-to-one correspon-
dence with the gauge transformations generated by the parameters τa on
the Chern–Simons side. Indeed, upon setting

αab = −εabcτc ⇔ τa = 1
2ε
abcαbc, (C.9)

one sees that (C.8) and (C.5) agree with one another. As for the infinitesi-
mal gauge transformations of the gauge picture generated by the ρa’s the
story is a little more subtle, and indeed at first sight one wonders what they
could correspond to in the frame formulation. Actually, we shall need use
both the equations of motion and the invariance under local Lorentz trans-
formations to make them match with the infinitesimal diffeomorphisms or,
differently put, we will show that the gauge transformations generated by
the ρa’s are somehow not extra gauge transformations but, rather, on-shell
they are simply some combination of diffeomorphisms and LLTs. Let us
then try to relate the infinitesimal parameter ξµ to ρa. We are tempted to
try

ρa = ξµeaµ, (C.10)
which yields

(δξ − δρ)eaµ = ξν(∂νeaµ − ∂µeaν) + εabcξνebνωcµ, (C.11a)
(δξ − δρ)ωaµ = ξν(∂νωaµ − ∂µωaν ) + ∂µ(ωaνξν). (C.11b)

Now, the first terms in the right-hand sides of the two above equations are
seen to be the ‘abelian’ part of the equations of motion (1.40), so we try
making these terms exactly the whole equations of motion, which yields

(δξ − δρ)eaµ = ξν(Dνe
a
µ −Dµe

a
ν) + εabcξνebµωcν , (C.12a)

(δξ − δρ)ωaµ = ξν(∂νωaµ − ∂µωaν + εabcωbνωcµ) + ξνεabcωbµωcν + ∂µ(ωaνξν).
(C.12b)



APPENDIX C. DETAILS IN DIMENSION 3 212

We now see that the first terms are proportional to the equations of motion
whereas the last terms are local Lorentz transformations with parameters

αab = −εabcξνωcν ⇔ τa = ξνωaν , (C.13)

so that gauge transformations generated by ρa, which are also named
infinitesimal gauge translations, indeed correspond to diffeomorphisms
in the frame formulation (up to LLTs and EoMs). As already stated,
this is well, since the point was to check that there are no extra gauge
symmetries. This achieves the proof of the equivalence for the λ = 0 = Λ
case. Three-dimensional gravity is thus a gauge theory for the gauge group
iso(2, 1), the Poincaré group (for zero cosmological constant).

In fact, an important point is the following: what is really required for
the matching of the above gauge symmetries is not that their difference is
proportional to the EoMs (up to LLTs) but, rather, that the latter piece is
some antisymmetric combination of the EoMs, which is what ensures that
the difference is a so-called ‘trivial’ gauge transformation [103]. This can
be seen to be the case in present setup.

C.2 Bulk Symmetries and Enhancements

In the text we showed that the asymptotic symmetry algebra provides an
enhancement from the naive global gauge symmetry algebra shs(N, 2|R) to
sW∞. To deepen our understanding of this remarkable feature, we would
like to identify the way in which shs(N, 2|R) is embedded in the sW∞
algebra. In this appendix we carry out this analysis in detail, and we do
so in full generality, i.e. for the generic N ≥ 1 extended case.

C.2.1 Exact Symmetries
The exact symmetry algebra of the AdS3 background is the ‘rigid’
shs(N, 2|R). Indeed, the AdS3 connection is locally gauge equivalent
to zero (it is pure gauge), and the zero connection is clearly invariant under
gauge transformations that are constant but otherwise arbitrary:

0→ S−1 ? dS + S−1 ? 0 ? S = 0 iff dS = 0, viz. S = S0, (C.14)

with S0 a constant function belonging to the group which would correspond
to shs(N, 2|R) (let us think of it as the exponential of the latter). Moreover,
the algebra of constant gauge transformations S0 is of course isomorphic
to shs(N, 2|R).
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If we denote by ΓAdS the AdS3 connection in the standard static-polar
reference frame (see Appendix A), we can express it as

ΓAdS = U−1 dU, (C.15)

where U is given by the simple expression

U = exp
(
− 1

2x
+(X11 +X22)

)
, (C.16)

which contains only generators of the sl(2,R) subalgebra (not higher-spin
generators nor generators with color indices). The generator X11 +X22
is the compact generator E − F in the Chevalley basis (see Appendix B)
and generates SO(2). A few comments are now in order:

• U involves also exp (f(r)X12) for some definite function f(r) but this
gauge transformation is irrelevant for the present considerations, so
we drop it. The AdS3 connection is then seen to read

ΓAdS = − 1
2 (X11 +X22) dx+ . (C.17)

• We shall focus on an equal time slice, which we can assume to be
x0 = 0, and so we set x+ = θ (at ` = 1).

• The transformation U is in the SL(2|R) subgroup generated by the
Xαβ ’s (even in its SO(2) subgroup) and hence is the direct sum of
the 2× 2 matrix R,

R =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
(C.18)

and trivial identity terms in the complementary subspaces. Note
that R−1 is given by

R−1 =
(

cos θ2 sin θ
2

− sin θ
2 cos θ2

)
, (C.19)

and
R−1dR =

(
0 − 1

21
2 0

)
. (C.20)

• To match (C.17) with the asymptotic behavior we have postulated
in Subsection 2.2.1, a further constant gauge transformation T must
actually be performed, with

T = exp
(
−
√

2X12

)
=
( √

2 0
0 1√

2

)
. (C.21)
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It then follows that

(RT )−1d(RT ) =
(

0 − 1
4

1 0

)
= −X22 −

1
4X11, (C.22)

which indeed fulfills the asymptotic condition (2.35). The group
element T can be combined with exp (f(r)X12) above. Note that the
motivation for including T is not only that it makes the coefficient
of −X22 ≡ F equal to one, but that the connection corresponding to
the zero mass black hole is then simply given by(

0 0
1 0

)
= −X22 (C.23)

in that gauge. However, for the analysis of this section, we find
it more convenient not to include T so that the group element is
in SO(2). The effect of T is to rescale q1 by

√
2 and q2 by 1√

2 , a
transformation that does not mix components of different sl(2|R)
weights. For that reason, the asymptotic analysis we made in the
main text remains unchanged if we do not include T .

Now, we can rewrite the constant gauge transformations that leave the
zero connection invariant in the representation in which the connection
takes the form (C.15). These gauge transformations are just

S = U−1S0 U, (C.24)

where S0 is constant, dS0 = 0. In infinitesimal form, S = I + ΛAdS with

ΛAdS =
∑

m,n,i1,··· ,iN

Λm,n;i1,··· ,iN
0 U−1Xm,n;i1,··· ,iNU , (C.25)

where Λm,n;i1,··· ,iN
0 are constants. For these gauge transformations, one

evidently finds that

δΓAdS = dΛAdS + [ΓAdS,ΛAdS] = 0, (C.26)

and it also straightforwardly verified that the algebra [ΛAdS
1 ,ΛAdS

2 ] of the
exact symmetries of the AdS3 superconnection is shs(N, 2|R).

The algebra elements U−1Xm,n;i1,··· ,iNU can then be expanded in the
basis the Xm,n;i1,··· ,iN ’s. In particular, since we have observed that the
lowest sl(2|R)-weight components of the gauge transformations play a
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central role, we find it interesting to work out the components of (C.25)
along the lowest-weight generators X0,`;i1,··· ,iN . To that end we observe
that, as U belongs to the SO(2) subalgebra of SL(2|R), it does not mix
different spins and just acts on the generators Xm,n;i1,··· ,iN , m+n = ` = 2s
of the spin s representation by the symmetrized `-th tensor power of the
rotation matrix R, without affecting the internal indices ik. The formulas
are thus more transparent if we drop the passive (and hence irrelevant for
the present considerations) indices ik and work in the basis Ym,n with

Ym,n ≡ zmz̄n, where z = q1 + iq2, z̄ = q1 − iq2. (C.27)

Let us name Ξm,n0 the coefficients in the new basis. For the spin s = `
2

subspace, ∑
m+n=`

Λm,n0 Xm,n =
∑

m+n=`
Ξm,n0 Ym,n . (C.28)

Therefore,

Ym,n = im−n(q2)` + ‘higher’, (` = m+ n), (C.29)

and hence each vector in the basis {Ym,n} (m+ n = ` = 2s) of the spin-s
subspace has a non-vanishing component along the lowest weight vector
X0,` ∝ (q2)`. Here, ‘higher’ stands for the higher-weight terms containing
at least one q1.

Under the rotation R, the z’s transform as

z′ = e
i
2 θz, z̄′ = e−

i
2 θ z̄, (C.30)

and consequently
U−1Ym,nU = e

i
2 (m−n)θYm,n. (C.31)

This implies that

U−1
(∑
m+n=`

Λm,n0 Xm,n

)
U = U−1

(∑
m+n=`

Ξm,n0 Ym,n

)
U

=
∑

m+n=`
Ξm,n0 e

i
2 (m−n)θYm,n (C.32)

=
∑

m+n=`
Ξm,n0 e

i
2 (m−n)θim−n(q2)` + ‘more’.

We thus see that the coefficient of the lowest-weight basis vector X0,` in
U−1 (ΣΛm,n0 Xm,n)U contains all the information on the exact symmetry
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ΛAdS: its Fourier coefficients give directly the coefficients Ξm,n0 or equiv-
alently, through the change of basis (C.28), the coefficients Λm,n0 that
characterize ΛAdS.

For the spin s representation, there are (2s+ 1) Fourier exponentials
in the expansion of the above left-hand side along the X(0,`), namely,
e−isθ, ei(−s+1)θ, . . ., ei(s−1)θ, and eisθ. This precisely matches the number
of coefficients Λm,n0 (m + n = ` = 2s), as it should from what we have
just seen. Also note that half-integer spins have Fourier exponentials
with half-integer frequencies (e i2 θ, e 3i

2 θ, etc.) and thus correspond to
anti-periodic functions, obeying Neveu–Schwarz-like boundary conditions.

Recapitulating our analysis, we found that the lowest-weight compo-
nents ΛAdS 0,`(ϕ) of the sl(2|R) spin-s generators of the exact symmetries
of the AdS connection contain Fourier components with frequencies −s,
−s+1, . . ., s−1, s. From the knowledge of these lowest-weight components,
we can reconstruct the complete symmetry, either by applying the route
inverse to the one explained above — viz. read the Λm,n0 from the Fourier
coefficients — or, alternatively and equivalently, by following a method
close to the analysis of asymptotic symmetries given in the text. This
method proceeds as follows. One solves the symmetry equation (C.25). In
this case, it amounts to solving

(ΛAdS)′ − 1
2 [X11 +X22,ΛAdS] = 0, (C.33)

starting from their lowest-weight components. The lowest-weight com-
ponents of the equation give the coefficient ΛAdS 1,`−1(θ) of the symme-
try generators along the basis vectors X1,`−1 in terms of the coefficients
ΛAdS 0,`(θ), then the next equations give ΛAdS 2,`−1(θ), etc. (see Subsec-
tion 2.2.2). The last, highest-weight component equations, which give the
variation of the highest-weight component of the connection, are identically
fulfilled because we are considering an exact symmetry.

C.2.2 Wedge Subalgebra
The above way of describing the symmetries of the AdS connection shows
explicitly how the symmetries are embedded in the algebra of asymptotic
symmetries, which are constructed from the lowest-weight components in
exactly the same manner. A generic asymptotic symmetry is characterized,
for each spin representation, by an arbitrary periodic (integer spin) or
anti-periodic (half-integer spin) function Λ0,`(θ). Only the frequencies
−s ≤ k ≤ s correspond to the AdS symmetries, and the higher Fourier
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components correspond to asymptotic symmetries that are not background
symmetries. Thus, for instance, in the case of the bosonic higher-spin
algebra, the following Fourier components of the bosonic W∞ algebra of
[1] generate the hs(1, 1) algebra:

L−1,L0,L1, (C.34a)
M−2,M−1,M0,M1,M2, (C.34b)

N−3,N−2,N−1,N0,N1,N2,N3, (C.34c)
. . . ,

where we have also renamed M(3) ≡ M and M(4) ≡ N, as in the main text.
The higher Fourier components (e.g. L2 or M3, or N−4, etc.) generate
asymptotic symmetries which are beyond hs(1, 1). In the case of the N = 1
Supersymmetry, one must add Q−1/2, Q1/2, R−3/2, R−1/2, R1/2, R3/2, etc.
in order to get the superalgebra shs(1, 1) from the corresponding super-W∞
(again following the conventions given in the text we rename M(3/2) as R).
For N ≥ 2 extended Supersymmetry, there is an additional color index as
well as the zero modes BA0 of the affine currents.1

There is one important point that should be stressed, however. Even
when restricted to these generators, the (super)-W∞ algebras differ from
the original bulk superalgebra shs(N, 2|R) because of nonlinear terms.
Nevertheless, as we shall show below, the linear terms reproduce exactly
the superalgebras shs(N, 2|R). Furthermore, the central charges vanish
when restricted to this sector, provided the generators – determined up to
a constant — are adjusted to be equal to zero on the AdS3 connection. It is
in that sense that the algebras shs(N, 2|R) are embedded in the super-W∞
algebras. The algebra formed by the generators {M(i/2+1)

n } with |n| ≤ i
2

(without the nonlinear terms) is called the wedge algebra [121, 144]. Hence,
one can say that, up to the nonlinear terms, shs(N, 2|R) is embedded in
sW∞ as its wedge subalgebra. We also comment on these points in Chapter
3.

The emergence of nonlinear terms is easy to understand. Although
the lowest-weight components of the asymptotic symmetries are the
same for all connections asymptotic to the anti-de Sitter connection,
the higher-weight ones depend on the configuration. This is because
the solution to the recursive equations determining them depends on
the connection (see Subsection 2.2.2). Thus ,even if we start with a
lowest-weight component that corresponds to an exact symmetry of the

1 Only the zero modes appear because the BA are in the spin-zero representation.
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AdS3 connection, the solution involves the deviations from the AdS3
background as one works one’s way up. For that reason, the residual
transformations of shs(N, 2|R) depend on the configuration and the algebra
of their generators are nonlinearly deformed.

It is instructive to check explicitly the above embedding by direct
computation. We shall partly do so here by computing some Poisson bracket
relations, chosen for their simplicity. Translating the asymptotic relations
of Subsection 2.2.3 to Fourier modes and performing the redefinition

Ln+m → Ln+m − 1
4kδn+m,0 (C.35)

we obtain, in particular, the following relations

[Qn,Qm] = 2k δn+m,0
(
n2 − 1

4
)

+ 2Ln+m, (C.36a)
[Ln,Lm] = 1

2kδn+m,0 n(n2 − 1) + (n−m)Ln+m, (C.36b)

[Rn,Rm] = 1
18kδn+m,0

(
n2 − 1

4
) (
n2 − 9

4
)
− 20Nn+m

+ 1
36
(
6(n2 +m2)− 8nm− 9

)
Ln+m + ‘Q×Q’, (C.36c)

[Mn,Mm] = 1
288k δn+m,0 n(n2 − 1)(n2 − 4)− 5(n−m)Nn+m

+ 1
144
(
2(n3 −m3)− 3nm(n−m)− 8(n−m)

)
Ln+m

+ ‘Q×Q’ + ‘L× L’, (C.36d)

[Ln,M(`/2+1)
m ] =

( 1
2`n−m

)
M(`/2+1)
n+m (` 6= 2), (C.36e)

[Qn,M(`/2+1)
m ] = (`+ 1)M((`+3)/2)

n+m (` odd > 1), (C.36f)

[Qn,M(`/2+1)
m ] =

(
n− m

`

)
M((`+1)/2)
n+m (` even). (C.36g)

Here, the ‘( )’ in the right-hand side refers to quadratics in the generators
projected onto the mode (m+ n). We observe that, as expected, when we
restrict the Fourier modes to the subsector {M(i/2+1)

n } with |n| ≤ i/2, the
central charges all vanish and the linear terms on the right-hand side of
the above relations only contain modes belonging to that subsector. Up to
nonlinear terms, this subsector thus forms a subalgebra.

Furthermore, one can also verify that these Poisson bracket relations are
identical to those of the bulk gauge algebra shs(N, 2|R) once the appropriate
redefinitions are made. Indeed, the analog of the above relations for
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shs(N, 2|R) are, in the basis of the X’s, given by

[X(3/2)
n , X(3/2)

m ] = −iX(2)
n+m, (C.37a)

[X(2)
n , X(2)

m ] = 2(n−m)X(2)
n+m, (C.37b)

[X(5/2)
n , X(5/2)

m ] = −iX(4)
n+m + i

2
(
6(n2 +m2)− 8nm− 9

)
X

(2)
n+m, (C.37c)

[X(3)
n , X(3)

m ] = 4(n−m)X(4)
n+m (C.37d)

− 2
(
2(n3 −m3)− 3nm(n−m)− 8(n−m)

)
X

(2)
n+m,

[X(2)
n , X(`/2+1)

m ] = 2
( 1

2`n−m
)
X

(`/2+1)
n+m , (C.37e)

[X(3/2)
n , X(`/2+1)

m ] = −iX((`+3)/2)
n+m (` odd), (C.37f)

[X(3/2)
n , X(`/2+1)

m ] = (`n−m)X((`+1)/2)
n+m (` even), (C.37g)

where we have used the definition

X(`/2+1)
n ≡ 1

2i (q1)2n(q2)`−2n (
|n| ≤ 1

2`
)
. (C.38)

Making the redefinition

X(`/2+1)
n 7→ γ`X(`/2+1)

n (C.39)

with

γ1 =
√
i, γ2 = 1

2 , γ
3 = ±

√
−i
6 , γ4 =

√
−i
4 γ3, γ5 =

√
i

120 , γ
6 = 1

720 ,
(C.40)

one then finds the relations (C.37g) match precisely (C.36g). We believe
this illustration to be convincing enough, but the zealous reader shall find
it straightforward to work out higher-order checks.

At this stage, one might wonder whether nonlinear deformations are
constrained by generic arguments. The steps given below show that
this is not the case: quadratic and higher-order nonlinearities are in not
constrained in general, and can in principle appear.

C.2.3 Possible Deformations
Algebraically, the situation we are facing is the following: we have a set of
asymptotic symmetries generated by the generators GA (A = α, i), which
close in the Poisson bracket according to

[GA, GB ] = KAB + CCABGC + 1
2D

CD
ABGCGD + · · · , (C.41)
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where KAB, CCAB, DCD
AB, etc. are constants. Among these asymptotic

symmetries, a subset, generated by the Gα, leaves a background (here the
AdS3 connection) invariant, while the others, denoted by Gi, do not. Let
the background be such that the charges-generators GA evaluated on it
are zero, that is,

GA|background = 0. (C.42)

In our AdS3 situation, the Gα are the generators associated with the lowest
Fourier modes, as described above, while the Gi correspond to the higher
Fourier modes.

Now, the transformations δαF generated by the Gα:

δαF = [Gα, F ], (C.43)

where F is an arbitrary function of the fields, have the following properties:

1. When evaluated on the background, the variation δαF vanishes,

δαF |bkgd = 0, (C.44)

since the background is strictly invariant under the transformation
generated by Gα.

2. Likewise,
[δα, δβ ]F |bkgd = fγαβδγF |bkgd, (C.45)

where fγαβ are the structure constants of the background symmetry
algebra.

It then follows from these two properties that

KAα = −KαA = 0, (C.46)

since δαGA|bkgd = KAα, and that

Cγαβ = fγαβ , Ciαβ = 0, (C.47)

because [δα, δβ ]F = [[Gα, Gβ ], F ] — an expression that reduces to
CCαβ [GC , F ] on the background. Note that the above argument says
nothing about DCD

αβ or the higher order terms. Indeed, these can be
different from zero and are actually found to be so in the present context.
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C.3 Extended Asymptotic Symmetry Algebra

In this section we reproduce the supersymmetric extended version of the
asymptotic analysis of Section 2.2, where the simpler case of shs(1, 1) is
treated. The steps being the same as in the non-extended case, we confine
ourselves to point out the features which differ in the generic case.

C.3.1 Boundary Conditions and Residual Gauge
We wish to define some boundary conditions at asymptotic infinity for our
higher-spin gauge superconnection Γµ ∈ shs(N, 2|R) — and similarly for
the other chiral copy. As mentioned in the text, nothing tells us what these
boundary conditions should be, so that we need to try something that
makes sense. However, we already have quite some amount of information
at our disposal from which we could guess a plausible Ansatz. Indeed, on
the one hand we already know, in some gauge, what the ‘correct’ asymptotic
behavior is for the low-spin sector Γµ ∈ osp(N, 2|R) ⊂ shs(N, 2|R) [60, 135]
(see Subsection 2.1.3); and on the other hand we also know that in the
bosonic case the ‘highest-weight’ boundary conditions proposed in [1]
for Γµ ∈ hs(1, 1) ⊂ shs(N, 2|R) do make sense, and they are given in
Subsection 2.2.1. Thus, we are naturally led to propose the following
asymptotic behavior for our full superconnection, in the same gauge:

Γ(x)→ [−X22 +
∑

∆p,i1···iN (x±)Xp,0;i1···iN ]dx+, (C.48a)

Γ̃(x)→ [+X11 +
∑

∆̃q,i1···iN (x±)X0,q;i1···iN ]dx−, (C.48b)

where we sum on repeated indices over all their possible values, and we use
the basis written down in Appendix B. Note in particular that the values
p = 0 and q = 0 occur when the degree K = i1 + i2 + · · ·+ iN does not
vanish. We also point out that the internal part (with only ψ-oscillators)
is left completely arbitrary, that is, we do not impose any ‘highest-weight’
condition thereon, just as in the supergravity case. These are the boundary
conditions we shall work with in the sequel. Even though there is no
asymptotic restriction on the weights of the representations of the internal
algebra, we continue to call the boundary conditions (C.48a) and (C.48b)
the ‘highest-weight’ (resp. ‘lowest-weight’) gauge boundary conditions, in
analogy with the non-extended cases (N = 0 or N = 1).

Given the AdS3 boundary conditions (C.48a) and (C.48b), the next
step is to look for the residual gauge transformations that act non-trivially
at asymptotic infinity while leaving the boundary conditions intact. With
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gauge parameter Λ(x), the infinitesimal gauge transformation of Γ reads

Γ→ Γ′ = Γ + δΓ, where δΓ = dΛ + [Γ,Λ]. (C.49)

We see that, in order for Γ′ to retain the given asymptotics, Λ cannot
possibly depend on r or x− to leading order at infinity. Moreover, the
gauge transformations should not generate any other components than
the highest-weight ones already present. A similar argument goes for the
other chiral copy, where we see that in order for Γ̃′ to retain the boundary
behavior (C.48b), Λ̃ cannot possibly depend on r or x+. Furthermore,
the gauge transformations should not generate any other components
than the lowest-weight ones already present in (C.48b). Summarizing,
we find that the gauge transformations Λ(x+) and Λ̃(x−) must be chiral,
respectively, antichiral at the least. These functions must be subject to
further conditions in order to retain the boundary conditions, and this
is the task we will undertake next, treating explicitly for definiteness
the positive chirality sector (the negative chirality sector can be treated
similarly).

To proceed further, we find it convenient to decompose the gauge
transformations in stacks of successively higher sl(2,R)-spin layers. This is
because, for each spin, the highest-weight components are the only ones
that appear in the boundary conditions for the gauge connection. We thus
write

Λ(x+) =
∑

Λm,n;i1,··· ,iN (x+)Xm,n;i1,··· ,iN ≡ Λlw + λ, (C.50)

with

Λlw =
∑

i1+···+iN≥2
Λ0,0;i1,··· ,iNX0,0;i1,··· ,iN +

∑
i1+···+iN≥1

Λ0,1;i1,··· ,iNX0,1;i1,··· ,iN

+
∞∑
`=2

∑
i1,··· ,iN

Λ0,`;i1,··· ,iNX0,`;i1,··· ,iN (C.51)

and

λ =
∑

i1+···+iN≥1
Λ1,0;i1,··· ,iNX1,0;i1,··· ,iN +

∞∑
`=2

∑
i1,··· ,iN

Λ1,`−1;i1,··· ,iNX1,`−1;i1,··· ,iN

+
∞∑
`=2

∑
i1,··· ,iN

Λ2,`−2;i1,··· ,iNX2,`−2;i1,··· ,iN (C.52)

+ · · ·+
∞∑
`≥s

∑
i1,··· ,iN

Λs,`−s;i1,··· ,iNXs,`−s;i1,··· ,iN + · · · .
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In plain words, we collected all the lowest-weight states, which are the
states involving X0,s;i1,··· ,iN in Λlw and, at the same time, all higher weight
states, involving Xm,n;i1,··· ,iN with m > 0, are packaged together in λ. We
should also stress that, although this is not written explicitly, the sums in
the above expressions are always restricted to total even degree. So, for
instance, i1 + · · ·+ iN must be even in the first term in the right-hand side
of the expression for Λlw, while it must be odd in the second term. Such a
convention will always be adopted in the sequel.

The reason for proceeding in this manner is that the requirement that
the asymptotic boundary conditions be preserved will be seen to determine
λ in terms of Λlw, much like Λ+ and Λ3 are determine in terms of Λ− in
(2.13). Indeed, let us compute δΓ = dΛ + [Γ,Λ]. Structurally,

δΓ =
∑

m,n;i1,··· ,iN

γm,n;i1,··· ,iN (x+)Xm,n;i1,··· ,iN , (C.53)

where

γm,n;i1,··· ,iN = ∂+Λm,n;i1,··· ,iN + [Γ,Λ]m,n;i1,··· ,iN . (C.54)

Since the only non-vanishing components of Γ at infinity are γm,0;i1,··· ,iN

(apart from γ0,2;0,··· ,0, which is fixed to be equal to −1), the require-
ment that these global gauge transformations do not alter the boundary
conditions is that

γm,1;i1,··· ,iN = γm,2;i1,··· ,iN = · · · = 0 for m = 0, 1, 2, . . . (C.55)

or, equivalently,

γs,`−s;i1,··· ,iN = 0 for ` ≥ s+ 1, s = 0, 1, 2, . . . . (C.56)

The highest-weight terms γm,0;i1,··· ,iN are not constrained to be zero and
are equal to ∆m,i1···iN , according to (C.48a).

Now, since

[X22, Xm,n;i1,··· ,iN ] ∼ Xm−1,n+1;i1,··· ,iN (m ≥ 1), (C.57)

one may solve recursively the conditions for the higher-weight coefficients
Λ1,n;i1,··· ,iN , Λ2,n;i1,··· ,iN , ..., given the lowest-weight ones Λ0,k;i1,··· ,iN ,
along exactly the same lines as developed in [1]. One starts from the
lowest-weight conditions γ0,`;i1,··· ,iN = 0 (` ≥ 1) to determine the level-
one coefficients Λ1,`−1;i1,··· ,iN . Then one proceeds to solving the level-one
conditions γ1,`−1;i1,··· ,iN = 0 (` ≥ 2)) to determine the level-two coefficients
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Λ2,`−2;i1,··· ,iN . One walks one’s way up step by step in this fashion. The last
set of conditions γ`−1,1;i1,··· ,iN = 0 (` ≥ 1) determine the highest-weight
coefficients Λ`,0;i1,··· ,iN . It should be stressed that, during the process, the
higher-weight coefficients depend not only on the lowest-weight coefficients
but also on their derivatives. The solutions depend also on the (non-zero)
coefficients of the connection and their derivatives.

Collecting the results of the above structure analysis, we conclude that
the gauge transformations that leave the boundary conditions intact are
completely specified by the lowest-weight components Λ0,k;i1,··· ,iN of the
gauge function, while all higher-weight components are determined func-
tionally in terms of these lowest-weight components of the gauge function
and the highest-weight components of the original gauge connection. Notice
that, in exactly the same manner as in the higher-spin bosonic case as well
as in the extended supergravity models, the solution for the higher-weight
components of the gauge function Λ in terms of the lowest-weight ones
(and in terms of the free gauge potential components ∆m,i1···iN and their
derivatives) is nonlinear. It is this feature that will render the resulting
asymptotic algebra also nonlinear.

C.3.2 Asymptotic Symmetry Superalgebra
The functional of gauge transformation G[Λ] is given by

G[Λ] =
∫

Σ2

∑
Λm,n;i1,··· ,iNGm,n;i1,··· ,iN + S∞, (C.58)

where Gm,n;i1,··· ,iN are the Gauss law constraints for our theory and S∞ is
the usual boundary term. Again, after a straightforward integration by
part one finds (to leading order)

S∞ =
∮ ∑
s,i1,··· ,iN

Λ0,s;i1,··· ,iN∆s
i1,··· ,iN , (C.59)

where we have redefined the ∆’s through the absorption of the factors that
appear in front of the integral, which we denote by αs,0;i1,··· ,iN ,

∆s;i1,··· ,iN ≡ Γs,0;i1,··· ,iNαs,0;i1,··· ,iN . (C.60)

We thus see that (up to those factors) the generators of the asymptotic
symmetries are indeed nothing but the leading terms in the asymptotic
expansion of the highest-weight components Γs,0;i1,··· ,iN of the gauge con-
nection.
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The algebra of the asymptotic symmetry generators ∆s;i1,··· ,iN can be
read off by equating their variations under an arbitrary asymptotic sym-
metry transformation, computed in two different ways. First, δ∆s;i1,··· ,iN

can be derived from the gauge variation formula,

δ∆s;i1,··· ,iN (θ) = δΓs,0;i1,··· ,iN (θ)αs,0;i1,··· ,iN

=
(
∂Λs,0;i1,··· ,iN + [Γ,Λ]s,0;i1,··· ,iN

)
αs,0;i1,··· ,iN ,

(C.61)

with the Λm,n;i1,··· ,iN determined from the lowest-weight Λ0,s;i1,··· ,iN along
the lines explained above. Second, δ∆s;i1,··· ,iN can also be obtained via

δ∆s;i1,··· ,iN (θ) = {∆s;i1,··· ,iN (θ),
∮ ∑
s′,j1,··· ,jN

Λ0,s′;j1,··· ,jN∆s′

j1,··· ,jN (θ)}pb .

(C.62)
Here, θ denotes the angular coordinate of the asymptotic infinity. Equating
these two ways of computing δ∆s;i1,··· ,iN yields the Poisson brackets

{∆s;i1,··· ,iN (θ),∆s′;j1,··· ,jN (θ′)}pb for s, s′ ∈ N . (C.63)

It is evident that this algebra is closed, since the variations δΓs,0;i1,··· ,iN =
γs,0;i1,··· ,iN , determined through the recursive procedure explained above,
are functionals of Γs,0;i1,··· ,iN ∼ ∆s;i1,··· ,iN only (in addition to depending
linearly on the independent gauge parameters Λ0,s;i1,··· ,iN ). However, the
functional dependence of γs,0;i1,··· ,iN on ∆s;i1,··· ,iN is nonlinear, which
implies that the algebra of the ∆’s is nonlinear. The terms independent of
∆ and linear in the gauge parameters corresponds to the central charges.
Although nonlinear, the algebra obeys of course the Jacobi identity since
the Poisson bracket does.

The actual computation of the algebra of the ∆s;i1,··· ,iN ’s is rather
cumbersome but it can be identified to be of the sW∞ type by following
a general argument similar to the one given in the text for the non-
extended case. ForN ≥ 2 extended supersymmetry, the derivation proceeds
essentially in the same way. The salient new features that arise are have
been pointed out in the main text, at the very end of Chapter 2.





APPENDIX D
Details in Dimension D

In this appendix we detail some of the computations of the main text. We
start with Appendix D.1, were the most important γ-matrix identities which
we make use of are recapitulated (without proof). Then, in Appendix
D.2 we detail the matching of our electromagnetic vertices with those
found by Sagnotti and Taronna in [25], and in Appendix D.3 we explicitate
some computational steps related to the finding of our non-abelian 2−5

2−
5
2

vertices. Finally, Appendix D.4 is concerned with reproducing the reasoning
of Section 5.4 in the gravitational case, again arriving at the conclusion
that abelian vertices also preserve the original gauge symmetries in our
context.

D.1 Identities for Dirac Matrices

Let us summarize, without proof, the various γ-matrix identities that we use
in the bulk of this work. We point out once again that, in the derivation of
some of them we have used the Mathematica package ‘GAMMA’, discussed
in [194]. Note that the conventions for our matrices are given in Appendix
A.2.

One of our most-used identities is the following:

ηµν|αβ + 1
2γ

µναβ = − 1
2η
µνγαβ + 1

2γ
µγνγαβ − 2γ[µην][αγβ] (D.1)

= 2
(
ηµν|αβ − 1

4η
µνγαβ

)
+ 1

4
(
γµγνγαβ + γαβγµγν

)
,

the two right-hand sides of which are related by

2γ[µην][αγβ] = 1
4
(
γµγνγαβ − γαβγµγν

)
− 2ηµν|αβ . (D.2)

227
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Another form of the above identity can be obtained by making use of[
γµ, γαβ

]
= 4ηµ[αγβ], (D.3)

with which we can rewrite (D.1) as

γανρσ = −2ηαν|ρσ + 1
2 (γαγρσγν − γνγρσγα) , (D.4)

or even as
γλνρσ = 2ηλν|ρσ + 1

2
(
γλνγρσ + γρσγλν

)
, (D.5)

which is our favorite form. We also make intensive use of the generic
decomposition

γµ1...µn = 1
2
(
γµ1γµ2...µn − (−)nγµ2...µnγµ1

)
, (D.6)

which we most use for n = 4, 5. In particular, for n = 3 we also have the
handy identity

γστλ = 1
2
(
γσγτγλ − γλγτγσ

)
. (D.7)

More involved relations are also used, and one of them is

γµνλαβ,τρσ = −60 δ[µνλ
τρσ γ

αβ] + 15 δ[µ
[τ γρσ]

νλαβ]. (D.8)

D.2 Comparative Study of Electromagnetic Vertices

Let us compare our obtained vertices with the corresponding expressions
given in [25] by Sagnotti and Taronna. We will denote a p-derivative off-
shell vertex of ours as V (p), and its ‘Sagnotti–Taronna’ (ST) counterpart
as V (p)

ST . The corresponding vertex in the transverse-traceless gauge will
be denoted as V (p)

TT
1.

D.2.1 1−3/2−3/2 Vertices Compared
1-Derivative 1−3/2−3/2 Vertex

Our 1-derivative off-shell 1− 3
2−

3
2 vertex is given by

V (1) = ψ̄µF
+µνψν = ψ̄µ

(
ηµν|αβ + 1

2γ
µναβ

)
Fαβψν . (D.9)

1 Both the spins m+ 1
2 and m+ 3

2 will have one vertex with 2m+ 1 derivatives. Our
notation should not cause any confusion, as we will be considering one spin at a time.
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To see what it reduces to in the TT gauge, let us use Identity (D.1), yielding

V (1) = 2
(
ψ̄µF

µνψν − 1
4 ψ̄µ 6Fψ

µ
)

+ 1
4
(
6 ψ̄γµ 6Fψµ + ψ̄µ 6Fγµ 6ψ

)
. (D.10)

On the other hand, the 1-derivative ST vertex reads [25]

V
(1)

ST =− (∂µψ̄ν)ψνAµ + ψ̄µψν(∂µAν) + ψ̄µ(∂νψµ)Aν

− ψ̄µ(∂µψν)Aν + (∂µψ̄ν)ψµAν − ψ̄µψν(∂νAµ).
(D.11)

Integrating by parts the 1rst, 4th and 5th terms on the right-hand side,
we obtain

V
(1)

ST
.= 2ψ̄µFµνψν + 2ψ̄µA · ∂ψµ + ψ̄µ(∂ ·A)ψµ + (∂ · ψ̄)A ·ψ− ψ̄ ·A(∂ ·ψ).

(D.12)
Let us take the 2nd term on the right-hand side and replace ηαβ = γ(αγβ)

in the operator (A · ∂). Also in the 3rd term we replace ηαβ = γαγβ − γαβ
in (∂ ·A). The result is

2ψ̄µA ·∂ψµ+ ψ̄µ(∂ ·A)ψµ .= − 1
2 ψ̄µ 6Fψ

µ+ ψ̄µ 6A(6∂ψµ)−(6∂ψ̄µ)6Aψµ, (D.13)

which, when plugged into the vertex (D.12) gives

V
(1)

ST
.= 2
(
ψ̄µF

µνψν − 1
4 ψ̄µ 6Fψ

µ
)

+
[
ψ̄µ 6A(6∂ψµ)− ψ̄ ·A(∂ · ψ) + h.c.

]
.

(D.14)
It is obvious that both the off-shell vertices (D.10) and (D.14) reduce in
the TT gauge to

V
(1)

TT = 2
(
ψ̄µF

µνψν − 1
4 ψ̄µ 6Fψ

µ
)
. (D.15)

This is precisely the on-shell 1-derivative vertex reported by Metsaev [62].
To see explicitly that the off-shell vertices are also equivalent, we sub-
tract (D.14) from (D.10) to get

V (1)−V (1)
ST

.= 1
4
(
6 ψ̄γµ 6Fψµ + ψ̄µ 6Fγµ 6ψ

)
−
(
ψ̄µ 6A( 6∂ ψµ)− ψ̄ ·A(∂ · ψ) + h.c.

)
.

(D.16)
Now we make use of the identity[

γµ, γαβ
]

= 4ηµ[αγβ], (D.17)

in order to be able to pass γµ past 6F in both the terms in the parentheses
on the right-hand side of Eq. (D.16). As a result, we will obtain, among
others, the term 1

2 6 ψ̄ 6F 6ψ, in which we replace 6F = 6∂ 6A− ∂ ·A. Now in all
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the resulting terms we perform integrations by parts such that no derivative
acts on the photon field. The final result is

V (1) − V (1)
ST

.=
(
2ψ̄[µAν]γµ ( 6∂ψν − ∂ν 6ψ)− ψ̄µAνγµν (∂ · ψ − 6∂ 6ψ) + h.c.

)
.

(D.18)
This is manifestly ∆-exact modulo d, which proves the equivalence of the
off-shell vertices:

V (1) ≈ V (1)
ST . (D.19)

2-Derivatives 1−3/2−3/2 Vertex

Next, we consider the 2-derivative vertex,

V (2) =
(
Ψ̄µν γ

µναβλ Ψαβ

)
Aλ ≈ −2

(
Ψ̄µν γ

ρ Ψµν
)
Aρ. (D.20)

One can use the definition Ψµν = 2∂[µψν] to rewrite it as

V (2) ≈ −4ψ̄α ~∂µ 6A∂µψα + 2
(
ψ̄α ~∂µ 6A∂αψµ + h.c.

)
. (D.21)

In the 1st term, we can use the 3-box rule, already given above,

2∂µX∂µY = 2(XY )−X(2Y )− (2X)Y, (D.22)

and perform a double integration by parts in order to have a 2 acting on
the photon field. In the 2nd term on the right hand side of (D.20) one can
integrate by parts w.r.t. any of the derivatives. When the derivative acts
on the photon field, one can use ∂µAν = Fµν + ∂νAµ to rewrite it in terms
of the field strength. The result is

V (2) ≈− 2
[(
ψ̄αγ

µ∂αψν
)
∂µAν + h.c.

]
+
(
ψ̄αγ

µ∂αψν − ψ̄µ ~∂ αγνψα
)
Fµν

− 2ψ̄α26Aψα + 2
[
ψ̄α 6A (2ψα − ∂α∂ · ψ) + h.c.

]
. (D.23)

Now, in the last term of the first line we perform integration by parts so
that no derivative acts on the photon field. On the other hand, the last
term in the second line is ∆-exact, and therefore can be dropped. Thus
we are left with

V (2) ≈ 2
(
ψ̄αγ

µ∂αψν − ψ̄µ ~∂ αγνψα
)
Fµν

+2
[(
ψ̄α∂

α 6∂ ψν + ψ̄α ~6∂ ∂αψν
)
Aν + h.c.

]
− 2ψ̄α26Aψα.

(D.24)

As one reads off the 2-derivative ST vertex, it gives

V
(2)

ST =− (∂ · ψ̄)6A∂ · ψ − 6 ψ̄ ψν∂ν∂ ·A+ 6 ψ̄ ~∂νψ
ν∂ ·A+ ψ̄µ(∂µ 6ψ)∂ ·A

− ψ̄µ 6ψ ∂µ∂ ·A− 6 ψ̄ (∂ · ψ)∂ ·A− (∂ · ψ̄) 6ψ ∂ ·A− ψ̄µ ~∂ νγαψν∂µAα

− ψ̄µγα(∂µψν)∂νAα + ψ̄µγαψν∂µ∂νAα + ψ̄µ ~∂ νγα(∂µψν)Aα,
(D.25)
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As we mentioned already, in this form it is not evident at all that this
vertex vanishes for D = 4. Let us integrate by parts the 2nd and 3rd terms
in the third line above w.r.t. ∂µ. The 2nd term in the first line and the
1st term in the second line contain the gradient of ∂ ·A; we integrate by
parts the gradient in both these terms. Thus we have

V
(2)

ST
.=− 2ψ̄µγα(∂µψν)∂νAα − (∂ · ψ̄)(∂ν 6A)ψν − 2ψ̄µ ~∂ νγαψν∂µAα

− (∂ · ψ̄) 6A∂ · ψ + 2(∂ ·A)
(
ψ̄µ∂µ 6ψ + 6 ψ̄ ~∂ µψµ

)
− (∂ · ψ̄) ~∂ν 6Aψν .

(D.26)

Notice that the 2nd, 4th and 6th terms combine into a total derivative.
One can rewrite the 1st and 3rd terms in terms of the photon field strength
by using ∂µAν = Fµν + ∂νAµ. Also, one can extract a ∆-exact piece, by
using EoMs: 6∂ ψµ − ∂µ 6ψ = 0, in the term containing (∂ ·A). This leaves
us with

V
(2)

ST ≈− 2
[(
ψ̄αγ

µ∂αψν
)
∂µAν + h.c.

]
+ 2
(
ψ̄αγ

µ∂αψν − ψ̄µ ~∂ αγνψα
)
Fµν

+ 2(∂ ·A)
(
ψ̄µ 6∂ ψµ + ψ̄µ ~6∂ψµ

)
. (D.27)

Again, we integrate by parts the first term of the first line, so that no
derivatives act on the photon field. In the second line as well we perform
integration by parts to have 2 derivatives acting on the photon field. This
finally gives

V
(2)

ST ≈ 2
(
ψ̄αγ

µ∂αψν − ψ̄µ ~∂ αγνψα
)
Fµν (D.28)

+2
[(
ψ̄α∂

α 6∂ ψν + ψ̄α ~6∂ ∂αψν
)
Aν + h.c.

]
− 2ψ̄α (6∂ ∂ ·A)ψα.

It is clear that, in the TT gauge, both the off-shell vertices (D.24) and (D.28)
reduce to

V
(2)

TT = 2
(
ψ̄αγ

µ∂αψν − ψ̄µ ~∂ αγνψα
)
Fµν , (D.29)

which is nothing but the 2-derivative on-shell vertex given in [62]. The
equivalence of the two off-shell vertices is also evident as, upon subtract-
ing (D.28) from (D.24), we have

V (2) − V (2)
ST = 2ψ̄αγµ (∂νFµν)ψα = ∆-exact. (D.30)

3-Derivatives 1−3/2−3/2 Vertex

Finally, we consider the vertex with 3 derivatives, which reads

V (3) = Ψ̄µαΨα
νF

µν =
(
∂µψ̄

α − ∂αψ̄µ
)

(∂αψν − ∂νψα)Fµν . (D.31)
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Integration by parts w.r.t. ∂µ, appearing in the 1st term inside the first
parentheses, gives

V (3) ≈− ψ̄α (∂µ∂αψν − ∂µ∂νψα)Fµν − ψ̄αΨαν∂µF
µν

− ψ̄µ ~∂ α∂αψνF
µν + ψ̄µ ~∂ α∂νψαF

µν .
(D.32)

Here the 2nd term inside the parentheses on the right side is identically zero,
while the term containing ∂µFµν is ∆-exact. We use the 3-box rule (D.22)
in the penultimate term. Also we integrate by parts w.r.t. ∂ν in the last
term, and it produces a ∆-exact piece, containing ∂νFµν , that we discard.
The result is

V (3) ≈−
(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν

+ 1
2
(
ψ̄µ2ψν + ψ̄µ ~2ψν −2

(
ψ̄µψν

) )
Fµν .

(D.33)

Now, one can perform a double integration by parts in the last term in
the brackets in order to have 2Fµν , which gives a ∆-exact piece, so that
we finally have

V (3) ≈ 1
2
(
ψ̄µ2ψν + ψ̄µ ~2ψν

)
Fµν −

(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν (D.34)

On the other hand, the 3-derivative off-shell ST vertex contains as many
as 14 terms:

V
(3)

ST =− ψ̄µ(∂α∂µψν)∂νAα + (∂αψ̄µ)(∂µψν)∂νAα − (∂α∂νψ̄µ)(∂µψν)Aα

− (∂αψ̄µ)ψν∂µ∂νAα + ψ̄µ(∂αψν)∂µ∂νAα + (∂α∂νψ̄µ)ψν∂µAα

+ (∂µ∂ · ψ̄)(∂ · ψ)Aµ − (∂ · ψ̄)(∂µ∂ · ψ)Aµ + ψ̄µ(∂µ∂αψα)∂ ·A
− ψ̄µ(∂ · ψ)∂µ∂αAα − (∂µ∂αψ̄α)ψµ∂ ·A+ (∂ · ψ̄)ψµ∂µ∂αAα.
+ (∂νψ̄µ)(∂µ∂αψν)Aα − (∂νψ̄µ)(∂αψν)∂µAα. (D.35)

Here we will perform a number of integrations by parts. In the first line,
we integrate by parts the 2nd term w.r.t. ∂α, the 3rd w.r.t. ∂µ, and the
4th w.r.t. ∂ν . In the second line, the 1st, 2nd and 4th terms are integrated
by parts respectively w.r.t. ∂ν , ∂µ and ∂α. In the third line, this is done
only on the 3rd term w.r.t. ∂α. Finally, in the fourth line, the 1st and 3rd
terms are integrated by parts w.r.t. both ∂µ and ∂α, while the 2nd one
only w.r.t. ∂α. Dropping total derivatives, the result is

V
(3)

ST ≈+ 4ψ̄µ ~∂ν ~∂αψ
α∂µAν + 2

(
ψ̄µ ~∂αψ

α − ψ̄α∂αψµ
)
∂µ∂ ·A

− 4ψ̄α(∂α∂µψν)∂νAµ +
(
ψ̄ · ~∂ ~∂µ∂αψ

µ − ψ̄µ ~∂α∂µ∂ · ψ
)
Aα

+ 2
(
ψ̄ · ~∂ ~∂µ ~∂αψ

α − ψ̄α∂α∂µ∂ · ψ
)
Aµ +

[
(∂α∂ · ψ̄)∂ · ψ + h.c.

]
Aα

+
[
(∂αψ̄µ)∂ · ψ + h.c.

]
∂µAα. (D.36)
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Let us rewrite the first term in the first and second line in terms of the
photon field strength by using ∂µAν = Fµν + ∂νAµ, and use the 3-box
rule (D.22) in the additional terms. Also, we notice that the last two terms
together reduce exactly to the 2nd term on the second line, up to a total
derivative. Then, the vertex reads

V
(3)

ST ≈ + 4
(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν + 2

(
ψ̄µ ~∂ν2ψν − ψ̄ν ~2∂νψµ

)
Aµ

+ 2
[
ψ̄α∂α

(
2ψµ − ∂µ∂ · ψ

)
−
(
ψ̄µ ~2− ψ̄ · ~∂ ~∂µ

)
~∂αψ

α
]
Aµ

− 2
(
ψ̄µ ~∂αψ

α − ψ̄α∂αψµ
)

(2Aµ − ∂µ∂ ·A) (D.37)

+ 2
(
ψ̄ · ~∂ ~∂µ∂αψ

µ − ψ̄µ ~∂α∂µ∂ · ψ
)
Aα.

Clearly, the second and third lines are ∆-exact, while, modulo ∆-exact
pieces, the 2nd term in the first line can have 2ψν replaced by ∂ν∂ · ψ.
The latter result can be combined with the last line to give

V
(3)

ST ≈ 4
(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν − 2

(
ψ̄ · ~∂ ~∂µΨµν − Ψ̄µν∂µ∂ · ψ

)
Aν

≈ 4
(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν +

(
ψ̄ · ~∂Ψµν − Ψ̄µν∂ · ψ

)
Fµν ,

(D.38)

where we have reached the second step by performing integration by parts
w.r.t. ∂µ in the 2nd term of the first step, and dropping ∆-exact terms
containing ∂µΨµν . In the 2nd term of the second step, one can write
Ψµν = 2∂[µψν], and integrate by parts to obtain, among others, ∆-exact
terms containing ∂µFµν , which can be dropped. The result is

V
(3)

ST ≈
1
2
(
ψ̄µ∂ν∂ · ψ + ψ̄ · ~∂ ~∂µψν

)
Fµν −

(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν ,
(D.39)

where we have performed the rescaling Aµ → − 1
4Aµ, for convenience of

comparison with our vertex V (3). One finds that both the vertices reduce
in the TT gauge to

V
(3)

TT = −
(
ψ̄α∂α∂µψν + ψ̄µ ~∂ν ~∂αψ

α
)
Fµν , (D.40)

which indeed is the 3-derivatives on-shell vertex reported in [62]. In view
of Eq. (D.34) and (D.39), one also finds that the two vertices differ by
∆-exact terms:

V (3) − V (3)
ST ≈

1
2
(
ψ̄µ (2ψν − ∂ν∂ · ψ) +

(
ψ̄µ ~2− ψ̄ · ~∂ ~∂µ

)
ψν
]
Fµν = ∆(...).

(D.41)
This shows the equivalence of the full off-shell vertices.
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D.2.2 1−5/2−5/2 Vertices Compared
For the sake of simplicity, from now on we restrict our attention to the on-
shell equivalence of vertices. As we already mentioned, if two vertices match
in some gauge, say the TT one, they should also be off-shell equivalent.
With this end in view, we read off the ST vertices [25], which would
generally contain a lot of terms to begin with, even in the TT gauge.
However, one can perform integrations by parts to see that actually the
on-shell vertices are extremely simple, containing no more than a few
non-trivial terms.

3-Derivatives 1−5/2−5/2 Vertex

For example, one can take the 3-derivative 1− 5
2−

5
2 ST vertex in the TT

gauge, and integrate by parts in order to have one derivative on each field.
The result is simply

V
(3)

ST ∼ ψ̄µα ~∂βF
µν∂αψβν + ψ̄µα ~∂ρ (∂βAρ) ∂αψβµ, (D.42)

where ∼ means equivalence in the TT gauge up to an overall factor. In the
2nd term we integrate by parts to avoid derivatives on the photon field.
We get

V
(3)

ST ∼ ψ̄µα ~∂βF
µν∂αψβν − ψ̄µα ~∂β

(
~∂ ·A
)
∂αψβµ. (D.43)

One can now make use of ~∂ ·A = 1
2
~∂ρAσ (γργσ + γσγρ), in the 2nd term

on the right-hand side of the above equation, and then integrate by parts
w.r.t. this derivative. Dropping some ∆-exact terms in the TT gauge, we
get

V
(3)

ST ∼ ψ̄µα ~∂βF
µν∂αψβν + 1

2 ψ̄µα
~∂β (∂ρAσ) γσγρ∂αψβµ. (D.44)

Because ∂ ·A = 0 in our gauge choice, we can write (∂ρAσ) γσγρ = − 1
2 6F ,

by making use of the identity γσγρ = ησρ − γσρ. Therefore, we are left
with

V
(3)

ST ∼ ψ̄µα ~∂β
(
Fµν − 1

4η
µν 6F

)
∂αψβν . (D.45)

We would like to see how this compares with our 3-derivatives 1− 5
2−

5
2

vertex,
V (3) = ψ̄

(1)
αβ‖µ F

+µνψ(1)αβ‖
ν . (D.46)

The same steps as took us from Eq. (D.9) to Eq. (D.10) for the spin- 3
2 case

lead to
V (3) ∼ 2 ψ̄ (1)

αβ‖µ
(
Fµν − 1

4η
µν 6F

)
ψ(1)αβ‖

ν . (D.47)
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Now, one can rewrite the fermionic 1-curl in terms of the original field.
There will be terms that have at least one pair of mutually contracted
derivatives: one acting on ψ̄µ and the other on ψµ. For such terms one can
make use of the 3-box rule (D.22) to see that they are trivial in the TT
gauge. Up to a trivial factor, one then has

V (3) ∼ ψ̄µα ~∂β
(
Fµν − 1

4η
µν 6F

)
∂αψβν . (D.48)

From Eq. (D.45) and (D.48), we see that the two vertices are indeed on-shell
equivalent.

4-Derivatives 1−5/2−5/2 Vertex

Let us move on to the 4-derivative 1−5
2−

5
2 vertex. The ST one is found to

be
V

(4)
ST ∼ ψ̄µν ~∂ρ ~∂σ 6A∂µ∂νψρσ, (D.49)

whereas our one is given by

V (4) =
(
Ψ̄µν|ρσ γ

µναβλ Ψ ρσ
αβ|

)
Aλ ≈ −2

(
Ψ̄µν|ρσ γ

λ Ψµν|ρσ)Aλ. (D.50)

We rewrite the curvature in terms of the spin- 5
2 field. Among the resulting

terms those with contracted pair(s) of derivatives are, again, trivial in the
TT gauge, thanks to the 3-box rule (D.22). The other terms clearly add
up to reproduce the expression (D.49). Therefore,

V (4) ≈ V (4)
ST ∼ ψ̄µν ~∂ρ ~∂σ 6A∂µ∂νψρσ. (D.51)

5-Derivatives 1−5/2−5/2 Vertex

For spin 5
2 , the only other vertex is the 5-derivative one. The ST one reads

V
(5)

ST ∼
(
ψ̄µν ~∂ρ ~∂σ ~∂ λ ∂µ∂νψρσ

)
Aλ. (D.52)

On the other hand, we have the 5-derivative Born–Infeld type vertex:

V (5) = Ψ̄αβ|µρΨαβ| ρ
νF

µν ≈ 1
2
(
Ψ̄µν| ρσ ~∂ λ Ψµν| ρσ)Aλ. (D.53)

The off-shell equivalence can be understood in view of Eq. (5.29)–(5.31),
which pertain to spin 3

2 . In the equivalent vertex, again, we rewrite the
fermionic curvature in terms of the spin- 5

2 field, and massage the resulting
terms the same way as was done for V (4). Thus, up to overall factors, we
reproduce on-shell (D.52), so that

V (5) ≈ V (5)
ST ∼

(
ψ̄µν ~∂ρ ~∂σ ~∂ λ ∂µ∂νψρσ

)
Aλ. (D.54)
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D.2.3 1−s−s Vertices Compared
For arbitrary spin, s = n+ 1

2 , the story is very similar, and there are no
further complications other than cluttering of indices. One can write down
the ST vertices in the TT gauge from Eq. (A.16) of [25]. They turn out to
be

V
(2n−1)

ST ∼ ψ̄µα1...αn−1
~∂β1 ...

~∂βn−1F
µν∂α1 ...∂αn−1ψβ1...βn−1

ν

− ψ̄µα1...αn−1
~∂β1 ...

~∂βn−1( ~∂ ·A)∂α1 ...∂αn−1ψβ1...βn−1 µ, (D.55a)

V
(2n)

ST ∼ ψ̄µ1...µn
~∂ν1 ...

~∂νn 6A∂µ1 ...∂µnψν1...νn , (D.55b)

V
(2n+1)

ST ∼ (ψ̄µ1...µn
~∂ν1 ...

~∂νn
~∂~ λ ∂µ1 ...∂µnψν1...νn)Aλ. (D.55c)

Their similarity with the lower-spin counterparts is obvious. Indeed, set-
ting n = 2 produces exactly the respective 1− 5

2−
5
2 vertices given in

Eq. (D.43), (D.49) and (D.52). One can massage the (2n− 1)-derivative
vertex, in particular, the same way as its spin- 5

2 counterpart to obtain an
arbitrary-spin generalization of Eq. (D.45), namely

V
(2n−1)

ST ∼ ψ̄µα1...αn−1
~∂β1 ...

~∂βn−1

(
Fµν − 1

4η
µν 6F

)
∂α1 ...∂αn−1ψβ1...βn−1

ν .
(D.56)

Our arbitrary-spin vertices are also straightforward generalizations of their
lower-spin examples. In view of the spin- 5

2 counterparts, Eq. (D.46), (D.50)
and (D.53), one can write

V (2n−1) ≈ ψ̄(n−1)
α1β1|...|αn−1βn−1‖µ F

+µνψ(n−1)α1β1|...|αn−1βn−1‖
ν , (D.57a)

V (2n) ≈ (Ψ̄µ1ν1|...|µnνnγ
λ Ψµ1ν1|...|µnνn)Aλ, (D.57b)

V (2n+1) ≈ (Ψ̄µ1ν1|...|µnνn
~∂~ λ Ψµ1ν1|...|µnνn)Aλ. (D.57c)

Again, one can use the 2nd identity in (D.1) to rewrite the F+µν in
the first vertex, and express the fermionic (n − 1)- and n-curls in all
the vertices (D.57a)–(D.57c) in terms of the original field. The terms
with contracted pair(s) of derivatives are, as usual, subject to the 3-box
rule (D.22), and hence trivial in the TT gauge. One finds that our vertices
indeed reduce on shell respectively to (D.56), (D.55b) and (D.55c). This
proves the on-shell (and therefore off-shell) equivalence of the 1−s−s
vertices:

V (p) ∼ V (p)
ST , p = 2n− 1, 2n, 2n+ 1. (D.58)
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D.3 Details of Spin-5/2 Gravitational Couplings

Throughout the bulk of the paper, we have omitted the proof of some
cumbersome technical steps for the sake of readability. The detailed proof
of those steps appears in this Appendix.

D.3.1 2-Derivatives 1−5/2−5/2 Vertex
In Eq. (6.19), the part of a2 that contains the fermionic antighost is given
by

a2g̃ = −g̃ ξ̄∗ργαβρµνξµνCαβ + h.c., (D.59)

which comes with five γ-matrices. But it can be cast into an equivalent
form that contains just one, like that appearing in Eq. (6.10). To see this,
let us first use the γ-matrix identity:

γαβρµν = 1
2
(
γαγβρµν + γβρµνγα

)
, (D.60)

and then another one for the antisymmetric product of four γ-matrices,
namely

γβρµν = −2ηβρ|µν + γβργµν − 4γ[βηρ][µγν]. (D.61)

The result is

a2g̃ =− g̃ ξ̄∗ργα
(
− ηβρ|µν + 1

2γ
βργµν − 2γ[βηρ]µγν

)
ξµνCαβ (D.62)

− g̃ ξ̄∗ρ
(
− ηβρ|µν + 1

2γ
βργµν − 2γ[βηρ]µγν

)
γαξµνCαβ + h.c.

In both the first and the second lines on the right-hand side, the first term is
of the desired form with a single γ-matrix, while the second and third terms
give rise to the Γ-exact pieces γνξµν and γµνξµν , either directly or through
the relations: γµνγα = γαγµν − 4ηα[µγν] and γνγα = −γαγν + 2ηνα.
Finally, on account of the γ-tracelessness of ξ̄∗ρ , one obtains

a2g̃ = −g̃ ξ̄∗ρ
(
− 2ηβρ|µνγα − 2γβηρµηνα

)
ξµνCαβ + h.c. + Γ-exact, (D.63)

which is indeed equivalent to the p = 2 piece presented in Eq. (6.10), since
more explicitly,

a2g̃ = 4g̃ ξ̄∗µγαξβµCαβ + h.c. + Γ-exact. (D.64)

\ \ \
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Now we will fill up the gaps between Eqs. (6.24) and (6.25). First we
use the definition (E.25) of χ∗µν , and Eqs. (E.14) to write

∆χ∗ρσ = Sρσ − 1
2γσ 6 Sρ −

1
2ηρσS

′. (D.65)

One can take a curl of the above equation, and relate the 1-curl of the
Fronsdal tensor to the γ-trace of the curvature through Eq. (E.19), which
yields

2∆∂[νχ
∗
ρ]σ = i

2γστλΨνρ
τλ + ησ[ν∂ρ]S ′. (D.66)

When this expression is used in Eq. (6.24), the S ′-terms vanish because
of the Bianchi identity, ψ̄[αβ‖ν], imposed by the antisymmetric 5-γ. The
result is

βµC = ig̃ Ψ̄νρ|τλγ
στλγµνραβψαβ‖σ − ig̃∗ψ̄αβ‖σγµνραβγστλΨνρ|τλ. (D.67)

Now one can take ∂τ out of the curvature and use Leibniz rule to find a
total derivative plus some terms that can be identified as −βµC only if g̃ is
real. With this, one obtains

βµC = 2ig̃ ∂ν
(
ψ̄ρσ‖λ γ

µρσαβ, νλγ ψαβ‖γ
)
. (D.68)

Note that the quantity inside the parentheses can be made symmetric
under µ↔ ν for free, thanks to the Bianchi identities playing role when
∂ν hits the 1-curls. This leads us to Eq. (6.25) under the stated condition:
g̃ is real.

\ \ \

Next, we will derive Eq. (6.27) from Eq. (6.26). We will simply show
(dropping the quite similar proof for hermitian conjugates) that

−iξ̄λRµνρσγµνλαβ, τρσ ψαβ‖τ
.= 2ihµν Γ ψ̄ρσ‖λ γµρσαβ, νλγ ψαβ‖γ
− 2hµν‖σξ̄αβγµνραβ∆χ∗ρσ.

(D.69)

Let us rewrite the right-hand side of Eq. (D.69) as

R.H.S. = −2ihµν∂λξ̄ρσ γµρσαβ, νλγ ψαβ‖γ − 2hµν‖σξ̄αβγµνραβ∆χ∗ρσ.
(D.70)

In the first term on the right-hand side, let us pull out the derivative
∂σ off the ghost-curl and integrate by parts. This is followed by another
integration by parts w.r.t. ∂λ. In the second term, on the other hand, we



APPENDIX D. DETAILS IN DIMENSION D 239

pull out the derivative ∂β off the ghost-curl to integrate by parts. In these
steps, we exploit the antisymmetry of the products of γ-matrices, which
kills some terms by enforcing the Bianchi identities given in Appendix A.2.
Then, we are left with

R.H.S. .= iξ̄ρ
(
hσν‖µ γ

σνραβ, µλγ Ψαβ|λγ +Rσνλµ γ
σνραβ, µλγ ψαβ‖γ

)
− 4ξ̄αhµν‖σγµνραβ∆∂[βχ

∗
ρ]σ. (D.71)

In the last term on the right-hand side above, one can again use Eq. (D.66)
and then drop the S ′-terms on account of the Bianchi identities. The result
is

R.H.S. .= iξ̄ρ
(
hσν‖µ γ

σνραβ, µλγ Ψαβ|λγ +Rσνλµ γ
σνραβ, µλγ ψαβ‖γ

)
− iξ̄αhµν‖σγµνραβγστλΨβρ|τλ. (D.72)

Now, in the last term on the above right-hand side, the matrices γµνραβ
and γστλ actually commute. This can be seen by first writing γστλ =
1
2
(
γσγτγλ − γλγτγσ

)
, and then noticing that any of these γ-matrices

commutes past γµνραβ , on account of the identity:

γµνραβγσ = γσγµνραβ − 2γσµνραβ , (D.73)

and similar ones for γτ and γλ, and the fact that the antisymmetric
products of six γ-matrices are always eliminated by the Bianchi identities.
This enables us to rewrite the last term on the right-hand side of Eq. (D.72)
as the first one, but with an opposite sign, so that these terms actually
cancel each other. Therefore, we are left only with

L.H.S. .= −iξ̄λRµνρσγµνλαβ, τρσ ψαβ‖τ . (D.74)

This is precisely the left-hand side of Eq. (D.69), which, therefore, is proved.

\ \ \

Now we will show how Eq. (6.28) follows from Eq. (6.27). In other
words, we will prove

−ig̃ ξ̄λRµνρσγµνλαβ, τρσ ψαβ‖τ + h.c. .=− 8ig̃ Γ
(
ψ̄µαR

+µναβψνβ

+ 1
2

¯6ψµ 6R
µν 6ψν

)
−∆a,

(D.75)

for some ∆a to be determined. First, let us write down a γ-matrix identity:

γµνλαβ,τρσ = −60 δ[µνλ
τρσ γ

αβ] + 15 δ[µ
[τ γρσ]

νλαβ]. (D.76)
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Using this identity, one can rewrite the left-hand side of Eq. (D.75) as

L.H.S. = 60ig̃ ξ̄λ δ[µνλ
ρστ γ

αβ]Rµν
ρσ ψαβ‖

τ + h.c., (D.77)

where the potential terms with six γ-matrices have all been eliminated by
the Bianchi identities. Whenever the index λ is on a γ-matrix, we will
get rid of γ-matrices altogether by using the identity: γλα = γλγα − ηλα,
and the γ-tracelessness of the fermionic ghost. Otherwise, if just one of
the indices α and β appears on a γ-matrix, we will use the same identity
to obtain a single γ-trace of ψαβ‖τ . These steps leave us with our L.H.S.
given by

+ 12ig̃ ξ̄λRµνρσ
(
δαβµρστ η

νλ + δµναρστ η
βλ + 2δλµαρστ η

νβ + 1
2δ
λµν
ρστ γ

αβ
)
ψαβ‖

τ + h.c.
− 24ig̃ ξ̄λRµνρσ δλµαρστ γ

νγβ ψαβ‖
τ + 6ig̃ ξ̄λ δλαβρστ 6R

ρσψαβ‖
τ + h.c. . (D.78)

It is rather easy to see that the entire first line reduces, up to total
derivatives, to a Γ-exact piece modulo ∆-exact terms. Although more
difficult to see, the same is true for the second line as well. Let us call the
first and the second lines on the right-hand side of Eq. (D.78) respectively
as 1st Line and 2nd Line. In 1st Line we can use the relation (E.18), and
carry out an explicit computation to write down

1st Line = + 6ig̃ ξ̄λ
[
iRµν

[λµ 6 Sν] − ∂[λ(Rµνµν]ψ′
)]

+ h.c.
− 8ig̃ ξ̄λ

[ (
Rλναβ +Rανλβ

)
∂αψνβ + 2Rλβψαβ‖α

−Rαβψλα‖β + 1
2Rψ

λα‖
α

]
.

(D.79)

One can integrate by parts w.r.t. ∂α in the terms containing the Riemann
tensor, and thereby extract a Γ-exact piece. The result is

1st Line .=− 8ig̃ Γ
(
ψ̄µαR

µναβψνβ
)

+ 2ig̃
[
3iξ̄λRµν [λµ 6 Sν] − ξ̄λ∂λ (Rψ′) + 2ξ̄λ∂µ

(
Rµλψ′

)
− h.c.

]
+ 16ig̃

[
ξ̄λ
(
∂αR

λναβψνβ −Rλβψαβ‖α (D.80)
+ 1

2R
αβψλα‖β − 1

4Rψ
λα‖

α

)
− h.c.

]
,

which is manifestly of the form Γ-exact plus ∆-exact.
Similarly, in the first term of the 2nd Line, one can use Eq. (E.17) to

rewrite that line as

24ig̃ ξ̄λγµ
[
iRµν

[αλSαν] − ∂[λ(Rµννα] 6ψα
)]

+ 12ig̃ ξ̄λ 6R[αβ∂αψβ
λ] + h.c. .

(D.81)
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The second term in the brackets contains manifestly ∆-exact pieces, which
we separate:

2nd Line = 8ig̃ ξ̄λγµ
[
3iRµν [αλSαν] + ∂λ (Rµα 6ψα)− ∂α

(
Rµ

λ 6ψα
) ]

+ h.c.

+ 4ig̃ ξ̄λ
[
3 6R[αβ∂αψβ

λ] − 2γµ∂ν
(
Rµν

αλ 6ψα
) ]

+ h.c. . (D.82)

The first line on the right-hand side is now manifestly ∆-exact, whereas the
second line can be written as Γ-exact plus ∆-exact modulo total derivatives,
which we will now show.

To this end, we will first compute the Γ variation of the following
quantity:

Z ≡ −4ig̃
(
ψ̄λαγ

λνρσRρσ
αβψνβ + ¯6ψµ 6R

µν 6ψν
)
. (D.83)

The Γ variation gives derivatives of the ghost, but integrations by parts
will yield

ΓZ .=− 2ig̃ ξ̄λ
[
γλνρσRρσ

αβψαβ‖ν + γανρσRρσ
λβψαν‖β

]
− 4ig̃ ξ̄λγλνρσ∂αRρσαβψνβ − 4ig̃ξ̄λ 6∂

(
6Rλαψα

)
+ h.c.

(D.84)

Let us use the γ-matrix identity: γλνρσ = 2ηλν|ρσ + 1
2
(
γλνγρσ + γρσγλν

)
for the first term in the brackets, and γανρσ = −2ηαν|ρσ +
1
2 (γαγρσγν − γνγρσγα) for the second one. Furthermore, we break γλν to
obtain the γ-trace of either the ghost (which is zero) or the fermion 1-curl
(for which we use Eq. (E.17)). The result is

4ig̃ ξ̄λ 6Rαβ∂αψβλ + 2ig̃ ξ̄λ
[(
γβ 6Rλα − 6Rαβγλ

)
∂α 6ψβ − 2∂β

(
γβ 6Rλα 6ψα

)]
− 2ig̃ ξ̄λ

(
iγα 6RλβSαβ + 2γλνρσ∂αRρσαβψνβ

)
+ h.c.

(D.85)

In the first line above, for all three quantities inside the brackets, we
commute the γ-matrix past the double γ-trace of the Riemann tensor.
This leaves us with

ΓZ .=− 4ig̃ ξ̄λ
(
γλνρσ∂αRρσ

αβψνβ + 2γσ∂αRλβασ 6ψβ + 6Rλα ~6∂ ψα
)

+ h.c.

+ 4ig̃ ξ̄λ
(
3 6R[αβ∂αψβ

λ] − 2γµ∂ν
(
Rµν

αλ 6ψα
) )

(D.86)
+ 2g̃ ξ̄λ

(
γα 6RλβSαβ + 6Rλα 6 Sα

)
.

Combining all the results, i.e., Eqs. (D.78), (D.80), (D.82) and (D.86),
we finally arrive at Eq. (D.75), where ∆a is given, up to its hermitian
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conjugate, by

∆a =− 16ig̃ ξ̄λ
[
∂αR

λναβψνβ −Rλβψαβ‖α + 1
2R

αβψλα‖β − 1
4Rψ

λα‖
α

]
− 8ig̃ ξ̄λ

[
∂λ (γµRµα 6ψα)− ∂α

(
γµRµ

λ 6ψα
)

+ 1
2∂µ

(
Rµλψ′

)
− 1

4∂
λ (Rψ′)

]
− 4ig̃ ξ̄λ

[
γλνρσ∂αRρσ

αβψνβ + 2γσ∂αRλβασ 6ψβ + 6Rλα ~6∂ ψα
]

+ 2g̃ ξ̄λ
[
3Rµν [λµ 6 Sν] + 12γµRµν [αλSαν] + γα 6RλβSαβ + 6Rλα 6 Sα

]
.

(D.87)

This completes our proof.

\ \ \

Having found ∆a, we will now see how this quantity may be related to
∆a1g, given by Eq. (6.23). This will lead us to the desired relation (6.29).
Note from Eq. (6.23) that the graviton EoMs in ∆a1g appear only through
the Einstein tensor Gµν . Therefore, we will rewrite all the ∆-exact terms
in the first, second and third lines on the right-hand side of Eq. (D.87) in
terms of the Einstein tensor, by making use of the relations (E.3)–(E.7).
For he antisymmetric 4-γ, we use the identity (D.61) in order to kill some
terms that give the γ-trace of ξ̄λ. We find that all the terms proportional
to the trace of the Einstein tensor (Ricci scalar) combine into Γ-exact
pieces. After some simplifications, the result is

∆a
.= + 8ig̃ ξ̄λ

[
2Gµν∂λψµν − 3∂µ

(
Gµνψν

λ
)

+ ∂ν
(
Gλµψµν

)]
+ 4ig̃ Γ

[¯6ψµ 6Gνψµν + ψ̄µν 6Gµ 6ψν − ¯6ψµGµν 6ψν + 2ψ̄µαGµνψνα
]

− 6ig̃ Γ
[
ψ̄′Gµνψµν + ψ̄µνG

µνψ′ − 1
3 ψ̄µνRψ

µν + 1
2 ψ̄
′Rψ′

]
(D.88)

+ 4g̃ ξ̄λ
[ 3

2Rµν
[λµ 6 Sν] + 6γµRµν [αλSαν] + γαρσRρσ

λβSαβ
+ 2 6GαSαλ −Gβλ 6 Sβ

]
+ h.c.

The entire first line on the right-hand side plus its hermitian conjugate
is easily identified, up to an overall factor, as ∆a1g. All the remaining
terms, on the other hand, are ∆ variations of Γ-closed quantities, and can
be identified as ∆ã1. Explicitly,

ã1 = + 8ig̃ Γ
(¯6ψµ 6h

∗
νψ

µν − 1
2

¯6ψµh∗µν 6ψν + ψ̄µαh
∗µνψν

α − 3
2 ψ̄
′h∗µνψµν

)
−
( 4
D−2

)
ig̃ Γ

(
ψ̄µνh

∗′ψµν − 3
2 ψ̄
′h∗′ψ′

)
+ 4g̃ ξ̄λ

( 3
2Rµν

[λµ 6ϕ ∗ν]

+ 6γµRµν [αλϕ∗α
ν] + γαρσRρσ

λβϕ∗αβ + 2 6Gαϕ∗αλ −Gβλ 6ϕ
∗
β

)
+ h.c.
(D.89)

Thus we have proved the relation (6.29), where the ambiguity is given by
the above expression.
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D.3.2 3-Derivatives 1−5/2−5/2 Vertex
First, we will show that the a2 presented in Eq. (6.33) is equivalent to
that appearing in the third line of Eq. (6.9). Given the identities (D.60)
and (D.61), we rewrite Eq. (6.33) as

a2 =− ig C∗λξ̄µνγλ
(
− ηµν|αβ + 1

2γ
µνγαβ − 2γµηναγβ

)
ξαβ

− ig C∗λξ̄µν
(
− ηµν|αβ + 1

2γ
µνγαβ − 2γµηναγβ

)
γλξαβ .

(D.90)

It is clear that only the first terms in both the lines on the right-hand
side are nontrivial, since the γ-trace of the ghost-curl ξαβ is Γ-exact. This
leaves us with

a2 = 2ig C∗λ ξ̄µνγλξµν + Γ-exact, (D.91)
thereby proving the claimed equivalence.

\ \ \

Now we will prove the statements that follow Eq. (6.37). Let us take
the first term on the right-hand side of Eq. (6.37),

igRµνρσ ξ̄λ γ
λµναβ Ψαβ|

ρσ, (D.92)

and use the identity (D.61) to rewrite it as

igRµνρσ ξ̄λ γ
λµναβ

(
− 1

2γ
ρσγd + 1

2γ
ρσγγd − 2γ[ρησ][γγδ]

)
Ψαβ|γd. (D.93)

The first term above (when expanding the brackets) plus its hermitian
conjugate is Γ-exact modulo d, while the remaining terms are ∆-exact. To
see this, let us massage these terms. We have

1rst T.+h.c. = − i
2gRµνρσ

(
ξ̄λγ

λµναβ, ρσγd Ψαβ|γd − Ψ̄αβ|γd γ
λµναβ, ρσγdξλ

)
,

(D.94)
by virtue of the fact that the antisymmetric products of 5-γ and 4-γ
commute for exactly the same reason as presented in between Eqs. (D.72)
and (D.74). Now we can pull ∂µ off the Riemann tensor to integrate by
parts. Because of the Bianchi identities, we get

1rst+h.c. .= − i
2g hρσ‖λ

(
ξ̄µνγ

λµναβ, ρσγd Ψαβ|γd − Ψ̄αβ|γd γ
λµναβ, ρσγdξµν

)
,

(D.95)
Finally, we pull ∂γ off the spin- 5

2 curvature and integrate by parts to obtain
a derivative ∂γξµν of the ghost-curl, which is Γ-exact. Thus we end up
having

First Term + h.c. .= −ig Γ
(
hρσ‖λψ̄µν‖γ γ

λµναβ, ρσγdψαβ‖d
)
. (D.96)
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On the other hand, it is manifest that the second and third terms
appearing in Eq. (6.37) are ∆-exact quantities. Moreover, they are ∆
variations of some Γ-closed objects. The following choice of the ambiguity
will eliminate these terms:

∆ã1 = −igRµνρσ ξ̄λ γλµναβ
( 1

2γ
ρσγγd−2γ[ρησ][γγδ]

)
Ψαβ|γδ+h.c. . (D.97)

This choice is tantamount to

ã1 = −gRµνρσ ξ̄λ
(
4γλµναβ, ρ ∂[αϕ

∗
β]
σ + 1

D γλµναβ, ρσ 6ψ∗αβ
)

+ h.c., (D.98)

and with this we arrive at Eq. (6.38).

D.4 Gauge Algebra-Preserving Vertices

To prove this, first we note that it is always possible to rewrite a cubic
vertex as

a0 = Tµνhµν , (D.99)

i.e., the graviton field hµν contracted with a symmetric fermion-bilinear
current Tµν . If the vertex is abelian, we will see that the latter can be
chosen to satisfy

ΓTµν = 0, ∂νT
µν = ∆Mµ with ΓMµ = 0. (D.100)

For s = n+ 1
2 , let us write the most general form of the a1 corresponding

to (D.99):

a1 = 2MµCµ +
(
P̄µ1...µn−1ξ

µ1...µn−1 − ξ̄µ1...µn−1P
µ1...µn−1

)
+ a′1, (D.101)

where Mµ and Pµ1...µn−1 belong to H(Γ) and have pgh = 0, agh# = 1,
and a′1 stands for expansion terms in the ghost-curls. The consistency
condition (6.78) now reads

0 .= ∆a′1 + 2∆MµCµ +
(
∆P̄µ1...µn−1ξ

µ1...µn−1 − ξ̄µ1...µn−1∆Pµ1...µn−1
)

+ Γ (Tµνhµν) . (D.102)

It is clear from the properties of Pµ1...µn−1 that it may consist of two kinds
of terms: one contains the antifield h∗µν and its derivatives, and the other
contains the antifield ψ∗ν1...νn and its derivatives. The former kind also
contains (derivatives of) the Fronsdal tensor Sν1...νn or (derivatives of) the
curvature Ψµ1ν1|...|µnνn , while the latter one contains (derivatives of) the
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linearized Riemann tensor Rµνρσ. By using the Leibniz rule, however, one
can choose to get rid of derivatives on h∗µν and Rµνρσ. Thus one can write

Pµ1...µn−1 = h∗µν
[
~P (S)ν1...νn
µν, µ1...µn−1

Sν1...νn + ~P (Ψ)ν1ρ1|...|νnρn
µν, µ1...µn−1

Ψν1ρ1|...|νnρn

]
+Rµνρσ ~P (ψ∗)ν1...νn

µνρσ, µ1...µn−1
ψ∗ν1...νn + ∂µnpµ1...µn , (D.103)

where Γpµ1...µn = 0, and the ~P ’s are differential operators acting to the
right. Notice that in the above expression both terms in the brackets
are not only Γ-closed but also ∆-exact.2 Now, taking the ∆ variation of
Pµ1...µn−1 one finds from Eq. (D.103) that

∆Pµ1...µn−1 = 1
4R

µνρσ∆Qµνρσ, µ1...µn−1 + ∂µn∆qµ1...µn , (D.104)

where the quantity Qµνρσ, µ1...µn−1 is Γ-closed and enjoys the same sym-
metries in its first four indices as the Riemann tensor, and Γqµ1...µn = 0.
Therefore, one finds that

ξ̄µ1...µn−1∆Pµ1...µn−1
.= hµν∆

[
∂α∂β

(
ξ̄µ1...µn−1Qµανβ,

µ1...µn−1
)]

− ξ̄µ1...µn−1
~∂µn∆qµ1...µn .

(D.105)

The last term on the right-hand side above is Γ-closed, and can be bro-
ken into a Γ-exact piece plus terms involving the fermionic ghost-curls.
The latter can always be canceled in the cocycle condition (D.102) by
appropriately choosing a′1. One is thus left with

Γ
[
Tµνhµν + ∆

( 1
n ψ̄µ1...µnq

µ1...µn + h.c.
)]

+ 2∆MµCµ (D.106)
− hµν∆

[
∂α∂β

(
ξ̄µ1...µn−1Qµανβ,

µ1...µn−1 + h.c.
)] .= 0.

Now, one can drop the ∆-exact terms added to the original vertex Tµνhµν
to write

hµν
[
ΓTµν−∂α∂β

(
ξ̄µ1...µn−1∆Qµ1...µn−1

µανβ, +h.c.
)]

+2 (∆Mµ − ∂νTµν)Cµ
.= 0.

(D.107)
Taking a functional derivative w.r.t. Cµ then yields the second condition
in Eq. (D.100):

∂νT
µν = ∆Mµ, (D.108)

2 While the ∆-exactness of the first term therein is manifest, the second term
contains the spin-s curvature, which admits only ∆-exact terms like its own (γ-)traces
and divergences (see Appendix E), thanks to the way the indices are contracted.
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with ΓMµ = 0 by assumption. On the other hand, a functional derivative
w.r.t. hµν gives

ΓTµν = ∂α∂β
(
ξ̄µ1...µn−1∆Qµανβ,µ1...µn−1

)
+ h.c., (D.109)

which means, in particular, that the quantity on the right-hand side must
be Γ-exact. This is possible if ∂α∂βQµανβ, µ1...µn−1 is ∆-closed, and the
indices of Q have the interchange symmetry α ↔ µi and β ↔ µi with
i = 1, 2, . . . , n− 1. This enables one to conclude

Tµν = T̃µν + 1
n ∆

[
2ψ̄µ1...µn∂αQ(µ

α
ν)
µ1, µ2...µn

+ ∂αψ̄µ1...µnQ(µ
α
ν)
µ1, µ2...µn + h.c.

]
,

(D.110)

where ΓT̃µν = 0. Therefore, one can render the current gauge invariant by
field redefinitions without affecting the form (D.108) of its divergence. This
completes the proof of Eq. (D.100). Then the a1 following from Eq. (6.78)
reads

a1 = 2MµCµ. (D.111)

We will now prove a sufficient condition for the triviality of a1, given
by (D.111), and hence of the deformation of the gauge transformations. It
is

∆Mµ = ∂νX (µν)+∂ρ∂σYµρσ, with X (µν),Yµρσ ∆-exact and Γ-closed.
(D.112)

If Eq. (D.112) is true, then from Eq. (D.111) we can write ∆a1 as

∆a1 = 2
(
∂νX (µν) + ∂ν∂ρYµνρ

)
Cµ

.= −2X (µν)∂(µCν) + 2Yµνρ∂ν∂ρCµ.
(D.113)

But the derivatives of the bosonic ghost are Γ-exact: 2∂(µCν) = Γhµν and
2∂ν∂ρCµ = ∂ρΓhµν − Γhµν‖ρ. Because X (µν) and Yµνρ are Γ-closed, one
can write

∆a1
.= −Γ

[(
X (µν) + ∂ρYµνρ

)
hµν + Yµνρhµν‖ρ

]
. (D.114)

In view of the the cocycle condition ∆a1
.= −Γa0, one can therefore write

Γ
[
a0 −

(
X (µν) + ∂ρYµνρ

)
hµν − Yµνρhµν‖ρ

] .= 0. (D.115)

Because the quantities added to a0 on the left-hand side are ∆-exact
by assumption, one can render the vertex gauge-invariant only up to a
total derivative, by field redefinitions. This proves the triviality of a1 if
Eq. (D.112) holds.
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D.5 Beyond Cubic Order: Gravitational Case

Let us recall from Chapter 4 that consistent second-order deformations
require

(S1, S1) = −2sS2 = −2ΓS2 − 2∆S2, (D.116)
and that this antibracket is zero for the abelian vertices, which go unob-
structed beyond the cubic level. The non-abelian vertices, on the other
hand, have nontrivial a1 and a2 and may not fulfill this requirement. Here
we will prove by contradiction that indeed they do not. The line of rea-
soning is close to that of Section 5.4, where we perform a similar analysis
(with same conclusions) for the photon-coupled massless fermions.

Notice that S2 is at most linear in the antifields Φ∗A, on which Γ does not
act. On the other hand, only the ∆ variation of an antighost can produce
an antifield. Therefore, the general form of the antibracket evaluated at
zero antifields is

(S1, S1)|Φ∗
A

=0 = ΓN + ∆M, N ≡ −2 [S2]Φ∗
A

=0 , M ≡ −2 [S2]C∗α=0 .

(D.117)
Let us also note that in the antibracket of S1 =

∫
(a2 + a1 + a0) with itself,

among all the possibilities, only the antibracket between
∫
a0 and

∫
a1

survives when the antifields are set to zero. Thus one is left with

(S1, S1)|Φ∗
A

=0 = 2
(∫

a0,

∫
a1

)
≡
∫
b. (D.118)

It is relatively easier to compute the quantity b, which must satisfy the
following requirement in view of Eqs. (D.117) and (D.118):

b
.= Γ-exact + ∆-exact. (D.119)

For simplicity, we shall again stick to the simplest non-trivial case, which
this time is that of the spin- 5

2 field. As we now have two different non-
abelian vertices, below we discuss them separately — recall that abelian
vertices always go unobstructed beyond the cubic order.

The 2-Derivatives Vertex

For the 2-derivatives 2−5
2−

5
2 vertex, let us write down the deformations a0

and a1. First, from Eq. (6.32), one can rewrite the vertex as a0
.= Tµνhµν .

The result is

Tµν = 4ig
[
∂ρ∂σ

{
ψ̄νλ

(
ηµσ|λτ + 1

2γ
µσλτ

)
ψρτ + 1

2
¯6ψ[νγ

µσ 6ψρ]
}

+ 1
16 ψ̄ρσ‖

λ γµρσαβ,νλγ ψαβ‖
γ
]
.

(D.120)
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On the other hand, from Eqs. (6.21)–(6.22) and Eq. (D.89) we can write

a1 = igh∗µν
(
ξ̄µλψ

νλ + ψ̄νλξµλ − 2ξ̄λψµλ‖ν − 2ψ̄µλ‖νξλ + Γjµν
)

+ · · · ,
(D.121)

where the ellipses stand for terms containing the antifield ψ∗µν , and jµν is
some spin- 5

2 bilinear. Then the quantity b will contain 4-fermions terms
plus fermion bilinears:3

b = 2ig Tµν
(
ξ̄µλψ

νλ + ψ̄νλξµλ − 2ξ̄λψµλ‖ν − 2ψ̄µλ‖νξλ + Γjµν
)

+ · · · .
(D.122)

Note that the two kinds of terms are completely different and we can treat
them separately. If Eq. (D.119) is fulfilled, a functional derivative thereof
w.r.t. ξ̄µ has to be ∆-exact up to the divergence of a symmetric tensor.
This functional derivative reads:

δb

δξ̄µ
= 4ig

[
∂ν
(
T [µ
ρ ψ

ν]ρ)+ Tρσψ
µρ‖σ]+ · · · . (D.123)

and because the vertex is nontrivial, Tµν cannot be ∆-exact. Now, the
right-hand side of Eq. (D.123) is trilinear in the spin- 5

2 field. Given that
possible Fierz rearrangements cannot redistribute the derivatives among the
fields, let us consider, among others, the terms in which three derivatives
act on a single fermion. By inspection, it is clear that these terms cannot
be written as ∆-exact quantities up to the divergence of a symmetric tensor.
Therefore, it is not possible to satisfy Eq. (D.119). Then, in a local theory,
the non-abelian 2− 5

2−
5
2 vertex with two derivatives is obstructed beyond

the cubic order.

The 3-Derivatives Vertex

The proof for the 3-derivatives case is in the same spirit as the previous
example. Let us rewrite, from (6.39), the vertex as a0

.= Tµνhµν , with the
current given by

Tµ
ν = 2ig∂λ

(
ψ̄ρσ‖µ γ

νρσαβ ψαβ‖λ − ψ̄ρσ‖λ γνρσαβ ψαβ‖µ
+ ψ̄ρσ‖γ γνρσαβ,µλγδ ψαβ‖δ

)
.
(D.124)

Now a1 is given by Eqs. (6.34) and (D.98), and it has the form:

a1 = −2igh∗ νµ
(
ξ̄ρσγ

µρσαβψαβ‖ν − ψ̄ρσ‖νγµρσαβξαβ
)

+ · · · . (D.125)
3 The latter terms, which we do not make explicit, come from the ellipses in (D.121).
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Again, the quantity b will contain 4-fermions terms and fermion bilinears:

b = −4ig Tµν
(
ξ̄ρσγ

µρσαβψαβ‖ν − ψ̄ρσ‖νγµρσαβξαβ
)

+ · · · . (D.126)

Let us consider, in the functional derivative of b w.r.t. ξ̄µ, the terms with
three derivatives acting on a single fermion to find that they cannot be
written as ∆-exact objects modulo the divergence of a symmetric tensor.
Therefore, Eq. (D.119) will not be satisfied, and so in a local theory the
3-derivatives 2−5

2−
5
2 vertex is also inconsistent at the quartic order. Finally,

upon inspection one easily deduces that, even if linearly combined, the two
vertices above would suffer from the same obstruction.





APPENDIX E
Cohomologies

The basic cohomological relations that we use in the main part of the
text are summarized here. For our higher-spin fields, we only present the
fermionic case which is of interest to us, and refer the interested reader to
[248] for an analogous treatment involving higher-spin bosons.

E.1 The Cohomology of ∆: Equations of Motion

The Photon
The original1 equations of motion for the photon are given by

∂µFµν = 2Aν − ∂ν(∂ ·A) = ∆A∗ν , (E.1)

which, upon taking a 1-curl thereof yields

2Fµν = 2∆(∂[µA
∗
ν]), (E.2)

showing us a less well-known form of the spin-1 equations of motion.

The Graviton
The original equations of motion for the graviton are expressed in terms of
the linearized Einstein tensor,

Gµν ≡ Rµν − 1
2ηµνR = ∆h∗µν . (E.3)

1 By ‘original’ we mean those which follow from equating to zero the variation of
the action principle given in the main text.

251
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Taking a trace, it follows immediately that

Rµν = ∆
(
h∗µν − 1

D−2ηµνh
∗′), R = −

( 2
D−2

)
∆h∗, (E.4)

which one can use to show the contracted Bianchi identity, which says that
the divergence of the Riemann tensor is ∆-exact:

∂ρRµνρσ = 2∂[µRν]σ = 2∂[µGν]σ − ησ[µ∂ν]R = ∆-exact. (E.5)

From the above it of course follows that

∂ρ 6Rρσ = (γµγν − ηµν) (2∂µGνσ − ησµ∂νR) = 26∂ 6Gσ−γσ 6∂R+ 6∂σR = ∆(...),
(E.6)

from which one can then derive, making use of γαγρσ = 2γαρσ − γρσγα
and the Bianchi identity ∂[ρRµν]αβ = 0, that

6∂ 6Rµν = −6Rµν ~6∂ = 4γρ∂[µRν]ρ = ∆-exact. (E.7)

Another consequence of (E.5) is of course the divergenceless property of
the Einstein tensor, namely ∂µGµν = 0, which is most well-known. Other
forms of the equations of motion, that we do not use, include γµ 6Rµν and
2Rµνρσ.

The Rarita–Schwinger
For spin 3

2 , the original equations of motion read

Rµ = γµαβΨαβ = −2i∆ψ∗µ, (E.8a)
R̄µ = Ψ̄αβγ

αβµ = 2i∆ψ̄∗µ. (E.8b)

One can take the γ-trace of (E.8a), and use γµγµαβ = (D−2)γαβ to obtain

γµνΨµν = 2 ( 6∂ 6ψ − ∂ · ψ) = −2i∆
( 1
D−2 6ψ

∗). (E.9)

Alternatively, one can start from the same (E.8a) but instead use the
identity γµαβ = γµγαβ − 2ηµ[αγβ] and then the above equation, which
leaves one with the very useful form

γµΨµν = −iSν = 6∂ ψν − ∂ν 6ψ = −i∆
(
ψ∗ν − 1

D−2γν 6ψ
∗). (E.10)

Further taking a curl of the above relation and using (A.13) one finds

6∂Ψµν = −2i∆
(
∂[µψ

∗
ν] − 1

D−2γ[ν∂µ] 6ψ∗
)
. (E.11)
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Another useful form can be obtained by applying the Dirac operator on
(E.10) and then getting rid of 6∂ 6ψ in the resulting expression by using
(E.9). The result is

∂µΨµν = 2ψν − ∂ν (∂ · ψ) = −i∆
[
6∂ ψ∗ν + 1

D−2γνρ∂
ρ 6ψ∗

]
. (E.12)

Similarly, one could have started with (E.8b) to derive the following:

Ψ̄µνγ
µν = 2

(
ψ̄ · ~∂ − 6 ψ̄ ~6∂

)
= 2i∆

( 1
D−2 6 ψ̄

∗)
, (E.13a)

Ψ̄µνγ
ν = 6 ψ̄ ~∂µ − ψ̄µ ~6∂ = i∆

(
ψ̄∗µ − 1

D−2 6 ψ̄
∗
γµ
)
, (E.13b)

Ψ̄µν
~6∂ = 2i∆

(
ψ̄∗[µ

~∂ν] − 1
D−2 6 ψ̄

∗
γ[µ ~∂ν]

)
, (E.13c)

Ψ̄µν
~∂ ν =

(
ψ̄ · ~∂

)
~∂µ − ψ̄µ ~2 = i∆

[
ψ̄∗µ

~6∂ + 1
D−2 6 ψ̄

∗ ~∂ ργρµ
]
. (E.13d)

Spin 5/2
For spin 5

2 , let us recall that the original EoMs are given by

Rµν = Sµν − γ(µ 6 Sν) − 1
2ηµνS

′ = ∆ψ∗µν , (E.14a)
R̄µν = S̄µν − 6 S̄(µγν) − 1

2ηµν S̄
′ = ∆ψ̄∗µν . (E.14b)

One can easily rewrite these in terms of the Fronsdal tensor,

Sν1ν2 ≡ i
[
6∂ ψν1ν2 − 2∂(ν1 6ψν2)

]
= ∆ϕ∗ν1ν2

, (E.15)

and similarly S̄ν1ν2 = ∆ϕ̄∗ν1ν2
for its Dirac conjugate, where

ϕ∗µν ≡ ψ∗µν − 2
Dγ(µ 6ψ∗ν) − 1

Dηµνψ
∗′. (E.16)

From the definition of the Fronsdal tensor, one easily finds that

γσψρσ‖α = iSρα − ∂α 6ψρ, (E.17)

whose γ-trace, in turn, gives:

γρσψρσ‖α = i 6 Sα − ∂αψ′, ψ′ = ψµµ . (E.18)

Now we see that the quantity γµ1Ψµ1ν1|µ2ν2 is given by the 1-curl of
Eq. (E.17), and that it is ∆-exact:

γµ1Ψµ1ν1|µ2ν2 = −2i∂[µ2Sν2]ν1 = ∆-exact. (E.19)

Similarly, from a 1-curl of Eq. (E.18), we obtain another useful form:

γµ1ν1Ψµ1ν1|µ2ν2 = 2iγν1∂[µ2Sν2]ν1 = ∆-exact. (E.20)
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Taking a curl of (E.19), one finds yet another form,

6∂Ψµ1ν1|
µ2ν2 = −4i∂[µ1∂[µ2Sν2]

ν1] = ∆-exact. (E.21)

In fact, the relations (E.19), (E.20) and (E.21) also mean that Ψµ
ν|µσ =

∆-exact and 2Ψµν|ρσ = ∆-exact. Finally, by using the identity ∂µ1 =
1
2 ( 6∂γµ1 + γµ1 6∂), we derive from (E.19) and (E.21) that

∂µ1Ψµ1ν1|µ2ν2 = −2i 6∂ ∂[µ2Sν2]ν1 + i∂ν1γ
ρ∂[µ2Sν2]ρ = ∆-exact. (E.22)

Similarly, one can find the various forms of the EoMs for the Dirac
conjugate spinor.

Now from the definition of the Fronsdal tensor, one can find the identity

∂ · Sµ = 1
2 6∂ 6 Sµ + 1

2∂µS
′. (E.23)

Taking a divergence of (E.14a), and then using the above identity, one can
then write

∂νRµν = − 1
2γ

µ ∂ · 6S, (E.24)

which can be rewritten, by using (E.14a), (E.15) and (E.16), as

∆ (∂νχ∗µν) = 0, χ∗µν ≡ ψ∗µν − 1
D γµ 6ψ∗ν . (E.25)

Arbitrary Spin
For spin s = n+ 1

2 the original EoMs are given by

Rµ1...µn = Sµ1...µn − 1
2nγ(µ1 6 Sµ2...µn) − 1

4n(n− 1) η(µ1µ2S
′
µ3...µn)

= ∆ψ∗µ1...µn , (E.26a)
R̄µ1...µn = S̄µ1...µn − 1

2n 6 S̄(µ1...µn−1γµn) − 1
4n(n− 1) η(µ1µ2 S̄

′
µ3...µn)

= ∆ψ̄∗µ1...µn . (E.26b)

One can reexpress the EoMs in terms of the Fronsdal tensor as follows:

Sν1...νn ≡ i
(
6∂ ψν1...νn − n∂(ν1 6ψν2...νn)

)
= ∆ϕ∗ν1...νn , (E.27)

and similarly S̄ν1...νn = ∆ϕ̄∗ν1...νn for its Dirac conjugate, where

ϕ∗ν1...νn ≡ ψ
∗
ν1...νn −

n
2n+D−4 γ(ν1 6ψ

∗
ν2...νn) −

n(n−1)
2(2n+D−4) η(ν1ν2ψ

∗′
ν3...νn).

(E.28)
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Taking an (n − 2)-curl of the the Fronsdal tensor (E.27), one finds the
relation

γνn−1ψ
(n−1)
µ1ν1|...|µn−1νn−1‖νn = iS(n−2)

µ1ν1|...|µn−2νn−2‖νn−1νn

− ∂νn 6ψ
(n−2)
µ1ν1|...|µn−2νn−2‖νn−1

,
(E.29)

whose γ-trace, in turn, gives:

γµn−1νn−1ψ
(n−1)
µ1ν1|...|µn−1νn−1‖νn = i6 S(n−2)

µ1ν1|...|µn−2νn−2‖νn

− ∂νnψ
′(n−2)
µ1ν1|...|µn−2νn−2

.
(E.30)

The arbitrary spin generalization of the relations (E.19)–(E.22) is rather
straightforward, and can be derived in the same way. The corresponding
expressions respectively read

γµ1Ψµ1ν1|...|µnνn = −iS(n−1)
µ2ν2|...|µnνn‖ν1

= ∆(...), (E.31a)

γµ1ν1Ψµ1ν1|...|µnνn = i6 S(n−1)
µ2ν2|...|µnνn = ∆(...), (E.31b)

6∂Ψµ1ν1|...|µnνn = −iS(n)
µ1ν1|...|µnνn = ∆(...), (E.31c)

∂µ1Ψµ1ν1|...|µnνn = −i6∂ S(n−1)
µ2ν2|...|µnνn‖ν1

(E.31d)

+ i
2∂ν1 6 S

(n−1)
µ2ν2|...|µnνn = ∆(...).

Obvious consequences of the above equations include the ∆-exactness of
ηµ1µ2Ψµ1ν1|...|µnνn and 2Ψµ1ν1|...|µnνn . Similar forms of the EoMs can be
written for the Dirac conjugate spinor.

Finally, we have the following generalization of the identity (E.23):

∂ · Sµ1...µn−1 = 1
2 6∂ 6 Sµ1...µn−1 + n−1

2 ∂(µ1S
′
µ2...µn−1), (E.32)

which, when used in the divergence of (E.26a) gives

∂ · Rµ1...µn−1 = −n−1
2 γ(µ1∂ · 6Sµ2...µn−1) −

(n−1)(n−2)
4 η(µ1µ2∂ · S

′
µ3...µn−1).

(E.33)
Given the equations (E.26)–(E.28), this can then be rewritten as

∆
(
∂µnχ∗µ1...µn

)
= 0, (E.34)

where
χ∗µ1...µn ≡ ψ

∗
µ1...µn −

n−1
2n+D−4 γ(µ1 6ψ

∗
µ2...µn−1)µn

− (n−1)(n−2)
2(2n+D−4) η(µ1µ2ψ

′∗
µ3...µn−1)µn .

(E.35)
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E.2 The Cohomology of Γ: Gauge Invariance

This Appendix is devoted to clarifying and providing proofs of the state-
ments about the cohomology of Γ appearing in the main text. We recall
that the action of Γ on the various fields is defined by

ΓAµ = ∂µC, (E.36a)
Γhµν = 2∂(µCν), (E.36b)

Γψν1...νn = n∂(ν1ξν2...νn), Γψ̄ν1...νn = −n∂(ν1 ξ̄ν2...νn). (E.36c)

The nontrivial elements in the cohomology of Γ are nothing but gauge-
invariant objects that themselves are not gauge variations of something
else. In the following we consider one by one all such elements, and also
prove some useful relations involving Γ-exact terms.

The Curvatures
The curvatures {Fµν , Rµναβ ,Ψµ1ν1|...|µnνn} and their derivatives belong to
the cohomology of Γ. Seeing that the curvatures are Γ-closed is straightfor-
ward. For the photon it follows directly from the commutativity of partial
derivatives as one takes a curl of the above Γ-variation of Aµ,

ΓFµν = Γ
(
2∂[µAν]

)
= 2∂[µ∂ν]C = 0, (E.37)

and for the graviton the same reasoning yields

ΓRµνρσ = Γ
(

4∂[ρ∂[µhν]
σ]
)

= 4∂[ρ∂[µ∂ν]C
σ] + 4∂[ρ∂[µ∂

σ]Cν] = 0. (E.38)

One can also take a 1-curl of the above fermion gauge-variation to obtain

Γψ(1)µ1ν1‖
ν2...νn = (n− 1)∂(ν2ξ

(1)µ1ν1‖
ν3...νn), (E.39)

and similarly for the Dirac conjugate. Likewise, an m-curl of Eq. (E.36c)
gives, for m ≤ n,

Γψ(m)µ1ν1|...|µmνm‖
νm+1...νn = (n−m)∂(νm+1ξ

(m)µ1ν1|...|µmνm‖
νm+2...νn) .

(E.40)
In particular, when m = n, we have the Γ-variation of the curvature; it
vanishes:

Γ Ψµ1ν1|...|µnνn = 0. (E.41)

Note that the Γ-closure of the curvature holds without requiring any
constraints on the fermionic ghost. To see that the curvatures are not
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Γ-exact, we simply notice that these are pgh-0 objects, whereas any Γ-exact
piece must have pgh > 0. Therefore, the curvatures are nontrivial elements
in the cohomology of Γ, and so are their derivatives.

As we have already seen, only the highest curl (n-curl) of the field
ψν1...νn is Γ-closed, while no lower curls are. It is the commutativity of
partial derivatives that plays a crucial role. Clearly, an arbitrary derivative
of the field will not be Γ-closed in general. Yet, some particular linear
combination of such objects (or their γ-traces) can be Γ-closed under the
constrained ghost. The latter possibility is exhausted precisely by the
Fronsdal tensor and its derivatives, which will be discussed later.

The Antifields
The antifields {A∗µ, C∗, h∗µν , C∗µ, ψ̄∗µ1...µn , ξ̄∗µ1...µn−1} and their deriva-
tives belong to the cohomology of Γ as well. These objects are Γ-closed
simply because Γ does not act on the antifields. On the other hand, having
pgh = 0, they cannot be Γ-exact.

The Ghosts & their Curls
The undifferentiated ghosts {C,Cµ, ξµ1...µn−1} are Γ-closed objects simply
because Γ does not act on them. Also they cannot be Γ-exact, because
any Γ-exact piece must contain at least one derivative of any of the ghosts
(which is obvious from the gauge variations).

Any derivatives of the ghosts will also be Γ-closed. Some derivatives,
however, will be Γ-exact, and therefore trivial in the cohomology of Γ. The
bosonic case is easy: one can immediately dismiss as trivial any derivative
of the bosonic ghost C, because of definition ∂µC = ΓAµ. Also, any
symmetrized derivatives of the bosonic ghost is trivial: ∂(µCν) = 1

2Γhµν ,
but its 1-curl is not, and we have

∂µCν = ∂(µCν) + ∂[µCν] = 1
2Γhµν + 1

2Cµν . (E.42)

By taking a curl of the above equation, one however finds that any derivative
of Cµν is Γ-exact:

∂ρCµν = Γhµν‖ρ. (E.43)
Derivatives of the fermionic ghost are more interesting. For the Rarita–

Schwinger, the corresponding ghost ξ has no spacetime indices, so that the
situation is trivial in the sense that it is the same as that of the photon
(the spinor index plays no role). In the simplest non-trivial case of a spin- 5

2
field, with n = 2, we see that

∂µξν = ∂(µξν) + ∂[µξν] = 1
2Γψµν + 1

2ξµν . (E.44)
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The 1-curl ξµν is a nontrivial element in the cohomology of Γ, but its
γ-trace is not:

γαξαβ = 6∂ ξα = Γ6ψα, (E.45)

thanks to the γ-tracelessness of the ghost. Again, a derivative of the 1-curl
is trivial:

∂ρξµν = Γψµν‖ρ, ∂ρξ̄µν = −Γ ψ̄µν‖ρ, (E.46)

which is obtained directly from Eq. (E.39) by setting n = 2. We thus see
that the n = 2 case is akin to that of the graviton, but one has the extra
freedom of taking γ-traces, which complicates matters.

The n = 3 counterpart of Eq. (E.44) reads

∂µξνρ = ∂(µξνρ)+ 4
3∂[µξν]ρ+ 2

3∂[νξρ]µ = 1
3Γψµνρ+ 2

3ξ
(1)
µν‖ρ+ 1

3ξ
(1)
νρ‖µ. (E.47)

The generalization to arbitrary spin is straightforward. One obtains

∂ρξν1...νn−1 = ∂(ρξν1...νn−1) + 2
(
1− 1

n

)
∂[ρξν1]ν2...νn−1

+ 2
n−2∑
m=1

(
1− m+1

n

)
∂[νmξνm+1]ρ ν1...νm−1νm+2...νn−1

= 1
n Γψρ ν1...µn−1 +

(
1− 1

n

)
ξ

(1)
ρν1‖ν2...νn−1

(E.48)

+
n−2∑
m=1

(
1− m+1

n

)
ξ

(1)
νmνm+1‖ρ ν1...νm−1νm+2...νn−1

.

We conclude that any first derivative of the fermionic ghost is a linear
combination of 1-curls, up to Γ-exact terms. Therefore, it suffices to
consider only 1-curls of the ghost in the cohomology of Γ. More generally,
for m derivatives, with m ≤ n− 1, one can consider only the m-curls in
the cohomology of Γ. To see this, we can first take a curl of Eq. (E.48) to
convince ourselves that only 2-curls of the ghost are nontrivial. Similarly,
we can continue step by step to show that for any m-derivative combination
of the fermionic ghost, with m ≤ n− 1, it suffices to consider only m-curls
thereof.

It is clear that the derivative of an m-curl, ∂νnξ
(m)
µ1ν1|...|µmνm‖ νm+1...νn−1

,
contains non-trivial (m + 1)-curls. Only when symmetrized w.r.t. the
indices {νm+1, ..., νn}, may this quantity be Γ-exact. This fact is nothing
but a restatement of Eq. (E.40) for 0 ≤ m ≤ n− 1:

∂(νnξ
(m)µ1ν1|...|µmνm‖

νm+1...νn−1) = 1
n−m Γψ(m)µ1ν1|...|µmνm‖

νm+1...νn .
(E.49)
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Setting m = n− 1, it follows immediately that a derivative of the highest
ghost-curl is always Γ-exact:

∂νnξ
(n−1)
µ1ν1|...|µn−1νn−1

= Γψ(n−1)
µ1ν1|...|µn−1νn−1‖νn , (E.50)

which generalizes Eq. (E.46) for arbitrary spin.
However, the γ-trace of any m-curl, ξ(m)

µ1ν1|...|µmνm‖νm+1...νn−1
, is always

Γ-exact. If the γ-matrix carries one of the unpaired indices {νm+1, ..., νn−1},
this quantity vanishes since the ghost is γ-traceless. Otherwise, the same
constraint gives rise to the following:

γµ1ξ
(m)
µ1ν1|...|µmνm‖νm+1...νn−1

= 6∂ ξ(m−1)
µ2ν2|...|µmνm‖ν1νm+1...νn−1

. (E.51)

But one can take a γ-trace of Eq. (E.49) to see that the above quantity
is actually Γ-exact. Thus one finds the arbitrary-spin generalization of
Eq. (E.45):

γµ1ξ
(m)
µ1ν1|...|µmνm‖νm+1...νn−1

= 1
n−m Γ6ψ(m−1)

µ1ν1|...|µmνm‖νm+1...νn−1
. (E.52)

So, one may exclude from the cohomology of Γ the γ-traces of the fermionic
ghost-curls.

The Fronsdal Tensor
The Fronsdal tensor Sµ1...µn and derivatives thereof also belong to the
cohomology of Γ. From the definition, one finds that its Γ variation is
given by

ΓSµ1...µn = i
[
6∂ Γψµ1...µn − n∂(µ1Γ 6ψµ2...µn)

]
= in

[
6∂ ∂(µ1ξµ2...µn) − nγρ∂(µ1∂(ρξµ2...µn))

]
= −in(n− 1)∂(µ1∂(µ2 6ξµ3...µn)).

This quantity vanishes since the ghost is γ-traceless. Sµ1...µn , being a
0-pgh# object, is not Γ-exact either. Therefore, the Fronsdal tensor and
its derivatives belong to H(Γ).

In view of Eq. (E.31a) and (E.31c), however, we see that the two
highest curls of the Fronsdal tensor boil down to objects already enlisted,
and therefore do not need separate consideration. Consequently, for the
spin- 5

2 case, it suffices to consider only symmetrized derivatives of the
Fronsdal tensor. Let us also note that the aforementioned equations are
generalizations of the Damour–Deser relations [249–251] (see also [248]).
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