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“Um esṕırito nobre engrandelhece até o menor dos homens.”
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Abstract

In this thesis we study the growth rate of a version of Legendrian contact homol-

ogy, which we call strip Legendrian contact homology, in 3-dimensional contact man-

ifolds, and its relation to the topological entropy of Reeb flows. We show that if for

a pair of Legendrian knots in a contact 3-manifold the strip Legendrian contact ho-

mology is defined and has exponential homotopical growth with respect to the action,

then every Reeb flow on this contact manifold has positive topological entropy. This

has the following dynamical consequence: for all Reeb flows (even degenerate ones) on

such a contact manifold, the number of hyperbolic periodic orbits grows exponentially

with respect to the period. We show that for an infinite family of distinct 3-manifolds,

infinitely many different contact structures exist which present exponential growth rate

of the strip Legendrian contact homology for certain pairs of Legendrian knots.



Résumé

L’objectif de cette thèse est d’investiguer la relation entre l’homologie de contact

Legendrienne d’une variété de contact de dimension 3, et l’entropie topologique des flots

de Reeb associés à cette variété de contact. Une variété de contact est une variété M de

dimension impaire munie d’un champ d’hyperplan ξ maximalement non-intégrable. Les

champs de Reeb sont une classe speciale de champs de vecteurs sur M qui sont définis en

utilisant la structure de contact; ils préservent la structure de contact et ils préservent

aussi une forme de volume sur M .

L’entropie topologique htop est un nombre non-négatif qu’on associe à un système

dynamique et qui mesure la complexité de ce système. Si un système dynamique est

d’entropie topologique positive, on dit que ce système est chaotique.

Comme les champs de Reeb sont construits en utilisant la structure de contact ξ,

il est naturel d’attendre que la topologie de (M, ξ) influence la dynamique des champs

de Reeb auxquels elle est associée. En particulier, il est naturel de se demander s’il

existe des variétés de contact dont tous les champs de Reeb associés ont une entropie

topologique positive. Si une varieté de contact a cette propriété, on dira qu’elle est

d’entropie positive.

Macarini et Schlenk ont été les premiers à étudier cette question. Ils ont montré

qu’il existe un grand ensemble de variétés différentielles Q, telles que le fibré unitaire

T1Q muni de sa structure de contact canonique est d’entropie topologique positive.

Plus précisement, ils ont utilisé l’homologie de Floer Lagrangienne, qui est un invariant

symplectique, pour montrer que si Q est rationnellement hyperbolique alors (T1Q, ξcan)

est d’entropie positive.

Pour étudier l’entropie topologique dans le cas où M n’est pas un fibré unitaire

on substitue à l’homologie de Floer Lagrangienne un invariant plus naturel des variétés

de contact: l’homologie de contact Legendrienne à bandes. On demontre dans cette

thèse que l’homologie de contact Legendrienne à bandes est bien adaptée pour étudier

l’entropie topologique. Plus précisement, on montre que quand l’homologie de contact

Legendrienne à bandes est bien définie pour un champ de Reeb associé à (M3, ξ) et sa

croissance est exponentielle, alors (M3, ξ) est d’entropie positive.

On utilise ce résultat pour trouver des nouveaux exemples de variétés de contact

de dimension 3 qui sont d’entropie positive. On montre même qu’il y a des variétés

de dimension 3 qui possèdent une infinité de structures de contact différentes qui sont

toutes d’entropie positive. Ces résultats et bien d’autres nous permettent de conjecturer

que la “plupart” des variétés de contact de dimension 3 sont d’entropie positive.
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Chapter 0

Introduction and main results

0.1 History of the problem

The objective of this thesis is to study the growth rate of a version of Legendrian contact

homology and its implications to the dynamics of Reeb flows on contact 3-manifolds. It

is part of a project of the author which aims at understanding the relationship between

SFT-invariants of a contact structure and global dynamical invariants of Reeb flows.

In this thesis we focus our attention on one invariant, the topological entropy. The

topological entropy htop is a non-negative number that one associates to a dynamical

system and which attempts at measuring how chaotic the system is. A precise definition

of topological entropy is given in section 1.2, but we will stay with the following intuitive

picture: positivity of the topological entropy for a dynamical system implies that this

system has “chaotic” behaviour. As an example, positivity of topological entropy for a

3-dimensional flow suffices to guarantee the existence of many hyperbolic periodic orbits

for this flow; we refer to Corollary 1.2 of Section 1.2 for a precise statement.

Precise computations of the topological entropy for a dynamical system are quite

rare, and one can only perform them in very specific cases. For example, the topological

entropy for any rigid rotation of S1 is zero, but for any hyperbolic torus automorphism

the topological entropy is positive. Given the difficulty in making precise computations,

it is natural to try to obtain estimates in form of inequalities for the topological entropy,

and to find topological or geometric conditions on dynamical systems that guarantee at

least the positivity of htop. We will begin by recalling some topological conditions that

can force positivity of htop in certain dynamical systems.

1



Chapter 0. Introduction and main results 2

One of the simplest results in this direction, is the following: if f is a diffeomor-

phism of the 2-dimensional torus T2 which is isotopic to a hyperbolic torus automor-

phism, then htop(f) is positive. This follows from the following theorem due to Manning

[34]:

Theorem 0.1. If f is a diffeomorphism of a compact finite dimensional manifold Q,

then:

htop(f) ≥ log(s(f∗1)) (1)

where s(f∗1) is the supremum of the absolute value of the eigenvalues of the map f∗1

induced by f on the first homology group of Q.

Notice that this result allows us not only to obtain positivity of the topological

entropy for diffeomorphisms in certain isotopy classes, but actually to obtain a positive

lower bound for htop of all diffeormorphisms in the class.

A strengthening of this result for diffeomorphisms on surfaces was obtained by

Fathi and Shub in [18]. They showed:

Theorem 0.2. Let f : S → S be a diffeomorphism of a surface of genus bigger or equal

to 2. If f is isotopic to a pseudo-Anosov diffeormorphism then the topological entropy

of f is positive.

A different direction in the study of the topological entropy was taken, indepen-

dently, by Manning and Dinaburg. They studied conditions on a manifold that would

force the topological entropy of geodesic flows to be positive. They discovered that

there are actually topological conditions that force all geodesic flows associated to

Riemannian metrics on a manifold to have positive topological entropy. More precisely:

Theorem 0.3. If the fundamental group of a manifold Q has exponential growth, then

for any Riemannian metric g on Q, the geodesic flow φtg of g on T1Q has positive

topological entropy.

We refer the reader to [38] for the precise definition of the exponential growth of

the fundamental group of a manifold, and also for a complete proof of this theorem.

The combined efforts of many mathematicians, such as Gromov, Mañé, Paternain,

and others, led to the discovery that the homology of the loop space of manifold Q has

a profound impact on the dynamics of geodesic flows in T1Q. This principle led to the

following, very general, result:



Chapter 0. Introduction and main results 3

Theorem 0.4. If a manifold Q is energy hyperbolic then for any Riemannian metric g

on Q the geodesic flow φtg of g on T1Q has positive topological entropy.

Energy hyperbolic manifolds include those whose fundamental group has expo-

nential growth as a subset. We refer the reader to chapter 5 of [38] for a description and

proof of this result.

The results above motivated Frauenfelder and Schlenk to investigate how sym-

plectic topological invariants could be used to study entropy invariants of symplectomor-

phisms (see [22] and [23]). For example, these authors used Lagrangian Floer homology

to obtain a lower bound for the slow entropy of symplectomorphisms that are in the

same symplectic isotopy class of the Seidel-Dehn twist. Essentially the same techniques,

were used to obtain lower bounds for the topological entropy of symplectomorphisms of

cotangent bundles, having a certain asymptotic behaviour.

Theorem 0.4 and the results in [22] and [23] served as an inspiration for the study

of relations between contact topological invariants and topological entropy of Reeb flows.

The reason for this is that geodesic flows are a particular case of Reeb flows and the

development of symplectic and contact topology showed that many dynamical results

obtained for geodesic flows, admit generalisations and adaptations to the world of Reeb

flows. This inspired Macarini and Schlenk in [33] to study the topological entropy

of Reeb flows on unit tangent bundles. They related the growth rate of Lagrangian

Floer homology to the topological entropy of Reeb flows on the unit tangent bundle

(T1Q, ξcan) of a manifold Q (where ξcan is the contact structure associated to geodesic

flows). Precisely they obtained the following generalisation of theorem 0.4:

Theorem 0.5. If a manifold Q is energy hyperbolic then for all contact forms α asso-

ciated to (T1Q, ξcan), the Reeb flow φtXα of α on T1Q has positive topological entropy.

It is important to mention that Frauenfelder and Schlenk [24], and Frauenfelder,

Labrousse and Schlenk [21] also used Lagrangian Floer homology to study the so called

intermediate and slow entropies for Reeb flows in unit tangent bundles.

0.2 Main results

Inspired by the works [22], [23] and [33] we study in this thesis the relationship of other

contact topological invariants to the study of topological entropy of Reeb flows. As for

more general contact manifolds, Lagrangian Floer homology cannot always be defined,

we substitute it by a version of Legendrian contact homology, called strip Legendrian
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contact homology, which we use to obtain entropy estimates for more general families of

contact 3-manifolds. We construct many examples of contact 3-manifolds (most of which

are non-symplectically fillable) that have pairs of Legendrian knots with exponential

homotopical growth rate of strip Legendrian contact homology and show that this implies

positivity of topological entropy for all Reeb flows on this contact manifold. This is the

content of the following Theorem which is proved in Chapter 3 of this thesis:

Theorem 4.4: Let (Y, ξ = ker(λ0)) be a contact 3-manifold with a contact form

λ0 adapted to the pair of disjoint Legendrian knots (Λ, Λ̂). Assume that LCHst(λ0,Λ→
Λ̂) has exponential homotopical growth rate (with respect to the action) with exponential

weight a > 0. For any contact form λ associated to (Y, ξ), let gλ be the function such that

λ = gλλ0. Then, the Reeb flow of Xλ has positive topological entropy, and moreover:

htop(φXλ) ≥ a

max(gλ)
(2)

We explain in Chapter 3 what it means for a contact form to be adapted to a

pair of Legendrian curves. The notion of homotopical growth rate is used in theorem

4.4 above to avoid dealing with transversality problems that arise from the appearance

of multiply covered pseudohomolomorphic curves. However, if one accepts that these

transversality problems can be solved (as it is believed by many, through the use of

the Polyfold technology being developed by Hofer, Wysocki and Zehnder) then we can

substitute “exponential homotopical growth rate” by “exponential growth rate”. It is

an interesting fact that in all 3-dimensional examples known to the author where one

has exponential growth rate of Legendrian contact homology, one also has exponential

homotopical growth rate of Legendrian contact homology. Although I believe that this

should indeed always be the case, a proof of this fact seems completely beyond current

technology.

The simplest examples of contact manifolds satisfying the hypothesis of theorem

4.4 are unit tangent bundles of surfaces with higher genus. This allows us to re-obtain

a result of Macarini and Schlenk [33] on the growth rate of Reeb chords from a unit

tangent fiber to another, using the strip Legendrian contact homology in place of the

Lagrangian Floer homology. This is the content of:

Theorem 5.4: LCHst(αghyp ,Λq → Λq′) has exponential homotopical growth rate

with exponential weight aS.
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A major part of the present work is dedicated to present new examples which

satisfy the hypothesis of theorem 4.4 above, as by the following:

Theorem 6.13: Let M be a closed oriented connected 3-manifold which can

be cut along a nonempty family of incompressible tori into a family {Mi, 0 ≤ i ≤ k} of

irreducible manifolds with boundary such that the component M0 satisfies:

• M0 is the mapping torus of a punctured torus S by a diffeomorphism h : S → S

such that the homology map h∗ is a hyperbolic automorphism of H1(S) ' Z⊕ Z.

Then M can be given infinitely many different tight contact structures ξk, such that there

exist disjoint Legendrian knots Λk, Λ′k and contact forms τk associated to (M, ξk) and

adapted to the pair Λk, Λ′k for which LCHst(τk,Λk → Λ′k) has exponential homotopical

growth rate.

The contact manifolds of this theorem fall under the umbrella of the examples

constructed in [11] and studied in [40], [4] and [5]. In particular, the theorem above im-

plies that the contact 3-manifolds above have the positive topological entropy property,

a result that also follows from Theorem 3 in [4].

Another class of examples is studied in the context of a contact surgery introduced

by Foulon and Hasselblatt in [20]; the definition and details of this surgery are presented

in chapter 7. Denote by αF the contact form obtained by performing the Foulon-

Hasselblatt surgery on the Legendrian lift of a separating geodesic r of a hyperbolic

surface. We show in chapter 7, that there is a constant a(r) > 0 such that:

Theorem 7.7: LCHst(αF ,Λ→ Λ̂) has exponential homotopical growth rate with

exponential weight a.

In a different line of development we also study a forcing problem in this Thesis.

We consider the following question: in a contact 3-manifold does there exist a transverse

link whose appearance as a set of Reeb orbits for a Reeb flow in this contact manifold,

suffice to force positivity of topological entropy of the Reeb flow?

In order to study this question, we must first find invariants of transverse links

that would be appropriate to study such a question. Secondly, using such invariants, we

must find contact topological conditions on a transverse link that would imply that any

Reeb flow having this link as a set of Reeb orbits must have positive topological entropy.
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The invariant that helps us to study the forcing problem is the strip Legendrian

contact homology on the complement of Reeb orbits, which we define in chapter 3. This

is a relative version of an invariant introduced by Momin in [35]. In chapter 4 we obtain

the following structural result:

Theorem 4.7: Let (Y, ξ) be a contact manifold and Λ and Λ̂ be two disjoint

Legendrian submanifolds, such that α0 is associated to (Y, ξ) and adapted to the pair

(Λ, Λ̂) in the complement of G. Suppose that the strip contact homology LCHst|G(α0,Λ→
Λ̂) has exponential homotopical growth with exponential weight a > 0. Let α be another

contact form associated to (Y, ξ) and having G as a set of Reeb orbits, and take g > 0

to be the unique function such that α = gαα0. Then, the Reeb flow of Xα has positive

topological entropy, and moreover:

htop(φXα) ≥ a

max(gα)
(3)

We will show in joint work with Pedro Salomão that there exist many examples

of contact manifolds and transverse links satisfying the hypothesis of Theorem 4.7.

0.2.1 Geometric idea of proof of Theorem 4.4

We will give an intuitive idea of the proof of Theorem 4.4, which is the main structural

result in this thesis. The basic idea, which is also used in [33], is to use the number of

Reeb chords of α from a Legendrian submanifold Λ0 to other Legendrian submanifolds

to estimate the growth rate of the volume of φtXα(Λ0).

In [33] the authors study Reeb chords from one fixed unit tangent fiber Λ0 in the

unit tangent bundle T1Q to all other unit tangent fibers Λq, where q ∈ Q. Through the

use of Lagrangian Floer homology they show that if Q is energy hyperbolic, then there

exists C0 ≥ 0, a(α) > 0, and d(α) such that:

NC(α,Λ0,Λq) ≥ eCa+d for all C ≥ C0, (4)

where NC(α,Λ0,Λq) is the number of Reeb chords of α from Λ0 to Λq. They then use the

canonical projection from T1Q to Q to estimate the area of the cylinder CylCXα(Λq) :=

{φtXα(Λ0); t ∈ [0, C]} through the use the counting functions NC(α,Λ0,Λq) (the idea of

using counting functions for such area estimates is due to Gabriel Paternain; see [38]

and [37]). The result is an inequality of the form:

Area(CylCXα(Λq)) ≥
∫
Q
NC(α,Λ0,Λq)dµg ≥ V(Q)eCa+d (5)
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where µg is the measure induced by a Riemannian metric g on Q, and V is volume of

Q in the measure. We point out, that in this last inequality, the fact that T1Q is a

Legendrian fibration is used in a crucial way.

Most contact 3-manifolds do not have the structure of Legendrian fibration; in fact

the only contact 3-manifolds with such structures are unit tangent bundles of surfaces

and their coverings. However, a sufficiently small neighbourhood of a Legendrian knot

Λ̂ on a contact 3-manifold (Y, ξ) always has the structure of a Legendrian fibration.

This is a consequence of the Weinstein Legendrian neighbourhood Theorem, whose 3-

dimensional version asserts that sufficiently small neighbourhoods of Legendrian knots

are always contactomorphic; i.e there exists a normal form for small neighbourhoods of

Legendrian knots.

Now, in the hypotheses of Theorem 4.4 we have a pair of Legendrian knots

(Λ, Λ̂) in (Y, ξ), and a contact form α0 for which the Legendrian contact homology

LCHst(α0,Λ → Λ̂) has exponential homotopic growth rate with exponential weight

a > 0. We begin by choosing a small neighbourhood Nε of Λ̂ which is contactomorphic

(S1 × D, ker(cos(θ)dx + sin(θ)dy)); where (θ, x, y) ∈ S1 × D and Λ̂ is identified with

S1 × {0}. It is clear that for all z := (x, y) ∈ D the curve Λ̂z := S1 × {z} is Legendrian

in Nε.

A combination of the exponential homotopical growth of LCHst(α0,Λ→ Λ̂) and

invariance properties of the Legendrian contact homology imply that given δ > 0, if Nε

is a sufficiently small neighbourhood, there is a uniform lower bound on NC(α,Λ0, Λ̂
z)

for all z ∈ D which is given in the following inequality:

NC(α,Λ0, Λ̂
z) ≥ e

aC
max gα(1+4δ) (6)

for all C ≥ C0, where gα is the positive function Y such that α = gαα0.

We now want to use the counting function to estimate the area of the intersection

CylCXα(Λ) ∩Nε between the cylinder CylCXα(Λ) and the neighbourhood Nε (see figure).

As Nε has the structure of a Legendrian fibration this is indeed possible, if we choose a

metric g0 in Y which restricts to the “flat” metric dθ ⊗ dθ + dx ⊗ dx + dy ⊗ dy on the

coodinates (θ, x, y) on Nε.

Because Nε has the structure of a Legendrian fibration, we can apply a “local”

version of Paternain’s idea to obtain the following inequality:

Area(CylCXα(Λ) ∩Nε) ≥
∫
D
NC(α,Λ, Λ̂z)dxdy ≥ e

Ca
max(gα)(1+4δ)

+d′
(7)
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Figure 1: The hatched discs on the left side of the picture represent the pieces of the
intersection CylCXα

(Λ)∩Nε. Under the hypotheses of Theorem 4.4, the sum of the area
of these discs grows exponentially with respect C.

This local picture shows that the area Area(CylCXα(Λ) ∩Nε) (of the intersection

between CylCXα(Λ) and Nε) already grows exponentially fast and allows us to estimate

the topological entropy of the Reeb flow of Xα by using Yomdin’s theorem.

Lastly, we mention that it is likely that the local picture we used here can also

be applied to estimate the intermediate and slow entropies which were studied in [24]

and [21] in contact manifolds which are not unit tangent bundles.



Chapter 1

Contact manifolds, Reeb flows

and dynamics

In this thesis we study dynamical properties of Reeb flows on 3-dimensional contact man-

ifolds. We start by recalling some basic concepts from contact geometry and dynamical

systems which are central for this thesis.

1.1 Basic definitions from contact geometry

We first recall some definitions from contact geometry. A 3-dimensional contact man-

ifold is a pair (Y, ξ), where Y is a compact 3 dimensional manifold and ξ, called the

contact structure, is a“totally” non-integrable distribution of planes on Y ; the total non-

integrability condition means that for every locally defined 1-form ζ such that ξ = ker(ζ)

we have that ζ ∧ (dζ)n 6= 0. When there exists a globally defined 1-form α such that

ker(α) = ξ we call α a contact form associated to the contact manifold (Y, ξ), and say

that (Y, ξ) is a co-orientable contact manifold. In this thesis we only study co-orientable

contact manifolds, and from now on, every time we write contact manifold we actually

mean co-orientable contact manifold.

Given a contact manifold (Y, ξ), there are many different contact forms associated

to it. To see this, let α be a contact form associated to (Y, ξ). Then for every positive

function f : Y → R, fα is also a contact form associated to (Y, ξ).

To a contact form α, we can associate a vector field Xα, that we call its Reeb

vector field, and that is completely characterised by the following 2 conditions:

9
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iXαdα = 0, (1.1)

α(Xα) = 1. (1.2)

The Reeb flow of α is the flow of the vector field Xα.

Among the submanifolds of a contact manifold a special important class is that

of Legendrian submanifolds. An isotropic submanifold of (Y, ξ) is a submanifold Λ of

Y whose tangent space is contained in ξ for all points of Λ. The Legendrian submani-

folds of (Y, ξ) are the isotropic submanifolds of (Y, ξ) which have the maximal possible

dimension. It turns out, that for 3-dimensional contact manifolds, that this maximal

possible dimension is 1, and therefore the Legendrian submanifolds are the isotropic

submanifolds of dimension 1.

There are two special types of trajectories of Reeb flows that have played a central

role in the study of contact topology and dynamics of Reeb vector fields. One of them

are the periodic orbits of a given Reeb flow, which we call Reeb orbits. The other are

the trajectories of a Reeb flow which start in a Legendrian submanifold Λ and end in a

Legendrian submanifold Λ̂ (notice that Λ and Λ̂ might coincide); these trajectories are

called Reeb chords from Λ to Λ̂. Given a Reeb orbit γ of the Reeb flow of α, we define

its action to be A(γ) :=
∫
γ α; it follows from equation 1.2 above that A(γ) coincides

with the period of γ. Analogously, for a Reeb chord c of the Reeb flow of α, we define its

action to be A(c) :=
∫
c α; like for Reeb orbits the action of c coincides with the “period”

of the trajectory c. Following terminology widely used in the literature, a contact form

α is called hypertight when it doesn’t have any contractible Reeb orbits. Lastly, a Reeb

orbit γ is said to be non-degenerate when 1 is not an eigenvalue of the linearisation

Dφ
A(c)
Xα
|ξ of the Poincaré return map associated to the γ; and a Reeb chord c is said to

be transverse if the intersection φ
A(c)
Xα

(Λ) ∩ Λ̂ is transverse at the endpoint of c.

One important feature of Reeb flows is that they appear in many different models

of mathematical physics. For instance, every Reeb flow appears as the restriction to an

energy level, of some Hamiltonian flow in a (possibly non-compact) symplectic manifold

(see [26]). One important example of this relation between Reeb flows and Hamiltonian

flows is seen in the case of geodesic flows. For any Riemannian metric on a compact

manifold Q, the restriction of its geodesic flow to the unit tangent bundle T1Q of Q is a

Reeb flow.

More recently, Etnyre and Ghrist showed in [17] that 3-dimensional Reeb flows

also appear in the context of hydrodynamical 3-dimensional flows. Beltrami flows are an
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important special class of hydrodynamical flows. Etnyre and Ghrist showed that every

Reeb flow in a 3-dimensional contact manifold is the reparametrization of some Beltrami

flow; they also showed that every Beltrami flow is the reparametrization of some Reeb

flow. therefore the classes of Beltrami and Reeb flows are equivalent from a dynamical

perspective.

These relations to the field of mathematical physics also justifies the study of the

dynamical properties of Reeb vector fields, as this study might also have impact in this

field.

1.1.1 The Conley-Zehnder index for Reeb chords

In this section we present a geometric definition of the Conley-Zenhder index for Reeb

chords in the 3-dimensional case. This index will allow us to associate a Z2-grading to a

Reeb chord. Keeping the notation above we consider a contact form α associated to the

3-dimensional contact manifold (Y, ξ), and a pair (Λ, Λ̂) of Legendrian knots in (Y, ξ).

We denote by T
Λ→Λ̂

(α) the set of Reeb chords of the Reeb flow of Xα going from Λ to

Λ̂.

For the definition, we first fix, once and for all, orientations for Λ and Λ̂. Then,

for each Reeb chord c ∈ T
Λ→Λ̂

(λ0), let Ψc be a nowhere vanishing section of the vector

bundle ξ |c that:

• is tangent to Λ on the initial point of c and, furthermore, coincides with the

orientation we fixed for Λ at this initial point;

• is tangent to Λ̂ on the final point of c and, furthermore, coincides with the orien-

tation we fixed for Λ̂ at this final point.

The section Ψc induces a (unique up to homotopy) symplectic trivialisation of the sym-

plectic 2-dimensional vector bundle (ξ |c, dα), which we will also denote by Ψc.

Using the Reeb flow φXα we define a path of Lagrangian subspaces Z of ξ |c. We

consider the parametrisation c : [0, Tc]→ Y of the Reeb chord c given by the Reeb flow.

Letting DφXα denote the linearisation of the Reeb flow, we define Z(t) to be the unique

Lagragian subspace of (ξ |c(t), dα) that contains DφtXλ0
(c(0))(q); where q ∈ ξ |c(0) is

a vector tangent to Λ and giving the orientation we chose. At the endpoint c(Tc), we

complete Z by making in the time interval [Tc, Tc+1] a continuous left-rotation of Z(Tc)

(inside ξ) till it meets the tangent space to Λ̂; this left-rotation is defined with respect

to the orientation given by dα on ξ.
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With this completion and using our trivialisation Ψc, we associate to Z([0, Tc+1])

a loop L([0, Tc+1]) of Lagrangian subspaces of the standard symplectic plane (R2, ωstd).

The Conley-Zehnder index µΨc
CZ(c) is defined to be the Maslov index of this path.

It is easy to see that, because we fixed the orientations of Λ and Λ̂, the parity

of µΨc
CZ(c) is independent of the trivialisation Ψc satisfying the “boundary” conditions

above. This allows us to define, for each c ∈ T
Λ→Λ̂

(α), its Z2-grading | c | by:

| c |:= (µΨc
CZ(c)− 1) mod 2. (1.3)

We call chords with grading 0 even chords, and chords with grading 1 odd chords.

Notice that, in the case where Λ and Λ̂ are distinct Legendrian knots, there is no

canonical grading for Reeb chords in T
Λ→Λ̂

(α), since the grading depends on choices of

orientations of Λ and Λ̂.

1.2 Topological entropy of dynamical systems

The topological entropy is an important invariant of dynamical systems, which was

introduced in the 1960’s by Adler, Konheim and McAndrew. It codifies, in a single

non-negative number, how chaotic a dynamical system is; it is widely accepted that

a dynamical system with positive topological entropy presents some kind of chaotic

behaviour.

We present the following definition, which is valid for dynamical systems in com-

pact metric spaces and is due to Bowen [9]. Consider a smooth compact manifold V

with a non-vanishing vector field X that generates a flow φX . We endow V with an

auxiliary Riemannian metric g, whose associated metric on V we denote by dg.

Let T and δ be positive real numbers. A set S is said to be T, δ-separated if for

all q1 6= q2 ∈ S we have:

max
t∈[0,T ]

dg(φ
t
X(q1), φtX(q2)) > δ. (1.4)

We denote by nT,δ the maximal cardinality of a T, δ-separated set for the flow φX . Then

we define the δ-entropy hδ(φX) to be:

hδ(φX) = lim sup
T→+∞

log(nT,δ)

T
. (1.5)
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The topological entropy htop is then defined by the formula:

htop(φX) = lim
δ→0

hδ(φX). (1.6)

One can prove that the topological entropy doesn’t depend on the metric dg but only

on the topology determined by the metric. For these and other structural results about

topological entropy we refer the reader to any standard textbook in dynamics such as

[32] and [39].

The definition of topological entropy is quite involved and it is usually quite diffi-

cult to compute or even estimate the topological entropy for a given dynamical system.

To motivate such difficult attempts to estimate or compute this quantity, we present one

consequence of positivity of topological entropy for low-dimensional dynamical systems:

Theorem 1.1. Katok [31]. Let X be a C1+δ (δ > 0) vector field on a smooth 3-

dimensional M , whose flow φX has positive topological entropy htop(φX). Then there

exists a hyperbolic periodic orbit x of X, whose stable and unstable manifold have a

transverse intersection, i.e. a transverse homoclinic intersection. Consequently there is

an invariant set Ω for the flow φX , such that the dynamics of the restriction of φX to

Ω is topologically conjugate to a subshift of finite type and htop(φX |Ω) > 0.

The theorem above means that simply the non-vanishing of htop for a given flow

φX on a 3-dimensional manifold implies that this flow has complicated orbit structure.

For example, for a given number T > 0, let P hypX (T ) be the number of hyperbolic periodic

orbits of φX with period smaller then T . As a consequence of the Theorem above we

have the following corollary also due to Katok:

Corollary 1.2. If the flow φX of a vector field X on a 3-manifold M has positive

topological entropy, then we have the following lower bound:

lim sup
T→+∞

log(P hypX (T ))

T
> 0. (1.7)

This means that positivity of topological entropy for these flows implies that they

have infinitely many isolated periodic orbits.

Only these results suffice, in my opinion, to justify the study of the topological

entropy for Reeb flows in 3-dimensional contact manifolds. Among different existent

techniques to estimate the topological entropy, we will use a theorem due to Yomdin

that gives a geometric criterion that guarantees positivity of topological entropy for

smooth flows. Given an immersed submanifold S of dimension l in V , we denote by

V ollg(S) the Riemannian l-dimensional volume induced by the Riemannian metric g.
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Theorem 1.3. Yomdin [42] Let X be a non-singular C∞ vector field on the manifold

V . Then for any immersed submanifold S in V we have the following inequality:

lim sup
t→+∞

log(V ollg(φ
t
X(S))

t
≤ htop(φX). (1.8)

We will now prove a corollary of Yomdin’s theorem which will be used for our

estimates of topological entropy of Reeb flows.

Let by (Y, ξ) be a contact 3-manifold and α a contact form associated to (Y, ξ).

Given a knot L in (Y, ξ), we let CylTXα(L) := {φtXα(L); t ∈ [0, T ]}; it is clear that

CylTXα(L) is an immersed cylinder in Y . It follows directly from the compactness of

Y that for any given Riemannian metrics g1 and g2, there exist constants 0 < k < K

(depending only on the metrics g1 and g2) such that:

kV ol2g1
(CylTXα(L)) ≤ V ol2g2

(CylTXα(L)) ≤ KV ol2g1
(CylTXα(L)). (1.9)

With this, we are ready to prove:

Corollary 1.4. Let (Y, ξ) be a contact 3-manifold, and α be a C∞ contact form asso-

ciated to (Y, ξ), and g be a Riemannian metric in Y . Then, for any Legendrian knot Λ

in (Y, ξ), we have the following inequality:

lim sup
T→+∞

log(V ol2g(Cyl
T
Xα

(Λ)))

T
≤ htop(φXα). (1.10)

Proof:

We begin by picking a contact metric gα for α; a contact metric for α is a Riem-

manian metric in Y , such that the Reeb vector field Xα has norm 1 and is orthogonal

to the plane ξ.

It follows from inequality (1.9) that

lim sup
T→+∞

log(V ol2g(Cyl
T
Xα

(Λ)))

T
= lim sup

T→+∞

log(V ol2gα(CylTXα(Λ)))

T
. (1.11)

We choose an arc length parametrisation r : S1 → Λ with respect to gα. Using

this parametrisation and the Reeb flow we obtain a parametrisation R : [0, T ] × S1 →
CylTXα(Λ) of CylTXα(Λ), and we consider coordinates (t, θ) ∈ [0, T ]×S1. This parametri-

sation clearly satisfies that: ∂tR(t, θ) = Xα(t, θ) and ∂θR(t, θ) is tangent to ξ.
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It follows from these properties and the fact that gα is a contact metric, that for

the pullback metric R∗gα, we have:

R∗gα(∂t, ∂t) = 1, (1.12)

R∗gα(∂t, ∂θ) = 0. (1.13)

Then, the area V ol2gα(CylTXα(Λ)) equals the area of [0, T ]×S1 in the metric R∗gα.

This allows us to obtain the following formula for V ol2gα(CylTXα(Λ)):

V ol2gα(CylTXα(Λ)) =

∫
[0,T ]×S1

(R∗gα(∂t, ∂t))
1
2 (R∗gα(∂θ, ∂θ))

1
2 | sin(∠(∂t, ∂θ))|dθdt =

=

∫
[0,T ]

(∫
S1

(R∗gα(∂θ, ∂θ))
1
2dθ
)
dt =

∫
[0,T ]

(V ol1gα(φtXα(Λ)))dt. (1.14)

If lim supT→+∞
log(V ol2g(CylTXα (Λ)))

T ≤ 0, then the conclusion of the corollary is ob-

vious since the topological entropy is always non-negative. Thus, to finish the proof, we

treat the case where lim supT→+∞
log(V ol2g(CylTXα (Λ)))

T = lim supT→+∞
log(V ol2gα (CylTXα (Λ)))

T =

a > 0. We will argue by contradiction, assuming that lim supt→+∞
log(V ol1gα (φtXα (Λ))

t < a.

If that was the case then there would be t0 > 0 and ε < 0 such that:

V ol1gα(φtXα(Λ)) < e(a−ε)t (1.15)

for all t ≥ t0. Integrating both sides of the equation for t between 0 and T and using

(1.14) and (1.15), we would conclude that:

V ol2gα(CylTXα(Λ)) <
eT (a−ε) − et0(a−ε)

a− ε
+

∫ t0

0
(V ol1gα(φtXα(Λ)))dt (1.16)

for all T ≥ t0. However, the right side of (1.16) becomes a lot smaller than eT (a− ε
2

)

for sufficiently large T . This forces V ol2gα(CylTXα(Λ)) to remain smaller than eT (a− ε
2

) for

large T and leads to a contradiction, since we have lim supT→+∞
log(V ol2gα (CylTXα (Λ)))

T = a.

Therefore we have concluded that lim supt→+∞
log(V ol1g(φtXα (Λ))

t ≥ a, and we can

apply Theorem 1.3 to conclude that htop(φXα) ≥ a.

Yomdin’s theorem allows one to obtains estimates on the topological entropy from

purely geometric considerations, and in many cases also from topological considerations.

As an example of an application of this type, one can use Yomdin’s theorem to prove
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that if a C∞ diffeomorphism h of the two-dimensional torus T2 is isotopic to a hyperbolic

torus automorphism, then h has positive topological entropy.



Chapter 2

Pseudoholomorphic curves in

symplectizations and symplectic

cobordisms

2.1 Almost complex structures in symplectizations and

symplectic cobordisms

We start by reviewing the basic facts about pseudoholomorphic curves in symplectiza-

tions and symplectic cobordisms.

2.1.1 Cylindrical almost complex structures

Let (Y, ξ) be a contact manifold and α an associated contact form. The symplectization

of (Y, ξ) is the product R × Y with the symplectic form d(esα) (where s denotes the

R coordinate in R × Y ). dα restricts to a symplectic form on the vector bundle ξ

and it is well known that the set j(α) of dα-compatible almost complex structures on

the symplectic vector bundle ξ is non-empty and contractible. Notice that as Y is

3-dimensional the set j(α) doesn’t depend on the contact form α associated to (Y, ξ).

For ĵ ∈ j(α) we can define an R-invariant almost complex structure J on R× Y
by demanding that:

J∂s = Xα, J |ξ= ĵ. (2.1)

17
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We will denote by J (α) the set of almost complex structures in R × Y that are

R-invariant, d(esα)-compatible and satisfy equation 2.1 above.

2.1.2 Exact symplectic cobordisms

Let dς = $ be an exact symplectic form on R × Y for which there exist contact forms

α+ and α− in Y and real numbers R+ > R− such that:

ς = (es−R
+
α+) in [R+,+∞)× Y, (2.2)

ς = (es−R
−
α−) in (−∞, R−]× Y. (2.3)

We call (W = R×Y,$) an exact symplectic cobordism α+ to α−. We divide the

cobordism (W,$) in three pieces and denote W (α+) = [R+,+∞) × Y , W (α+, α−) =

[R−, R+]× Y and W (α−) = (−∞, R−]× Y . In such a cobordism we say that an almost

complex structure J is cylindrical if there exist positive constants k and K such that:

J coincides with J+ ∈ J (Kα+) in the region [R+,+∞)× Y, (2.4)

J coincides with J− ∈ J (kα−) in the region (−∞, R−]× Y, (2.5)

J is compatible with $ in [R−, R+]× Y. (2.6)

In this case we will say that J is positively asymptotic to J+ and negatively asymptotic

to J−. For fixed J+ and J− we denote by J (J−, J+) the set of cylindrical almost

complex structures in (R×Y,$) positively asymptotic to J+ and negatively asymptotic

to J−. J (J−, J+) is well known to be contractible.

We will write α+ �ex α− when there exists an exact symplectic cobordism from

α+ to α− as above. We notice that α+ �ex α and α �ex α− implies α+ �ex α−, or in

other words, that existence of exact symplectic cobordisms is transitive; see [8].

2.1.3 Splitting symplectic cobordisms

Let α+, α and α− be contact forms associated to (Y, ξ) such that α+ = f+α, α− = f−α

for positive functions f+ > 1 and f− < 1 on Y . Take ε > 0 such that f+ > 1 + 2ε and
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f− < 1 − 2ε. We now pick, for each R > 0, a function fR : R × Y → R with ∂sf > 0

and such that:

fR : [−R,R]× Y → [1− ε, 1 + ε] depends only on the real coordinate,

fR(−R) = 1− ε, fR(R) = 1 + ε,

fR |[R+2,+∞)×Y = es−R−2f+ and fR |(−∞,−R−2]×Y = es+R+2f−.

We now define $R = d(fRα); a simple computation shows that $R is indeed an exact

symplectic form on W = R × Y . Moreover, it is clear that (R × Y,$R) is an exact

symplectic cobordism from α+ to α−; notice that in [−R,R] × Y the conditions above

imply that fRα looks like the symplectization of α. As (R×Y,$R) is an exact symplectic

cobordism we consider on it a compatible cylindrical almost complex structure J̃R as in

the previous section, but we demand a stronger condition on J̃R:

J̃R coincides with J ∈ J (α) in [−R,R]× Y (2.7)

Again we divide our manifold W in pieces:

W (α+) = [R+ 2,+∞)× Y ,

W (α+, α) = [R,R+ 2]× Y ,

W (α) = [−R,R]× Y ,

W (α, α−) = [−R− 2,−R]× Y ,

W (α−) = (−∞,−R− 2]× Y .

Varying R > 0, we obtain a family of exact symplectic cobordisms (R × Y,$R)

from α+ to α−. As R → +∞ the region W (α) = [−R,R] × Y where the symplectic

form is similar to the symplectization of (Y, α) becomes larger.

To gain an intuition about this construction, one can initially think that in the

limit as R→ +∞ the sequence (R×Y,$R) splits into two exact symplectic cobordisms,

V (α+, α) from α+ to α, followed by V (α, α−) from α to α−. Actually, when one studies

sequences of pseudoholomorphic curves in such families of cobordisms the limiting ob-

ject are more complicated then just the pair of two cobordims we mentioned; levels of

symplectizations have to be inserted above V (α+, α), between V (α+, α) and V (α, α−),

and below V (α, α−) to complete the picture. We refer the reader to the paper [8] for a

complete discussion about this topic.
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2.1.4 Exact Lagrangian cobordisms

Let (R× Y,$) be an exact symplectic cobordism from α+ to α−. We call a Lagrangian

submanifold in (R×Y,$) a Lagragian cobordism if there exists Legendrian submanifolds

Λ
+

in (Y, ker(α+)) and Λ
−

in (Y, ker(α−), and N > 0 such that:

L ∩ ([N,+∞)× Y ) = ([N,+∞)× Λ
+

) (2.8)

L ∩ ((−∞,−N ]× Y ) = ((−∞,−N ]× Λ
−

) (2.9)

In this case, we say L is a Lagrangian cobordism from Λ
+

to Λ
−

. If such an L is an

exact Lagrangian submanifold in the exact symplectic manifold (Y,$), we call it an

exact Lagrangian cobordism Λ
+

to Λ
−

.

Example: If we take a Legendrian submanifold Λ in (Y, ker(α−)) then R× Λ is

an exact Lagrangian submanifold in the symplectization of (Y, α−). It is also an exact

Lagrangian cobordism (from Λ to itself) inside (R× Y, d(fRα)), for every positive R.

2.2 Pseudoholomorphic curves

Let (S, i) be a closed Riemann surface with boundary, with a finite set Γ ⊂ S. We

denote Γ∂ = ∂(S) ∩ Γ. We consider an auxiliary metric dS on S.

Let α be a contact form in Y and J ∈ J (α). A finite energy pseudoholomorphic

curve in the symplectization (R × Y, J) with boundary in a Lagrangian submanifold L

is a map w̃ : (S \ Γ; ∂(S) \ Γ∂)→ (R× Y ;L) satisfying:

dw̃ ◦ i = J ◦ dw̃, (2.10)

and

0 < E(w̃) = sup
q∈E

∫
S\Γ

w̃∗d(qα) (2.11)

where E = {q : R → [0, 1]; q′ ≥ 0}. The quantity E(w̃) is called the Hofer energy, and

was introduced in [28]. We write w̃ = (s, w) ∈ R× Y .

For us, it will be particularly important the case where (S \Γ, i) is biholomorphic

to (R × [0, 1], i0) (where i0 is the complex structure in C) and L = (R × Λ) ∪ (R × Λ̂),

with w̃({0} × R) ⊂ (R × Λ) and w̃({1} × R) ⊂ (R × Λ̂). In this case w̃ is called a
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pseudoholomorphic strip. By using a bi-holomorphism ϕ : (D \ {−1, 1}, i0) → (R ×
[0, 1], i0) satisfying ϕ(H+) = {1} × R (where H+ ⊂ (S1 \ {−1, 1}) is the northern

hemisphere of S1) and ϕ(H−) = {0} × R (where H− ⊂ (S1 \ {−1, 1}) is the southern

hemisphere) we can also view pseudoholomorphic strips as maps having as domain the

disc with two punctures on the boundary.

For an exact symplectic cobordism (W = R × Y,$) from α+ to α−, and J ∈
J (J−, J+), a finite energy pseudoholomorphic curve with boundary in a Lagrangian

submanifold L is again a map w̃ : (S \ Γ, ∂(S) \ Γ∂)→ (R× Y,L) satisfying:

dw̃ ◦ i = J ◦ dw̃, (2.12)

and

0 < Eα−(w̃) + Ec(w̃) + Eα+(w̃) < +∞, (2.13)

where:

Eα−(w̃) = supq∈E
∫
w̃−1W (α−) w̃

∗d(qα−),

Eα+(w̃) = supq∈E
∫
w̃−1W (α+) w̃

∗d(qα+),

Ec(w̃) =
∫
w̃−1W (α−,α+) w̃

∗$.

These energies were also introduced in [28].

In a splitting symplectic cobordisms the definition of finite energy pseudoholor-

phic map is essentially the same, except that we consider a slightly modified version of

energy. Instead of demanding 0 < E−(w̃) + Ec(w̃) + E+(w̃) < +∞ we demand:

0 < Eα−(w̃) + Eα−,α(w̃) + Eα(w̃) + Eα,α+(w̃) + Eα+(w̃) < +∞ (2.14)

where:

Eα(w̃) = supq∈E
∫
w̃−1W (α) w̃

∗d(qα),

Eα−,α(w̃) =
∫
w̃−1W (α−,α) w̃

∗$R,

Eα,α+(w̃ =
∫
w̃−1W (α,α+) w̃

∗$R,

and Eα−(w̃) and Eα+(w̃) are as above.

2.2.1 Asymptotic behaviour of pseudoholomorphic curves

The elements of the set Γ ⊂ S are called punctures of the pseudoholomorphic curve w̃ in

a symplectic cobordism (R× Y,$) from α+ to α−. We first divide Γ in two classes: we
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call the elements of Γ∂ boundary punctures and the elements in Γ\Γ∂ interior punctures.

The work of Hofer [28], Hofer et al. [29] and Abbas [1] allows us do classify the punctures

in five different types. The types can be as follows:

• z ∈ Γ is called positive boundary puncture when z ∈ Γ∂ and limz′→z s(z
′) = +∞;

• z ∈ Γ is called negative boundary puncture when z ∈ Γ∂ and limz′→z s(z
′) = −∞,

• z ∈ Γ is called positive interior puncture when z ∈ Γ\Γ∂ and limz′→z s(z
′) = +∞,

• z ∈ Γ is called negative interior puncture when z ∈ Γ \Γ∂ and limz′→z s(z
′) = −∞

• z ∈ Γ is called a removable puncture if limz′→z s(z
′) is a real number.

The results in [28], [29] and [1] imply that these are indeed the only possibilities for the

behaviour of the real coordinate s of w̃ near a puncture. In these same references, the

authors also show that if z ∈ Γ is a removable puncture, then the limit limz′→z w̃(z′)

exists and is unique; and more, that if we extend w̃ to (S \Γ)∪ {z} by defining w̃(z) :=

limz′→z w̃(z′), the extension is still a C∞ finite energy pseudoholomorphic curve. This

implies that one only needs to consider the first four types of punctures.

We proceed to describe in more detail the way w̃ behaves in a small neighbourhood

of the puncture. For this we let Bδ(z) the ball of radius δ(z) in S centered at the puncture

z, and denote by bδ(z) the set defined as the closure ∂(Bδ(z)) ∩ int(S) of the intersection

of the boundary of Bδ(z) with the interior of S. Notice that bδ(z) is a circle or an interval,

depending on whether z is an interior or a boundary puncture. The following result was

also obtained in [28], [29] and [1]:

• if z ∈ Γ is a positive boundary puncture, then there exists a sequence δn → 0 and

a Reeb chord c+ of Xα+ from Λ
+

to itself, such that w(bδn(z)) converges in C∞

to c+ as n→ +∞;

• if z ∈ Γ is a negative boundary puncture, then there exists a sequence δn → 0 and

Reeb chord c− of Xα− from Λ
−

to itself, such that w(bδn(z)) converges in C∞ to

c− as n→ +∞,

• if z ∈ Γ is a positive interior puncture, then there exists a sequence δn → 0 and

Reeb orbit γ+ of Xα+ , such that w(bδn(z)) converges in C∞ to γ+ as n→ +∞,

• if z ∈ Γ is a negative interior puncture, then there exists a sequence δn → 0 and

Reeb orbit γ− of Xα− , such that w(bδn(z)) converges in C∞ to γ− as n→ +∞.
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Intuitively, we have that at the punctures the pseudoholomorphic curve w̃ detects Reeb

chords and Reeb orbits. For a boundary (interior) puncture z, if there is a subsequence

δn such that w(bδn(z)) converges to a given Reeb chord c (orbit γ), we will say that w̃

is asymptotic to this Reeb chord c (orbit γ).

We will describe this behaviour in the case where the Reeb vector fields Xα+ and

Xα− are non-degenerate, and supposing that the Xα+ Reeb chords of Λ
+

to itself are

transverse, and the Xα− Reeb chords of Λ
−

to itself are transverse.

In order to describe this behaviour for a boundary puncture z, we take a neigh-

bourhood U of z that admits a holomorphic chart ψU : (U \ {z}) → R+ × [0, 1] ⊂ C,

such that ψU ((U ∩∂(S))\{z}) = R+×{0}∪R+×{1}. In coordinates (r, t) ∈ R+× [0, 1]

we have r(x)→ +∞ when x tends to the puncture z. Then, if z is a positive (negative)

boundary puncture, there exists a sequence rn going to +∞, and a Reeb chord c+ (c−)

from Λ
+

(Λ
−

) to itself, such that the sequence wrn(t) := w(rn, t) of paths in Y converge

in C∞ to c+ (c−). In case the Reeb chord c+ (c−) is transverse, a more precise asymp-

totic behaviour is obtained. It is shown in [1], that if z is a positive boundary puncture,

w̃ ◦ ψ−1
u (r, t) = (s(r, t), w(r, t)) satisfies:

• sr(t) = s(r, t)→ +∞ uniformly as map from [0, 1] to R as r → +∞,

• wr(t) := w(r, t) converges uniformly in C∞ to a Reeb chord c of Xα+ from Λ+ to

Λ̂+ as r → +∞ (where Λ+ and Λ̂+ denote connected components of Λ
+

);

and if z is a negative boundary puncture, w̃ ◦ ψ−1
u (r, t) = (s(r, t), w(r, t)) satisfies:

• sr(t) = s(r, t)→ −∞ uniformly as map from [0, 1] to R as r → +∞,

• wr(t) = w(r, t) converges uniformly in C∞ to the inverse parametrization of Reeb

chord c of Xα− from Λ− to Λ̂− as r → +∞(where Λ− and Λ̂− denote connected

components of Λ
−

).

We discuss now the case of z being an interior puncture; we pick a neighbourhood

U of z and a holomorphic chart ψU : (U, z) → (D, 0). Using polar coordinates (r, t) ∈
(0,+∞) × S1 we can write x ∈ (D \ 0) as x = e−rt. With this notation, it is shown in

[28] [29], that if z is a positive interior puncture, w̃ ◦ψ−1
U (r, t) = (s(r, t), w(r, t)) satisfies:

• sr(t) = s(r, t)→ +∞ uniformly as map from [0, 1] to R as r → +∞,

• wr(t) = w(r, t) converges uniformly in C∞ to a Reeb orbit γ of Xα+ ;
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and if z is a negative interior puncture, w̃ ◦ ψ−1
u (r, t) = (s(r, t), w(r, t)) satisfies:

• sr(t) = s(r, t)→ −∞ uniformly as map from [0, 1] to R as r → +∞

• wr(t) = w(r, t) converges uniformly in C∞ to a Reeb orbit γ of −Xα− as r → +∞.

Remark: actually the convergence of pseudoholomorphic curves near punctures

to Reeb orbits and Reeb chords is of exponential nature; the asymptotic formulas that

describe this convergence were obtained [29] and [1] and we present them in the appendix

A. Such formulas are necessary for the Fredholm theory that gives the dimension of the

space of pseudoholomorphic curves with fixed asymptotic data.

The discussion above shows that near punctures the finite energy pseudoholo-

morphic curves detect Reeb orbits and Reeb chords. It is exactly this behaviour that

makes these objects useful for the study of dynamics of Reeb vector fields. When a

pseudoholomorphic curve approaches a Reeb orbit (or a Reeb chord) near a puncture

we say that the pseudoholomorphic curve is asymptotic to the Reeb orbit (or the Reeb

chord) at that puncture.

Fact: as a consequence of the exactness of the symplectic cobordisms

and the Lagrangian submanifolds considered above we obtain from a simple

calculation that the energy E(w̃) of w̃ satisfies E(w̃) ≤ 5A(w̃) where A(w̃) is

the sum of the action of the Reeb orbits and Reeb chords detected by the

punctures of w̃ counted with multiplicity.

2.3 Moduli spaces of pseudoholomorphic curves

We will consider now different types of moduli spaces of pseudoholomorphic curves

in symplectic cobordisms and in symplectizations. Although symplectizations are a

particular case of symplectic cobordisms, the fact that we only consider R-invariant

almost complex structures on symplectictizations makes this case present particular

properties. For this reason we will consider it separately. We keep the notation of the

previous sections.

The first type we consider, are the moduli spaces denoted by M(γ, γ′1, ..., γ
′
m; J)

(where J ∈ J (α)) whose elements are equivalence classes of genus 0 finite energy pseu-

doholomorphic curves without boundary, modulo biholomorphic reparametrisations of

the domain, with one positive interior puncture asymptotic to a non-degenerate Reeb

orbit γ of Xα and a finite number m of negative interior punctures asymptotic to non-

degenerate orbits γ′1, ..., γ
′
m of Xα. It is well known (see for instance [6] and [14]) that
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the linearization D∂J at any element M(γ, γ′1, ..., γ
′
m; J) is a Fredholm map; we remark

that this property is actually valid for more general moduli spaces of curves with pre-

scribed asymptotic behaviour. In appendix B, we give a short exposition of the linear

Fredholm theory of D∂J . Lastly, we denote by Mk(γ, γ′1, ..., γ
′
m; J) the moduli space of

finite energy pseudoholomorphic curves inM(γ, γ′1, ..., γ
′
m; J) that have Fredholm index

equal to k.

Secondly, we consider the moduli spaces denoted byM(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ)

(where J ∈ J (α) and Λ is Legendrian in (Y, kerα)) composed by equivalence classes of

genus 0 finite energy pseudoholomorphic curves, modulo biholomorphic reparametrisa-

tions of the domain, with one positive boundary puncture asymptotic to a transverse

Reeb chord c of Xα going from Λ to itself, a finite number n of negative boundary

punctures asymptotic to transverse Reeb chords c1, ..., cn of Xα from Λ to itself, and

a finite number m of negative interior punctures asymptotic to non-degenerate orbits

γ′1, ..., γ
′
m, and whose boundary is in the cylinder R × Λ. Again, it is well known that

the linearization D∂J at any element M(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ) is a Fredholm map.

We again refer to the appendix B for a short exposition on the linear Fredholm theory

of D∂J . Lastly, we denote by Mk(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ) the moduli space of finite

energy pseudoholomorphic curves in M(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ) that have Fredholm

index equal to k.

In the case of moduli spaces of curves in a symplectization with a R-invariant

almost complex structure J we will need to introduce one more class of moduli spaces.

The reason for this is that, because of the R-invariance of J , it is impossible to ex-

pect that the moduli spaces introduced above can be compact or admit a reason-

able compactification similar to the one obtained by Gromov for moduli spaces in

compact symplectic manifolds. There is however a natural notion to consider; be-

cause of the R-invariance of J there is an R-action on the spaces Mk(γ, γ′1, ..., γ
′
m; J)

and Mk(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ). With this, we denote by M̃k(γ, γ′1, ..., γ

′
m; J) and

M̃k(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ) the two quotient moduli spaces Mk(γ, γ′1, ..., γ

′
m; J)/R

andMk(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J,Λ)/R, where the quotient is defined using the just men-

tioned R-action.

We will now treat the case of symplectic cobordisms. Firstly, we consider moduli

spaces denoted by M(γ, γ′1, ..., γ
′
m; J) whose elements are equivalence classes of genus

0 finite energy pseudoholomorphic curves, modulo biholomorphic reparametrisations of

the domain, with one positive interior puncture asymptotic to a non-degenerate Reeb

orbit γ of Xα+ and a finite number m of negative interior punctures asymptotic to

non-degenerate orbits γ′1, ..., γ
′
m of Xα− . Again the linearization D∂J at any element

M(γ, γ′1, ..., γ
′
m; J) is a Fredholm map; see appendix B. Therefore it makes sense to define
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Mk(γ, γ′1, ..., γ
′
m; J) as the moduli space of finite energy pseudoholomorphic curves in

M(γ, γ′1, ..., γ
′
m; J) that have Fredholm index equal to k.

The second type, are the moduli spaces denoted byM(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J, L)

whose elements are equivalence classes of genus 0 finite energy pseudoholomorphic curves

modulo biholomorphic reparametrisations of the domain, with one positive boundary

puncture asymptotic to a transverse Reeb chord c of Xα+ going from Λ
+

to itself, a

finite number n of negative boundary punctures asymptotic to transverse Reeb chords

c1, ..., cn of Xα− from Λ
−

to itself, and a finite number m of negative interior punc-

tures asymptotic to non-degenerate orbits γ′1, ..., γ
′
m of Xα− , and whose boundary lies

in the Lagrangian cobordism L from Λ
+

to Λ
−

. The linearization D∂J at any element

M(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J) is a Fredholm map; see appendix B. Therefore, it makes

sense to consider the moduli spaceMk(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J, L) of finite energy pseu-

doholomorphic curves inM(c, c1, ..., cn, γ
′
1, ..., γ

′
m; J, L) that have Fredholm index equal

to k.

One would like to conclude that the dimension of any connected component of

a moduli space equals the Fredholm index of an element belonging to this connected

components. However, this is not always the case as problems might occur when multiply

covered pseudoholomorphic curves appear.

We will lastly describe a particular case of moduli spaces which will be of crucial

importance in this thesis, for it is the main ingredient to the construction of the the

strip Legendrian contact homology. Let Λ and Λ̂ be two different connected components

of Λ. Given two Reeb chords c, c′ ∈ T
Λ→Λ̂

(α), and an almost complex structure J ∈
J (α), we consider the moduli space M(c, c′; J,Λ, Λ̂) of equivalence classes finite energy

pseudoholomorphic strips w̃ : (D \ {−1, 1}, i0)→ (R× Y, J) satisfying:

• 1 is a positive boundary puncture, and w̃ is asymptotic to c at 1,

• −1 is a negative boundary puncture, and w̃ is asymptotic to c′ at −1,

• w̃(H−) ⊂ R× Λ,

• w̃(H+) ⊂ R× Λ̂.

In many cases, we will write M(c, c′; J) and omit the Lagrangians where the boundary

of the curves lie, because this data is already present in the fact that the Reeb chords c

and c′ are in T
Λ→Λ̂

(α).

We will likewise need moduli spaces of strips in cobordisms. We denote Λ+ and

Λ̂+ two different connected components of Λ
+

, and Λ− and Λ̂− two different connected
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components of Λ−. Likewise we let L and L̂ be exact Lagrangian cobordisms from,

respectively, Λ+ to Λ−, and Λ̂+ to Λ̂−. Given two Reeb chords c+ ∈ T
Λ+→Λ̂+(α+) and

c− ∈ T
Λ−→Λ̂−

(α−), and an almost complex structure J ∈ J (J−, J+), we consider the

moduli space M(c+, c−; J, L, L̂), modulo reparametrizations, of finite energy pseudo-

holomorphic strips w̃ : (D \ {−1, 1}, i0)→ (R× Y, J) satisfying:

• 1 is a positive boundary puncture, and w̃ is asymptotic to c+ at 1,

• −1 is a negative boundary puncture, and w̃ is asymptotic to c− at −1,

• w̃(H−) ⊂ L,

• w̃(H+) ⊂ L̂.

When there is no possibility of confusion of which are the exact Lagrangian cobor-

disms L and L̂ we omit them from the notation and write M(c+, c−; J) instead of

M(c+, c−; J, L, L̂).

2.4 Compactness of the space of pseudoholomorphic curves

In order to study compactness properties of spaces of pseudoholomorphic curves, we have

to introduce pseudoholomorphic buildings. First, for j ∈ {1, ..., l}, consider a collection

(R× Y,$j , J j , α
+
j , α

−
j , Lj , L̂j ,Λ

+
j ,Λ

−
j , Λ̂

+
j , Λ̂

−
j ), where:

• (R× Y,$j) is an exact symplectic cobordism from α+
j to α−j ,

• Lj is an exact Lagrangian cobordism from the Legendrian curve Λ+
j (in (Y, ker(α+

j ))

to the Legendrian curve Λ−j (in (Y, ker(α−j )

• L̂j is an exact Lagrangian cobordism from the Legendrian curve Λ̂+
j (in (Y, ker(α+

j ))

to the Legendrian curve Λ̂−j (in (Y, ker(α−j ),

• J j is positively asymptotic to J+
j ∈ J (α+

j ) and negatively asymptotic to J−j ∈
J (α−j ),

• α+
j+1 = α−j , Λ+

j+1 = Λ−j , J+
j+1 = J−j , Λ̂+

j+1 = Λ̂−j

Now, for j ∈ {1, ..., l} consider a collection of, possibly disconnected, (equivalence classes

modulo biholomorphic reparametrizations of the domain) finite energy pseudoholomor-

phic curves (Sj , ij ,Γj , w̃
j) in (R × Y, J j) with boundary in the union Lj ∪ L̂j , and a

division Γj = Γ+
j ∪ Γ−j in positive and negative punctures. We assume that there ex-

ist bijections Gj : Γ−j → Γ+
j+1 for 1 ≤ j ≤ l − 1. Some levels (R × Y,$j , J j , Lj , L̂j)
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might be symplectizations with the Lagrangian cobordisms being trivial cylinders over

Legendrian submanifolds, and R-invariant almost complex structures: on such levels we

demand that there is some connected component of w̃j which is neither a trivial cylinder

over a Reeb orbit or a trivial strip over a Reeb chord. In these symplectization levels we

will consider the element w̃j as representing an equivalence class of pseudoholomorphic

curves, where we consider two curves to be equivalent if one is the R-translation of the

other. We will say that the data (Sj , ij ,Γj , w̃
j ,Gj) defines a pseudoholomorphic building

B, if the punctures identified by the maps Gj are asymptotic to the same Reeb orbits

or Reeb chords.

The main motivation behind the introduction of pseudoholomorphic buildings

is that they are needed in order to compactify moduli spaces of pseudoholomorphic

curves. The reason for that, is the fact already observed by Gromov, that sequences of

pseudoholomorphic curves might not converge to a single pseudoholomorphic curve, but

to a suitable collection pseudoholomorphic curves.

As we will study only limits of pseudoholomorphic strips, we can restrict our at-

tention to a special kind of buildings that we will call pseudoholomorphic trees with one

principal branch. To define this type of buildings we first need to introduce some prelimi-

nary concepts. Given a pseudoholomorphic building B formed by curves (Sj , ij ,Γj , w̃
j ,Gj)

where j ∈ {1, ..., l} and building B′ formed by curves (S′j , i
′
j ,Γ
′
j , w̃

′j ,G′j) for lmin ≤ j ≤
lmax (where lmin ≥ 1 and lmax ≤ l) we say that B′ is a sub building of B if the the

Riemman surfaces (S′j , i
′
j) are bi-holomorphic to subsets of the Riemann surfaces (Sj , ij),

the maps w̃′j coincide with the restrictions of w̃j to (S′j , i
′
j), the punctures Γ′j coincide

with the intersection of Γj and S′j , and the maps G′j are restrictions of Gj to Γ′j .

Given a pseudoholomorphic building B formed by curves (Sj , ij ,Γj , w̃
j ,Gj) for

j ∈ {1, ..., l} and a puncture z ∈ Γ−j0 we will define a pseudoholomorphic building

Bz associated to z formed by a subcollection of curves of (Sj , ij ,Γj , w̃
j ,Gj) for k ∈

{j0 + 1, ..., lz}. Let (w̃j0+1
z , Sj0+1,z) be the unique connected pseudoholomorphic curve

belonging to w̃j0+1 that contains the puncture Gj0(z), and take Γ−j0+1(z) to be the

collection of negative punctures of w̃j0+1
z in Sj0+1,z. Now define (w̃j0+2

z , Sj0+2,z) to

be the smallest collection of connected pseudoholomorphic curves containing the punc-

tures Gj0+1(Γ−j0(z)) and define Γ−j0+2(z) to be the negative punctures of w̃j0+2
z . We can

continue following this same recipe until we reach l or until w̃lzz has no negative punc-

tures, to obtain a pseudoholomorphic building Bz formed by the curves (Sj,z, jj , w̃
j
z) for

j ∈ {j0, ..., lz} and their punctures. We will say that Bz is a contractible building if for

lz the curve w̃lz has no negative punctures.
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We say that a pseudoholomorphic building B formed by curves (Sj , ij ,Γj , w̃
j ,Gj)

for j ∈ {1, ..., l} is a tree with one principal branch, if there exists for each j ∈ {1, ..., l−1}
one special puncture zj ∈ Γ−j such that:

• for every z 6= zj ∈ Γ−j the building Bz, as defined above, is contractible,

• Γ−l contains only one element, and Γ+
1 contains only one element.

The general SFT compactness theorem of [8] (see also [3] for a complete exposition

for the case of pseudoholomorphic curves with boundary on a Lagrangian submanifold)

asserts that a sequence of (equivalence classes modulo reparametrization of) pseudo-

holomorphic curves with a global bound on the energy for all elements of the sequence

converges to a pseudoholomorphic building. Here we will need to study only the special

case where the elements of our sequence are pseudoholomorphic strips; in this case one

can describe precisely the possibilities of the limit pseudoholomorphic building. We will

therefore state only the following propositions which deal with this particular case, and

which follow directly from the SFT compactness theorem. Before stating them we in-

troduce the following notation: we will denote by Σ
Λ→Λ̂

the set of homotopy classes of

paths starting at Λ and ending at Λ̂. We begin by stating the compactness result in the

case of symplectizations.

Proposition 2.1. Let α be a contact form associated to a contact 3-manifold (Y, ξ),

J ∈ J (α) and Λ and Λ̂ be a pair of disjoint Legendrian knots in (Y, ξ). Assume that

all contractible Reeb orbits of α are non-degenerate, that all contractible Reeb chords

going from Λ to itself are transverse and that all contractible Reeb chords going from Λ̂

to itself are transverse. Let c and c′ be Reeb chords in T
Λ→Λ̂

(α) both belonging to the

same homotopy class ρ ∈ Σ
Λ→Λ̂

, and assume that all Reeb chords in ρ are transverse.

Let w̃n be a sequence of elements in the moduli space M̃(c, c′; J). Then there exists a

subsequence of w̃n which converges in the SFT sense to a pseudoholomorphic building

w̃ which has the structure of a tree with one principal branch. More precisely, all the

levels w̃j for j ∈ {1, ..., l} of the building w̃ are equivalence classes of finite energy

pseudoholomorphic curves, modulo the R action, in (R× Y, J) that satisfy:

• the special negative punctures zj ∈ Γ−j are all asymptotic to Reeb chords cj which

are in the homotopy class ρ,

• the unique positive puncture in Γ+
1 is asymptotic to c and the unique negative

puncture in Γ−l is asymptotic to c′,

• for all punctures in z ∈ Γ−j the action of the corresponding Reeb chord or Reeb

orbit detected by z is smaller then the action A(c).
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We now proceed to state a version of the compactness theorem for a special type

of symplectic cobordisms.

Proposition 2.2. Let α+ and α− be contact forms on a 3-manifold Y , J+ ∈ J (α+)

and J− ∈ J (α−), Λ+ and Λ̂+ be a pair of disjoint Legendrian knots in (Y, kerα+), and

Λ− and Λ̂− be a pair of disjoint Legendrian knots in (Y, kerα−). Assume that all con-

tractible Reeb orbits of α+ and α+ are non-degenerate, that all contractible Reeb chords

of α+ (α−) going from Λ+ (Λ−) to itself are transverse, and that all contractible Reeb

chords of α+ (α−) going from Λ̂+ (Λ̂−) to itself are transverse. Let (R × Y,$) be an

exact symplectic cobordism from α+ to α−, J ∈ J (J−, J+), L be an exact Lagrangian

cobordism from Λ+ to Λ−, and L̂ be an exact Lagrangian cobordism from Λ̂+ to Λ̂−,

with L and L̂ disjoint. Let c+ ∈ T
Λ+→Λ̂+(α+) and c− ∈ T

Λ−→Λ̂−(α−) be Reeb chords.

We assume that all the Reeb chords in T
Λ+→Λ̂+(α+) in same homotopy class of c+ are

transverse, and that the same is valid for all the Reeb chords in T
Λ−→Λ̂−(α−) belonging

to same homotopy class of c−. Let w̃n be a sequence of elements in the moduli space

M(c+, c−; J) of strips with one boundary component on L and one boundary component

L̂. Then there exists a subsequence of w̃n which converges in the SFT sense to a pseu-

doholomorphic building w̃ which has the structure of a tree with one principal branch.

More precisely, there exist l+ ≥ 1 such that levels w̃j for j ∈ {1, ..., l} of the building w̃

are finite energy pseudoholomorphic curves that satisfy:

• w̃l+ is a pseudoholomorphic curve in (R× Y, J) with boundary in L and L̂,

• for j < l+, w̃j are pseudoholomorphic curves in (R× Y, J+) with boundary on the

union of R× Λ+ and R× Λ̂+,

• for j > l−, w̃j are pseudoholomorphic curves in (R× Y, J−) with boundary on the

union of R× Λ− and R× Λ̂−,

• the unique positive puncture in Γ+
1 is asymptotic to c+ and the unique negative

puncture in Γ−l is asymptotic to c−,

• for all punctures in z ∈ Γ−j the action of the corresponding the Reeb chord or Reeb

orbit detected by z is smaller then the action A(c+).

Moreover, if L and L̂ are cylinders and we denote by ρ the homotopy class in Σ
Λ→Λ̂

to

which c+ and c− belong, we have:

• the special negative punctures zj ∈ Γ−j are all asymptotic to Reeb chords cj which

are in the homotopy class ρ.
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Lastly we define a version of the theorem for a splitting family of pseudo holo-

morphic curves.

Proposition 2.3. Let α+ and α− be contact forms on the 3-manifold Y , J+ ∈ J (α+)

and J− ∈ J (α−), Λ and Λ̂ be a pair of disjoint Legendrian knots in (Y, kerα+), such

that Λ and Λ̂ are also Legendrian knots in (Y, kerα−). Assume that all contractible Reeb

orbits of α+ and α− are non-degenerate, that all contractible Reeb chords of α+ and α−

going from Λ to itself are transverse, and that all contractible Reeb chords of α+ and

α− going from Λ̂ to itself are transverse. Let (R × Y,$R), R ∈ (0,+∞), be a splitting

family of exact symplectic cobordisms, from α+ to α− along a contact form α in Y , with

J̃R ∈ J (J−, J+) for all R ∈ (0,+∞) and coinciding with J ∈ J (α) in the region W (α).

We assume that α is non-degenerate, and that all contractible Reeb chords of α going

from Λ to itself are transverse, and that all contractible Reeb chords of α going from Λ̂ to

itself are transverse. Assume that for all R ∈ (0,+∞), L = R×Λ is an exact Lagrangian

cobordism from Λ (seen as a Legendrian submanifold in (Y, kerα+)) to Λ (seen as a

Legendrian submanifold in (Y, kerα−)), and that L̂ = R × Λ̂ is an exact Lagrangian

cobordism from Λ̂ to Λ̂ . For a sequence Rn → +∞, let c+
n ∈ TΛ→Λ̂

(α+) and c−n ∈
T

Λ→Λ̂
(α−) be sequences of Reeb chords belonging to the same homotopy class ρ ∈ Σ

Λ→Λ̂
,

and such that there exists a constant C with C > A(c+
n ) > A(c−n ); let w̃n be a sequence

of elements in the moduli space M(c+
n , c
−
n ; JRn) of strips with one boundary component

on L and one boundary component on L̂. We assume that all elements of T
Λ→Λ̂

(α),

T
Λ→Λ̂

(α+) and T
Λ→Λ̂

(α−) which are in the homotopy class ρ are transverse. Then there

exists a subsequence of w̃n which converges in the SFT sense to a pseudoholomorphic

building w̃ which has the structure of a tree with one principal branch. More precisely,

there exist numbers lminα and lmaxα , such that l > lmaxα ≥ lminα > 1 and such that the

levels w̃j for j ∈ {1, ..., l} of the building w̃ are finite energy pseudoholomorphic curves

that satisfy:

• for j ∈ {lminα , ..., lmaxα } the curve w̃j is a pseudoholomorphic curve in the symplec-

tization (R× Y, J) of α with boundary in R× Λ and R× Λ̂,

• for j = lmin− 1, w̃j is a pseudoholomorphic curve in a cobordism (R×Y, dς+, J
+

)

from α+ to α with boundary on the union of R× Λ and R× Λ̂,

• for j = lmax + 1, w̃j is a pseudoholomorphic curve in a cobordism from (R ×
Y, dς−, J

−
) from α to α− with boundary on the union of R× Λ and R× Λ̂,

• for j < lmin − 1, w̃j are pseudoholomorphic curves in (R × Y, J+) with boundary

on the union of R× Λ and f R× Λ̂,

• for j > lmax + 1, w̃j are pseudoholomorphic curves in (R× Y, J−) with boundary

on the union of R× Λ and f R× Λ̂,
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• the unique positive puncture in Γ+
1 is asymptotic to a Reeb chord c+ ∈ T

Λ→Λ̂
(α+)

and the unique negative puncture in Γ−l is asymptotic to c− ∈ T
Λ→Λ̂

(α−) both in

the homotopy class ρ,

• the special negative punctures zj ∈ Γ−j are all asymptotic to Reeb chords cj which

are in the homotopy class ρ,

• for all punctures in z ∈ Γ−j the action of the corresponding Reeb chord or Reeb

orbit detected by z is smaller then the action A(c+).

2.4.1 Compactfied moduli spaces

Using the propositions stated above one can compactify the moduli spaces of equivalence

classes of pseudoholomorphic curves. These compactified moduli spaces involve pseu-

doholomorphic curves, but also pseudoholomorphic buildings which appear as limits in

(the sense defined in [8]) of pseudoholomorphic curves. We will use this compactification

for moduli spaces of curves in symplectizations and in exact symplectic cobordisms. We

begin with the case of symplectizations.

Take a non-degenerate contact form α associated to (Y, ξ), J ∈ J (α), and a pair

of disjoint Legendrians (Λ, Λ̂) such that all the Reeb chords from Λ to itself, from Λ̂

to itself and from Λ to Λ̂ are transverse. Consider the moduli spaces M̃k(c, c′; J), as

introduced in section 2.3. With this, we can define the spaces andMk
(c, c′; J), which are

the compactifications of M̃k(c, c′; J), in the sense defined in [8]. This compactification is

constructed through use of Proposition 2.1. It contains all the elements of M̃k(c, c′; J),

but also buildings which have the structure of a tree with one principal branch, which

are described in Proposition 2.1. In [8], these compactified moduli spaces are topologized

and shown to be compact Hausdorff spaces.

Considering now the case of exact symplectic cobordisms we let (R×Y,$) be an

exact symplectic cobordism from α+ and α−, where both α+ and α− are non-degenerate

contact forms in Y . We assume that all Reeb chords from Λ
+

to itself are transverse,

and that the same is true for all Reeb chords from Λ
−

to itself. Taking a cylindrical

almost complex structure J ∈ J (J−, J+), we consider moduli spaces Mk(c+, c−; J)

as defined in 2.4. We define the spaces Mk
(c+, c−; J), as the compactifications in the

sense of [8], of the spaces Mk(c+, c−; J). In this case, the main tool used to define

the compactification is Proposition 2.2. Again, this space contains all the elements

of Mk(c+, c+; J), plus buildings which have the structure of a tree with one principal

branch, which are described in Proposition 2.2. Again in [8], these compactified moduli

spaces are topologized and shown to be compact Hausdorff spaces.
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2.5 The gluing theorem

In this section we recall the gluing theorem for the special kinds of pseudoholomorphic

buildings that will appear in this thesis. The general gluing theory needed for all the

SFT-invariants, such as the full contact homology, is still subject of intense research.

However, in the case treated in this thesis, we do not need this machinery. The reason

for that is that all the curves that appear in our construction of the strip Legendrian

contact homology and its cobordism maps are somewhere injective pseudoholomorphic

curves this gluing theorem can be obtained using, essentially, the same methods needed

to prove a similar statement in Lagrangian Floer homology.

The gluing theorem allows us to glue the levels of a holomorphic building to

obtain a pseudoholomorphic curve; it can be seen as the reverse of SFT-compactness.

This gluing is possible when the levels of the building are Fredholm regular. Like in

previous sections, we will deal separately with the case where all the levels of the building

are symplectizations and the case where one of the levels sits in a cobordism. We begin

with the case of a symplectization.

In conformity with the previous section, we will consider a contact form α asso-

ciated to (Y, ξ). Let c, č and c′ be transverse Reeb chords in T
Λ→Λ̂

(α). Let J ∈ J (α),

and assume that for every element of the moduli space M̃2(c, c′; J,Λ, Λ̂) the linerized

Cauchy-Riemman operator D∂J over this element is surjective. In this case one can use

the infinite dimensional implicit function theorem to conclude that M̃2(c, c′; J,Λ, Λ̂) is

a one dimensional manifold. Let w̃1 ∈ M̃1(c, č; J,Λ, Λ̂) and w̃2 ∈ M̃1(č, c′; J,Λ, Λ̂), and

denote by w̃ the 2-level building which has w̃1 as top level and w̃2 as bottom level. We

then have:

Theorem 2.4. Assume that the linearized Cauchy-Riemman operator is surjective at

both w̃1 and w̃2. Then, there exists an embedding Ψ : [0,+∞)→M2
(c, c′; J,Λ, Λ̂) such

that:

• Ψ(0) = w̃,

• Ψ(t) ∈ M̃2(c, c′; J,Λ, Λ̂) for every t ∈ (0,+∞)

• the map Ψ is a homeomorphism from [0,+∞) to a neighbourhood of w̃ inM2
(c, c′; J,Λ, Λ̂).

Moreover, if w̃n is a sequence of elements of M2(c, c′; J,Λ, Λ̂) converging to w̃, then

there exists n0 such that w̃n ∈ Ψ([0, 1]) for all n ≥ n0.

In words, the gluing theorem says that provided the levels of the building w̃ are

regular, then w̃ is in the boundary of M2
(c, c′; J,Λ, Λ̂).
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We now proceed to state a version of the gluing theorem for buildings involving

a cobordism. We will keep the notations in Proposition 2.2, with α+ and α− being

contact forms associated to (Y, ξ). We take c+ and č+ to be transverse Reeb chords

in T
Λ+→Λ̂+(α+), and c− and č− to be transverse Reeb chords in T

Λ−→Λ̂−(α−). We

assume that all elements of M1(c+, c−; J, L, L̂) are Fredholm regular; i.e, the linerized

Cauchy-Riemman operator D∂J is surjective at all elements ofM1(c+, c−; J, L, L̂). Let

w̃1
+ ∈ M̃1(c+, č+; J+,Λ+, Λ̂+) and w̃2

+ ∈M0(č+, c−; J, L, L̂), w̃1
− ∈ M̃0(c+, č−; J, L, L̂+)

and w̃2
− ∈ M̃1(č−, c−; J−,Λ−, Λ̂−).

Theorem 2.5. Assume that the linearized Cauchy-Riemman operator is surjective at

both w̃1
+ and w̃2

+. Then, there exists an embedding Ψ+ : [0,+∞) →M1
(c+, c−; J, L, L̂)

such that:

• Ψ+(0) = w̃+, where w̃+ is the two level building whose top level is w̃1
+ and bottom

level is w̃2
+,

• Ψ+(t) ∈M1(c+, c−; J, L, L̂) for every t ∈ (0,+∞),

• the map Ψ+ is a homeomorphism from [0,+∞) to a neighbourhood of w̃+ in

M1
(c+, c−; J, L, L̂).

Moreover, if w̃+(n) is a sequence of elements of M1(c+, c−; J, L, L̂) converging to w̃+,

then there exists n0 such that w̃+(n) ∈ Ψ+([0, 1]) for all n ≥ n0.

Analogously, if the linearized Cauchy-Riemman operator is surjective at both w̃1
−

and w̃2
−, then there exists an embedding Ψ− : [0,+∞)→M1

(c+, c−; J, L, L̂) such that:

• Ψ−(0) = w̃−, where w̃− is the two level building whose top level is w̃1
− and bottom

level is w̃2
−,

• Ψ−(t) ∈M1(c+, c−; J, L, L̂) for every t ∈ (0,+∞),

• the map Ψ− is a homeomorphism from [0,+∞) to a neighbourhood of w̃− in

M1
(c+, c−; J, L, L̂).

Moreover, if w̃−(n) is a sequence of elements of M1(c+, c−; J, L, L̂) converging to w̃−,

then there exists n0 such that w̃−(n) ∈ Ψ−([0, 1]) for all n ≥ n0.
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Strip Legendrian contact

homology

3.1 Definition and basic properties of strip Legendrian con-

tact homology

We are now in position to define the strip Legendrian contact homology. We remind the

reader that for a given contact form α, T
Λ→Λ̂

(α) is the set of Reeb chords of Xα starting

at Λ and ending at Λ̂. We will also denote by TΛ(α) the set of Reeb chords from Λ to

itself, and by Per(α) the set of Reeb orbits of Xα. Let α0 be a contact form associated

to (Y, ξ) such that its Reeb flow:

• (a) has no contractible periodic orbits,

• (b) there are no Reeb chords in TΛ(α0) that vanish in π1(Y,Λ),

• (c) there are no Reeb chords in T
Λ̂

(α0) that vanish in π1(Y, Λ̂),

• (d) for every Reeb chord c ∈ T
Λ→Λ̂

(α0) the image of c in Y does not intersect the

image of any Reeb orbit in Per(α), and every c ∈ T
Λ→Λ̂

(α0) is transverse.

We will say that a contact form satisfying the conditions above is adapted to the pair

(Λ, Λ̂).

Let LCHst(α0,Λ→ Λ̂) be the Z2 vector-space generated by T
Λ→Λ̂

(α0). Remem-

ber that the Conley-Zehnder index defined in section 1.2 can be used to define a Z2 grad-

ing of the elements of T
Λ→Λ̂

(α0); we extend this grading to LCHst(α0,Λ→ Λ̂) in the ob-

vious way. We denote by LCHst,odd(α0,Λ→ Λ̂) to be the subspace of LCHst(α0,Λ→ Λ̂)

35
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generated by odd Reeb chords, and LCHst,even(α0,Λ→ Λ̂) to be the subspace generated

by even chords.

Given two Reeb chords c1 and c2, and a cylindrical almost complex structure

J ∈ J (α0), we considered in the previous chapter the moduli spaceM(c1, c2; J), modulo

reparametrizations, of finite energy pseudoholomorphic strips w̃ : (D \ {−1, 1}, i0) →
(R× Y, J) satisfying:

• 1 is a positive boundary puncture, and w̃ is asymptotic to c1 at 1,

• −1 is a negative boundary puncture, and w̃ is asymptotic to c2 at −1,

• w̃(H−) ⊂ R× Λ,

• w̃(H+) ⊂ R× Λ̂.

We would like to be able to compute the dimension of a connected component

of M(c1, c2; J) by computing the Fredholm index of the linearised Cauchy-Riemann

operator D∂J on an element of this connected component. We discuss now that this is

indeed the case, if the complex structure J is well chosen; for the proof of this fact we

refer the reader to [14] and [2].

It follows from Abbas’ asymptotic analysis presented in the previous chapter

and condition (d) above, that all the elements of the moduli space M(c1, c2; J) are

somewhere injective pseudoholomorphic curves. Moreover, the combination of works

of Dragnev [14] and Abbas [2] proves that for a generic set Jreg(α0) ⊂ J (α0) all the

elements in M(c1, c2; J) are transverse in the sense that the linearization D∂J of the

Cauchy-Riemann operator ∂J at the elements of M(c1, c2; J) is surjective; this being

valid for all Reeb chords c1 and c2. Thus, in the case where J ∈ Jreg(α0) one can use

the implicit function theorem, and obtain that any connected component of the moduli

space M(c1, c2; J) is a finite dimensional manifold with boundary, and its dimension

is given by the Fredholm index IF of D∂J computed at any element of this connected

component of M(c1, c2; J). The proof that this generic set Jreg(α0) ⊂ J (α0) exists is

an applications of the techniques in [6], [2] and [14].

Before defining the differential operator of the strip Legendrian contact homology

complex we make two remarks that will be important in future arguments.

Remark 3.1: it follows from the formula in [2] for the Fredholm index IF of the linearised

D∂J operator over a strip in M(c1, c2; J), that IF has the same parity of the sum

| c1 | + | c2 | of the gradings of c1 and c2.
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Remark 3.2: as 0 <
∫
D\{−1,1} w̃

∗(dα0) = A(c1) − A(c2), the moduli space M(c1, c2; J)

can only be non-empty if A(c1) ≥ A(c2).

We are now ready to define a differential dJ in LCHst(α0,Λ→ Λ̂).

Definition 3.1. Let c ∈ T
Λ→Λ̂

(α0) and J ∈ Jreg(α0) ⊂ J (α0). We define:

dJ(c) =
∑

c′∈T
Λ→Λ̂

(α0)

[nc,c′ mod 2]c′ (3.1)

where nc,c′ is the cardinality of the moduli space M̃1(c, c′; J) of pseudoholomorphic

strips of Fredholm index 1 modulo the R-action.

The differential is extended to LCHst(α0,Λ→ Λ̂) by linearity.

To complete the construction of the strip Legendrian contact homology, we must

prove that dJ is well-defined and that dJ ◦ dJ = 0. Before proceeding to give proofs

of these results we will discuss the intuition behind the definition of this homology

theory. The strip Legendrian contact homology can be seen as a relative version of the

cylindrical contact homology (see [7] and [16]). For cylindrical contact homology to be

well-defined for a contact form, this contact form has to have some special property;

for example, for a hypertight contact form (i.e. one that doesn’t have contractible

periodic orbits) cylindrical contact homology is well-defined. As we will see later, the

non-existence of contractible Reeb orbits precludes the “bubbling” of pseudoholomorphic

planes. This, together with SFT-compactness, implies that if its asymptotic orbits are

in a primitive homotopy class, a sequence of pseudoholomorphic cylinders of Fredholm

index 2 can only break in a pseudoholomorphic building of 2 levels, each containing

a cylinder of Fredholm index 1; thus only such buildings can appear in the boundary

of the compactified moduli space of pseudoholomorphic cylinders of Fredholm index 2.

This description of the compactified moduli spaces of pseudoholomorphic cylinders of

index 2, is the crucial step that allows us to define cylindrical contact homology with

coefficients in Z2.

The strip Legendrian contact homology is the natural adaptation of cylindrical

contact homology to the relative case. This time the differential involves pseudoholo-

morphic strips with boundary conditions on exact Lagrangian submanifolds. For such

a theory to be well-defined we have to preclude not only “bubbling” of planes but also

of pseudoholomorphic half planes. The conditions (b) and (c) above serve exactly to

make impossible such “bubbling” phenomena, and the condition (d) is a non-degeneracy

condition. Under these hypotheses, it is possible to define the strip Legendrian contact

homology, and to carry this constructions one uses results on the analytical properties

of pseudoholomorphic strips and discs; these results were presented in chapter 2 and in
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the beginning of this section, and some of the more technical aspects are discussed in

the appendices A, B. Using this machinery we proceed to prove:

Lemma 3.2. For J ∈ Jreg(α0) ⊂ J (α0), and dJ defined before we have:

• (1) dJ is well defined,

• (2) dJ decreases the action of Reeb chords,

• (3) for each c ∈ T
Λ→Λ̂

(α0), dJ(c) is a finite sum,

• (4) dJ : LCHst,odd(α0,Λ→ Λ̂)→ LCHst,even(α0,Λ→ Λ̂) and dJ : LCHst,even(α0,Λ→
Λ̂)→ LCHst,odd(α0,Λ→ Λ̂).

Proof: in order for dJ to be well-defined we have to prove that M̃1(c, c′; J) is

finite for every c and c′. Because J ∈ Jreg(α0) ⊂ J (α0), M̃1(c, c′; J) is a 0-dimensional

manifold. If we show that it is compact then it has to be a finite set. To obtain

the compactness of M̃1(c, c′; J), we will apply the standard “bubbling of” analysis for

pseudoholomorphic curves of [28] and the SFT compactness results of [8] that were

recalled in chapter 2.

Let w̃n be a sequence of elements of M̃1(c, c′; J). Because of the assumptions we

made on the contact form α0, the sequence w̃n cannot have interior bubbling points:

as we saw previously, an interior bubbling point would imply the existence of a finite

energy plane in the symplectization of α0 and thus of a contractible periodic orbit of

Xα0 , something which contradicts condition (a) that is satisfied by the contact form

α0. Bubbling points on the boundary are also forbidden: they would give rise to either:

a pseudoholomorphic disc with boundary in R × Λ, a pseudoholomorphic disc with

boundary on R×Λ̂, a pseudoholomorphic disc with only one positive boundary puncture

that is asymptotic to a Reeb chord from Λ to itself, or a pseudoholomorphic disc with

only one positive boundary puncture that is asymptotic to a Reeb chord from Λ̂ to

itself. The first two possibilities are impossible because R × Λ and R × Λ̂ are exact

Lagrangian submanifolds; the later two because they would contradict conditions (b)

and (c) satisfied by α0.

Combining this information with the SFT-compactness Proposition 2.1 of section

2.4, we have that a subsequence of w̃n converges in the SFT sense to a pseudoholomorphic

building w̃ with k-levels w̃l, where all levels w̃l are pseudoholomorphic strips satisfying:

• 1 is a positive boundary puncture, and w̃l is asymptotic to cl ∈ TΛ→Λ̂
(α0) at 1,

• −1 is a negative boundary puncture, and w̃l is asymptotic to cl+1 ∈ TΛ→Λ̂
(α0) at

−1,
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• w̃(H−) ⊂ R× Λ,

• w̃(H+) ⊂ R× Λ̂;

where c1 = c, ck+1 = c′ and cl 6= cl+1. Because all w̃l are somewhere injective pseu-

doholomorphic curves, and are different from trivial strips over Reeb chords, we obtain

that the Fredholm indexes of these strips satisfy IF (w̃l) ≥ 1. From the additivity prop-

erty of the Fredholm indexes, we have IF (w̃) =
∑

(IF (w̃l) ≥ l; on the other hand as

w̃ is the limit of a sequence of pseudoholomorphic strips of Fredholm index 1, it has to

satisfy IF (w̃) = 1. Therefore, we conclude that l = 1, and w̃ ∈ M̃1(c, c′; J); this implies

the desired compactness of M̃1(c, c′; J). As a consequence, we have proved that nc,c′

is finite for every c, c′ ∈ T
Λ→Λ̂

(α0), and thus that dJ is well defined. This finishes the

proofs of item (1) of the lemma.

To verify item (2), we recall the remark made before the definition of dJ , that

for c ∈ T
Λ→Λ̂

(α0), the number nc,c′ can only be non-zero for Reeb chords c′ such that

A(c′) < A(c). This implies that dJ decreases the action of Reeb chords, as stated in

item (2).

By the transversality condition (d) above one obtains that the set of Reeb chords

in T
Λ→Λ̂

(α0) with action smaller then A(c) is finite, and so nc,c′ is non-zero only for a

finite number of c′. This combined with items (1) and (2), implies that dJ(c) is a finite

sum finishing the proof of (3).

Item (4) follows easily from the fact mentioned above that the Fredholm index of

a strip connecting two chords c and c′ has the same parity as | c | + | c′ |, as this implies

that M̃1(c, c′; J) can be non-empty only if c and c′ have different parity.

Lemma 3.3. For J ∈ Jreg(α0) ⊂ J (α0), and dJ as defined before we have: dJ ◦ dJ = 0

Proof: the lemma will be a consequence of the description we will give of the

compactified moduli spaceM2
(c, c′; J) of pseudoholomorphic strips with Fredholm index

2. Because of regularity of J , it will follow that for all c, c′ ∈ T
Λ→Λ̂

(α0), M2
(c, c′; J) is

either empty, or the finite union of disjoint circles and closed intervals. We summarise

that in the following claim:

Compactness Claim: suppose M2
(c, c′; J) is non-empty. Then, each connected

component I of M2
(c, c′; J) is either a circle or a closed interval. Moreover, when I

is diffeomorphic to a closed interval, its boundary is composed by pseudoholomorphic

buildings w̃ with 2 levels w̃1 and w̃2 satisfying:
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w̃ ∈M1
(c, č; J) and w̃2 ∈M

1
(č, c′; J) for some č ∈ T

Λ→Λ̂
(α0).

Before proving the claim above we will use it to prove the lemma. For this, we write:

dJ ◦ dJ(c) =
∑

r′∈T
Λ→Λ̂

(α0)

(mc,c′ mod 2)c′ (3.2)

It is clear that the lemma will follow if we prove that mc,c′ is always even. On one

hand, notice that it follows from our definition of dJ , that mc,c′ counts the number of

two-level pseudoholomorphic buildings whose levels w̃1 and w̃2 satisfy: w̃1 ∈M
1
(c, č; J)

and w̃2 ∈ M
1
(č, c′; J) for some č ∈ T

Λ→Λ̂
(α0). This combined with the compactness

claim implies that the number of boundary points of M2
(c, c′; J) is smaller or equal to

mc,c′ .

On the other hand, because of the regularity of J ∈ Jreg(α0), we can apply gluing

as in Theorem 2.4: this implies that each 2-level pseudoholomorphic building w̃ whose

levels w̃1 and w̃2 satisfy w̃1 ∈M
1
(c, č; J) and w̃2 ∈M

1
(č, c′; J) for some č ∈ T

Λ→Λ̂
(α0),

is in the boundary of M2
(c, c′; J), more precisely in boundary of exactly one connected

component Iw̃ ⊂M
2
(c, c′; J). We thus obtain that mc,c′ is bigger or equal to the number

of boundary points of M2
(c, c′; J).

Summarising, the combination of the Compactness Claim and gluing allows us

to conclude that the number mc,c′ is exactly the number of boundary components of

the moduli spaceM2
(c, c′; J). BecauseM2

(c, c′; J) is a finite union of disjoint intervals

and circles, this number is even. This finishes the proof of the lemma modulo the

Compactness claim.

Proof of Compactness Claim: suppose M2
(c, c′; J) is non-empty and let I be a

connected component. It follows from the regularity of J that the interior İ of I is a

1-dimensional manifold. If İ is compact it has to be a circle.

If that is not the case, let w̃n be a sequence of elements of İ converging to the

boundary of I. As we remarked in the proof of the previous lemma no “bubbling” can

occur. Thus the SFT compactness theorem of implies that w̃n converges to a pseudo-

holomorphic building w̃ with k-levels w̃l, such that all levels w̃l are pseudoholomorphic

strips satisfying:

• 1 is a positive boundary puncture, and w̃l is asymptotic to cl ∈ TΛ→Λ̂
(α0) at 1
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• −1 is a negative boundary puncture, and w̃ is asymptotic to cl+1 ∈ TΛ→Λ̂
(α0) at

−1

• w̃l(H−) ⊂ R× Λ where H− ⊂ (S1 \ {−1, 1}) is the northern hemisphere

• w̃l(H+) ⊂ R× Λ̂ where H− ⊂ (S1 \ {−1, 1}) is the southern hemisphere

where c1 = c and ck+1 = c′. Again because every w̃l is somewhere injective we have that

the Fredholm index F (w̃l) ≥ 1 and thus IF (w̃) =
∑

(IF (w̃l) ≥ l. On the other hand as

w̃ is the limit of a sequence of pseudoholomorphic strips of Fredholm index 2, it has to

satisfy IF (w̃) = 2.

We have then 2 possibilities: either l = 1 and w̃ ∈ M̃2(c, c′; J); or l = 2 which

forces IF (w̃1) = IF (w̃1) = 1, w̃1 ∈ M1
(c, c2; J) and w̃2 ∈ M1

(c2, c
′; J). The first case

is ruled out because we supposed that w̃n is converging to the boundary of I. We

have obtained that all the elements on the boundary of I are 2-level pseudoholomorphic

buildings with the properties claimed. This implies that the boundary ofM2
(c, c′; J) is

a compact 0-dimensional manifold.

On the other hand, the gluing theorem gives the description of a neighbourhood

of the 2-level pseudoholomorphic buildings appearing in the boundary I. This neigh-

bourhood admits a diffeomorphism to the infinite interval [0,+∞), that takes 0 to the

2-level building and all other values to pseudoholomorphic strips in M2
(c, c′; J).

Summing up, the compactified moduli M2
(c, c′; J) has the structure of a 1-

dimensional with 0-dimensional boundary; i.e a closed interval. This finishes the proof

of the compactness claim.

We will denote by LCHst(α0,Λ → Λ̂) the homology complex associated to the

chain-complex (LCHst(α0,Λ→ Λ̂), dJ).

3.2 Strip Legendrian contact homology in special homo-

topy classes

Just as in the case of cylindrical contact homology, the free homotopy classes of paths

starting at Λ and ending at Λ̂ generate subcomplexes of LCHst(α0,Λ→ Λ̂). To formalize

this we denote by Σ
Λ→Λ̂

the set of homotopy classes of paths starting at Λ and ending

at Λ̂. For our contact form α0 and an element ρ ∈ Σ
Λ→Λ̂

we denote by T ρ
Λ→Λ̂

(α0) the

set of Reeb chords from Λ to Λ̂ that belong to ρ.
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It is clear that, for any c ∈ T ρ
Λ→Λ̂

(α0), the moduli space M1
(c, c′; J) can only be

non-empty if c′ ∈ T ρ
Λ→Λ̂

(α0) too. That implies that the terms [nc,c′ mod 2], appearing

in the differential dJ(c) =
∑

c′∈T
Λ→Λ̂

(α0)[nc,c′ mod 2]c′, can be non-zero only when c′ ∈
T ρ

Λ→Λ̂
(α0); and allows us to conclude that the vector spaces LCHρ

st(α0,Λ → Λ̂) are

subcomplexes in the chain complex (LCHst(α0,Λ→ Λ̂), dJ). Thus, we have:

LCHst(α0,Λ→ Λ̂) =
⊕

ρ∈Σ
Λ→Λ̂

LCHρ
st(α0,Λ→ Λ̂) (3.3)

In our applications, we will usually be interested in computing LCHρ
st(α0,Λ→ Λ̂)

for some homotopy classes ρ ∈ Σ
Λ→Λ̂

.

3.3 Cobordism maps

Symplectic cobordisms play a crucial role in SFT because they induce maps for the SFT

invariants, as observed in [16]. Under suitable conditions this is also true for the strip

Legendrian contact homology.

Proposition 3.4. Let (Y +, ker(α+)) be a contact manifold, with: α+ an adapted contact

form for a pair of disjoint Legendrian knots Λ+ and Λ̂+; and (Y −, ker(α−)) be a contact

manifold, with α− an adapted contact form for a pair of disjoint Legendrian knots Λ−

and Λ̂−. Suppose that there exist an exact symplectic cobordism (V,$) from (Y +, α+)

to (Y −, kα−) for some constant k > 0, and exact Lagrangian cylinders: L, from Λ+

to Λ−; and L̂ from Λ̂+ to Λ̂−. Then, these cobordisms induce a map Φ
V,$,L,L̂

from

LCHst(α
+,Λ+ → Λ̂+) to LCHst(α

−,Λ− → Λ̂−).

Proof: taking J+ ∈ Jreg(α+) and J− ∈ Jreg(α−), we can define the homologies

LCHst(α
+,Λ+ → Λ̂+) and LCHst(α

−,Λ− → Λ̂−). We then take JV ∈ J (J+, J−) as

the almost complex structure in the cobordism (V,$). The map Φ
V,$,L,L̂

will count

pseudoholomorphic strips w̃ : (D \ {−1, 1}, i0) → (V, J) with Fredholm index 0, having

1 as a positive boundary puncture asymptotic to a Reeb chord c+ ∈ T
Λ+→Λ̂+(α+) and

−1 as a negative boundary puncture asymptotic to a Reeb chord c− ∈ T
Λ−→Λ̂−(α−),

and having boundary conditions w̃(H−) ∈ L and w̃(H+) ∈ L̂; in other words the map

Φ
V,$,L,L̂

will count elements in the moduli spaces M0(c+, c−; JV , L, L̂), for the Reeb

chords as above. As all the strips in these moduli spaces are somewhere injective curves,

we have that for a generic set Jreg(J+, J−) ∈ J (J+, J−), all the pseudoholomorphic

curves in M0(c+, c−; JV , L, L̂), for every c+ and c−, are Fredholm regular. We assume

from now on that we picked JV ∈ Jreg(J+, J−).
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Initially, the map Φ
V,$,L,L̂

is obtained by counting elements inM0(c+, c−; JV , L, L̂),

and is the defined from LCHst(α
+,Λ+ → Λ̂+) to LCHst(α

−,Λ− → Λ̂−). More precisely

for each c+ ∈ T
Λ+→Λ̂+(α−):

Φ
V,$,L,L̂

(c+) =
∑

c−∈T
Λ−→Λ̂− (α−)

#(M0(c+, c−; JV , L, L̂))c− (3.4)

A compactness argument identical to the one in Lemma 3.2 shows that Φ
V,$,L,L̂

is well

defined and is a finite sum.

To see that it actually induces a map on the homology level one has to check

that dJ− ◦ Φ
V,$,L,L̂

= Φ
V,$,L,L̂

◦ dJ+ . The proof of this fact consists of a combination

of compactness and gluing results, and is identical to a similar statement for cylindrical

contact homology (see [7]).

Because of the regularity for all pseudoholomorphic curves involved in dJ+ , dJ−

and Φ
V,$,L,L̂

, it is possible to perform gluing for the pseudoholomorphic curves in-

volved in these maps. More precisely the map dJ− ◦ Φ
V,$,L,L̂

(c+) counts the num-

ber of 2-level pseudoholomorphic buildings (w̃1
−, w̃

2
−) where w̃1

− ∈ M0(c+, č−; JV ) and

w̃2
− ∈M1(č−, c−; J−) for č− and c− belonging to T

Λ−→Λ̂−(α−). Analogously, Φ
V,$,L,L̂

◦
dJ+(c+) counts the number of 2-level pseudoholomorphic buildings (w̃1

+, w̃
2
+) where w̃1

+ ∈
M0(c+, č+; J+) and w̃2

+ ∈M1(č+, c−; J−) for č+ ∈ T
Λ+→Λ̂+(α+) and c− ∈ T

Λ−→Λ̂−(α−).

The gluing theorem implies that the union of all such 2-level building belong to the

boundary of the compactified moduli space M1
(c+, c−; JV , L, L̂).

On the other hand, because of the exactness of (V,$), and of the Lagrangians L

and L̂, and using that α+ is an adapted contact form for the pairs of Legendrian curves

Λ+ and Λ̂+ and α− is an adapted contact form for the pairs of Legendrian curves Λ+

and Λ̂+, we have that a sequence of elements in M1(c+, c−; JV , L, L̂) can only break

in 2-level buildings that are appear in the maps dJ− ◦ Φ
V,$,L,L̂

and Φ
V,$,L,L̂

◦ dJ+ .

The complete proof of this compactness fact uses just the additivity of the Fredholm

index for buildings and the Fredholm regularity of the pseudoholomorphic buildings

involved, and is identical to a similar arguments we used in Lemma 3.3; for this reason

we will not repeat the argument here. Notice, that all the elements in the boundary of

M1
(c+, c−; JV , L, L̂) are Fredholm regular buildings .

From this combination of compactness and gluing we obtain that the moduli space

M1
(c+, c−; JV , L, L̂) is a one dimensional manifold with boundary, whose boundary is

composed exactly by the 2-level buildings that appear in the definition of the maps

dJ− ◦ Φ
V,$,L,L̂

and Φ
V,$,L,L̂

◦ dJ+ .
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Summarising, we obtain for each c+ ∈ T
Λ+→Λ̂+(α+):

(dJ+ ◦ Φ
V,$,L,L̂

− Φ
V,$,L,L̂

◦ dJ−)(c+) =
∑

c−∈T
Λ−→Λ̂− (α−)

[a(c+, c−) mod 2]c− (3.5)

where a(c+, c−) is the number of pseudoholomorphic buildings appearing on the bound-

ary of M1
(c+, c−; JV , L, L̂). As M1

(c+, c−; JV , L, L̂) is a 1-dimensional manifold the

number of its boundary components is even which implies that [a(c−) mod 2] = 0, and

finishes the proof of the proposition.

We point, that in the case (V,$) is the symplectization of a contact manifold

with an R-invariant regular almost complex structure and the Lagrangians L and L̂ are

just the cylinders over, respectively, Λ and Λ̂, then the induced cobordism map is the

identity. This is so, because in this situation, the only pseudoholomorphic strips with

Fredholm index 0 are the trivial strips over Reeb chords.

3.3.1 A special type of cobordisms

For us, the case of most importance is when the contact forms α+ and α− are of the form

α+ = α0 and α− = kα0 for a certain contact form α0 and constant 0 < k < 1, the Leg-

endrian curves Λ+ = Λ− := Λ and Λ̂+ = Λ̂− := Λ̂, and the exact symplectic cobordism

(V,$) and the exact Lagrangian cobordisms L and L̂ can be deformed, respectively,

to the symplectization of (Y, α0), and the Lagrangian cylinders over Λ and Λ̂. In this

case the cobordism actually induces a map that respect the homotopy classes of the

chords; so we can define (for each ρ ∈ Σ
Λ→Λ̂

) a map Φ
V,$,L,L̂

from LCHρ
st(α0,Λ → Λ̂)

to LCHρ
st(α0,Λ → Λ̂). In order to define the cobordism maps for these subcomplexes

LCHρ
st(α

+,Λ+ → Λ̂+) the assumptions of regularity on the almost complex structure

JV are slightly weaker.

Fix ρ ∈ Σ
Λ→Λ̂

. For any pair c and c′ of Reeb chords in T ρ
Λ→Λ̂

(α0), we consider the

moduli spaceMk(c, c′; JV , L, L̂) of pseudoholomorphic strips with Fredholm index k. As

all the strips in these moduli spaces are somewhere injective curves, we have for a generic

set Jreg,ρ(J, J) ∈ J (J, J), all the pseudoholomorphic curves in all the moduli spaces

Mk(c, c′; JV , L, L̂), for every c and c′ in T ρ
Λ→Λ̂

(α0), are Fredholm regular. An argument

identical to the proof of the previous proposition shows that for JV ∈ Jreg,ρ(J, J) we have

a map Φ
V,$,L,L̂

from LCHρ
st(α0,Λ → Λ̂) to LCHρ

st(α0,Λ → Λ̂); notice that Jreg,ρ(J, J)

may contain elements that are not in Jreg(J, J).
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We study the cobordism map in the following situation: let (V = R × Y,$) be

an exact symplectic cobordism from (Y, α0) to (Y, kα0) where 0 < k < 1, and assume

that α0 is adapted to a pair of Legendrians Λ and Λ̂ and there exists exact Lagrangian

cobordisms L ⊂ V from Λ to Λ, and L̂ ⊂ V from Λ̂ to Λ̂ diffeomorphic to cylinders.

Suppose that one can make an isotopy (R× Y,$t) of exact symplectic cobordisms from

(Y, α0) to (Y, kα0), where $t satisfies $0 = $ and $1 = d(esα0), and that:

• (A) Lt ∈ (R × Y,$t) is an exact Lagrangian cobordisms from Λ to Λ, with L1 =

R× Λ;

• (B) L̂t ∈ (V,$t) is exact Lagrangian cobordisms from Λ̂ to Λ̂, with L̂1 = R× Λ̂.

We consider the space J̃ (J, J) of smooth homotopies:

t ∈ [0, 1]; Jt ∈ J (J, J) (3.6)

with J0 = JV ∈ Jreg,ρ(J, J), J1 ∈ Jreg(α0), and Jt is compatible with $t for all t. For

Reeb chords c, c′ ∈ T
Λ→Λ̂

(α0) we consider the moduli space:

M̂(c, c′; Jt, Lt, L̂t) = {(t, w̃) | t ∈ [0, 1] and w̃ ∈M(c, c′; Jt, Lt, L̂t)} (3.7)

By the combination of the techniques in [14], [2] and [6] we know that there is a

generic subset J̃reg(J+, J−) = J̃ (J+, J−) such that M̂(c, c′; Jt, Lt, L̂t) is a smooth mani-

fold of dimension IF (w̃)+1, where (t, w̃) ∈ M̂(c, c′; Jt, Lt, L̂t) and such that for all Jt, the

elements of M(c, c′; Jt, Lt, L̂t) have Fredholm index bigger or equal to −1. The crucial

condition that makes this possible is again the fact that the all the pseudoholomorphic

curves belonging to this moduli space are somewhere injective.

Proposition 3.5. Let (V = R×Y,$) be an exact symplectic cobordism from (Y, α0) to

(Y, kα0) where 0 < k < 1, and α0 is adapted to a pair of Legendrians Λ and Λ̂. Assume

also that there exists in (R × Y,$) exact Lagrangian cobordisms L ⊂ R × Y from Λ to

Λ, and L̂ ⊂ V from Λ̂ to Λ̂. Suppose that one can make an isotopy of exact symplectic

cobordisms (Y, α0) to (Y, kα0), where $t satisfies $0 = $ and $1 = d(esα0), and such

that Lt ∈ (R × Y,$t) and L̂t ∈ (R × Y,$t) are exact Lagrangian cobordisms satisfying

conditions (A) and (B) above. Then for all JV ∈ Jreg,ρ(J, J) the map Φ
V,$,L,L̂

from

LCHρ
st(α,Λ→ Λ̂) to itself is chain homotopic to the identity.

Proof: the proof is an standard argument in SFT, and we refer the reader to the

original source [16] for an exposition of this argument for general SFT invariants and
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[7], [6] where the very similar case of cylindrical contact homology is treated. We first

take an almost complex structure J ∈ Jreg(α0) and choose an almost complex structure

JV ∈ Jreg(J, J) compatible with $. The map Φ
V,$,L,L̂

will count pseudoholomorphic

strips in (V, JV ) satisfying boundary conditions as stated in the previous proposition.

For the deformation $t we can take an homotopy Jt of almost complex structures in

J̃reg(J, J).

The crucial ingredient of the proof will be the description of the compactifica-

tion M0
(c, c′; Jt, Lt, L̂t) of the moduli space M̂0(c, c′; Jt, Lt, L̂t). We want to under-

stand the boundary of M0
(c, c′; Jt, Lt, L̂t). Take a sequence (tn, w̃n) of elements in

M̂0(c, c′; Jt, Lt, L̂t) converging to the boundary of M0
(c, c′; Jt, Lt, L̂t); there are three

possibilities: tn goes to 0, tn goes to 1 or the limit t∞ of tn belongs to (0, 1). In all three

possibilities we know that the conditions (a), (b), (c) and (d) satisfied by α0 prevent any

“bubbling” in the sequence. In the first possibility, regularity of JV and J imply that

the w̃n has to converge to an element w̃ of M0(c, c′; JV , L, L̂). Analogously because of

the regularity of J , in the second possibility w̃n has to converge to w̃ ofM0(c, c′; J). In

the third possibility w̃n converges to a pseudoholomorphic building w̃ whose levels w̃l

are all strips; the fact that for Jt∞ all the strips appearing have Fredholm index ≥ −1

allows us to limit the possibilities. The building w̃ has Fredholm index 0 and has at

least 2-levels since it is a boundary element of our moduli space. On the other hand,

of all its levels there is one in the cobordism (R × Y,$t∞) and all the others are in

symplectizations of α0. The levels in the symplectizations have Fredholm index ≥ 1

and the one on (R × Y,$t∞) has Fredholm index ≥ −1. Combining this with the fact

that w̃ has Fredholm index 0 it is easy to see that w̃ has exactly 2-levels: one with

Fredholm index −1 in (R × Y,$t∞) and one in the symplectization of α0. More pre-

cisely in this third possibility, there are two possible cases: either the building w̃ has the

top level w̃1 ∈ M̃1(c, č; J) and the lower level w̃2 ∈ M̃−1(č, c′; Jt∞ , Lt∞ , L̂t∞) (for some

č ∈ T
Λ→Λ̂

(α0)), or the building w̃ has the top level w̃1 ∈ M̃−1(c, č; Jt∞ , Lt∞ , L̂t∞) and

the lower level w̃2 ∈ M̃1(č, c′; J) (for some č ∈ T
Λ→Λ̂

(α0)).

On the other hand, an appropriate version of the gluing theorem (see section 3.5)

imply that: if w̃ is a 2-level building whose top level w̃1 ∈ M̃1(c, č; J) and whose

lower level w̃2 ∈ M̃−1(č, c′; Jt∞ , Lt∞ , L̂t∞), then w̃ is an element of the boundary

of M0
(c, c′; Jt, Lt, L̂t). The same is valid if the building w̃ has the top level w̃1 ∈

M̃−1(c, č; Jt∞ , Lt∞ , L̂t∞) and the lower level w̃2 ∈ M̃1(č, c′; J). Finally if w̃ ∈M0(c, c′; JV , L, L̂)

the regularity of the homotopy Jt implies that w̃ is in the boundary ofM0
(c, c′; Jt, Lt, L̂t);

and the same is valid if w̃ ∈M0(c, c′; J). We have thus obtained a complete description

of the boundary of M0
(c, c′; Jt, Lt, L̂t).
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We now define a map K : LCHρ
st(α0,Λ → Λ̂) → LCHρ

st(α0,Λ → Λ̂) that counts

finite energy, Fredholm index−1 pseudoholomorphic strips in (V,$t), with one boundary

component in Lt and one in L̂t. Because of the regularity of our homotopy, the set of

index −1 strips whose positive puncture detects a fixed chord c is finite, and therefore

the map K is really well defined.

Consider the map Id + Φ
V,$,L,L̂

+ K ◦ dJ + dJ ◦ K(c). It is clear from our dis-

cussion so far, that the pseudoholomorphic curves which are counted in the definition

of this sum, are exactly the ones that appear in the boundary of the moduli spaces

M0
(c, c′; Jt, Lt, L̂t). As the compactified moduli space M0

(c, c′; Jt, Lt, L̂t) is a finite

union of compact intervals it has an even number of boundary components. There-

fore we obtain Id + Φ
V,$,L,L̂

+ K ◦ dJ + dJ ◦ K(c) = 0. As this is valid for all Reeb

chords c ∈ T
Λ→Λ̂

(α0) we have proved that Φ
V,$,L,L̂

is chain-homotopic to the identity,

as claimed.

One very important consequence of the above proposition is that the strip Leg-

endrian contact homology LCHρ
st(α,Λ → Λ̂) doesn’t depend on the almost complex

structure J ∈ Jreg(α0) used to define dJ , something which is not at all obvious from the

definition of LCHρ
st(α0,Λ→ Λ̂).

3.4 Strip Legendrian contact homology on the complement

of Reeb orbits

In this section we adapt our construction of the strip Legendrian contact homology to

study implied existence problems; the idea of using SFT invariants to study this type

of question comes from the works [35] and [30]. The idea is briefly described as follows:

on a contact manifold (Y, ξ) we consider an oriented transverse link which we denote by

G; we want to study dynamical properties of contact forms associated to (Y, ξ) which

have the connected components link G as Reeb orbits. Another way of phrasing it is the

following: if G appears as a set of Reeb orbits of a contact form α associated to (Y, ξ),

does this have non-trivial implications for the dynamics of φtα?

The works [35] and [30] have answered this question positively for certain par-

ticular examples; in these works, a version of cylindrical contact homology is used to

study how the condition of having G as a set of periodic orbits can force the appearance
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of other Reeb orbits. We will follow a similar approach but will be interested in the

appearance of Reeb chords.

We begin presenting the setup on which we will work: let G be an oriented

transverse link in the contact manifold (Y, ξ), and α0 be a contact form for which G
is the union of positively oriented Reeb orbits of φα0 ; let also Λ and Λ̂ be a pair of

Legendrian submanifolds which do not intersect G. Suppose that the Reeb flow of Xα0

satisfies:

• (a’) all Reeb orbits of Xα0 disjoint from G are not contractible in Y \ G, and for

every Reeb orbit γG ∈ G either γG is non-contractible or for any disc DγG in Y

having γG as boundary, the interior of DγG has to intersect G,

• (b’) all the Reeb chords of Xα0 going from Λ to itself do not vanish in π1(Y \G,Λ),

• (c’) all the Reeb chords of Xα0 going from Λ̂ to itself do not vanish in π1(Y \G, Λ̂),

• (d’) for every Reeb chord c ∈ T
Λ→Λ̂

(α0) the image of c in Y does not intersect the

image of any Reeb orbit in Per(α), and every c ∈ T
Λ→Λ̂

(α0) is transverse.

We will say that a contact form satisfying the conditions above is adapted to the pair

(Λ, Λ̂) in the complement of G.

Let Σ
Λ→Λ̂,G denote the set of homotopy classes of curves in Y \ G having their

starting point at Λ and their end point at Λ̂. For ρ ∈ Σ
Λ→Λ̂,G we denote by T ρ

Λ→Λ̂,G
(α0)

the set of Reeb chords from Λ to Λ̂ that belong to ρ. Analogous to what we did

previously, we will define LCHρ
st|G(α0,Λ → Λ̂) as the Z2 vector-space generated by

T
Λ→Λ̂

(α0). The Z2 grading in LCHρ
st|G(α0,Λ→ Λ̂) is defined in the same way we did in

section 3.1, and we denote by LCHρ
st,even|G(α0,Λ → Λ̂) the subspace of even elements

of LCHρ
st|G(α0,Λ→ Λ̂) and by LCHρ

st,odd|G(α0,Λ→ Λ̂) the subspace of odd elements of

LCHρ
st|G(α0,Λ→ Λ̂)

In order to define the differential adapted to our goals we have to consider another

class of moduli spaces. For J ∈ J (α0), we notice that the set R × G is the union of a

finite number of pseudoholomorphic cylinders in the symplectization of α0 endowed with

the almost complex structure J . We define Mk
G(c, c′; J) to be the subset of Mk(c, c′; J)

formed by pseudoholomorphic curves whose image in R × Y do not intersect R × G.

Analogously, we define M̃k
G(c, c′; J) as the quotient of Mk

G(c, c′; J) by the R action

that comes from the fact that J is R-invariant, and we let Mk
G(c, c′; J) be the SFT-

compactification of M̃k
G(c, c′; J).
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Suppose we choose J ∈ Jreg(α0), then we will show that M̃k
G(c, c′; J) is a manifold

of dimension k − 1. First introduce a metric d in R × Y which is R invariant. Taking

w̃ ∈ M̂k
G(c, c′; J) we claim that the infimum of the distance between points of the image

of w̃ and points of R× G is bigger then 0, i.e:

inf
x∈Rg(w̃) y∈R×G

d(x, y) > 0 (3.8)

where Rg(w̃) denotes the image of the curve w̃. To see that, notice that because its

asymptotic behaviour, in a neighbourhood U1 (U−1) of the puncture 1 (−1) the curve w̃

stays very close to the strip R×c (R×c′). As both these strips have positive distance to

R× G we conclude that there if there was a sequence xn of points in (D \ {1,−1}) such

that the distance of w̃(xn) to R × G converged to 0, then this sequence would have to

have infinitely many points in the compact set D \ (U1 ∪ U−1); extracting then from xn

a convergent subsequence inside D \ (U1 ∪ U−1) we would have that for the limit point

x of this subsequence the distance d(w̃(x),R × G) would be 0. This would imply that

w̃(x) belongs to R× G, contradicting the fact that w̃ ∈ M̂k
G(c, c′; J). Let then ε > 0 be

such that infx∈Rg(w̃) y∈R×G d(x, y) > ε

Now, there is an neighbourhood Uw̃ of w̃ inside M̃k(c, c′; J) such that for every

curve w̃′ ∈ Uw̃ the distance between the image of w̃′ and the image of w̃ is smaller than
ε

100 ; this implies that for such a w̃′ distance between R×G and the image of w̃′ is bigger

than ε
2 and we conclude that w̃′ is also in M̃k

G(c, c′; J). Summing up, we have shown that

for every w̃ ∈ M̃k
G(c, c′; J) there is a neighbourhood Uw̃ of w̃ inside M̃k(c, c′; J) which is

also inside M̃k
G(c, c′; J); as M̃k(c, c′; J) is a manifold of dimension k − 1 it follows that

so is M̃k
G(c, c′; J).

We are now ready to define a differential dρ,GJ in LCHρ
st|G(α0,Λ→ Λ̂).

Definition 3.6. Let c ∈ T ρ
Λ→Λ̂,G

(α0) and J ∈ Jreg(α0) ⊂ J (α0). We define:

dρ,GJ (c) =
∑

c′∈T ρ
Λ→Λ̂,G

(α0)

[nc,c′ mod 2]c′ (3.9)

where nc,c′ is the cardinality of the moduli space M̃1
G(c, c′; J) of pseudoholomorphic

strips of Fredholm index 1 modulo the R-action.

Similarly to what we did previously we have to prove that the differential is

well-defined.

Lemma 3.7. For J ∈ Jreg(α0) ⊂ J (α0), ρ ∈ Σ
Λ→Λ̂,G and dρ,GJ defined before we have:

• (1’) dρ,GJ is well defined,
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• (2’) dρ,GJ decreases the action of Reeb chords,

• (3’) for each c ∈ T ρ
Λ→Λ̂,G

(α0) , dρ,GJ is a finite sum,

• (4’) dJ : LCHρ
st,odd|G(α0,Λ→ Λ̂)→ LCHρ

st,even|G(α0,Λ→ Λ̂)

and dJ : LCHρ
st,even|G(α0,Λ→ Λ̂)→ LCHρ

st,odd|G(α0,Λ→ Λ̂)

Proof: we start proving that dρ,GJ is well-defined. For that, we will show that

M̃1
G(c, c′; J) is finite for every c and c′ in T ρ

Λ→Λ̂,G
(α0). Because of J ∈ Jreg(α0) ⊂ J (α0),

M̃1
G(c, c′; J) is a 0-dimensional manifold. We will show that it is compact, and therefore

it has to be a finite set. To obtain the compactness of M̃1
G(c, c′; J), we will apply

the standard “bubbling of” analysis for pseudoholomorphic curves of [28] and the SFT

compactness results of [8] that we recalled in chapter 2.

Let w̃n be a sequence of elements of M̃1
G(c, c′; J). We first argue that there are no

“bubbling” points. Suppose there exists an interior “bubbling” point for the sequence

w̃n; then a subsequence w̃n converges to to a pseudoholomorphic building w̃ with a

tree structure as described in section 2.4.1, and one of the elements of this tree is a

pseudoholomorphic plane w̃pl. We claim that the image of w̃pl must intersect the set

R× G. There are two possibilities for the plane ũ: its asymptotic limit is either a Reeb

orbit in G or a Reeb orbit outside of G; in both cases the condition (1’) we imposed on α0

implies that the projection wpl of w̃pl to Y must have an interior intersection point with G.

Because of positivity of intersections for pairs of pseudoholomorphic curves we know that

the intersection point between w̃pl and R×G (which is a collection of pseudoholomorphic

cylinders) has to survive if we make a small perturbation of w̃pl restricted to a compact

neighbourhood Kopl of the intersection point. For an n belonging to our subsequence

and sufficiently large, it follows from the definition of SFT-convergence, that there is a

compact set Ko such that the restriction w̃n |Ko is a small perturbation of w̃pl |Kopl ,
something that forces w̃n |Ko to have an intersection point with R × G. But this is

impossible, since we had assumed all w̃n were elements of M̃1
G(c, c′; J).

To see that the sequence w̃n has no boundary “bubbling” points we proceed in

a similar manner. Assuming that such a “bubbling” point does exist we know that

there is a subsequence of w̃n converging to a pseudoholomorphic building w̃ with a

tree structure as described in section 2.4.1, such that one of the elements of this tree

is a pseudoholomorphic half-plane w̃hp. The half-plane w̃hp has its boundary entirely

contained on either R × Λ or R × Λ̂ and his only positive puncture is asymptotic to a

Reeb chord chp going either from Λ to itself or from Λ̂ to itself. In both situations this

chp is a contractible chord on π1(Y \,Λ) or in π1(Y, Λ̂). From assumptions (b’) and (c’)

we placed on α0 we can conclude that in both these possibilities the plane w̃hp has to

have an interior intersection point with the set R × G. Reasoning exactly as above, it
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follows from positivity of intersections and the definition of SFT convergence that for

an n belonging to our subsequence and sufficiently large, the map w̃n would intersect

R× G, leading to a contradiction.

The rest of the proof of item (1’) is very similar to the final part of the proof of

item (1) of lemma 3.2. Basically, we apply SFT-compactness theorem, to obtain that a

subsequence of w̃n converges in the SFT sense to a pseudoholomorphic building w̃ with

k-levels w̃l, where all levels w̃l are pseudoholomorphic strips with:

• 1 is a positive boundary puncture, and w̃l is asymptotic to cl ∈ T ρΛ→Λ̂,G
(α0) at 1,

• −1 is a negative boundary puncture, and w̃ is asymptotic to cl+1 ∈ T ρΛ→Λ̂,G
(α0) at

−1,

• w̃(H−) ⊂ R× Λ,

• w̃(H+) ⊂ R× Λ̂;

where c1 = c, ck+1 = c′ and cl 6= cl+1. It follows then, from the regularity of J

and fact that all w̃l are somewhere injective pseudoholomorphic strips different from

trivial strips over Reeb chords, that the Fredholm indexes of each of these strips satisfies

F (w̃l) ≥ 1. As the Fredholm index is the building w̃ is the sum of the indexes of its

levels we have IF (w̃) =
∑

(IF (w̃l) ≥ l; on the other hand as w̃ is the limit of a sequence

of pseudoholomorphic strips of Fredholm index 1, it has to satisfy IF (w̃) = 1; as a

consequence we must have l = 1, and w̃ ∈ M̃1(c, c′; J). To see that w̃ is actually an

element of M̃1
G(c, c′; J) we reason by contradiction. If this was not the case then there

would be an interior point of w̃ intersecting R×G. Again a combination of positivity of

intersection and SFT convergence would imply that in this case elements of the sequence

w̃n would have to intersect R× G forcing a contradiction.

As a conclusion, we have shown that a sequence of elements in M̃1
G(c, c′; J) has

a subsequence that converges to an element of M̃1
G(c, c′; J), obtaining the desired com-

pactness of M̃1
G(c, c′; J). As M̃1

G(c, c′; J) is a 0-dimensional manifold, it follows that it

is a finite set, which implies (1’).

Item (2’) follows from the fact that nc,c′ can only be non-zero for Reeb chords c′

with A(c′) < A(c). This implies that dJ decreases the action of Reeb chords.

The condition (d’) placed on α0 implies that the set of Reeb chords in T ρ
Λ→Λ̂,G

(α0)

with action smaller then A(c) is finite, and therefore nc,c′ is non-zero only for a finite

number of c′. This plus items (1’) and (2’) gives us that dJ(c) is a finite sum as claimed

in (3’).



Chapter 3. Strip Legendrian contact... 52

Item (4’) follows easily from the fact that the Fredholm index of a strip connecting

two chords c and c′ has the same parity as | c | + | c′ |. Thus, M̃1
G(c, c′; J) can be non-

empty only if c and c′ have different parity.

Having established these properties of dρ,GJ we proceed to prove that dρ,GJ ◦d
ρ,G
J = 0.

Lemma 3.8. For J ∈ Jreg(α0) ⊂ J (α0) and dρ,GJ as defined above we have:

dρ,GJ ◦ dρ,GJ = 0 (3.10)

Proof: the lemma will be a consequence of the description we will give of the

compactified moduli spaceM2
G(c, c′; J) of pseudoholomorphic strips with Fredholm index

2. Because of regularity of J , it will follow that for all c, c′ ∈ T
Λ→Λ̂

(α0), M2
G(c, c′; J) is

either empty, or the finite union of disjoint circles and closed intervals. We summarise

that in the following claim:

Compactness Claim: suppose M2
G(c, c′; J) is non-empty. Then, each connected

component I of M2
G(c, c′; J) is either a circle or a closed interval. Moreover, when I

is diffeomorphic to a closed interval, its boundary is composed by pseudoholomorphic

buildings w̃ with 2 levels w̃1 and w̃2 satisfying:

w̃ ∈M1
G(c, č; J) and w̃2 ∈M

1
G(č, c′; J) for some č ∈ T ρ

Λ→Λ̂,G
(α0).

As we did in the proof of Lemma 3.3 we will first show how to use the claim to prove

the Lemma, and only after we will provide the proof of the Compactness Claim.

dρ,GJ ◦ dρ,GJ (c) =
∑

r′∈T ρ
Λ→Λ̂,G

(α0)

(mc,c′ mod 2)c′ (3.11)

The lemma will follow if we prove that mc,c′ is always even; this will be achieved

by showing that mc,c′ is exactly the number of boundary components of M2
G(c, c′; J).

Firstly, notice that it follows from our definition of dρ,GJ , that mc,c′ counts the

number of two-level pseudoholomorphic buildings whose levels w̃1 and w̃2 satisfy: w̃1 ∈
M1
G(c, č; J) and w̃2 ∈ M

1
G(č, c′; J) for some č ∈ T ρ

Λ→Λ̂,G
(α0). The compactness claim

implies that only these types of buildings can appear in the boundary of M2
G(c, c′; J).

We thus have that the number of boundary components of M2
G(c, c′; J) is smaller or

equal to mc,c′ .
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On the other hand, because of the regularity of J ∈ Jreg(α0), we can apply the

gluing theorem: this theorem implies that if w̃ is a 2-level pseudoholomorphic build-

ing whose levels w̃1 and w̃2 satisfy w̃1 ∈ M
1
G(c, č; J) and w̃2 ∈ M

1
G(č, c′; J) for some

č ∈ T ρ
Λ→Λ̂,G

(α0), then w̃ is in the boundary of a connected component of M2
G(c, c′; J).

We then conclude that mc,c′ is bigger or equal to the number of boundary points of

M2
G(c, c′; J).

Summarising, the combination of the Compactness Claim and the gluing allows

us to conclude that the number mc,c′ is exactly the number of boundary components of

the moduli spaceM2
(c, c′; J). BecauseM2

(c, c′; J) is a finite union of disjoint intervals

and circles, this number is even. This finishes the proof of the lemma modulo the

Compactness claim.

Proof of Compactness Claim: supposeM2
G(c, c′; J) is non-empty. It follows from

the regularity of J that each connected component I of M̃2(c, c′; J) is a 1-dimensional

manifold. We have now two possibilities, either I is compact or not. If I is compact

then it is a circle.

If that is not the case, let w̃n be a sequence of elements of M̃2
G(c, c′; J) converging

to the boundary of M2
G(c, c′; J). Reasoning as in the proof of lemma 3.7 one obtains

that no “bubbling” can occur. Thus the SFT compactness theorem of implies that w̃n

converges to a pseudoholomorphic building w̃ with k-levels w̃l, such that all levels w̃l

are pseudoholomorphic strips satisfying:

• 1 is a positive boundary puncture, and w̃l is asymptotic to cl ∈ T ρΛ→Λ̂,G
(α0) at 1

• −1 is a negative boundary puncture, and w̃ is asymptotic to cl+1 ∈ T ρΛ→Λ̂,G
(α0) at

−1

• w̃(H−) ⊂ R× Λ,

• w̃(H+) ⊂ R× Λ̂,

where c1 = c and ck+1 = c′. Again because every w̃l is somewhere injective we have that

the Fredholm index F (w̃l) ≥ 1 and thus IF (w̃) =
∑

(IF (w̃l) ≥ l. On the other hand as

w̃ is the limit of a sequence of pseudoholomorphic strips of Fredholm index 2, it has to

satisfy IF (w̃) = 2.

We have then 2 possibilities: either l = 1 and w̃ ∈ M2
(c, c′; J); or l = 2 which

forces IF (w̃1) = IF (w̃1) = 1, w̃1 ∈ M1
(c, c2; J) and w̃2 ∈ M1

(c2, c
′; J). In the first

possibility, again a applying positivity intersections and the notion of SFT-convergence

we can guarantee that w̃ ∈ M2
G(c, c′; J); but this is can be ruled out since we assumed

that the sequence we took converged to the boundary of M2
G(c, c′; J).
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Fot the second possibility, we can prove (again through use of positivity of inter-

sections) that w̃1 ∈M1
G(c, c2; J) and w̃2 ∈M1

G(c2, c
′; J).

We have obtained that all the elements on the boundary of I are 2-level pseudo-

holomorphic buildings with the properties claimed. This implies that the boundary of

M2
G(c, c′; J) is 0-dimensional manifold.

On the other hand, the gluing theorem gives the description of a neighbourhood

of the 2-level pseudoholomorphic buildings appearing in the boundaryM2
G(c, c′; J). This

neighbourhood admits a diffeomorphism to the infinite interval [0,+∞), that takes 0 to

the 2-level building and all other values to pseudoholomorphic strips in M̃2
G(c, c′; J).

Summing up, the compactification of the component I in M2
G(c, c′; J) has the

structure of a manifold with boundary, and in our particular case I it must be a 1-

dimensional with 0-dimensional boundary; i.e a closed interval. This finishes the proof

of the compactness claim.

We have thus obtained that under appropriate conditions the strip Legendrian

contact homology on the complement of Reeb orbits can be well defined. We will now

proceed to show how to construct cobordism maps for the strip Legendrian contact

homology in appropriate conditions.

We consider the following situation. Let (R × Y, dς) be an exact symplectic

cobordism from the contact form α0 to kα0 where 1 > k > 0 is a constant, and let

L and L̂ be exact Lagrangian cobordism diffeomorphic to cylinders from, respectively,

Λ to itself, and Λ̂ to itself. On (R × Y, dς) we consider the space J G(J, J) of almost

complex structures compatible with dς which are positively and negatively asymptotic

to J , and for which the set R × G is a union of pseudoholomorphic cylinders. For

J ∈ J G(J, J), we consider the moduli spaces MG(c, c′; J, L, L̂) of pseudoholomorphic

strips in M(c, c′; J, L, L̂) which do not intersect R × G, where the Reeb chords c, c′ ∈
T ρ

Λ→Λ̂
. Using perturbation techniques as in [30] and [35] one can prove that there is

a generic set J Greg(J, J) ⊂ J G(J, J) such that for all J ∈ J Greg(J, J) the moduli spaces

MG(c, c′; J, L, L̂) are Fredholm regular for every pair c, c′ ∈ T ρ
Λ→Λ̂

.

Taking J ∈ J Greg(J, J) we define the map Φ
J,$,L,L̂

: LCHρ
st|G(α0,Λ → Λ̂) →

LCHρ
st|G(α0,Λ → Λ̂), defined by counting elements in M0

G(c, c′; J, L, L̂). Precisely, for

c ∈ T ρ
Λ→Λ̂

we define:

Φ
J,$,L,L̂

(c) =
∑

c′∈T ρ
Λ→Λ̂

[#(M0
G(c, c′; J, L, L̂)) mod 2]c′ (3.12)
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We then have the following proposition, which is a analogous of proposition 3.4

for the present setup:

Proposition 3.9. The map Φ
J,$,L,L̂

: LCHρ
st|G(α0,Λ → Λ̂) → LCHρ

st|G(α0,Λ → Λ̂)

induces a map Φ
J,$,L,L̂

: LCHρ
st|G(α0,Λ→ Λ̂)→ LCHρ

st|G(α0,Λ→ Λ̂) on the homology

level.

Proof: the proof is completely analogous to the one of Proposition 3.4. The main

step one has to prove is that dρ,GJ ◦ Φ
J,$,L,L̂

= Φ
J,$,L,L̂

◦ dρ,GJ .

This identity follows from the description of the the compactfied moduli space

M1
G(c, c′; J, L, L̂). Similarly to what was done in the proof of proposition 3.4 what we

want is to show that the boundary of the moduli spaceM1
G(c, c′; J, L, L̂) is equal to the

space of 2-level pseudoholomorphic buildings w̃ whose levels w̃1 and w̃2 satisfy one of

the following conditions:

• there exists č ∈ T ρ
Λ→Λ̂

such that w̃1 ∈M0
G(c, č; J, L, L̂) and w̃2 ∈M1

G(č, c′; J),

• there exists č ∈ T ρ
Λ→Λ̂

such that w̃1 ∈M1
G(c, č; J) and w̃2 ∈M0

G(č, c; J, L, L̂).

The proof of this fact involves two steps: gluing and compactness. To show that

the 2-level buildings of this type appear in the boundary of M1
G(c, c′; J, L, L̂) is just an

application of the gluing theorem of section 2.4.

The compactness part is to show that any sequence of elements inM1
G(c, c′; J, L, L̂)

converging to the boundary can only converge to a 2-level building of the type mentioned

above. To see that this is the case we first notice that no bubbling can occur: this fol-

lows from the fact that the contact form α0 satisfies the conditions (a’), (b’), (c’) and

(d’) from the beginning of the section combined with the fact that R × G is a union

of pseudoholomorphic cylinders. Thus such a sequence can only converge to a building

formed only by strips. An argument using positivity of intersections identical to the

ones in lemmas 3.7 and 3.8, implies that no level of this building can intersect R × G.

That one can only have two levels and that they are of the type above follows from the

regularity of J and J .

Lastly, we prove for the present setup a proposition which analogous to Propo-

sition 3.5. Let (R × Y, dς) be an exact symplectic cobordism from the contact form α0

to kα0 where 1 > k > 0 is a constant, and let L and L̂ be exact Lagrangian cobor-

disms from, respectively, Λ to itself, and Λ̂ to itself. We assume there exists an isotopy

(R× Y, dςt) (for t ∈ [0, 1]) of exact symplectic cobordisms, together with isotopies Lt L̂t

of exact Lagrangian cobordisms from, respectively, Λ to itself, and Λ̂ to itself, satisfying:
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• dς0 = dς and dς1 = d(esα0),

• L0 = L and L1 = R× Λ,

• L̂0 = L̂ and L̂1 = R× Λ̂.

Letting J ∈ J Greg(J, J) we have the following:

Proposition 3.10. Under the conditions above, the induced map Φ
J,$,L,L̂

: LCHρ
st|G(α0,Λ→

Λ̂)→ LCHρ
st|G(α0,Λ→ Λ̂) on the homology level is the identity.

Proof: the idea is to mimic the proof of Proposition 3.5. For that the first thing

to do is to introduce a space of homotopy of almost complex structures. We denote by

Ĵ G(J, J) the space of smooth homotopies:

J t ∈ J G(J, J) : t ∈ [0, 1] (3.13)

such that J0 = J and J1 = J . Then, for all Reeb chords c, c′ ∈ T ρ
Λ→Λ̂

we consider the

moduli spaces:

M̂G(c, c′; J t, Lt, L̂t) = {(t, w̃) : t ∈ [0, 1] and w̃ ∈MG(c, c′; J t, Lt, L̂t)} (3.14)

Using the techniques of [14], [2] and [35] one obtains that for a generic subset Ĵ Greg(J, J) ⊂
Ĵ G(J, J) the moduli spaces M̂G(c, c′; J t, Lt, L̂t) are Fredholm regular for all c, c′ ∈ T ρ

Λ→Λ̂
.

With this in hand we define a map KG : LCHρ
st|G(α0,Λ→ Λ̂)→ LCHρ

st|G(α0,Λ→
Λ̂) that counts finite energy, Fredholm index −1 pseudoholomorphic strips in (R ×
Y, dςt, ), with one boundary component in Lt and one in L̂t. Because of the Fredholm

regularity of M̂G(c, c′; J t, Lt, L̂t), this set of index −1 strips whose positive puncture

detects a fixed chord c is finite, and therefore the map K is really well defined.

We now want to show that Id+Φ
J,$,L,L̂

+KG ◦dρ,GJ +dρ,GJ ◦KG = 0. The proof of

this fact is an adaptation of the analogous result that was proved in proposition 3.5 and

we leave it to the reader to complete it. We just mention that it is again a combination

of compactness and gluing to show that the pseudoholomorphic buildings involved in

the mapId+Φ
J,$,L,L̂

+KG ◦dρ,GJ +dρ,GJ ◦KG = 0 form the boundary of the 1-dimensional

space with boundary M̂1
G(c, c′; J t, Lt, L̂t). It is in the compactness part that one uses

the fact that α0 satisfies the conditions (a’), (b’), (c’) and (d’) combined with the fact

that at all times t, the set R×G is a union of pseudoholomorphic cylinders for the almost

complex structure J t in R× Y .



Chapter 3. Strip Legendrian contact... 57

3.5 Gluing revisited

For propositions 3.5 and 3.10 we need a slightly different version of the gluing theorem

that we now proceed to describe. We remember the reader that the SFT-compactness

theorem allows us to compactly the moduli spaces M̂(c, c′; Jt, Lt, L̂t). We notice that

the tangent space of M̂(c, c′; Jt, Lt, L̂t) is not expected to be the kernel of the Cauchy-

Riemann operator, but of a modified version DJt of it that takes into account the pa-

rameter t of deformation of almost complex structures. This modified operator whose

kernel is supposed to describe the tangent space M̂(c, c′; Jt, Lt, L̂t) has all the“good”

properties of the Cauchy-Riemann operators, for example it is a Fredholm operator in

an appropriate functional setting. This is why, one can use essentially the same tech-

niques used to show that moduli spaces of the type M̃(c, c′; J) are Fredholm regular to

show that spaces of type M̂(c, c′; Jt, Lt, L̂t) are Fredholm regular. The idea for this last

case is to obtain conditions under which one can guarantee that DJt is surjective. We

refer to [14] and [15] for a discussion of such ideas.

For gluing one has a similar picture in the sense that to prove a gluing theorem

that helps us to describe the compactification of M̂(c, c′; Jt, Lt, L̂t) one does not need

to introduce new techniques, but only to modify the ones used for proving theorems 2.4

and 2.5.

We will use the notation of section 3.3.1. Let Jt ∈ J̃reg(J, J) be a regular homo-

topy of almost complex structures in (R × Y,$t), where J ∈ Jreg(α0). We will denote

by M̂k(c, c′; Jt, Lt, L̂t) the set of elements of M̂(c, c′; Jt, Lt, L̂t) such that the Cauchy-

Riemann operator ∂Jt has Fredholm index k. Because of the regularity of Jt and from

the discussion above, we have that the dimension of M̂k(c, c′; Jt, Lt, L̂t) is k + 1, which

coincides with Fredholm index of DJt .

We let now c, c′, č+ and č− be transverse Reeb chords in T
Λ→Λ̂

(α0). For a fixed

t0, let w̃+ be a 2-level building such that its top level w̃1
+ is an element of M̃1(c, č+; Jt0)

and w̃2
+ is an element of M̂−1(č+, c′; Jt0). Analogously, let w̃− be a 2-level building

such that its top level w̃1
− is an element of M̂−1(c, č−; Jt0) and w̃2

− is an element of

M̃1(č−, c′; Jt0).

Theorem 3.11. If there is a building w̃+ as described above, then there exists an em-

bedding Ψ+ : [0,+∞)→M1
(c, c′; Jt, Lt, L̂t) such that:

• Ψ+(0) = w̃+, where w̃+ is the two level building whose top level is w̃1
+ and bottom

level is w̃2
+,

• Ψ+(s) ∈ M̂1(c, c′; Jt, Lt, L̂t) for every s ∈ (0,+∞),
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• the map Ψ+ is a homeomorphism from [0,+∞) to a neighbourhood of w̃+ in

M1
(c, c′; Jt, Lt, L̂t).

Moreover, if w̃+(n) is a sequence of elements of M̂1(c, c′; Jt0) converging to w̃+, then

there exists n0 such that w̃+(n) ∈ Ψ+([0, 1]) for all n ≥ n0.

Analogously, if there is a building w̃− as described previously, then there exists

an embedding Ψ− : [0,+∞)→M1
(c, c′; Jt, Lt, L̂t) such that:

• Ψ−(0) = w̃−, where w̃− is the two level building whose top level is w̃1
− and bottom

level is w̃2
−,

• Ψ−(s) ∈ M̂1(c, c′; Jt, Lt, L̂t) for every s ∈ (0,+∞),

• the map Ψ− is a homeomorphism from [0,+∞) to a neighbourhood of w̃− in

M1
(c, c′; Jt, Lt, L̂t).

Moreover, if w̃−(n) is a sequence of elements of M̂1(c, c′; Jt0) converging to w̃−, then

there exists n0 such that w̃−(n) ∈ Ψ−([0, 1]) for all n ≥ n0.

It is this gluing theorem that we used in the proofs of propositions 3.5 and 3.10.



Chapter 4

Homotopical growth rate of

Legendrian contact homology and

topological entropy

Given a contact 3-manifold (Y, ξ), for an associated contact form α0 adapted to a pair

of disjoint Legendrian knots Λ and Λ̂ we define the exponential homotopical growth of

the strip Legendrian contact homology LCHst(α0,Λ → Λ̂) with respect to the action.

We then use it to estimate the growth of the number of Reeb chords from Λ to Λ′ for

other contact forms associated to (Y, ξ) when Λ′ is sufficiently close to Λ̂.

We define for each number C > 0 the set ΣC
Λ→Λ̂

(α0) of homotopy classes ρ

satisfying:

• all the chords in T ρ
Λ→Λ̂

(α0) have action smaller then C

• LCHρ
st(α0,Λ→ Λ̂) 6= 0

Definition 4.1. We say that a hypertight contact form α0 (associated to a contact

manifold (Y, ξ)) presents exponential homotopical growth of strip Legendrian contact

homology if α0 is adapted to a Legendrian link Λ, Λ̂, and there are constants C0 > 0,

a > 0 and d such that:

#(ΣC
Λ→Λ̂

(α0)) > eaC+d (4.1)

for all C > C0.

In this case we will say that LCHρ
st(α0,Λ → Λ̂) has exponential homotopical

growth with exponential weight a > 0.

59
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4.1 Growth of the number of Reeb chords

Let Λ and Λ̂ be Legendrian submanifolds of (Y, ξ = ker(α)): we will say that Λ̂ is

(α,Λ)-transverse if all the Reeb chords in T
Λ→Λ̂

(α) are transverse. We will denote by

NC(α,Λ, Λ̂) the number of Reeb chords in T
Λ→Λ̂

(α) with action ≤ C. We will start by

presenting a result which shows how to estimate the growth of number of Reeb chords

using the strip Legendrian contact homology.

We will consider the space of Ckdiff (M) of Ck-diffeomorphisms of M . We will fix

in this space a metric which generates the canonical topology on Ckdiff (M). From now

on, when we say that two diffeomorphisms of M are ε-close, we mean close with respect

to this fixed metric. Likewise, we will fix a metric on the space of loops in M .

By the Weinstein tubular neighbourhood theorem the Legendrian knot Λ̂ has a

tubular neighbourhood Nε contactomorphic to the local model given by:

ker(cos(θ)dx+ sin(θ)dy) (4.2)

where (θ, z) ∈ S1 × D, D = {z ∈ C; | z |≤ 1} and Λ̂ is identified with the circle (θ, 0, 0).

We denote by Λ̂z the Legendrian submanifolds (θ, z) obtained by fixing z. As the Λz

form a fibration of Nε by Legendrian knots we will refer to them as Legendrian fibers.

The neighbourhood Nε is chosen sufficiently small so that all Legendrian fibers Λz are

ε-close to Λ̂.

We will now show how to construct an appropriate Lagrangian cobordism from

Λ̂ to the Legendrian fibers Λ̂z. It is clear that Λ̂z is Legendrian isotopic to Λ̂, this can

be done explicitly by taking a path of Legendrian fibers which starts at Λ̂z and finishes

at Λ̂. Clearly for every z ∈ D, by a smoothing process we can then obtain a path Λ̂t

(t ∈ R) with Λ̂t = Λ̂z; t ≤ 0 and Λt = Λ̂; t ≥ 1. Consider now a path of diffeomorphisms

F zt : Y → Y , which equals the identity outside a small neighbourhood of Λ̂ disjoint from

Λ and such that F zt (Λ̂t) = Λ̂, F zt = Id for t ≥ 1 and F zt is independent of t for t ≤ 0.

The main observation is that, if we take the neighbourhood Nε to be sufficiently small,

we can demand that our F zt satisfies, dC9(F zt , Id) < µ(ε), for all z ∈ D. In other words,

we can have an uniform control on the distance of F zt from the identity map Id if we

restrict our attention to a sufficiently small neighbourhood of Λ̂.

We will use the maps F zt to construct an exact Lagrangian cobordism from Λ̂

to the Legendrian fiber Λ̂z. For this we define the smooth family of contact forms

αtz = (F zt )∗α0. Notice that the Reeb vector fields of these contact forms have the

same dynamics of the Reeb vector field Xα0 ; however for the contact form αtz the curve

Λ̂z is represented by Λ̂. Precisely, we have that the Reeb chords in T
Λ→Λ̂

(α0
z) are in



Chapter 4. Homotopical growth rate... 61

bijective correspondence with the Reeb chords in T
Λ→Λ̂z

(α0). This follows from the

relation φtX
α0
z

◦ (F z0 )−1 = (F z0 )−1 ◦ φtXα0
between the Reeb flows of α0

z and α0. Let now

hδ : R→ R, be an increasing function satisfying:

hδ(0) = (1− δ) and h(1) = 1, (4.3)

hδ(t) = (1− 2δ)et+1 for t ≤ −1 and hδ(t) = (1 + 2δ)et−2 for t ≥ 2, (4.4)

h′δ(t) > 0 for all t ∈ R and h′δ(t) = δ for t ∈ [0, 1]. (4.5)

If we choose ε (and consequently the neighbourhood Nε) sufficiently small, we

have that d(hδ(t)α
t
z) is an exact symplectic form in the manifold R×Y . This defines an

exact symplectic cobordism from αtz to (1−2δ)α0, with the property that the L̂ = R×Λ̂ is

an exact Lagrangian submanifold. Performing an identical construction, we can produce

an exact symplectic cobordism from (1− 2δ)α0 to αtz, such that L̂ = R× Λ̂ is an exact

Lagrangian submanifold.

Summing up the discussion above, we have shown that, given δ > 0, there is

ε > 0, so that for every Legendrian fiber Λ̂z in Nε, we can construct an exact symplectic

cobordisms from (1+2δ)α0 to (1−2δ)α0 that coincide with a piece of the symplectization

of α0
z in [0, 1] × Y , and such that L̂ = R × Λ̂ and L = R × Λ are exact Lagrangian

submanifolds.

Proposition 4.2. Let (Y, ξ) be a contact manifold and Λ and Λ̂ be two disjoint Legen-

drian submanifolds, such that α0 is associated to (Y, ξ) and adapted to the pair (Λ, Λ̂).

Suppose that the strip contact homology LCHst(α0,Λ → Λ̂) has exponential homotopi-

cal growth with exponential weight a > 0. Let α be another contact form associated to

(Y, ξ), and take g > 0 to be the function such that α = gαα0. Then given δ > 0 there

exists ε > 0 and C0 ≥ 0 such that, for every Legendrian fiber Λ̂z in Nε which is (α,Λ)

transverse, the numbers NC(α,Λ, Λ̂z) satisfy

e
aC

(1+4δ) max(gα) < NC(α,Λ, Λ̂z) (4.6)

for all C ≥ C0.

Proof: we divide the proof in steps.
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Step 1: Reduction to the non-degenerate case. We first show that it suffices to

prove the estimate for non-degenerate contact forms; as the general case follows from

this one by an approximation procedure.

Let j be a natural number. As Λ̂z is (α,Λ) transverse, it is possible to make a

C∞ small perturbation of the contact form α to a non-degenerate contact form α(j)

which generates the same contact structure as α and such that:

• NC(α,Λ, Λ̂z) = NC(α(j),Λ, Λ̂z), for all C ≤ j,

• Λ̂z is (α(j),Λ) transverse.

We demand that the perturbations α(j) are taken to be close enough to α to

guarantee that there are exact symplectic cobordisms from α to 1
1+jα(j) and from α(j)

to 1
1+jα. Supposing now that the proposition is true for all α(j), we get, because of the

conditions on the α(j), that for a given C > 0 we have for all j ≥ C:

NC(α′,Λ, Λ̂z) = NC(α′j ,Λ, Λ̂
z) > e

aC
(1+4δ) max(gj) (4.7)

where gj is the function such that gjα = α(j).

Letting j → +∞ we have that gj → gα, what implies the desired inequality for

α.

Step 2: We construct a sequence of different symplectic cobordisms.

First, we construct a symplectic cobordism from (Y, (max(gα) + 2µ)α0) to (Y, α);

for any µ > 0 we pick a function fµ : R × Y → R such that
∂fµ
∂s > 0 if s ∈ [0, 1],

f(s, x) = esgα(x) if s ≤ 0 and f(s, x) = es−1(max(gα) + 2µ) for s ≥ 1; notice that as

max(gα) is a positive constant, the Reeb flow of max(gα)α0 is just a reparametrization

of the Reeb flow of α0. (R× Y, d(fµ)α) is the desired cobordism.

By an analogous construction we can define an exact symplectic cobordism from

(Y, α) to (Y, bα0) for a sufficiently small constant b > 0. Notice that in both constructions

L̂ = R× Λ̂ and L = R× Λ are exact Lagrangian submanifolds.

Using the map F z0 , we can modify the above construction to obtain an exact sym-

plectic cobordism from (Y, (max(gα) + 2µ)α0
z) to (Y, (F z0 )∗α), and and exact symplectic

cobordism from (Y, (F z0 )∗α) to (Y, bα0
z). Again, the cylinders L̂ = R× Λ̂ and L = R×Λ

are exact Lagrangian submanifolds in both these cobordisms.



Chapter 4. Homotopical growth rate... 63

We enumerate the exact symplectic cobordisms we have constructed so far, all of

them diffeomorphic to R× Y .

• By the construction we made before of the proposition, we have an exact simplectic

cobordism V1 from (max(gα) + 2µ)(1 + 4δ)α0 to (max(gα) + 2µ)α0
z.

• By the construction in this step we have an exact simplectic cobordism V2 from

(max(gα) + 2µ)α0
z to (1 + µ)(F z0 )∗α.

• Again, by the construction in this step we have an exact simplectic cobordism V3

from (1− µ)(F z0 )∗α to b(1− µ)α0
z.

• Finally, by the construction before the proposition, we know that there is an exact

simplectic cobordism V4 from bα0
z to b(1− 4δ)α0

From our discussion in this session, it is clear that such cobordisms can be con-

structed in such a way that for all of them, the cylinders L̂ = R× Λ̂ and L = R×Λ are

exact Lagrangian submanifolds.

Step 3: The exact Lagrangian cobordism and the chain map on the strip Legen-

drian contact homology of the ends.

We can glue these cobordisms to obtain a single exact symplectic cobordism,

as is done in [16]. The result is that we can produce an exact symplectic cobordism

(V = R× Y, ω) such that:

• ω = d(et−5(max(gα)+2µ)(1+4δ)α0) in [5,+∞)×Y and ω = d( be
t

2 α0) in (−∞,−5]×
Y

• ω = d(1 + t)(F z0 )∗α in [−µ, µ]× Y

• L̂ = R× Λ̂ and L = R× Λ are exact Lagrangian submanifolds

Following section 2.1.3 we can produce a splitting family (V, ωR) ,for R > 0, of

exact symplectic cobordisms from (max(gα) + 2µ)(1 + 4δ)α0 to b
2α0 along (F z0 )∗α. It

is clear from our construction that for all R the symplectic cobordims (V, ωR) can be

deformed through exact symplectic cobordisms to the symplectization of α0, in such a

way that L = R×Λ and L̂ = R× Λ̂ are exact Lagrangian submanifolds at every stage of

the isotopy. As a consequence, we can apply Proposition 3.4, to obtain that for regular

almost complex structures J̆ ∈ Jreg,ρ(J, J) in the cobordisms (V, ωR) we get an induced

isomorphism Φ
V,ωR,L,L̂

from LCHρ
st(α0,Λ→ Λ̂) to itself.

Step 4: Proof of the theorem for α non-degenerate.
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We first pick for (V, ωR) an almost complex structure JV as in section 2.1.3 and

take ρ ∈ ΣC
Λ→Λ̂

. We claim that for such an almost complex structure, there exist chords

c, c′ ∈ T ρ
Λ→Λ̂

(α0) such that M(c, c′; JV ) is non-empty.

We argue by contradiction: If no such strip existed we have that JV ∈∈ Jreg,ρ(J, J)

and therefore induces an isomorphism on LCHρ
st(α,Λ → Λ̂). Because M(c, c′; JV ) is

empty we know that the cobordism map Φ
V,$,L,L̂

is the zero map; on the other hand, as

LCHρ
st(α,Λ→ Λ̂) 6= 0 and Φ

V,$,L,L̂
is an isomorphism it cannot be the zero map. Thus

we have reached a contradiction and therefore M(c, c′; JV ) is non-empty.

We now pick a sequence Rn → +∞ and take a sequence of elements w̃Rn ∈
M(c, c′; JV ) and invoke the SFT compactness results of [8]. Because there is a global

bound on the energy of all elements of M(c, c′; JV ), the results in [8] imply that w̃Rn

converges to a holomorphic building w̃. Because of the stretching the neck process, we

have that one of the levels of this building lives in the symplectization of (F z0 )∗α.

It follows from the properties of the splitting family we are considering we can

apply Proposition 2.3 in order to describe the limiting building which has the structure

of a tree with one principal branch. For topological reasons one of the punctures of

this level has to detect a Reeb chord ĉ ∈ T ρ
Λ→Λ̂

((F z0 )∗α); with action smaller than (1 +

4δ)(1 + 2µ) max(gα)C. Let w̃j for j ∈ {1, ...,m} be the levels of the pseudoholomorphic

building w̃. From Proposition 2.3 we obtain the following picture:

• the upper level w̃1 is composed of one pseudoholomorphic disc, with has one pos-

itive puncture, which is asymptotic to a Reeb chord c0 ∈ T ρ
Λ→Λ̂

(α0), and several

negative boundary and interior punctures. All of the negative punctures detect

contractible Reeb orbits or contractible self Reeb chords of either Λ or Λ̂, excepting

one negative boundary puncture that detects a Reeb chord c1 in either T ρ
Λ→Λ̂

(α0)

in case this level lives in the symplectization of α0 or in T ρ
Λ→Λ̂

(α0
z) in case this level

lives in a cobordism from α to α0
z;

• on every other level w̃k there is a special curve which has one positive puncture,

which is asymptotic to a Reeb chord ck−1 in ρ and possibly several interior and

boundary negative punctures. Of the negative boundary punctures there is one

that is asymptotic to an orbit ck in ρ and all the others are contractible.

As a consequence we obtain that the level w̃k living in the symplectization of (F z0 )∗α con-

tains a curve with one positive puncture asymptotic to a Reeb chord ĉ ∈ T ρ
Λ→Λ̂

((F z0 )∗α).

Because all punctures in the building detect Reeb orbits and chords with action smaller

than the action A(c0), we conclude that A(ĉ) ≤ (1 + 4δ)(1 + µ) max(gα)C. As seen
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previously, this implies that (F z0 )−1(ĉ) is a Reeb chord in T ρ
Λ→Λ̂z

(α) with action ≤
(1 + 4δ)(1 + 2µ) max(gα)C.

As a consequence of this existence result for all our homotopy classes ρ ∈ ΣC
Λ→Λ̂

,

we have obtained that e
aC

(1+2µ)(1+4δ) max(gα) < NC(α,Λ, Λ̂z). As µ can be chosen arbitrarily

small, we obtain the promised estimate for α.

4.2 Positivity of the topological entropy

Using the results of the previous subsection, we will now prove that if a contact 3-

manifold (Y, ξ), admits an associated contact form α0 adapted a pair of disjoint Legen-

drian knots Λ and Λ̂ for which the strip Legendrian contact homology LCHst(α,Λ→ Λ̂)

has exponential homotopical growth rate with respect to the action, then every Reeb

flow for this contact manifold has positive topological entropy.

We now study the Reeb chords from a fixed Legendrian knot Λ (disjoint from

Nε) to the Legendrian fibers Λz of the neighbourhood Nε constructed previously.

In the disc D we will consider the Lebesgue measure which we obtain as consid-

ering this disc embedded in the plane. Therefore, when we say for almost every z ∈ D,

we mean almost every with respect to the Lebesgue measure.

Lemma 4.3. Let α be a contact form associated to a contact 3-manifold (Y, ξ), with Λ

and Λ̂ being Legendrian curves. We consider a neighbourhood Nε of Λ̂ with coordinates

(θ, z) as constructed in the previous section. Then, for almost every z ∈ D , all chords

from Λ to Λz are (α,Λ) transverse.

Proof: Taking a parametrization ρ : S1 → Λ, we use the flow to define the

following map on the cylinder S1 × R:

F (s, t) = φtα(ρ(s))

The set Uε = F−1(Nε) is an open subset of S1 × R. Let π : Nε → D be the

projection to the two last coordinates. The restriction F |Uε can be composed with π to

obtain a differentiable map:

π ◦ F |Uε : Uε → D.
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We remark that the critical points of π ◦ F |Uε are exactly points (s, t) where

the curve {φt(ρ(s); s ∈ S1} is tangent to some fiber Λz. To see this, note that by

construction ∂t(F |Uε) = Xα and ∂s(F |Uε) 6= 0. This implies that ∂t(π ◦F |Uε) is always

non-zero, because the vector field Xα is never tangent to the Legendrian fibers Λz; and

∂s(π ◦ F |Uε)) is zero if, and only if, ∂s(F |Uε) is tangent to a Legendrian fiber. As a

consequence, we obtain that the regular values z are of π ◦ F |Uε in D are in bijective

correspondence with the set of Legendrian fibers Λz satisfying that every Reeb chord

from Λ to Λz is transverse.

Applying the finite dimensional Sard’s theorem to π ◦ F |Uε we have that almost

every element of D is a regular value of π ◦ F |Uε , completing the proof of the lemma.

With this lemma at hand, we are ready to prove the main theorem of this chapter.

Theorem 4.4. Let (Y, ξ = ker(α0)) be a contact 3-manifold with a contact form α0

adapted to the pair of disjoint Legendrian knots (Λ, Λ̂). Assume that LCHst(α0,Λ→ Λ̂)

has exponential homotopical growth rate (with respect to the action) with exponential

weight a > 0. For any contact form α associated to (Y, ξ), let gα be the function such

that α = gαα0. Then, the Reeb flow of Xα has positive topological entropy, and moreover:

htop(φXα) ≥ a

max(gα)
(4.8)

Proof: Our idea is to mimic the use of Yomdin’s theorem which is done for

geodesic flows and Reeb flows in spherizations (see [33] and [38]).

Step 1 :

Let α0 be our contact form satisfying the hypothesis of the theorem and fix δ > 0.

Take ε > 0, so that the tubular neighbourhood Nε satisfies the hypothesis of Proposition

4.2. Then, combining Proposition 4.2 and Lemma 4.3, we obtain that for almost every

z ∈ D, the number NC(α,Λ,Λz) of Reeb chords of Xα from Λ to Λz satisfies:

e
aC

(1+4δ) max(gα) ≤ NC(α,Λ,Λz) (4.9)

for all C ≥ C0.
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Step 2:

We first introduce a Riemannian metric on the manifold Y which restricted to Nε

is just the euclidean metric for the coordinates (θ, z). This metric induces a measure of

area Area(Σ) for all surfaces Σ immersed in Y . We want to estimate the area AreaC(Λ)

of the immersed surface {φtXα(Λ), t ∈ [0, C]}, by the Reeb flow φtXα of α. The surface

{φtXα(Λ), t ∈ [0, C]}, can be seen as the image of the map FC,Λ : Λ× [0, C]→ Y , where

FC,Λ(p, t) = φtXα(p). Denoting Uε,C = F−1
C,Λ(Nε), we have:

AreaC(Λ) ≥ Area(FC,Λ(Uε,C)) ≥ Area(π(FC,Λ(Uε,C))) (4.10)

where the last area is taken with multiplicities with respect to the Lebesgue measure in

D. To obtain the inequality on the right side, one uses the fact that the area measure

on Nε coincides with the area measure induced by the euclidean metric.

Using the estimate made in step 1 for the counting function NC(α,Λ,Λz) for

almost every z = (x, y) ∈ D, we get the inequality:

Area(π(FC,Λ(Uε,C))) =

∫
D
NC(α,Λ, Λ̂z)dx ∧ dy ≥

∫
D
e

aC
(1+4δ) max(gα)dx ∧ dy (4.11)

for all C ≥ C0. As a result, we obtain that:

AreaC(Λ) ≥ Area(π(FC,Λ(Uε,C))) ≥ e
aC

(1+4δ) max(gα) . (4.12)

for C ≥ C0.

It follows then from (4.12) that:

lim sup
C→+∞

1

C
log(AreaC(Λ)) ≥ a

(1 + 4δ) max(gα)
. (4.13)

Corollary 1.4 of Yomdin’s theorem now implies that htop(φXα) ≥ a
(1+4δ) max(gα) . As the

constant δ > 0 in Proposition 4.2 can be taken arbitrarily small, we obtain the claimed

estimate.

Remark: it is expected that by using the Polyfold technology which is being devel-

oped by Hofer, Wysocki and Zehnder one will be able to replace the condition “exponen-

tial homotopical growth rate” by the weaker condition “exponential growth rate” on the

statement Theorem 1 above. It is also expected that by unpublished work of Bourgeois,

Ekholm and Eliashberg one could obtain a similar estimate on the topological entropy
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from the exponential growth of the linearized Legendrian contact homology, which in-

cludes the strip Legendrian contact homology as a special case. As these results would

depend on technologies which are still being developed we opted for the use of our less

general versions which are, however, sufficient do deal for all the examples that we are

aware of.

4.3 Implied positivity of topological entropy

In the previous sections of this chapter we described properties of a contact 3-manifold

(Y, ξ) which guarantee that all Reeb flows associated to (Y, ξ) have positive topological

entropy. In this section we turn our attention to the problem of how the existence of

periodic orbits of certain types might force positivity of topological entropy.

We explain more precisely our aim. Let (Y, ξ) be a contact 3-manifold which admit

associated Reeb flows with zero topological entropy. We study the following question:

is there an oriented transverse link G in (Y, ξ) such that, every Reeb flow associated to

(Y, ξ) possessing G as a set of Reeb orbits have positive topological entropy?

In this section we give a first step to answer this: we show that there exist

conditions on the triple (Y, ξ,G) that imply positivity of topological for all Reeb flows

associated to (Y, ξ) having G as a set of Reeb orbits has positive topological entropy. We

call this an implied positivity of entropy result: having G as a set of Reeb orbits implies

positivity of topological entropy.

For our contact 3-manifold (Y, ξ), for a contact form α0 adapted to a pair of

disjoint Legendrian knots Λ and Λ̂ in the complement of G, we define the exponential

homotopical growth of the linearized Legendrian contact homology LCHst|G(α0,Λ→ Λ̂)

with respect to the action.

We define for each number C > 0 the set ΣC
Λ→Λ̂,G

(α0) of homotopy classes ρ ∈
Σ

Λ→Λ̂,G satisfying:

• all the chords in T ρ,G
Λ→Λ̂

(α0) have action smaller then C

• LCHρ
st|G(α0,Λ→ Λ̂) 6= 0

Definition 4.5. With the notation above, we say that LCHst|G(α0,Λ → Λ̂) has expo-

nential homotopical growth if there exist a > 0 and d ∈ R such that

#(ΣC
Λ→Λ̂

(α0)) > eaC+d (4.14)

for all C > 0.
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More precisely, if this is satisfied we say that LCHρ
st(α0,Λ→ Λ̂) has exponential

homotopical growth with exponential weight a > 0. Analogous to Proposition 4.2, and

keeping the notation of Nε for a neighbourhood of Λ̂ as in section 4.1, we have the

following:

Proposition 4.6. Let (Y, ξ) be a contact manifold and Λ and Λ̂ be two disjoint Legen-

drian submanifolds, such that α0 is associated to (Y, ξ) and adapted to the pair (Λ, Λ̂) in

the complement of G. Suppose that the strip contact homology LCHst|G(α0,Λ→ Λ̂) has

exponential homotopical growth with exponential weight a > 0. Let α be another contact

form associated to (Y, ξ) and having G as a set of Reeb orbits, and take gα > 0 to be the

function such that α = gαα0. Then given δ > 0 there exists ε > 0 such that, for every

Legendrian fiber Λ̂z in Nε which is (α,Λ) transverse, the numbers NC(α,Λ, Λ̂z) satisfy

e
aC

(1+4δ) max(gα) ≤ NC(α,Λ, Λ̂z). (4.15)

Proof: The strategy of the proof is identical to the one of proposition 4.2. We

will follow this strategy, pointing out the necessary modifications but referring many

times to the proof of proposition 4.2 in order to avoid repetitions.

Firstly, we consider the neighbourhood Nε and the diffeomorphisms F zt as in

section 4.1; the only extra requirement we make is that both Nε and the sets where

diffeomorphisms F zt are different to the identity are disjoint from the link G. Then,

following the recipe of section 4.1, we have that, given δ > 0, there is ε > 0, so that

for every Legendrian finer Λ̂z in Nε, we can construct exact symplectic cobordisms from

(1+2δ)α0 to (1−2δ)α0, that coincides with piece of the symplectization of α0
z in [0, 1]×Y ,

such that L̂ = R × Λ̂ and L = R × Λ are exact Lagrangian submanifolds. Notice that

in these exact symplectic cobordisms, for every s ∈ R the contact submanifold {s} × Y
has G as a set of Reeb orbits.

Step 1: the reduction to the non-degenerate case is identical to the one per-

formed in Step 1 of the proof of Proposition 4.2, with the extra assumption that the

perturbations α(j) of α also have the property that the link G is a set of Reeb orbits of

α(j).

Step 2: The construction of a series of symplectic cobordisms.

The cobordisms considered here are again identical to the ones in Step 2 of

Proposition 4.2. Again it is clear that performing that construction with the present

setup, gives us that in all the four cobordisms, for every for every s ∈ R, the contact

submanifold {s} × Y has G as a set of Reeb orbits.



Chapter 4. Homotopical growth rate... 70

Step 3: The exact Lagrangian cobordism and the chain map on the strip Legen-

drian contact homology on the complement of Reeb orbits.

We simply glue the cobordisms exactly as it is done in Step 3 of proposition 4.2.

The result is that we can produce an exact symplectic cobordism (V = R × Y, ω) such

that:

• ω = d(et−5(max(gα)+2µ)(1+4δ)α0) in [5,+∞)×Y and ω = d( be
t

2 α0) in (−∞,−5]×
Y

• ω = d(1 + t)(F z0 )∗α in [−µ, µ]× Y

• L̂ = R× Λ̂ and L = R× Λ are exact Lagrangian submanifolds

• for every s ∈ R, the contact submanifold {s} × Y has G as a set of Reeb orbits.

It is immediate from the construction that this cobordism satisfies the hypothesis of

Proposition 3.10. As a result for a generic choice of almost complex structure in (V =

R × Y, ω) the induced cobordism map on the homology level is defined and equals the

identity.

Again following the recipe of section 2.1.3 we can produce a splitting family

(V, ωR) ,for R > 0, of exact symplectic cobordisms from (max(gα) + 2µ)(1 + 4δ)α0

to b
2α0 along (F z0 )∗α. For every R > 0, the cobordisms (V = R × Y, ω) satisfies the

hypothesis of Proposition 3.10. This implies that for Fredholm regular almost complex

structures J̆ ∈ J Greg,ρ(J, J) in the cobordisms (V, ωR) the induced isomorphism Φ
V,ωR,L,L̂

from LCHρ
st|G(α0,Λ→ Λ̂) to itself is the identity.

Step 4: Proof of the proposition for α non-degenerate.

We start like in Step 4 of Proposition 4.2. We pick for (V, ωR) an almost complex

structure JV as in section 2.1.3 and take ρ ∈ ΣC
Λ→Λ̂

. We claim that for such an almost

complex structure, there exist chords c, c′ ∈ T ρ
Λ→Λ̂

(α0) such that MG(c, c′; JV ) is non-

empty. The reasoning is that if this was not the case we would have that JV is Fredholm

regular in (V, ωR) and therefore the induced map in Φ
V,ωR,L,L̂

would be the identity.

If MG(c, c′; JV ) was empty, this map would also take every element to 0; however as

LCHρ
st|G(α0,Λ → Λ̂) 6= 0 we arrive at a contradiction. Notice that R × G is a union of

pseudoholomorphic cylinders for the almost complex structure JV .

With this in hand we take a sequence Rn → +∞ and a sequence of elements

w̃Rn ∈ MG(c, c′; JV ) invoke the SFT compactness results of [8]. Because there is a
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global bound on the energy of all elements of MG(c, c′; JV ), the results in [8] imply

that a subsequence of w̃Rn converges to a holomorphic building w̃. Because of the

stretching the neck process, we have that one of the levels of this building lives in the

symplectization of (F z0 )∗α.

Because of the properties of the splitting family we are considering we can apply

Proposition 2.3 in order to describe the limiting building which has the structure of a

tree with one principal branch. We start by pointing out that no connected component

of G can appear as asymptotic limit for the levels of the building w̃. We will prove this

by contradicton; suppose that a Reeb orbit γG is an asymptotic orbit for a puncture z

of a level w̃l of w̃. Then the building Bz defined in section 2.4 and associated to this

puncture z is contractible; it projects in Y to a disc DγG which has γG as boundary and

therefore its interior must intersect G. It follows then from positivity of intersection that

this interior intersection had to exist in w̃Rn for Rn sufficiently large; but this contradicts

the fact that w̃Rn ∈ MG(c, c′; JV ). For similar reasons we can also rule out that any

level of w̃ intersects R× G.

Using that the curve w̃ does not intersect R × G we will see that one of the

punctures of this w̃ has to detect a Reeb chord ĉ ∈ T ρ
Λ→Λ̂

((F z0 )∗α); with action smaller

than (1+4δ)(1+µ) max(gα)C. Too see this we denote by w̃j for j ∈ {1, ...,m} the levels

of the pseudoholomorphic building w̃, and obtain from Proposition 2.3 the following

picture:

• the upper level w̃1 is composed of one pseudoholomorphic disc, with has one pos-

itive puncture, which is asymptotic to a Reeb chord c0 =∈ T ρ
Λ→Λ̂

(α0), and several

negative boundary and interior punctures. All of the negative punctures detect

contractible Reeb orbits or contractible self Reeb chords of either Λ or Λ̂, excepting

one negative boundary puncture that detects a Reeb chord c1 in either T ρ
Λ→Λ̂

(α0)

in case this level lives in the symplectization of α0 or in T ρ
Λ→Λ̂

(α0
z) in case this level

lives in a cobordism from α to α0
z;

• on every other level w̃k there is a special curve which has one positive puncture,

which is asymptotic to a Reeb chord ck−1 in ρ and possibly several interior and

boundary negative punctures. Of the negative boundary punctures there is one

that is asymptotic to an orbit ck in ρ and all the others are contractible.

The idea is that as w̃ does not intersect R×G the special Reeb chord ck−1 of each level

has to be in the same homotopy class in Σ
Λ→Λ̂,G as the orbit c which is ρ. From here

one can proceed as in the last two paragraphs of the proof of proposition 4.2.
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The idea now is that Proposition 4.5, can be used to prove a version of theorem

1 which is adapted to the current situation.

Theorem 4.7. Let (Y, ξ) be a contact manifold and Λ and Λ̂ be two disjoint Legendrian

submanifolds, such that α0 is associated to (Y, ξ) and adapted to the pair (Λ, Λ̂) in the

complement of G. Suppose that the strip contact homology LCHst|G(α0,Λ → Λ̂) has

exponential homotopical growth with exponential weight a > 0. Let α be another contact

form associated to (Y, ξ) and having G as a set of Reeb orbits, and take gα > 0 to be the

function such that α = gαα0. Then, the Reeb flow of Xα has positive topological entropy,

and moreover:

htop(φXα) ≥ a

max(gα)
(4.16)

Proof: the proof of Theorem 1 carries verbatim to the present theorem, only by

using proposition 4.5 in the places where we previously invoked Proposition 4.2.
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Unit tangent bundle of surfaces of

genus ≥ 2

5.1 Contact forms for geodesic flows

The first class of examples we will study is of unit tangent bundles of orientable surfaces

of genus greater or equal to 2. Given a manifold Q its unit tangent bundle T1Q can be

given a canonical contact structure which we will denote by ξcan; this contact structure

is associated to geodesic flows. We begin by recalling how this can be done; our reference

for this construction is [38].

Given a manifold Q of dimension n, let g be any Riemannian metric on Q. This

metric induces a unique distribution of n planes in the tangent bundle TQ, the so called

horizontal distribution Hg; see section 1.3 in [38]. This distribution is always transverse

to the vertical distribution V in TQ, which is the unique distribution of n-planes always

tangent to the fibres of TQ; this implies that for every y ∈ TQ we have the following

TyTQ := Hy
⊕
Vy. Let π : TQ → Q be the canonical projection. Because H is

transversal to the fibers we have that at each point y ∈ TQ the restriction of the the

differential Dπ to Hy is an isomorphism between Hy and Tπ(y)Q. With this in hand,

we can use the map π to pull back g to an inner product in the distribution H. As

the metric g also induces an inner product on the distribution V ; using these two inner

products we have as a result a metric ĝ induced by g on the bundle TQ; this metric is

usually called the Sasaki metric.

We will now introduce an almost complex structure Jg on TQ associated to the

metric g. Let v ∈ TqQ and y ∈ π−1(q); from our previous discussion we know that there

are unique vectors vH ∈ Hy and vV ∈ Hy which are associated to v; vH is the unique
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vector in H(q,v) that is in the pre-image of the restriction of Dπ to H(q,v), and vV is the

vector on the fiber TqQ of TQ canonically identified with v. Now, for each vector v̌ ∈ Hy

we define Jg(v̌) := (π(v̌))V ∈ Vy, and for each v̆ ∈ Vy we define Jg(v̆) := −(π(v̆))H ∈ Hy.

We extend Jg linearly to an almost complex structure in TQ; it is easy to see that there

is a unique way to do that.

With this in hand we can define a symplectic form $g in TQ; for vectors v1, v2 ∈
TyTQ we define:

$g
y(v1, v2) := ĝ(Jg(v1), v2). (5.1)

We will not prove here that $g is indeed a symplectic form, but refer to [38] for the

proof. Let H(q, v) = gq(v, v); in this same reference, it is proven that the Hamiltonian

vector field XH associated to H via the symplectic form $ is the geodesic vector field

Gg of the metric g, and the unit tangent bundle T1Q is diffeomorphic to set H−1(1).

Lastly we have the following definition:

αg := iGg ĝ (5.2)

With these definitions, we can state the following proposition, which one can find

demonstrated in page 16 of [38]:

Proposition 5.1. The restriction αg |H−1(1) of αg is a contact form on T1Q. Moreover,

its Reeb vector field Xα is the restriction of geodesic vector field Gg to H−1(1).

This proposition justifies what we claimed previously about the relation between

geodesic flows and Reeb flows; it shows that any geodesic flow is a Reeb flow for some

contact form. As the contact form αg on T1Q varies continuously as we very g con-

tinuously in the contractible space MET of Riemannian metrics on Q, we can apply

Gray’s stability ([38]) theorem to conclude that all αg are associated to a unique (up to

diffeomorphism) contact structure ξcan on the unit tangent bundle T1Q. This contact

structure ξcan is therefore related to all geodesic flows on T1Q as it contains all of them

among its Reeb flows.

There are two classes of Legendrian submanifolds which are relatively easy to

construct and will be important for us. For a point q ∈ Q let Λq be the unit fiber

over q, i.e the set of vectors in TqQ with g norm equal to 1. Then Λq is Legendrian in

(T1Q, ξcan). This follows easily from the fact, which one can also find proved in [38],

that the geodesic vector field is horizontal. Secondly, for an embedded closed geodesic ν

in Q we consider the set Λν which consists of all unit vectors normal to the geodesic ν.

By using the definition we gave of αg it is also not hard to prove that Λν is a Legendrian

submanfold.
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5.2 The case of hyperbolic surfaces

We now specialise our discussion to the case where of a compact surface S of genus ≥ 2.

In this case, let ghyp be a hyperbolic metric on the surface and αghyp be the contact form

on T1S constructed as in section 4.1

We will show that given a point q ∈ S, then for almost every point q′ ∈ S we

have that αghyp is adapted to the pair (Λq,Λq′).

Proposition 5.2. Fix q ∈ S, then, for almost every q′ 6= q in S, the contact form αghyp

is adapted to the pair (Λq,Λq′).

Proof: as a first step we consider the universal cover of the hyperbolic surface

(S, ghyp) by the Poincaré disc (D, ghyp) and denote by πhyp, the associated covering map

from (D, ghyp) to (S, ghyp) which is locally an isometry.

The fact that αghyp has no contractible geodesics is a classic result in the study

of geodesic flows for hyperbolic surfaces and follows directly from the fact that there are

no closed geodesics in the Poincaré disc (D, ghyp).

Secondly, let q̌ be any point in S. The Reeb chords of αghyp going from Λq̌ to itself

are in to one to one correspondence with hyperbolic geodesic trajectories starting and

ending at q̌. Therefore, if there was Reeb chord from Λq̌ to itself which was contractible in

π1(T1Q,Λq̌), this would force the existence of a contractible geodesic starting and ending

at q̌. However, this cannot exist since there are no hyperbolic geodesic trajectories in

(D, ghyp), starting and ending at a same point. Taking q̌ to be q or q′ gives us that αghyp

conditions (b) and (c) os section 3.1, with respect to the pair of Legendrian (Λq,Λq′).

Therefore to finish the proof all we must do is to show that for almost every q′

in S, the Reeb chords starting at Λq and ending at Λq′ are all transverse. However,

this is a general fact which doesn’t depend at all on the particular metric we chose and

follows directly from the finite dimensional Sard’s theorem. For the proof of this fact

we refer the reader to Proposition 3.1 in page 53 of [38]. This finishes the proof of the

proposition.
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5.3 Exponetial homotopical growth rate of LCHst(αghyp,Λq →
Λq′))

It follows from the previous lemma that, if all the Reeb chords from Λq to Λq′ are

transverse, we can define LCHst(αghyp ,Λq → Λq′)). It is easy to see, using Sard’s

theorem lemma4.3, that for a generic choice of points q 6= q′ this transversality condition

is indeed satisfied and we can therefore define LCHst(αghyp ,Λq → Λq′)).

In order to estimate the growth rate of LCHst(αghyp ,Λq → Λq′)), we begin with

the following observation.

Lemma 5.3. Each element in Σ
Λ→Λ̂

(T1S) can contain at most one Reeb chord.

Proof: suppose there were two distinct Reeb chords c and c′ belonging to same

homotopy class ρ in ΣΛq→Λq′ (T1S). Then they would project to two different hyperbolic

geodesics l and l′ in S. Taking appropriate lifts of l and l′ to (D, ghyp), this would imply

that there are lifts q and q′ of q and q′, for which there exist two different hyperbolic

geodesics l̃ and l̃′ both starting at point q and ending q′, something that is well known

to be impossible.

From the lemma 5.3, one can deduce immediately that for every element ρ ∈
ΣΛ→Λq′ (T1S) containing a Reeb chord one has LCHρ

st(αghyp ,Λq → Λq′)) 6= 0. More

precisely we can conclude that ΣC
Λq→Λq′

(αghyp) equals the number NC(αghyp ,Λq,Λq′). As

the fundamental group of S1 has exponential growth, we know that there are constants

C0, aS > 0 and dS depending only on S such that:

NC(αghyp ,Λq,Λq′) ≥ e
CaS+d (5.3)

for all C ≥ C0. Combining all this information, we have proven the following result:

Theorem 5.4. LCHρ
st(αghyp ,Λq → Λq′)) has exponential homotopical growth rate with

exponential weight aS.
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3-manifolds with a special

hyperbolic component that fibers

over S1

In this section we will construct more examples of contact manifolds which have pairs of

Legendrians with exponential homotopical growth of the linearized Legendrian contact

homology.

We denote by S the surface with boundary obtained by taking the two-dimensional

torus and cutting out a small open disc and ω a symplectic form on S. The first homol-

ogy group H1(S) is isomorphic to Z ⊕ Z. Let h be a symplectomorphism of (S, ω) to

itself, such that:

• the map h is the identity in a small neighbourhood V of the boundary circle ∂S,

• all the periodic points of h contained in S \ V are non-degenerate,

• the induced map h∗ : H1(S) → H1(S) is given by a hyperbolic automorphism of

Z⊕ Z.

We follow the recipe of [13] to construct a special contact form on the mapping torus of

(S, h). The following lemma of Eliashberg (see [13]) will be important for our construc-

tion:

Lemma 6.1. Let h be a diffeomorphism of a surface S with nonempty boundary which

preserves a symplectic form ω. If 1 is not an eigenvalue of the h∗, then there exists a

primitive β of ω such that [h∗β − β] = 0 in H1(S;R) and such that the characteristic

vector ζβ field of β is transverse to ∂S.
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Remark: We reproduce here the proof of Lemma 3.4 from [13] because we want to

obtain a primitive β of ω with the extra property that the characteristic vector field ζβ of

the 1-form β (defined by the equation iζβω = β) is transverse to ∂S. Notice that, in this

case, the characteristic vector field ζβ is also a Liouville vector field for the symplectic

form ω, and must, therefore, point outward direction along ∂S.

Proof: As ω is an area-form on a surface with non-empty boundary, we know that

there exists a primitive β0 of ω such that its characteristic vector field ζβ0 is transverse to

∂S. As h is a symplectomorphism of (S, ω), we have the identity d(h∗β0 − β0) = 0 that

implies that the 1-form (h∗β0 − β0) represents a cohomology class. As by hypothesis,

the map (h∗ − id) : H1(S,R) → H1(S,R) is surjective, one can find θ ∈ H1(S;R) such

that [h∗β0 − β0] = (h∗ − id)[θ].

As ∂S is null-homologous, [θ] evaluates to 0 over ∂S. It is easy to see that we

can choose a representative θ of the cohomology class [θ] that vanishes on an open

neighbourhood of V . Setting β = β0 − θ gives the desired primitive. The primitive β

satisfies that ζβ is transverse to ∂S, as β coincides with β0 at V .

Remark: we can parametrize V using coordinates (r, ϑ) ∈ [−δ0, 0] × S1. We can

take these coordinates so that the base (∂r, ∂ϑ) is positively oriented with respect to ω.

We will assume without loss of generality that β0 = H(r)dϑ in V , where H > 0 and

H ′ > 0.

Over the manifold R × S (with coordinates (t, p) ∈ R × S consider the 1-form

α = dt+ β. It follows easily from the fact that dβ = ω is a symplectic form, that α is a

contact form. Moreover, the Reeb vector field of α is ∂t. The following construction of

Giroux (presented in [13] Lemma 2.3) gives us a special contact form on the mapping

torus of (S, h). From lemma 6.1, we know that [h∗β − β] = 0 and consequently we can

find a positive function f , which is constant in V , and that satisfies df = h∗β − β. It is

a direct computation to check that α is invariant by the diffeomorphism:

F : (t, p)→ (t− f(p), h(p)) (6.1)

from R × S to itself, and therefore it induces a contact form α̃ on the mapping torus

Ω(S, h) = (R × S)/((t, p) ∼ F (t, p)). We denote by pH : R × S → Ω(S, h) the covering

map associated to the above construction.

In the covering R×S the Reeb vector field of Xα̃ lifts to the simple form Xα = ∂t.

This property will be useful in making some of our subsequent arguments simpler.
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6.1 A special Legendrian knot in Ω(S, h)

As the title suggests, in this section we will construct a Legendrian knot in the interior

of the mapping torus Ω(S, h). We begin with the following lemma.

Lemma 6.2. There is an embedded curve η in {0} × S such that
∫
η β = 0

Proof: Since the characteristic vector field ζβ0 is transverse to the boundary of

S, Peixoto’s theorem [26, page 172] is valid for the vector field ζβ0 on {0} × S. We can

thus apply the arguments of [26, Proposition 4.6.1] to make a C∞ small perturbation S′

of {0} × S, that makes the characteristic vector field ζ ′ (defined by iζ′(dα̃) |S′= α̃ |S′)
induced by the contact structure ker(α |S′) a Morse-Smale vector field, and so that S′ is

a graph of S on which dα̃ |S′ is an area form in S′ (see [36] and [39] for properties Morse-

Smale vector fields).1 Since S and S′ are C∞-close, it follows that v′ points outward on

the boundary of S′. Notice that as S′ comes with an area form dα |S′ , it comes endowed

with an orientation.

As dα̃ |S′ is an area form, the condition iζ′(dα̃) |S′= α̃ |S′ means that the vector

field −ζ ′ contracts the area form dα̃ |S′ . This implies that −ζ ′ has no singularities of

source type.

Because of the Morse-Smale condition for the flow generated by −ζ ′, its ω-limit

is the union of periodic orbits and singularities of the flow. If this flow has a periodic

orbit P we take our η to be the projection of P on {0} × S and we are done.

If this is not the case, let the 1-skeleton ∆ be the union of the singularities of

the flow of −ζ ′ and the unstable manifolds of its saddle singularities. Because −ζ ′ is of

Morse-Smale type it has no source singularities, and as it is directed inward along ∂(S′)

the flow of −v′ retracts the surface S′ to the the 1-skeleton ∆, as the time goes to +∞,.

This means that ∆ is a deformation retract of S′ by the flow of −ζ ′. The topology of

S′ forces ∆ to contain a piecewise smooth simple curve γ tangent to the ker(α). The

vertices of γ are located at sink singularities of the characteristic foliation of S′. Observe

that because
∫
γ α = 0 and dα |S′ is an area-form, γ cannot be null-homologous in S′.

We pick an orientation for γ.

Fix a point p0 in γ which is not a vertex. We can then smoothen the vertices

of γ in a small neighbourhood of the vertices disjoint from p0 and produce a smooth

embedded curve γ′ on S′. As γ′ coincides with γ in a neighbourhood of p0, we pick the

orientation in γ′ which coincide with the orientation chosen for γ in the region the two

1In the remark after the proof of the Lemma, we give another way of constructing the perturbation
S′.
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curves overlap. Given δ > 0, one can ensure, by doing the smoothing in a sufficiently

small neighbourhood of the vertices, that q =
∫
γ′ α satisfies q ∈ (−δ, δ).

Using that near the point p0 the curve γ′ is tangent to ker(α), it is possible, for

sufficiently small δ, to make a small perturbation γ̃ of γ′ supported near p0 such that,

for the small region U bounded by γ̃ of γ′, and oriented such that ∂U = γ′− γ̃, we have:

∫
U
dα = q (6.2)

Now Stokes’ theorem and q =
∫
γ′ α implies that

∫
γ̃ α = 0. This perturbation γ̃ which

aims at correcting the change in the integral after the smoothing of the corners, can be

made explicitly if one uses Darboux coordinates in a neighbourhood of p0.

Since S′ is a graph of {0}×S and γ̃ is an embedded curve in S′, by projecting γ̃ on

{0}×S one obtains an embedded curve η on {0}×S. Notice that
∫
γ̃ α =

∫
γ̃(dt+β) =

∫
γ̃ β

and thus
∫
η β = 0.

Remark: Maybe the easiest way to obtain the surface S′ used in the proof above is

to construct a contact manifold (M,λ) which contains (Ω(S, h), α̃) as a component (see

the next subsection) and where {0}× S can be extended to an embedded surface Ŝ in M

(this is the case, for example, if all the other components M are also mapping tori glued

in an appropriate manner to Ω(S, h)). In this case one can apply [26][Proposition 4.6.1]

to Ŝ in (M,λ) to obtain a C∞ perturbation Ŝ′ of Ŝ with a Morse-Smale characteristic

foliation. The restriction of Ŝ′ to Ω(S, h) is the desired S′; observe that the C∞ proximity

of S′ with {0} × S implies that the characteristic foliation of S′ is transverse to ∂(S′)

and that S′ is a graph of {0} × S in R× S.

Because
∫
η β = 0 we have that the curve η obtained in the lemma is the La-

grangian projection of a Legendrian curve Λ0 in (Ω(S, h), α). Using that Xα = ∂t, one

sees that a Legendrian knot which is the graph of an embedded curve in {0} × S has

the remarkable property that they have no Reeb chords for the Reeb flow of Xα. This

property is valid for Λ0 and also for all Legendrians close to Λ0 in the C∞ topology do

not have any Reeb chords for the Reeb flow of Xα.

By making a vertical translation of Λ0 if necessary, there exists N > 0 such that

Λ0 ⊂ [1, N − 1]× S. By summing a sufficiently large constant, we can pick the function

f used to construct the mapping torus satisfying f > 2N . Remember that f is constant

in V , and let K = f(p), ∀p ∈ V . We denote by Λ the Legendrian submanifold of Ω(S, h),

which is the image by pH of Λ0.
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Lemma 6.3. For the Reeb vector field Xα̃ there is no Reeb chord c from Λ to itself such

that [c] is the trivial element in π1(Ω(S, h),Λ). The same is true for any Legendrian Λ′

which are sufficiently close to Λ in the C∞ topology.

Proof: The lemma follows from the remark above about the non-existence of

Reeb chords from Λ′0 to itself for the Reeb vector field Xα in R× S (which is the lift of

Xα̃) for Λ′0 equal or sufficiently close to Λ0.

6.2 Contact 3-manifolds containing (Ω(S, h), α̃) as a compo-

nent

Our objective now is to construct on closed 3-manifolds M that contain Ω(S, h) as a

component, hypertight contact forms that coincide α̃ on Ω(S, h). We will begin by

presenting some very explicit examples of how this can be done in Section 6.2.1; in

Section 6.2.2, we will present a general theorem of Colin and Honda that says that if M

is a 3-manifold whose JSJ-decomposition has Ω(S, h) as a component, the there exists

a hypertight contact form on M that coincides with α̃ on Ω(S, h).

6.2.1 Some explicit examples

First we will construct a special contact form on T = (R/KZ)× [0, 1]× S1. Let g1 and

g2 be functions from [0, 1] to R satisfying:

• the curve defined by (g1, g2) : [0, 1]→ R2 starts on (1, H(0)) and ends at (−1,−1),

and intersects the real axis in only one point,

• (g1g
′
2 − g′1g2)(s) > 0 for all r′ ∈ [0, n]

• the function ĝ1 : [−δ0,+δ0]→ R defined by ĝ1(s) = 1 if s ≤ 0 and ĝ1(s) = g1(s) if

s ≥ 0 is smooth,

• the function ĝ2 : [−δ0,+δ0]→ R defined by ĝ2(s) = H(s) if s ≤ 0 and ĝ2(s) = g2(s)

if s ≥ 0 is smooth,

• g1(s) = −1 in a neighbourhood of 1 and g2(s) = −s.

It is easy to check that ν = g1(r′)dt+ g2(r′)dϑ is a contact form in T , where (t′, r′, ϑ′) ∈
(R/KZ)× [0, 1]× S1 are coordinates for T .
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Let now Sk be the orientable surface with genus k and whose boundary is com-

posed by exactly one circle. We parametrize a neighbourhood V k of ∂Sk with coordinates

(r̂, ϑ̂) ∈ [1, 1 + δ0] and consider in Sk a symplectic form ω′ that coincides with dr̂∧ dϑ̂ in

V k. The we choose β′ to be primitive of ω′ that coincides with r̂ ∧ dϑ̂. Finally, consider

αSk to be the contact form given by −dt − β′ on the manifold R × Sk, which clearly

induces a contact form on the mapping torus Ω(Sk, id) := (R× Sk) \ (t, p) ∼ (t−K, p).

To obtain a closed 3-manifold M we identify the boundary component (R/KZ)×
{0}×S1 of T with ∂Ω(S, h); the points in these two-dimensional tori are identified by the

diffeormorphims that is the identity map for the coordinate systems we constructed for

these tori. The other component (R/KZ)× {1} × S1 of T is identified with ∂Ω(Sk, id);

again the identification map is the identity for the coordinates we have constructed.

These identifications are then used to glue the 3 pieces, Ω(S, h), T and Ω(Sk, id) obtain-

ing a closed 3-manifold that we will denote by MSk . Because of the properties satisfied

by the pair (g1, g2) we see that the 3 contact forms on the pieces are also glued to pro-

duce a contact form τSk on MSk . All the 3 contact forms are hypertight in each piece

and their Reeb flow is tangent to the boundaries; combining this with the fact and that

the boundaries of the 3 pieces are incompressible tori in the glued manifold MSk implies

that τSk is hypertight.

This argument already suffices to construct infinitely many different 3-manifolds

admitting a hypertight contact form containing (Ω(S, h), α̃) as a component. We proceed

to show one way in which the construction can be generalised.

If we maintain all the conditions we demanded of (g1, g2) but change the first one

to:

• the curve defined by (g1, g2) : [0, 1]→ R2 starts on (1, H(0)) and ends at (−1,−1),

and intersects the real axis in exactly 2i+ 1 points (where i ≥ 0),

we can still proceed as above to obtain a hypertight contact form on MSk . However, as we

can choose i to be arbitrarily large the contact structure obtained can have arbitrarily

large Giroux torsion. The Giroux torsion is an invariant of contact structures which

associates to it either a non-negative number or +∞; we will give a precise definition in

the next session. For now, it suffices to say that if we perform the construction in this

section with (g1, g2) satisfying the modified condition we just mentioned, the resulting

contact structure has Giroux torsion at least 2i + 1. This implies that the modified

construction can be used to produce contact structures with arbitrarily large Giroux

torsion.
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Summing up we have shown that MSk admits an infinite number of distinct

contact structures ξj , such that for each ξj there exists a hypertight contact form τj

associated to (MSk , ξj) which coincides with α̃) in the component Ω(S, h).

6.2.2 The Colin-Honda construction

Let W be a compact, oriented, irreducible 3-manifold such that ∂(W) is a union of

incompressible tori. The following theorem of Colin and Honda [12] tells us that W
admits a hypertight contact form tangent to the boundary:

Theorem 6.4. (Colin-Honda [12]) LetW be a compact, oriented, irreducible 3-manifold

such that ∂(W) is a union of incompressible tori. Then there exists a hypertight contact

form ς such that, in a neighbourhood (R/KZ)× S1 × I with coordinates (t̃, ϑ̃), r̃ of each

component of ∂(W), ς = cos(r̃)dt̃− sin(r̃)dϑ̃.

Now suppose we are given a finite collection compact oriented irreducible 3-

manifolds {Wi, 0 ≤ i ≤ N}, such that W0 = Ω(S, h), and can be glued along their

boundaries to give an oriented 3-manifold M . This means that {Wi, 0 ≤ i ≤ N} is

the JSJ decomposition of the 3-manifold M . Using the above theorem of Colin and

Honda we put hypertight contact forms tangent to the boundary on the manifolds Wi

for i ≥ 1; on the special piece W0 we consider again the the contact form α̃ constructed

above (which is also tangent to the boundary). Our objective now is to glue these contact

forms to obtain a contact form on M . The details on how to make the gluing process are

presented in [40] and [12]; we sketch it here for the convenience of the reader . From the

remark following the proof of Lemma 6.1, we know that in a neighbourhood of ∂(Ω(S, h)

diffeomorphic to (R/KZ)×V , with coordinates (t, r, ϑ), we have α̃ = dt+H(r)dϑ where

H > 0 and H ′ > 0.

For a natural number n ≥ 1 we consider a neck Tn of the form (R/KZ)×[0, 1]×S1

with coordinates (t′, r′, ϑ′). Let gn1 and gn2 be the functions:

• gn1 (r′) = cos(2nπr′) and g2(r′) = sin(2nπr′) if r′ ∈ [0, n]

from ×[0, 1] to R. Then νn = gn1 (r′)dt+ gn2 (r′)dϑ is a contact form in Tn; we will call its

associated contact structure ξTn . The idea is that we can glue one boundary of the neck

νn to the boundary of a component Wi for i > 0 and that this gluing can be done in such

a way that the contact structures considered in the two pieces are glued smoothly. For

the component W0 we make a small modification of g1(r′) and g2(r′) on a neighbourhood

of 0 so that when we identify the boundary (R/KZ) × {0} × S1 with ∂(Ω(S, h) in the

gluing process, the contact forms on these two pieces are glued smoothly .
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Thus by introducing the necks Tn we can interpolate the contact forms in the

boundaries of the componentsWi to obtain a contact form τ on M . The hypertightness

of τ comes from the hypertightness of α̃ and of the contact forms on the componentsWi

for i ≥ 1, combined with the fact that all the periodic orbits in the neck Tn represent non-

trivial homology classes in the incompressible tori; these boundary tori of the components

Wi remain incompressible in M .

Definition 6.5. We define Tor(Y, ξ) to be the supremum of the integers n ≥ 1 for which

there is a contact embedding of (Tn, ξTn) into (Y, ξ). We say that Tor(Y, ξ) = 0 if no

such embedding exists.

A contact 3-manifold (M, ξ) is said to have positive Giroux torsion if there is a

contact embedding (T1, ξT1) in (M, ξ).

It is thus clear that the above construction includes manifolds with positive

Giroux torsion. By a theorem of Gay [25] (see also [41]) manifolds with positive Giroux

torsion are not strongly fillable. An interesting feature of these examples is that they are

not strongly fillable, while the unit tangent bundles studied in [33] are. The examples

constructed above coincide with the ones studied by Colin in [11] and Colin and Honda

[12] for the manifold M with the JSJ decomposition given by {Wi, 0 ≤ i ≤ N}. By

the recipe above we can obtain contact structures on M with arbitrarily large Giroux

torsion which admit an associated contact form that coincides with α̃ on the component

W0. Thus, one obtains that M admits an infinite number of distinct contact structures

ξj , such that for each ξj there exists a hypertight contact form τj associated to (M, ξj)

which coincides with α̃) in the component Ω(S, h).

6.3 Exponential homotopical growth of LCHst(M, τ,Λ→ Λ̂)

In this section we will study the homotopical growth rate of the strip Legendrian contact

in the contact 3-manifolds constructed in the previous section. We will keep essentially

the notation from the previous section which we now recall: M is three manifold whose

JSJ-decomposition is {Wi, 0 ≤ i ≤ N} where W0 = Ω(S, h). We consider on M a

hypertight contact form τ that coincides with α̃ on the component W0.

Proposition 6.6. For the Reeb vector field Xτ there is no Reeb chord c from Λ to itself

such that [c] is the trivial element in π1(M,Λ).

Proof: We will show that Lemma 6.3 implies the proposition.

By contradiction suppose there is a smooth disc D such that ∂D is the concate-

nation of a Reeb chord c with a path γ ⊂ Λ. By genericity, we can suppose that D
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intersects ∂W0 transversely. This implies that D ∩ ∂W0 is a collection of embedded

circles w1, ..., wn in ∂W0; these circles need not be disjoint, they might intersect each

other. As all wi are contractible in M and ∂W0 is an incompressible torus in M , this

implies that the wi are also contractible in ∂W0.

Let ui be the disc in ∂W0 whose boundary is wi, and vi be the disc in D whose

boundary wi. Select from the set {vi, 1 ≤ i ≤ n} a subset K = {vi1 , ..., vik} such that

each vi is contained in at least one vij , and such that no vij is contained in a vil for

l 6= j. Then by cutting of the discs vij and gluing in their place the discs ui we get a

disc D′ in Ω(S, h) whose boundary is the concatenation of the Reeb chord c with the

path γ ⊂ Λ. The existence of such a disc contradicts Lemma 6.3; this finishes the proof

of the proposition.

It is clear that, for ε > 0 sufficiently small, the above proposition is valid also for

Legendrians ε close to Λ in the C∞ topology. As a consequence of this, we have the

following corollary:

Corollary 6.7. Let Λ̂ be a generic Legendrian ε-close to Λ in the C∞ topology and

disjoint from Λ. Then, the strip Legendrian contact homology LCHst(M, τ,Λ → Λ̂) is

defined.

It is clear that the contact form τ and the pair of disjoint Legendrian knots (Λ, Λ̂)

satisfy conditions (a), (b) and (c) from Chapter 3. By genericity Λ̂, we can also guarantee

that the triple (τ,Λ, Λ̂) also satisfies condition (d) from Chapter 3. Notice that Λ and

Λ̂ are graphs of embedded curves η and η̂.

We now have that τ is adapted to (Λ, Λ̂) and therefore LCHst(M, τ,Λ → Λ̂)

is well-defined. We can then proceed to show that the homotopical growth rate of

LCHst(M, τ,Λ → Λ̂) is exponential. To study the growth rate of LCHst(M, τ,Λ → Λ̂)

we will consider some special relative homotopy classes of paths from Λ to Λ̂.

Definition 6.8. Let c1 and c2 be Reeb chords from Λ to Λ̂. We say that c1 and c2

are in the same Relative Nielsen class if, and only if, there exists a smooth strip

u : [0, 1]× [0, 1]→ Ω(S, h) such that:

• u(0× [0, 1]) is a path in Λ and u(1× [0, 1]) is a path in Λ̂,

• u([0, 1]× 0) = c1 and u([0, 1]× 1) = c2.

It is immediate to check that the relative Nielsen classes are equivalence classes,

because relative Nielsen classes are just homotopy classes of paths from Λ to Λ̂ in the
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mapping torus Ω(S, h). Our first step is to prove that the Relative Nielsen classes gen-

erate a partition of LCHst(M, τ,Λ→ Λ̂) in subcomplexes because they can be regarded

as elements in the set Σ
Λ→Λ̂

of homotopy classes of paths from Λ to Λ̂ in M .

Lemma 6.9. Let c1 and c2 be Reeb chords from Λ to Λ̂, and u : [0, 1]× [0, 1]→M such

that:

• u(0× [0, 1]) is a path in Λ and u(1× [0, 1]) is a path in Λ̂

• u([0, 1]× 0) = c1 and u([0, 1]× 1) = c2

Then, there exists a strip u′ : [0, 1] × [0, 1] → Ω(S, h) such that u′(∂([0, 1] × [0, 1])) =

u(∂([0, 1]× [0, 1])).

Proof: the proof is very similar to the one of proposition 6.6 above, so we will

only give an outline of it.

By genericity we can assume that the image of u intersects ∂(Ω(S, h)) transversely.

The intersection consists of a finite collection of circles w1,...,wk which are contractible

in M . The assumption that ∂(Ω(S, h)) is incompressible implies that w1,...,wk are also

contractible in ∂(Ω(S, h)). The intersection of u([0, 1] × [0, 1]) with W is composed by

discs di with boundary wi. We can cut out these discs and replace them by discs d′i

contained in ∂(Ω(S, h)) and whose boundary is wi. This cut and paste procedure gives

the desired u′.

As seen in section 3.1, that the differential ∂st of the strip Legendrian contact

homology LCHst(M, τ,Λ→ Λ̂) count index 1 holomorphic strips ũ : R× [0, 1]→ R×M
in the symplectization of (M, τ) with the boundary conditions:

• ũ(R× {0}) ⊂ R× Λ,

• ũ(R× {1}) ⊂ R× Λ̂.

As mentioned earlier, it is a consequence of the Lemma 6.9 that relative Nielsen classes

can be seen as elements in Σ
Λ→Λ̂

. More precisely, denoting by R the set of relative

Nielsen classes, we have a map I : R → Σ
Λ→Λ̂

, defined as follows: given a relative

Nielsen class ρ, we pick a Reeb chord c ∈ ρ and define I(ρ) to be the class of [c] ∈ Σ
Λ→Λ̂

.

It is easy to see that I is well defined and the above Lemma 6.9 implies that I is injective.
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Remark: notice that because of the way we constructed the contact form τ , we have

that all the Reeb chords in T
Λ→Λ̂

(τ) are contained in the component M0 = ∂(Ω(S, h)),

and therefore belong to elements in Σ
Λ→Λ̂

which are in the image of our map I.

It is therefore possible to write LCHst(M, τ,Λ→ Λ̂) as a direct sum:

LCHst(M, τ,Λ→ Λ̂) =
⊕
%∈R

LCHI(%)
st (M, τ,Λ→ Λ̂)% (6.3)

6.3.1 The Relative Nielsen classes

We will use the covering (R × S, α) of (Ω(S, h), α̃) to obtain information about the

Relative Nielsen classes. We begin by fixing in (R × S, α) the lift Λ0 of Λ that is

contained in [0, N ]×S. The lifts of Λ̂ to (R×S, α) can be ordered in the following way:

letting Λ̂0 be the lift of Λ̂ contained in [0, N ]× S, Λ̂n = F−n(Λ̂).

Given a Reeb chord c from Λ to Λ̂ we take the lift c̃ which has its starting point

in Λ0. It is not difficult to see that if c1 and c2 are Reeb chords from Λ to Λ̂ that are in

the the same Relative Nielsen class, then c̃1 and c̃2 have to have endpoints in the same

lift Λ̂n of Λ̂. We will see, however, that this condition of c̃1 and c̃2 having the endpoints

in the same lift Λ̂n is far from sufficient to guarantee that c1 and c2 are in the same

Relative Nielsen class.

Let πS : R×S → S be the projection in the second coordinate. Remembering our

construction in section 6.3, we know that η = πS(Λ0) and η̂ := πS(Λ̂0) are embedded

curves in S. From the definition of the map F , we have that πS(Λ̂n) = πS ◦ F−n(Λ̂) =

h−n(η̂), and as h is a diffeomorphism, πS(Λ̂n) is an embedded curve in S. Observe that

the Reeb chords from Λ0 to Λ̂n are in one-to-one correspondence with the intersection

points of η and h−n(η̂). Notice that because ∂t is the pull-back of the Reeb vector field

in this covering space, the transversality of all the Reeb chords from Λ to Λ̂ is equivalent

to the transversality of η and h−n(η̂) for every natural number n. We now proceed for

the following characterization of the Relative Nielsen classes.

Proposition 6.10. Let c1 and c2 be Reeb chords in T
Λ→Λ̂

(α̃) with p1 := πS(c1) and

p2 := πS(c2). Then c1 and c2 are in the same Relative Nielsen class if, and only if, c̃1

and c̃2 have end points in the same Λ̂n, and there exists a map v : [0, 1] × [0, 1] → S,
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such that:

v([0, 1]× {0}) = p1, (6.4)

v([0, 1]× {1}) = p2, (6.5)

v({0} × [0, 1]) ⊂ η, (6.6)

v({1} × [0, 1]) ⊂ h−n(η̂) (6.7)

Proof: suppose c1 and c2 are in the same relative Nielsen class. We take the map

u : [0, 1]× [0, 1]→ Ω(S, h) given in Definition 6.8, and consider its lift û : [0, 1]× [0, 1]→
R×S, such that û([0, 1]×{0}) = c̃1 and û([0, 1]×{1}) = c̃2. It is easy to see that taking

v = πS ◦ û gives a strip in S satisfying the conditions in the statement proposition; this

finishes one implication.

To prove the reverse implication take a v satisfying the conditions in the statement

proposition. By taking the path v({0} × [0, 1]) ⊂ η there exists a unique function

g0 : [0, 1]→ R such that the path γ0(s) of the form: γ0(s) = (v(0, s), g0(s)) is a path in

Λ0. Analogously there exists a function g1 : [0, 1]→ R such that γ1(s) = (v(1, s), g1(s))

is a path in Λ̂n. Take f : [0, 1]× [0, 1]→ R to be an homotopy between g0 and g1 that is,

f(0, s) = g0(s) and f(1, s) = g1(s). Now we can define the strip u(r, s) = (v(r, s), f(r, s))

in R×S, and considering pH ◦u we get a strip in Ω(S, h) which satisfies the conditions of

the definition of Relative Nielsen classes for c̃1 and c̃2; this finishes the reverse implication

and the proof of the proposition.

Proposition 6.10 gives a complete description of the Relative Nielsen classes. It

also shows how to identify different Relative Nielsen classes of Reeb chords by looking

at properties of intersection points of the curves h−n(η̂) and η. This is the crucial link

that will allow us to use the hyperbolicity of h∗ to estimate the growth of the number

of Relative Nielsen classes. Among the relative Nielsen classes, the subset of relative

Nielsen classes with an odd number of chords will be of special importance to us: we

will call them fundamental Relative Nielsen classes and denote their set by Rf .

From the discussion above we can partition the set Rf , in subsets Rf
n defined by:

an element % ∈ Rf
n if, and only if, for every Reeb chord c ∈ %, the lift c̃ has its endpoint

in Λ̂n. Our next step will be to estimate the cardinality of Rf
n. As η is an embedded

closed curve in the oriented surface S it is possible to take another embedded curve ν

such that {[η], [ν]} is an oriented basis of H1(S). It is well known that the intersection

number of the pair {η, ν} is 1.
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By the assumption made on the map h : S → S on the beginning of the chapter,

the matrix P ∈ PSL(2,Z) representing h∗ : H1(S) → H1(S) in the basis {η, ν} is

hyperbolic. The homology class of curve h−n(η) can be written as a linear combination

of [η] and [ν]; let (an, bn) be the unique pair of integers such that [h−n(η)] = an[η]+bn[ν].

It is immediate from the well known description of the dynamics of hyperbolic linear

automorphisms of the 2-torus (see [39]), that the hyperbolicity of the matrix P implies

that there exist a constant d > 0 such that:

| an |, | bn |> edn (6.8)

or, in other words, an and bn grow exponentially. We remind the reader bn equals the

homological intersection number of h−n(η) and η. We are now ready to prove the main

result of this subsection:

Theorem 6.11. ](Rf
n) ≥ bn, and consequently ](Rf

n) grows exponentially with respect

to n.

Proof: we endow S with a hyperbolic metric g having ∂S as a geodesic boundary.

Notice that as η and ν are simple closed curves, and the number of intersection of η and

ν equals the intersection number i([η], [ν]) then Lemma 2.6 on page 28 of [10], implies

that there is a homeomorphism ψ : S → S, homotopic to the identity and such that

ψ(η) and ψ(ν) are geodesics of the metric the hyperbolic metric g.

As ψ(h−n(η̂)) is an embedded closed curve in S it is possible to isotopy it to an

embedded hyperbolic geodesic γ. Such a geodesic γ has intersection number bn with

ψ(η). We denote by {pn1 , ...., pnzn} the set of the intersection points of γ and ψ(η), and it

is clear that zn ≥ bn.

We consider the Poincaré disc (D, g−1) as the universal cover of (S, g), and denote

π : D → S the covering map. Given an embedded closed curve q in S which is not

homologous to ψ(η), let q be a lift of q in D and take a closed subinterval Iq of q such

that (π(∂I)) = p0 /∈ ψ(η) and that covers every point x 6= p0 of γ exactly once (the

intersection of π−1(x) and I has one element). We call Iq a fundamental interval of q.

From now on we suppose n ≥ 1 so that γ and ψ(h−n(η̂)) are not homologous to

ψ(η). Consider a lift γ in D, and take a fundamental interval Iγ of γ. Because of the

convexity of the hyperbolic metric, we know that a γ cannot intersect one lift of ψ(η)

more than once. Therefore, Iγ intersects exactly zn different lifts {κ1, ..., κzn} of ψ(η).
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Denote by γt isotopy for t ∈ [0, 1] between γ and ψ(h−n(η̂)). Because of the

hyperbolicity of h∗ (and as n ≥ 1), the curves ψ(h−n(η̂)) and γt0 (obtained by fixing the

coordinate t of the homotopy above) are not homologous to ψ(η). Under these conditions

we can use the isotopy γt, to construct a path It of fundamental intervals of γt. This

generates an isotopy of Iγ to a fundamental interval Iψ(h−n(η̂)) of ψ(h−n(η̂)) through

fundamental intervals of γt. From the properties of fundamental intervals we have that

π(∂(It) is disjoint from ψ(η) for all t ∈ [0, 1]. It is then clear that Iψ(h−n(η̂)) must also

intersect the same zn different lifts {κ1, ..., κzn} of ψ(η) intersected by Iγ , though it can

in theory intersect also others lifts of ψ(h−n(η̂)).

The set A of intersection points of η and h−n(η̂) is in bijective correspondence

with the set O of intersection points of ψ(η) and ψ(h−n(η̂)). Because of the properties

of a fundamental interval, there also exists a bijection between the set O of intersection

points of ψ(η) and ψ(h−n(η̂)), and the set B of intersection points of Iψ(h−n(η̂)) with

the geodesics {κ1, ..., κzn}. There exists then a bijection map ϕ : A → B. We remind

the reader that as we mentioned above, A is in bijective correspondence with the set of

Reeb chords from Λ0 to Λ̂n.

Taking now p1, p2 ∈ A, we claim that there is a strip v satisfying the four condi-

tions of Proposition 6.10 above if, and only if, ϕ(p1) and ϕ(p2) lie in the same κj . To

prove one direction of the claim notice that if there exists such a strip v then we can

take a lift v of v in the universal cover D. By looking at the boundary conditions that

are satisfied by v and using that ψ(η) and ψ(h−n(η̂)) are embedded in S, it is easy to

see that ϕ(p1) and ϕ(p2) have to lie in the same κj . For the other direction if ϕ(p1) and

ϕ(p2) lie in the same κj we can construct a strip v satisfying v([0, 1] × {0}) = ϕ(p1),

v([0, 1] × {1}) = ϕ(p2), v({0} × [0, 1]) ⊂ κj and v({1} × [0, 1]) ⊂ ι (ι being the lift of

ψ(h−n(η̂)) that contains Iψ(h−n(η̂))), and taking v = π(v) we obtain the desired strip

satisfying the conditions of Proposition 6.10.

As a consequence of the previous claim and Proposition 6.10, we have that to

each different lift κj is associated a different Relative Nielsen class %j in Rn. Moreover,

the intersections between Iψ(h−n(η̂)) and κj are in bijective correspondence with the Reeb

chords in %j . An immediate consequence is that there are at least zn different Relative

Nielsen classes in Rn.

To conclude the proof of the theorem, we have to prove that %j is a fundamental

Relative Nielsen class. To see this we observe that Iγ intersects each κj an odd number

of times, and the isotopy It between Iγ and Iψ(h−n(η̂)) is such that ∂(It) never intersects

κj . As Iγ and Iψ(h−n(η̂)) are both transversal to κj , we conclude that Iψ(h−n(η̂)) also has

to intersect κj an odd number of times, which proves that %j is a fundamental Relative
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Nielsen class. Thus, there are in fact at least zn different fundamental relative Nielsen

classes in Rn, and the theorem is proved.

Before proving the main result of this section we need one last ingredient. The

inverse of the diffeomorphism F : R×S → R×S is F−1(t, p) = (t+f(h−1), h−1(p)). Let

K > 0 be a constant such that max(f) < K. Then Λ̂n = F−1(Λ̂0) ⊂ [0, (n+ 1)K]× S.

This implies that for all Relative Nielsen classes % ∈ Rf
k where 0 ≤ k ≤ n, the Reeb

chords c ∈ % satisfy A(c) ≤ (n+ 1)K.

We have now, all the ingredients needed to obtain the exponential homotopical

growth rate of LCHst(M, τ,Λ→ Λ̂).

Theorem 6.12. The linearized Legendrian contact homology LCHst(M, τ,Λ→ Λ̂) has

exponential homotopical growth rate with exponential weight d
K .

Proof: the strategy is to use the growth rate of the number of different funda-

mental relative Nielsen classes, to estimate the set #(Σ
K(n+1)

Λ→Λ̂
(τ)) defined in section

4.1.

Step 1: for every % ∈ Rf
k with 0 ≤ k ≤ n, we have I(%) ∈ Σ

K(n+1)

Λ→Λ̂
(τ) (for the

constant K > 0 as above).

From the defining property of fundamental relative Nielsen classes we know that:

dim(LCH
I(%)
st (M, τ,Λ→ Λ̂) = dim(Im(∂st)+dim(ker(∂st)) is odd for every fundamental

relative Nielsen class %. Now:

dim(LCHI(%)
st (M, τ,Λ→ Λ̂) = dim(ker(∂st))− dim(Im(∂st)) =

= dim(LCH
I(%)
st (M, τ,Λ→ Λ̂)− 2(dim(Im(∂st)))

implies that the numbers dim(LCHI(%)
st (M, τ,Λ → Λ̂) and dim(LCH

I(%)
st (M, τ,Λ → Λ̂)

have the same parity. Therefore dim(LCHI(%)
st (M, τ,Λ→ Λ̂) cannot be zero, and has to

be a positive number.

This combined with the fact that for all Relative Nielsen classes % ∈ Rf
k with

0 ≤ k ≤ n, all the Reeb chords c ∈ % satisfy A(c) ≤ (n+ 1)C, imply that:

for all % ∈ Rf
k with 0 ≤ k ≤ n, we have I(%) ∈ Σ

K(n+1)

Λ→Λ̂
(τ).
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Step 2:

From step 1 above we know that #(Σ
K(n+1)

Λ→Λ̂
(τ)) ≥ bn. Taking d′ = d

K and

a = e−d it follows that:

aed
′(n+1)K = edn ≤ bn ≤ #(Σ

K(n+1)

Λ→Λ̂
(τ)) (6.9)

which establishes the theorem.

Theorem 6.13. Let M be a closed oriented connected 3-manifold which can be cut along

a nonempty family of incompressible tori into a family {Mi, 0 ≤ i ≤ k} of irreducible

manifolds with boundary such that the component M0 satisfies:

• M0 is the mapping torus of a punctured torus S by a diffeomorphism h : S → S

such that the homology map h∗ is a hyperbolic automorphism of H1(S) ' Z⊕ Z.

Then M can be given infinitely many different tight contact structures ξk, such that there

exist disjoint Legendrian knots Λk, Λ′k and contact forms τk associated to (M, ξk) and

adapted to the pair Λk, Λ′k for which LCHst(τk,Λk → Λ′k) has exponential homotopical

growth rate.

Proof :

As we mentioned before, Colin showed in [11] that the recipe we used to produce

the contact form τ in M can generate infinitely many different contact structures in

M ; this is because the construction of τ depended on the necks Tn we glued to make

the interpolation of the forms, and depending on the Tn used one gets different contact

structures. With this, we have finished the proof of theorem .

As a consequence of this theorem and Theorem 4.4, we have that for every contact

form τ ′ associated to (M, ξ = ker(τ)), the Reeb flow of Xτ ′ have positive topological

entropy.



Chapter 7

Graph manifolds and

Foulon-Hasselblatt surgery

In [27] Handel and Thurston used Dehn surgery to obtain non-algebraic Anosov flows in

3-manifolds. Their surgery was adapted to the contact setting by Foulon and Hasselblatt

in [20], who interpreted it as a Legendrian surgery and used it to produce non-algebraic

Anosov Reeb flows on 3-manifolds. We consider here a surgery that includes the Foulon-

Hasselblatt one as a particular case: they restrict their attention to Dehn surgeries with

positive integer coefficients while we consider the case of any integer coefficient.

7.1 The surgery

We start by fixing some notation. Let (S, g) be an oriented hyperbolic surface and r :

S1 → S an embedded oriented separating geodesic of g. We denote by π : (D, g)→ (S, g)

the locally isometric universal covering of (S, g) by the the hyperbolic disc (D, g) with

the property that (−1, 1) × {0} ⊂ π−1(r(S1)); such a covering always exist, since the

segment (−1, 1)×{0} of the real axis is a geodesic in (D, g). We denote by v(θ) the unique

unitary vector field over r(θ) satisfying ∠(r′(θ), v(θ)) = −π
2 . Our orientation convention

is chosen, so that for coordinates z = x + iy ∈ D, the lift of v(θ) to (−1, 1) × {0} is

a positive multiple of the vector field −∂y over (−1, 1) × {0}. Also, let Π : T1S → S

denote the base point projection.

Because r is a separating geodesic, we can cut S along c to obtain two oriented

hyperbolic surfaces with boundary which we denote by S1 and S2; our labelling is chosen

so that the vector field v(θ) points inside S2 and outside S1. This decomposition of S
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induces a decomposition of T1S in T1S1 and T1S2. Both T1S1 and T1S2 are 3-manifolds

whose boundary is the torus formed by the the unit fibers over r.

Denote by Vr,δ the closed δ−neighbourhood of the the geodesic r for the hyperbolic

metric g. For δ > 0 sufficiently small we have that Vr,δ is an annulus such that the only

closed geodesics contained in Vr,δ are the covers of r, and that satisfies the following

convexity property: if V̆ is the connected component of π−1(Vr,δ) containing (−1, 1) ×
{0}, then every segment of a hyperbolic geodesic starting and ending in V̆ is completely

contained in V̆ . It also follows from the conventions adopted above, that if we denote

by U+ the upper hemisphere of the D composed of points with positive imaginary

component and by U+ the lower hemisphere of the D composed of points with negative

imaginary component, we have:

V̆ ∩ U+ ⊂ π−1(S1) and V̆ ∩ U− ⊂ π−1(S2). (7.1)

This fact has the following important consequence: if ν([0,K]) is a hyperbolic geodesic

segment starting and ending at Vr,δ and contained in one of the Si, then [ν] is a non-trivial

homotopy class in the relative fundamental group π1(Si, Vr,δ).

On the unit tangent bundle T1S, we consider the contact form αg whose Reeb

vector field is the geodesic vector field for the hyperbolic metric g. It is well known that

the lifted curve (c(θ), v(θ)) in T1S is Legendrian on the contact manifold (T1S, ker(αg)).

The geodesic vector field Xαg over the Legendrian curve the geodesic vector field coin-

cides with the horizontal lift of v (see section 1.3 of [38]), and therefore points inward

T1S2 and outwards T1S1, and is normal to ∂(T1S2) for the Sasaki metric.

Moreover if δ > 0 is small enough we know that for every ϑ ∈ Lr there exists

numbers t1 < 0 and t2 > 0 such that:

φtαg(ϑ) ∈ T1S1 \Π−1(Vr,δ) (7.2)

φtαg(ϑ) ∈ T1S2 \Π−1(Vr,δ) (7.3)

Following [20], we know that there exists a neighbourhood B3η
2ε of Lr on which

we can find coordinates (t, s, w) ∈ (−3η, 3η)× S1 × (−2ε, 2ε) such that:

αg = dt+ wds, (7.4)

Lr = {0} × S1 × {0}, (7.5)
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where {0} × {θ} × (−2ε, 2ε) is a local parametrization of the unitary fiber over θ ∈ Lr,

and ε < η
4|q|π , with q being a fixed non-zero integer. Let W− = {−3η} × S1 × (−2ε, 2ε)

and W+ = {+3η} × S1 × (−2ε, 2ε). It is clear that Π(W−) ⊂ S1 and Π(W+) ⊂ S2.

Because on B
3η
2ε the Reeb vector field Xαg is given by ∂t, it is clear that for every point

p ∈ B3η
2ε there are p− ∈ W−, p+ ∈ W+, t− ∈ (−6η, 0) and t+ ∈ (0, 6η) for which:

φt
−
Xαg

(p) = p− and φt
+

Xαg
(p) = p+ (7.6)

This means that trajectories of the flow of Xαg that enter the box B3η
2ε enter through

W− and exit through W+; they cannot stay inside B3η
2ε for positive or negative time.

We can say even more about these trajectories.

For σ = (p, ṗ) ∈ (T1S) (where p ∈ S and ṗ ∈ TpS) inW+∪W− let σ̃ = (p̃, ˙̃p) be a

lift of σ to the unit tangent bundle T1D such that p̃ ∈ V̆ . The geodesic vector field Xαg

in σ̃ coincides with the horizontal lift of ṗ ([38][section 1.3]). For δ, η > 0 and ε < η
4|q|π

sufficiently small we can guarantee that:

• B3η
2ε is contained in Vr,δ

• for the lifts σ̃ = (p̃, ˙̃p) of points in W+ ∪W− as above, the vector ˙̃p (which is the

projection of the geodesic vector field Xαg(σ̃) satisfies ∠( ˙̃p,−∂y) < δ

Shrinking δ > 0, η > 0 and 0 < ε < η
4|q|π if necessary this implies that for every σ+ ∈ W+

there exists tσ+ > 0 and for every σ− ∈ W− there exists tσ− < 0 such that:

φ
tσ+

Xαg
(σ+) ∈ (T1S2) \ Vr,δ and ∀t ∈ [0, tσ+ ] φtXαg (σ+) /∈ B3η

2ε (7.7)

φ
tσ−
Xαg

(σ−) ∈ (T1S1) \ Vr,δ and ∀t ∈ [tσ− , 0] φtXαg (σ+) /∈ B3η
2ε (7.8)

To prove this last condition above one uses the fact that ∠( ˙̃p,−∂y) < δ is small and

studies the behavior of geodesics in (D, g) starting at points close to the real axis and

with initial velocity close to −∂y. It is easy to see that such geodesics have to cut through

the region Vr,δ and visit the interior of both S1 \ Vr,δ and S2 \ Vr,δ From now on we will

assume that δ > 0, η > 0 and 0 < ε < η
4|q|π are such that the all the above mentioned

properties described for them being sufficiently small hold simultaneously.

Consider the following map F : B2η
2ε \B

η
ε → B2η

2ε \B
η
ε :

F (t, s, w) = (t, s+ f(w), w) for (t, s, w) ∈ (η, 2η)× S1 × (−2ε, 2ε) (7.9)
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where f(w) = −qR(wε ) (for our previously chosen integer q) and R : [−1, 1] →
[0, 2π] satisfies R = 0 on a neighbourhood of −1, R = 2π on a neighbourhood of 1,

0 ≤ R′ ≤ 4 and R′ is an even function; and F is the identity otherwise.

Our new 3-manifold M is obtained by gluing T1S \B
η
ε and B2η

2ε using the map F :

M = (T1S \B
η
ε ) ∪B

2η
2ε

/
(x ∈ B2η

2ε \B
η
ε ) ∼ (F (x) ∈ T1S \B

η
ε ) (7.10)

Notice that T1S = (T1S \B
η
ε ) ∪B

2η
2ε

/
(x ∈ B2η

2ε \B
η
ε ) ∼ (x ∈ T1S \B

η
ε ) . This

clarifies our construction of M and shows that M is obtained from T1S via a Dehn

surgery on Lr. We follow [20] to endow M with a contact form which coincides αg

outside of B2η
2ε . As a preparation we define the function β : (−3η, 3η)→ R:

• β is equal to 1 in an open neighbourhood of [−2η, 2η],

• |β′| ≤ π
η and suppβ is contained in [−3η, 3η].

Using β we define:

r(t, w) = β(t)

∫ w

−2ε
xf ′(x)dx (7.11)

We point out to the reader that supp(r) is contained in B3η
ε and therefore so is

supp(dr). Notice also, that in B2η
2ε \B

η
ε one has dr = w

2 f
′(w)dw.

Again following [20] we define in T1S \B
η
ε the 1-form:

Ar = dt+ wds+ dr for (−3η,−η), (7.12)

Ar = dt+ wds− dr for (η, 3η), (7.13)

Ar = αg otherwise. (7.14)

Notice that because supp(dr) is contained in B3η
ε the 1-form Ar is well-defined.

On the box B2η
2ε we define:

Ã = dt+ wds+ dr (7.15)
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Computing, we obtain F ∗(Ar) = Ã which means that the gluing map F allows

us to glue the 1-forms Ar and Ã. We denote by αF the 1-form in M obtained by gluing

Ã and Ar. We will denote by B̃ the following region:

B̃ = ((B3η
2ε \B

η
ε ) ⊂M) ∪B2η

2ε

/
(x ∈ B2η

2ε \B
η
ε ) ∼ (F (x) ∈ (B3η

2ε \B
η
ε ) (7.16)

The importance of this region lies in the fact that in M \ B̃ = T1S \ B3η
2ε , the contact

form αF coincides with αg.

Following [20] one shows through a direct computation that (dt + wds ± dr) ∧
(dw ∧ ds) = (1 ± ∂r

∂t )dt ∧ dw ∧ ds. Using the fact that ε < η
8π|q| one gets that |∂r∂t | < 1,

thus obtaining that (dt+ wds± dr) is a contact form. It follows from this that Ar and

Ã are contact forms in their respective domains and therefore αF is a contact form in

M . More strongly, Foulon and Hasselblatt proceed to show that if q is non-negative the

Reeb flow of αF is an Anosov Reeb flow.

7.2 Hypertightness of αF

For q ∈ N the hypertightness of αF follows from the fact that its Reeb flow is Anosov;

this is a consequence of Novikov’s theorem as mentioned in [19]. In this subsection we

give an independent and completely geometrical proof of hypertightness of αF , which is

valid for every q ∈ Z.

To understand the topology of Reeb orbits of αF we will study trajectories that

enter the surgery region B̃. We start by studying trajectories in B2η
2ε . On this region we

have:

XαF =
∂t

1 + ∂tr
(7.17)

This implies, similarly to what happens for αg, that for points p ∈ B2η
2ε the trajectory

φtXαF
(p) leaves the box B2η

2ε in forward and backward time. More precisely, there exists

a constant ã > 0 depending only on αF , such that for p ∈ B2η
2ε there are p̆− ∈ W̆− =

{−2η} × S1 × [−2ε, 2ε], p̆+ ∈ W̆+ = {+2η} × S1 × [−2ε, 2ε], t̆− ∈ (−ã, 0] and t̆+ ∈ [0, ã)

such that:

φt
−
XαF

(p̆) = p̆− and φt
+

Xαg
(p̆) = p̆+ (7.18)

We now analyse the trajectories of points p̆− ∈ W̆− and p̆+ ∈ W̆+. For this, we

first notice that on B̃ \B2η
2ε the contact form αF is given by: dt+wds±dr and therefore

we have in this region:

XαF =
∂t

1± ∂tr
(7.19)
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which is still a positive multiple of ∂t.

This implies that for every p̆− ∈ W̆− and p̆+ ∈ W̆+ there exist tp̆
−
< 0 and

tp̆
+
< 0 such that

φt
p̆−

XαF
(p̆−) ∈ W− and φt

p̆−

Xαg
(p̆+) ∈ W+ (7.20)

Again using that XαF is a positive multiple of ∂t on B̃ \ B2η
2ε we have that for every

point p in B̃ \ B2η
2ε whose t coordinate is in [2η, 3η] the trajectory of the flow φtXαF

going through p is a straight line with fixed coordinates s and w, that goes from W̆+ to

W+. Analogously, for every point p in B̃ \ B2η
2ε whose t coordinate is in [−3η,−2η] the

trajectory of the backward flow of φtXαF
going through p is a straight line W̆− to W−.

Summing up, with all the cases considered above we have showed that for every

point p ∈ B̃ the trajectory of the flow φtXαF
going through p for t = 0 intersects W−

for non-positive time and W+ for for non-negative time. In other, all trajectories that

intersect B̃ enter through W− and leave through W+, which means that for all p̌ ∈ B̃
there exist times t−p̌ ≤ 0 and t+p̌ ≥ 0 such that:

φ
t+p̌
XαF

(p̌) ∈ W+ (7.21)

φ
t−p̌
XαF

(p̌) ∈ W− (7.22)

φtXαF
(p̌) ∈ B̃ for all t ∈ [t−p̌ , t

+
p̌ ] (7.23)

Now, because on M \ B̃ = T1S \ B3η
2ε the contact form αF coincides with αg we

have that trajectories of XαF starting at W− at the time t = 0 have to leave M \ N
for negative time before reentering on B̃; similarly the trajectories starting at W+ have

to leave M \ N for positive time before reentering on B̃. More precisely, one can use

equations (7.7) and (7.8) to see that for p− ∈ W− and p+ ∈ W+ there exist tp− < 0 and

tp+ > 0 such that:

φ
tp+

XαF
(p+) ∈M2 \N and ∀t ∈ [0, tp+ ] φtXαF

(p+) /∈ B̃ (7.24)

φ
tp−
XαF

(p−) ∈M1 \N and ∀t ∈ [tp− , 0] φtXαF
(p−) /∈ B̃ (7.25)

where

M1 = (T1S1 \Bη
ε ) ∪B2η

2ε (−)
/

(x ∈ B2η
2ε (−) \Bη

ε ) ∼ (F (x) ∈ ((B3η
2ε ∩ T1S1) \Bη

ε )(7.26)

M2 = (T1S2 \Bη
ε ) ∪B2η

2ε (+)
/

(x ∈ B2η
2ε (+) \Bη

ε ) ∼ (F (x) ∈ ((B2η
2ε ∩ T1S2) \Bη

ε )(7.27)

N = Π−1(Vr,δ\) ∪B2η
2ε (−)

/
(x ∈ B2η

2ε (−) \Bη
ε ) ∼ (F (x) ∈ ((B3η

2ε ∩ T1S
1) \Bη

ε )(7.28)



Chapter 7. Graph manifolds and... 99

for B2η
2ε (−) = [−2η, 0]× S1 × (−2ε, 2ε) and B2η

2ε (+) = [0, 2η]× S1 × (−2ε, 2ε).

Remark: it is not hard to see that M = M1 ∪M2

/
(x ∈ ∂M1) ∼ (F̃ (x) ∈ ∂M2) ,

where F̃ is a Dehn twist which coincides with (s+ f(w), w) for w ∈ [−2ε, 2ε] and is the

identity elsewhere. This picture of M is closer to the one in the paper [27] and shows

that M is a graph manifold (a graph manifold is one whose JSJ decomposition consists

of Seifert S1 bundles). By using this description of M and applying Van-Kampen’s

theorem to analyse the fundamental group of M , Handel and Thurston show that, for

q not belonging to a finite subset of Z, no finite cover of M is a Seifert manifold thus

obtaining that M is an “exotic” graph manifold.

From their definitions, one sees that as manifolds M1
∼= T1S1 and M2

∼= T1S2,

and it follows that ∂M1 and ∂M2 are incompressible tori. By looking at M1 and M2

as submanifolds of M , one obtains easily that their boundary T coincides and remains

incompressible in M . We remark that Mi \N is diffeomorphic to T1Si \Π−1(Vr,δ) which

is diffeomorphic to T1Si for i = 1, 2.

In a similar way we can describe the topology of N . Let Ni = Mi ∩N ; reasoning

identically as one does to show that Mi is diffeomorphic to T1Si one shows that Ni is

diffeomorphic to a thickned two torus T 2 × [−1, 1]. As N is obtained from N1 and N2

by gluing them along T (which is a boundary component of both of them) we have that

N is also diffeomorphic to the product T 2 × [−1, 1] .

The discussion above proves the following:

Lemma 7.1. For all p̆ ∈ B̃ the trajectory {φtXαF (p̆); t ∈ R} intersects M1 \ N and

M2 \N .

Proof: we have already established that for p̆ ∈ B̃ its trajectory intersect W+ for

some non-negative time and W− for some non-positive time, as it is show in equation

(7.21) and (7.22). One now applies equations (7.24) and (7.25) to finish the proof of the

lemma.

Notice that trajectories can only enter in B̃ through the wall W− which is com-

pletely contained in M1 and can only exit B̃ through the wall W+ which is completely

contained in M2. We also point out that all trajectories of the flow φtXαF
are transversal

to T, with the exception of the two Reeb orbits which correspond to the hyperbolic

geodesic c (they continue to exist as periodic orbits after the surgery because they are

distant from the surgery region).

We will deduce from the previous discussion the following important lemma:
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Lemma 7.2. Let γ([0, T ]) be a trajectory of XαF such that γ(0) ∈ T, γ(T ′) ∈ T and for

all t ∈ (0, T ′) we have γ(t) /∈ T (in such a situation γ([0, T ]) ⊂ Mi for some i equals to

1 or 2). Then γ([0, T ]) ∩ (Mi \N) is non-empty.

Proof: we divide the proof in 3 possible scenarios.

First case: suppose that γ([0, T ])∩ B̃ is empty. In this case γ([0, T ]) also exists

as a hyperbolic geodesic with endpoints in the closed geodesic c. It follows from the

convexity of the hyperbolic metric that [γ([0, T ])] ∈ π1(T1Si,T) is non-trivial. This

implies that [γ([0, T ])] ∈ π1(Mi,T) is non-trivial which can be true only if γ([0, T ]) ∩
(Mi \N) is non-empty since N is a tubular neighbourhood of T.

Second case: suppose that γ([0, T ])∩ B̃ is non-empty and γ([0, T ]) ⊂M2. Take

t̂ ∈ [0, T ′] such that γ(t̂) ∈ B̃. We know from our previous discussion that there are

t̂1 ≤ t̂ ≤ t̂2 such that γ([t̂1, t̂2]) ⊂ B̃, γ(t̂1) ∈ (T ∩ B̃) and γ(t̂1) ∈ W+; notice that in

coordinates (t, s, w), T ∩ B̃ is the annulus {0} × S1 × (−2ε, 2ε). From this picture it

is clear that for t smaller that t̂1 the trajectory enters in M1; therefore we have that

t̂1 = 0 and γ([0, t̂2]) ⊂ B̃. Notice also that for all t slightly bigger than t̂2 the trajectory is

outside B̃. Because trajectories of XαF can only enter B̃ in M1 we obtain that γ([t̂2, T
′])

does not intersect the interior of B̃ and therefore exists as a hyperbolic geodesic in T1S2.

Now, using equations (7.7) and (7.8) we obtain that, because γ(t̂2) ∈ W+, the trajectory

γ : [t̂2, T
′]→M2 has to intersect M2 \N before hitting T at t = T ′. Thus there is some

t ∈ (t̂2, T
′) for which γ(t) ∈M2 \N .

Third case: the proof in the case where γ([0, T ])∩B̃ is non-empty and γ([0, T ]) ⊂
M1 is analogous to the one of the Second case.

This three cases exhaust all possibilities and therefore prove the lemma.

Our reason for introducing the above decomposition of M into M1 and M2 and

for proving Lemmas 7.1 and 7.2 above is to introduce the following representation of

Reeb orbits of αF . Let (γ, T ) be a Reeb orbit of αg which intersects both M1 \N and

M2 \ N . We can assume that the chosen parametrization of the Reeb orbit satisfies:

γ(0) ∈ ∂N , and that there are t+ > 0 and t− < 0 such that:

γ(t+) ∈M1 \N and γ([0, t+]) ∈M1 ∪N (7.29)

γ(t−) ∈M2 \N and γ([t−, 0]) ∈M2 ∪N (7.30)
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This means that in an interval of the origin γ is coming from M2 \ N and going to

M1 \N . It follows from Lemma 7.2 that there exists a unique sequence 0 = t0 < t 1
2
<

t1 < t 3
2
< ... < tn = T such that ∀k ∈ {0, ..., n− 1}:

• γ([tk, tk+ 1
2
]) ⊂Mi for i equals to1 or2

• γ([tk+ 1
2
, tk+1]) ∈ N and there is a unique t̃k ∈ [tk+ 1

2
, tk+1] such that γ(t̃k) ∈ T

• if γ([tk, tk+ 1
2
]) ⊂Mi then γ([tk+1, tk+ 3

2
]) ⊂Mj for j 6= i

Notice that γ([t0, t 1
2
]) ⊂ M1 and γ([tn−1, tn− 1

2
]) ⊂ M2. This implies that n is even so

that we write n = 2n′, and that γ([tk, tk+ 1
2
]) ⊂ M1 for k even, and γ([t′k, tk′+ 1

2
]) ⊂ M2

for k′ odd. For each k ∈ {0, ..., 2n′ − 1} the existence of the unique t̃k in the interval

[tk+ 1
2
, tk+1] for which γ(t̃k) ∈ T is guaranteed from Lemma 7.2 and the fact that T is

the hypersurface that separates M1 and M2.

In order to obtain information on the free homotopy class of (γ, T ) we observe

that for γ([tk, tk+ 1
2
]) coincides with a hyperbolic geodesic segment in T1Si starting and

ending Vr,δ. Therefore, as we have previously seen the homotopy class [γ([tk, tk+ 1
2
])]

in π1(T1Si, Vr,δ) is non-trivial which implies that γ([tk, tk+ 1
2
]) is a non-trivial relative

homotopy class in π1(Mi, N). We consider now the curve γ([t̃k, t̃k+1]): it is the concate-

nation of 3 curves, the first and the third ones being completely contained in N and

the middle one being γ([tk, tk+ 1
2
]); from this description and the fact that γ([tk, tk+ 1

2
])

is a non-trivial relative homotopy class in π1(Mi, N) it is clear that γ([t̃k, t̃k+1]) is also

non-trivial in π1(Mi, N) (and also non-trivial in π1(Mi,T)).

We now denote by M̃ the universal cover of M with π̂ : M̃ →M being the cover-

ing map. From the incompressibility of T it follows that every lift of T is an embedded

plane in M̃ . We denote by Ñ0 a lift of N ; because N is a thickened neighbourhood of

an incompressible torus it follows that Ñ0 is diffeomorphic to R2 × [−1, 1], i.e. it is a

thickened neighbourhood of an embedded plane in M̃ . Because N separates M in two

components, it follows that Ñ0 separates M̃ is two connected components. ∂(Ñ0) is

the union of two embedded planes P 0
+ and P 0

− which are characterized by the fact that

there are neighbourhoods V+ and V− of, respectively, P 0
+ and P 0

− such that π̂(V+) ⊂M1

and π̂(V−) ⊂ M2. We will denote by C0
+ the connected component of M̃ \ Ñ0 which

intersects V+, and by C0
− the connected component of M̃ \ Ñ0 which intersects V−.

As we saw earlier, the trajectory [γ([tk, tk+ 1
2
])] is a non-trivial relative homotopy

class in π1(Mi, N). It is not hard to see that it remains as such in π1(M,N). Let

Ti = ∂(N)∩Mi; because N is a tubular neighbourhood of Ti it is clear that [γ([tk, tk+ 1
2
])

would be trivial in π1(Mi,Ti) if and only if it is trival in π1(Mi, N), and we know it
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is not. As Ti is isotopic to T it is also an incompressible torus that divide M in 2

components. Now, [γ([tk, tk+ 1
2
])] would be trivial in π1((Mi \ int(N)),Ti) if, and only if,

there is a curve c in Ti which endpoints γ(tk) and γ(tk+ 1
2
) such that the concatenation

γ ∗ c is contractible in (Mi \ int(N)). Because of the incompressibility of Ti such a

curve γ ∗ c is contractible in (Mi \ int(N)) if, and only if, it is contractible in M . This

implies that [γ([tk, tk+ 1
2
])] would be trivial in π1(M,Ti) if, and only if, it was trivial in

π1((Mi \ int(N)),Ti) which we know it is not the case. Lastly, because N is a tubular

neighbourhood of Ti it is clear that as [γ([tk, tk+ 1
2
])] is not trivial π1(M,Ti) it cannot

be trivial in π1(M,N), as we wished to show.

Let now γ̃ be a lift of γ such that γ̃(0) ∈ Ñ0. We know that γ̃([t2n′− 1
2
−T, t 1

2
]) ⊂

Ñ0. It will be useful to us to define the following sequence:

t̃i = qiT + tri , (7.31)

where qi and ri < 2n′ are the unique integers such that i = qi(2n
′) + ri. Associated to t̃i

we associate the lift Ñ i of N , which is determined by the property that γ̃(t̃i) ∈ Ñ i. It

is clear that the sequence Ñ i contains all lifts of N which are intersected by the curve

γ̃(R). For the lifts Ñ i we define the connected components Ci+ and Ci− of M̃ \ Ñ i, and

the planes P i+ and P i− analogously as how we defined them for Ñ0. A priori it could be

that for i 6= j we had Ñ i = Ñ j . We will show however, that this cannot happen.

Firstly, Ñ0 6= Ñ1because γ([t̃0, t̃1]) is non-trivial in π1(M,N). Also, we have that

Ñ1 ⊂ C0
+ because γ([t0, t 1

2
]) ⊂M1. An identical reasoning shows that Ñ2 6= Ñ1 and:

Ñ2 ⊂ C1
−. (7.32)

On the other hand we have that Ñ0 ⊂ C1
+, because γ̃([t̃0, t 1

2
]) gives a path totally

contained in M̃ \ Ñ1 connecting Ñ0 and P 1
+. As Ñ2 ⊂ C1

− and Ñ0 ⊂ C1
+, we must

have Ñ2 6= Ñ0. In an identical way, one shows that Ñ3 6= Ñ1, and more generally that

Ñ i+2 6= Ñ i and Ñ i+1 6= Ñ i.

Now for Ñ3, we have that Ñ3 ⊂ C2
+. As γ̃([t̃0, t 3

2
]) is a path completely contained

in M̃ \ Ñ2 connecting Ñ0 and P 2
− we obtain that Ñ0 ⊂ C2

−, and therefore Ñ3 6= Ñ0.

Proceeding inductively along this line one obtains that Ñ i 6= Ñ0 for all i 6= 0, and

more generally, Ñ i 6= Ñ jfor all i 6= j. As a consequence of this, we obtain that the curve

γ̃(R) cannot be homeomorphic to a circle and therefore γ(R) cannot be contractible.

We are now ready to prove for the main result of this subsection:
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Proposition 7.3. αF is hypertight.

Proof: there are two possibilities for Reeb orbits.

Possibility 1: the Reeb orbit γ visits both M1 \N and M2 \N .

In this case, we have just showed above that γ is not contractible.

Possibility 2: the Reeb orbit γ is totally contained in Mi for i equal to 1 or 2.

In this case, the Reeb orbit does not visit the surgery region B̃. Therefore it existed

also before the surgery as a closed hyperbolic geodesic in Mi \ B̃ = T1Si \ B3η
2ε . Such a

closed geodesic is non-contractible in T1Si which is diffeomorphic to Mi. We have thus

obtained that γ ⊂Mi is non-contractible in Mi.

Looking now at Mi as a submanifold with boundary of M , we remind the reader

that ∂Mi is an incompressible torus in M . This implies that every non-contractible

closed curve in Mi remains non-contractible in M ; therefore γ is also a non-contractible

Reeb orbit for this case.

7.3 Special Legendrians in M

Our objective now is to show that there are disjoint Legendrian knots Λ and Λ̂ such that

the contact form αF is adapted to the pair (Λ, Λ̂). We choose the Legendrians in the

following way: as in the piece M1 ⊂ N of M is αF coincides with αg, we pick Λ and Λ̂ to

be unitary fibers of T1S1. By choosing these unitary fibers generically we can guarantee

that the triple (αF ,Λ, Λ̂) satisfies condition (d) from section 3.1, and Proposition 7.3

implies that αF satisfies condition (a) from section 3.1.

Our objective now is to prove that there are no Reeb chords from Λ to itself

which are trivial in π1(M,Λ), and that the same is true for Λ̂. We will show that this is

true for any Legendrian in M1 ⊂ N which is a unit tangent fiber of T1S1.

Let then Λ̃ be a “unit tangent fiber” in M1 ⊂ N . Then there are two types of

Reeb chords of Λ̃ to itself: those which are completely contained in M1 and those that

visit both components.

For a Reeb chord c from Λ̃ which visits both components we can introduce a

certain decomposition as we did for Reeb orbits in a similar situation. We consider the

natural parametrisation c : [0, Tc] → M . We consider the unique sequence 0 < t1(c) <

t2(c) < .... < tn(c)(c) < Tc such that c(ti(c)) ∈ T for all 1 ≤ i ≤ nc, and that contains all

times t ∈ [0, Tc] for which c(t) ∈ T. It is then clear that nc is an even number, and that

c([tk(c), tk+1(c)]) ⊂M2 for k odd, and c([tk(c), tk+1(c)]) ⊂M1 for k even.
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Now considering the lift c̃ of c to the universal cover of M we consider for 1 ≤
i ≤ nc the unique lift Pi of T containing c̃(ti(c)). Making an analysis identical to the

one done before Proposition 7.3 one shows that for i 6= j we have Pi 6= Pj and uses this

to show that c̃(0) and c̃(Tc) are in different lifts of Λ̃ to the universal cover. This implies

that c is not trivial in π1(M, Λ̃). We now have:

Lemma 7.4. Let Λ̃ be a “unit tangent fiber” contained in M1 ⊂ N . Then there are no

Reeb chords from Λ̃ to itself that are trivial in π1(M, Λ̃).

Proof: for a Reeb chords c from Λ̃ to itself there are two possibilities.

Possibility 1: c visits both components. We have just argued that in this case

c cannot be trivial in π1(M, Λ̃).

Possibility 2: c is completely contained in M1. In this case c also existed

as a hyperbolic geodesic for c starting and ending at Λ̃ and contained in T1S1. As

a hyperbolic geodesic starting and ending at a unit tangent fiber, c is non-trivial in

π1(M1, Λ̃) = π1(T1S1, Λ̃). Using the incompressibility of T, it is easy to see that c

remain non-trivial in π1(M, Λ̃).

As these are the only 2 possibilities, we have finished the proof of the lemma.

Applying this lemma to our pair Λ and Λ̂, we have shown the following:

Proposition 7.5. The contact form αF is adapted to the pair (Λ, Λ̂).

7.4 Exponential homotopical growth rate of LCHst(αF ,Λ→
Λ̂)

In this section we prove that LCHst(αF ,Λ → Λ̂) has exponential homotopical growth

rate.

We begin by introducing a special class of elements of Σ
Λ→Λ̂

(M). Let p and p̂

be the points in S1 such that Λ is the unit tangent fiber over p and p̂. We consider the

set H of elements in Σ
Λ→Λ̂

(T1S1) that contain hyperbolic geodesics connecting p and p̂.

In other words, the elements of H contain Reeb chords of αg from Λ to Λ̂ completely

contained in S1.

Let ρ ∈ H and cρ ∈ ρ be the unique Reeb chord corresponding to the unique

hyperbolic geodesic from p to p̂ in the ρ. The main observation is that cρ also exists as a
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Reeb chord of αF from Λ to Λ̂. The reason for that is that cρ is contained in a region of

T1S1 = M1 which away from the neighbourhood of Lr where we performed the surgery:

the reason for that is that, as we saw in section 7.1 (specifically equations (7.2), (7.3),

(7.7) and (7.8)), only trajectories that only geodesics that visit both components of S

intersect the neighbourhood of Lr where we perform the surgery. As consequence, the

trajectory cρ is not altered by the surgery and it exists also as a Reeb chord for αF . N

We define HC as the set of elements ρ ∈ HC such that the Reeb chord A(cρ) ≤ C.

It is well known that the fundamental group of S1 has exponential growth, and this

implies that there exists real numbers a > 0, d and C0 (which depend only on the

geodesic r) such that #(HC) ≥ eaC+d for all C ≥ C0.

From now on we will consider I(HC) also as a subset Σ
Λ→Λ̂

(M) coming from the

inclusion I : Σ
Λ→Λ̂

(T1S1 = M1) → Σ
Λ→Λ̂

(M). Coherent with this, we will denote by

cI(ρ) the Reeb chord that we previously denoted as cρ in M1.

Lemma 7.6. For every ρ ∈ HC , the unique Reeb chord of I(ρ) in T I(ρ)

Λ→Λ̂
(αF ) is the cI(ρ)

considered above.

Proof: let č be a Reeb chord different from cI(ρ). There are two possibilities for

cI(ρ).

Possibility 1: č is completely contained in M1.

In this case, we know that č also existed as a hyperbolic geodesic connecting p and p̂.

From classical properties of geodesics in hyperbolic surfaces, we deduce that cI(ρ) and č

belong to different elements of Σ
Λ→Λ̂

(T1S1) = Σ
Λ→Λ̂

(M1) . As the boundary of M1 is

an incompressible, we have that if cI(ρ) and č belong to different elements of Σ
Λ→Λ̂

(M1),

they also belong to different elements of Σ
Λ→Λ̂

(M). Therefore we conclude that that

č /∈ I(ρ).

Possibility 2: č intersects both M1 and M2.

In this case, we consider a lift c̆ of č to the universal cover M̃ of M and let P0 be a lift

of T intersected by c̆. Reasoning identically as we did in the proof of Lemma 7.2, we

can show that c̆ intersects P0 at only one point. This allows us to conclude that the

intersection number of c̆ and P0 equals to 1.

Let now, Λ0 and Λ̂0 be the lifts of, respectively, Λ and Λ̂ such that: the initial

point of c̆ is in Λ0 and the final point of c̆ is in Λ̂0. Clearly both Λ0 and Λ̂0 are disjoint

from P0.

For any Reeb chord c from Λ to Λ̂ that is in the same class of č in Σ
Λ→Λ̂

(M), we

can consider a lift c̃ which starts at Λ0 and ends Λ̂0: clearly the algebraic intersection
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number of c̃ and P0 must be the same as the algebraic intersection number of c̆ and P0,

which is 1.

As cI(ρ) does not intersect T, none of its lifts will intersect P0. From the above

we conclude that č /∈ I(ρ) also in this case.

From the previous lemma we conclude that LCHI(ρ)
st (αF ,Λ → Λ̂) 6= 0 for all

ρ ∈ H). More precisely, Lemma 7.6 shows that #(HC) ≥ #(ΣC
Λ→Λ̂

(αF )). We have thus

proved the following:

Theorem 7.7. LCHst(αF ,Λ→ Λ̂) has exponential homotopical growth rate with expo-

nential weight a.



Appendix A

Asymptotic behaviour near

punctures

In this appendix we present the precise asymptotic formulas obtained by Abbas [1] which

describe the behaviour of a pseudoholomorphic curve near a boundary puncture.

Let ṽ : (Ṡ, j) → (V, J) be a pseudoholomorphic curve in an exact symplectic

cobordism and z0 a boundary puncture of ṽ. Then we can pick a neighbourhood N0 of z0

and a biholomorphism ψ R+×[0, 1] to N0. By considering coordinates (r, t) ∈ R+×[0, 1],

we assume that the biholomorphism was chosen so that when r → +∞, ψ(r, t) goes to

z0. We denote by c0 be the transverse Reeb chord detected by ṽ at z0.

In [1], the author introduces an operator Ac0∞ which is a self-adjoint operator of

L2([0, 1],R2). Because this Reeb chord is transverse, he shows that the kernel of Ac0∞

does not contain δ0 > 0 such that [−δ0, δ0] does not contain eigenvalues of Ac0∞.

Supposing z0 is a positive puncture, we assume that N0 was chosen so that ṽ(N0)

is contained in the positive end of V which is exact symplectomorphic to [0,+∞)× Y.

Abbas shows that there exist a coordinate system (θ, x, y) ∈ [0, 1]×D in the neighbour-

hood of c0, which identifies c0 with [0, 1] × {0} such that the ṽ ◦ ψ(r, t) = (θ, x, y)(r, t)

satisfies:

• supt∈[0,1](∂
βs(r, t)− b0 − r) ≤ a1e

−δ0r

• supt∈[0,1](∂
βθ(r, t)− Tr) ≤ a2e

−δ0r for some constant a,

• either (x, y)(r, t) = e
∫ r
r0
λ(u)du

[e(t) +R(r, t)] or (x, y)(r, t) vanishes,

where ∂β = ∂β1
r ∂

β2
t , a1 and a2 are positive constants, e(t) is an eigenvector of Ac0∞, and

λ(r) goes to an eigevalue λ < 0 of Ac0∞ as r goes to +∞.
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A similar statement is valid when z0 is a negative puncture, with ṽ ◦ ψ(r, t) =

(θ, x, y)(r, t) satisfying:

• supt∈[0,1](∂
βs(r, t)− b0 + r) ≤ a1e

−δ0r

• supt∈[0,1](∂
βθ(r, t) + Tr) ≤ a2e

−δ0r for some constant a,

• either (x, y)(r, t) = e
∫ r
r0
λ(u)du

[e(t) +R(r, t)] or (x, y)(r, t) vanishes,

where ∂β = ∂β1
r ∂

β2
t , a1 and a2 are positive constants, e(t) is an eigenvector of Ac0∞, and

λ(r) goes to an eigevalue λ > 0 of Ac0∞ as r goes to +∞.

A similar statement is valid for interior punctures, for which we refer the reader

to [6] and [29].



Appendix B

Fredholm theory

In this appendix we review a bit of the Fredholm theory involved in the study of finite

energy pseudoholomorphic curves in symplectizations. In order to obtain that the lin-

earisation of the Cauchy-Riemann operator is a Fredholm operator we have to introduce

the appropriate function spaces on which the Cauchy-Riemann operator will act.

Let (R× Y 3, d$) be an exact symplectic cobordism from α+ to α−. We assume

that:

• for Legendrian knots Λ+ in (Y, kerα+) and Λ− in (Y, kerα−) , there exists an exact

Lagrangian cobordism L in (R× Y 3, d$) diffeomorphic to a cylinder,

• for Legendrian knots Λ̂+ in (Y, kerα+) and Λ̂− in (Y, kerα−) , there exists an exact

Lagrangian cobordism L̂ in (R× Y 3, d$) diffeomorphic to a cylinder.

We consider Reeb chords c+ ∈ T
Λ+→Λ̂+(α+) and c− ∈ T

Λ−→Λ̂−(α−). Again we construct

coordinate systems (θ+, x+, y+) ∈ [0, 1] × D in the neighbourhood N+ of c+, which

identifies c+ with [0, 1] × {0} and (θ−, x−, y−) ∈ [0, 1] × D in the neighbourhood N−of

c−, which identifies c− with [0, 1]× {0}. We consider the space Ba,p
k (c+, c−) of maps f

from R× [0, 1] to R× Y that:

• take R× {0} to L and R× {1} to L̂,

• f is locally in Lak,

• there is R+ > 0 such that f([R+,+∞) × [0, 1]) ⊂ R × N+ and writing f(r, t) =

(θ+, x+, y+)(r, t) for (r, t) ∈ [R+,+∞) × [0, 1] we have (s(r, t) − s − b0, θ+(r, t) −
T+t, x+(r, t), y+(r, t)) ∈ La,pk = {g(r, t); g(r, t)e

a
d
s ∈ Lpk} for some constant b0
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• there is R− > 0 such that f((−∞, R−]) × [0, 1]) ⊂ R × N− and writing f(r, t) =

(θ−, x−, y−)(r, t) for (r, t) ∈ (−∞, R−])× [0, 1] we have (s(r, t) + s− b1, θ−(r, t)−
T−t, x−(r, t), y−(r, t)) ∈ La,pk = {g(r, t); g(r, t)e

a
d
−s ∈ Lpk} for some constant b0.

It follows from the formulas of appendix A, that if we take a < δ0, p ≥ 2 and

k ≥ 0 then for any cylindrical almost complex structure J as defined in section 2.1.2, all

the elements of M(c+, c−, L, L̂; J) are in the space Ba,p
k (c+, c−).

We now construct a Banach bundle Z over Ba,p
k (c+, c−). The fiber Zf over

f ∈ Ba,p−1
k (c+, c−) will be La,p−1

k (∧0,1(f)), which consists of La,p−1
k 0, 1-forms of R×[0, 1]

with values in f∗(T (R× Y )).

It is clear from the asymptotic formulas of appendix A and elliptic regularity (see

[3]), that the operator ∂J takes elements of Ba,p
k (c+, c−) to a section of Z; in this way ∂J

can be seen as a section of Z. Moreover, the moduli space M(c+, c−, L, L̂; J) consists

exactly of the intersection of the section zero section of Z and the section ∂J .

As ∂J is a differentiable section one can consider its differential D∂J(ṽ) for el-

ements ṽ ∈ M(c+, c−, L, L̂; J). The tangent space to M(c+, c−, L, L̂; J) at ṽ can then

be identified with the kernel of D∂J(ṽ). With the setup, it is shown in [2] (see also [6])

that D∂J(ṽ) is a Fredholm operator.
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