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Abstract. Does the information complexity of a function equal its com-
munication complexity? We examine whether any currently known tech-
niques might be used to show a separation between the two notions.
Ganor et al. recently provided such a separation in the distributional case
for a specific input distribution. We show that in the non-distributional
setting, the relative discrepancy bound is smaller than the information
complexity, hence it cannot separate information and communication
complexity. In addition, in the distributional case, we provide a linear
program formulation for relative discrepancy and relate it to variants
of the partition bound, resolving also an open question regarding the
relation of the partition bound and information complexity. Last, we
prove the equivalence between the adaptive relative discrepancy and the
public-coin partition, implying that the logarithm of the adaptive relative
discrepancy bound is quadratically tight with respect to communication.

1 Introduction

The question of whether information complexity equals communication com-
plexity is one of the most important outstanding questions in communication
complexity. Communication complexity measures the amount of bits Alice and
Bob need to communicate to each other in order to compute a function whose
input is shared between them. On the other hand, information complexity mea-
sures the amount of information Alice and Bob must reveal about their inputs
in order to compute the function. Equality between information and commu-
nication complexity is equivalent to a compression theorem in the interactive
setting. It is known that a single message can be compressed to its information
content [1–4] and here the question is whether such a compression is possible for
an interactive conversation.

An important application of information complexity is to prove direct
sum theorems for communication complexity, namely show that computing k
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instances of a function costs k times the communication of computing a single
instance. This has been shown to be true in the simultaneous and one-way mod-
els [5,6], for bounded-round two-way protocols under product distributions [3,7]
or non-product distributions [1], and also for specific functions like Disjointness
[8]; non-trivial direct sum theorems have also been shown for general two-way
randomized communication complexity [9]. Since the information complexity
is equal to amortized communication complexity [1], the question of whether
information and communication complexity are equal is equivalent to whether
communication complexity has a direct sum property [1,10]. Note that in the
case of deterministic, zero-error protocols, a separation between information and
communication complexity is known for Equality [10].

Since information complexity deals with the information Alice and Bob trans-
mit about their inputs, it is necessary to define a distribution on these inputs.
For each fixed distribution μ, we define the distributional information complex-
ity of a function f (also known as the information cost) as the information Alice
and Bob transmit about their inputs in any protocol that solves f with small
error according to μ [1,5]. The (non-distributional) information complexity of
the function f is defined as its distributional information complexity for the
worst distribution μ [10]. In this paper we consider the internal information
complexity.

Similarly, for communication complexity, one may also consider a model with
a distribution μ over the inputs, and the error probability of the protocol is
taken over this distribution. This is called a distributional model, and Yao’s
minmax principle [11] states that the randomized communication complexity of f
is equal to its distributional communication complexity for the worst distribution
μ, where the randomized communication complexity of a function f is defined
as the minimum number of bits exchanged, in the worst case over the inputs,
for a randomized protocol to compute the function with small error [12].

One can therefore ask whether the following stronger relation holds: is the
distributional communication complexity equal to the distributional informa-
tion complexity for all input distributions μ? A positive answer to this question
would also imply a positive answer to the initial question, proving the equality
of information and communication complexity.

In a recent breakthrough, Ganor et al. [13,14] defined a function f and a
distribution μ, for which there is an exponential separation between the distribu-
tional information and communication complexity. Does this settle the question
of communication versus information? First, let us note that the gap, although
exponential, is very small compared to the input size: a log log(n) communication
lower bound and a log log log(n) information upper bound, for inputs of size n.
More importantly, Ganor et al.’s results prove that the distributional information
and communication complexities are not equal for all distributions μ.

How could we settle the question in the non-distributional setting? To prove a
separation it is necessary to show that the communication complexity of a specific
function is large, while its information complexity is small. In other words, we
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need a lower bound technique which provides a lower bound for communication
but not for information.

In previous work, Kerenidis et al. [15] showed that almost all known lower
bound techniques for communication also provide lower bounds for information.
More precisely, they studied the relaxed partition bound and proved that it sub-
sumes all known lower bound techniques (except the partition bound [16]). In
addition, they proved that for any distribution μ, the distributional informa-
tion complexity can be lower bounded by the relaxed partition bound. This also
holds in the non-distributional setting. An open question was whether the parti-
tion bound remained a candidate for separating information and communication
complexity.
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(a) The non-distributional case. The
fact that rdisc is upper bounded by the
prt is given in Theorem 3.
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(b) The distributional case. The equiv-
alence between prt+and rdisc is given
in Theorem 5. The separation given by
Ganor et al. is between IC and rdisc.

Fig. 1. Definitions follow in Sections 3, 4, and 5. An arrow from one bound to another
indicates that the former is at least as large as the latter.

The main question we ask is whether the techniques developed by Ganor et
al. can help in proving, or disproving, the equality of information and commu-
nication complexity of a function f in the non-distributional setting. For their
separation, Ganor et al. introduced a new communication lower bound called
relative discrepancy. They showed that for a specific function f and a specific
distribution μ, this quantity is high, while the distributional information com-
plexity is low. We study how large this new bound is compared to the other
known lower bound techniques, and whether it can be used to separate informa-
tion and communication complexity in the non-distributional setting. Our main
results are:

Result 1: In the non-distributional case, we show that relative discrepancy is
bounded above by the relaxed partition bound (Theorem 3). By the results of
[15], this means that relative discrepancy cannot be used to separate information
and communication complexity.
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Result 2: In the distributional case, we provide a clear relation between relative
discrepancy, relaxed partition and partition bound. We give an equivalent linear
program formulation for relative discrepancy (Theorem 5) and show how rela-
tive discrepancy and relaxed partition can be derived from the partition bound
by imposing some simple extra constraints. This also answers negatively to the
open question in [15] regarding whether the partition bound is a lower bound
on information.

Recently, lower bound techniques that use partitions instead of considering
just rectangles have been proposed. Jain et al. defined the public coin partition
bound, and showed that its logarithm is quadratically related to communica-
tion complexity [17]. In addition, Ganor et al. introduced the adaptive relative
discrepancy [14]. We study the relation between them and show the following:

Result 3: For any μ, adaptive relative discrepancy and public-coin partition
bound are equivalent (Theorem 6). Hence the logarithm of the adaptive relative
discrepancy is quadratically tight to communication.

In addition to providing a linear program for relative and adaptive rela-
tive discrepancies, the different variants of the partition bound have several
other advantages. They can be defined for a wider range of problems, includ-
ing non-boolean functions; they have natural interpretations in terms of zero-
communication protocols, a fact used for relating information complexity to
these bounds [15] and for recent advances in the log rank conjecture [18].

In Section 2 we provide the necessary background and definitions. In Section 3
we prove that relative discrepancy is less than relaxed partition (in the non-
distributional setting). In Section 4 we consider the setting with a fixed μ, and
compare the partition bound and its variants to the relative discrepancy bound.
In Section 5, we consider the adaptive relative discrepancy and compare it to
the public coin partition bound. The full version of the paper appears in [19].

2 Preliminaries

Let X and Y be the sets of inputs to the two players, and Z be the set of
possible outputs. Since the discrepancy-based bounds studied in this paper apply
naturally only to boolean functions, f will usually denote a (possibly partial)
function over X × Y taking values in Z = {0, 1}, while μ denotes a probability
distribution over X × Y. 1

2.1 Information and Communication Complexity

For any (possibly partial) function f over inputs X × Y, and any ε ∈ (0, 1/2),
the communication cost of a protocol that computes f with error probability at
most ε is the number of bits sent for the worst case input.
1 The partition-based definitions apply to non-boolean functions, relations, and bipar-

tite distributions as well, but we do not give the full definitions in this paper for those
settings.
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Definition 1. The (public-coin) communication complexity of f , denoted
Rε(f), is the best communication cost for any protocol that computes f using
public coins with error at most ε for any input (x, y). For any distribution μ
over the inputs, the distributional (public-coin) communication complexity of f ,
denoted Rε(f, μ), is the cost of the best protocol that computes f with error at
most ε, where the error probability is taken over the input distribution.

For information complexity, we are interested not in the number of bits
exchanged, but the amount of information revealed about the inputs. We con-
sider the internal information complexity in this paper. Here I(X;Y ) denotes
the mutual information between random variables X and Y , and I(X;Y |Z) is
the mutual information conditioned on Z.

Definition 2 (Information complexity). Fix f, μ, ε. Let (X,Y,Π) be the
tuple distributed according to (X,Y ) sampled from μ and then Π being the tran-
script of the protocol π applied to X,Y . Then define:
1. ICμ(π) = I(X;Π | Y ) + I(Y ;Π | X)
2. ICμ(f, ε) = infπ ICμ(π), where π computes f with error at most ε
3. IC(f, ε) = maxμ ICμ(f, ε)

2.2 Lower Bound Techniques

For any family of variables {βx,y}(x,y)∈X×Y and any subset E ⊆ X×Y, we will
denote β(E) =

∑
(x,y)∈E βx,y, and β = β(X × Y). Unless otherwise specified

“∀x, y” means “∀x, y ∈ X × Y”, “∀z” means “∀z ∈ Z”, “∀R” means “for all
rectangles R in X × Y”, and “∀P” means “for all partitions P of X × Y into
labeled rectangles (R, z)”. We also denote by |P | the size of the partition, that
is, the number of rectangles (R, z) it contains.

Following Ganor et al. (with small changes that do not affect the value of
the bound), we define the relative discrepancy bound rdiscε(f, μ), as follows.
Without loss of generality, we assume supp(μ) = supp(f).

Definition 3 (Relative discrepancy bound [14]). Let μ be a distribution
over X × Y and let f : supp(μ) → {0, 1} be a function.

rdiscε(f, μ) = sup
κ,δ,ρxy

1
δ
( 12 − κ − ε)

subject to
(
1
2 − κ

) · ρ(R) ≤ μ(R ∩ f−1(z)) ∀R, z s.t. ρ(R) ≥ δ
∑

xy

ρxy = 1, 0 ≤ κ <
1
2
, 0 < δ < 1, ρxy ≥ 0 ∀(x, y).

For the non-distributional case, we define rdiscε(f) = maxμ rdiscε(f, μ), where
the maximum is over distributions μ over X×Y (which implicitly adds nonneg-
ativity and normalization constraints on μ).
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Note that neither the constraints nor the objective function are linear in the
variables. Intuitively, the distribution ρ rebalances the weight of the 0-region and
the 1-region of any rectangle R by putting weights on all (x, y) and not just the
ones in the support of μ. If this rebalancing is possible even for rectangles with
very small weight (i.e. δ is small), then the relative discrepancy increases.

Using this formulation, Ganor et al. show:

Theorem 1 ([14]). Let f : supp(μ) → {0, 1} be a (possibly partial) function.
Then log(rdiscε(f, μ)) ≤ Rε(f, μ).

The relaxed partition bound was introduced by Kerenidis et al. [15] who
proved that for any function, it is bounded above by its information complexity.
Their result holds also relative to any input distribution.2

Definition 4 (Relaxed partition bound [15]). Let μ be a distribution over
X × Y and let f : supp(μ) → {0, 1} be a function.

prtε(f, μ) = max
α,βxy

β − αε

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0, αμxy − βxy ≥ 0 ∀(x, y),

where R ranges over all rectangles, (x, y) ∈ X × Y and z ∈ {0, 1}. The non-
distributional relaxed partition bound is prtε(f) = maxμ prtε(f, μ). For the non-
distributional case, we use αx,y instead of αμx,y (which is not linear if μ is no
longer fixed), with αx,y positive but not normalized.

Kerenidis et al. [15] provided both a primal and dual formulation of the relaxed
partition bound. The above is the dual formulation. The corresponding primal
formulation can be interpreted in terms of the highest non-abort probability of
a zero-communication protocol for f .

Theorem 2 ([15]). For all μ, boolean functions f over the support of μ and all
ε ∈ (0, 1

4 ], Ω
(
ε2 log prt2ε(f, μ)

)
= ICμ(f, ε) ≤ Rε(f, μ).

3 Relative Discrepancy Is Bounded by Relaxed Partition

We show that the non-distributional relative discrepancy is bounded above by
the relaxed partition, which implies that a stronger technique is necessary in
order to separate information and communication complexity. (See Figure 1a).

Theorem 3. For any boolean f , and ε ∈ (0, 1/3), rdisc 3
2 ε

(f) ≤ prtε(f).

2 Compared with the original formulation [15], there is an implicit change of variables:
we use βx,y here to denote what was αx,y−βx,y in the original notation.
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Proof. It suffices to show that for any feasible solution of rdisc, there exists
a feasible solution for prt whose objective value is at least as large. Let
(κ, δ, {ρx,y}x,y, {μx,y}x,y) be a feasible solution of relative discrepancy for f .
Define for any (x, y) ∈ X×Y, αx,y = 1

δ ( 12−κ)ρx,y+ 1
δ μx,y and βx,y = 1

δ ( 12−κ)ρx,y.
We show that the relaxed partition constraints are satisfied. First, the sign con-
straints are satisfied. Moreover, for any R, z,

β(R) − α(R ∩ f−1(z))

=
1
δ
( 12 − κ)ρ(R) − 1

δ
μ(R ∩ f−1(z)) − 1

δ
( 12 − κ)ρ(R ∩ f−1(z))

≤ 1
δ
( 12 − κ)ρ(R) − 1

δ
μ(R ∩ f−1(z)) (since ρxy ≥ 0 for any (x, y))

There are two cases: if ρ(R) ≥ δ, then 1
δ ( 12 − κ)ρ(R) − 1

δ μ(R ∩ f−1(z)) ≤ 0 ≤ 1
by the relative discrepancy constraint; otherwise ρ(R) < δ and 1

δ ( 12 − κ)ρ(R) −
1
δ μ(R ∩ f−1(z)) < (12 − κ) − 1

δ μ(R ∩ f−1(z)) ≤ 1
2 ≤ 1.

Finally we compare the objective values. Since ρ and μ are distributions,
α = 1

δ

(
3
2 − κ

)
and β = 1

δ

(
1
2 − κ

)
, so β − εα = 1

δ

[
1
2 − κ − ( 32 − κ)ε

] ≥ 1
δ ( 12 −κ−

3
2ε) = rdisc3

2 ε
(f). 	


Combining Theorem 2 and Theorem 3 gives us that relative discrepancy is a
lower bound on information complexity.

Corollary 1. For all functions f : X × Y → {0, 1} and all ε ∈ (0, 1
6 ],

Ω
(
ε2 log(rdisc3ε(f))

)
= IC(f, ε) ≤ Rε(f).

Remark 1. Our change of variables satisfies an additional constraint :

βx,y ≥ 0 for any (x, y) ∈ X × Y. (1)

since ρx,y ≥ 0. We will examine the role of this constraint in Section 4. It turns
out to be a key point in understanding how relative discrepancy relates to the
partition bound and its variants. Also notice that αx,y is not proportional to
μx,y, so this change of variable does not carry over to the distributional case,
since αx,y cannot be written as αμxy.

4 The Distributional Case

In this section we study how the various bounds relate, relative to a fixed dis-
tribution μ, and uncover an elegant relationship between the bounds by adding
simple positivity constraints to the partition bound.

We start with a fixed-distribution version of the partition bound [16], which
we define below. It follows easily from the original proof that this is a lower bound
on distributional communication complexity and that it equals the partition
bound in the worst case distribution.
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Definition 5 (Partition bound).

prtε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0.

The non-distributional bound is prtε(f) = maxμ prtε(f, μ). Going from the non-
distributional setting to a fixed distribution μ, αx,y is replaced by α · μx,y, that
is, {αx,y} is {μx,y} scaled by a factor α.

Theorem 4 ([16]). Let f : supp(μ) → {0, 1} be a (possibly partial) function.
Then log(prtε(f, μ)) ≤ Rε(f, μ).

Note that the relaxed partition bound (Definition 4) is obtained from the
partition bound by adding the constraint αμx,y − βxy ≥ 0 for all (x, y).

As suggested in the proof of Theorem 3, we now consider the constraint
βx,y ≥ 0 for all x, y. Adding this constraint to the partition bound results in a
new bound which we call the positive partition bound.

Definition 6 (Positive partition bound).

prt+ε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z

α ≥ 0, βxy ≥ 0 ∀(x, y).

We also define prt+ε(f) = maxμ prt+ε(f, μ), and use αx,y instead of αμx,y.

The weak partition bound is obtained by adding both constraints.

Definition 7 (Weak partition bound).

wprtε(f, μ) = max
α,βxy

β − εα

subject to : β(R) − αμ(R ∩ f−1(z)) ≤ 1 ∀R, z,

α ≥ 0, βxy ≥ 0, αμxy − βxy ≥ 0 ∀(x, y).

We also define wprtε(f) = maxμ wprtε(f, μ).

Because we have added a constraint to a maximization problem, it is easy to
see that the following holds (see Figure 1b).

Proposition 1. For all f, μ, ε,

wprtε(f, μ) ≤ prt+ε(f, μ) ≤ prtε(f, μ) and wprtε(f, μ) ≤ prtε(f, μ) ≤ prtε(f, μ).

In [19], we show the following equivalence:

Theorem 5. Let μ be a distribution on X × Y and f be a boolean function on
the support of μ such that either rdiscε(f, μ) ≥ 1 or prt+4ε(f, μ) > 2. Then for
any ε ∈ (0, 1/4), ε

2prt+4ε(f, μ) ≤ rdiscε(f, μ) ≤ prt+ε(f, μ).

Each inequality is proven by a different change of variables. At a high level,
ρx,y is proportional to βx,y and δ is a scaling factor.
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Revisiting the non-distributional case For the change of variables in the proof of
Theorem 3, we have noted that the constraint βxy ≥ 0 holds ∀(x, y) (see Inequal-
ity 1). This shows that, in the non-distributional case, relative discrepancy is, in
fact, no larger than the weak partition bound, i.e. rdiscε(f) ≤ wprt2

3 ε
(f).

Lemma 1. For any boolean f , and ε ∈ (0, 1/2), prt+ε(f) ≤ wprt ε
2
(f) + ε

2 .

Proof. Let αx,y, βx,y be a feasible solution for prt+, and consider the following
assignment for wprt: α′

x,y = αx,y +βx,y, β′
x,y = βx,y. The constraint on rectan-

gles is still satisfied, and the added positivity constraint α′
x,y −β′

x,y = αx,y ≥ 0 is
also satisfied. Finally, the objective function for wprt with error ε

2 is β′ − ε
2α′ =

β − ε
2β − ε

2α ≥ β − εα − ε
2 (where we have used the constraint on R = X×Y),

as claimed. 	

The change of variables in the proof of Theorem 3 is just the composition of

the two changes of variables in Theorem 5 and Lemma 1. It is also now clearer
how the distributional and the non-distributional settings differ. It cannot be
the case that prt+ε(f, μ) ≤ wprtε(f, μ) for fixed distribution, since Ganor et
al. provide a counterexample. We can also see that for this specific change of
variable, by setting α′

x,y = αx,y + βx,y, α′
x,y cannot be written as αx,y = αμx,y,

as we would need in the distributional case, since it is a combination of α and
β.

5 Adaptive Relative Discrepancy Is Equivalent to the
Public Coin Partition

In this section, we compare two lower bound techniques for communication com-
plexity introduced recently. We give below a distributional version of the public-
coin partition3.

Definition 8 (Public coin partition bound [17]).

pprtε(f, μ) = max
α,β

β − εα

subject to : β −
∑

(R,z)∈P

αμ(R ∩ f−1(z)) ≤ |P | ∀P

α ≥ 0, β ≥ 0.

Ganor et al. introduced the following notion, which is not a linear program:

3 Note that this is a simplified definition with respect to the original one by means of
removing redundant variables and constraints in the primal formulation, taking the
dual of the resulting expression, and replacing αx,y by αμx,y, where the distribution
μ is fixed.
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Definition 9 (Adaptive relative discrepancy [14]).

ardiscε(f, μ) = sup
κ,δ,ρP

x,y

1
δ

(
1
2 − κ − ε

)
subject to :

(
1
2 − κ

)
ρP (R) ≤ μ(R ∩ f−1(z)), ∀P, ∀(z,R) ∈ P : ρP (R) ≥ δ

0 ≤ κ < 1
2 , 0 < δ < 1, ρP = 1, ρP

x,y ≥ 0, ∀P,∀(x, y).

Then ardiscε(f) = maxμ ardiscε(f, μ).

In [19], we prove the following result :

Theorem 6. For any distribution μ, any function f : supp(μ) → {0, 1} and
ε ∈ (0, 1

4 ) such that either ardiscε(f, μ) ≥ 1 or pprt4ε(f, μ) > 2,

ε

2
pprt4ε(f, μ) ≤ ardiscε(f, μ) ≤ pprtε(f, μ).

Since the logarithm of the public coin partition bound is polynomially related
to randomized communication complexity [17], this tells us that the logarithm of
the adaptive relative discrepancy is also polynomially related to communication
complexity.

Corollary 2. For any μ, f : supp(μ) → {0, 1} and ε ∈ (0, 1
8 ),

log(ardiscε(f, μ)) ≤ Rε(f, μ) ≤
(

log ardiscε/8(f, μ) + 2 log
1
ε

+ 6
)2

.
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