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Nonlinear evolution of nonuniformly heated falling liquid films
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The present theoretical study focuses on the dynamics of a thin liquid film falling down a vertical
plate with anonuniform, sinusoidatemperature distribution. The results are compared to those
obtained in the case of theniform temperature distribution. The governing evolution equation for

the film thickness profile based on long-wave theory accounts for two instability mechanisms related
to thermocapillarity. The first mechanism is due to an inhomogeneity of the temperature at the
liquid—gas interface induced by perturbations of the film thickness, when heat transfer to the gas
phase is present, while the second one is due to the nonuniform heating imposed at the plate and
leads to steady-state deformations of the liquid—gas interface. For a moderate nonuniform heating
the traveling waves obtained in the case of a uniform heating are modulated by an envelope. When
the temperature modulation along the plate increases the shape of the liquid—gas interface becomes
“frozen” and the oscillatory traveling wave regime is suppressed. The enhancement of the heat
transfer due to permanent deformations and traveling waves is also assessed. The latter is found to
have no significant effect on the heat transfer coefficient, while the former can increase it
significantly. A good agreement between the theoretical model and the experimental data obtained
for a step-wise temperature distribution at the plate is found and the reason for discrepancies is
explained. ©2002 American Institute of Physic§DOI: 10.1063/1.1515270

I. INTRODUCTION subject to a long-wave thermocapillary instability when it is

heated from below. This instability mode first studied by
The flow of a liquid film on a tilted solid plate has many Scriven and Sternlinigis associated with the modification of

significant engineering applications in material processingthe basic temperature at the free surface by the surface de-

biomedical engineering, food and chemical industries. Sucliormation. The deformation is opposed mainly by gravity

flows are often encountered in evaporators for separation afnd for disturbances of a sufficiently short wavelength also

multicomponent mixtures where fluids are temperatureby surface tension. Therefore, this instability mode occurs

sensitive, and hence a low thermal driving force is requiredwhen the thermocapillary force overcomes the force due to

In thin-film flows, the most widely observed phenomena,hydrostatic pressutéor

such as formation of surface waves, breaking of a stream into

rivulets, and evaporation with termination of the liquid layer - BM

at a contact line, are caused by various interfacial instability 3 2Pr(1+B)*’

mechanisms. Therefore, the understanding of the nonlineall_r|ereG is the Galileo numberB the Biot numberPr the

dynamics of these phenomena will help to improve predic- .
Y P P P P Prandtl number and the Marangoni numbefsee Sec. Il
tions of heat and mass transfer rates.

. . N . for definitiony. BecauseG~h®, while B~h andM ~h the
A horizontal thin layer of liquid on a solid plate can be . - ; .
layer will be unstable for a sufficiently small film thickness
h. The reader is referred to the comprehensive book of Coli-
dAuthor to whom correspondence should be addressed. (832 4 832 net et al? for more detail on this topic. For this mode of

4533, Telephone: (972 4 829 3474  Electronic  mail:  harmocapillary instability the disturbance has no preferred
meroron@tx.technion.ac.il

bChargede recherches, Fonds National de la Recherche Scientifgele ~ direction as long as the layer is I_<ept horizomal- On the con-
gium). trary, when a flow takes place, this isotropy is broken and the
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instability manifests itself in waves. Furthermore, when thebetween these models was recently found by Ruyer-Quil and
layer is tilted, it can become unstable even without heaManneville®!® by combining a gradient expansion to
transfer. This isothermal mode of instability, often calledweighted-residual techniques with polynomials as test func-
surface-wave instability, was identified by Yihand tions. In this new context, we will address in the present
Benjamin? Except for very small angles of inclination, the study the range of validity of the BE as a mathematical
gravity-driven surface waves with a wavelength much largemodel for description of the dynamics of falling vertical
than the film thickness cause instability fi'sthe distur- films in terms of the relevant parameters.
bance originates at the free surface where vorticity is pro-  Tanet al?° examined the steady thermocapillary flow in
duced by the basic flow shear stré€Owing to the effects thin liquid layers on a nonuniformly heated horizontal solid
of inertia, the perturbation vorticity tends to be advectedplate. They showed that a continuous steady profile of the
downstream relative to the deflection of the free surface so a#guid layer can be sustained only if the value of the dynamic
to cause instability. This shift is opposed by hydrostatic andBond number that measures the balance between gravity and
surface tension forces. Since the latter one is negligible fothermocapillary forces, is higher than a certain critical value.
large-wavelength disturbances, in this limit the instability Moreover, inclusion of the van der Waals forces in the analy-
manifests itself when the effect of inertia overcomes the hysis, for very thin film, either leads to spontaneous film rup-
drostatic force expressed by the relafion ture or prevents the occurrence of any dry spot on the micro-
R>2cot scopic scale, depending on the attractive or _repulsive
2 ' character of this force, hence on the nature of liquid and
HereR is the Reynolds number anglis the angle of incli- plate. Small perturbations of uniform heating and their effect
nation from the horizontal. In the limiting case of a vertical on the dynamics of the film were also studied by Van Hook
plate (3= 7/2) the stabilizing hydrostatic pressure vanisheset al?! for a horizontal layer §=0). They showed that non-
and the interface is always unstable, i.e., for all film thick-uniformity in heating produces a steady-state deformation for
nesses. Experiments performed by ldual®® for this situ-  any temperature difference across the layer. This steady-state
ation are in good agreement with the critical Reynolds num-deformation becomes unstable to the long-wavelength insta-
ber, growth rates and wave velocities resulting from lineamility earlier than in the absence of nonuniformity. Moreover,
stability analysis. the nonuniformity of the plate temperature determines the
Since the instabilities in thin films appear in the form of location of the dry spot and the elevated region to form at the
long interfacial waves, nonlinear analyzes using long-waveninimum and maximum of the steady-state deformation, re-
evolution equation of the Benn¥ytype turns out to be use- spectively. Recently, Cet al?? found a way to damp out the
ful. Oron and Gottlieb' showed by comparison with direct long-wavelength disturbances by applying a feedback con-
numerical simulations of the full hydrodynamic equationstrol to the temperature at the substrate.
that the Benney equatiaBE) is valid in the parameter do- In the area of heat transfer enhancement a nonuniform
main adjacent to the linear stability threshold of the systemheating of falling liquid films is thought to be a promising
Burelbachet al? studied long-wave instabilities in a hori- solution since it induces steady-state deformations of the
zontal layer in the presence of evaporation, vapor recoil, antiquid—gas interface which are beneficial to the heat transfer
van der Waals forces. Jaet al!® generalized this study to process? It is then essential to understand the influence of
include the effect of mean flow by tilting the plate in the nonuniformities in heating, and whether they can either im-
absence of van der Waals forces and analyzed the nonlineprove the heat transfer through the film or hinder it by pro-
dynamics by numerically solving the pertinent evolution pelling the film to its rupture. To our knowledge, few studies
equation. To obtain an extended overview of the dynamics oéxist in literature in this field of research. Miladinova
thin liquid films the reader is referred to the review paper ofet al?*?®considered the effect of a constant temperature gra-
Oronet al* dient imposed at the plate for an adiabatic liquid—gas inter-
However, when the convective effects become signifi-face 8=0) and high Marangoni number. They studied the
cant, the BHat any order of the asymptotic expansidails  influence of thermocapillarity on the amplitudes and phase
to serve as a good model for spatiotemporal evolution ofpeeds of surface waves resulting from instability and found
falling films. The solutions of the BE then significantly de- from linear analysis that a weak increase in heating down-
viate from those of the full hydrodynamic equations and fi-stream produces a decrease in the stability threshold, while a
nally at some distance beyond the stability threshold of thalecrease of the temperature plays a stabilizing role. In the
system, its solutions undergo a blow-up in a finite-id8  nonlinear regime, they found finite-amplitude waves, the
despite the regularizing effect of surface tension. Sinceshape of which depends mostly on the mean flow velocity,
ShkadoV}’ the integral boundary-layefiBL) model using while the amplitude is influenced by the thermocapillarity.
the Pohlhausen—von-iKaan averaging method appears to Recent experimental studies focused on thin films falling
be suitable in describing the dynamics of falling films for down a locally heated plate and revealed the occurrence of
large Reynolds numbers, as such a model typically involvesteady-state deformatioA%?’ In this case, the localized tem-
more than one evolution equation, accounting for the kineperature gradient imposed at the plate and aligned with the
matic variable, the film thickness, as well as for a dynamicflow induces a steady horizontal bump shape of the liquid—
one, the local flow rate. Even though the IBL equations dogas interface due to the thermocapillary effect. In an attempt
not experience any blowup, they do not properly predict theo explain the phenomenon Kabaet al?®?° proposed a
linear stability threshold, as the BE does. The compromiseénodel taking into account variations of surface tension and
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FIG. 1. Geometry of the problem(z) indicates the
Nusselt velocity profile of the liquid filmhy is the
mean film thicknessg is the gravity acceleratiorg is

the inclination angle of the plate with respect to the
horizontal,T., is the temperature of the passive gas and
T, is the average temperature of the plate. The function
Tw(X) represents the nonuniform plate temperature dis-
tribution aroundT, andAT,, is the characteristic tem-
perature difference applied at the plate along the length
I . The liquid—gas interface is deformable as zoomed
in the insert frame, wherg=h(x,y,t) is the interface
location. The bar over variables are omitted in the
graph.

viscosity with temperature. They obtained an excellent quansurements of the bump shape are compared with the calcu-
titative agreement with the experimental data, especially idated stationary solutions and with the results of numerical
the downstream of the bump, where they explained a filntime-integrations of the full evolution equation. We note that
thinning below the average thickness by an increase of thtéhe linear stability analysis of such two-dimensional station-
fluid mobility induced by the temperature decrease of theary deformations with respect to transverse disturbances was
liquid viscosity. recently performed by Skotheim, Thiele, and Schid the

The present study focuses on the evolution of a thinlimit of low Reynolds number flows. They found a three-
liquid film falling down a vertical plate in which a periodic dimensional instability leading to the formation of a rivulet
array of heaters is embedded. Using a Benney-type expaipattern aligned with the flow as observed first experimentally
sion we derive in Sec. Il an evolution equation for the film by Kabov?33! However, this is beyond the scope of the
thickness accounting for the effect of nonuniform heating. Inpresent work. Section VIl is devoted to summary and con-
Sec. lll, stationary solutions of this evolution equation arecluding remarks.
calculated either in a moving reference frame in the case of
uniform heating or in a fixed reference frame in the case ofl. STATEMENT OF THE PROBLEM AND EVOLUTION
nonuniform heating. The first case allows for traveling waveEQUATION

S.Olu“O_PS' vl\(/_h|(lje thfebsec?jnd one g_l\(es steady-stq;e dzforma- We are interested here in the two-dimensional dynamics
tions. Two kinds of boundary conditions are considered, Corg¢ o thin liquid film falling down a planar plate inclined by

rgsponding to either a given temperature distribution, or & angleB from the horizontal, under the gravity accelera-
given heat flux at the plate. We show that only the former iS;q, o “This plate is maintained at the nonuniform tempera-

appropriate to take into account the coupling between th - = = 2 .
thermocapillary instability and steady-state deformations. A ure T=T,+Ty(X), whereTy, is the average plate tempera

we will see, this coupling causes a variety of nonlinear phelure andT,(x) is a periodic temperature distribution with a
nomena, such as oscillatory regimes, wave breaking or ch#8ro average. I_n Wha_t follows the_ varlal_oles with and \_/v_lthout
otic patterns. To describe these dynamic phenomena wears _denote dimensional and dimensionless quantities, re-
solve numerically in Sec. IV the two-dimensional evolution SPectively. . o

equation using the Newton—Kantorovich method. The peri- The coordinateg and?de3|gr_1ate the directions parallel
odic temperature distribution at the plate is chosen to b&"d normal to the flow, respectively. The geometry of the
sinusoidal and the resulting dynamics is compared to th@roblem is presented in Fig. 1. The ambient gas phase is
case of a uniform heating with the same average temperaturgSSumed to be passive and held at the uniform temperature
An important result is that for a sufficiently strong tempera-T. and pressur@... The fluid properties are the densjty

ture nonuniformity at the plate, the shape of the liquid—gainematic viscosityv, thermal diffusivity , thermal conduc-
interface gets “frozen,” suppressing the oscillatory travelingtivity k, the heat transfer coefficient from the liquid to the
wave regime. In Sec. V we estimate the enhancement of th@as @y, the surface tensiom., at the gas temperature and
heat transfer due to those permanent deformations, as well #¢ absolute value of its temperature-derivatjveassuming

due to additional oscillations. The influence of the magnitudéhat the surface tension linearly decreases with the tempera-
of the average temperature is also considered. Section Mure, o=0.,—y(T;—T.), whereT; is the interfacial tem-
presents a description of the experimental results and theperature. As in most studies of the Marangoni instability the
comparison with the results obtained from our model. Meafluid viscosity is assumed to be temperature-independent.
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The characteristic temperature differencgs appﬂsd along the T,+BT=0 at z=h, 3

plate and across the liquid layer aké_'W=TWmax—TW " and

AT=T.—-T. respectively. The dimensionless forn;;ws of thewhere the subscript stands for the partial derivative with
e : respect taz and B= a,hy /K is the Biot number. Therefore,

temperature field in the film and of the nonuniform tempera- ield th distribution in the fil
ture distribution are, respectively, Egs.(1)—(3) yield the temperature distribution in the film

Ti—T. T, _ _ bz
T=— Tw=—=, T=00+ T 1= 5 gh) @

— W
AT, AT,
Whereﬁ is the temperature of the film. The ratio between:cirol;? dXVh;Zhin?:r?ag;ishthe temperature distribution at the
the two characteristic temperature differences of the problemo| 9

is defined b
R Tty ZETW0 -
AT ne 1+Bh(x,t)"
A?w The interfacial thermocapillary stress is thus given in dimen-
The characteristic lengths in theand z directions are the sionless form by
characteristic wave length of interfacial disturbances and Ma
the mean film thickness, respectively. The interfacial dis- S,=—T;, (6)
tortions are considered to be of “long scale” if the parameter Pr
hy <1 where the subscript stands hereafter for the partial deriva-
e=—T—<1.

[ tive with respect to

The dimensionless spatial coordinates are introduced by =
M YAT,hy

[— — a: —_—

X z
x=gi— and z=i— prX

hy hn”
) , are the Marangoni and Prandtl numbers, respectively.
We introduce also the lengtl, along which the temperature Finally, the evolution equation containing an additional

differenceAT,, is applied at the plate. Its dimensionless form thermocapillary term is obtaine@ee the Appendix
will be L,=I,/l. Finally, the liquid—gas interface is as-

14
and Pr=-—
X

sumed to be material and described by the function 2 2 h®
=h(x,t), wheret is time. The dimensionless forms of these het Rivh,t e 1_5R h hx_CghX
variables are
h3 h?
h evt +S§hXXX—MW?TiX) +0(e?)=0, @)
h=— and t=-—>. x
hy hy,
The approach used here is based on the weII—know%vhere
Benney eguatlow_ denveq in the context of thin _f|Im R=Gsing, C=G coss,
theory. This equation describes the nonlinear dynamics of a
liquid film of thicknessh(x,t) falling down an inclined plate
. . o . (TochN Ma
in isothermal conditions. In the present study the contribu-  s=¢2-—"> and M,=——,
tions of a nonuniform heating of the plate and differential pv Pr

heating across the film are incorporated into the Benney ,
equation. The complete derivation of the evolution equatior?™® the Reynolds, the hydrostatic pressure, the surface ten-

from the Navier—Stokes, energy and continuity equations'O" 33”‘2 theeffectiveMarangoni numbers, respectivel
complemented by appropriate boundary conditions is giveri 9M\/¥” is the Galileo number. In the above equation, the
in the Appendix. Nevertheless, we show hereafter the inteParameterk, C, S, andM,,, as well ash, T; and their
gration of the energy equation along with the appropriate<derivatives, are all assumed to be of order one, ©¢1).

boundary conditions, since it has a primary importance in thé:urthermore, thg nonuniformity of the heating is assumed to
following. induce deformations that have a length scale comparable to

The energy equation written at leading order of thethat of th(lelglntgrfaual disturbances, so thgf=0(1). Note
asymptotic expansion far—0 is that S=R*(e Ka) Where Ka is the Kapitza numbgr. The
present study is carried out for the case of a vertical plate
T,.=0, (1) only, B=n/2, therefore,C=0 and the hydrostatic pressure
term in Eq.(7) vanishes.
Substituting the plate temperatufg given by Eq.(5)
T=6+T,, at z=0, 2 transforms Eq(7) to the form

and the corresponding thermal boundary conditions read
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2 3 In experiments the heating is usually controlled by im-
hi+ R?h,+ &| —R2h%h,+ S—h, posing a constant heat flux at the plate. Marchuk and
15 s Kabov*? calculated the heat flux distribution along a local
h2 (8+T,)h, h2 TWX heat source and showeq that it c_anno_t b_e considered as con-
- 0 (8) stant along the plate. This nonuniformity is due to the depen-

w 2 w -
2 (1+Bh) 2 1+Bh], dence of the heat flux on the characteristics of the flow,
One can extend the validity of E€7) to the case where which is .found to be particulquy strqng when the Reynolds
number is small. Therefore, in reality the present problem
would probably require a mixed boundary condition. How-
ever, we use below an imposed temperature distribution at
She plate and analyze only E().

In the case of a uniform heating the last term of EB).
vanishes and in front of the remaining thermocapillary term
we recover the classical Marangoni numbér 6M,, based
T,=Q,, at z=0, (9)  onthe temperature drop across the lay@rinstead ofAT,, .

) _ _ The resulting evolution equation has been extensively stud-
that being combined with Egq$l) and(3), leads to the tem- jed in the literaturé33334

instead of the specified plate temperature the heaiQ| )

is imposed at the plate. The average heat fiigxis now
included in the heat flux function and used as scaling for it
dimensionless form Q,,=Q,/(X)/qg. The combination
gohn /K is then used for scaling the temperature. The corre
sponding boundary condition at the plate is, therefore,

perature distribution inside the film The presence of a nonuniformity in heating will be dis-
0 cussed in terms of the parametérappearing in Eq(8).
T= FW[1+ B(h—2)], (10 Figure 2 shows various reference cases for a sinusoidal non-

uniform temperature distribution at the plate. Note that even
from which the temperature distribution at the liquid—gaswhen =0, Eq.(8) contains both mechanisms of thermocap-

interfacez=nh is found as illarity. Small perturbations of a uniform heating, i.e., for
5>1, were already studied by Van Hoea al?! in the dif-
Ti(x)= Qu(x) . (11) ferent context for a horizontal layer on{y3=0). The differ-
B ence between the horizontal and inclined heated layers is

é)rofound, since in the latter case the mean flow can prevent
the inherent tendency of dry spot formation and allow
steady-state deformations of much higher amplitude, arising
from the application of a nonuniform heating. In the follow-

Equation(11) shows that the case of the adiabatic liquid—ga
interface B=0 is singular. Using the explicit form of;
given by Eq.(11) transforms Eq(7) into

2 3 h2 Qu, ing we will concentrate on the cas®=1/2 to illustrate the
h(+Rh,+e 1—5R2h6hx+ Sghxxx_Mw?? =0, coupling between the two thermocapillary mechanisms, al-
X though other values of will be also used in the investiga-
(12) tion.

where 8=7/2 is again assumed.

In both Egs.(12) and (8) the terms of order? are
dropped. The two last terms of E@) show that thermocap-
illarity can act in two different ways. The first one is due to !ll. STATIONARY SOLUTIONS
perturbations of the interface temperature induced by varia-
tions of h, when heat transfer to the gas phase takes placg
(B#0). The second one is due to the nonuniformity of the, yn . ) .
heating conditions applied at the plate and, as will be show Sec. IV, we investigate stationary states of the system. In

below, can lead the liquid—gas interface to steady-state ggne case of a uniform heating, one can find stationary solu-

formation. This is sometimes referred to as “permanent delions in the reference frame moving downstream with the

formation” in what follows. The main purpose of this work phasfe speed of traveling waves. In thg case 9f a nonuniform
is to investigate the effect of coupling between these tWJ1eatmg, thex-dependent temperat.ure distribution llmposed at
mechanisms, both arising from a nonuniformity of the inter_the plate does not allow to look directly for traveling waves,

face temperature. However, it is important to note that Onl)}Jecause it breaks the translational invariance of the problem.

the second of the two above-mentioned mechanisms existg,herefore, we need to split the analysis and to look for sta-

when the heat flux is imposed at the plate. It is expressed b jonary soluti_ons ei';her in a moving reference fraf"e with a
the last term of Eq(12). The reason for this difference is n!form heat!ng or in the fixed reference frame with a non-
apparent from the expressions for, depending orh in Eq. uniform heating.

(5) and independent df in Eq. (11). Physically, it means
that the long-wave thermocapillary instability is suppresse
when the plate is poorly insulated. This implies boundary =~ We now look for stationary solutions of E¢B) in the
condition Eq.(9). In this case the temperature gradient acrosseference frame moving downstream at a certain velacity
the layer is independent &f, which implies that an increase Introducingh(x,t)=h(§) with £&=x—wvt and taking the limit
of the film thickness is accompanied by an increase of th&—~ with M=M,,6=0(1) corresponding to the case of a
plate temperature. uniform heating, Eq(8) can be integrated once to yield

Along with the numerical study of the spatio-temporal
amics of the film, as described by E§) and presented

(f\. Moving reference frame: Uniform heating
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T,(x) Tl

5<12

FIG. 2. On the left, a sinusoidal nonuniformity of the
plate temperatur&, = 0.5 sin(2mx/L,), whereL, is the
length of the periodic domain. On the right, the corre-
sponding temperature distribution applied at the plate,
T|,-o=Ta+T,,, for different values ofs (the bar over
the variables is omitted in the graphVhen §<1/2 (the
condition should be rigorously 5<1/27(TWmax
+ Ty, /2 for nonsinusoidal temperature distributipa
S=1/12 section of the whole domain is cooled where the im-
posed temperature is smaller thdn, while the re-
maining of the domain is heated. Whe¥=1/2, the
minimum of the imposed temperature fits with and
0 L, the two characteristic temperature differenceb and
AT,, are of the same order of magnitude. Wh&n1/2,
the intensity of the average temperature dominates the
one of the nonuniformity.

5>1/2

Tinf 777777777777

0 L
R , 2 . h3 This result is easily recovered from Ed.3) by performing a
—vh+ zh ™+ e 7eRMPh A+ Sohey, linear stability analysis of the solutioh=1. The starting
value of the integration constant is found from Ef5) as

BM h? h K 13 K=R/3—wv.. During the computations the periodicity of the
- 2 (1+Bh)?] ™ (13 solutions is enforced and the total volume is kept constant.

The parameter$k,v,K} serve as free continuation param-
eters into the linearly unstable domdairck,. . Therefore, for
any periodic solutionU={U,,U,,U3}, one finds corre-
U;=U,, sponding values dk, v, andK. Even though the use of the
wavenumbeconcept is rigorously correct only for harmonic
U,=Us, (14 modes, we prefer to associate this notion with pleeiod of
1 R the domain in the case of nonharmonic modes.
' 3 i i i i |
Usz—[—3< vU,— s U3+ K) As an illustration and in order to identify some reference
SleUy 3 cases for the following study, let us turn to Fig. 3, where
BMU, } several typical examples of stationary solutions are presented

whereK is the integration constant. The ordinary differential
equation(13) can be recast into the dynamical system

2
- zR?USU

15 1U,— W in the [k,M ]-plane. The neutral stability curde, given by

Eq. (15) is displayed along with the wavenumber corre-
whereU;=h, U,=h,, Us=h,, and prime denotes deriva- sponding to the maximum growth rate, as given by
tive with respect tct. =k¢/v2, and with the wavenumber at which the second har-
The solutions of the dynamical systefh4) are found monic mode becomes linearly unstable, ilesk /2. The
using the continuation and bifurcation software for ordinaryparameter values are fixed ®=1.5, S=5.69, ¢e=0.1, and
differential equations\uto 97 (Doedelet al2®). To perform  B=0.1 (the choice of parameters is explained in Sec. )V B
the iterative search for periodic solutions for a specified sefThe stationary solutions are presented for the fundamental
of parameterde,S,R,M,B} we start with the flat film of wavenumbeik,==/10 corresponding to the case of a peri-
thicknessh=1 (Nusselt solution perturbed by the neutrally odic domain of the fixed size,=20. By increasingl one
stable mode of the small amplitude of TOwith the critical  can follow the change of the shape of the solution from one
wavenumberk. and the corresponding phase spegd as  hump forM =2.5[Fig. 3@] to two humps forM =20 [Fig.
obtained from the linear stability analyis 3(d)] going through the development of a secondary hump
for M=7.5[Fig. 3(b)] and the coexistence between the one-
and two-humped states fol =15 [Fig. 3(c)]. In the latter
case, two stationary solutions are found the one-humped so-
lution obtained by continuation from a single wave lof

{ke,vch= (19

PROOF COPY 007212PHF



PROOF COPY 007212PHF

Phys. Fluids, Vol. 14, No. 12, December 2002

Nonlinear evolution of falling liquid films 7

2.0

1.02

FIG. 3. Wavenumber of disturbances
versus Marangoni numbew in the
case of uniform heating foR=1.5,

S=5.69, ¢=0.1, and B=0.1. The

thick solid line represents the cut-off
wavenumberk., the dot—dashed line
k=k./v2 represents the most ampli-
fied linear mode and the dotted litke
=k, /2 is the limit below which the
second mode is linearly unstable. The
inserted figures display typical travel-

ing waves calculated for the funda-
mental wavenumberk= /10 and
various values of the Marangoni num-
berM (a) 2.5, (b) 7.5, (c) 15, and(d)
20. The phase velocities for these
solutions are, respectively, 1.5002,
1.5064,[1.4984; 1.532pand 1.4972.
Note that two steady solutions coexist
atM=15.

0.0

20

=k;, and the two-humped solution obtained by continuationthere as “1” and “2,” respectively. The slight fold of the
from a double wave dk=k /2. The phase speedis seen to
increase above.=R for a single hump wave and to de- small amplitude hump, as shown in Fighg The curve “2”
crease below . for a two-humped wave.

Figure 4 shows the wave amplitutlg ,—hmin versusm
for the interfacial waves with one and two humps, labeledsponding to the curves “1” and “2” was determined by solv-

0.25

0.20 -

0.05

curve “1”at M~7.3 indicates the appearance of a secondary

emerges aM =10.82, where the second moke 2k, loses
its linear stability. The persistence of the solutions corre-

ing the evolution equation E@8), see Sec. IV. Three differ-
ent regimes are identified by the three zones in Fig. 4 in zone
| the thick solid line represents stable one-humped solutions,
see Figs. @), 3(b); in zone Il forM>13.8 the two solution
branches coexist and compete, see Fig), 3vhile in zone IlI

for M>19.2 the two-humped solution is dominant, as pre-
sented in Fig. &) and shown there by the thick solid line.
The transitions I-1l and II-11l were determined with an ac-
curacy of 101, In Sec. IV we will extend the above discus-
sion and explain in particular how the two-humped solution
competes with the one-humped solution in zone Il and be-
comes dominant in zone Il

B. Fixed reference frame: Nonuniform heating

The dynamical system in this case is obtained by trans-
forming Eq.(8) into the set of ordinary differential equations

0.00 0
U 5_ =U 2y

FIG. 4. Diagram displaying the wave amplitutig,,—hmi, versus the Ma- U,=Us;, (16)
rangoni numbeM. The parameter values used here are the same as in Fig.
3. The solid line labeled “1” corresponds to a one-humped interfacial wave 3 1 R 3 2 3
with the fundamental wavenumbér=/10. The solid line labeled “2” Ué=§ —=| K- §U1 - 1—5R2U 1U>o
corresponds to a two-humped interfacial wave, ke=ar/5. Three zones are gl 1
here delineated in zone | the thick solid line represents the stable one-
humped wave; in zone Il foM>13.8 two solution branches coexist and BM,,(6+T,)U, MWTWX

compete, as illustrated by the dashed area; in zone IlIMor19.2 the

two-humped type of waves is dominant and depicted by the thick solid line.
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Note that prime denotes here derivative with respeck.to Note the conservative form of EQR0) provided that botT;

The stationary solutions of the dynamical syst€h6) are  and h are periodic in the given domain. Equati¢20) is

calculated using the same method as in Sec. lll A, but now irdiscretized in time using the implicit backward Euler method

the fixed reference frame. Therefore, they describe steadyn the form

state deformations of the liquid—gas interface. Furthermore, h(1+1) _ ()

we start here the continuation search with a nonperturbed flat — = —F(h("* 1)), (21)

film, enforcing the boundary conditiorts=1, h,—0, hy,, At

—0 andT,=0, T, —0, and determine the value of the where At is the time step ant(" is the solution of the

integration constant ads=R/3. evolution equation obtained at the timg=nAt. The right-
We first consider a simple periodic array of heaters at thdand side of Eq(21) is linearized by

plate modeled by the sinusoidal temperature distribution F(h( D)= F(h(M) + FM(h(M+ 1) — h), 22)
Twzlsin( nWZ_WX), (177  whereF{ is the Frechet differential operator evaluated at
2 Lx the timet,,.
wheren,, is the number of “temperature waves” imposed Introducing the difference between the solutions calcu-

inside the periodic domaib, . The distance along which the lated for consecutive times=h("*—h(, Egs.(21) and

temperature differencAT,, is imposed at the plate is ex- (22) are combined into

pressed b)LWf L,/2n,,. The obtained solutions will be pre- (1 +AtF§1”))u: — AtF(h®M), (23)

sented below in Sec. IV and compared to the results of the

time-dependent calculations based on ER), see, for in- Where

stance, Fig. 7. 2
2 26 5

Fhu=R(h7u),+e 1—5R (h®uy+6h~h,u),

IV. TWO-DIMENSIONAL (2D) COMPUTATIONS S 3 )
+ §(h Uyxxt 3h Uhxxx)x_ Mw(hu-rix)x

In this section we study the spatiotemporal dynamics of

the falling liquid film, as governed by the evolution equation h?[ uT,
(8) amended with periodic temperature distribution and —BMy & —1+Bh) ,
boundary conditions in the domainsk<L,. The cases of XIx

uniform and nonuniform heating will be separately studied in| js the identity operator andl,=T;(x,t) given by Eq.(5) in
the framework of Eq(8) and some of the results compared the case of a specified temperature distribution at the plate.

with those obtained in Sec. III. Instead, when considering a heat flux distribution at the
The initial condition used in this investigation in the casepjate, the last term of,u will be absent. Equatior23)
of a uniform heating is constitutes a linear ordinary differential equation in terms of

20 the variableu(x,t). Discretization ofF(h) andF,, are both
h=1+0.05 CO%L—X , (18 carried out using a central difference scheme and linear in-
X terpolation for half-nodes accurate @(Ax?), whereAx is
while in the case of a nonuniform heating the initial condi- the spatial stepN, will be the number of grid-points in the
tion is chosen as spatial domain. Furthermore, the conservative forms are used
h=1. (19 in orde_r to conserve the total vol_ume during the co_mputa-
tions with a sufficient accuracy. Finally, the sets of simulta-
In the former case stationary traveling waves are alwaysieous linear algebraic equations resulting from the discreti-
found, while in the latter, either oscillatory modes or purezation of Eq.(23) are solved at each step directly fo=u;
steady-state deformations of the film interface are observedqj=1,...N) using the generalized Thomas’ algorithm ap-
plied to the pentadiagonal sets with three corner elements
A. Numerical method that arise due to spatial periodicity. The computations were

The numerical method used here to solve the evolutiofyPically performed withN =500 to 1000 grid points to as-

equation(8) is based on the Newton—Kantorovich method, SUré spatial convergence of the solutions.
as described by Oroft.To describe the numerical method in

a more compact form we choose Ed) which is equivalent B. Results
to Eq. (8) upon substitution of Eq(5). Equation(7) is re- As already mentioned, the results are presented for the
written as fixed parameter values dR=1.5, S=5.69, B=0.1, and

£=0.1. These values are calculated from the material prop-
erties of a 25% ethyl—alcohol solution in water given in
where Table I. Furthermore, we consider a moderate heat transfer
he 5 he h2 coefficient of ;=500 W/n? K and fix the mean film thick-
F(h)E|:R?+8 1—5R2h6hx+ Sghxxx— Mw?TiX” ness tohy=100 um. The chosen value of the small param-
X etere ensures thaf=0(1).

h+F(h)=0, (20
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TABLE I. Fluid properties for a 25% ethyl—alcohol solution in water at =300 when the wavenumber of the disturbance corresponds

20°C. to the wavenumber of the most amplified linear mode and its
o 961.6  kg/ni density first subharmomcs. Sala_\mcm al”" also r_eported very good
v 2548<10°° m¥s kinematic viscosity agreement in the domain close to the linear stability thresh-
K 0.4786  W/mK heat conductivity old of the film. The reader is referred to the discussion in
0o 35.53x 10 ° N/m mean surface tension Oron and Gottlied!

4 ; T _ _ . _

Y 0.1103¢10°°  N/mK  surface tension variation with The computations were carried out for a sinusoidal tem-
Pr 21.8 Prandtl number

perature distribution given by E(L7), focusing primarily on

the influence of the imposed temperature gradient by varying

M,, andn,,. Next, the influence of the average temperature
Before using the BE as a model equation, it is crucial toon the dynamics is studied by varying the value of the pa-

estimate its range of validity. This can be made in terms otameters. The results are compared to those obtained in the

the values of the Reynolds numbRrand the Kapitza num- case of a uniform heating by using E@) in the limit of

ber 5—, settingM = 6M,,=0O(1) and with Eq.(18) as the ini-
o tial condition. We found that no noticeable differences were
Kazm%,_, observed when other initial conditions, such as a random

perturbation of the uniform state=1, were employed.
which represents a dimensionless measure of surface tension

and depends on the liquid properties only. Just as a referen
in the case of water at 20 °&a~3400. Ruyer-Quil and
Mannevilleé®® showed that a blowup of the BE takes place at  In this subsection we consider a sinusoidal temperature
R=R* which is R*~4.5 for Ka=252, and that the maxi- distribution at the plate given by E{L7). Figure 5 shows the
mum amplitude of a one-hump interfacial wave does no€arly stage of the evolution of the film thickness in the case
deviate more than 1% from their model, upRe=0.9R*. In  of one “temperature wave,” i.en, =1, imposed inside the
the present paper, we consider a liquid with higher surfac@eriodic domain, and foM,=5. The initial condition is
tension corresponding t&€a=495. For the parameter set given by a flat state, Eq(19), which does not satisfy the
used in most of our computations presented here, we numer@volution equatior(8) due to the imposed nonzero tempera-
cally observe the blowup of the solution for E@) at R  ture gradient appearing in the last term. The evolution is
=R*~7.5. It is important to note here that for the samepresented over one period characterized by the ttme
parameter set the value Bf corresponding to the linear sta- =Lx/vc, Wherev, is the phase speed of interfacial waves
bility threshold of the system i®=R,~1.185. Therefore, given by Eq.(15) and predicted by the linear theory in the
the main part of our investigation is carried outR#=1.5  case of a uniform heatin. The flat film is deformed first by
that constitutes 20% oR* and exceedind?, by approxi- the thermocapillary stress that induces a flow from a hotter
mately 25%. It thus follows that this regime is in the domainpoint to a colder one. This flow creates a trough in the left
adjacent to the linear stability threshold of the system, and &alf of the domain and a crest in the right half of the domain,
use of the BE is justified! The thermocapillary effect can be as shown in Fig. &). This deformation is advected by the
safely added to the isothermal case leading to(Bgbeing  flow as shown in Fig. &), and grows quickly to reach its
valid for a study of the heated film dynamics slightly farther maximum att~t./2, as indicated by the thick long-dashed
from the linear stability threshold. curve. This quick increase of the amplitude occurs when the

We also note that the smaller is surface tension, the morghase of the modulated traveling wave matches that of the
significant is the role of the viscous dissipation on wavepermanent deformation. Further, the wave disintegrates into
dynamics. This leads to a decreaseRdfwith a decrease of two waves and its amplitude significantly reduces until
Ka, and thus to shrinkage of the validity range of the BE.reaching its minimum at~t., as shown by the thick dotted
This was estimated quantitatively by Nguyen andcurve. One observes that the traveling wave is modulated by
Balakotaiaf® who evaluated the influence of some viscousa well-defined envelope. The presence of this envelope is the
terms in the governing equations that are usually disregardedirect consequence of the periodic temperature prdfjje
in other models. Following this, our study should not beimposed at the plate. Figurdd shows that an oscillatory
extended into the domain of small values k&, such as regime is reached in the long time limit. Again a sequence of
Ka<10. events of total duratiot. is displayed and clearly shows the

As mentioned above, Ruyer-Quil and Mannefil®®  presence of the envelope.
suggest that one should avoid approaching the blowup re- The fixed stationary solution calculated from the dy-
gime by a factor 0.9 to ensure the validity and the accuracyamical system Eq916) is also displayed in Fig. (6). It
of the long-wave model. In view of the fact that the ther- appears to be in the middle of the above-mentioned enve-
mocapillary effects will be added to the BE we choose tolope, as indicated by the thick dotted curve. Figure)5
keep the value oR below 0.R*. shows the corresponding evolution in the case of a uniform

Several attempts to compare between the solutions fdneating forM =2.5 (= 6M,,) giving rise to a traveling wave.
the Benney equation and those for the full Navier—Stoked his traveling wave was calculated as a stationary solution in
equations are reported in the literature. Ramaswetrgl>*  the moving frame of reference from the dynamical system
found an excellent agreement between thoseRerlKa Egs. (14) and is shown by the thick dotted line. The phase

€ Influence of the imposed temperature gradient
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FIG. 5. Film evolution as described by E®) for M,,=5, §=0.5, R=1.5, S=5.69,B=0.1, £e=0.1, andL,=20. (a) The initial condition at=0 is a flat

film h=1. Att=0.5 a depression of the liquid—gas interface emerges where the temperature igh@hethan the average one, as surface tension decreases
with temperature, and the elevation of the liquid—gas interface takes place where the temperature(8Qtuzgr The nonuniform componert,(x) of the

plate temperature is also drawalashed lingand scaled on the right vertical axi®) Evolution of the liquid—gas interface at the early stage fiten®.5 to
t=13.5 shown with increments of 0.5. The deformation is advected by the flow in the direction indicated by the horizontal arrow. Five snapshots are shown
by thick curves and labeled in the legend in order to allow the reader to follow the evolution of the liqguid—gas intejf&scillatory mode fromt
=3486.5(dashed lingto t=3500 shown with increments of 0.5. The thick dotted line marked “1” is the corresponding stationary solution calculated in the
fixed reference framdd) Same agc) but for a uniform plate temperature witi =2.5. The stationary wave shown by the thick dotted line marked “2” is
calculated in the moving reference frani@. The evolution of the cases shown(i) and(d) at the fixed locatiox= 10 (mid-domain projected onto the phase
plane marked by “a” and “b,” respectivelyf) The above-mentioned stationary solutions “1” and “2” shown by thick curves and their linear superposition
labeled “1&2,” as shown by the thick long-dashed line. The latter almost coincides with the computed solutier8#88, as indicated by the thin solid line.

space portraits in both cases of uniform and nonuniformmentioned stationary waves and the corresponding computed
heating, shown in Fig. (8), demonstrate the similarity be- solution at the time shown in the graph. This consideration is
tween the two waves and suggests that for small nonuniforfound to be valid for sufficiently small Marangoni number
mities of the temperature profile, the oscillatory mode can bev,, only.

expressed as.(x,t) ~hg(x) + hy (x—vt) representing a su- Figure Ga) presents the modulated wave, i.e., the oscil-
perposition of the fixed and traveling stationary waveg, latory regime, obtained foM,,=15, n,=1 and 6§=1/2,

and h,,, respectively. Figure (5) demonstrates an excellent while Fig. 6b) shows the corresponding case of a uniformly
agreement between the superposition of the two aboveieated plate foM =7.5. The apparently thick line region in
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FIG. 6. The film evolution as described by E@®) for M,,=15, §=0.5, R=1.5, S=5.69, B=0.1, £¢=0.1, andL,=20. (a8 Film evolution fromt
=3486.5(dashed lingto t=3500 shown by increments of 0.5. The apparently thick line is the locus of the secondary hump of the traveling wave modulated
by the permanent deformation. Snapshots of computed waves are plotted in the insert in order to obtain a better idea of their instantan@ Bashape.
as(a) for the case of a uniform plate temperature with=7.5. The arrow indicates the direction of propagati@y.Phase plane portraits corresponding to

(a) and(b) at the locatiorx=10. (d) Same aga) for the case of two “temperature waves),,=2. In this case the deformation of the interface is steady in

time (no oscillations.

both cases is the locus of the fold between two humps alplate. Indeed, in the limit of small Biot numbeB{&1) and

ready mentioned in the text, Fig(l8. This reflects the fact small, ordere, deformations of the liquid—gas interface in

that in these conditions the wave preserves its characteristicEg. (8), while neglecting the effect of curvature, and for

whatever is the temperature gradient applied at the plate, Figteady caseh;=0) we find the following approximation for

6(b). Nevertheless, the phase space portrait shown in Fighe film thickness by neglecting the terms of ordér

6(c) now exhibits some differences which reveal the nonex-

actness of the superpositiontof andh,, . Whenn,,=2, i.e., My My 2w

the strength of the imposed temperature gradient is doubled, "~1Te5g Tw,=1+e 2R™L, COE( Mo X

the wave becomes steatfixed poin) instead of a propagat-

ing wave (limit cycle), as shown in Fig. @). This result when using Eq.17) for the temperature distributioff,, .

suggests that a sufficiently strong temperature gradient alongevertheless, even though the valueMf§, is about twice

the plate can suppress the oscillatory regime and give rise toigher in Fig. 7e) than in Fig. 7d), the departure from the

a steady-state deformation of the liquid—gas interface. sinusoidal shape is observed through the slight asymmetry of
Figure 7 displays a comparison between the cases of the troughs being a manifestation of nonlinearities.

“frozen” liquid—gas interface obtained from numerical solu- Figure 8 presents the film evolution fod,,=40 that

tion of Eq.(8) (solid line) and the stationary solution calcu- corresponds to the case of a uniform heating with-20

lated in the fixed frame of reference using the dynamicalM,,= §M) belonging to zone Il of Fig. 4. Hence the emer-

system(16) (dashed ling The excellent agreement evident gence of a two-humped wave is expected, as shown in Fig.

from Fig. 7 provides also a verification of our numerics, 8(b). This two-humped wave persists when the plate tem-

since the solutions were calculated by two different numeriperature is nonunifornjFig. 8a)]. However, the phase ve-

cal methods. locity slightly decreases by 1.3% with respect to the case of
It is found by comparing graphs in Fig. 7, that the am-a uniform heating, as if the presence of the permanent defor-

plitude of the emerging wave is approximately proportionalmation induces a slowdown of the wave propagation. This

to the value of the imposed temperature gradient along theffect is even more pronounced for larger temperature gradi-

. (29
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FIG. 7. Stationary solutions obtained
from numerical solution of Eq.(8)
(solid lineg and calculated in the fixed
frame of reference from the dynamical
system(16) (dashed ling The param-
eter values areé=0.5, R=15, S
=5.69, £=0.1 andB=0.1. (a M,,
=5 andn,=2; (b) M,=15 andn,,
=2; (c) M,=5 andn,=4; (d) M,,
=15 andn,=4; (¢) M,,=30 andn,,
=4. The differences between the solid
and dashed curves are observable only
in the casge), where the temperature
gradient is the largest.

ents, for instance a decrease of 5.3% when-2, see Fig. between the temperature drop across the layer and that along
8(c). Finally, the propagation becomes aperiodic whgp  the solid platg& The nonuniformity of the plate temperature
=4 [Fig. 8d)]. These evolutions are summarized in thejs fixed in a way thaM,,= 15. In Fig. 1@a) the amplitude of
phase plane portraits presented in Fige)8 the envelope fon,,=1 is found to increase by a factor of 3

The time series of the film thickness recorded in the,nen sincreases from=0.16 (dotted ling to 6=1 (dashed
middle of the periodic domair=10 are plotted in Eigs._(a) line) and by a factor of 7 whe@ increases from5=0.16 to
and 9c) and correspond to the cases presented in Fig. 6 f05=2 (solid line). Nevertheless, even for a large average tem-

M,,=15 and Fig. 8 forM,, =40, respectively. These cases perature the shape of the steady-state deformation of the

belong to zones | and Ill in Fig. 4. The time series arel_ ” interf is d ined by that of th .
marked by the value of temperature wawgsand by “0” for iquid—gas interface is determined by that of the stationary

the case of a uniform heating on the right side of each plot@ve calculated in the fixed reference frame, and shown by
Figure 9b) shows the modulated time series fof, =30 the thick dot—dashed curve. The corresponding time series of

corresponding to zone Il in Fig. 4, where the liquid—gasthe film thickness recorded at the locatios 10 for the os-
interface oscillates between two competing states with differcillatory regime are superposed in Fig.(f0and shifted, one
ent fundamental frequencies. This modulation is sustainedith respect to another, for clarity.

for n,=1, while for n,=2 the two-humped wave is domi- Figure 1@b) enables us to follow the transition from a
nant. In the case af,,=4 the wavy dynamics of the liquid— one-humped to a two-humped modulated wave with an in-
gas interface is even suppressed giving rise to a steady-staifease of the value of, as explained in Sec. Ill A. When the

deformation. value of n,, is doubled[Fig. 10(c)] we observe that small
average temperaturg@=0.16) is sufficient to suppress the
2. Influence of the average temperature steady-state deformation and the interface does not oscillate,

We now turn to the investigation of the influence of the @ Shown in Fig. 1@). The same is observed in Figs.(&0
average plate temperature on the film evolution in the preslO(f) for n,=4, in this case even for a higher average tem-
ence of a specified nonuniformity. Figure 10 displays theperature of the platé5=1). The evolution of the interface for
envelopes of the surface oscillations and the corresponding=2 becomes aperiodic due to strong nonlinearities involved
time series for various values @f(recall thaté is the ratio  in the dynamics, as described by E§).
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scribed by Eq.(8) for M,=40, &
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B=0.1. (@) Film evolution from t
=3486.5 (dashed ling to t=3500
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dotted line indicates the corresponding
stationary solution calculated in the
fixed reference framegh) Same aga)
for the case of the uniform plate tem-
perature withM =20. (c) Same aga)
for the case of two “temperature
waves”n,=2. (d) Same aga) for the
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=4. (e) Phase plane portraits corre-
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V. HEAT TRANSFER Figure 11 presents the average heat transfer coefficient

given by Eq.(26) for the stationary solutions calculated in

One of the practical interests in this study is to evaluatethe fixed reference frame using the dynamical syst&f,
a possible enhancement of the heat transfer coefficient due ith the temperature distribution at the plate Ef7) for
free-surface deformations. The definition of this coefficient,, ,=1,2 and 4. The heat transfer coefficient is 25% higher
in its dimensionless form is chosen to be based on the ten}Or n,=4 than forn, =1 or 2. This is due to the effect of the
perature difference between the plate and the interface,
that using either Eq4) or Eq.(10) for the temperature field,
the local heat transfer coefficient is

S‘I?lean surface tensideurvature which is proportional td?,
see Eq.(7), and has therefore a stronger effect at the crest
than at the trough. We also represent the same result for a

aT pure sinusoidal liquid—gas interfa¢got—dashed line It ap-
7 pears that the deviation from the sinusoidal shape strongly
z=o0_ 1 (25) diminishes influence on the heat transfer coefficient.

&) Tl,=o—Ti h(xt)’ Figure 12 displays the average heat transfer coefficient
r;{)éotted against the ratim,, /L,, which represents the appro-
priate parameter to examine the effect of the imposed tem-
perature gradient. In Fig. 12 we also present results obtained
1 (L1 from the numerical solution of E@8). As shown in Sec. 1V,
a= L. Jo de. (260 the numerical solution of Ed8) reveals among others oscil-
latory regimes in the form of traveling waves modulated by
This result, obtained for both thermal boundary conditions athe permanent deformation. The average heat transfer coef-
the plate, suggests that the heat transfer is inversely propdficient of these regimes is only slightly enhanced due to the
tional to the film thickness. Moreover, it also shows that theoscillatory nature of the liquid—gas interface. Nevertheless,
free-surface deformation is not a sufficient condition for thewe can conclude here that the fixed stationary solution ap-
enhancement of the heat transfer. To achieve such an epears to give a good estimate of the heat transfer coefficient
hancement the deformation must induce a sufficiently largeven when the oscillatory regime takes place.

range of thinning. In Fig. 13 the average heat transfer coefficient is shown

and the average heat transfer coefficient averaged over t
periodic domairL, reads
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FIG. 9. Time series of the film thickness xat 10 for 6=0.5, R=1.5, S=5.69, B=0.1, £=0.1, L,=20. On the right side of each plot the valuergf
(=0,1,2,4) is displayed. Hene,,=0 corresponds to the case of the uniform plate temperature. The corresponding Marangoni numagid grel5, (b)
M,,= 30, and(c) M,,=40.

as a function of the average temperatdrdhe white sym- perimental datd® We also perform some more time-
bols correspond to the cases studied in Fig. 10 whkp  dependent computations of the corresponding cases in order
=15 and the black ones whev = 30. It appears that the to complete the comparison.
value of § does not significantly affect the heat transfer co-  Recent experiments performed on falling liquid films
efficient, except for very strong temperature gradients imwith localized heatin® were focused on the measurements
posed at the plate, such as fdr,=30 andn,=4. We can of the film thickness profile in the flow direction. It was
conclude, therefore, that permanent deformations induced bipund®®?’ that if the temperature gradient is aligned with the
a nonuniform heating are the main agent of heat transfeflow at the upper edge of the heater, the thermocapillary flow
enhancement, while the amplitude of traveling waves dedirected in the opposite direction deforms the liquid—gas in-
pending on the average plate temperature does not play tarface into a horizontal bump, as illustrated in Fig. 14.
significant role, as already noted in Fig. 12. Since the exact temperature distribution at the plate is
Finally, we note that in some works, see for instanceunknown, we use an approximate step function
Marchuk et al,®? the heat transfer coefficient is based on a
mean-weighted with the local velocity temperature of the
liquid film, rather than on the interface temperature.
However, we found that this alternative definition is propor-
Ei;sr;al by a factor of 1.610 2 to that calculated using Eq. —tanl‘(%(x—O.GZS— 1)

Tw(X)= O.E{tam‘(é(x— 0.25))

, (27)

to model a strong positive temperature gradient at the upper
VI. COMPARISON WITH EXPERIMENTS edge of the localized heater, applied along the lergth
<L,, and centered at the first quarter of the domiajn
In this Section we attempt to compare stationary solu-Since the periodic boundary conditions are imposed for nu-
tions calculated in the fixed reference frame to available exmerical computations, the conditidn,(0)=T,,(L) must be
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FIG. 10. The envelopes and time series of the film thickness calculated fer15 (a) and(b) n,=1; (c) and(d) n,,=2; (e), (f) n,=4. In the left column
the dotted, dashed, and solid curves correspond to the envelop@sddt6, 5=1, ands=2, respectively. The thick dot-dashed curves depict the correspond-
ing steady-state solutions calculated in the fixed frame of reference. In the right column the corresponding time series recoldedratshifted one with

respect to another for clarity.

satisfied. Moreover, the experiments showed that the interfa-
cial temperature decreases slowly downstream due to the in-

125

sulating feature of the plate where the localized heater is 4} 12

embedded. This is the reason why EZj?) includes a smooth
negative temperature gradient along the length equal to 75%

115

of L, and centered at 5/8 of it. Therefore, the negative tem- " 110

perature gradient decreases with increase of the size of the 3
periodic domainL,. One then expects that for sufficiently
large L, the temperature profile tends to that of the experi-

1.05

1.00

mental conditions. Figure 15 displays an example of the tem- » oo od

perature distribution given by Eq27) for L,=20 andL,,

=1

Figure 16 presents some profiles of the film thickness
measured in the experimefft@long with the stationary so-
lutions calculated using Eq§16) for the temperature distri-
bution specified by Eq(27). The reader is referred to the
work of Skotheimet al2° for linear stability of such station-
ary solutions. The experimeft<® were carried out for vari-
ous values of the Reynolds numidRy corresponding to dif-
ferent values of the mean film thicknelsg. Consequently,
the values of the Biot number and of the surface tensio

work. The specific value of the Marangoni numm&(‘,vc
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FIG. 11. Average heat transfer coefficientersus the maximal deviation of

the film thickness from the flat state=1 for the case of steady deforma-
tions. The solid, dotted and dashed lines are calculated for the stationary
solutions in the fixed reference frame for the sinusoidal temperature distri-
bution with n,=1,2 and 4, respectively. The parameter values&#6.5,

ﬁ?{ 1.5,S=5.69,B=0.1, £¢=0.1, andL,=20. The dot—dashed line corre-
sponds to the generic case of a smusmdal shape of the liquid—gas interface.
number, as well as of, differ from those used above in this TFf)1e insert is agoom of the domain of small valupesaoNote tﬂat thg dotted

curve almost coincides with the solid one.
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ancy observed downstream can be attributed not only to the
accumulating error associated with the integration method
used in processing of the experimental data, but also to the
absence of temperature-dependence of the viscosity in our
theoretical model. The latter effect considered by Kabov
et al?° can indeed explain the decrease of the film thickness
below its initial mean valuehy. In fact, liquid viscosity
decreases when temperature increases, and as the fluid be-
comes more mobile, its velocity increases. Therefore, due to
the flow rate conservation the film thickness indeed de-
creases.

Figure 17 shows the maximal deflection of the liquid—
gas interfaceh,,—1 calculated by continuation using the
Marangoni numbeM,, as the continuation parameter. The
0 5 10 15 20 amplitude of the deformation decreases with increas® of

ML, when M, is fixed. This is the effect of the main flow that
FIG. 12. Average heat transfer coefficient for stationary solutions versus th((é:ounteraCtS th,e, thermocapillary ﬂ,OW' Similarly, the .ampll-
ratio between the Marangoni numbeer,, and the distance.,, (=L,/2n,) tude of the critical temperature difference as described by
along which the temperature differenddr,, is imposed at the plate. The MWC could be expected to increase with Nevertheless, this

parameter values ar=0.5, R=15, $=5.69, B=0.1, 2=0.1, andL, g jncorrect, as it can be seen in Fig. 17 for4B<3. An
=20. The curves correspond to the stationary solutions calculated in the . . . ;
fixed reference frame, while the symbols correspond to the related oscillanpla_ma“O"" IS Obta_med on the basis of the energy balance
tory regimes obtained by numerical solutiésee Sec. Iy, The results ~ considerations carried out recently by Skotheinal *° They
shown aren,,=1 (solid line and diamonkl n,=2 (dotted line and black  found that the presence of a bump deformation is stabilizing.
circle) andn,,=4 (dashed line and black square It follows from here that the higher is the bump, the larger

M,, should be to allow the spanwise thermocapillary mode to

calculated to obtain a bump profile with the same maximafl€velop. Therefore, with an increase @f the main flow

film thickness as in the experiments at the instability onset ofoUNtéracts the increase of the bump amplitude. Thus the

the bump. Indeed, beyond this threshold the horizontal bumﬁrltlcal va!ue ofM,, does not hgve to increase wikh This

breaks into longitudinal rivulef® The temperature differ- c@n explain why above a certain value of the Reynolds num-

ence is then checked and is of order 10 K which agrees with€"» namelyR~1, the value oM,, varies only slightly with

the experimental dataand validates the choice of the pa- R.

rametere. Figure 16 shows that the calculated shape of the  In order to complete the analysis, we solve numerically

bump fits well the experimentally measured one, at least aEd. (8) to simulate the dynamics of the falling film with the

far as its ascending side and the small depression upstreamposed temperature distribution specified by E). Fig-

due to the surface tension effect are concerned. The discrepre 18a) shows the propagation of the interfacial wave in the
positive x-direction being squeezed into a steady envelope,
as already observed in Sec. IV. In Fig.(kBwe show the

1.10
22 -

18 r

14 ¢

1.0

1.25 ' time series of the film thickness at=L,/4 andx=L,/2. It

. appears that asymmetric temperature distribution does not
120 | | significantly affect the dynamics of the wavy liquid—gas in-
' o © ° terface independently of the location in the domain. In fact,

Fig. 18b) reveals an aperiodic behavior of the liquid—gas

interface. The results of similar computations =3 are

presented in Figs. 18 and 18&d). The wave amplitude is

o lower than forR=1.5 strongly influencing the heat transfer
110 | . coefficient, which is approximately 1.15 f&=1.5 and 1.45

for R=3. In both cases this heat transfer enhancement is

easily explained by invoking the mass conservation that thins

1051 o 2 o M © 1 the film in a large part of the domain, while a small portion
. of the fluid is driven by thermocapillarity into the bump.
100 L mo® =4 o O | Indeed, we have seen in Sec. V that film thinning is favorable
' : w w w to heat transfer enhancement.
00 05 10 15 20

In both caseR=1.5 and 3 the wavy behavior of the
liquid—gas interface observed in the numerical simulations,
FIG. 13. Average heat transfer coefficient as a function of the paramieter 535 \well as in the experiments, can explain in a more appro-
for R=1.5, $=5.69,8=0.1, =0.1, andL,=20. The white symbols de- ., 5;0 \vay than previously, the discrepancies between the
note the results foM, =15, while the black ones correspond Nb,= 30. ! 7 -
The squares correspondiig=1, the diamonds ta, =2 and the circles to  instantaneous measured film profiles and those calculated as

n,=4. stationary solutions shown in Fig. 16.
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— Bump
—
=] i
=
P—
= )
S l FIG. 14. The sketch on the left shows the cross section
P— of the falling film with the mean film thickneds, . The

first deformation due to thermocapillarity appears at the
upper edge of the localized heater and represents a hori-

Heater zontal bump. The front view of this bump is shown on

IIIIHIIIIIIHI

l o
the right. The image is obtained by optical Schlieren
technique, where the positive slope in the downstream
direction is seen as dark, while the negative one as

$ bright. The coordinate systenx,f/,z) is also shown.
=
Q»z
%‘x
VIl. SUMMARY AND CONCLUDING REMARKS waves and steady-state deformations in the cases of uniform

The present theoretical study focuses on the study 0@nd nonuniform heating, respectively. On one hand, the de-
nonlinear dynamics of a thin liquid film falling down a ver- pendence of the traveling waves on the value of the Ma-

tical plate with a nonuniform heating. Based on the |Ong_rangon| ngmbeM for a pure uniform hgatmg was studied
wave theory we have derived an evolution equation whictfnd classified in terms of the dynamics of these waves,
incorporates this heating nonuniformity and studied it. Twoh@mely single, modulated and double waves. On the other
independent kinds of thermocapillary effects affecting thehand, numerical solution of the evolution equation showed
film dynamics are identified. The first one is due to pertur-that the traveling wave obtained with a uniform heating is
bations of the temperature at the liquid—gas interface inmmodulated by an envelope given by the steady-state defor-
duced by perturbations of the film thickness in the presencéation resulting from a nonuniform heating. At moderate
of heat transfer to the gas phase, as described by a nonzd¥grangoni numbeM,, the traveling wave calculated for the
Biot number. The second one is due to the nonuniform heatcase of a uniform heating with = 6M,, displays the same
ing of the plate. While the former is known to lead to inter- dynamics and the final oscillating regime represents the su-
facial waves, the latter is found here to be able to induceperposition of the fixed and stationary traveling waves. The
steady-state deformations of the gas—liquid interface. Théeparture from this state increases with the increase of the
relative importance of these effects is measured by the pdemperature gradient applied along the plate, until the shape
rameters that constitutes the ratio between the characteristiof the liquid—gas interface eventually becomes “frozen,”
temperature differences across the liquid layer and along théus suppressing the waves traveling along the stationary
plate. The value o is found to play an important role in the structures. A detailed study of this transition varying with the
film dynamics. The coupling between these two thermocapsystem parametei@and the dimensionless temperature gra-
illary mechanisms is studied here when these are compatient along the platé,,/L,, is the subject of future work.
rable, i.e.,6=0(1). We also assessed the enhancement of the heat transfer
Using a continuation method we calculated stationarydue to the emergence of sustained deformations and traveling
solutions for the evolution equation and obtained travelingyaves. The latter have no significant effect on the heat trans-
fer coefficient, while the former can increase it significantly.
This holds for a sinusoidal temperature distribution, but be-

0 4 comes even more pronounced for a step-function tempera-
ture profile of the plate. In fact, the latter induces a localized

0.2 bump that draws the liquid underneath its crest. The remain-
ing portion of the film becomes thus thinner causing by this

g 0 an increase of the local heat transfer coefficient which is
proportional to the inverse of the film thickness. The evi-

-0.2 dence of quantitative improvement of the heat transfer is

demonstrated here.

-0.4 J We also presented an analysis of a representative experi-
z - = - = mental situation using our theoretical model. The available

¥ measurements of two-dimensional film profiles are compared

6. 15, A . distibutiai described by E with the calculated periodic stationary solutions. The agree-
- 15. A nonuniform temperature distributid(x), as described by Ea. 00t js conclusive and allows us to proceed in the future
(27). The length of the domain ik,=20 and the length of the positive R i . K R
temperature gradient is,,— 1. Note that the plate temperatureTigz=0) ~ With the_three-dlr_ne_nsmnal analysis. Ne_VGrtheleSS_1 some _d|S'
=5+ T,(x) with 5=1/2. crepancies remain in the downstream side of the film profiles
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FIG. 16. Comparison between the profiles of the film thickness measured in the expefithiektéines, and calculated from Eq$16) (thin lines. Each

graph corresponds to a fixed value of the Reynolds nurRbdn the cases o0R=0.39,0.75,1.5,3 the parameters sets are, respectvely.49, B=0.07,
£=0.064,M,, =8.5,L,=4; S=2.8,B=0.08,6=0.079,M,, =15.2,L,=5; S=5.69,B=0.1, £=0.1,M,, =16, L,,=5; andS=11.4,B=0.13, £=0.126,

My, —14 Ly —6 In all casess=0.5.M,, is the critical Marangonl number calculated to obtain a bump profile with the same maximal film thickness as in
the expenments at the instability onset of the bump.

and can be attributed either to the accumulating error, inher-
ent to the integrating method used in the processing of the

experimental data, to the absence of the temperature- os | )/ // |

dependence of liquid viscosity in the theoretical model, or, ' 2 @ e

finally, to the wavy behavior of the liqguid—gas interface ob- //

served in both the experiments and the theory. 0.4 - J e 1
In conclusion, our results can be very useful and of a //

practical interest in the case of strong inhomogeneity of the 0a | e i

plate heating. Moreover, in this study we see a good starting'ms" /® PR

point for future extensions into three-dimensional studies 7 -

showing a great wealth of emerging dissipative structures. e2r 2/ /// T 1

S0 -
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FIG. 18. The film dynamics as described by E8) with S=5.69, B=0.1, M,,=15.4, §=0.5,L,,=5, andL,=40. ForR=1.5 (a) the evolution of the
liquid—gas interface front=10485(dashed curveshown by increments of 0.8b) the time series of the film thickness =& 10 (the upper s¢tand x
=20 (the lower set For R=3 (c) same aga); (d) same agh). The dotted lines indicate the locations where the time series are recorded.

meinschaft under Grant No. TH781/1-1 and the Interuniver- At the free surface=h(x,y,t), the boundary conditions
sity Poles of Attraction Program IV-06, Belgium State, Fed-constitute the balance of the stresses, the Newton’s cooling
eral Office for Scientific, Technical and Cultural Affairs. P.C. law and the kinematic conditiohrespectively,

acknowledges financial support of the Fonds National de la

Recherche ScientifiquéBelgium). A.O. was partially sup- —(p—p=)N+2uP-n=20Kn+ Vo, (A4)
ported by the Israel Science Foundation founded by the Is-
rael Academy of Sciences and Humanities through Grant No.  — KVT-n=an(T-T.), (A5)
369/99.

w=h;+v- V;h, (AB)
APPENDIX: DERIVATION OF THE NONLINEAR wherep,, and T, are the given pressure and temperature of

EVOLUTION EQUATION the ambient air far from the liquid—gas interfade,is the

In this appendix a two-dimensional evolution equationshear stress tensor in the liquid phasa={—h,,
d_escribing the three-dimensiongl film dyr_1amics will _be de-—hy,l}/\/1+ hX2+ hy2 is the unit normal vectoly; is the sur-
rived. We start with the governing equations of the incom-face gradient operator, aril=— 3V -n is the mean interfa-
pressible flow, which are, respectively, the Navier—Stokesgial curvature.

the energy balance and the continuity equations At the platez=0 the boundary conditions are no-slip-
Vp no-penetration and a specified non-uniform temperature dis-
Vit (V- V)v=— — + »V2v+F, (A1) tribution, respectively,
p
T+V-VT=yV2T, (A2) v=0, (A7)
V.-v=0, (A3) T:Ta+TW(X)a (A8)

wherev={u,v,w}, T andp are, respectively, the fields of whereT, is the average temperature ahgl(x) is a periodic
velocity, temperature and pressure in the flui, temperature distribution in the flow direction with a zero
={dx.dy,d,; is the gradient operator anB={gsinB,0, average.

—gcosg} is the body force. For the sake of simplicity the The dimensionless set of Eq&1)—(A8) normalized us-
bars over the dimensional variables are here omitted. ing the scaling introduced in Sec. Il with
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y vu 120 vW pv’p
y:8—, u:—, U:_, W:a—’ p:_Z’
hy hy hy hy hy
reads

NSX=egui+euu,+esvuy+ewu,+epy
—R—g2Uy—&2Uyy—U,,=0,
NSY=gv+eUvy+evvy+ewv,+epy
— 820y~ szvyy— v,,~=0,
NSZ=e?w,+ e2uw, + 20wy + e 2Ww,+ p,
+C—e3w,,— s?’Wyy— ew,,=0,

EN=eT+euT,+evT +ewT,
1 5 2
—ﬁ(s Tuxte“Tyy+T,)=0,

CO=u,+vy+w,=0,

at z=h

HT= %(szthx-F e?h,T,~ T, —BiT=0,

CIN=eh;+euh,+evh,—ew=0,

DYN=p— %(s3h§ux+ e3hfvy—eu,—evy—ehu,
—&3h, Wy — sshywy— ghyv,+ 83hxhyuy
+e3hehyv,) + 8—82 ng(l— &2M,CaT)(e?hy,

+e*hyyh2+e2hy,+e*hyh?

—2&*h,yh,h,)=0, (A9)

1

DY1l= N(482hxux+ 2e%h,vy— U, — e2Wy+ £2h3u,
+ 84h)2(WX+ szhyuy-i- szhyvx-i- szhxhyvZ
+ehyhywy) —eM,(T,+h,T,)=0,

V1+ 82hy2

X(v,+ 82Wy— szh)z(vz— 84h>2(Wy— szhxuy

1,2 2
DY2= N(48 hyv,+2&°hyu,)—

—e?hw,— szhxhyuz— s4hxhywx)
—eM(Ty+hyT,)=0,

at z=0

NS=u=v=w=0,
FT=T-6-T,(x)=0,

whereN=\/1+¢2hZ+ szhy2 is the dimensionless metrics and

Ca=pv?/ ohy is the capillary number.
By expanding the variables in power of with e<1
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u
v
W | =roter;+ery+- -, (A10)
p
T

and substituting them into Eq$A9), one obtains at each
order a simplified set of equations. Further, the nonlinear
system of Eqs(A9) can be reduced to a single nonlinear
evolution equation for the film thickne$s Here is the se-
quence of operations which leads to this evolution equation

(i)

(i)

(iii)

We proceed with the asymptotic analysis by substitut-
ing Egs.(A10) into the system of EqSA9). Each of
these equations is expanded in series with respect to
e. At leading order foe—0 a zeroth approximation of
the governing system of equations is obtained as

NSX=R+up, =0,
NSYo=vo, =0,
NSZ=C+po,=0, (A11)
ENo=To, =0,

COp= Uo + voy+ Wo,= 0,

at z=h

HTo=To,*+BiTo=0,
CINg=h;+ugh,+vohy—wy=0,
DY No=po+ S(hy,+hyy)=0,
DY1o=uo =0,

DYZOEUOZI 0,

at z=0

NS=Ug=vo=Wy=0,
FTo=To—6—Tu(x)=0;

found by successive integrations the solution of Egs.
(A11) at leading order is

z
Up=R5(2h~2)
l)O:O,

Wo=—R%hy, (A12)

pOZC(h_Z)_S(hxx+hyy)l
To=6+T,(X)—BizT;,
where
S+T (%)
=1 8ih
is the interfacial temperature given by H§);
substitutinguy, and wg into the kinematic boundary

condition CIN, yields the leading order form of the
evolution equation

h.=—RIth,, (A13)
which describes the propagation of the liquid—gas in-
terface down the plate. As follows from the linear
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theory!® Eq. (15), RI? is the phase speed of the in- Finally, the resulting evolution equation reads
terfacial wave which corresponds to twice the inter- 2
face velocity of the film; hi+Rh+e I R2(h®h,),

(iv) at the first order of the asymptotic expansioreimwe 5
obtain 3 ) 3 h? )
NSX.EUODLU0U0X+Uouoy+W0UoZ+pox—Ulsz, +eV- ngv h—CEVh—MW?VTi +0(e%)=0.

N SYlEUOI—i_ UOUOX+ UOU0y+ W0U02+ poy_ v 1ZZ: 0, (A16)
NSZ=p; —wo =0, We note thafl; was not used to derive evolution equa-
1 tion Eq. (A16) up to O(g). This is different from the case
; H H 24,25 —
EN;=To + UoToX+voToy+WoToZ— ﬁlez: 0, studied by Miladinoveet al., whereM,,=O(1/e).
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