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Normal approximations, as provided by permutational central 1imit theorems, condi-
Such approximations therefore are poorly suited

tionally can be arbitrarily bad.
A classical

to the construction of critical values for Pitman (permutation) tests.

remedy consists in substituting a beta approximation (over the appropriate, condi-

tional interval range) for the normal one. Whereas deriving permutational extreme

values for usual, nonserial statistics is generally straightforward, the correspon-

ding problem for serial statistics (e.g. autocorrelation coefficients) however

appears somewhat more difficult. This problem, which is shown to reduce to a par-

ticular case of the well-known travelling salesman problem, is explicitly solved
here for the autocorrelation coefficient of order one, allowing for a simple compu-
tation of permutational critical values for Pitman tests against serial dependence.
The case of higher order autocorrelations is, however, of a different nature, and

requires another approach.
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1. INTRODUCTION
1.1, Pitman tests and permutational central Limit Zheohrems.

Whereas invariance principles provide the theoretical grounds for the well-
developed theory of rank tests, more classical unbiasedness and similarity ar-
guments quite naturally lead to the relatively less familiar class of permutation

tests — conveniently referred to as Pitman Lests.

Pitman tests typically arise whenever the data, or some function thereof
reduce, under the null hypothesis to be tested, to a white noise series (though

exchangeability here would be sufficient) with (partly or completeiy) unspecified

distribution function. The corresponding order statistic then is sufficient

compiete (under the null hypothesis}; conditioning, as suggested by classical
Neyman-structure considerations, upon this sufficient statistic yields permuta-

tional distributions and Pitman tests.

Pitman tests based on the permutational distributions of classical, normal-
theory test statistics can be shown asymptoticaily as powerful as the latter (see
e.g. Hoeffding 1952), with however the important additional property of remaining

valid under completely arbitrary distributional assumptions. Such tests accor-

dingly have been considered in a variety of situations : one- and two-sample lo-

cation problems (permutational t -tests — see Fisher 1935, Pitman 1937a,
Efron 1969, Cressie 1980 and Edelman 13986 to name only a few), bivariate corre-
Tation problems (Pitman 1937b), analysis of variance (Pitman 1938). A complete

coverage of the subject can be found in Edgington (1980).

Pitman tests against serial dependence also have been considered, mainly in
Wald and Woifowitz (1943), Ghosh ({1954) and David and Fix (1966). These three papers.

however essentially  concentrate on establishing permutational central Jlimit

theorems for a class of statistics including serial correlation coefficients.

Now such permutational limit results are of limited practical interest if a

strictly conditional point of view is to be adopted. Unlike traditional (uncon-

ditional) central limit theorems, permutational (i.e. conditional) convergence




results indeed usually cannot be interpreted as conditional approximation results,
since convergence is far' from uniform, which makes the quality of the approxima-
tion heavily depend on the actual observed values (an important exception, due to
distribution-freeness, is the case of rank-based statistics in the absence of
ties). As mentioned by David and Fix (1966), the permutational distribution of
autocorrelation coefficients can be extremely skew (for any series Tength n),

and normal approximations clearly cannot account for any degree of skewness.
Moreover the critical values derived from permutational central 1imit theorems
usually differ very Tittle from the unconditional ones — thus annihilating most
of the theoretical advantages of permutational procedures over their unconditional

counterparts.

A classical remedy against the poor fit of a normal approximation to the.
distribution of a skew, interval-valued statistic, consists in considering a
(four-parameter) beta approximation over the adequate interval, adjusting for
the first two moments. This device has been successfully employed in approxi-
mating permutational distributions in the nonserial case (Pitman 1937a and b,
1938), as well as in approximating the unconditional distributions of correlation
and autocorrelation coefficients (Dixon 1944, Durbin and Watson 1971, Anderson

1971 pp. 338-347, Bartels 1982).
1.2, Sernial conrelation and the travelling salesman problem

If a beta approximation is to be constructed for the permutational distribu-
tion of some test statistic, the first step is to identify the exact permutational
range of the statistic under study. Obtaining this range is fairly trivial in the
case of non serial statistics, but turns out to be considerably less obvious for
serial ones. Consider indeed a general linear, first-order serial statistic, of

the form

sox(My = 1 g™ y(n)

(X )_tEZ (Xg™s Xi 1) (1.1)
where X(n) = (Xgn), cees Xén)) denotes an observed series of length n, and

J (x,y) some function (a score function) from R2 onto R. Define the complete
directed graph on the set of nodes ¥V = {0, 1, ..., n}, and attach a weight




J(Xj, Xi) at arc (i,j), with J(0, Xj) =0 = J(Xj,O). Then the minimal (maximal)
»permutational value of S(X n )} corresponds to a mindmum {maximum) welghted Hami{fto-
nian cyele through V. The problem of determining such optimal Hamiltonian cycles

is best known as the fravelling salesman problem, itself a special case of the
Linear ondening problem (see Lawler et al. 1985). These problems are of maximal
complexity, and no general explicit solution, no fast algorithmic procedure can be

expected to exist.

Now, in most cases of practical importance, tests against serial dependence
are based on a statistic (1.1) with symmetric multiplicative score function of

H(x) . H{y) (H may also depend on the order statistic 5( )’

the form J(x,y) =
This is the case for usual autocorre-

e.g. through standardizing "constants"}.
lation coefficients (whatever definition is adopted), Spearman-Wald-Wolfowitz

autocorrelations (Wald and Wolfowitz 1943, Bartels 1982), and also for van der
Waerden autocorrelations {David and Fix 1966, Hallin and Puri 1988). Taking
advantage of this particular structure of the weight function, we derive (Propo-
sition 2.1 and 2.2) an explicit solution to the corresponding travelling salesman

problem. This result is used, in Section 3, to derive critical values for Pitman

tests based on usual sample autocorrelations.

The mathematical techniques used throughout the paper constitute a rare
instance of a statistical application of graph-theoretical methods, which are

rather nonstandard in the area.




2. OPTIMAL HAMILTONIAN CYCLES

Denote by 5(') = (X(l)’ vens x(n)), where x(l) < xfz)sé... < X(n)’ an or-

dered n-tuple of real numbers. Consider the complete, undirected graph on the set
of nodes V = {1, 2, ..., n}, and associate a weight x(i) X(j) with edge (i,j) :
for clarity sake, denote by X(i) and (X(i)’ x(j)) node 1 and edge (i,j), respecti-
vely.

Let x = (xl, cees xn) be a permutation of ﬁ( ) Define the objective function

n
T(x} = £ X, X,_ (2.1)
= te] bE 1

with the convention x, = x . Clearly, x characterizes a Hamiltonian cycle through

V. A permutation x*, or the corresponding cycle is called minimal (resp. maximal)
if T(x*) = min T(x) (resp. T(x*) = max T(x)), where the minimum (resp. maximum} is

taken over the n! possible permutations of 5( ) The problem of obtaining minimal

or maximal permutations (cycles) is a special case of the so-called symmelric

travelling salesman problem; due to the particular structure of the objective
function {2.1), this problem here admits an explicit soTution, which is described

in Propositions 2.1 and 2.2 below,

Proposition 2.1, A minimal permutation of 5( ) )

Ynin = (5(1)0 X(a)> %(2)> X(n-2)> X(4)> 0 X(5)r Xn-3)> X(3)0 Kn-1p)d (800)
the comrtesponding value of the obfective function is
[(n-1)/2]
Tin =X Xt E ) Xami) * X Xmeleh)
(2.3)

+ x(n/Z) X(n/z v 1) I(n even),

where [m] denotes, as usual, the Langest Lintegen smallen than or equal to m, and
I{n even) &4 one on zero according as n 48 even oh odd.




Proposition 2.2, A maximal permutation of ﬁ(_) A

Xmax = (X(ny» X(n-1)7 *(n=3)770 X(5)7 *(3) *(1)0 M2y *(4) X(e)
ces X(n—6)’ X(n-4)’ x(n-2)); (2.4)
the conresponding value of the objective function Ls
n-2
(2.5)

Tmax = X(1) X(2) * .

[T e T

;XA Y T -1 Xy

The proof of Proposition 2.1. relies on two lTemmas.

Lemma 2.1. Let y € R. Then x* {8 a minimal [(maximal] permutation of X L84

X4y = (X]HY, ooy Xyt Y) 48 a minimal (maximal) permutation of
(x;qy *

5(.) ty = (1) Ys ouons x(n) + y).

Lemma 2.2, let O0<asb=<c¢c<d: then ad + bc < ac + bd < ab + cd.

i

Proof. Putting x + y (x1 Yy oo, X F y), we have

n
T(x +y) =T(x}) +2vy ‘}:1 x(}.) +n y‘?-
1=

The proof of Lemma 2.2. is elementary, and is Teft to the reader.

Proof of Proposition 2.1. For simplicity, we use the same notation x to denote a
permutation (Xl’ cees xn) of 5(_ and the corresponding Hamiltonian cycle

{{xq, x2), v (X7 xn), {(xys x7)}. Obviously, the 2n cyclical permutations of
, xl) all yield the same Hamiltonian cycle : accordingly, we may

X and (xn, ..
assume without any loss of generality that x; = X(1)

The proof below relies on a branch-and-bound idea. At each step k, a family
E(k-l) of Hamiltonian cycles is subdivided into two nonempty subfamilies E(k) and
E(k-l)\E(k); E(k) then is shown to contain at least one minimal cycle. Starting
with the set E(O) of all Hamiltonian cycles, the process ends up with

(n) .
E = {fmin}'




Letting k = 42 + m, m = 0, 1, 2 or 3, define E(k) as the set of all cycles in
(k-1)

E containing edge (x(i), x(j)), with
/
(l,ﬂ) k = 1
(2 2, n-22¢) k>1,m=1
(1,3) = (n-232-1,22+1) k>1,m=2
(n=-24¢,2232+2) k>1,m=3
(22 +1,n-2¢+1) k>1, m=20
\
Accordingly, the cycles in E(k) are of the form
(X(l),'X(n), X3, .. e sy Xn_l, Xn ) k = 1
(X(l), X(n), X3, P ) Xn_l, X(n—l)) k = 2
(X(l), X(n), X(Z), X4, N vaay Xn_l, X(n-l)) k =3
(X(1)3 X(n)s X(z), X4, R ey Xn_z, X(3), X(n_l)) k=4
(x(l)’ X(n), X(z), X(n_z), XS, ‘e vens Xnuz, X(3), X(n_l)) k =5
(K(1)> *(n)> X(2)° Xn=2)® ¥(a)* 0 X(ne3)r K@) Xeepy)d o KT

Consider x' € E(k'l) ~ E(k), with k = 4 2 + 2, say. Then x' is of the form

U= AXegys Xy X2y o X(2g) Xme2 g)r K2 a4+ 10 X2 g 20

s Xgs e Xpop gy X2 gel)e 0 X(3)0 X(ae1))

1}

with X; as

E = (X(l)’ X(n)s sy X(n_2 2)) X(2 o1’ Xz 0427

.oy x'i-l’ Xn—zg” Xn_zﬂ_l, ey X_E+11 X(n'ZE"l)’ X(2R’+1)a vy X(g)) X(n‘_l)).




ObviousTy, as can be seen from Figure 2.1, x" € E(k), and
T(x") = T{x') + Xn00-1) X(2041) * %i-1 Xn-2

T Xn-2g-1) Xi-1 T X(2g41) *n-2g

X, 4 S '
and x(2£+1) Xi.1 < x(n—Zz-l)’ it follows from

i < <
S1NCe X(9511) < Xn-2g ¥(n-21-12
k) consequently contains at least one minimal cycle.

Lemma 2.2 that T(x") <T(x') : E
A similar reasoning holds for k = 42 + m, m = 3, 1 or 0.

As for the minimal value of T, it is easy to check that T(fmin) actually re-

duces to (2.3).

Proof of Proposition 2.2. On account of Lemma 2.1, we may assume, without any loss
0, x i) = 0. In order to fix the notation, assume again

of generality, x(l) =
n =42 + 2 — the proof still holds, with minor changes, forn = 42 +m, m = 0, 1

or 3. Denote by x the vector resulting from Xmax by alternating the signs as

follows

X = (- X(n)* X(n-1)* ~ X(n-3)* " (2.6)

ves X(S)’ - x(3), x(l) =0, - X(Z)’ x(4), ey = X(n~4)’ X(n-Z))‘

Clearly, T(g) = - T(Emax)’ and a sufficient condition for Xnax being a maximal
permutation of x, , is thus X being a minimal permutation of z( ) where E( )

is the ordered vector resulting from g, namely

[>2
tl
—
]
>
—
=
—
-
1
>
—
=
1
(4]
—
>
—
=
1
=
—
-

()

©r X(n-5)* *(n-2)* X(n-1))

"Xy X Ty K- Xogeyr Kzyeny 70

~

. ;(n-l)’ x(n)).




As can be checked easily from (2.3), (2.6) is precisely the minimal pérmutation

of X(  described in Proposition 2.1.

As for (2.5), we leave it to the reader to check that Tmax is nothing else

than T(Emax)'

Fig. 2.1. - Hamiltonian cycles x' (dotted) and x" (bold).
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3, PITMAN TESTS AGAINST SERIAL DEPENDENCE

3.1. Finst-onden autocornrelation coefficient

Let X = (Xl, cers Xn) be an observed series of length n. Define

2,172 t=1, ..

(X, - %)/ (Zpg (X - %) , n
Zt = (3.1)
0 t = n+l,
where ¥ = n-1 zgzl Xt' Then the first-order autocorrelation is
n 9 0 n o9 n+l :
ro= ¥ (X, =-X)X__, =X/ £ (X, -Xy"= g I, Z, 4, (3.2

with the convention ZO = Zn+1' Alternative definitions of ry can be considered :
the results below remain valid, provided (3.1) is modified in an obvious fashion.
Putting 7 = (Z,9vy Zinvs sees L , with Z <2 < ... <12 , we h

90y = 2y Yy (n+1)) (1) <Z2) (n+1)» Ye have
the following results.

n+l

Proposition 3.1. The penmutational minimal and maximal values of ry are

[n/2]
fwin T 201 ety ¥ I () Byt 2(ien) Yneeei))
(3.3)
Zi(n41)/2) L((ne3)y2) 1(n 0dd)
and
n-1

"max < 2(1) A2t E A By * ) Ene) (3.4)
nespectively. The permutational mean and vaiiance of r| are

E(ry) = - 1/n (3.5)

and

-1
Var(r,) = [nz(n-l)} [nz - (n=1) - n(n+1) bz}, (3.6)
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where b, = I, Zﬁ denotes Pearson's usual kurtosis coefficient {computed either

grom the oniginal senies X on from the Lransgorned one Z).

Proof. The first part of the proposition follows from Proposition 2.1 and 2.2 by
noting that, provided that the n+l values of Zt are substituted for the xt's, the

noncircular autocorrelation coefficient (3.2) coincides (with n+l instead of n)

with the circular objective function (2.1); the extremal values (3.3) and (3.4)

then result from rewriting (2.3) and (2.5).

As for the permutational moments (3.5) and (3.6), they can be obtained from

simple combinatorial arguments — see David and Fix (1966) or Hallin and Mélard
(1988) for details. They also are provided by Dufour and Roy (1986), where they
are used in the derivation of an upper bound for the unconditional variance of ry-

A1l the elements that are needed for performing Pitman tests based on ry are

now at hand. According to the available tables, one may either wish to compute

p-valyes or critical points.

p-values can be obtained either from tables of the incomplete beta function

ratio Ix(p,q) (Pearson 1968; Osborn and Madey 1968), or from approximations

(see Johnson and Kotz 1970, Chapter 24 Section 6.1). The p-value for

thereof
coefficient is then

an observed value " of the first-order autocorrelation
I.(Ps d), with
x = (ry - r'm1‘n) / (rmax } r'min)

)7tk (3.7)

=2
1
—
3
=
-
=
3
1
-
—
——
-3
=
[s}]
>
H
-
=2
pr S
=

(3.8)

=2
]
i
—
-
-+
=
i
—
™
-
-
1
~
=
—.
=
S
I
—
-~

-1
K= nPn-1)(r .+ ) (r a1 [nz - (n-1) - a(n+1) bz] 1 (3.9)

(p and 9 are obtained from formulas (19) and (20) in the above mentioned chapter of
Johnson and Kotz 1970 on replacing the mean ”i and variance Mo with (3.5) and (3.6),

respectively).
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Critical values can be computed from the tables of percentage points given in

Pearson and Hartley (1966). Denoting by xg q the wth quantile of the standard beta

distribution with parameters (p,q) (i.e. the solution of Ix(p,q) = mw), one has for

™ the corresponding percentage point

it
min ¥ (nax ™ Tmind %~ (3.10)

r‘ ~t
P

where P and § are as in (3.7) and (3.8), respectively.

3.2, Higher ordern coefflcdients

Unfortunately, no straightforward extension of Proposition 3.1 to the case

of higher order coefficients seems to be possible. The reason for this is as

follows. The graph-theoretical version of the problem of order k >1 involves a
team of k salesmen : letting n = k& + m, with 2 = [n/k], divide the set of n nodes
into k-m subsets of cardinal & and m subsets of cardinal g+l, in such a way that the
cumulated weights of the k minimal (maximal) Hamiltonian cycles through the k
subgraphs thus obtained, be minimal (maximal). Now, unlike the optimal Hamiltonian
cycles in the k subgraphs (wich, according to (2.2) and (2.4), exclusively depend

on the ranks of the xi's), the optimal subdivision itself depends on the actual

values of the xi‘s.
To see this, consider the case n = 10, k = 2. Let ¢ € (0,1}, and
5? ) = (2, 3, 6-2¢, 6-¢, 6, 7, 8, 9, 10, 11).

The value of e has no influence upon the ordering of the x?i)'s . whatever this
value, 2 <3 <6-2¢ <6-¢ <6 <7 <.,,. <11, Stitl, for 1/2 <g¢ <1, the minimal

n
value of T x% x% . is
t=3 t “t-i
[ - - -
r5min = TLmin (85 35 8 100 11) 4 rp o (6-2¢, 6-¢, 6, 7, 9)
= 260 - 43¢,

and is reached for
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x* = (11, 9, 2, 6-2¢, 8, 6, 3, 6-¢, 10, 7)

whereas for 0 < ¢ <1/2, the minimal value is

£

toumin = Tlomin (25 35 95 10, 11) + vy (6-2¢, 675, 6, 7, 8)

259 - 4le,

which is reached for

x** = (11, 8, 2, 6-2¢, 9, 6, 3, 6-=, 10, 7)

1]

4 e [ )

(4)* *(9)> *(6)'"

" Koy Xy X X3 K@) Xy X2 "
Different techniques thus should be considered if (exact or approximate) permuta-
tional critical values were to be obtained for higher order autocorrelation coef-
ficients. One idea consists in deriving bounds for permutational distribution
functions, and is developed in (Dufour and Hallin, 1989), where various bounds of
the exponential, Chebyshev and Berry-Esseen types are provided.
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4. A NUMERICAL ILLUSTRATION

The accuracy of the proposed beta approximation and its expected superiority
over normal approximation (based on classical, non-conditional results, such as in
Ljung and Box 1978 or Moran 1948), or based on permutational central-limit
theorems (Wald and Wolfowitz 1943 or Gosh 1954)) should be investigated through
Monte Carle Methods. The very idea of a systematic Monte Carlo study however is
somewhat contradictory with the conditional nature of permutation tests. Separate
Monte Carlo studies indeed should be conducted for every possible value of the
conditioning order statistic E( —since the concept of an underlying distribution
for X in some sense has to be ruled out—except in a few specificparticular cases,
such as that of rank tests, where all conditional (permutational) distributions

coincide with the unconditional one.

The present section is therefore restricted to a brief numerical illustration,
for a very short series length (n=8-—-so that exact permutational distributions
sti11 can be obtained through enumeration techniques). Example 1 considers the
permutational distribution of r for an observed order statistic.i(_) =(1,2,...,8) :
this distribution thus coincides with that of the Spearman-Wald-Wolfowitz rank
autocorrelation coefficient studied by Bartels {1982) and Hallin and Mélard ({1988).
Except for the shortness of the series, these are relatively favorable conditions
(skewness value of 0.07) for a reasonable normal approximation. To obtain a
skewer, more challenging situation, 5(_) was modified, in Example 2, into (1, 3, 4,
6, 8, 12, 20, 27).

Tables 1 and 2 provide, for each of these two exampfes successively, the
a- and (1-a)- permutational quantiles (« = 0.001, 0.005, 0.010, 0.025, 0.050
and 0.100) of " obtained from

(a) the exact permutational distributicn,

(b) the beta approximation over [-1, 1] obtained by adjusting for the permutational
mean and variance (3.5) and (3.6} (this approximation is the one proposed—for
much larger values of n—by Bartels 1982 and Hallin and Mélard 1988),

(c) the Ljung-Box (1978) (unconditional) normal approximation, viz.

(n2 + 2n)1/‘2 rl/(n-l)l/2 ~ N(0,1),
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(d) the (conditional) normal approximation, based on the exact permutational mean

and variance (3.5) and (3.6), and

(e) the beta approximation over [r . . rmax] suggested in Section 3.

Inspection of Tables 1 and 2 reveals that the [rmin’ rmax} beta approximation
= 8); it

(e) always performs fairly well (recall that the series length is only n
generally provides the best approximate quantiles, mostly in the tails—though the
conditional normal approximation (d) is slightly better on a narrow'interval. The
classical Ljung-Box approximation clearly is not reliable here--though no one
presumably would recommend using it for such a short series length.

Assume, for example, that x = (8, 6, 1, 4, 3, 12, 20, 27) has been observed,
yielding a first-order autocorrelation coefficient of 0.5489. Refering to row (e)
in Table 2, we reject the white-noise hypothesis at'a (two-sided) a = 1 % proba-
bility level. None of the other approximate quantiles (rows (b), (c), (d)) would
Tead to this rejection—though, as indicated by the exact .995 quantile value of

0.547 showed in row (a), rejection here is the correct decision.

These two simple examples suggest that the beta approximation proposed in
Section 3 provides fairly good approximate permutational quantiles, even for very
short series. Other approximating methods, based on asymptotic expansions and
inequalities on tail areas are the subject of an ongoing study.
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