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Supersymmetric inversion of effective-range expansions
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A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an
effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor
or Padé expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal
number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are
extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric
transformations of the radial Schrödinger equation. As an illustration, the method is applied to the experimental
phase shifts of the neutron-proton elastic scattering in the 1S0 and 1D2 channels on the [0–350] MeV laboratory
energy interval.
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I. INTRODUCTION

In quantum mechanics, the simplest scattering experiment
is the elastic collision between two spinless particles [1].
The measured quantity is the elastic-scattering differential
cross section, which is the squared modulus of the scattering
amplitude. In principle, the scattering amplitude depends
continuously on two parameters: the deflection angle θ and
the energy E. Thanks to rotational invariance, the continuous
dependence on θ can however be replaced by a discrete
sum on partial waves, with a number of significant terms
and hence a complexity of the θ dependence increasing
with energy. This well-known expansion strongly simplifies
both the theoretical description and the experimental measure
of the collision. Typically, nine partial waves are sufficient
to describe the elastic scattering of the nucleon-nucleon
system below the first inelastic threshold (pion production),
i.e., on the [0–350] MeV energy interval in the laboratory
frame [2].

Less known is the fact that the continuous energy depen-
dence can also be replaced by a discrete sum, leading to
a similar simplification. This is made possible by the use
of the effective-range function, a function directly related
to the partial-wave scattering matrix or phase shift, which
can be series expanded as a function of energy. The usual
effective-range expansion [see Eq. (2) below] is a Taylor
expansion, which is only valid at low energy and hence of
reduced interest to parametrize scattering cross sections in
all generality. Typically, for the nucleon-nucleon S wave, this
expansion is usually believed to be useful to fit experimental
phase shifts up to 5 MeV only [3]. It was however realized
by several authors [4–7] that a Padé approximant or rational
expansion of the effective-range function was much more
appropriate than a Taylor expansion to parametrize data
efficiently. For instance, as shown below, for the nucleon-
nucleon S wave, a Padé expansion of order [3/2], which
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depends on six parameters, fits the effective-range function on
the whole elastic-scattering region. This number of parameters
is decreasing with increasing partial wave, as a consequence
of the centrifugal-barrier effect.

Combining the partial-wave decomposition with Padé
approximants of the effective-range functions is thus an
extremely efficient way of parameterizing experimental scat-
tering data with high precision. It can actually be seen as
an optimal multienergy phase-shift analysis. Another striking
advantage of this method, at least in the neutral case, is that
it also leads to an exactly-solvable potential model for each
partial wave to which it is applied. It can thus be considered as
an inverse-scattering technique [8] since it allows to generate
an interaction potential from the measured scattering data.
Indeed, a rational expansion of the effective-range function
leads to a rational expansion of the partial-wave scattering
matrix as a function of the wave number [see Eq. (4) below].
Such an expansion leads in turn to scattering-matrix poles,
which are the basic ingredient for the inversion technique based
on supersymmetric quantum mechanics [9–11]. This technique
is related to the better-known inversion methods attributed
to integral equations with separable kernels [8], which were
also applied to the nucleon-nucleon system [12,13], but with
much larger numbers of poles. The present method admits the
additional advantage of leading to exactly solvable potentials
with compact analytical expressions. These potentials can also
be seen as generalizations of the Bargmann potentials [14] as
obtained through Darboux transformations for the nucleon-
nucleon system [15].

The method presented here is thus complete, in a sense,
as it allows to start from experimental cross sections, to
parametrize them in an extremely efficient way and to
build the corresponding interaction potentials in an elegant
mathematical form. In the following, we first elaborate the
key ingredients of the scattering theory and Padé-Taylor
expansion method of effective-range function, then describe
the radial supersymmetric inversion technique, and finally
apply our method to the neutron-proton system in the sin-
glet states, which is neutral and for which spins can be
neglected.
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II. SUPERSYMMETRIC INVERSION
OF EFFECTIVE-RANGE FUNCTION

Let us consider a collision between two spin-0 particles
with a center-of-mass energy E = �

2k2/2μ, where � is the
reduced Planck constant, k is the wave number, and μ is the
reduced mass of the particles (in the following, we choose the
reduced units � = 2μ = 1). Each partial wave is associated
with an orbital angular-momentum quantum number l, which
is not written explicitly in the following as each partial
wave is treated independently. A partial wave is characterized
by a scattering phase shift δ(k) or a unitary partial-wave
scattering matrix S(k) = e2iδ(k), which continuously depend
on the energy or wave number. The effective-range function is
defined as

K(k2) ≡ k2l+1 cot δ(k) = ik2l+1 S(k) + 1

S(k) − 1
(1)

with a power of k depending on the partial wave. Under rather
general assumptions, this function can be proven to be analytic
at low energy [16]. It thus admits the so-called effective-range
(Taylor) expansion,

K(k2 → 0) = −1

a
+ r

2
k2 − Pr3k4 + O(k6), (2)

where the scattering length a, the effective range r , and the
shape parameter P can be seen as a discrete set of parameters
characterizing the elastic phase shift at small values of the
continuum energy.

The effective-range function is actually meromorphic, i.e.,
it admits poles; it is thus advantageous to replace expansion (2)
by a Padé approximant of order [M/N],

K(k2) = P [M](k2)

Q[N](k2)
, (3)

which recovers Eq. (2) in the N = 0 particular case. Moreover,
the high energy (k → ∞) behavior of the phase-shifts [1]
δ(k) ∼ k−1 (modulo π ) is satisfied by this functional form
when M − N = l + 1. Equation (3) leads to an expansion
of the scattering matrix as a rational function of k. Indeed,
inverting Eq. (1) leads to

S(k) = K(k2) + ik2l+1

K(k2) − ik2l+1
(4)

with a power of k depending on the partial wave. Equation (4)
shows that when the effective-range function is a polynomial
or a rational function (of the energy), the scattering matrix
automatically becomes a rational function of k,

S(k) =
n−1∏
j=0

k + iκj

k − iκj

, (5)

with poles at k = iκj satisfying

P [M]
(−κ2

j

) − (−1)l+1κ2l+1
j Q[N]

(−κ2
j

) = 0. (6)

Equation (6) shows that these poles depend on the coefficients
of the effective-range expansion and satisfy the following
properties:

(1) their number n = max(2M,2N + 2l + 1);

(2) they are either purely imaginary or symmetric with
respect to the imaginary axis, which warrants the
unitarity of the scattering matrix;

(3) when l > 0, they satisfy the conditions

n−1∑
j=0

1

κα
j

= 0, α = 1,3 . . . ,(2l − 1), (7)

as can be seen by comparing the denominator of Eq. (5)
with Eq. (6).

When parametrizing experimental phase shifts, two ap-
proaches are possible to determine the scattering-matrix poles.
The first approach consists of finding the minimal orders
M and N leading to a satisfactory effective-range function.
The poles are then deduced from the above equations. The
advantage is that they automatically satisfy conditions (7).
The drawback of this approach is that these poles can be either
imaginary or complex, while complex poles sometimes lead
to oscillations in the potentials deduced from supersymmetric
quantum mechanics. To avoid such oscillations, it is thus
necessary to constrain the poles to stay on the imaginary k
axis [17]. This can be achieved by directly fitting the phase
shifts as

δ(k) = −
n−1∑
j=0

arctan
k

κj

, (8)

which is equivalent to Eq. (5). The drawback is then that the
poles have to be constrained by conditions (7) for l > 0 in
order for the effective-range function to be well defined. In the
following, both approaches will be used.

Equations (5) and (8) are in fact associated to a chain
of n supersymmetry transformations [9–11] of the radial
Schrödinger equations Hjψ ≡ −ψ ′′(k,r) + Vj (r)ψ(k,r) =
k2ψ(k,r), with j = 0,1,2, . . . ,n and with a purely cen-
trifugal initial potential V0(r) = l(l + 1)r−2. Each first-order
supersymmetry transformation Lj = −d/dr + v′

j /vj is an
algebraic transformation which transforms the Hamiltonian
Hj of the chain to a new Hamiltonian Hj+1 with Vj+1 = Vj −
2(v′

j /vj )′. Here, the factorization solutions, vj ≡ v(κj ,r), are
the solutions of Hj corresponding to the distinct factorization
energies εj which are related to the scattering matrix poles
iκj by εj = −κ2

j . The Hamiltonians Hj and Hj+1 share
identical spectral characteristics, whereas each successive
transformation of the chain modifies the phase-shift by
subtracting an arctan(k/κj ) term from the phase-shift of the
former Hamiltonian. The compact expression of the final
potential of the chain can readily be expressed by the following
Crum-Krein formula [18,19]:

Vn = l(l + 1)

r2
− 2

d2

dr2
ln W [u0,u1, . . . ,un−1], (9)

where uj ≡ u(κj ,r) are the solutions of the initial Schrödinger
equation −u′′

j + l(l + 1)r−2uj = −κ2
j uj . When uj is associ-

ated to a pole which lies in the upper (lower) half k plane
and is regular at the origin and exponentially increasing
at infinity (respectively singular at the origin and exponen-
tially decreasing at infinity), it is characterized as the left-
(right-)regular solutions. Each supersymmetry transformation
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corresponding to these solutions is responsible for the incre-
ment (decrement) of the potential singularity at the origin by
one unit. Since V0 has a repulsive core of the form l(l + 1)/r2,
the singularity strength of the final potential is therefore equal
to l plus the difference of the number of left-regular minus
right-regular transformations. Thus the aforementioned two
types of factorization solutions are the key ingredients to build
a potential with singularity at the origin.

For the l = 0 partial wave, the solutions of the Hamiltonian
H0 are given by uj ∝ sinh κj r , or exp(κj r). The first (second)
solution corresponds to the left- (right-)regular transformation
if Re(κj ) > 0 (< 0). On the other hand, for l > 0, the solutions
uj of the purely centrifugal potential can be obtained by ap-
plying l zero-energy transformations on the above mentioned
l = 0 left and right regular solutions [11].

III. APPLICATION TO NEUTRON-PROTON ELASTIC
SCATTERING

Let us now apply our method to the neutron-proton
singlet-state phase shifts deduced from elastic scattering
experimental data [2] on the [0–350] MeV laboratory energy
interval. Note here that the laboratory energy and the center-
of-mass momentum squared k2 in nonrelativistic kinematics
are related by Elab = �

2

2μ

mp+mn

mp
k2, where mn = 939.565 MeV

and mp = 938.272 MeV are the mass of a neutron and
proton, respectively, and �c = 197.33 MeV fm (a relativistic
treatment [2] has a negligible impact on the results).

First, let us revisit the l = 0 results, for which no conditions
on the poles apply. Hence, the simplest method is based on
the direct fit of the phase shifts with Eq. (8). In Ref. [9], a
five-pole fit of the data was found satisfactory but two poles
were complex, which led to a small oscillation in the potential.
This default was fixed in Ref. [20], where a satisfactory fit with
six poles was found by constraining them to lie on imaginary
axis. The quality of this fit, by the poles iκj with κ0,...,5 =
−0.0401, − 0.7540,0.6152,2.0424,4.1650,4.6 fm−1, can be
seen on Fig. 1(a). The corresponding effective-range function

is associated with the following [3/2] Padé expansion:

KS(k2) = 0.0422 + 1.3793k2 + 2.0105k4 − 0.058k6

1 + 1.5986k2 − 0.6164k4
(10)

which is shown in Fig. 2(a). On the other hand, a
three-term Taylor expansion of the effective-range function
KS(k2) = 0.04219 + 1.30386k2 + 0.06883k4 [also shown in
Fig. 2(a)], with scattering length a = −23.7 fm, effective
range r = 2.608 fm, and with scattering matrix poles κ0,...,3 =
−0.0401, − 4.6917,0.8365,3.8953 fm−1, is able to fit the
phase shifts up to 30 MeV laboratory energy only [as displayed
in Fig. 1(a)]. This shows the interest of using a Padé expansion
rather than a Taylor expansion. Moreover, the order of the Padé
expansion appropriately resembles the correct high energy
behavior of the phase shifts (which is −π , as can be checked
immediately). The corresponding interaction potential can be
written in two equivalent forms:

VS = −2
d2

dr2
ln W [e−κ0r ,e−κ1r , sinh(κ2r),

sinh(κ3r), sinh(κ4r), sinh(κ5r)] (11)

= −2
d2

dr2
ln W [cosh(κ2r + α02 + α21),

sinh(κ3r + α03 + α13), sinh(κ4r + α04 + α14),

sinh(κ5r + α05 + α15)], (12)

with αij = arctanh(κi/κj ). The potential is represented on
Fig. 3; it displays both a correct one-pion-exchange asymptotic
behavior and a repulsive core at the origin, like standard
nucleon-nucleon potentials.

Next, we consider the inversion of neutron-proton elastic
scattering experimental phase shifts in the 1D2 channel. For
these data, the three-term Taylor effective-range expansion (2)
is sufficient to fit the data with high precision, as shown on
Fig. 2(b). The corresponding parameters read: a = 0.88762
fm, r = 15.33061 fm, P = −0.00246, and the correspond-
ing poles of the scattering matrix are κ0,...,4 = −0.4294, −
0.8827, − 8.7653,0.7750,0.4376 fm−1. Remarkably, all these
poles lie on the imaginary axis of the complex wave-number

FIG. 1. (Color online) (a) Experimental neutron-proton singlet S-wave phase shifts [2] and theoretical phase shifts [Eq. (8)] deduced from
effective-range-function fits. (b) Same as in (a) but for singlet D-wave.
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FIG. 2. (Color online) Effective-range functions corresponding to the phase shifts of Fig. 1. (a) S-wave: experiment [2], three-term Taylor
expansion, [3/2] Padé expansion [left (right) axis is used for the left (right) part of the figure]; (b) D-wave: experiment [2], three-term Taylor
expansion.

plane, whereas this constraint was not imposed to them. The
sum of five arctangents corresponding to these five poles is
plotted in Fig. 1(b), which confirms the excellent quality of the
fit with the experimental data. However, since the condition
M − N = l + 1 is not satisfied, the high energy behavior of
the phase shift tends to π/2.

The compact expressions of the corresponding effective
potential VD(r) is given by Eq. (9), where right regular
transformation functions u0,1,2 and left regular solutions
u3,4 are associated with negative poles and positive poles,

FIG. 3. (Color online) (a) Neutron-proton inversion potentials
for the singlet S- and D-waves (central and effective potentials).
(b) Plot of the asymptotic behavior of the central S- and D-wave
potential together with one pion exchange potential (OPEP) in log-
arithmic scale. Both figures are plotted after multiplying �

2/(2μ) =
41.47 MeV fm2 to the corresponding potentials.

respectively, and read

uj (r) =
(

1 + 3

κj r
+ 3

κ2
j r2

)
e−κj r , j = 0,1,2,

uj (r) = 3

κj r
cosh(κj r) −

(
3

κ2
j r2

+ 1

)
sinh(κj r), j = 3,4.

In Fig. 3, we have plotted this potential, together with the
corresponding central potential after extracting the centrifugal
term. Clearly the central potential is a deep potential with
attractive singular core. Contrary to the S-wave potential,
this potential belongs to the family of deep potentials, as
proposed by the Moscow group [21]. This is due to the
fact that the D-wave phase shifts are positive. This also
supports the results of Ref. [22], where a parity-independent
deep potential was obtained from S- and P -wave phase-shift
inversion, with the inclusion of Pauli forbidden states. A
question raised at that time was the incompatibility of this
potential with the D- and F -waves, hence the interest of
directly inverting phase shifts for these waves. Let us stress
that because of the centrifugal term the D-wave potential
obtained here is only constrained by data above 0.7 fm.
Figure 3 shows that even above this radius the S-wave potential
is deeper than the D-wave one. Hence, adding a forbidden
bound state to the S-wave potential will probably not allow
to fit the D-wave simultaneously. A similar conclusion was
drawn in Ref. [23], which can be accounted by allowing
explicit nonlocalities in the potential, for instance through
a momentum dependence [24] or a quadratic dependence
on angular momentum �L. These possibilities will be further
explored elsewhere. In the meanwhile, let us stress that the
present potentials are local, except for their partial-wave
dependence, which makes them quite different from usual
realistic nucleon-nucleon interactions.

IV. CONCLUSIONS

In conclusion, the method presented in this work can be
considered as an optimal inversion technique for a given
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partial wave in the neutral case: it provides a minimal
parametrization of the scattering phase shifts in terms of either
scattering-matrix poles or effective-range Padé expansion,
together with an analytical expression for the corresponding
potential. The whole algorithm can readily be summarized by
a short computer code [25]. The only difficulty of the method
is that the scattering-matrix poles sometimes become complex
when the effective-range function is used as starting point
for the inversion, which might lead to oscillating potentials.
A direct fit of the poles should then be performed, with the
double constraint of staying on the imaginary axis (except for
possible resonances) and of satisfying a well-defined effective-
range expansion for l > 0. For the singlet neutron-proton case
in the S- and D-waves, the obtained poles and potentials
are satisfactory. The S-wave potential is shallow while the
D-wave potential is deep, which opens the way to a new
discussion of the deep/shallow ambiguity in this case. The

local nature of these potentials makes them quite different from
other realistic nucleon-nucleon interactions but a comparison
between different models could be made directly through their
effective-range-function or scattering-matrix-poles properties.
Further developments of the method might include the link
between different partial waves, the comparison between the
neutral and charged cases, generalization to the coupled-
channel case [7,11], and application to elastic collisions in
atomic physics [26].
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