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Mycobacterium tuberculosis is wrapped in complex waxes, impermeable to most antibiotics. Comparing Mycobacterium bovis
BCG and M. tuberculosis mutants that lack phthiocerol dimycocerosates (PDIM) and/or phenolic glycolipids with wild-type
strains, we observed that glycopeptides strongly inhibited PDIM-deprived mycobacteria. Vancomycin together with a drug tar-
geting lipid synthesis inhibited multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates. Our study
puts glycopeptides in the pipeline of potential antituberculosis (TB) agents and might provide a new antimycobacterial drug-
screening strategy.

Mycobacterium tuberculosis remains a leading cause of morbid-
ity, tuberculosis (TB), and mortality in the world. M. tuber-

culosis is intrinsically resistant to most classical antibiotics, partly
because of its impermeable cell wall (1–6). Due to selective muta-
tions in M. tuberculosis, almost one-third of new TB patients are
now infected with first-line drug-resistant strains, monoresistant
strains, or multidrug-resistant (MDR) strains. Consequently, sec-
ond-line therapies are often implemented, leading to the appear-
ance of extensively drug-resistant (XDR) strains (7, 8). There is
therefore a growing urgency in the need for new antimycobacte-
rial therapies.

The mycobacterial cell wall is composed of peptidoglycan co-
valently attached to arabinogalactan, which are in turn esterified
by very-long-chain mycolic acids. Various noncovalently attached
lipids are embedded at the outer surface and necessary for capsule
formation. Among these lipids, two related waxes, phthiocerol
dimycocerosates (PDIM) and phenolic glycolipids (PGL), are in-
volved in virulence (9–11). PDIM and PGL are only or mostly,
respectively, found in pathogenic mycobacteria, but their roles in
antibiotic resistance remain unclear (12–16). In Mycobacterium
marinum, a mild (2- to 10-fold) increase in antibiotic susceptibil-
ity was observed in PDIM- and PGL-deficient strains (14, 15). In
contrast, in PDIM- and PGL-deficient M. tuberculosis, no change
was detected (13).

The present study aimed to understand how mycobacteria
can become susceptible to glycopeptides. Using PDIM-negative
and/or PGL-negative strains of Mycobacterium bovis BCG and M.
tuberculosis, we investigated the correlation between the absence
of PDIM and the glycopeptide susceptibility. Subsequently, we
investigated whether vancomycin could synergistically inhibit
MDR and XDR strains with a mycobacterial lipids synthesis in-
hibitor.

We recently reported that the chaperonin Cpn60.1/GroEL-1/
Hsp60-1 of M. bovis BCG was necessary for the integrity of the cell
wall as the �cpn60.1 strain showed an abnormal mycobacterial cell
wall with a lack of PDIM and mycolates with two more carbon
atoms (17). We investigated the susceptibility of the wild-type
(WT), �cpn60.1, and complemented �cpn60.1 M. bovis BCG

(GL2 strain) strains to several antituberculosis drugs. We used the
NCCLS agar proportion method (18) to determine the MIC scale
range of each antibiotic. We inoculated equal quantities of several
dilutions of a 3 McFarland standard inoculum on 7H11 agar sup-
plemented with oleic acid-albumin-dextrose (Difco Laboratories)
with or without drug (10-fold dilution assays). The BacT/Alert
MP (mycobacteria process) system was used to determine the
MIC more accurately. BacT/Alert MP bottles (11 ml) supple-
mented with 0.5 ml restoring fluid were inoculated with 0.1 ml
water or drug solution and 0.4 ml of mycobacterial suspension
(0.5 McFarland standard in 7H9 medium, 0.05% Tween 80, 10%
albumin-dextrose). A 100-fold diluted bacterial inoculum was in-
jected in a drug-free vial, as a 1/100 proportional growth control.
The concentration of the antibiotic in a bottle flagged positive in
the same amount of time as the 1/100 control bottle was consid-
ered the MIC (19).

The WT M. bovis BCG strain and the �cpn60.1 mutant were
susceptible to all antituberculosis drugs (Table 1), but the
�cpn60.1 mutant showed a MIC 5 times lower for rifampin. This
increase in susceptibility was totally abolished by reintroducing
expression of Cpn60.1. We unexpectedly also observed that the
�cpn60.1 mutant showed 100-fold higher susceptibility to glyco-
peptides (teicoplanin and vancomycin), usually not used in the
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treatment of tuberculosis or Gram-negative bacterial infection be-
cause of their outer membranes. This gain in susceptibility was
totally abolished in the complemented strain, suggesting that loss
of Cpn60.1 conferred an unusual and very high susceptibility to
this class of antibiotic.

To assess if the glycopeptide susceptibility of the �cpn60.1 M.
bovis BCG mutant was linked to a PGL deficiency in addition to
the PDIM deficiency, as previously reported (17), we analyzed its
lipid composition in more detail (see the supplemental material).
The mass spectra of the lipid extract of the �cpn60.1, comple-
mented, and WT strains confirmed the longer chain lengths in
�-mycolates (2 extra carbons) and the absence of intact PDIM (see
Fig. S1A to C in the supplemental material) and showed the ab-
sence of intact PGL in the �cpn60.1 mutant (see Fig. S1A, B, D,
and E).

To assess the impact of either PDIM or PGL deficiency on
vancomycin susceptibility, we determined the vancomycin sus-
ceptibility of the wild type (BCG Pasteur 1173P2), the PMM50
mutant (BCG �ppsE, PDIM� and PGL�), and the PMM137 mu-
tant (BCG �fadD26, PDIM� and PGL�) (20, 21). The wild-type
BCG Pasteur 1173P2 was resistant to vancomycin, like the related
GL2 strain, with a MIC of approximatively 100 �g/ml (data not
shown). All M. bovis BCG mutants defective in the PDIM compo-
nent, regardless of the presence or absence of PGL, presented a
MIC of around 5 �g/ml to vancomycin (Fig. 1A and B) as ob-
served for the mutant �cpn60.1 (Table 1). To assess the impact of
PDIM in M. tuberculosis, the vancomycin susceptibilities of two
M. tuberculosis strains, wild-type H37Rv (naturally deficient for
PGL) or PMM56 (H37Rv �ppsE, PDIM�), were compared (22).
The wild-type M. tuberculosis H37Rv was resistant to vancomycin,
with a MIC of approximatively 65 �g/ml (Table 1). The M. tuber-
culosis PMM56 mutant (�ppsE) showed a MIC of between 0.5 and
1 �g/ml to vancomycin (Fig. 1C), allowing us to make the same
association between PDIM deficiency and the increase in vanco-
mycin susceptibility in M. tuberculosis.

The potential clinical use of vancomycin in combination with a
cell wall-targeting drug was investigated as a proof of concept. The
combination of vancomycin and cerulenin, a potent long-chain
lipid synthesis inhibitor (23, 24), was used at a sub-MIC on M.
tuberculosis H37Rv and on MDR and XDR M. tuberculosis clinical
isolates. Thirteen clinically unrelated isolates were selected from a
M. tuberculosis collection (Tuberculosis Center, Public Health Re-

search Institute [PHRI], NJ) (25). A synergistic effect was evalu-
ated in the BacT/Alert MP system by the x/y methodology (26–
29). A �x/�y quotient of �0.5 indicates enhanced drug action,
with x being the growth index (GI) value obtained for the vial with
the combination of drugs and y being the lowest GI value obtained
with any of the single drugs used within the combination tested. A
combination of vancomycin (5 �g/ml) and cerulenin (0.5 �g/ml)
inhibited 99% of the H37Rv M. tuberculosis growth (data not

TABLE 1 Antibiotic susceptibility for the three M. bovis BCG strains
and H37Rv M. tuberculosis

Antibiotic

MIC (�g/ml)a

WT BCG �cpn60.1 �cpn60.1Comp H37Rv

Isoniazid 0.1 0.1 0.1 0.1
Rifampin 0.05 0.01 0.05 1
Ethambutol 1 1 1 5
Streptomycin 0.2 0.2 0.2 1
Ethionamide 4 4 4 5
Ciprofloxacin 0.25 0.25 0.25 1
Moxifloxacin 0.05 0.05 0.05 0.25
Teicoplanin �1,000 17.5 �1,000 100
Vancomycin �500 5 �500 65
Cerulenin 0.75 0.75 0.75 2.5
a The BacT/Alert MP system was used to determine the MIC more accurately. �cpn60.1
Comp, the complemented �cpn60.1 strain.

FIG 1 The lack of PDIM in mycobacteria is associated with glycopeptide
susceptibility. Typical fluorometric reflectance results showing mycobacterial
cell growth in the absence and presence of 5 (V5), 1 (V1.0), and 0.5 (V0.5)
�g/ml vancomycin. (A) Representative growth curves of PMM50 M. bovis
BCG (PDIM and PGL deficient) diluted (1/100) or not diluted. The MIC
corresponds to a concentration of 5 �g/ml vancomycin. (B) Representative
growth curves of PMM137 M. bovis BCG (PDIM deficient, PGL positive)
diluted (1/100) or not diluted. The MIC corresponds to a concentration of 5
�g/ml vancomycin. (C) Representative growth curves of PMM56 M. tubercu-
losis (PDIM deficient) diluted (1/100) or not diluted. The MIC is between 0.5
and 1.0 �g/ml vancomycin.
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shown). Interestingly, the combination of vancomycin (6 �g/ml)
with cerulenin (1 �g/ml) was synergistically effective, inhibiting
the growth of 6 MDR and 3 XDR out of 10 MDR and 3 XDR M.
tuberculosis clinical isolates (Table 2).

Vancomycin is a large (molecular weight [MW] of 1,449) hy-
drophilic molecule able to form a hydrogen bond with the termi-
nal D-alanyl-D-alanine moieties during peptidoglycan biosynthe-
sis, thereby preventing bacterial cell wall backbone synthesis. The
target of vancomycin, ubiquitous in bacteria, is thus only easily
reachable on bacteria with thin cell walls or without an outer lipid
membrane (6) or without PDIM, as suggested by our results either
using various M. bovis BCG and M. tuberculosis mutants, or co-
treated by a drug targeting long-chain lipid synthesis, such as ce-
rulenin.

Interestingly, Arain et al. had already reported in 1994 that
some M. tuberculosis strains were potentially inhibited in vitro by
the coadministration of teicoplanin with ethambutol (30). De-
spite the fact that the route of administration of glycopeptides
restricts their use in ambulatory care, our results suggest that it
might be interesting to investigate if these antibiotics might be
useful for treating multidrug-resistant (MDR) and extensively
drug-resistant (XDR) infections, an important issue as these
strains are emerging all over the world (8).
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