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Abstract
Two-component systems (TCS) represent major signal-transduction pathways for adapta-

tion to environmental conditions, and regulate many aspects of bacterial physiology. In the

whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon,

and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tan-

dem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically

close around specific ligands using clamshell motions. We report the X-ray structure of the

periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining

site-directed mutagenesis, functional analyses and molecular modeling, we show that the

conformation of the periplasmic moiety determines the state of BvgS activity. The inter-

twined structure of the periplasmic portion and the different conformation and dynamics of

its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 do-

mains, exert a conformational strain onto the transmembrane helices, which sets the cyto-

plasmic moiety in a kinase-on state by default corresponding to the virulent phase of the

bacterium. Signaling the presence of negative signals perceived by the periplasmic do-

mains implies a shift of BvgS to a distinct state of conformation and activity, corresponding

to the avirulent phase. The response to negative modulation depends on the integrity of the

periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted confor-

mational transition. This work lays the bases to understand virulence regulation in Borde-
tella. As homologous sensor-kinases control virulence features of diverse bacterial
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pathogens, the BvgS structure and mechanism may pave the way for new modes of tar-

geted therapeutic interventions.

Author Summary

Bacteria make use of two-component transduction systems, composed of a sensor-kinase
and a response regulator, to perceive environmental signals and orchestrate an appropriate
response. The virulence regulon of the whooping cough agent Bordetella pertussis is con-
trolled by the two-component system BvgAS. The sensor-kinase BvgS harbor extra-
cytoplasmic Venus flytrap perception domains similar to those found in neuronal recep-
tors, and it is the prototype of a large bacterial protein family. We report the atomic
structure of the extra-cytoplasmic moiety of BvgS, which shows a novel dimeric arrange-
ment. We show that the virulent phase of B. pertussis that occurs by default corresponds to
a specific conformation of BvgS generated by the periplasmic architecture itself and by the
differential dynamics of its Venus flytrap domains. The perception of negative signals by
the periplasmic domains causes BvgS to shift to a different conformation that corresponds
to the avirulent phase of the bacteria. In addition to contributing to our understanding of
virulence regulation by B. pertussis at a time of whooping cough re-emergence, this study
also paves the way to the mechanistic exploration of the homologous sensor-kinases found
in various bacterial pathogens.

Introduction
Two-component sensory transduction systems (TCSs) regulate various physiological processes
in response to environmental changes [1]. They are abundant throughout the phylogenetic tree
except for vertebrates and represent major bacterial signaling pathways [2,3]. TCSs notably
regulate the cell cycle, motility, biofilm formation or antibiotic resistance, as well as the viru-
lence of major pathogens [4–8]. TCSs are typically composed of a sensor-kinase activated by
environmental stimuli and a response regulator mediating phosphorylation-dependent effects
[9,10]. Upon perception of a physical or chemical signal, auto-phosphorylation of a conserved
cytoplasmic His residue of the sensor-kinase is followed by transfer of the phosphoryl group to
a conserved Asp residue of the response regulator. The phosphorylated response regulator me-
diates a specific, frequently transcriptional, cellular response [11]. There is considerable diver-
sity among TCSs regarding domain composition and organization [9,10].

Bordetella pertussis, the whooping cough agent, colonizes the upper respiratory tract of hu-
mans [12]. Transcription of its virulence regulon is positively regulated by the TCS BvgAS
[13]. Over one hundred genes belong to the Bvg regulon, including those coding for the adhe-
sins and toxins and their secretion and assembly machineries [14]. The virulent, Bvg+ phase, in
which phosphorylated BvgA trans-activates the expression of the virulence regulon, is essential
for the development of the infection cycle of B. pertussis and other pathogenic Bordetella spe-
cies [13,15]. The kinase and phosphotransfer activities of BvgS are maximal (referred to below
as the ‘kinase-on’ state) without specific chemical stimuli and at 37°C, the B. pertussis host
body temperature, while low temperatures and specific negative modulators turn these activi-
ties off in laboratory conditions (referred to below as the ‘kinase-off’ state). Thus, millimolar
concentrations of nicotinate or sulfate ions result in the dephosphorylation of BvgA, switching
the bacteria to the avirulent, Bvg- phase [16,17]. Virulence genes are no longer expressed, while
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a smaller set of virulence-repressed genes (vrgs) are upregulated [18,19]. At low modulator
concentrations, an intermediate Bvgi phase occurs in which the reduced concentration of phos-
phorylated BvgA is sufficient to transactivate ‘early’ virulence genes as well as specific interme-
diate genes [13,20,21]. Thus, BvgAS operates like a rheostat, determining several states of gene
expression that might correspond to distinct temporal or spatial situations in the course of in-
fection. BvgS is composed of periplasmic Venus flytrap (VFT) domains, a transmembrane
segment, a PAS domain, and a kinase and additional domains that make up a phosphorelay
(Fig. 1A). The cytoplasmic moiety of BvgS dimerizes, similar to the other TCS sensor-
kinases [22,23].

BvgS is the prototype of a family of bacterial VFT-domain-containing sensor-kinases [24].
VFT domains have a bi-lobed structure with two mobile jaws delimitating a putative ligand-
binding cavity [25,26]. They exist in open and closed conformations that interconvert by clam-
shell motions. Typically, binding of a ligand in the cavity stabilizes the closed conformation,
which triggers downstream cellular events such as transport or signaling. The periplasmic moi-
ety of BvgS is composed of two VFT domains, membrane-distal VFT1 and membrane-
proximal VFT2. We have previously reported the structure of the isolated VFT2 domain and
showed that nicotinate and related negative modulators bind to VFT2 [27]. There are currently
more than 2000 predicted BvgS homologs, containing from one to five VFT domains. Some of
them are found in major pathogens, including Pseudomonas aeruginosa, Vibrio cholerae, Yersi-
nia enterocolitica and Borrelia burgdorferi, in which they regulate various responses that con-
tribute to pathogenicity [28–32] (Fig. 1B). Unlike those of classical TCSs, the molecular
mechanisms of signal perception and transduction by these VFT-containing sensor-kinases are
largely unknown.

In this work, we describe the structure of the periplasmic portion of BvgS, revealing a novel
homo-dimeric architecture with two highly intricate polypeptide chains wound around each
other. A combination of site-directed mutagenesis, functional analyses in vivo and molecular
modeling indicated that the integrity of the periplasmic domain is necessary both to maintain
BvgS in a kinase-on state by default and to bring about conformational changes that switch the
protein to the kinase-off state in response to negative modulation. This study shows that BvgS
represents a new paradigm of bacterial two-component sensor-kinases and contributes to our
understanding of virulence regulation in Bordetella.

Results

Structure of the periplasmic domain of BvgS
The periplasmic domain of BvgS (residues Ala29-Leu544, which includes VFT1 and VFT2) was
produced in Escherichia coli and crystallized as a recombinant protein with a 60-residue-long
GB1 domain at the N terminus and a 6-His tag at the C terminus. The structure was solved to a
resolution of 3.1 Å (Fig. 2, S1 Table). BvgS forms intricate butterfly-shaped dimers in which
the A and B polypeptide chains (‘protomers’) wind around each other, with an extensive di-
meric interface of� 4000 Å2. The two protomers overlap with an RMSD of 1.184 Å. The
N-terminal GB1 domain and C-terminal His tag are not visible in the electron density maps.

A two-fold symmetry axis runs parallel to the long axis of the BvgS dimer. The N termini of
the two protomers are located on the outer surface of the dimer, and their C termini interrupt
α helices at the membrane-proximal end of the structure. VFT1 and VFT2 adopt typical Venus
flytrap architectures consisting of two α/β subdomains called lobes 1 and 2 (hereafter L1 and
L2) separated by a cleft. They have similar topologies with two crossings between the lobes
(S1 Fig). The hinge is formed of anti-parallel β strands in VFT2 and flexible loops in VFT1.
The VFT2s are followed by the C-terminal (Ct) domains that encompass the Gly527-Pro532
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Ct loops and the H19 Ct helices (Figs. 2 and S1). In the absence of membrane constraints, the
H19s adopt divergent orientations in the crystal structure. In full-length BvgS they are pre-
dicted to continue across the membrane down to the cytoplasmic PAS domain, with a total
length of 60 residues.

Fig 1. Function of BvgS and selected homologs. A. Schematic representation of virulence regulation by BvgAS in B. pertussis. Only the virulent (Bvg+)
and avirulent (Bvg-) phases of the bacterium are represented for simplicity. Conditions that turn the bacteria to the avirulent phase include low temperatures
and negative modulators such as sulfate or nicotinate (NA) ions. The vags (virulence-activated genes) are trans-activated by phosphorylated BvgA, while the
vrgs (virulence-repressed genes) are upregulated in the avirulent phase. An intermediate phase occurs at low modulator concentrations (see text). From N to
C terminus, 135 kDa-BvgS is composed of two periplasmic VFT domains, a transmembrane segment, a PAS domain, followed by a histidine-kinase (HK), a
receiver (R) and a Histidine phosphotransfer (Hpt) domains that make up a phosphorelay (represented by arrows). BvgA is composed of a receiver domain
and a helix-turn-helix DNA-binding domain (HTH). B. Structural organization of selected BvgS homologs, with the same color code as for BvgS. Note that the
domain composition varies in the family. The cellular functions regulated by these sensor-kinases are also indicated.

doi:10.1371/journal.ppat.1004700.g001
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The two VFT1s are open, while atypically the VFT2s are closed with no ligand in their
inter-lobe cavities (Fig. 3), consistent with the structure of VFT2 alone [27]. The VFT1 cavities
are each oriented toward the hinge of the VFT2 domain of the other protomer, and the cavities
of the VFT2s are each oriented toward the H19 helix of the opposite protomer (Fig. 3).

The VFT1L1s interact with each other through several hydrogen bonds between their H8s,
while the VFT2s are not directly interconnected. Both lobes of the VFT1s, VFT1L1 and
VFT1L2, contact the hinge and lobes of VFT2 of the opposite protomer (Fig. 4), forming the
largest dimeric interfaces. Other large interfaces occur between VFT1L2 and VFT2 of the same
protomer, and between VFT2L2 and the Ct domains. In particular, both the Ct loop and the
N terminus of H19 strongly interact with VFT2L2 of the opposite protomer through hydrogen

Fig 2. General organization of the BvgS periplasmic domain. A. Schematic representation of the homodimeric BvgS periplasmic portion. The protomers
A and B are shown in shades of green and blue, respectively. One protomer consists of two VFT domains and a C-terminal H19 α helix. B. Ribbon
representation of the X-ray structure of the BvgS periplasmic domain, the same color code as in (A) is used to show the different VFTs. The two-fold
symmetry axis is indicated. C. Surface representation of the periplasmic domain of BvgS. On the left, the view angle is similar to (B), while on the right, a 90°
clockwise rotation along the x-axis was applied. N and C denote the N and C termini of the two protomers.

doi:10.1371/journal.ppat.1004700.g002
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bonds and through π-stacking interactions that involve a conserved residue in the BvgS family,
Trp535 (Fig. 4).

Conformation and dynamics of the VFT domains
In the crystal structure, the VFT1 domains are open and unliganded, while conversely the
VFT2 domains are closed without ligands. We performed normal mode analyses of BvgS mo-
tions based on a Gaussian network model to identify the main global motions that are accessi-
ble to the protein based on its tridimensional structure. The first, lowest-frequency normal
modes are usually most relevant to function. For BvgS, the first two modes of motion consist of
large motions of one VFT1L1 (S2 Fig). In contrast, the VFT2s move together as a rigid body, as

Fig 3. Characterization of the VFT domains. A. Surface and cartoon representation of BvgS showing that VFT1-B is open and VFT2-A is in an apo-closed
conformation. B. Ribbon representation of the open VFT1 and closed VFT2 domains. The lobes are delimited in light green and the cavities in light red. The
opening angles for the VFTs are given. The linker (H9) joining VFT1 and VFT2 and the Ct loop that follows VFT2 have been included in the representation of
the VFT1 and VFT2 domains, respectively. N and C indicate the N and C termini of each protomer (in A) or VFT domain (in B).

doi:10.1371/journal.ppat.1004700.g003
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shown in mode #3. Mode #4 consists of motions of both VFT1L2s together with the VFT2s.
Thus, the first lobes of the VFT1s in particular can make large motions, while the VFT2 mo-
tions are more restrained and mainly coupled to each other and to those of the VFT1s. This
was confirmed by performing molecular dynamics simulations to measure the evolution of the

Fig 4. Interfaces between the VFT domains important for the kinase-on state. A. Surface representation of protomer B (in blue); the residues interacting
with protomer A are shown in orange. To help visualizing these interactions, a “ghost” protomer A is represented in transparent white on top of protomer B.
B. Illustration of the VFT1-VFT2 inter-protomer interface. A side view of BvgS is shown in surface representation, with the VFT1 of one protomer in green and
the VFT2 of the other protomer in pale blue. A zoom delimited by a dashed orange box shows specific residues that are critical for BvgS function, as shown
by mutagenesis. The side chains of Tyr81 and Glu86 of the β hairpin in VFT1L1 form hydrogen bonds with Phe386 and Arg388 at one extremity of the VFT2
hinge, and with residues of the α helix H17. Glu200 belongs to VFT1L2, and its side chain makes hydrogen bonds with Asn393 and Gly394 at the other extremity
of the VFT2 hinge. C. Illustration of the VFT2-Ct domain inter-protomer interface. In the upper panel, BvgS is shown in surface representation, with protomer
A in green and protomer B in blue. A zoom shows specific residues involved in critical interactions for BvgS kinase activity. Thus, Trp535 from H19 stacks in a
hydrophobic and aromatic pocket mainly lined with VFT2L2 residues of the other protomer, and Arg472 and Tyr473 from helix H16 in VFT2L2 interact with
Ser528 and Asp531 in the Ct loop of the other protomer. Hydrogen-bond distances are reported in angstroms.

doi:10.1371/journal.ppat.1004700.g004
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opening angles of the VFTs over time. In the first parts of the simulations, the VFT1s make
clamshell motions, while motions of the VFT2s are limited around their closed conformations
(S2 Fig). As the simulations progress the VFT1 mobility is reduced, which suggests that sus-
tained VFT motions may require the feedback from the transmembrane and cytoplasmic por-
tions of BvgS absent from our model. These in silico analyses thus indicate that the X-ray
structure reflects bona fide differences between the VFT1 and VFT2 domains in terms of con-
formation and dynamics.

We then asked whether VFT1 closing—as might happen upon binding of a ligand—would
affect BvgS activity. We locked the VFT1 domains in closed conformations by generating a di-
sulfide (S-S) bonds across their cavity [33,34]. Two residues located on the edges of the lobes
were replaced by Cys to obtain BvgSE113C+N177C (S3 Fig). The corresponding point mutations
were inserted into the chromosomal bvg locus by allelic exchange, and we verified the produc-
tion of the protein and the formation of the S-S bond by immunoblotting (S4 Fig). The in vivo
effect of the substitution on BvgS function was then measured by using a reporter system with
the lacZ gene under the control of the Bvg-regulated ptx promoter [35]. In vivo formation of
the S-S bond in VFT1 abrogates the kinase activity of BvgS (Fig. 5). This phenotype is reverted
by the addition of a reducing agent, TCEP, to the growth medium (S5 Fig), which confirms
that the S-S bond forms in vivo and shows that the loss of function is related to its presence and
not to the Cys substitutions.

The VFT2s remain closed even when isolated [27]. Nevertheless, to maintain them closed in
vivo we also generated an S-S bond between their lobes using a similar method as above, yield-
ing BvgST355C+D442C. We checked that the S-S bond was formed (S4 Fig; see also below). In
contrast to VFT1, closing VFT2 was found to have no effect on the BvgS kinase activity as de-
termined with the ptx-lacZ reporter (Figs. 5 and S5). Altogether thus, closing of the VFT1 do-
mains and/or restraining their mobility abrogate BvgS kinase activity. In contrast, closed VFT2
domains correspond to the kinase-on state of BvgS. The different conformations and dynamics
of the two VFT domains thus contribute to BvgS function.

Importance of periplasmic domain integrity for BvgS kinase activity
B. pertussis is in the virulent, Bvg+ phase by default at 37°C. To determine the role of the peri-
plasmic domain of BvgS in maintaining this kinase-on state, we loosened the connections be-
tween the periplasmic and cytoplasmic moieties of BvgS by replacing Trp535 with Ala. This
residue is located in the C-terminal helix H19 and it contributes to connecting each H19 to the
VFT2L2 of the opposite protomer (Fig. 4C). After allelic exchange, the effect of the substitution
on BvgS function was measured by using the ptx-lacZ reporter system. The BvgSW535A variant
has no kinase activity (Fig. 5). The presence of BvgSW535A in B. pertussismembranes was veri-
fied, showing that the substitution does not affect the structure of the protein in such a way as
to prevent its integration in the membrane or to cause its proteolytic degradation in vivo
(S4 Fig). Thus, the kinase-on state of BvgS depends on tight connections between the periplas-
mic domains and the transmembrane H19 helices.

To confirm that the periplasmic portion imposes a specific conformation on the cyto-
plasmic moiety, we introduced other substitutions in the inter-protomer interfaces between the
VFT2s and the Ct domains, by targeting residues whose side chains connect the VFT2L2s and
the Ct loops that precede the H19s (Fig. 4C). Thus, Arg472 and Tyr473 located in helix H16 of
VFT2L2 form hydrogen bonds with residues of the Ct loop of the other protomer. Their simul-
taneous replacement by Ala abolishes BvgS kinase activity, while the single-substitution vari-
ants BvgSR472A and BvgSY473A are partially active (Figs. 5 and S5). This indicates that the inter-
protomer interface between H16 in VFT2 and the Ct loop is critical and that it is maintained
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Fig 5. In vivo effects of the substitutions in BvgS. A lacZ reporter gene under the control of the Bvg-regulated ptx promoter was used for determination of
BvgS kinase activity in standard or modulated culture conditions. Blue and pink bars indicate kinase activity levels of bacteria producing the indicated BvgS
variants and grown without or with 8 mM nicotinate, respectively, with the standard errors of the mean calculated from three distinct experiments. The middle
column indicates the interfaces in which the targeted interactions are located, with inter- and intra-protomer interfaces designated ‘inter’ and ‘intra’,
respectively. Nd, no β-gal activity detected; a, wild type activity and/or modulation recovered when cells were grown in the presence of TCEP; b, BvgS
variants only responsive to high nicotinate concentrations (20 mM). The full set of data is shown in S5 Fig.

doi:10.1371/journal.ppat.1004700.g005
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by partly redundant interactions. In contrast, substitutions at the tip of a β hairpin in VFT2L1
whose residues interact with the other face of the Ct loop do not affect BvgS function, as shown
with BvgSR324G/T325G/D326G/E327G. The effect of disrupting of specific interactions between the
VFT2L2s and the Ct loops preceding the H19s is consistent with the effect of the W535A substi-
tution, showing that the kinase-on state depends on VFT2-Ct domain inter-
protomer connections.

To identify additional architectural features of the periplasmic dimer critical to maintain
BvgS in its kinase-on state, we disrupted specific interactions in other intra-dimer interfaces of
BvgS by site-directed mutagenesis. We targeted residues in the large interfaces between the
VFT1s and the VFT2s of the opposite protomers (Fig. 4B). The side chains of Tyr81 and Glu86
in a β hairpin of VFT1L1 and that of Glu200 in helix H5 of VFT1L2 form hydrogen bonds with
residues at the N- and C-terminal sides of the first hinge strand of VFT2, respectively. Two
BvgS variants, BvgSY81A+E86A and BvgSE200A were generated and analyzed as above (Figs. 5, S4
and S5). Neither of them is functional, demonstrating that connections between the two lobes
of VFT1 and the hinge of VFT2 of the opposite protomer are essential to maintain the kinase-
on state of BvgS. In contrast, the replacement of Gln463 by Ala in the same large inter-protomer
VFT1-VFT2 interface does not affect activity (Figs. 5 and S5). Gln463 is part of VFT2 but not lo-
cated in the hinge, unlike the residues of VFT2 in contact with Tyr81, Glu86 and Glu200. The
loss of kinase activity of the BvgSY81A+E86A and BvgSE200A variants might result from the loss of
constraints applied by the VFT1 lobes on the VFT2 hinge.

In contrast, disruption of specific interactions in other dimeric interfaces (S3 Fig), including
the H8-mediated VFT1-VFT1 inter-protomer interface, the VFT1-VFT2 intra-protomer
interfaces, the VFT2-Ct domains intra-protomer interfaces or the VFT1-Ct domains inter-
protomer interfaces, does not markedly affect Bvg kinase activity (Figs. 5 and S5).

Altogether, thus, we have identified interactions in the inter-protomer interfaces between
VFT1 and the VFT2 hinge and between VFT2L2 and the Ct domain that are necessary to main-
tain BvgS in its kinase-on state. In particular, the substitutions A472A+Y473A and W535A sup-
port the idea that the periplasmic domain exerts a strain on the transmembrane domains,
causing the cytoplasmic moiety to adopt a specific conformation corresponding to the kinase-
on state. The VFT1s contribute to the strain via the close contacts of their two lobes with the
hinges of the tight VFT2 domains. Loosening the periplasmic portion or its connections with
the transmembrane helices releases the strain, and therefore the cytoplasmic moiety switches
to a distinct, kinase-off state.

Modulation by nicotinate requires multiple intra-dimer interactions
Negative modulators turn BvgS to the kinase-off state at millimolar concentrations in laborato-
ry conditions, and they possibly mimic in vivo ligands that might decrease or turn off virulence
genes expression at specific stages of the infection. The sites of interaction of these negative
modulators are mostly unknown. We have shown that nicotinate binds to isolated VFT2, even
though additional sites cannot be ruled out in the dimer [29], and therefore we used nicotinate
to determine how the periplasmic moiety contributes to the response of BvgS to negative mod-
ulation. The ability of the BvgS variants described above to respond to nicotinate was
thus assessed.

The BvgST355C+D442C variant with a S-S bond across the VFT2 cavity variant is unresponsive
to nicotinate but reverts to the wild type (wt) modulation phenotype when the growth medium
is supplemented with TCEP (Figs. 5 and S5). This confirms the in vivo formation of the S-S
bond and also shows that it, rather than the Cys substitutions, hampers the response to
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nicotinate. The S-S bond might prevent nicotinate from binding or hamper a conformational
changes involved in the response to the negative modulator.

A number of other substitutions similarly abrogate the effect of nicotinate (Figs. 5 and S5).
Interestingly, both inter-protomer and intra-protomer interactions are required for
BvgS response to negative modulation. These interactions map to the VFT1L1-VFT1L1,
VFT1L2-VFT2L1, and VFT1L2-VFT2L2 inter-protomer interfaces and to the VFT1L2-VFT2L1
and VFT2L2-Ct domain intra-protomer interfaces (Figs. 5 and S3). Altogether, a large set of
both inter- and intra-protomer interactions is required for the response of BvgS to nicotinate.
The fact that the response to negative modulation strongly depends on the integrity of the peri-
plasmic moiety indicates that the transition from the kinase-on state to the kinase-off state im-
plies a concerted conformational change.

Function of BvgS heterodimers
The importance of the structural integrity of the periplasmic domain for the kinase-on state
and for the transition to the kinase-off state was further probed by generating in vivo BvgS het-
erodimers that harbor one wt periplasmic domain and another one with a substitution. A mer-
odiploid containing two inactive but complementary bvgS copies, one with a substitution of the
phosphorylable Asp of the receiver domain (D1023N) and the other with a substitution of the
phosphorylable His of the Hpt domain (H1172Q), will form inactive homodimers and active
heterodimers (Fig. 6) [36,37]. Indeed, only heterodimers will be able to restore the phsophory-
lation cascade of BvgS. We set up this merodiploid expression system in B. pertussis. As shown
in Fig. 6, the homodimers formed by BvgSD1023N or by BvgSH1172Q are inactive using the ptx re-
porter, but the heterodimer BvgSD1023N/H1172Q is functional, displaying kinase activity in the
default state and responding to nicotinate like wt BvgS.

We disrupted critical contacts in one side of the dimer by combining the W535A variant
with the wt periplasmic protomer. The kinase activity of BvgS was measured using the ptx-lacZ
system as above. The resulting BvgS homodimer is not functional, similar to the homo-dimeric
BvgSW535A variant (Fig. 6). Another variant that harbors the Y81A+E86A substitutions in the
inter-protomer VFT1-VFT2 interface was similarly combined with the wt periplasmic moiety.
The heterodimer is also not functional, a phenotype similar to that of the BvgSY81A+E86A homo-
dimer (Fig. 6). Both results support the model that the periplasmic architecture and more
specifically the crucial inter-protomer interfaces identified above impose a kinase-on confor-
mation onto the cytoplasmic moiety via the H19 helices. Releasing the strain in one half of the
dimer is sufficient to lose the kinase-on conformation.

We also combined the wt periplasmic moiety with that harboring a S-S bond across the
VFT1 cavity. The resulting BvgS heterodimer has no kinase activity (Fig. 6). Thus, both proto-
mers must have the proper conformation and dynamics for BvgS function.

We finally used the heterodimer strategy to test the effect of a substitution that makes BvgS
unresponsive to nicotinate. We thus combined a protomer harboring a wt periplasmic domain
with that harboring the N231A substitution. Asn231 from VFT1L2 makes interactions with the
Ct loop of the other protomer (S3 Fig), and the BvgSN231A homodimer does not respond
to nicotinate (Figs. 5 and S5). The recombinant strain expressing the heterodimer has
β-galactosidase activity and interestingly, its sensitivity to nicotinate is partially restored. Thus,
the heterodimer responds to 20 mM nicotinate, although it is not fully modulated (Fig. 6). This
intermediary phenotype indicates that the transition to the kinase-off state requires higher
modulator concentrations when the integrity of the periplasmic domain is
slightly compromised.

Structure and Function of Sensor-Kinase BvgS

PLOS Pathogens | DOI:10.1371/journal.ppat.1004700 March 4, 2015 11 / 21



Discussion
Although the BvgAS system was identified more than 25 years ago [38], the mode of regulation
of Bordetella virulence has remained a puzzle. With its kinase-on state by default and its extra-
cytoplasmic domain different from those of classical ‘PDC’ (for PhoB/ DcuS/CitA) TCS
sensor-kinases, BvgS was initially considered an oddity. However, the realization that many
bacterial sensor-kinases harbor similar sensor domains and the first clues about its structure
and mode of action have made BvgS a model for the family [23,24,27]. Importantly, some of
the BvgS homologs are found in major pathogens, including other Bordetella species as well as
P. aeruginosa, E. coli, V. cholerae, Y. enterocolitica and B. burgdorferi, in which they control
programs such as biofilm formation, efflux pump expression, type III secretion, or nutritional
adaptation [28–32]. The BvgS structure establishes the foundations to decipher the molecular
mode of action of this poorly characterized family of VFT-containing sensor-kinases, and it
may pave the way to develop new, highly specific, anti-infective therapeutic strategies [39].

Fig 6. BvgS heterodimers. A. Schematic representation of the BvgS heterodimers. The dimerisation/Histidine phosphotransfer domain (DHp) and the
catalytic ATP-binding domain (CA) of the kinase are represented separately to show the phosphorylation cascade (arrows). B. Kinase activity levels as
determined using the ptx-lacZ reporter for B. pertussis harboring the indicated BvgS variants and grown in standard or modulation conditions. The first panel
shows the activities of the various strains. The first two express inactive homodimers, and the last four express heterodimers in which one protomer harbors a
wt periplasmic portion combined with the D1023N substitution and the other protomer harbors the indicated periplasmic substitution(s) combined with the
H1172Q substitution. The last three panels show the β-gal activities of the strains expressing the indicated heterodimers, with the standard errors of the mean
calculated from three distinct experiments. Nicotinate (nic) and TCEP were added at the indicated concentrations (in mM). nd, no activity detected.

doi:10.1371/journal.ppat.1004700.g006
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Our functional analyses based on the BvgS structure support the following model. Specific
inter-protomer interactions are necessary to maintain the kinase-on state. The tight architec-
ture of the periplasmic moiety together with the differential dynamics of the VFTs imposes a
strain onto the transmembrane H19 helices. In response, the cytoplasmic moiety, beginning
with the PAS domain, adopts specific conformation and dynamics that support the kinase and
phosphotransfer activities of BvgS. The bacteria are thus in the virulent, Bvg+ phase, and they
can establish an infection. Switching BvgS to the kinase-off state involves a conformational
change of the periplasmic moiety, which modifies the conformation, and possibly the dynam-
ics, of the downstream cytoplasmic PAS and kinase domains. The roles of the avirulent or in-
termediate phases of B. pertussis are unclear, and in vivo stimuli that may trigger the shift to
phosphatase or lower kinase states of activity remain to be identified. However, this work
shows that the shift to the kinase-off state can easily be hampered by point mutations at various
periplasmic sites. That the ability to reversibly perform the shift that regulates BvgS activity has
been conserved through evolution supports the importance of the avirulent or intermediate
phases in the lifestyle of B. pertussis. It also strongly argues that the VFT domains perceive neg-
ative in vivo signals, which explains the good conservation of their cavities in Bordetella [35].

As shown in this work, one can artificially turn BvgS to the kinase-off state by disrupting
specific inter-protomer interactions between the VFT2 domains and the H19 helices. The re-
lease of constraints on these helices causes the cytoplasmic portion to adopt an alternative con-
formation in which BvgS functions as a phosphatase. We have shown that other events
putatively relevant to BvgS function, i.e. the closing of VFT1 domains, which might mimic the
binding of a ligand, or the binding of nicotinate to VFT2 [27], also turn BvgS to the kinase-off
state. Both most likely cause conformational—and/or dynamic- changes to the periplasmic do-
main, with repercussions below the membrane. A number of BvgS variants with looser connec-
tions between the VFT domains are blocked in the kinase-on state and cannot respond to
nicotinate, which shows that the shift to the kinase-off state implies a concerted conformational
change. Modulation therefore facilitates the transition by shifting the equilibrium from the
kinase-on to the kinase-off conformations. It is likely that these two stable states will also differ
in their dynamics, and we have indeed obtained preliminary indications that VFT1 dynamics
is modified in the modulated state. Similarly, VFT1 dynamics probably contributes to the tran-
sition, in line with the emerging paradigm that the dynamics of signaling proteins relates to
their function [40].

In the default situation—i.e., at 37°C and without modulators-, the equilibrium is strongly
shifted towards the kinase-on state of BvgS, which is therefore fully populated, while conversely
the equilibrium is strongly shifted towards the kinase-off state in the presence of high modula-
tor concentrations. This two-state model is compatible with intermediate levels of activity of
the BvgAS system, such as those obtained at intermediate modulator concentrations [15], in
which kinase-on and-off BvgS proteins may co-exist in equilibrium. It is also most likely the
case for the BvgSwt/N231A heterodimer, in which the lack of a critical interaction on one side of
the dimer hampers the transition, and therefore only a proportion of the BvgS molecules shift
to the kinase-off state at high modulator concentrations. The transition between the two con-
formations will likely imply relative rotation, translation or shearing movements of the helices
that join the periplasmic and cytoplasmic domains, similar to what has been proposed in other
signaling proteins [41–44].

With its clamshell motions, VFT1 behaves like a typical VFT domain. As stated above, the
conservation of the VFT1 cavity residues in Bordetella [35] suggests that it binds specific ligand
(s) in vivo, and if so our results show that ligand binding to VFT1 will likely cause BvgS to shift
to the kinase-off state. In contrast, the VFT2s remain closed in the kinase-on state with no
bona fide ligand in their cavity. Whether nicotinate binding to VFT2 opens the cavity or causes
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another type of deformation remains unknown, but the thermal stabilization of VFT2 upon
nicotinate binding argues against the former possibility [27]. The crystal structure of the single
VFT domain of a BvgS homolog, the HK29 histidine-kinase of Geobacter sulfurreducens inter-
estingly shows that this VFT is also closed unliganded [45]. Its hinge is composed of two β
strands, like that of VFT2 in BvgS, leading those authors to propose that it might not be able to
open. Sequence analyses of BvgS homologs indicate that the regions forming the hinge of the
membrane-proximal VFT domain contain fewer Gly and more Pro residues than those of clas-
sical VFT domains. Therefore, we speculate that in the BvgS family the membrane-proximal
VFT domain should be closed and tight for the regulation of sensor-kinase activity. BvgS also
responds to various organic and inorganic ions [46]. The binding of these modulating mole-
cules might not necessarily involve the cavity but possibly also interfaces, as in some other
VFT-containing receptors [47,48].

The periplasmic moiety of BvgS adopts a highly compact dimeric structure. The helical and
strongly intertwined architecture of BvgS may explain how some of its homologs could be
functional with three, four or even five predicted VFT domains in tandem [24]. The multiple
VFT domains of these sensor-kinases potentially enable the perception of several chemical sig-
nals that must be integrated to determine the appropriate response. A compact structure like
that of BvgS appears to be better suited for inter-domain communication than more linear ar-
rangements such as those found in the VFT-based iGlu receptors of higher eukaryotes, which
might dissipate information coming from the most distal VFT domains [49,50] (S6 Fig). This
study of BvgS will undoubtedly serve as a basis to elucidate the function of the other family
members. Not all BvgS homologs are in a kinase-on state by default [51], but our mechanistic
model can perfectly accommodate sensor-kinases that are regulated in the opposite manner.

Materials and Methods

Crystallization of BvgS, data collection and processing
The bvgS sequence was amplified by PCR and introduced into pGEV2 [52]. The resulting plas-
mid encodes the periplasmic portion of BvgS (A29-L544) with N-terminal GB1 and C-terminal
His tags. The recombinant protein was purified on a Ni2+-Sepharose affinity column (GE Life
Sciences) and eluted in 10 mM Tris—HCl (pH 8.8), 500 mMNaCl, 200 mM at 4°C. BvgS was
concentrated by ultrafiltration to 20 mg/mL. The initial crystallization screening was carried
out using the sitting-drop, vapor-diffusion technique in 96-wells microplates with a Cybi-
Workstation (Cybio) and commercial crystallization kits (Nextal-Qiagen and JBSscreen). Ex-
tremely fragile crystals were obtained at 19°C by manual refinement in 100 mM sodium acetate
(pH 4.6), 1.6 M NaCl, in 5 to 7 days. All manual crystallization attempts were carried out using
the hanging-drop, vapor-diffusion technique in 24-well plates. The crystals were soaked in a
stepwise fashion to a final concentration of 20% glycerol in the crystallization buffer.

A preliminary diffraction screening was performed on 80 crystals. On the best crystal, dif-
fracting at 3.10 Å, a single diffraction dataset (160 images with an oscillating range of 1°) was
collected at an X-ray wavelength of 1.5418 Å and a temperature of 100 K using an in-house
Mardtb goniostat and a Mar345 image plate detector. Diffraction images were indexed and
scaled using the XDS program package [53]. The crystal belongs to the space group P212121,
with cell parameters a = 72 Å, b = 286 Å and c = 128 Å. According to the calculated Matthews
coefficient of 2.52 Å3 Da-1, a solvent content of 51.3% was estimated.

Structure determination and refinement
The crystal structure containing four monomers in the asymmetric unit was determined by
molecular replacement using MOLREP [54] and the crystallographic structure of the isolated
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VFT2 domain (PDB code: 3MPK) as a search model. Eight copies of the model were located,
four occupying the actual positions of VFT2 domains and the other four those of VFT1 do-
mains, whose sequence identity to VFT2 is 24%. The former four copies were positioned using
the conventional Patterson search. The latter four copies were found using an iterative proce-
dure alternating refinement of a partial structure with REFMAC [55] and molecular-
replacement search in the electron density maps [56]. Subsequent model rebuilding and
refinement of the 3.10 Å structure were conducted iteratively using Coot [57] and phenix.refine
[58], with the use of local non-crystallographic symmetry restraints. Torsion angles of the
structure were optimized by using the Godzilla web server (http://godzilla.uchicago.edu/) [59].
The structure was refined to final Rwork of 18.1% and Rfree of 24.4%. The two BvgS homo-
dimers (AB and CD) found in the asymmetric unit can be superimposed with a Cα rmsd of
1.234 Å. A Ramachandran analysis performed with the program Phenix indicated that 94.4%
of residues are in preferred conformations and 1.4% in disallowed conformations. The GB1 do-
mains are not seen in the electron density. Analysis of crystal packing revealed an empty space
close to the N-terminal segment of each polypeptide chain, indicating that they might be un-
seen because of crystallographic disorder.

Structure analyses
The 1026-residue AB dimer was used for all analyses. The opening angles for VFT1 and VFT2
were measured using three residues structurally equivalent between the two VFTs, one on the
lip of each lobe and one in the hinge. They are Tyr70, Gly244 and Ser199 for VFT1 and Leu314,
Glu490 and Pro444 for VFT2. The inter-domain interfaces were defined using the PISA server
(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) [60], and http://capture.caltech.edu/ was
used to identify cation-π interactions. A model for the closed VFT1 domain was made with
Modeller [61] based on its closest homologous structure (PDB code: 1WDN), and residues to
be replaced by cysteines were chosen by using http://cptweb.cpt.wayne.edu/DbD/ [62].

Molecular modeling
The methods used for the normal mode analysis and the molecular dynamics simulations with
their associated references are described in S1 Protocol. For the analyses of the MD simula-
tions, the opening angles of the VFT domains were calculated based on the geometric centers
of the C-α atoms of each lobe and the hinge using a slightly extended definition of the hinge
region, encompassing residues 146–151 and 241–246 for that of VFT1, and 390–395 and
486–491 for that of VFT2, to make them less susceptible to noise.

Measurement of BvgS activity
Point mutations were introduced into the chromosome of B. pertussis BPSM by allelic ex-
change [35]. The BvgS sequence corresponds to that of TohamaI except for a Glu residue at po-
sition 705, as in most B. pertussis strains [35]. A ptx-lacZ transcriptional fusion was generated
in each recombinant strain [63]. The strains were grown in modified Stainer-Scholte medium
[64] non-supplemented or containing 1 to 8 mM of nicotinate. Tris(2-carboxyethyl)phosphine
(TCEP, SIGMA) was added to 3–10 mM where indicated. TCEP did not affect the activity or
the response to nicotinate of wild type BvgS. The bacteria were grown to mid-exponential
phase, harvested by centrifugation, resuspended to an OD600 of 5 and broken by using a
Hybaid Ribolyser apparatus for 30 s at speed 6 in tubes containing 0.1 mm silica spheres.
β-galactosidase activities were measured and calculated as described [63]. Each experiment was
performed with 3 different clones at different times. The bars represent the standard errors
of the mean.
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Detection of inactive BvgS variants
The inactive proteins were detected by immunoblotting of B. pertussismembrane extracts
using anti-BvgS polyclonal antibodies [23] to verify that the substitution(s) generated no major
structural defect that might cause BvgS to misfold and to be degraded intracellularly.
BPSMΔbvgA and BPMSΔbvgS were described previously [23,35].

Construction of heterodimers
To construct a bvgAS locus deletion strain from BPSM, a Tohama I streptomycin- resistant de-
rivative, sequences on either side of the locus (i.e., the 5’ end of the fhaB gene and the 3’ end of
the bvgR gene) were amplified by PCR using the pairs of oligonucleotides iEco-up and Xma-lo,
and Xho-up and HindIII-lo (S2 Table). All the amplicons were first introduced into pCRII-
TOPO (Invitrogen) and sequenced. The amplicons were introduced as EcoRI-XhoI and XhoI-
HindIII fragments into pUC19 by performing a triple ligation, yielding pUC19newΔbvgAS. The
EcoRI-HindIII insert was then introduced as in [35] into pSORTP1, a mobilizable plasmid for
allelic replacement, resulting in BPSMnewΔ.

The bvgAS locus was then constructed as a mosaic gene for allelic replacement in BPSMnewΔ.
We replaced the EcoRI-SpeI part of pUC19mos [35] using a triple ligation with the EcoRI-XmaI
fragment obtained as above and a XmaI-SpeI fragment generated using the primers XmaI-up
and SpeI-lo. In the latter amplicon, a natural EcoRI site was eliminated by site-directed muta-
genesis with a synonymous mutation. The XbaI-HindIII part of pUC19mos was replaced by 3
fragments: a XbaI-NcoI PCR fragment generated using the primers XbaI-up and NcoI-lo, a
NcoI-XhoI PCR fragment generated using the primers NcoI-up and XhoI-lo, and the XhoI-
HindIII fragment described above. The latter fragment contains a natural NcoI site, which was
eliminated as above. The final plasmid was called pUC19mint. The 5.5-kb EcoRI-HindIII insert
of pUC19mint was transferred into pSORTP1 for allelic exchange.

A plasmidic construction of the bvgAS locus was also created starting from pUC19mint and
replacing the EcoRI-SpeI fragment by that generated using the primers pEcoRI-up and SpeI-lo.
The natural EcoRI site of this latter fragment was eliminated as above. Finally, the NcoI-
HindIII fragment of pUC19mint was replaced by another fragment generated using the primers
NcoI-up and pHindIII-lo, yielding pUC19mpla. The 4.7-kb EcoRI-HindIII insert was trans-
ferred into pBBR1-MCS4 [65], a low-copy, mobilizable and replicative plasmid.

The residues Asp1023 and His1172 were replaced by Asn and Gln, respectively, using site-
directed mutagenesis (QuikchangeXL, Agilent). The first mutation was inserted in pUC19mint

and then in pSORTP1 for allelic replacement in BPSMnewΔ. The second mutation was inserted
in pUC19mpla and then in pBBR1-MCS4, yielding pBBRmpla to be introduced in Bordetella as
an episome.

Successive conjugations were then performed to generate the merodiploids. The first one in-
troduced pSORTP1 containing the bvgAS locus with the D1023N substitution into BPSMnewΔ,
yielding an avirulent strain. Then, pFUS-S1 was integrated to generate the ptx-lacZ transcrip-
tional fusion [63], and the resulting strain was finally transformed with pBBRmpla containing
bvgAS with the H1172Q substitution. The mutations of the periplasmic domain were introduced
via restriction fragment exchange in pUC19mpla and then in pBBRmpla.

Accession numbers
Atomic coordinates and structure factors for the BvgS periplasmic moiety have been deposited
in the Protein Data Bank under the accession number 4Q0C.
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Supporting Information
S1 Table. Crystallographic parameters.
(DOCX)

S2 Table. Oligonucleotides used for the construction of the BvgS heterodimers.
(DOCX)

S1 Fig. Sequence of the BvgS periplasmic domain and definition of its secondary structure
elements. The α helices (H) and β strands (S) are numbered and colored orange and green, re-
spectively. The lobes and hinges between the two lobes of each VFT domain and the Ct loop
are also indicated.
(DOCX)

S2 Fig. Dynamics of BvgS. A. Amplitude profiles for the first four normal modes of motion
based on a Gaussian network model. Fluctuations of the A and B protomers are indicated by
black and red curves, respectively. Note that a single mode describes fluctuation probabilities
for the dimer. Black and blue horizontal lines delineate VFT1 and VFT2, respectively, with
thick lines indicating their lobes 2. B. Distributions of the VFT internal angles over three mo-
lecular dynamics simulations. The opening angles of the VFT domains were calculated based
on the geometric centers of the Cα atoms of the two lobes and the hinge region, and data were
collected every 100 ps. Blue and black curves refer to the VFT2 and VFT1 angles, respectively.
The vertical red lines indicate the initial values of the opening angles of the four VFT domains
(lower than 110°: VFT2s; higher than 120°: VFT1s). The inset shows a running average of the
angles (1-ns window) over the simulations called WT0, WT1 and WT2. The horizontal stip-
pled red lines show the initial opening angles of the four VFT domains.
(DOCX)

S3 Fig. Substitutions introduced in BvgS. A. Ribbon representation of the engineered VFT1
and VFT2 Cys variants. The mutated residues are circled in green. The open structure of VFT1
is shown, although the selection of the residues for S-S bond formation was performed using a
closed model based on the closest homolog (see Methods). B. Position of the substitutions that
make BvgS unresponsive to modulation. One protomer is shown in surface representation,
while the other is outlined and colored gray. The pink balls represent the modified residues. A
zoom delimited by a dashed orange box shows specific residues whose replacement affects the
responsiveness of BvgS to nicotinate but not its kinase activity. Residues Ser271 to Ser275 are in
the α helix H8 that forms the VFT1L1-VFT1L1 interface. Residues Arg160, Phe230, Arg234, Ser287
are in the intra-protomer VFT1-VFT2 interface, and Arg526 is in the intra-protomer VFT2-Ct
interface. Residues Gln463 and Asn231 are part of the inter-protomer VFT1-VFT2 and VFT1-Ct
interfaces, respectively.
(DOCX)

S4 Fig. Detection of specific BvgS variants in membrane extracts of B. pertussis by immu-
noblotting. ΔS and ΔA represent strains with deletions of bvgS and bvgA, respectively. In the
right panel in A, the BvgSE113C+E177C band was most likely too faint and fuzzy for detection
under non-reducing conditions, but the left panel confirms that the protein is produced and
membrane-localized as expected. The amounts of BvgS are generally lower in avirulent strains
because the bvgAS operon is positively auto-regulated. The asterisk in the right panel denotes
that the oxidized BvgST355C+D442C variant migrates slightly faster than the wild type control.
Note that in vivo S-S bond formation was confirmed by the observation that the recombinant
strain producing the BvgST355C+D442C variant does not respond to nicotinate modulation, un-
less the S-S bond is reduced (see S5 Fig). The other non-functional BvgS variants are presented
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in B, showing that they are all produced and localized in the membrane.
(DOCX)

S5 Fig. β-galactosidase activities of recombinant B. pertussis harboring BvgS variants. The
histograms show the β-gal activity levels from the Bvg-regulated ptx-lacZ fusion in the respec-
tive strains grown in different conditions. Nic indicates the addition of nicotinate to the growth
medium at the given concentrations (in mM). TCEP was added to 10 mM to the growth medi-
um where indicated. WT corresponds to the TohamaI strain with the K705E substitution in
BvgS. The bars represent the standard errors of the mean that were calculated from three
different experiments.
(DOCX)

S6 Fig. BvgS represents a distinct paradigm of VFT-containing signal-transduction
proteins. Cartoon representations compare the structures of an AMPA receptor in A (pdb
code: 3KG2), an NMDA receptor in B (pdb code: 4PE5) and of the periplasmic moiety of BvgS
in C. The three proteins are shown at the same scale, with each protomer represented in one
color. The AMPA and NMDA receptors are tetrameric, with two VFT domains per protomer.
The transmembrane segments forming the ion channels are at the bottom of the structure. The
extracytoplasmic face of the membrane is represented as a dashed line. For AMPA, the linkers
between the NTD (N-terminal domain) and the ABD (agonist-binding domain) and between
the ABD and the trans-membrane domain can be seen in the pink and yellow
monomers, respectively.
(DOCX)

S1 Protocol. In silico analyses of BvgS-p dynamics and associated references.
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