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Abstract The identification of a universal law that

can predict the spatiotemporal structure of any entity

at any scale has long been pursued. Thermodynamics

have targeted this goal, and the concept of entropy has

been widely applied for various disciplines and

purposes, including landscape ecology. Within this

discipline, however, the uses of the entropy concept

and its underlying assumptions are various and are

seldom described explicitly. In addition, the link

between this concept and thermodynamics is unclear.

The aim of this paper is to review the various

interpretations and applications of entropy in land-

scape ecology and to sort them into clearly defined

categories. First, a retrospective study of the concept

genesis from thermodynamics to landscape ecology

was conducted. Then, 50 landscape ecology papers

that use or discuss entropy were surveyed and

classified by keywords, variables and metrics identi-

fied as related to entropy. In particular, the thermody-

namic component of entropy in landscape ecology and

its various interpretations related to landscape struc-

ture and dynamics were considered. From the survey

results, three major definitions (i.e., spatial heteroge-

neity, the unpredictability of pattern dynamics and

pattern scale dependence) associated with the entropy

concept in landscape ecology were identified. The

thermodynamic interpretations of these definitions are

based on different theories. The thermodynamic

interpretation of spatial heterogeneity is not consid-

ered relevant. The thermodynamic interpretation

related to scale dependence is also questioned by

complexity theory. Only unpredictability can be

thermodynamically relevant if appropriate measure-

ments are used to test it.

Keywords Information theory � Spatial

heterogeneity � Pattern dynamics � Scale influence �
Complexity � Resilience

Introduction

The search for a universal law that can apply from

physics to social sciences has been challenging

scientists since the rise of reductionist theories. In
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(ULg), passage des Déportés, 2, 5030 Gembloux, Belgium

123

Landscape Ecol (2015) 30:51–65

DOI 10.1007/s10980-014-0105-0



this sense, the laws of thermodynamics are expected to

explain any process at any scale (Li et al. 2004).

Therefore, the term entropy is now used in a variety of

disciplines. However, in Landscape ecology, numer-

ous interpretations and uses are associated with

entropy: as a pattern or processes descriptor, with or

without reference to thermodynamics.

In addition, the current thermodynamic interpreta-

tions of landscape entropy can be questioned by

complexity theory (Li 2000b; Wu and Marceau 2002),

while the meaning of entropy is often not discussed, or

even mentioned, when used in landscape ecology

(Bolliger et al. 2005). The interpretations of entropy in

landscape ecology (landscape entropy) can even be

contradictory because entropy can be associated with

chaos or the opposite depending on the interpretation.

This ambiguity causes confusion in using and inter-

preting metrics related to entropy.

Therefore, this review aims to distinguish amongst

the various applications of landscape entropy and

analyse their consistency. We address four questions:

(1) What are the links between landscape entropy and

the origins of the concept? (2) How can we quantify

landscape entropy? (3) What are the relevant inter-

pretations of entropy? (4) Can thermodynamics pre-

dict landscape spatiotemporal structure?

To answer these questions, we first explore the

origin of the entropy concept in thermodynamics,

explain how a parallel concept developed in informa-

tion theory, and discuss the link between these two

origins. We then describe how these two concepts

were adopted in ecology and, through a bibliographic

survey, examine how various interpretations evolved

in landscape ecology. Finally, we explore the various

metrics used to quantify entropy. The discussion

questions the validity of the thermodynamic interpre-

tation of landscape entropy according to complexity

theory and briefly examines the relevance and limita-

tions of the metrics. We conclude with recommenda-

tions for a transparent use of the term.

Origins: thermodynamics

The notion of entropy originates from classical

thermodynamics: it was developed by Clausius in

1850 as a system state function (Fig. 1). Entropy was

originally used to quantify the degree of irreversibility

of a thermodynamic transformation in an isolated

system. Indeed, according to the second law of

thermodynamics, a system spontaneously evolves

towards the thermodynamic equilibrium, that corre-

sponds to its maximal entropy level; hence, the

entropy of an isolated system increases with every

transformation it undergoes (Benson 1996; Benatti

2003; Harte 2011). As entropy was not measurable per

se in the mid-nineteenth century, it was defined by its

variation during a theoretically reversible transforma-

tion within a closed system, as in Eq. (1):

DS ¼
DQ

T
ð1Þ

where DS is the entropy variation (Joules per Kelvin),

DQ is the heat transfer between the system and its

surroundings, and T is the equilibrium temperature

(Harte 2011).

In approximately 1875, Boltzmann formulated a

probabilistic interpretation of the second law of

thermodynamics using atomic theory (Benson 1996;

Harte 2011). He introduced the macrostate and

microstate concepts. The former concept describes

the general state of a system at a macroscopic level,

characterised by state functions (e.g., temperature,

pressure, volume). The latter concept takes the con-

figuration of each system element (position and

movement of each particle) into account. Boltzmann

demonstrated that one given macrostate could corre-

spond to numerous different microstates and stated

that, according to the second law of thermodynamics,

a system spontaneously evolves to the most probable

macrostate, i.e., the state that would result from the

largest number of different microstates: the state of

maximum entropy (Depondt 2002; Harte 2011).

Following this approach, entropy was defined as

follows:

S ¼ kB log W ; ð2Þ

where S is the system entropy (J/K), kB is the

Boltzmann constant (1.38062 J/K), and W is the

number of different microstates corresponding to a

given macrostate.

The most probable macrostate has the most homo-

geneous (i.e., undifferentiated or uniform) configura-

tion (Benson 1996; Harte 2011). Boltzmann justified

the correspondence with Clausius’ theory stating that

an isolated system spontaneously loses its structure

and becomes a homogeneous mixture of all its

molecules (Forman and Godron 1986a; Benson

1996; Harte 2011). This definition explains why
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entropy is associated with disorder, in contrast to a

differentiated structure in which the various elements

would be sorted into separate locations instead of

being evenly distributed.

Parallel development in information theory

An alternative use of the term entropy was developed

in 1948 by Claude Shannon for information theory

(Fig. 1). Shannon studied the way information con-

tained in messages such as telegrams was degraded

during transmission (Shannon and Weaver 1948;

Harte 2011). In this context, entropy (H) is defined

as follows:

H ¼ �
Xn

i¼1

pi log pi; ð3Þ

where n is the number of elementary message

components (i) and pi is the probability of the

occurrence of each form this component can assume.

H varies from 0 to log n (Shannon and Weaver 1948).

Here, information is a function of the ratio between

the number of possible contents before and after the

information is received (Margalef 1958). Entropy

represents the missing information, i.e., the amount of

information that could be gained by receiving a

supplementary message component (Shannon and

Weaver 1948; Margalef 1958; Harte 2011). Entropy

production represents information loss during signal

transmission (Moran et al. 2010); this metric is used to

determine the degree of redundancy that is required in

the message in order to preserve its (unaltered)

meaning upon reception (Depondt 2002). The more

elaborate the emitted signal and the less information

contained in the received signal, the higher the entropy

production (Moran et al. 2010). Indeed, if the emitted

signal is elaborate (n is high and the various pi are

small), a single message component i provides only a

small amount of the total message content. Negentro-

py, the inverse of entropy, is the information contained

in the received message, i.e., the degree of organisa-

tion (Margalef 1958; Harte 2011).

A functional connection between thermodynamics

and information theory can be drawn. Indeed, for an

ideal gas, considering i as the number of groups of

molecules with the same properties, there is a larger

number of possible spatial arrangements of i (the

number of microstates) when the various pi are smaller

and more numerous; the Boltzmann Eq. (2) is directly

proportional to the Shannon Eq. (3). Therefore,

Fig. 1 Summary of the development of the entropy concept and

relevant relationships from its foundations to landscape ecology.

The arrows indicate the sense of the evolution. No arrow is

drawn from thermodynamics to information theory since our

analysis concluded that there was no relationship. The dashed

arrow shows that the thermodynamic interpretation of ecolog-

ical succession needs to be further investigated. It will influence

the relevance of the thermodynamic interpretation of unpre-

dictability and scale influence
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information entropy (entropy as applied in informa-

tion theory) is a measure of our confusion regarding

the state of the system (Shannon and Weaver 1948;

Benatti 2003; Harte 2011). Stonier (1996) even

asserted that energy and information were intercon-

vertible. Shannon himself noticed this similarity in his

research (Shannon and Weaver 1948), even though his

theory was not derived from Boltzmann’s theory

(Benatti 2003).

However, the hypothesis of a physical correspon-

dence between thermodynamic and information entro-

pies is questionable for three reasons. First,

thermodynamic entropy (S) depends upon the various

microstates of a system at the molecular level, which is

more strongly related to the law of large numbers

(Sanov 1958). In information theory, the number of

possible message components varies across an entirely

different range (Depondt 2002; Benatti 2003; Maro-

ney 2009). Second, despite the use of the same

formalism, information entropy and thermodynamics

are based on clearly divergent theoretical assump-

tions: according to Boltzmann, entropy corresponds to

a homogeneous structure, while Shannon’s entropy

corresponds to elaborate (heterogeneous) signals

(Ricotta 2000; Depondt 2002; Harte 2011). Third,

considering classical thermodynamics, if transforma-

tion irreversibility, which is fundamental to entropy

variation, can correspond to the irreversible degrada-

tion of the received signal, a redundancy in the

message content that allows for the reconstruction of

the message meaning does not make sense for

thermodynamic entropy (Depondt 2002). In conclu-

sion, there is no confirmation that any thermodynamic

interpretation of information theory is relevant. Infor-

mation entropy is, therefore, merely a formal paral-

lelism to thermodynamic entropy (Renyi 1961).

Thermodynamics and information theory applied

to ecology

Ecologists rapidly applied information entropy to

assess biological diversity with the Shannon diversity

index (MacArthur 1955; Margalef 1958; Ulanowicz

2001). Later, the development of the analysis of

landscape heterogeneity was based on those metrics

(Romme 1982). Diversity is understood as the inter-

action between the number of species and their relative

abundances. Diversity represents the probability that

two individuals sampled at random will not belong to

the same species (Pielou 1975). The majority of

information entropy-related metrics are derived from

the Shannon index (3), where, pi represents the relative

abundance of individuals of species i in an ecosystem

containing n species. Before Stonier (1996), Margalef

(1958) proposed that information theory as applied to

ecology and evolution could have a thermodynamic

meaning. However, ecological thermodynamic inter-

pretations do not refer to information theory (Wurtz

and Annila 2010; Chakraborty and Li 2011). Pielou

(1975) even highlighted the absence of an ecological

meaning of information theory. In contrast, authors

currently referring to information theory do not

generally refer to thermodynamics (Ulanowicz

2001), with a few exceptions, such as Ricotta (2000).

As for the thermodynamic heritage of entropy in

ecology (Fig. 1), it is mainly used to describe the

evolution of a food web through ecological succession

(Wurtz and Annila 2010). Ecosystems, like living

organisms, can be described as dissipative structures,

i.e., open systems that consume available energy.

These systems are non-equilibrium (Li et al. 2004) :

the possible equilibrium state achieved by the ecosys-

tem is not the thermodynamic equilibrium but, rather,

a situation of stability (‘‘metastability’’, ‘‘dynamic

equilibrium’’, ‘‘homeostasis’’ or ‘‘stationary state’’) in

the ecosystem structure (Yarrow and Salthe 2008;

Parrott 2010; Chakraborty and Li 2011; Ingegnoli

2011). This energy originates more or less directly

from the sun (external source) and is transformed by

organisms at various trophic levels following non-

linear dynamics. This process is associated with an

entropy increase outside the system and an entropy

decrease inside the system. This phenomenon is called

self-organisation, an emergent property in complex

systems (Li 2000b; Li et al. 2004; Green and Sadedin

2005; Parrott 2010; Chakraborty and Li 2011). Var-

ious studies have examined the roles of the aforemen-

tioned processes in determining biodiversity and

resilience, which can be related to entropy in terms

of species diversity (Parrott 2010; Chakraborty and Li

2011), but these studies do not explicitly establish such

a link. During the ecological succession process,

ecological communities are highly effective at mini-

mising the entropy increase through the food web

(Wurtz and Annila 2010; Hartonen and Annila 2012).

Note that this type of entropy use in ecology, though

described using thermodynamic equations, does not

provide any quantitative measurements of entropy
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production and energy fluxes (Maldague 2004), most

likely because such measurements would require

considerable infrastructure (Ulanowicz 2001). It has

even been stated that classical thermodynamics cannot

predict the evolution of ecological systems because

the latter are non-equilibrium systems that follow non-

linear dynamics (Li 2000b; Li et al. 2004; Ulanowicz

2004).

Methods

This review consists of a quantitative survey on the

uses and interpretations of entropy in landscape

ecology based on a selection of representative papers.

A bibliographic search was based on journal articles,

conference proceedings and books published or in

press in 2012 according to a joint database search in

ScienceDirect, Scopus and Google Books. To select

articles applying or discussing entropy concepts in

landscape ecology, research filters were applied on the

term ‘‘entropy’’ in the full text and ‘‘landscape

ecology’’ in the full text or ‘‘landscape’’ in the source

title. As Google Books did not provide these search

tools, only books with ‘‘landscape ecology’’ in their

subject and ‘‘entropy’’ as well as ‘‘land’’ or ‘‘landscape

ecology’’ in the full text were selected. This search

resulted in 297 publications: 215 papers from Science-

Direct, 60 from Scopus (11 in common with Science-

Direct), and 37 books from Google Books. Papers

citing entropy only in the references and book reviews

were excluded. Fewer than 200 papers remained after

this filtration. Fifty of these were selected as the most

representative papers, i.e., the journal articles pub-

lished in the highest impact factor journals and the

most cited books or conference proceedings according

to Google Scholar. This selection was performed with

the goal of encompassing the widest possible range of

metrics and interpretations of entropy in landscape

ecology.

Each selected document was analysed regarding the

interpretation, use and metrics of landscape entropy.

The results were listed, and similarities were grouped

for further description and comparison. The represen-

tativeness of each quantification method was studied,

and the documents were classified according to the

interpretation of entropy and its links with

thermodynamics.

Results

Amongst the various discussions, metrics and uses

contained in the 50 selected papers, three interpreta-

tions of landscape entropy could be distinguished: (1)

spatial pattern heterogeneity, (2) unpredictability of

pattern dynamics and (3) scale dependence of spatial

and temporal patterns (Fig. 1; Table 1). The interpre-

tations mentioning a thermodynamic relationship

generally describe processes in a qualitative way,

whereas the non-thermodynamic interpretations are

quantitative and describe patterns. As the same

quantification methods can be used in various ways,

these methods are presented in a separate subsection.

Entropy in space: heterogeneity

The use of entropy concepts to quantify landscape

heterogeneity was reported in half of the selected

references (Table 1), although a link with thermody-

namics was rarely discussed. In these papers, entropy

represents the intricacy of the landscape pattern, either

compositionally (numerous land covers present in

even proportions) or configurationally (numerous

patches of tortuous forms) (Fahrig and Nuttle 2005).

This use of entropy was inherited from information

theory. Within this interpretation, the majority of

authors consider the link between entropy and ther-

modynamics as simply a formal parallelism, associ-

ating entropy with disorder, applied at the landscape

level (Li and Reynolds 1993; Joshi et al. 2006;

Leibocivi 2009). Zhang et al. (2006) add that interac-

tions within the landscape and with its surroundings

cannot strictly be evaluated from a thermodynamic

point of view, though a few authors provide thermo-

dynamic interpretations (Table 1).

There are two opposing thermodynamic interpre-

tations of heterogeneity (Table 1). In the case of a

direct correlation, higher heterogeneity would mean

higher entropy (Bogaert et al. 2005). This interpreta-

tion is based on information theory applied at the

landscape level: entropy here means a signal as well as

landscape heterogeneity. For the authors considering

an inverse correlation, higher entropy corresponds to

higher homogeneity. This homogeneity is understood

as an undifferentiated structure covering the entire

landscape (the ‘‘macrostate’’), following Boltzmann’s

theory (see ‘‘Origins: thermodynamics’’) applied at the
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landscape level (Forman and Godron 1986a; Benson

1996; Harte 2011).

Spatial heterogeneity is used indirectly to assess

species distributions (Cale and Hobbs 1994; Farina

2000; Johnson et al. 2001; Cushman and McGarigal

2003; Tews et al. 2004; Fahrig et al. 2011), to assess

the effects of disturbances such as urban sprawl

(Sudhira et al. 2004; Rahman et al. 2011) or habitat

loss through fragmentation (Wilkinson 1999; Tews

et al. 2004; Fahrig et al. 2011).

Entropy in time: unpredictability

The concept of entropy is also used to describe the

instability of landscape evolution. Two approaches are

employed for this application. The first approach applies

a thermodynamic interpretation of unpredictability

(Table 1) and aims to describe landscape evolution in

energetic terms. Here, as with ecosystems in ecology,

landscapes are considered as dissipative structures

composed of living organisms that consume energy

from the sun directly or indirectly to increase their inner

structure (and thus decrease their inner entropy) while

the entropy of their surroundings increases (McHarg

1981; Naveh 1982, 1987; Li 2000b; Leuven and

Poudevigne 2002; Zhang et al. 2006; Gobattoni et al.

2011). In the (theoretical) absence of a disturbance,

landscapes tend to evolve towards a condition of

metastability over time, and the dissipative processes

only maintain the inner structure of the landscape

system. In this case, the inner entropy decrease

compensates for the entropy increase in its surroundings

(Naveh 1987; Li 2000b; Ingegnoli 2011). Several

authors have associated any instability (‘‘transition

phase’’) and change with an increase in outer entropy

production (Dorney and Hoffman 1979; McHarg 1981;

Lee 1982; Corona 1993; Wilkin 1996; Newman 1999).

In contrast, the second approach consists of

estimating unpredictability by applying information

entropy metrics to landscape patterns. This approach is

essentially quantitative and does not refer to thermo-

dynamics, instead employing an analogy between

signal transmission and landscape structure evolution.

From this perspective, entropy is referred to as

unpredictability because the irregularity of landscape

change is measured using entropy metrics. This view

depicts the evolution of spatial patterns, or biophysical

gradients, such as those in meteorological data or the

Normalised Difference Vegetation Index (NDVI). The

data are generally obtained from remote-sensing

image time series. Such time series can now be chosen

according to the desired temporal scale of observation

(Zaccarelli et al. 2013). The data are analysed using

information theory-derived metrics and interpreted in

relation to disturbance and stability (Mander and

Jongman 1998; Martı́n et al. 2006; Zaccarelli et al.

2013; Zurlini et al. 2013). Some of the authors

following this approach have criticised the thermody-

namic approach to assessing unpredictability, stating

that a change in the energy, matter and information

fluxes between a landscape system and its surround-

ings does not necessarily imply unpredictability

because the system may return to its previous meta-

stable state (see ‘‘Thermodynamics and information

theory applied to ecology’’) after such a disturbance

(Zaccarelli et al. 2013).

According to both approaches, however, a minor

disturbance temporarily interrupts the stationary state.

When there is a high level of landscape resistance, the

landscape spatial structure is not modified and the

landscape processes progressively return to their

previous state. Alternatively, when there is a high

level of landscape resilience, the landscape spatial

structure can be modified but progressively returns to

the same stationary state as before the disturbance

(Pimm 1984; Ingegnoli 2011). Unpredictability arises

when a disturbance is sufficiently severe to disrupt the

within-landscape processes and patterns to a degree

Table 1 Survey on 50 journal articles and reference works within the scope of landscape ecology (see symbols in references section

for detailed list) according to entropy type (columns) and explicit mention of the link with thermodynamics (rows)

Spatial heterogeneity Unpredictability Scale dependence

No thermodynamic relationship 25 5 5

Thermodynamic relationship 3 13 1

The figures represent the number of articles fitting each category. The total exceeds 50 because two references (Li 2000b; Bolliger

et al. 2005) refer to spatial heterogeneity and unpredictability, while Johnson and Patil (2007) refers to spatial heterogeneity and scale

dependence
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that the system resilience cannot overcome the

disturbance. This state is described as transitive and

is linked with the terms ‘‘phase transition’’, ‘‘bifurca-

tion’’, ‘‘perturbing transitivity’’, ‘‘critical threshold’’,

‘‘severe outside disturbance’’ or ‘‘instability’’ (Naveh

1987; Li 2000b; Li et al. 2004; Ulanowicz 2004;

Zhang et al. 2006; Chakraborty and Li 2011; Ingegnoli

2011). At this stage, it is not possible to predict the new

metastable state into which the landscape will evolve,

either thermodynamically or structurally. The level of

unpredictability can be used to assess landscape

resilience under various types of pressures, including

those caused by humans (Naveh 1987; Zaccarelli et al.

2013; Zurlini et al. 2013).

Entropy over space and time: pattern scale

dependence

The use of entropy concepts to study the effect of scale

on spatial and temporal patterns is the least frequent

usage (Table 1) (O’Neill et al. 1989; Riitters et al.

1995; Johnson et al. 2001). This usage emerged in the

literature shortly after the linkage of entropy to

heterogeneity and unpredictability.

Typically, this approach examines irregularities in

pattern measurements across a gradient of scales by

employing disorder metrics derived from information

theory (Johnson et al. 1999). Decreasing the spatial

resolution can obscure ecologically relevant contrasts

along ecological gradients such as rainfall distribution

or species abundance, since this can influence the

shape and size of habitat patches and merge or even

erase patches when their sizes are smaller than the

pixel or when they cross multiple pixels (Turner et al.

1989). This scale dependency may have an important

influence on the identification of patterns and, there-

fore, on inferences of underlying ecological processes

(Cale and Hobbs 1994).

Only one paper studying landscape entropy as pattern

scale dependence mentioned thermodynamics (O’Neill

et al. 1989). In this context, scale dependence is

discussed in terms of hierarchy and complexity theory

(Wu and Marceau 2002; Li et al. 2004; Green and

Sadedin 2005). It should be noted however that Cushman

et al. (2010) highlighted the difference between consid-

erations of scale and hierarchical levels: scale refers to a

continuous property measured in common units,

whereas hierarchical level refers to a discrete property

with various entities studied at each level.

Hierarchy theory states that the existence of

emergent properties that arise from nonlinear interac-

tions of the components of a system with each other

and with external constraints prevents the prediction

of system behaviour when only considering the

properties of its components (Wu and Marceau

2002; Li et al. 2004; Green and Sadedin 2005). Hence,

the inner and outer constraints applied on the studied

system need to be described. In landscape ecology, the

level of focus is the landscape. The immediately

higher level, the system environment or surroundings,

is the region; this level represents the outer constraints

encountered by the landscape. The immediately lower

level, the components or holons (sub-systems) of the

landscape, are the ecosystems (Wu and Marceau 2002;

Ingegnoli 2011). According to O’Neill et al. (1989),

entropy is considered in terms of the laws of thermo-

dynamics applied on living systems at various levels,

recognising that living systems spontaneously tend

towards minimal entropy production.

We stress here that the study of scale dependence in

landscape ecology extends beyond the sole usage of

the term entropy within this framework. The majority

of the research studying this issue is conducted within

the framework of complexity theory but does not refer

to thermodynamics. This research highlights the

influences of scale and hierarchical levels of observa-

tion on the explanatory power of observed patterns and

processes (Levin 1992; Wu and Marceau 2002; Green

and Sadedin 2005; Yarrow and Salthe 2008; Cushman

et al. 2010).

Quantification methods

The present section provides a short description of the

indexes that are referred to as ‘‘entropy indexes’’ in

landscape ecology. As previously explained, these

indexes are not connected with thermodynamics. Only

the fundamental quantification methods (Fig. 2) are

presented, beginning with those inherited from ecol-

ogy. Note that the majority of these metrics are

included in the Fragstats landscape pattern analysis

software (McGarigal et al. 2012).

Metrics inherited from ecology

The oldest and still most widely used metrics are the

Shannon index and its analogous forms (Antrop 1998;
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123



Antrop and Van Eetvelde 2000; Palang et al. 2000;

Ricotta 2000; Antrop 2004). When evaluating com-

positional or configurational heterogeneity, pi in

Table 2, Eq. (4), represents the areal proportion of

either the land cover or patch i (Yeh and Li 1999;

Carranza et al. 2007). When evaluating unpredictabil-

ity, pi can also represent the proportion of an

ecological factor broken down in classes, such as

NDVI, precipitation or the distance from a town. The

latter is calculated over time rather than as a spatial

series. The Simpson and Shannon diversity indexes

are analogous. The Simpson diversity index (Table 2;

Eq. (5)) is used in statistics and ecology. This index

considers relative abundances, as does the Shannon

index, but it is computed using the arithmetic mean

rather than the geometric mean and is normalised

(Pielou 1975). The Brillouin index (Table 2, Eq. (6)),

used in physics and ecology, is used to evaluate the

diversity of a fully censused area, whereas the

Simpson and Shannon indexes are better suited for

samples (Pielou 1975; Orloci 1991; Bogaert et al.

2005).

Those metrics were later grouped into a generic

form: the Renyi generalised entropy index (Table 2,

Eq. (7)), (Renyi 1961; Pielou 1975). By this definition,

0 \ a\?, and according to its value, the Renyi

index may correspond to one of the above-cited

indexes. The value of H1 equals the Shannon index,

while H2 is a logarithmic version of the Simpson index

(Pielou 1975). The Brillouin index can also be

approached using this formula (Orloci 1991). Even-

ness (Table 2, Eq. (8)) is a component of diversity that

considers only the relative abundances of the mea-

sured elements (Pielou 1975; Forman and Godron

1986b; Johnson et al. 1999; Martı́n et al. 2006; Proulx

and Fahrig 2010).

Conditional entropy, also associated with the

Shannon and analogous indexes, (Table 2, Eqs. (4)

to (8)), is used to measure the unpredictability or scale

dependence of the spatial heterogeneity of a land-

scape. When the degree of entropy is known to be

partially attributed to a known random variable,

conditional entropy is the entropy conditioned by the

other random variables (Shannon and Weaver 1948;

Fig. 2 Number of citations

and use of the most cited (at

least twice) entropy

quantification methods in

landscape ecology,

classified by entropy type.

According to a survey of 50

journal articles, conference

proceedings and reference

books within the scope of

landscape ecology (see

symbols in references

section for detailed list).

Statistics are not referenced

as they can represent any

kind of general statistics.

Shannon and analogous

include Shannon, Simpson,

diversity, evenness and

conditional entropy
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Legendre and Legendre 2012). This concept is based

on conditional probability studies (Shannon and

Weaver 1948; Jost 2006; Martı́n et al. 2006). The pi

variables in Eq. (3) are then spatial pattern indexes

themselves that are applied to an entire landscape at

varying times or resolutions, i (Pablo et al. 1988; Patil

et al. 2000; Martı́n et al. 2006). A particular use of

conditional entropy and the Shannon index for the

measurement of unpredictability has also been pro-

posed: normalised spectral entropy. It integrates the

frequency at which a certain pattern or gradient can be

recovered in a time series and its Fourier power

spectrum (Johnson et al. 1999; Zaccarelli et al. 2013;

Zurlini et al. 2013).

Another application of conditional entropy was

adapted from statistics to ecology and landscape

ecology to measure the a, b and c diversities (Table 2,

Eq. (9)). These indices evaluate the mean habitat

diversity at the landscape level (a) and the differences

between distinct thematic layers (b) representing the

landscape (e.g., land cover, human activities, soil

types); a ? b = c (Pablo et al. 1988; Ernoult et al.

2003). These metrics are calculated using Shannon

derivatives (Shannon and Weaver 1948; Whittaker

1960; Jost 2006; Wurtz and Annila 2010).

As a particular case, the MaxEnt (Maximal

Entropy) method uses information regarding entropy

without measuring it for its own purpose. Inherited

from ecology, the versions adapted for landscape

ecology assess geographic distributions of species or

habitats, based on a sample, by finding the most

uniform distribution subject to the applied constraints

(i.e., the measured distribution parameters) using

Lagrange multipliers on Shannon indices (Phillips

et al. 2006; Powell et al. 2010; Harte 2011).

Metrics developed in landscape ecology and non-

ecological disciplines

With regard to landscape entropy indexes not inherited

from ecology, contagion indexes are the most widely

employed (Table 2; Fig. 2). Contagion indexes mea-

sure configurational heterogeneity or, more precisely,

the spatial distribution and intermixing of patch types

(Riiters et al. 1996). These indexes are also applied to

landscapes at various scales and compared (Johnson

et al. 1999; Gaucherel 2007) but are not indexes of

scale dependence per se (Benson and Mackenzie

1995). Contagion represents the relative importance of

adjacencies between pixels of different patch types in

Table 2 Summary of the main landscape quantification methods referring to entropy, their computation and main characteristics

Name Formula Note Equation

number

Shannon (diversity)
Ha ¼ �

Pn

i¼1

pi log pi
Conditional entropy: related to Renyi’s formula (4)

Simpson (diversity)
Hb ¼ 1�

Pn

i¼1

p2
i

Conditional entropy: related to Renyi’s formula (5)

Brillouin (diversity) Hc ¼ log2
f �!

f1 !f2 !...fn !
f :! ¼ ðf 1!þ f 2!þ . . .þ fnÞ conditional entropy:

related to Renyi’s formula

(6)

Renyi
Ha ¼ 1

1�a ln
Pn

i¼1

pa
i

Generalised entropy formula (diversity):

conditional entropy

(7)

Evenness E ¼ H
Hmax

Conditional entropy: related to Renyi’s formula (8)

a, b, g diversity a þ b ¼ c computed with Shannon derivatives (9)

MaxEnt Methodology: see Harte (2011) Sample-based habitat distribution assessment

Contagion, juxtaposition Large amount of metrics, see

McGarigal et al. (2012)

Contagion for raster. juxtaposition for feature maps

Fractal, similarity

dimension
log P ¼ log k þ D

2
log A D found using a linear regression between log A

and log P (see

(10)

Edge density See McGarigal et al. (2012) Configurational heterogeneity

Gini See Gini (1921) ‘‘Unevenness’’ index

The italicized zone comprises metrics not inherited from ecology
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a landscape, hence the level of aggregation of the

patch types. The most common contagion index is the

Shannon contagion index (McGarigal et al. 2012).

Juxtaposition represents the relative importance of the

common edge lengths between patches and also uses

an adaptation of the Shannon index (Johnson and Patil

2007; McGarigal et al. 2012).

Fractal dimension is a widely used measure of

patch shape tortuosity that is reported to relate to

entropy (Fig. 2) (Kenkel and Walker 1996). Whereas a

patch edge has one topological dimension and a

surface has two, the fractal dimension of its edges

varies from 1 (straight line) to 2. The fractal dimension

approaches 2 if the shape tortuosity is sufficiently

important that the edge can fill a surface (Mandelbrot

1983; Kenkel and Walker 1996). The fractal dimen-

sion of a single patch cannot be properly calculated,

for multi-scalar information is then not available

(Krummel et al. 1987). Therefore, a linear regression

of Eq. (9) (Table 2) is used to calculate the fractal

dimension of a population of patches, which should

preferably be of similar shapes (Krummel et al. 1987),

where, k is an unknown constant, D is the fractal

dimension, P is the patch perimeter, and A is the patch

area. In our survey, the most recent use of the fractal

dimension was reported in 2007, compared to 2013 for

the Shannon index and the MaxEnt method. A variant,

the similarity dimension, evaluates scale dependence

(Patil et al. 2000). This index is also frequently used to

assess fragmentation, but the majority of interpreta-

tions do not explicitly mention entropy, and the

various calculations are still debated (Krummel et al.

1987; Turner et al. 1989; Li 2000a; Halley et al. 2004).

Several other metrics are less frequently used for

studies of landscape entropy (Fig. 2). There are simple

indexes such as the Largest Patch Index (LPI), and

edge density (Johnson and Patil 2007; McGarigal et al.

2012) and statistics such as semivariance (Ernoult

et al. 2003). A number of metrics have been adapted

from other disciplines, e.g., the Gini Coefficient from

social statistics (Gini 1921). This latter metric is used

and interpreted similarly to Shannon-based indexes

(Jaeger 2000; Kilgore et al. 2013).

Discussion and conclusion

The theoretical research on the evolution of the

entropy concept from its origins to landscape ecology

(Fig. 1) has revealed that the various interpretations of

this term are not consistent. The ways the term entropy

is used in thermodynamics and in information theory

do have functional similarities, but these concepts

represent different realities; the term is used more as a

formal analogy than as a physical correspondence.

Spatial heterogeneity: contested thermodynamic

correspondence

Reconsidering the links between thermodynamics and

spatial heterogeneity, the existence of two opposing

interpretations must be considered. The majority of

authors implicitly assume an analogy to (particle)

disorder that works well: a higher degree of landscape

entropy reflects greater spatial heterogeneity. This

analogy can be observed at various levels, such as in

terms of species or habitat diversity, but the authors

employing this interpretation do not necessarily confer

thermodynamic properties to the systems they study:

greater spatial heterogeneity does not necessarily

indicate greater (or less) thermodynamic entropy.

However, the most detailed link between spatial

heterogeneity and entropy is the inverse correlation

proposed by Forman and Godron (1986a) based on

conceptual arguments that connect the Boltzmann

equation to landscape patterns and dynamics (Forman

and Godron 1986a; Forman 1995; Depondt 2002;

Harte 2011). Notably, this link is also present in the

different forms that spatial heterogeneity metrics can

assume: high variability in the metrics values is

generally measured for landscapes with the interme-

diate levels of class dominance and aggregation (Neel

et al. 2004).

Forman’s conceptual framework of the production

of heterogeneity through dissipative structures

assumes that pattern properties that exist at the particle

level are the same at the levels of the living organism,

habitat and landscape (Forman and Godron 1986a).

However, this assumption can be questioned based on

the complexity and hierarchy theories described

above: the processes, patterns and entities at play are

not the same at any hierarchical level (Baas 2002; Wu

and David 2002; Green and Sadedin 2005). Employ-

ing the same logic as when evaluating the link between

information theory and thermodynamics, this amal-

gam between the molecular and landscape levels

appears inappropriate (O’Neill et al. 1989; Maroney

2009). Indeed, the possible patch arrangements in a
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landscape are far less numerous than the number of

possible microstates. Moreover, at various organisa-

tional levels, the time frames at which processes occur

differ considerably. Moreover, neither irreversibility

nor signal redundancy for reconstruction after trans-

mission are possible when considering a strict corre-

spondence between landscape spatial structure and

(thermodynamic) entropy. Indeed, when landscape

structure changes, for example, because of a distur-

bance, the landscape can, in certain instances, return to

its previous structure as a result of resilience and

ecological succession (see ‘‘Entropy in time:

unpredictability’’).

In addition, no (thermodynamic) entropy quantifi-

cation methods have been proposed. Measurements of

energy fluxes at the landscape level, which requires an

enormous recording infrastructure, have been reported

in rare cases, such as in Ryszkowski and Kędziora

(1987), but, to date, no study has provided a sufficient

level of integrative results to evaluate the link between

spatial heterogeneity at the landscape scale and

entropy. Therefore, any statement specifying a link,

direct or inverse, between spatial heterogeneity and

thermodynamic entropy should be treated with cau-

tion. The majority of the authors that use the term

entropy when they mean spatial heterogeneity do not

even mention a thermodynamic interpretation of

entropy. Hence, in this context, the use of the term

entropy may simply be language abuse.

Unpredictability: incomplete thermodynamic

framework

Thermodynamic descriptions of landscape evolution

in terms of unpredictability are more frequent than

those in terms of spatial heterogeneity (Table 1).

However, to date, none of these studies have been able

to predict landscape stability or instability based on the

production of entropy and energy exchanges (Li

2000b; Ingegnoli 2011). Such attempts are unlikely

to succeed because, similar to ecosystems, landscapes

are complex systems that exist in states that are far

from equilibrium and exhibit non-linear dynamics (see

‘‘Entropy over space and time: pattern scale depen-

dence’’); hence, landscape evolution cannot be

described using classical thermodynamics (Li 2000b;

Li 2002; Li et al. 2004; Ulanowicz 2004). In this case,

unpredictability cannot merely be associated with an

increase or decrease in entropy, whether within or

outside of the landscape system. Even for a stable

landscape, the production of entropy in the surround-

ings is higher than the entropy decrease within the

landscape because of the irreversible transformations

caused by the organisms; therefore, the exchanges

described by Ingegnoli (2011) are irrelevant (Benson

1996). Li (2000b) has reported that there have been

numerous misinterpretations of landscape thermody-

namics by (landscape) ecologists. Evolutionary pro-

cesses and unpredictability have been described to an

extent, but variations in entropy are not described in

the case of phase transition or compared between old

and new (meta)stable states.

Moreover, as the energy exchanges within the

system and with its environment are not measured,

knowledge of the manner in which thermodynamics

are related to landscape dynamics requires further

deepening. This shortcoming might be overcome by

measuring the spatiotemporal variations of albedo in

the infrared channels of passive remote sensing

images in order to test the aforementioned theories.

Scale, hierarchy and complexity:

how thermodynamics fails to predict landscape

spatiotemporal dynamics

The majority of the mentions of entropy as a measure

of scale dependence did not refer to thermodynamics.

Therefore, the use of the term entropy can be viewed

as an abuse of language that has arisen from the use of

metrics first used as entropy metrics in information

theory. With regard to the relevance of a thermody-

namic interpretation of the influence of scale, the

measurement of energy exchanges at the level of

matter or living organisms to infer thermodynamic

behaviour at the landscape level appears inappropriate

and insufficient because of the complexity of land-

scapes. Thermodynamic laws apply at every organi-

sational level, but complex interactions within and

amongst various levels imply that structures and

processes are not self-similar across levels (Wu and

Marceau 2002). These discrepancies have two conse-

quences. First, the measurement of such exchanges

appears, in practice, unfeasible because of the number

of interactions. Second, even if such a computation

could be performed, a given set of departure condi-

tions could generate various spatiotemporal structures

(Green and Sadedin 2005). Currently, predicting the

spatiotemporal structure of a landscape is better
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accomplished by studying the processes and interac-

tions at the immediately lower (ecosystems) and

higher (region) organisational levels to study the

departure conditions and constraints applied to land-

scapes. Nondeterministic behaviours are also

observed at those levels, especially because of the

lack of predictability of human influences on land-

scape structure. Therefore, simulation models are

performed to evaluate trajectory scenarios (Green and

Sadedin 2005; Ingegnoli 2011). Even if self-similar

structures exist across multiple scales in nature,

resulting from self-organised criticality and often

displaying fractal patterns or distributions (e.g., in

coastal geomorphology or in body size through a food

web), these cases are particular (Baas 2002; Wu and

David 2002; Green and Sadedin 2005; Parrott 2010).

Notably, perceptions of processes are strongly

influenced by the observation scale, whether spatial

or temporal. What seems unpredictable at a given

spatiotemporal scale, e.g., the variation in albedo

across a landscape during a year, can be predictable at

a larger scale, e.g., when seasonal variations appear

with more regularity across multiple years (Zurlini

et al. 2013).

Metrics, terminology and insufficiencies

Such a contrast between the application of a concept’s

meaning and the use of its metrics is very unexpected.

However, though thermodynamic issues are rarely

addressed, numerous landscape entropy metrics have

been proposed. Most of these metrics remain marginal

(Fig. 2): only three metrics appear to be commonly

used. The Shannon index is clearly the most persistent

and polyvalent. Its use and formula have evolved, but

the interpretation still relies on the same basis (Renyi

1961; Phipps 1981; Ricotta 2000; Johnson et al. 2001;

Zaccarelli et al. 2013). This level of stability allows for

comparisons amongst studies and may explain the

success of this family of metrics. As a consequence of

its wide use, the Shannon index has also been misused

regarding its interpretation and its purpose (Pielou

1975; Bogaert et al. 2005).

Contagion and juxtaposition indexes are the second

most used landscape entropy metrics, though employed

five times less frequently than the Shannon index and its

analogous indexes (Fig. 2). These indexes are mainly

used to specifically address configurational heteroge-

neity (Ricotta et al. 2003; McGarigal et al. 2012). With

regard to the fractal dimension metric, it appears that its

use has recently decreased, most likely because of the

practical difficulty and lack of specificity of its

calculation methods and the lack of relevance of its

interpretation in terms of landscape entropy (Xu et al.

1993; Li 2000a; Halley et al. 2004). The fractal

dimension is, therefore, not recommended for assessing

landscape entropy. Note that some authors identified

fractal dynamics in interactions amongst system com-

ponents and power-law scaling of frequency distribu-

tion features at various levels and linked it to

thermodynamic processes in dissipative structures (Li

2002). However, this interpretation is not related to the

spatial structure. It is important to note that the

aforementioned metrics do not include every existing

heterogeneity, unpredictability and scale dependence

metrics, but only those that were associated with the

term entropy, and that these metric use the term entropy

for a non-thermodynamic representation.

As the term entropy is used in various ways with the

same metrics and often without an explicit interpre-

tation framework, we recommend using the term

entropy with more accuracy and explicitness by

employing the following three expressions. ‘‘Spatial

heterogeneity’’ is proposed to describe the intricate-

ness of the spatial pattern. ‘‘Unpredictability’’ should

describe the irregularity in the pattern of change over

time. ‘‘Scale dependence’’ should assess the effect of

the spatial resolution on the observed patterns. The use

of the expression ‘‘spatial heterogeneity’’ is already

widespread in landscape ecology in the same sense.

‘‘Scale dependence’’ is used slightly less frequently

but is often described by similar expressions: scale

influence, influence of scale, or scale impact. The term

‘‘unpredictability’’ is still rarely used and no specific

and unambiguous term is yet preferentially used to

describe it, instead being referred to by the terms

entropy, stability, persistence, or using sentences not

suitable for a keyword search.

This quantitative survey highlights insufficiencies

of the sampling methodology. Only searching for the

mention of the term entropy did not allow for an

understanding of its meaning, which required com-

plementary research. Nevertheless, a lack of justifica-

tion for the use and the interpretations of entropy in

landscape ecology was revealed, as if the link between

entropy and landscape dynamics was a well-estab-

lished fact. This review demonstrates that this is not

the case.
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In addition, note that a change in entropy results

from a process. In ecology, ecosystem process studies

rarely explain pattern formations in landscapes (Levin

1992; Cushman et al. 2010; Chakraborty and Li 2011),

while landscape ecology more often focuses on

inferring the impact of spatial patterns on ecological

processes than the opposite (Turner 1989; Baudry

1991). Therefore, there is still a gap to fill in the

pattern/process paradigm.

Acknowledgments Isabelle Vranken is a research fellow at

the FNRS, Belgium. Thanks to Prof. G. Zurlini and Dr N.

Zaccarelli for their complementary explanations. Thanks for the

thoughtful remarks of the Editor.

References

The marked references indicate the 50 papers used

for the survey. *: Spatial heterogeneity,
#: unpredictability, �: scale dependence,

‘:thermodynamic relationship

* Antrop M (1998) Landscape change: Plan or chaos? Landsc

Urban Plann 41:7

* Antrop M (2004) From holistic landscape synthesis to trans-

disciplinary landscape management. Frontis Workshop,

2004/06/01/6 2004. Springer, The Netherlands

* Antrop M, Van Eetvelde V (2000) Holistic aspects of suburban

landscapes: visual image interpretation and landscape

metrics. Landsc Urban Plan 50:16

Baas ACW (2002) Chaos, fractals and self-organization in

coastal geomorphology: simulating dune landscapes in

vegetated environments. Geomorphology 48:309–328

Baudry J (1991) Ecological consequences of grazing exten-

sification and land abandonment: role of interactions

between environment, society and techniques. Options

Mediterraneennes. Serie A: Seminaires Mediterraneens

(CIHEAM)

Benatti F (2003) Classical and quantum entropies: dynamics and

information. In: Greven A, Keller G, Warnecke G, Kelle-

rare G (eds) Entropy. Princeton University Press, Prince-

ton, pp 279–298

* Benson MJ, Mackenzie MD (1995) Effects of sensor spatial

resolution on landscape structure parameters. Landscape

Ecol 10:8

Benson H (1996) Entropy and the second law of thermody-

namics. University Physics, Wiley, New York, pp 417–439

‘* Bogaert J, Farina A, Ceulemans R (2005) Entropy increase of

fragmented habitats: a sign of human impact? Ecol Indic

5:6

*# Bolliger J, Lischke H, Green DG (2005) Simulating the

spatial and temporal dynamics of landscapes using generic

and complex models. Ecol Complex 2:107–116

Cale P, Hobbs RJ (1994) Landscape heterogeneity indices:

problems of scale and applicability, with particular

reference to animal habitat description. Pac Conserv Biol

1:183–193

* Carranza ML, Acosta A, Ricotta C (2007) Analyzing land-

scape diversity in time: the use of Renyi’s generalized

entropy function. Ecol Indic 7:6

Chakraborty A, Li BL (2011) Contribution of biodiversity to

ecosystem functioning: a non-equilibrium thermodynamic

perspective. J Arid Land 3:71–74

‘# Corona P (1993) Applying biodiversity concepts to plantation

forestry in northern Mediterranean landscapes. Landsc

Urban Plan 24:23–31

Cushman SA, Littell J, Mcgarigal K (2010) The problem of

ecological scaling in spatially complex, nonequilibrium

ecological systems. Spatial Complexity, Informatics, and

Wildlife Conservation. Springer, New York, pp 43–63

Cushman SA, Mcgarigal K (2003) Landscape-level patterns of

avian diversity in the Oregon Coast Range. Ecol Monogr

73:259–281

Depondt P (2002) L’entropie et tout ça. Le roman de la ther-

modynamique, Paris, Cassini

‘# Dorney RS, Hoffman DW (1979) Development of landscape

planning concepts and management strategies for an

urbanizing agricultural region. Landsc Plan 6:151–177

* Ernoult A, Bureau F, Poudevigne A (2003) Patterns of orga-

nisation in changing landscapes: implications for the

management of biodiversity. Landscape Ecol 18:13

Fahrig L, Baudry J, Brotons L (2011) Functional landscape

heterogeneity and animal biodiversity in agricultural

landscapes. Ecol Lett 14:101–112

Fahrig L, Nuttle WK (2005) Population ecology in spatially

heterogeneous environments. In: Lovett GM, Turner MG,

Jones CG, Weathers KC (eds) Ecosystem function in het-

erogeneous landscapes. Springer, New York, pp 95–118

Farina A (ed) (2000) Methods in landscape ecology. In: Prin-

ciples and methods in landscape ecology. Kluwer Aca-

demic, Dordrecht, p 65

‘* Forman RTT (1995) Land mosaics: the ecology of landscapes

and regions. Cambridge University Press, Cambridge, MA

‘* Forman RTT, Godron M (1986a) Heterogeneity and typol-

ogy. In: Forman RTT, Godron M (eds) Landscape ecology.

Wiley, New York, pp 463–493

Forman RTT, Godron M (1986) Overall structure. In: Forman

RTT, Godron M (eds) Landscape ecology. Wiley, New

York, pp 191–225

* Gaucherel C (2007) Multiscale heterogeneity map and asso-

ciated scaling profile for landscape analysis. Landsc Urban

Plan 82:8

Gini C (1921) Measurement of inequality of incomes. Econ J

31:124–126

‘# Gobattoni F, Pelorosso R, Lauro G, Leone A, Monaco R

(2011) A procedure for mathematical analysis of landscape

evolution and equilibrium scenarios assessment. Landsc

Urban Plan 103:289–302

Green DG, Sadedin S (2005) Interactions matter—complex-

ity in landscapes and ecosystems. Ecol Complex

2:117–130

Halley J, Hartley S, Kallimanis A, Kunin W, Lennon J, Sgardelis

S (2004) Uses and abuses of fractal methodology in ecol-

ogy. Ecol Lett 7:254–271

Harte J (2011) Entropy, information and the concept of maxi-

mum entropy. In: Harte J (ed) Maximum entropy and

Landscape Ecol (2015) 30:51–65 63

123



ecology: a theory of abundance, distribution, and energet-

ics. Oxford University Press, Oxford, pp 117–129

Hartonen T, Annila A (2012) Natural networks as thermody-

namic systems. Complexity 18:53–62

‘# Ingegnoli V (2011) Non-equilibrium thermodynamics, landscape

ecology and vegetation science. In: Moreno-Piraján JC (ed)

Thermodynamics—systems in equilibrium and non-equilib-

rium. InTech, Rijeka, pp 139–172. http://www.intechopen.

com/books/thermodynamics-systems-in-equilibrium-and-

non-equilibrium/non-equilibrium-thermodynamics-landscape-

ecology-and-vegetation-science

* Jaeger JAG (2000) Landscape division, splitting index, and

effective mesh size: new measures of landscape fragmen-

tation. Landscape Ecol 15:115–130

� Johnson GD, Myers WL, Patil GP, Taillie C (1999)

Multiresolution fragmentation profiles for assessing

hierarchically structured landscape patterns. Ecol Model

116:9

� Johnson GD, Myers WL, Patil GP, Taillie C (2001) Charac-

terizing watershed-delineated landscapes in Pennsylvania

using conditional entropy profiles. Landscape Ecol

16:597–610

�* Johnson GD, Patil GP (2007) Methods for quantitative

characterization of landscape pattern. Landscape pattern

analysis for assessing ecosystem. Springer, Berlin,

pp 13–22

* Joshi PK, Lele N, Agarwal SP (2006) Entropy as an indicator

of fragmented landscape. Curr Sci 91:3

Jost L (2006) Entropy and diversity. Oikos 113:363–375

Kenkel N, Walker D (1996) Fractals in the biological sciences.

Coenoses 11:77–100

* Kilgore MA, Snyder SA, Block-Torgerson K, Taff SJ (2013)

Challenges in characterizing a parcelized forest landscape:

Why metric, scale, threshold, and definitions matter.

Landsc Urban Plan 110:36–47

Krummel J, Gardner R, Sugihara G, O’neill R and Coleman P

(1987) Landscape patterns in a disturbed environment.

Oikos 321–324

‘# Lee BJ (1982) An ecological comparison of the McHarg

method with other planning initiatives in the Great Lakes

Basin. Landsc Plan 9:147–169

Legendre P, Legendre L (2012) Numerical ecology. Elsevier

Science, Amsterdam

* Leibocivi DG (2009) Defining spatial entropy from multi-

variate distributions of co-occurrences. In: Hornsby KS,

Claramunt C, Denis M, Ligozat G (eds) 9th international

conference on spatial information theory, 2009 Aber

Wrac’h. Springer, Berlin

‘# Leuven RSEW, Poudevigne I (2002) Riverine landscape

dynamics and ecological risk assessment. Freshw Biol

47:845–865

Levin SA (1992) The problem of pattern and scale in ecology:

the Robert H. MacArthur award lecture. Ecology

73:1943–1967

Li B-L (2002) A theoretical framework of ecological phase

transitions for characterizing tree-grass dynamics. Acta

Biotheor 50:141–154

Li B-L (2000) Fractal geometry applications in description and

analysis of patch patterns and patch dynamics. Ecol Model

132:33–50

‘# Li B-L (2000b) Why is the holistic approach becoming so

important in landscape ecology? Landsc Urban Plan

50:27–41

* Li H, Reynolds J (1993) A new contagion index to quantify

spatial patterns of landscapes. Landscape Ecol 8:155–162

Li J, Zhang J, Ge W, Liu X (2004) Multi-scale methodology for

complex systems. Chem Eng Sci 59:1687–1700

Macarthur R (1955) Fluctuations of animal populations and a

measure of community stability. Ecology 36:533–536

Maldague M (2004) Le deuxième principe de la thermodynami-

que et la gestion de la biosphère. Application à l’environn-
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