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Abstract

A data postprocessing method for an imaging technique based on shad-

owgraphy is presented in this paper. It enables a precise analysis of the

dynamics of a bubble rising in a liquid. The morphology of the bubble is

also precisely analyzed by determining an appropriate threshold for the bi-

narization of the images. Experiments with single ellipsoidal bubbles rising

in various water-glycerol mixtures, with an oscillatory trajectory and with-

out interface wobbling, are analyzed. It is rigorously shown that the minor

axis and the mass center velocity vector of a bubble are aligned in the case of

a zigzag and an helical motion of the bubble. The interface curvature radii

at the front and at the rear of a bubble are determined and, in the case of

a zigzag motion of the bubble, a correlation for their ratio is proposed. In

the vertical motion of the bubbles, a pulsation at twice the frequency of the

horizontal motion is identified in the case of a zigzag motion of the bubbles.

In the case of a helical motion of the bubbles, such a pulsation cannot be

Preprint submitted to Elsevier July 3, 2014

This is the preprint version of a manuscript published in Experimental Thermal and Fluid Science 64 (2015), p. 1-12. 
Permalink: http://dx.doi.org/10.1016/j.expthermflusci.2015.01.013



identified in the vertical motion of the bubbles.

Keywords: ellipsoidal bubbles, shadowgraphy, oscillatory trajectory,

curvature, correlation

1. Introduction

Non-spherical bubbles of a few millimeters rising in liquids with a non-

linear trajectory are commonly encountered in many industrial applications,

like absorption towers, waste water treatment, fermentation, etc. Their dy-

namics and morphology highly influence the efficiency of these industrial

applications because they control the mixing and the mass transfers be-

tween the gas and the liquid. Therefore, the dynamics and the morphol-

ogy of bubbles moving in various liquids have been extensively investigated,

theoretically, numerically and experimentally, for many years (Rosenberg

(1950), Haberman and Morton (1953), Saffman (1956), Hartunian and

Sears (1957), Moore (1958, 1963, 1965), Aybers and Tapucu (1969a,b),

Grace et al. (1976), Clift et al. (1978), Ryskin and Leal (1984), Dandy

and Leal (1986), Blanco and Magnaudet (1995), Duineveld (1995), Lunde

and Perkins (1997), Brüker (1999), Ellingsen and Risso (2001), Mougin

and Magnaudet (2002), de Vries et al. (2002), Haut and Cartage (2005),

Shew et al. (2006), Mougin and Magnaudet (2006), Magnaudet al. (2006),

Magnaudet and Mougin (2007), Zenit and Magnaudet (2008), Wylock et al.

(2011), Legendre et al. (2012), Cano-Lozano et al. (2012) and Mikaelian

et al. (2013)). As the continuation of all these studies, three topics on the
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dynamics and the morphology of single ellipsoidal bubbles rising in liquids

are investigated in this paper.

First, for a complete description of the dynamics of an ellipsoidal bubble

rising in a liquid with a non rectilinear trajectory, it is necessary to charac-

terize the relative orientation of the bubble minor axis and the bubble mass

center velocity vector (referred to as the velocity vector of the bubble here-

after). Such a characterization was first investigated in the work of Saffman

(1956). In his work, Saffman assumed that the velocity vector of a bubble

rising with a zigzag or an helical trajectory is aligned with the bubble minor

axis. This assumption has only been roughly validated by comparison with

its own experimental results and the experimental results of Miyagi (1925).

In the work of Ellingsen and Risso (2001), the rise of 2.5 mm ellipsoidal

bubbles in water with a zigzag or a flattened helix motion was recorded by a

camera. The possible alignment of the minor axis and the velocity vector of

the bubbles was discussed and corroborated by observing the match between

the recorded bubble projections and the bubble projections calculated by

supposing a 2.5 mm ellipsoidal bubble rising in a water with its minor axis

parallel to its velocity vector. In the work of Ellingsen and Risso (2001),

the alignment of the minor axis and the velocity vector of a bubble was also

validated by determining experimentally the direction of its minor axis when

its velocity vector was vertical. To the best of our knowledge, the assumption

that the velocity vector of an ellipsoidal bubble rising with a zigzag or helical

motion is aligned with the bubble minor axis has never been experimentally
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validated by a direct comparison of these two vectors, determined at the

successive positions of the bubble during its rise.

Second, the absence of symmetry of the bubble interface between the front

and the rear of the bubble (referred hereafter as fore-and-aft asymmetry)

was observed numerically in Ryskin and Leal (1984) and experimentally in

Duineveld (1995) and Zenit and Magnaudet (2008). The influence of the

bubble fore-and-aft asymmetry on its motion was highlighted in Cano-Lozano

et al. (2012) and Zenit and Magnaudet (2008). It is therefore important

to characterize it. To the best of our knowledge, no experimental evaluation

of the interface curvature radii at the front and the rear of the bubble is

available for a bubble rising in a liquid.

Third, it was observed in Ellingsen and Risso (2001) that a 2.5 mm

ellipsoidal bubble does not rise in water with a constant vertical velocity.

Indeed, there is a weak pulsation in the vertical motion of the bubble, with a

frequency twice the frequency of the zigzag motion of the bubble. In Shew et

al. (2006), a pulsation in the bubble vertical motion at twice the frequency of

the bubble horizontal motion was observed for millimetre-sized bubbles rising

in water with a zigzag motion. Such a pulsation has not been identified in the

helical motion of these bubbles. To the best of our knowledge, the presence of

a possible pulsation in the bubble vertical motion has not been investigated

for bubble sizes larger than 2.5 mm.

These three topics are investigated in this work using the experimental

set-up presented in Mikaelian et al. (2013) and a new data postprocessing

4

This is the preprint version of a manuscript published in Experimental Thermal and Fluid Science 64 (2015), p. 1-12. 
Permalink: http://dx.doi.org/10.1016/j.expthermflusci.2015.01.013



method. This experimental set-up is based on a shadowgraphy technique.

Bubbles of various sizes are generated in a column filled with a water-glycerol

mixture and their rises are recorded by a camera. Perspective effects are

avoided using two convergent lenses. The high resolution and large field of

view of the set-up enable simultaneous analysis of the dynamics and the

morphology of the generated bubbles. More details are provided in Section

2.1. The steps in studying these three topics are:

1. to develop a postprocessing method of raw images recorded using the

experimental set-up described above, in order to analyze the dynamics

and the morphology of single ellipsoidal bubbles rising freely with a

non linear trajectory in a column filled with liquid;

2. to apply this data postprocessing method on raw images obtained in

Mikaelian et al. (2013) in order

(a) to determine the directions of the minor axis and the velocity

vector of a bubble and to analyze if they are aligned, in the cases

of a zigzag motion and a helical motion of the bubble;

(b) to evaluate the curvature radii of the liquid-gas interface at the

front and at the rear of a bubble and to establish a correlation for

the ratio of these two curvature radii as a function of its Eötvös

and the Morton numbers;

(c) to analyze whether or not a pulsation can be identified in the

dynamics of the vertical motion of the mass center of a bubble of

equivalent diameter larger than 2.5 mm, in the cases of a zigzag
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motion and a helical motion of the bubble.

2. Materials and methods

2.1. Experimental set-up

The experimental set-up used in Mikaelian et al. (2013) is represented

in Fig. 1 and described briefly hereafter.

Figure 1: Sketch of the experimental set-up used in Mikaelian et al. (2013). LS : light
source, LG : light guide, D : diffuser, I : iris, LR : light rays, L1: first lens, L2 : second
lens, O : objective, Ca : camera, Co : computer, Mon : monitor, SP : syringe pump, S :
syringe, T : tube, N : needle, C : column, GT : graduated tube or bubble collector.

A Plexiglas column (0.13 ∗ 0.13 ∗ 1.5 m3) is filled with various water-

glycerol mixtures. Bubbles are generated by injecting gas into the liquid at

the bottom of the column using various injection devices (depending on the

desired bubble diameter). The injection device is either a capillary tube or

a capillary tube followed by a hypodermic needle (T and N in Fig. 1). The

gas is introduced into the capillary tube with a gas-tight syringe (Hamilton,
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1005LT or 1010LT), conveying gas into the tube at a flow-rate controlled

by a syringe pump (kdScientific, kds250). During the experiment, a chain

of bubbles is generated with the time interval between the generations of

two successive bubbles controlled by the syringe pump. A ”bubble collector”

consisting of a graduated glass tube (interior diameter 0.009 m) sealed to a

glass funnel (GT in Fig. 1) is used at the top of the column. Gas volumes

up to 4 ml can be measured, with a precision of 0.05 ml.

The imaging set-up comprises a white light source (Dolan-Jenner, Fiber-

Lite DC-950, 150 W Quartz halogen lamp), a light guide (Olympus, KL-

BL13/1000, 3 mm in diameter, 1000 mm long), a light diffuser, an iris, two

convergent lenses (achromatic lenses, 800 mm focal length and 150 mm in

diameter), an objective (Nikon, Micro Nikkor 60 mm), and a high speed

camera (Teledyne Dalsa, Falcon1.4M100). It is placed at a vertical distance

of 0.98 m from the bottom of the column in order to ensure that bubbles

reach their terminal morphology and dynamics at the height of the camera

and in order to be far enough from the liquid surface. The maximum frame

rate of this camera is 100 Hz when images with a size of 1024 x 1400 pixels

are recorded. Reducing the image size enables the camera’s frame rate to be

increased. In this work, the images are recorded at 150 Hz with an exposure

time of 100 μs. The sizes of the recorded images are either 300 x 1400 pixels,

400 x 1400 pixels or 500 x 1400 pixels, with 1400 pixels placed in the vertical

direction.

The two convergent lenses (L1 and L2 in Fig. 1) are used in order to
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avoid perspective effects. The distance between the first lens and the iris (I

in Fig. 1) is equal to the focal length of the first lens. Therefore, the light

rays of the light source are parallel after having crossed the lens and the

depth of field during image recording is much larger than the characteristic

sizes of the experimental set-up. The distance between the convergent lenses

and the column wall is approximately 10 cm. The camera is positioned after

the second lens at a distance lower than the focal length of the lens. The

camera is connected to a computer. The length scale of the recorded images

is determined using a meshed transparent paper fixed onto one side of the

column. It is equal to 10 pixels/mm. The camera focus setting is realized by

placing a capillary tube in the middle of the column.

When a bubble is between the two lenses, as shown in Fig. 2, the pro-

jection of the bubble onto the recording plane of the camera (RPC) appears

black on the images recorded by the camera. Indeed, the light rays impacting

the bubble are diffused and deviated due to the refractive index difference

between the liquid and the air. In the following, the projection of a bubble

on the RPC is simply referred to as the ”bubble projection”.

2.2. Experimental data set

Ten experiments that were carried out in Mikaelian et al. (2013) are

postprocessed in this work. The complete experimental procedure used to

carry out these experiments and an extensive description of the precision

of the experimental set-up were presented in Mikaelian et al. (2013). In
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Figure 2: Real bubble and its projection onto the recording plane of the camera (RPC).

the selected experimental set, bubbles with various sizes were generated and

images of their rises in various water-glycerol mixtures were recorded, as

described in Section 2.1. Bubbles rising with either a zigzag or a helical

motion and without interface wobbling were observed. For each generated

bubble, a minimum of 70 images covering two or three periods of the zigzag

or helical motion of the bubble were recorded.

The ten experiments were characterized using the Eötvös (Eo), the Mor-

ton (Mo), the Reynolds (Re) and the Weber (We) numbers of the bubbles.

These dimensionless numbers have been calculated, for a given experiment,

by:

Eo =
ρg < de >

2

γ
(1)

Mo =
gμ4

ργ3
(2)

Re =
ρ < v >< de >

μ
(3)

9

This is the preprint version of a manuscript published in Experimental Thermal and Fluid Science 64 (2015), p. 1-12. 
Permalink: http://dx.doi.org/10.1016/j.expthermflusci.2015.01.013



We =
ρ < v >2< de >

γ
(4)

where ρ is the density of the water-glycerol mixture [kg m−3], g is the gravity

acceleration [m s−2], < de > is the mean equivalent diameter of the bubbles

generated during the considered experiment [m], γ is the surface tension of

the liquid-gas interface [N m−1], μ is the dynamic viscosity of the water-

glycerol mixture [kg m−1s−1] and < v > is the mean vertical velocity of the

bubbles generated during the considered experiment [m s−1].

For each of the ten experiments, μ and γ were measured experimentally

at the temperature of the water-glycerol mixture in the bubble column. ρ

was evaluated at this temperature using the data of Perry and Green (1997)

and Bosart and Snoddy (1928). In order to evaluate < v > for a given

experiment, the vertical velocity (v) of each bubble generated during this

experiment was evaluated by taking the slope of the linear fit of the successive

vertical coordinates of the bubble projection mass center (zb) as a function

of the time, and < v > was then calculated. For the evaluation of < de >,

it was assumed that all the bubbles of an experiment have the same volume.

The total volume of all the bubbles generated during an experiment was

measured with the bubble collector at the top of the column. It was corrected

by taking into account the hydrostatic pressure difference between the top

of the column and the height of the camera. This corrected volume was

divided by the number of bubbles of the experiment in order to obtain the

volume of a single bubble, Vb [m3], at the height of the camera. From this
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volume, the mean equivalent diameter < de > of the bubbles was calculated

by < de >= (6Vb/π)
1/3.

The characteristics of the ten experiments of Mikaelian et al. (2013) are

presented in Tab. 1. More details about the evaluation of the uncertainties

of the dimensionless numbers and the evaluation of the measurement error

of < de > can be found in Mikaelian et al. (2013).
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Exp. Eo Mo Re We < de >
(mm)

Water 1 0.89 ±
0.02

1.17× 10−11 854± 12 2.65±0.05 2.55±0.02

Water with
20%wt of
glycerol

2 0.91 ±
0.02

1.56 ×
10−10 ± 4 ×
10−12

427± 8 2.38±0.05 2.49±0.02

3 2.62 ±
0.06

1.55 ×
10−10 ± 4 ×
10−12

644± 11 3.19±0.06 4.21±0.04

Water with
30%wt of
glycerol

4 3.10 ±
0.06

6.39 ×
10−10±1.3×
10−11

468± 7 3.15±0.06 4.49±0.04

5 3.37 ±
0.08

6.86 ×
10−10±1.4×
10−11

478± 8 3.26±0.07 4.68±0.05

Water with
40%wt of
glycerol

6 2.78 ±
0.06

3.14×10−9±
6.4× 10−11

297± 4 2.96±0.04 4.17±0.04

Water with
60%wt of
glycerol

7 3.52 ±
0.06

1.42×10−7±
3× 10−9

140± 2 3.92±0.05 4.52±0.04

8 4.08 ±
0.09

1.17×10−7±
2× 10−9

158± 2 4.24±0.08 4.87±0.05

9 6.87 ±
0.13

1.35×10−7±
2× 10−9

202± 2 5.73±0.07 6.32±0.05

10 7.98 ±
0.15

1.30×10−7±
2× 10−9

221± 2 6.26±0.07 6.81±0.05

Table 1: Characteristics of the ten experiments of Mikaelian et al. (2013). The numbers
after ± are the uncertainties of the dimensionless numbers and the measurement error of
< de >.

2.3. Data postprocessing method

The recorded images of the selected experimental set of Mikaelian et al.

(2013) are postprocessed using UTHSCSA ImageTool 3.00 (referred hereafter
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as IT) and Wolfram Mathematica 7 (referred hereafter as WM7) in order to

investigate the three topics described in the introduction. The structure

of the postprocessing for a given experiment is presented in Fig. 3 and is

detailed in this section.

Figure 3: Structure of the postprocessing for a given experiment of the experimental set
of Mikaelian et al. (2013).

2.3.1. Definitions

In the ten experiments of Mikaelian et al. (2013), an appropriate approx-

imation of the bubble shape is an ellipsoid with its minor axis as a symmetry

axis. The general case of an ellipsoid with a fore-and-aft asymmetry is con-

sidered and sketched in Fig. 4 where a is defined as the major axis length of

the bubble, b1 the semi-minor axis length at the front of the bubble and b2

the semi-minor axis length at the rear of the bubble.

The projection of such an ellipsoidal bubble onto the RPC is an ellipse

with a for-and-aft asymmetry, as shown in Fig. 5 where xy is the horizontal

plane passing through the bubble mass center, �v is the velocity vector of the
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Figure 4: Ellipsoidal shape of a real bubble with a fore-and-aft asymmetry where a is the
major axis length of the bubble, b1 the semi-minor axis length at the front of the bubble,
b2 the semi-minor axis length at the rear of the bubble and • the bubble mass center.

bubble mass center, α is the angle between �v and the plane xy, �vproj is the

velocity vector of the bubble projection mass center and αproj is the angle

between �vproj and the direction y. The angle between the minor axis of the

ellipsoidal bubble and the plane xy is named θ and the angle between the

minor axis of the bubble projection and the direction y is named θproj. θ

and θproj are not presented in Fig. 5 for the sake of clarity. As the studied

ellipsoidal bubbles have a fore-and-aft asymmetry, the y − z coordinates of

the bubble projection mass center are not equal to the y−z coordinates of the

projection of the bubble mass center. For the experimental set analyzed in

this work, using a code written for WM7, it was verified that the discrepancy

between the y − z coordinates of theses two points on the RPC is less than

0.5 pixels. Therefore, it can be supposed that the projection of �v on the

RPC is almost parallel to �vproj. The orthogonal projection of α on the RPC

is thus almost equal to αproj. The orthogonal projection of θ on the RPC is

an angle equal to the angle θproj.

As it is described in the following of this work, αproj is evaluated based

on the analysis of the successive positions of the bubble projection mass
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Figure 5: Bubble and its projection onto the RPC with • the bubble mass center, � the
bubble projection mass center, (x, y, z) the reference frame attached to the bubble mass
center, xy the horizontal plane passing through the bubble mass center, �v the velocity
vector of the bubble mass center, α the angle between �v and the plane xy, �vproj the
velocity vector of the bubble projection mass center and αproj the angle between �vproj and
the direction y.

center and θproj is evaluated based on the analysis of the bubble projection

morphology, with the recorded images of the considered bubble.

2.3.2. Image processing in Image Tool

For each experiment, the whole set of recorded images is first processed

using a script written for IT. This script comprises the following steps.

1. Binarization of the grayscale images by applying a threshold of 80. The

grayscale images are converted to binary images where 0 corresponds

to black and 255 to white.

2. Elimination of the empty images. As there is a time interval between
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the generations of two successive bubbles, most of the images do not

contain any bubble projection. For each bubble of the experiment, the

script identifies the images where a bubble is observed and keeps only

those images.

3. Evaluation of the mass center coordinates and the minor axis length of

the bubble projection for all the images where a bubble is visible. This

evaluation is undertaken by using the IT default functions.

The outputs of the image processing in IT are:

� all the raw images containing a bubble projection. These images are

grouped based on the bubble number during the experiment;

� for each of these images, the mass center coordinates and the minor

axis length of the bubble projection.

The subsequent analysis of the bubble dynamics, realized in WM7 using

the bubble projection mass center coordinates determined with IT, appears

to be not significantly influenced by the choice of the threshold in IT (80) for

the binarization of the images. However, if the binary images generated in IT

are used for the analysis of the bubble morphology, it appears that the results

of this analysis are significantly influenced by the choice of this threshold.

Therefore, the binary images generated in IT are not used in WM7.

2.3.3. Trajectory of a rising bubble

The successive positions of a bubble projection mass center is called here-

after “the bubble projection mass center trajectory”. In this work, two types
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of trajectories are observed for the rising bubbles: a helix or a zigzag in a

vertical plane making an angle φ with the RPC. It is here a priori assumed

that the velocity vector and the minor axis of the bubble are parallel. This

assumption is verified in Section 2.3.5. Among all the images recorded dur-

ing the rise of a bubble, the one where the bubble projection exhibits the

smallest minor axis length is selected using the outputs of IT. This image will

be referred to in the following as the smallest minor axis length projection

(SMALP) image. It is expected that, when such an image is acquired, the

bubble minor axis and thus the bubble velocity vector are almost parallel to

the RPC. Therefore, it can be seen, that, in the case of a zigzag motion of the

bubble, the bubble projection mass center on the SMALP image is located

close to an extremum of the bubble projection mass center trajectory (see

example in Fig. 6 (b)). In the case of a helical motion of the bubble, the

bubble projection mass center on the SMALP image is located close to an

inflection point of the bubble projection mass center trajectory (see example

in Fig. 6 (a)). A simple technique to identify the type of a bubble trajectory

is thus to analyze where the bubble projection mass center on the SMALP

image is located on the bubble projection mass center trajectory.

For each bubble of an experiment, the successive coordinates of the mass

center of the bubble projection (yb, zb) are fitted, using WM7, by the following

equation:

�Tr = (R sin[2π fy t+Θ] +K1 +K2 t,K3 + v t) (5)
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Figure 6: Superposition of some recorded images of the rises of (a) a bubble of Experiment
2; (b) a bubble of Experiment 5. The bubble projections observed on the SMALP images
are framed.

where R and fy are the amplitude and the frequency of a possible oscilla-

tion, respectively, v is the vertical velocity of the mass center of the bubble

projection and t is the time.

R, fy, v, Θ, K1, K2 and K3 are unknown parameters which are estimated,

for each analyzed bubble, by fitting Eq. 5 to the successive positions of the

bubble projection mass center on the RPC. Therefore, these seven parameters

might have different values for different bubbles in the same experiment. Eq.

5 can be used to describe the linear, zigzag or helical trajectories. In the case

of a helical motion of the bubble, R and f correspond to the amplitude and

frequency of this helical motion. It is worth noting that a rise at a constant
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vertical velocity v is considered in Eq. 5. It will be shown, in Section 2.3.7,

that a weak pulsation can exist in the vertical motion of the bubble.

2.3.4. Threshold for the binarization of the selected images in WM7

In WM7, a technique is developed in order to identify a threshold (λ) for

the binarization of the raw images, based on a well-defined criterion. For a

given experiment, the steps of this technique are:

1. Five bubbles of the analyzed experiment are randomly selected.

2. The volume Vbc of each of the five bubbles is calculated using the fol-

lowing technique:

(a) Among all the images recorded during the rise of a bubble, the

SMALP image is selected. When the SMALP image is acquired,

the minor axis of the bubble is almost parallel to the RPC. There-

fore, on this image, the length of the minor axis of the bubble

projection is equal to the length of the minor axis of the bubble

(b1 + b2).

(b) On the SMALP image, a window of 100 × 100 pixels containing

the entire bubble projection is selected and the background is

subtracted for this window.

(c) This new image is binarized using a first estimation of the thresh-

old λ.

(d) The contour of the bubble projection is determined.

(e) The points of the contour are sorted. An arbitrary starting point

on the contour is chosen. The (i + 1)th point on the contour is
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chosen as being the closest point to the ith point that is not the

(i− 1)th point.

(f) The contour is smoothed by replacing each point of the contour

by a new one located at the middle of the line segment joining

this point and the following one on the contour. This smoothing

technique is iterated four times.

(g) The smoothed contour is fitted, using the least square method

Fit in WM7, by two half ellipses (one at the front and another

at the rear of the bubble) having the same center and the same

major axis. The fitting parameters are the center coordinates, the

minor axis lengths of the two half ellipses, the major axis length

of the two half ellipses and the angle between the major axis and

the horizontal direction. As the SMALP image is considered, this

major axis length, the semi-minor axis length of the front half

ellipse and the semi-minor axis length of the rear half ellipse are

equal to a, b1 and b2, respectively.

(h) The volume of the bubble Vbc is then calculated by Vbc =
πa2b1

6
+

πa2b2
6

.

3. An average volume < Vbc > is calculated for the five selected bubbles.

4. The value of the threshold used in Step 2c is adjusted by dichotomy

and the steps from 2c to 3 are iterated until < Vbc > is close by less

than 1.5% to Vb (obtained experimentally with the bubble collector as

described in Section 2.2).
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Some steps of the technique described above are presented in Fig. 7.

Figure 7: Examples of the steps 2b, 2c, 2d, 2f and 2g of the technique in Section 2.3.4 for
a bubble of Experiment 2.

2.3.5. Alignment of the minor axis and the velocity vector of a bubble

The possible alignment of the minor axis and the velocity vector of a

bubble rising in liquid can be analyzed using two complementary approaches.

In the first approach, this alignment is analyzed using all the recorded images

of one bubble randomly selected among all the bubbles of an experiment. In

the second approach, this alignment is analyzed using one specific image (the

SMALP image) for all of the bubbles of an experiment.

The first approach consists in comparing the projections, on the RPC, of

the bubble minor axis and the bubble velocity vector, for all the recorded im-

ages of one bubble randomly selected from all the bubbles of an experiment.

As explained in Section 2.3.1, the projection on the RPC of the bubble minor

axis is parallel to the bubble projection minor axis and the projection on the

RPC of the bubble velocity vector is almost parallel to the bubble projection

velocity vector. Therefore, the projection on the RPC of the bubble minor
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axis and the projection on the RPC of the bubble velocity vector can be

characterized by θproj and αproj, respectively.

The angle θproj is evaluated for a recorded bubble projection by analyzing

its morphology thanks to the following technique written for WM7.

1. A window of 100 × 100 pixels containing the entire bubble projection

is selected and the background is subtracted for this window.

2. The bubble projection is binarized using the threshold λ determined in

Section 2.3.4, for the considered experiment.

3. The contour of the bubble projection is determined.

4. The contour of the bubble consists of N points. Each point i of the

contour is associated to theN−1 other points of the contour to generate
the line segments lij with i = 1, 2, ..., N and j = 1, 2, ..., i−1, i+1, ..., N

(see Fig. 8). For each line segment lij, its length Lij and the angle βij

between it and the y direction are calculated. The angles, expressed in

degrees (�) are rounded at the closest integer.

5. An angle ξ is varied between 0�and 180�by steps of 1�. For each ξ,

the longest line segment lij, such that βij = ξ, is identified. Its length

is written Lmax(ξ). An array (ξ, Lmax(ξ)) is then built. The first and

the last 30 elements of this array are dropped in order to keep only

elements with a value of Lmax close to its minimum (see Fig. 8). A

third-order polynomial fit is computed for Lmax versus ξ (see Fig. 8).

The abscissa of the minimum of this function is θproj.

It is important to highlight that this technique for the identification of
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Figure 8: Example for Experiment 5 of (a) the generation of line segments by linking the
point i of the contour to other points of the contour; (b) the determination of Lmax for
ξ = 30 ; (c) the fit of the experimental results (ξ, Lmax) by a third-order polynomial.

θproj does not require to assume that the bubble projection is composed of two

ellipses (unlike in the technique used for the determination of the threshold

for the binarization of the raw images). It appears thus to be more general.

The angle αproj is evaluated for a recorded bubble projection using the

mass center coordinates (yb1, zb1) of this projection and the mass center co-

ordinates of the next recorded bubble projection (yb2, zb2):

αproj = tan−1
zb2 − zb1
yb2 − yb1

(6)

For the selected bubble, θproj and αproj are calculated for every two recorded

projections of this bubble. The alignment of the minor axis and the velocity

vector of the bubble is validated (or not) by evaluating the deviation sall images

between θproj and αproj by:
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sall images =

√√√√ ∑
all analyzed images

(θproj − αproj)2

(αproj)2n
(7)

where n is the number of analyzed projections of the considered bubble.

The second approach is a specific case of the first approach where only

SMALP images are considered. When a SMALP image is recorded, the

bubble minor axis is almost parallel to the bubble projection minor axis and,

thus θ is almost equal to θproj and α to αproj. Therefore, the alignment of

the minor axis and the velocity vector of a bubble is fully investigated in

this second approach. In the first approach, the alignment of the minor axis

and the velocity vector of a bubble is only partially characterized, as it is

the projections on the RPC of these two vectors that are considered and

compared. The angles θproj and αproj of a bubble projection on a SMALP

image are referred to hereafter as θS and αS, respectively. For each of the

bubbles of the selected experiment, θS and αS are evaluated by calculating

θproj and αproj for the bubble projection on the SMALP image as described

above. The alignment of the minor axis and the velocity vector of the bubbles

of the selected experiment is validated (or not) by evaluating the deviation

sSMALP by:

sSMALP =

√√√√ ∑
all analyzed bubbles

(θS − αS)2

(αS)2nb

(8)

where nb is the number of analyzed bubbles in the considered experiment.
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2.3.6. Interface curvature radii at the front and at the rear of a bubble

For each bubble of a considered experiment, the interface curvature radii

at the front rf and at the rear rr of the bubble are evaluated using the

following technique (which is similar to the one used in Section 2.3.4).

1. Among all the images recorded during the rise of a bubble, the SMALP

image is identified.

2. A window of 100 × 100 pixels containing the entire bubble projection

is selected and the background is subtracted for this window.

3. This new image is binarized using the threshold λ determined in Section

2.3.4, for the considered experiment.

4. The contour of the bubble projection is determined.

5. The points of the contour are sorted and the contour is smoothed as

described in Section 2.3.4.

6. The smoothed contour is fitted by two half ellipses (one for the front

and another for the rear of the bubble) with the same center and the

same major axis, as described in Section 2.3.4. As the SMALP image

is considered, this major axis length, the semi-minor axis length of the

front half ellipse and the semi-minor axis length of the rear half ellipse

are equal to a, b1 and b2, respectively.

7. rf and rr are calculated by rf = a2/4b1 and rr = a2/4b2.

rf and rr are evaluated for all the bubbles of the considered experiment

and the mean values (Rf and Rr) and the standard deviations (σrf and
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σrr) are then deduced. The ratio
Rf

Rr
and its uncertainty Δ(Rf/Rr) are also

evaluated.

2.3.7. Pulsation in the dynamics of the vertical motion of the bubble mass

center

For each bubble of a considered experiment, zrel = zb − v t is evaluated,

with v identified as presented in Section 2.2. zrel is the difference between

the vertical position of the bubble mass center zb and the position v t where

it would have been if the bubble was rising at a constant vertical velocity v.

The power spectral density of zrel is computed using the discrete Fourier

transform function in WM7. If a strong peak can be identified in this power

spectral density, it is used to determine a characteristic frequency fz in the

vertical motion of the bubble mass center. fz is then normalized by fy (see Eq.

5). Fz = fz/fy is evaluated for all the bubbles of the considered experiment

and a mean value < Fz > and a standard deviation σFz are then deduced.

3. Results and discussion

3.1. Trajectory of the rising bubbles

For the ten experiments presented in Tab. 1, the type of the bubble

trajectory is determined using the technique described in Section 2.3.3. The

results are presented in Tab. 2.
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Exp. Type of the bubble
trajectory

1
2 helical motion
3
4
5
6
7 zigzag motion
8
9
10

Table 2: Type of the bubble trajectory.

3.2. Alignment of the minor axis and the velocity vector of a bubble

In the first approach, for each of the ten experiments presented in Tab. 1,

θproj and αproj are evaluated for every two projections of a randomly selected

bubble, as described in Section 2.3.5. sall images is then evaluated for this

bubble.

In Figs. 9 and 10, two typical results are shown where the time evolutions

of θproj and αproj (a) and yb (b) are presented for a randomly selected bubble

of Experiments 1 and 5, respectively. These two experiments were chosen

because a helical motion of the bubble is observed in Experiment 1 and a

zigzag motion of the bubble is observed in Experiment 5 (see Tab. 2).
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Figure 9: (a) θproj (�) and αproj (◦) and (b) yb as functions of the time for a helical motion
of a bubble (Experiment 1 of Tab. 1).
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Figure 10: (a) θproj (�) and αproj (◦) and (b) yb as functions of the time for a zigzag
motion of a bubble (Experiment 5 of Tab. 1).

The values of sall images for all the experiments of Tab. 1 are presented

in Tab. 3. sall images is lower than 10% for all the experiments, except for

Experiment 10.
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Exp. sall images (%)
1 3.5
2 4.3
3 7.5
4 5.0
5 3.6
6 2.3
7 5.1
8 5.5
9 9.9
10 14.1

Table 3: sall images evaluated for all the experiments of Tab. 1.

In the second approach, for each of the ten experiments presented in Tab.

1, θS and αS are calculated for all the bubbles of the experiment, as described

in Section 2.3.5. As well as sSMALP, the mean values < θS > and < αS >

and the standard deviations σθS and σαS
of θS and αS are evaluated for each

experiment. The results are presented in Tab. 4.

Exp. < θS > (�) σθS (�) < αS > (�) σαS
(�) sSMALP (%)

1 61.3 3.6 62.3 3.4 2.8
2 58.5 1.9 62.1 1.6 6.6
3 60.7 1.9 64.9 1.8 7.1
4 90.5 2.4 90.5 4.5 4.9
5 89.9 2.0 89.9 4.1 4.3
6 91.0 1.4 90.9 1.9 2.9
7 90.7 2.2 89.7 3.2 3.2
8 89.2 4.2 87.9 3.8 4.5
9 90.4 1.4 88.7 7.1 8.3
10 91.3 1.9 85.3 8.7 13.1

Table 4: < θS >, σθS , < αS >, σαS
and sSMALP evaluated for all the experiments of Tab.

1.
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Two different trends are visible in Tab. 4 between the case of a zigzag

motion and the case of a helical motion of the bubbles. Indeed, < θS > and

< αS > are close to 90� in the case of a zigzag motion of the bubbles and

close to 60� in the case of a helical motion of the bubbles. The value of 90�

for αS in the case of a zigzag motion of the bubble was expected. The value

of 60� for αS in the case of a helical motion of the bubble is in agreement

with results in the literature (Mougin and Magnaudet (2002), Shew et al.

(2006)). It is also observed, in Tab. 4, that, for an helical motion of a bubble,

the values of < θS > and < αS > are almost independent of the bubble size

and of the water-glycerol mixture used.

The alignment of the minor axis and the velocity vector of a bubble can

be assessed in the case of a zigzag motion and in the case of a helical motion

of the bubble. Indeed:

- θproj and αproj have values close to each other for all the analyzed pro-

jections in Figs. 9 and 10;

- except for the Experiment 10, it is shown in Tab. 3 that sall images is

lower than 10% for all the experiments of Tab. 1;

- it is shown in Tab. 4, that < θS > and < αS > have values close to

each other and that sSMALP is lower than 10% for all the experiments

of Tab. 1, except for the Experiment 10.

The alignment between the minor axis and the velocity vector of a bubble

observed here is in agreement with the works of Saffman (1956) and Ellingsen
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and Risso (2001). The way this alignment is assessed here is different than

in these works. Indeed, the directions of the minor axis and of the velocity

vector of a bubble are here directly determined from experimental results

and then compared to analyze their alignment, for the successive positions

of the bubble.

3.3. Interface curvature radii at the front and at the rear of a bubble

For all the experiments of Tab. 1, Rf , Rr, σrf , σrr , Rf/Rr and Δ(Rf/Rr)

are evaluated, as described in Section 2.3.6. The results are presented in

Tab. 5.

Exp. Rf (mm) σrf (mm) Rr (mm) σrr (mm) Rf/Rr Δ(Rf/Rr)
1 4.32 0.40 2.66 0.14 1.62 0.29
2 2.53 0.11 1.80 0.08 1.41 0.13
3 6.13 0.51 3.98 0.28 1.54 0.27
4 3.88 0.10 3.21 0.04 1.21 0.04
5 4.18 0.08 3.43 0.05 1.22 0.04
6 3.35 0.09 2.96 0.07 1.13 0.06
7 3.68 0.07 3.44 0.03 1.07 0.03
8 4.25 0.08 3.90 0.07 1.09 0.04
9 7.41 0.15 6.20 0.16 1.19 0.05
10 8.64 0.47 7.15 0.15 1.21 0.10

Table 5: Rf , σrf , Rr, σrr , Rf/Rr and Δ(Rf/Rr) evaluated for all the experiments of Tab.
1.

The results presented in Tab. 5 show that the ratio Rf/Rr can reach up

to 1.62. The fore-and-aft asymmetry can thus be substantial. For the values

of Eo and Mo considered in this work (see Tab. 1), Rf is higher than Rr,

meaning that the interface at the front of the bubble is flatter than at the
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rear. This observation is in agreement with the results of Ryskin and Leal

(1984), Duineveld (1995) and Zenit and Magnaudet (2008).

By cross analyzing the data of Tab. 5 and Tab. 1, it can be observed that

Rf/Rr increases when Mo decreases and when Eo as well as We increase. This

could be explained by the fact that, at low Mo and high Eo and We, viscous

and surface tension forces are dominated by inertial forces. The inertial

forces tend to flatten the bubble interface and they do it in an asymmetric

way between the front and the rear of the bubble because the flow field is

different in these two regions.

The results in Tab. 5 can be classified in two groups: one where an helical

motion of a bubble with a high value of Rf/Rr is observed (Experiments 1

to 3 of Tab. 1) and another where a zigzag motion of a bubble with a lower

value of Rf/Rr is observed (Experiments 4 to 10 of Tab. 1). The second

group is characterized by 3 < Eo < 8 and 6 × 10−10 < Mo < 10−7 (water-

glycerol mixtures with more than 30%wt glycerol). For this group, based

on the forms of the correlations presented by Mikaelian et al. (2013), the

following expression is proposed for Rf/Rr as a function of Eo and Mo:

Rf

Rr

= k1 Eo
k2Mok3 (9)

where k1, k2 and k3 are fitting parameters.

Eq. 9 is fitted to the experimental data of Rf/Rr by adjusting k1, k2 and
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k3. It leads to the correlation:

Rf

Rr

= 0.555Eo1/6Mo−1/36 (10)

The values of Rf/Rr computed by Eq. 10 are successfully compared to

the experimental values of Rf/Rr in Fig. 11. For given liquid properties and

bubble size characterized by 3 < Eo < 8 and 6 × 10−10 < Mo < 10−7, Eq.

10 enables an estimation of Rf/Rr. This estimation can be used in order

to reconstruct the shape of a bubble knowing its deformation χ, defined as

b1+b2
a

, and its equivalent diameter de. A correlation for the deformation χ of

a bubble as a function of its Eo and Mo has been proposed in Mikaelian et

al. (2013) for 3 < Eo < 8 and 6× 10−10 < Mo < 10−7.
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Figure 11: Comparison between the values of Rf/Rr computed by Eq. 10 and the exper-
imental results.

In the case of a zigzag motion of a bubble, a correlation is obtained for

Rf/Rr as a function of the Eo and Mo of the bubble (see Eq. 10). It could

be interesting to carry out new experiments where an helical motion of the

generated bubbles is observed. The amount of available experiments will

then be large enough to develop, in the case of a helical motion of a bubble,

a (possible) correlation for Rf/Rr as a function of the Eo and Mo of the

bubble.
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3.4. Pulsation in the dynamics of the vertical motion of the bubble mass

center

For each of the ten experiments presented in Tab. 1, zrel and its power

spectral density are calculated for each bubble of the experiment, as described

in Section 2.3.7.

The time evolutions of zrel and yb, and the power spectral density of

zrel are presented for a randomly selected bubble of Experiment 5 (zigzag

motion) in Figs. 12 and 13 and for a randomly selected bubble of Experiment

3 (helical motion) in Figs. 12 and 13.

Figure 12: (a) zrel and (b) yb as functions of the time for a zigzag motion of a bubble
(Experiment 5 of Tab. 1).
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Figure 13: Power spectral density of zrel for the bubble of Fig. 12.

Figure 14: (a) zrel and (b) yb as functions of the time for a helical motion of a bubble
(Experiment 3 of Tab. 1).
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Figure 15: Power spectral density of zrel for the bubble of Fig. 14.

In Fig. 12, a pulsation can be observed in the plot of zrel versus t. The

frequency of this pulsation seems approximately twice the frequency of the

pulsation in the plot of yb versus t. The pulsation observed in Fig. 12 is

confirmed by the strong peak in the power spectral density of zrel presented

in Fig. 13. This peak enables fz = 9.8 Hz to be determined. As the plot of zrel

versus t presents a sinusoidal shape, the bubble accelerates along the vertical

direction when zrel is negative (approximately between an inflection point and

the next extremum of yb versus t) and accelerates along the vertical direction

when zrel is positive (approximately between an extremum and the next

inflection point of yb versus t). The bubble undergoes thus a positive vertical

force just after the inflection point of yb versus t and it undergoes a negative

vertical force just after the extrema of yb versus t. These observations are in

agreement with the results of Shew et al. (2006).

In Fig. 14, a pulsation cannot be distinguished in the curve zrel versus t.

This suggests that the vertical position of the bubble mass center is changing

38

This is the preprint version of a manuscript published in Experimental Thermal and Fluid Science 64 (2015), p. 1-12. 
Permalink: http://dx.doi.org/10.1016/j.expthermflusci.2015.01.013



randomly around the position v t where it would have been if the bubble was

rising at a constant vertical velocity v. In the power spectral density of zrel

(Fig. 15), peaks of an order of magnitude weaker than the peak in Fig. 13

and distributed irregularly are observed. It confirms the absence of a well

defined pulsation in the curve zrel versus t.

For each experiment of Tab. 1, < Fz > and σFz are evaluated as described

in Section 2.3.7. The results are presented in Tab. 6.

Exp. < Fz > σFz

1 2.25 0.04
2 / /
3 / /
4 2.04 0.02
5 2.03 0.02
6 2.03 0.01
7 2.04 0.02
8 2.03 0.03
9 2.08 0.08
10 2.05 0.02

Table 6: < Fz > and σFz evaluated for all the experiments of Tab. 1.

In Tab. 6, two distinct groups can be identified: one where Fz is approx-

imately equal to 2 and another where Fz cannot be identified or is not an

integer value. The first group corresponds to a zigzag motion of the bubble

and the second to a helical motion of the bubble (see Tab. 2). Therefore, it

can be suggested that,

- in the case of the zigzag motion of a bubble, a pulsation in the vertical

motion of the bubble mass center can be observed with a frequency
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twice the frequency of the zigzag motion (Fz = 2). This observation

is in agreement with the experimental results of Ellingsen and Risso

(2001) and Shew et al. (2006).

- in the case of the helical motion of a bubble, no pulsation in the vertical

motion of the bubble mass center can be observed with Fz equal to an

integer value. This is also observed in the experimental results of Shew

et al. (2006).

The two different trends observed above can be explained by the differ-

ent bubble wake structures in the case of the zigzag and helical motions of

the bubbles. These bubble wake structures were investigated by Lunde and

Perkins (1997), Brüker (1999), de Vries et al. (2002) and Mougin and Mag-

naudet (2006). In the case of a zigzag motion of a bubble, a periodic change

in the wake of the bubble at twice the frequency fy is observed in all of these

works. This periodic change could then be the origin of the pulsation in the

vertical motion of the bubble mass center in the case of a zigzag motion. In

the case of a helical motion of the bubble, it was observed by Lunde and

Perkins (1997), Brüker (1999) and Mougin and Magnaudet (2006) that the

wake is approximately steady in a reference frame attached to the bubble. In

such a situation, the vertical force exerted on the bubble due to the wake is

almost steady. Therefore, no pulsation in the vertical motion of the bubble

mass center is expected.

The evaluation of Fz can be used in order to distinguish the zigzag and the
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helical motion of a bubble and leads to the same results as the one presented

in Tab. 2. This technique is interesting compared to the technique, based

on the SMALP image, described in Section 2.3.3, because it only needs the

successive values of the zb coordinate of a bubble projection mass center to

determine the type of its trajectory.

As can be seen in Figs. 12 and 14, values of zrel lower than 0.01 cm

can be detected using the experimental set-up and postprocessing method of

this work. The precision in the evaluation of the bubble mass center vertical

coordinate is thus high. The main sources of errors are the digitizing error,

the binarization in IT and the fact that the mass center coordinates of a

bubble projection are not equal to the coordinates of the projection onto the

RPC of the mass center of the real bubble. The error due to the third source

can reach up to 0.5 pixels (equal to 0.005 cm) as explained in Section 2.3.1.

The digitizing error is estimated using the work of Ho (1983) and seems

negligible compared to the third source of error. For a given experiment,

the recorded bubble projections have a quite similar shape. It can then be

assumed that the second and third sources of errors only introduce a constant

shift in the evaluation of the bubble mass center coordinates. Therefore, the

analysis of the dynamics of the bubbles is almost not impacted by these two

sources of error and the precision for this analysis is high.
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4. Conclusions and perspectives

In this work, an innovative postprocessing method of raw images recorded

using the experimental set-up presented in Mikaelian et al. (2013) is devel-

oped. It enables the accurate analysis of the dynamics and the morphology

of a bubble rising in a liquid. The key points of this postprocessing method

are:

� the use of the SMALP image, acquired when the minor axis of the

bubble is almost parallel to the recording plane of the camera, for the

analysis of the bubble morphology;

� the determination of a threshold λ for the binarization of the images,

based on a well defined criterion (volume conservation);

� the use of a technique for the determination of the bubble orientation

(θproj) that does not require to postulate a priori a shape of the bubble.

Two techniques are also presented in order to identify the type of the trajec-

tory of a bubble:

� one based on the position of the bubble projection mass center along

the bubble projection mass center trajectory when the SMALP image

is acquired;

� one based on the detection of a pulsation in the vertical motion of the

bubble.
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Such an identification is a key point in the analysis of the dynamics of a

bubble and is difficult when a single camera is used.

The data postprocessing method is applied on raw images of a subset

of the whole experimental set presented in Mikaelian et al. (2013). The

experiments considered are those where single ellipsoidal bubbles with an

oscillatory trajectory and without interface wobbling are observed. For all

the selected experiments, the alignment of the minor axis and the velocity

vector of the bubbles is observed as well in the case of a zigzag motion than

in the case of a helical motion of the bubble. This is achieved by determining

the directions of the minor axis and the velocity vector of the bubble and

comparing them. For all the selected experiments, Rf and Rr are evaluated

and, in the case of a zigzag motion of a bubble, a correlation for the ratio

Rf/Rr is established as a function of its Eo and Mo. In the vertical motion

of the bubbles, a pulsation at twice the frequency of the horizontal motion

is identified in the case of a zigzag motion of the bubbles. In the case of a

helical motion of the bubbles, such a pulsation can not be identified.

As a perspective, the data postprocessing method proposed in this paper

can also be applied to ellipsoidal bubble swarms or chains. The type of the

bubble trajectory, the possible alignment between the minor axis and the

velocity vector of the bubbles, the bubble morphology, and the dynamics of

the vertical motion of the bubbles can then be investigated for these bubble

swarms and the results can be compared to the cases of single ellipsoidal

bubbles.
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From the values of Rf and Rr, the shape of a bubble can be reconstructed.

This shape could, coupled with the parameters of the bubble trajectory (ob-

tained using Eq. 5) and based on the alignment of its minor axis and its

velocity vector, be used to carry out numerical simulations of the flow and

the mass transport around these bubbles. For this purpose, the continuity,

Navier-Stokes and mass transport equations and the associated boundary

conditions could be written in a reference frame attached to the bubble mass

center and then solved numerically.

New experiments can be carried out using the experimental set-up pre-

sented in Mikaelian et al. (2013) in order to generate ellipsoidal bubbles

rising in the liquid with a helical motion and without interface wobbling.

These experiments can be postprocessed in order to establish a correlation

for Rf/Rr as a function of Eo and Mo in the case of a helical motion of the

bubbles.
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