
Anytime Pareto Local Search

Jérémie Dubois–Lacoste∗, Manuel López–Ibáñez, Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles, 50 Av. F. Roosevelt, 1050 Brussels, Belgium

Abstract

Pareto Local Search (PLS) is a simple and effective local search method for tackling multi-
objective combinatorial optimization problems. It is also a crucial component of many state-of-the-
art algorithms for such problems. However, PLS may be not very effective when terminated before
completion. In other words, PLS has poor anytime behavior. In this paper, we study the effect
that various PLS algorithmic components have on its anytime behavior. We show that the anytime
behavior of PLS can be greatly improved by using alternative algorithmic components. We also
propose Dynagrid, a dynamic discretization of the objective space that helps PLS to converge faster
to a good approximation of the Pareto front and continue to improve it if more time is available. We
perform a detailed empirical evaluation of the new proposals on the bi-objective traveling salesman
problem and the bi-objective quadratic assignment problem. Our results demonstrate that the new
PLS variants not only have significantly better anytime behavior than the original PLS, but also
may obtain better results for longer computation time or upon completion.

Keywords: Pareto local search, anytime optimization, multi-objective optimization, traveling
salesman problem, quadratic assignment problem

1. Introduction

Optimization problems are ubiquitous in our society and of crucial importance in numerous
fields of high social, environmental or economic relevance. In particular, many relevant situations
involve problems that are evaluated according to several criteria. These criteria are often conflicting
and there is no solution that is best for all of them at the same time. In this paper, we consider
problems where no information is given about the decision maker’s preferences. In this case, it
is common to evaluate solutions by means of Pareto dominance. The goal is to find the set of
Pareto optimal solutions (those not dominated by any other feasible solution), or at least a close
approximation to it. The decision maker can then choose a posteriori the preferred one.

We focus on algorithms to tackle multi-objective combinatorial optimization problems (MCOPs),
many of which are problems computationally intractable or, more formally, NP-hard [14]. Pareto
Local Search (PLS) [41] is a heuristic algorithm for tackling NP-hard MCOPs in the Pareto sense.
It is an extension of iterative improvement algorithms for single-objective problems [19] to the
multi-objective case with the goal to approximate the Pareto-optimal set. PLS can produce, upon

∗Corresponding author.
Email addresses: jeremie.dubois-lacoste@ulb.ac.be (Jérémie Dubois–Lacoste),

manuel.lopez-ibanez@ulb.ac.be (Manuel López–Ibáñez), stuetzle@ulb.ac.be (Thomas Stützle)

Preprint submitted to European Journal of Operational Research November 18, 2014



completion, high-quality approximations when used as a stand-alone algorithm [38, 41]. PLS is
also a crucial component of hybrid algorithms, where PLS is used to improve upon a set of good
solutions that have been obtained by approaches, for example, based on scalarizations. Examples
of such hybrid algorithms can be found for the multi-objective traveling salesman problem [33, 34]
with two and three objectives, various bi-objective permutation flowshop problems [7], and the
bi-objective multi-dimensional knapsack problem [35].

A disadvantage of PLS and, by extension, a limitation of these hybrid algorithms, is that
it requires a possibly long time to reach high-quality approximations to the Pareto front (e.g.,
several hours for large biobjective traveling salesman problem (bTSP) instances tackled in the
literature [34]). Moreover, if stopped early, PLS may produce a poor approximation when compared
to the final approximation reached upon completion. For this reason, we say that PLS has a poor
anytime behavior. By contrast, an algorithm with good anytime behavior aims to deliver the best
possible result at any time during its execution by quickly reaching high-quality solutions and by
continuously improving them [29, 45].

Our goal in this paper is to study and improve the anytime behavior of PLS. In a preliminary
work [8], we empirically examined the impact that algorithmic components of PLS have on its
anytime behavior, and proposed alternative variants that improve its anytime behavior for the
bTSP. In this paper, we extend that preliminary work in four ways. First, we repeat the experiments
reported in our preliminary study but considering longer computation time limits, which allows us
to study the potential final quality reached by standard PLS versus the anytime PLS variants.
Second, our preliminary work used only the bTSP as a benchmark problem. In this paper, we also
consider the bi-objective quadratic assignment problem (bQAP). The bTSP and the bQAP are
both fundamental problems that arise in a number of real-world situations. They are also among
the most studied MCOPs in meta-heuristics research [4, 5, 12, 23, 30, 33, 40]. Third, we propose
a dynamic grid mechanism (Dynagrid) that dynamically limits the number of unexplored solutions
accepted by PLS. Dynagrid extends a previous static epsilon-grid mechanism [1] by discretizing
the objective space using a decrease of epsilon at run-time. This allows PLS to converge faster
to a well-spread Pareto-front approximation, while avoiding premature convergence if the initial
discretization was excessively coarse. Dynagrid improves both the anytime behavior and the final
quality achieved by PLS. Finally, we dedicate Section 7 to a survey of algorithmic components from
the literature that are related to those proposed by us in this paper, and we discuss in detail the
similarities and differences between the various proposals.

Our experimental analysis examines scenarios when PLS is used as a stand-alone algorithm and
when PLS is part of a hybrid algorithm. Therefore, we are certain that the proposed anytime
variants of PLS further improve the state-of-the-art local search algorithm for the bTSP [34], not
only in terms of anytime behavior but also on final quality after completion. Moreover, our proposals
can be applied to any bi-objective combinatorial problem and they may also turn out to be useful
for other algorithms than PLS.

This paper is organized as follows. In Section 2, we first define multi-objective optimization
and related concepts, and then we present the original PLS algorithm and its decomposition into
distinct algorithmic components. In Section 3, we discuss the poor anytime behavior of the original
PLS algorithm. Section 4 recalls the alternative algorithmic components proposed in a preliminary
work [8] and presents new results that further confirm the improvements in anytime behavior
reported earlier. Section 5 proposes Dynagrid, a dynamic discretization of the objective space that
further improves the anytime behavior of PLS. In Section 6, we compare the original PLS with the
best PLS variants obtained from the alternative algorithmic components and the objective space

2



discretization. We deliberately chose to review the literature that is relevant to our study at the end
of the paper (Section 7), since this allows us to discuss in more detail the similarities and differences
between our proposals and previous ones. Finally, we conclude in Section 8 and highlight promising
directions for future research.

2. Pareto Local Search

In this section, we first introduce basic concepts of multi-objective optimization. Next, we
explain the original PLS algorithm and how we decompose it into different algorithmic components.

2.1. Multi-Objective Optimization
Many real-world problems require optimizing more than one objective. Often, these objectives

are conflicting and, therefore, there exists no solution that is optimal for all objectives at the same
time. If no a priori assumptions upon the decision maker’s preferences can be made, the goal
typically becomes to find a set of solutions that are optimal in the sense of Pareto optimality.

More formally, candidate solutions are evaluated according to an objective function vector ~f =
(f1, . . . , fd) with d objectives. Pareto dominance defines a partial order on the set of feasible
solutions. Without loss of generality, we consider here only problems where all objectives are to
be minimized. If ~u and ~v are vectors in Rd, ~u is said to dominate ~v (~u ≺ ~v) iff ~u 6= ~v and
ui ≤ vi, i = 1, . . . , d. ~u and ~v are said to be mutually non-dominated iff ~u ⊀ ~v, ~v ⊀ ~u and
~u 6= ~v. For simplicity, we extend the notion of dominance to solutions and we say that a solution s
dominates another one s′ iff ~f(s) ≺ ~f(s′). If a set A does not contain any solution that dominates
a solution s, and does not contain any solution s’ with ~f(s′) = ~f(s), we write A ⊀ s.

If no s′ exists such that ~f(s′) ≺ ~f(s), s is called Pareto optimal. The goal when tackling MCOPs
in the Pareto sense is to find the set of Pareto-optimal solutions. Their image in the objective space
is called the Pareto front. Since this goal is in many cases computationally intractable, heuristic
algorithms are used to find an as good as possible approximation to the Pareto front [11].

2.2. The Original Pareto Local Search Algorithm
PLS is a direct extension of the iterative improvement algorithm from single-objective problems

to the multi-objective case. PLS explores the neighborhood of solutions in its archive, inserts
new solutions in the archive that are non-dominated, and filters the archive to remove dominated
solutions. PLS was originally proposed by Paquete et al. [41]; independently, a similar algorithm
was proposed by Angel et al. [1].

Algorithm 1 illustrates the PLS framework. The input to PLS is an initial set of solutions A0

that are mutually non-dominated. The solutions in A0 are initially marked as unexplored (line 2).
PLS updates an archive of nondominated solutions A, which is initially equal to A0, by applying the
following steps. First, a solution s is chosen randomly among all unexplored ones (selection step on
line 5) and its neighborhood, N (s), is fully explored (line 6). All neighbors that are non-dominated
w.r.t. the solutions in A (line 7) are considered for addition to the archive A. The procedure Update
(line 9) adds a candidate solution s′ ∈ N (s) to the archive if s′ is not dominated by any solution
in the archive and removes all solutions from the archive that become dominated by s′. Once the
neighborhood of s has been fully explored, s is marked as explored (line 12). When A contains
only solutions that have been fully explored, the algorithm stops in a Pareto local optimum [42],
that is, a set of nondominated solutions for which any neighbor solution is dominated or equal to
a solution in the set.

3



Algorithm 1 Pareto Local Search
1: Input: An initial set of non-dominated solutions A0

2: explored(s) := false ∀s ∈ A0

3: A := A0

4: repeat
5: s := select randomly a solution from A0 // Selection step
6: for each s′ ∈ N (s) do // Neighborhood exploration
7: if A ⊀ s′ then // Acceptance criterion
8: explored(s′) := false
9: A := Update(A, s′)

10: end if
11: end for
12: explored(s) := true
13: A0 := {s ∈ A | explored(s) = false}
14: until A0 = ∅
15: Output: A

2.3. Algorithmic Components of PLS
We decompose PLS into three main algorithmic components for which we will later describe

and test alternative variants. We explain these components in detail below:

Selection step. This component determines how to select the next solution for neighborhood
exploration. In the original PLS, this solution is selected uniformly at random among the
unexplored ones.

Acceptance criterion. This component describes the conditions under which a new solution en-
ters the archive. The original PLS accepts all solutions identified in the neighborhood explo-
ration that are non-dominated.

Neighborhood exploration. This component performs the neighborhood exploration of the se-
lected solution. In particular, it defines the part of the neighborhood that will be explored
before switching to a different solution. The original PLS algorithm always explores the entire
neighborhood of a solution.

In the next section, we focus on the algorithmic components of PLS, test possible variants of
them and examine their impact on the anytime behavior of the resulting algorithms.

3. Anytime Behavior of Pareto Local Search

PLS has a natural stopping criterion, that is, it stops when all solutions in the archive have been
fully explored. Previous works have shown that PLS can reach a high-quality approximation of the
Pareto front in many combinatorial problems if it runs until completion [34, 36]. However, PLS may
take a long time to stop. In the worst case, it may take an exponential time to reach completion,
since for some problems the Pareto front may contain an exponential number of solutions and, in
the original PLS, the archive size is unlimited. In practical problems, runtimes of hours for typical
instance sizes have been reported [34]. Therefore, it is desirable in some situations to stop PLS

4



5.2e+07 5.4e+07 5.6e+07 5.8e+07 6.0e+07

5
.4

e
+

0
7

5
.6

e
+

0
7

5
.8

e
+

0
7

6
.0

e
+

0
7

f1

f 2

RND,⊀,*

Dyna-HV

Figure 1: Two non-dominated sets obtained by two PLS variants, the original PLS (denoted by RND,⊀,∗) and an
anytime PLS variant proposed in this paper (denoted by Dyna-HV). Each set corresponds to the output of one single
run, stopped after 20 seconds, on a bQAP instance with correlation −0.75. The set obtained by the anytime PLS
variant completely dominates the set obtained by the original PLS.

Time

H
y
p

e
rv

o
lu

m
e

Algorithm 1

Algorithm 2

Figure 2: An example of the hypervolume attained by two algorithms over time. Algorithm 1 shows a good anytime
behavior, while Algorithm 2 shows worse anytime behavior.

before completion, but still return an as high-quality approximation of the Pareto front as possible.
An anytime algorithm aims to obtain as high-quality results as possible at any time during its
execution and continuously improves the quality of the result as computation time increases [29, 45].
Similarly, an algorithm that produces better results than another for any termination criterion of
practical interest is said to have a better anytime behavior.

The original PLS does not make any attempt to quickly obtain a high-quality approximation of
the Pareto front and, hence, if stopped early, the approximation of the Pareto front may be poor
(see Fig. 1). Thus, we can say that PLS, as originally proposed, is not an anytime algorithm in the
sense that it does not show a good anytime behavior.

As in previous work [6, 8], in this paper we use the hypervolume indicator [46] to compare
the anytime behavior of multi-objective optimizers by graphically plotting the evolution of the
hypervolume over time. The hypervolume computes the size of the objective space dominated by
a given non-dominated set and, thus, higher hypervolume corresponds to better quality. In the

5



case of PLS, we compute the hypervolume of the current archive A of non-dominated solutions.
Figure 2 illustrates this analysis; it shows the development of the obtained hypervolume over time
for two algorithms. The plain line shows an algorithm with good anytime behavior; the algorithm
produces a quick increase of the quality at the beginning, and then continuously improves until the
end of the execution. The dotted line shows an algorithm with a poor anytime behavior; its quality
improves slowly and it is worse than the quality of the other algorithm at any time.

In the following sections, we examine how the different components of PLS affect its anytime
behavior. In addition, we propose variants of PLS that greatly improve its anytime behavior. These
new variants allow stopping PLS in times shorter by several orders of magnitude than its natural
completion time and obtain much better approximations to the Pareto front (Fig. 1 is a typical
example).

4. Alternative Algorithmic Components for Anytime Optimization

We have recently shown [8] that the anytime behavior of PLS can be largely improved by
using alternative variants for each of its algorithmic components. In particular, we proposed the
optimistic hypervolume improvement (OHI) as an alternative to random selection; and alternative
variants for the acceptance criterion and neighborhood exploration. In this section, we first recall
these proposals in detail, since we will use these concepts throughout the paper. Next, we report
new experimental results. In particular, we consider longer computation time limits than those
considered in our preliminary study [8], which gives a more accurate notion of the potential final
quality reached by standard PLS versus the new anytime PLS variants. Moreover, we include the
bQAP as an additional benchmark problem.

Alternative for selection step. PLS does not make use of any information on the current state
of the archive in the selection step but uses a simple random choice. An alternative approach
is to select solutions whose exploration may have the largest potential to improve the current
archive. Given two solutions s and s′ (in the biobjective case), we define the optimistic
hypervolume contribution (ohvc) as the potential contribution to the hypervolume of the
archive by the local ideal point defined by s and s′ in the objective space. In the bi-objective
space, we can define it as:

ohvc(s, s′) = (f1(s)− f1(s′)) · (f2(s′)− f2(s)). (1)

The ohvc is based on the assumption that solutions that are close in the solution space are
close in the objective space. This common assumption is known to often hold in the single
objective case. Intuitively, if this is true for each objective of a multi-objective problem, it
will be true for the multi-objective problem itself. This assumption in the multi-objective
case is supported empirically by some studies [6, 15, 21, 37, 44], and to some extent by the
results of this paper.

Hence, by exploring the neighborhood of a given solution, one can expect to find new non-
dominated solutions in the region between the current solution and its closest neighbors in
the objective space. The ohvc indicator can be used to select a pair of adjacent solutions.
In the case of PLS, we define an additional indicator for the selection of a single solution s,

6



Figure 3: Representation of the normalized objective space. The
OHI of solution s is the sum of the two hatched areas that lie
between s and its two closest neighbors in the objective space,
sinf and ssup. The OHI of extreme solutions (in black) is twice
the area between them and their closest neighbor.

called Optimistic Hypervolume Improvement (OHI), as follows:

OHI(s) =


2 · ohvc(ssup, s) if @sinf,
2 · ohvc(s, sinf) if @ssup,
ohvc(ssup, s) + ohvc(s, sinf) otherwise,

(2)

where ssup and sinf are the closest neighbors of s in the bi-objective space from the current
archive A defined as

ssup = arg min
si∈A

{f2(si) | f2(si) > f2(s)} and sinf = arg max
si∈A

{f2(si) | f2(si) < f2(s)}.

Either ssup or sinf may not exist if s is the best solution for f1 or f2, respectively (often
called extreme solution). In such a case, we define the OHI to be two times the optimistic
hypervolume contribution of the existing solution in order to avoid a strong bias against
extreme solutions. Fig. 3 shows a graphical representation of the OHI indicator. The OHI
value is a heuristic to measure the “gap” around solutions in the objective space, in order to
select for exploration a solution that has the highest potential of increasing the hypervolume.
This is different from measuring the actual hypervolume contribution of the solution [3, 24].
Computing the OHI of a set of solutions in the bi-objective space can be done in linear
time, if the set is sorted with respect to one objective. For this reason, when adding or
removing solutions, we always keep the set sorted. The OHI could be applied to more than two
objectives, but an efficient implementation would require a data structure to find efficiently
the nearest solutions to a given one. We leave this extension to future work.

As an alternative to the random selection in the original PLS, denoted by 〈RND〉, the OHI
selection, denoted by 〈OHI〉, selects the unexplored solution with the highest OHI value.

Alternatives for acceptance criterion. The original PLS algorithm accepts any non-dominated
solution for inclusion in the archive. We call this component 〈⊀〉 for “non-dominated”. How-
ever, different criteria have been used in the literature, particularly more restrictive ones that
avoid a large number of solutions in the archive [28] (a detailed discussion of how our proposals
relate to the existing literature is given in Section 7). In particular, accepting only neighbors

7



that dominate the current solution may allow a quick convergence to the Pareto front at the
price of a possible loss of quality. We call this component 〈�〉 for “dominating”. We can also
switch from one rule to another: if a solution that dominates the current one is found, only
such solution is accepted, and if no dominating solution can be found, the acceptance criterion
switches to accepting solutions that are non-dominated. We call this component 〈�⊀〉.

Alternatives for neighborhood exploration. PLS explores in its original version all neigh-
boring solutions. This is also done in iterative improvement algorithms that use a best-
improvement pivoting rule and, hence, we refer to this way of neighborhood exploration in
PLS also as best-improvement and refer to it as component 〈∗〉. In single-objective local search,
a first-improvement neighborhood exploration often leads faster to local optima [19]. In the
multi-objective case, first-improvement corresponds to stopping the neighborhood exploration
as soon as one neighboring solution can be accepted. We refer to this alternative as 〈1〉. In
PLS with first-improvement neighborhood exploration a solution is marked as explored when
a neighbor is accepted into the archive even if there could be more acceptable neighbors if
the full neighborhood were explored. We also proposed switching from one alternative to the
other in the following way: when all solutions in the archive have been marked as explored
using the first-improvement rule, the algorithm will mark all solutions as unexplored and
explore them again using the best-improvement rule. Ideally, the first-improvement phase will
quickly converge to a good approximation of the Pareto front, while the best-improvement
phase will add any remaining neighbors to the archive and, thus, further improve its quality.
We denote this alternative with 〈1∗〉.

In what follows, we denote each variant of the original PLS algorithm by specifying which
alternative components it is using. For instance, PLS〈OHI,�⊀, 1∗〉 denotes the variant that

• uses OHI for the selection step;

• uses a rule for the acceptance criterion that switches from dominating to non-dominated;

• uses a rule for the neighborhood exploration that switches from stopping after the first ac-
cepted neighbor to stopping only after considering all accepted neighbors.

Following this notation, the original PLS is denoted by PLS〈RND,⊀, ∗〉.

4.1. Experimental Setup
4.1.1. Initial Sets to Start PLS

In our experimental analysis, we cover possible uses of PLS by using three different initial
conditions, that is, sets of solutions that PLS starts from.

• High-quality sets (HQS). State-of-the-art algorithms for several problems [7, 10, 33, 34] use
PLS in a second phase to refine a set of high-quality solutions obtained from a first phase,
which often is based on scalarizations of the problem. To cover this usage of PLS, we consider
an initial set composed of five high-quality solutions, that is, solutions very close to the
Pareto-optimal front. These five solutions are also well-spread over the objective space, since
they are obtained by an algorithm based on scalarizations that tends to distribute solutions
as evenly as possible in terms of the hypervolume of the set [6]. We chose five in order to
have one very good solution for each objective (on the extremes of the Pareto front), one

8



solution that is an equal trade-off between the two extremes, and two solutions that represent
unequal trade-offs between the two extremes. Since the initial solutions are nearly-optimal
and well-spread, the task of PLS becomes to fill the gaps between these solutions. A higher
number of initial solutions would make this task easier, but it would make harder to assess
the anytime behavior since the difference in terms of hypervolume between the initial set
and the final one would be small. Another drawback of starting from more solutions is that
they take time to be generated (since a single-objective algorithm is launched to tackle each
scalarization one by one), during which the anytime behavior would be rather poor: stopping
during that phase would bring few solutions. In some preliminary experiments, we observed
that the anytime behavior of different PLS variants was relatively similar, even if the absolute
values are different (since the initial set has a higher hypervolume).

• Two high-quality solutions (TS). It is possible that there is no algorithm available to solve
the scalarized problems, but an algorithm is available to solve the two individual objectives of
the bi-objective problem. In this case, PLS starts from one nearly-optimal solution for each
objective. These two initial solutions are on the extremes of the Pareto front, and, hence, the
main task of PLS is to quickly reach the center of the Pareto front.

• Random solution (RS). Finally, it is possible that no algorithm is available to solve any
single-objective version of the problem, i.e., one must rely only on PLS to tackle the problem.
In this case, PLS starts from a random initial solution, which is likely to be far away from the
Pareto front. Thus, the main task of PLS is to quickly reach the Pareto front, while keeping
a wide spread set of solutions.

4.1.2. Performance Assessment of Non-Dominated Sets
Similarly to solutions that can be mutually non-dominated, different approximations to the

Pareto front can be incomparable. In fact, this is often the case when comparing the output of
different algorithms. It is therefore common to use indicators to measure the quality of these ap-
proximations. In this paper, we use the hypervolume (HV) indicator, a widely-used unary indicator
that is consistent with the Pareto optimality principle [46]. In the bi-objective space, the hypervol-
ume measures the area of the objective space that is weakly dominated by (i.e., dominated by or
equal to) the image of the solutions in a non-dominated set. This area is bounded by a reference
point that is worse in all objectives than all points in all non-dominated sets. The larger is this
area, the better is a non-dominated set.

Computing the hypervolume of non-dominated sets requires to normalize the objective values of
the solutions in them, to avoid favoring one objective over another if the objectives do not have the
same range. For the bTSP, we found the lower bound for normalization using the exact Concorde
solver [2], release 03.12.19, and the upper bound for normalization by taking the worst solution value
of 100 000 solutions that are sampled uniformly at random. For the bQAP, we do not use the same
procedure since no exact solver is available that solves our instances within reasonable computation
time. Therefore, we ran the original PLS algorithm three times, using all initial conditions, and we
record the best and the worst value obtained over all results. We then define the lower bound as
being the best value multiplied by 0.95, and the upper bound as being the worst value multiplied
by 1.05. We check during the experimental analysis that the bounds are never exceeded by any
result we obtained. All objective values are then normalized into the range [1, 2], and we use the
coordinates (2.1, 2.1) as the reference point for computing the hypervolume of the normalized sets.

9



Table 1: Cut-off times used for each problem and type of instances.

Problem Instance type Cut-off time (s)

bTSP Size = 500 10 000

bQAP Size = 100, Correlation = −0.75 1 200
Size = 100, Correlation = −0.5 100

We assess graphically the anytime behavior by plotting the average hypervolume (over 25 runs)
of the normalized sets over computation time. To do so, we define a priori a sequence of time steps, at
which we normalize the current non-dominated set obtained so far by the algorithm, we compute its
hypervolume and we record it. The computation time required to perform these steps is not counted
in the overall computation time that is measured and reported in our results, since these steps are
required to observe the behavior of the algorithms but are not actually part of the algorithms. By
using an exponential scale for the sequence of time steps (and for the plot) we can observe the
behavior of the algorithms both after short periods of time and at larger scales. More precisely,
we use 100 time steps, computed as ti = (cutoff_time + 1)(i/100) − 1, i ∈ 1, . . . , 100, where
cutoff_time is a cut-off time (see Table 1), determined from preliminary runs of the algorithms.
In the case of the bTSP, we use a cut-off time ten times longer than the one used in our preliminary
study [8]. We also show graphically the variance of each algorithm across the multiple runs by
plotting in gray the confidence intervals corresponding to each curve.

4.1.3. Experimental Benchmark, Computational Environment and Neighborhood Operators
For the bTSP, we generated three instances with 500 cities. The two distance matrices of each

instance are generated independently of each other and correspond to those of symmetric, Euclidean
TSP instances [6, 40]. For the bQAP, we used the instance generator proposed in [23]. We generated
three instances with correlations between the flow matrices in {−0.75,−0.5, 0, 0.5, 0.75}. The lower
the correlation, the higher are the run times of PLS to reach completion, since the number of
non-dominated solutions increases strongly with negative correlation [38]. On the other hand, PLS
requires a very short time to terminate for instances with correlation zero or larger. Hence, these
instances are not useful for illustrating improvements in anytime behavior, and we only present in
this paper results with correlation −0.75 and −0.5.

The algorithms are implemented in C++, compiled with gcc 4.4.6, and the experiments were run
on a single core of AMD Opteron 6272 CPUs, running at 2.1Ghz with a 16MB cache under Cluster
Rocks Linux version 6/CentOS 6.3, 64bits.

For the bTSP, we use a neighborhood operator based on 2-exchange moves, and we use delta-
evaluations to compute the objective value of new candidate solutions faster [19]. For the bQAP,
we use a neighborhood operator based on exchanging two components [19]. The initial solutions,
when starting from two or more high-quality solutions are obtained solving scalarized problems
(see Section 4.1.1). For the bTSP, the single-objective algorithm used to tackle these problems is
an Iterated Local Search algorithm based on 3-opt moves [19]. For the bQAP, we use a Simulated
Annealing algorithm [20]. For both problems, the single-objective algorithms were given two seconds
for each scalarization.

10



0
.2

0
.6

1
.0

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,* 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,* 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,*

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,⊀,*

0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,⊀,*

0
.6

5
0
.6

7
0
.6

9
0
.7

1

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,⊀,*

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

RND,⊀,*

OHI,⊀,* 0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100
Seconds

H
V

RND,⊀,*

OHI,⊀,*
0
.6

5
0
.6

7
0
.6

9
0
.7

1
0.1 1 10 100

Seconds

H
V

RND,⊀,*

OHI,⊀,*

Figure 4: Selection Step: PLS〈RND,⊀, ∗〉 vs PLS〈OHI,⊀, ∗〉 for one bTSP instance (top), and two bQAP instances
with correlation −0.75 (middle) and −0.5 (bottom). Initial conditions are RS (left), TS (middle) and HQS (right). The
gray area corresponding to each curve shows the 95% confidence interval across different runs.

4.2. Experimental Evaluation of Alternative Components
We now present the experimental evaluation of the anytime behavior of the PLS variants. To

make the presentation concise, we present in this paper plots for only one bTSP instance, one bQAP
instance with correlation −0.5 and another bQAP instance with correlation −0.75. Other instances
show remarkably similar results, and the conclusions drawn in the paper are true for all instances
we tested. The plots for all additional instances are available on-line as supplementary material [9].

4.2.1. Selection Step
We present in Fig. 4 the evaluation of the selection component that uses the optimistic hypervol-

ume improvement (OHI) against the original random selection (RND). The plots on each row show
the results obtained with different instances: one bTSP instance (top) and two bQAP instances
with correlation −0.75 (middle) and correlation −0.5 (bottom). Each column of plots corresponds
to a different initial scenario, that is, starting with a random solution (left), two high-quality so-
lutions (middle) and a set of high-quality solutions (right). In most plots, PLS〈OHI〉 outperforms
PLS〈RND〉 at any moment of the search, sometimes by a large gap. This result indicates that the

11



0
.2

0
.6

1
.0

1 10 100 1000
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,* 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,* 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*

0
.6

4
0
.6

6
0
.6

8
0
.7

0
0
.7

2

0.12 1.2 12 120 1200
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,* 0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.1 1 10 100
Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*
0
.6

4
0
.6

6
0
.6

8
0
.7

0
0.1 1 10 100

Seconds

H
V

OHI,≻,*

OHI,⊀,*

OHI,≻⊀,*

Figure 5: Acceptance Criterion: PLS〈OHI,�, ∗〉 vs PLS〈OHI,⊀, ∗〉 vs PLS〈OHI,�⊀, ∗〉 for one bTSP instance
(top), and two bQAP instances with correlation −0.75 (middle) and −0.5 (bottom). Initial conditions are RS (left),
TS (middle) and HQS (right). The gray area corresponding to each curve shows the 95% confidence interval across
different runs.

selection of the most promising objective regions for further improvement actually helps reaching
better results in less computation time. On the other hand, both strategies obtain similar results on
a few cases, such as the top-left plot that presents results for a bTSP instance when starting from a
random solution. This configuration is the only one where OHI is slightly worse for a short period
of time (between 1 and 100 seconds), likely due to the overhead of computation time required to
perform the selection using OHI.

Nonetheless, the selection based on OHI is, overall, a clear improvement over the original compo-
nent. For this reason, we use OHI instead of RND for all the experiments in the rest of this section.
Hence, we test whether we can improve the anytime behavior even further by using the alternative
variants for the other components.

4.2.2. Acceptance Criterion
Figure 5 presents a comparison of the various alternative acceptance criteria proposed in Sec. 4.

The variants PLS〈OHI,�, ∗〉 and PLS〈OHI,�⊀, ∗〉 behave exactly the same as long as at least one
neighbor dominates the current solution. This clearly happens in the initial phases of the search

12



when starting from a random solution (left column). However, PLS〈OHI,�, ∗〉 quickly reaches
completion since it cannot find any new dominating solutions, whereas PLS〈OHI,�⊀, ∗〉 switches
strategy and matches the final quality of PLS〈OHI,⊀, ∗〉. When the initial set is close to the
Pareto front (middle and right columns), no solution can be found that dominates any of the initial
ones and, thus, the hypervolume curve is entirely flat for PLS〈OHI,�, ∗〉. However, as the switch
from accepting only dominating neighbors to accepting also nondominated neighbors occurs for
each new solution explored, there is still an observable difference between PLS〈OHI,�⊀, ∗〉 and
PLS〈OHI,⊀, ∗〉. In fact, PLS〈OHI,�⊀, ∗〉 compares very positively to PLS〈OHI,⊀, ∗〉: in many
cases the former shows a large improvement of quality over the latter at any time of the execution,
for instance, in the plots for bTSP starting from RS (top-left) or TS (top-middle). In the case of
HQS (right column), and specially for the bQAP (middle-right and bottom-right), the differences
are smaller or not statistically significant, due to the fact that dominating solutions are very rarely
found and the two variants are essentially equivalent. There is no case showing PLS〈OHI,⊀, ∗〉
better than PLS〈OHI,�⊀, ∗〉 and, overall, the switching component of PLS〈OHI,�⊀, ∗〉 yields a
better anytime behavior than the original one.

4.2.3. Neighborhood Exploration
Figure 6 reports a comparison of the different alternatives for the neighborhood exploration.

It shows the anytime behavior of three PLS variants: PLS〈OHI,⊀, 1〉, which stops the exploration
of the neighborhood after accepting one solution, PLS〈OHI,⊀, ∗〉, which explores the full neigh-
borhood, and PLS〈OHI,⊀, 1∗〉, which switches from the first to the second rule. The behavior of
PLS〈OHI,⊀, 1∗〉 before the switch is exactly the same as PLS〈OHI,⊀, 1〉, therefore the two curves
coincide until the point where PLS〈OHI,⊀, 1〉 stagnates due to the limited neighborhood explo-
ration. It is clear, therefore, that PLS〈OHI,⊀, 1∗〉 should be preferred over PLS〈OHI,⊀, 1〉 in every
situation.

For the bTSP, when the initial set is either RS or TS, PLS〈OHI,⊀, 1∗〉 shows a much better
anytime behavior than the original component used by PLS〈OHI,⊀, ∗〉. However, for the bTSP
when the initial set is HQS and for the bQAP in all cases, PLS〈OHI,⊀, ∗〉 has better anytime
behavior than PLS〈OHI,⊀, 1∗〉. Therefore, the best alternative for this component is dependent of
the situation.

Since no strategy outperforms the other in every case, it could be interesting to test different
trade-offs between PLS〈OHI,⊀, ∗〉 and PLS〈OHI,⊀, 1∗〉, for example, by accepting more than one
solution and switching to a full neighborhood exploration later. However, it is likely that the best
number of solutions to accept is strongly problem-dependent. Hence, we leave further exploration
of this direction for future research.

4.2.4. Combination of Components
We have shown that switching the acceptance criterion during execution improves significantly

the anytime behavior over the original acceptance criterion in most of the cases. We also have shown
that switching from first-improvement to best-improvement can be helpful, but not in all cases. As a
last step, we explore whether even better anytime behavior can be obtained by combining these two
components in PLS〈OHI,�⊀, 1∗〉. Fig. 7 compares PLS〈OHI,�⊀, 1∗〉 with the strategies evaluated
in the previous two sections. The plots show that in none of the cases, PLS〈OHI,�⊀, 1∗〉 improves
over its two competitors. Hence, there are interactions between the components that prevent their
respective advantages to combine together. We conjecture that this is because PLS〈OHI,�⊀, ∗〉
and PLS〈OHI,⊀, 1∗〉 restrict in two different ways the number of solutions that are considered

13



0
.2

0
.6

1
.0

1 10 100 1000
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1* 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

0
.3

5
0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1* 0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

0
.6

5
0
.6

7
0
.6

9
0
.7

1

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100
Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*
0
.6

5
0
.6

7
0
.6

9
0
.7

1
0.1 1 10 100

Seconds

H
V

OHI,⊀,1

OHI,⊀,*

OHI,⊀,1*

Figure 6: Neighborhood Exploration: PLS〈OHI,⊀, 1〉 vs PLS〈OHI,⊀, ∗〉 vs PLS〈OHI,⊀, 1∗〉 for one bTSP instance
(top), and two bQAP instances with correlation −0.75 (middle) and −0.5 (bottom). Initial conditions are RS (left),
TS (middle) and HQS (right). The gray area corresponding to each curve shows the 95% confidence interval across
different runs.

for inclusion in the archive and that probably the restriction incurred by their combination is too
strong.

5. Dynagrid: Dynamic Objective Space Discretization for Anytime PLS

The best performing PLS variants for neighborhood exploration and acceptance criterion have
in common that they restrict the number of non-dominated solutions added to the archive. In
particular, such a restriction improves the anytime behavior in the early phases of the search by
driving PLS towards regions in the objective space close to the Pareto front. This pressure is exerted
by avoiding the acceptance of too many non-dominated solutions into the archive.

In this section, we exploit further this observation. We explicitly limit the potential number
of non-dominated solutions to enter the archive by incorporating an epsilon-grid mechanism. We
first explain the static version of the epsilon-grid mechanism, which was proposed by Angel et al.
[1]. Later, we propose a dynamic adaptation of the grid, which we call Dynagrid. Finally, we show

14



0
.2

0
.6

1
.0

1 10 100 1000
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1* 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1* 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*

0
.3

5
0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1* 0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*

0
.6

5
0
.6

7
0
.6

9
0
.7

1

0.12 1.2 12 120 1200
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*

0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100
Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*
0
.6

5
0
.6

7
0
.6

9
0
.7

1
0.1 1 10 100

Seconds

H
V

OHI,⊀,1*

OHI,≻⊀,*

OHI,≻⊀,1*

Figure 7: Combination of alternative components: PLS〈OHI,⊀, 1∗〉 vs PLS〈OHI,�⊀, ∗〉 vs PLS〈OHI,�⊀, 1∗〉
for one bTSP instance (top), and two bQAP instances with correlation −0.75 (middle) and −0.5 (bottom). Initial
conditions are RS (left), TS (middle) and HQS (right). The gray area corresponding to each curve shows the 95%
confidence interval across different runs.

that Dynagrid, and by extension the anytime PLS, can be further improved by taking into account
the hypervolume contribution of each point in the grid. The selection criterion based on the OHI
was shown to be consistently better than the random version, therefore we use it for all variants
designed in this section.

5.1. Static Epsilon-Grid Discretization
The epsilon-grid mechanism proposed by Angel et al. [1] discretizes the objective space into a

grid of boxes whose size increases with the distance to the axis; in this way, more solutions can be
accepted in the center of the Pareto front than in the extremes. The size of the boxes is defined
by a parameter ε: given ε > 1, for each objective d, normalized such the minimum value is 1, the
bounds of boxes i = 0, 1, 2, . . . are computed as

Bdi =
[
εi, εi+1

[
(3)

15



Figure 8: Representation of the normalized objective space with
the epsilon-grid mechanism. This mechanism does not allow a
new solution s′ to enter a box already filled by another solution s
(those boxes are shown in gray), unless s′ dominates s. (Adapted
from [1]).

Figure 8 shows graphically this epsilon-grid mechanism. We can determine directly the box
corresponding to solution s for objective d by:

Bd(s) = Bdblog(norm(fd(s)))/log(ε)c (4)

The norm() function gives the normalized value for a given objective. In this paper, we use a
mapping of the objectives such that the lower bound provided for a given objective (see section 4.1.2)
is mapped to 1, the upper bound to 100 000, and any value in between is mapped linearly to the
range [1, 100 000]. Using a normalization mechanism whenever a decision must be taken based on
objective values is important to not emphasize one objective over another when their ranges differ.
It also allows applying the same algorithm to problems with objectives having different scales.

The main drawback of the epsilon-grid mechanism is that the parameter ε (Eqs. 3 and 4) must
be defined carefully before solving a problem. Therefore, it can not be applied without previous
knowledge of the problem (and even instance) to be tackled [36].

5.2. Dynamic Adaptation of Epsilon-Grid: Dynagrid
Here, we propose Dynagrid, a new variant of the epsilon-grid mechanism that dynamically adapts

the value of ε and, hence, the grid size, within the PLS algorithm. The aim of this mechanism is
threefold. First, it allows the application of this method without any previous knowledge on the
problem or the instance to be tackled. Second, it improves the anytime behavior of PLS, as we show
later. Third, it can be applied directly to other MCOPs and, possibly also, to other algorithms for
MCOPs.

The dynamic adaptation of ε is triggered by the convergence of PLS. Each time PLS using a
fixed epsilon-grid terminates, that is, all solutions are marked as explored, the value of ε is reduced
by a fixed factor. This mechanism is described in pseudo-code in Algorithm 2. A PLS algorithm
using the grid defined by ε (denoted by PLSGrid, line 7 of the pseudo-code) starts from the current
solution archive A. When PLSGrid reaches completion and all solutions in the archive are marked
as explored, the value of ε is decreased according to a parameter r < 1 (line 8), and the solutions
are marked again as unexplored. Then PLSGrid is re-started using the grid defined by the updated
ε value (line 9). This process (lines 6 to 10) is repeated until a given termination criterion is met.

16



Algorithm 2 Dynagrid (Dynamic Epsilon-Grid)

1: Input: Initial set of non-dominated solutions: A0,
2: Value that defines the initial grid: ε0,
3: Ratio to decrease the value of ε: r.
4: A := A0

5: ε := ε0
6: while ! termination criterion do
7: A := PLSGrid(A, ε)
8: ε := 1 + (ε− 1) · r
9: explored(s) := false, ∀s ∈ A

10: end while
11: Output: A

After a change of the value of ε, the grid changes and, as a result, there may be boxes that
contain more than one solution. We do not remove these extra solutions, since the quality of the
archive will decrease and removing these solutions would incur a computational overhead.

The rationale behind Dynagrid is to obtain quickly well-distributed solutions in the objective
space, thus reaching quickly a good Pareto front approximation in terms of hypervolume, using
large initial values for ε, and then reducing the value of ε to refine the grid and add more solutions
only when PLS actually needs them to improve the quality of the results.

In our experimental analysis, we set the initial value of ε to 5. This is a rather large value (recall
that ε has an exponential effect on the boxes size), which makes unlikely even the acceptance of
one new solution when starting from the initial set. This is done on purpose to avoid the usage of
problem-specific knowledge as much as possible. For the value of parameter r, we tested values in
{0.9, 0.7, 0.5, 0.3, 0.1} during preliminary experiments. The differences due to different values of the
parameter r were minor, resulting in rather similar curves of the development of the hypervolume; we
provide the plots for this comparison as supplementary material [9]. For the following experiments,
we chose a setting of r = 0.5.

Figure 9 compares the Dynagrid algorithm against variants that use different static grids, that
is, they use different fixed values for ε. We tested values of ε ∈ {1.5, 1.05, 1.005}, but for the sake of
clarity we show here only those for value 1.5 and 1.005; the results for 1.05 are a trade-off between
the results obtained by the two extreme values. Clearly, the larger ε, the faster is the quality
improvement in short computation time, but also the earlier PLS stagnates, as visible by the fact
that curves become flat (that is, the hypervolume does not increase anymore), indicating that PLS
actually stops.

For the bTSP with initial conditions RS and TS, the adaptive mechanism is able to improve the
quality of the archive as quickly as the coarse static grid (ε = 1.5) does it. Moreover, it outperforms
the fine static grid (ε = 1.005) at any time. Starting from HQS (top-right plot in Fig. 9), it gives
slightly worse solution quality than the fine grid until roughly 200 seconds, but it is better for larger
computation time. For the bQAP, the results obtained by the dynamic grid are clearly better than
those for fixed values of ε. The dynamic grid improves quality quickly and reaches higher quality
results than the fine grid at any time for all initial conditions.

Overall, the good performance of the dynamic grid is remarkable because it does not require
preliminary knowledge of an appropriate setting of ε when being applied.

17



0
.0

0
.4

0
.8

1 10 100 1000
Seconds

H
V

Stat1.5

Stat1.005

Dyna 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

Stat1.5

Stat1.005

Dyna 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

Stat1.5

Stat1.005

Dyna

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

Stat1.5

Stat1.005

Dyna

0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

Stat1.5

Stat1.005

Dyna

0
.6

6
0
.6

8
0
.7

0
0
.7

2

0.12 1.2 12 120 1200
Seconds

H
V

Stat1.5

Stat1.005

Dyna

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

Stat1.5

Stat1.005

Dyna

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.1 1 10 100
Seconds

H
V

Stat1.5

Stat1.005

Dyna
0
.6

4
0
.6

6
0
.6

8
0
.7

0
0.1 1 10 100

Seconds

H
V

Stat1.5

Stat1.005

Dyna

Figure 9: Experimental evaluation of PLS combined with Epsilon-Grid for one bTSP instance (top), and two bQAP
instances with correlation −0.75 (middle) and −0.5 (bottom). We compare here two variants that use a static grid
(with ε ∈ {1.05, 1.005}), against the version that uses a dynamic one. Initial conditions are RS (left), TS (middle)
and HQS (right). The gray area corresponding to each curve shows the 95% confidence interval across different runs.

5.3. Improving Dynagrid By Considering Hypervolume Contribution
In the original epsilon-grid method [1], a new candidate solution s′ that falls into the same

box as an already existing solution s in the archive only replaces s if s′ dominates s. Therefore,
solutions that enter the archive earlier are preferred over more recent candidate solutions for the
sole reason that they were encountered earlier. However, since our goal is to obtain a set of non-
dominated solutions with the highest possible quality at any time, it may be preferable to relax
this condition if the new candidate solution improves the quality measure over the existing one.
More precisely, since we measure quality in terms of hypervolume (see Section 2.1), we extend our
dynamic epsilon-grid (see Section 5.2) to optimize this indicator. In particular, we allow a solution
s′ to replace a solution s if the hypervolume of the archive increases. More formally, given a new
solution s′ that falls into the same box as another solution s ∈ A, where A is the current archive, s′
replaces s if s′ ≺ s or HV(A/{s} ∪ {s′}) > HV(A). Note that if s′ ≺ s, due to the properties of the
hypervolume indicator [46], the hypervolume of the archive resulting from the removal of s and the
addition of s′ can only increase. Therefore, the dynamic grid considering hypervolume contribution

18



aims explicitly at optimizing the hypervolume of the current archive at any time.
If there are several solutions in the box, then solution s above corresponds to the one with

the least hypervolume contribution. The computation of the least hypervolume contribution is
computationally cheap in two and three objectives: Computing all hypervolume contributions of a
set of n points requires O(n log n) [13]. In our case, we do it in linear time since the set is kept sorted
(according to one objective). For a higher number of objectives, it is unclear if the improvement in
terms of quality would compensate the computational overhead; we leave this for future research.

In Fig. 10, we compare the performance, in terms of anytime behavior, of Dynagrid when
considering hypervolume contributions, called Dynagrid-HV , versus the basic Dynagrid algorithm,
which was shown to outperform the static grid in the previous section. For the bTSP, with initial
conditions RS, considering the hypervolume contribution slows down the initial increase of the
solution quality between roughly 2 and 20 seconds. This is probably explained by the fact that the
grid size is updated later with the hypervolume enhancement than without, as several solutions can
successively enter in the box(es), postponing the decrease of epsilon. For longer computation time,
however, Dynagrid-HV clearly improves over the Dynagrid algorithm. For the initial conditions TS
and HQS, the improvement is very large: Dynagrid-HV reaches the same quality than the Dynagrid
algorithm in about one order of magnitude shorter computation time. For the bQAP, Dynagrid-
HV shows, for any given computation time, the same or better average quality than the Dynagrid
algorithm, although the improvement is typically smaller than in the bTSP case. The improvements
are clear for RS and TS initial sets; when starting from HQS, both alternatives bring similar results.

In summary, Dynagrid-HV improves further the anytime behavior of PLS. Since in the majority
of cases and termination criteria, Dynagrid-HV is clearly better than the basic Dynagrid algorithm,
we would recommend its use when tackling bi-objective problems with similar characteristics as the
ones we tackle here.

6. Comparison of Alternative PLS Components versus Dynagrid

In previous sections, we designed variants of PLS with better anytime behavior by exploring
two fundamentally different directions. Here, we compare these two approaches. Figure 11 presents
a comparison of the best algorithms obtained from each of the two alternatives. Additionally, to
highlight the improvement obtained by these new PLS variants over the original PLS algorithm,
we include also the original PLS in this comparison. For the bTSP, PLS〈OHI,⊀, 1∗〉 dominates
completely the original PLS algorithm. It also performs better than Dynagrid-HV up to roughly
20 seconds, when the hypervolume-over-time curves of the two algorithms cross. This crossing may
be explained by the fact that Dynagrid-HV requires some time to adapt the discretization, which
penalizes it for very short runtimes. For the bQAP, PLS〈OHI,�⊀, ∗〉 consistently and completely
surpasses the original PLS algorithm, but it is itself mostly outperformed by Dynagrid-HV .

6.1. Scaling Behavior for Larger Instances
To determine whether our conclusions are consistent across different instance sizes, we analyze

how the experimental results scale when tackling larger instances. To do so, we generated larger
instances of size 1000 for the bTSP and size 150 for the bQAP, following the same setup used for
the other instances (see Section 4.1). Table 2 presents the cut-off times for these instances for each
problem.

We present a comparison of the same algorithms on these larger instances in Fig. 12. All the
trends observed for smaller instances not only remain true, but are strengthened. In fact, the gap

19



0
.0

0
.4

0
.8

1 10 100 1000
Seconds

H
V

Dyna

Dyna-HV 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

Dyna

Dyna-HV 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

Dyna

Dyna-HV

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

Dyna

Dyna-HV

0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

Dyna

Dyna-HV

0
.6

6
0
.6

8
0
.7

0
0
.7

2

0.12 1.2 12 120 1200
Seconds

H
V

Dyna

Dyna-HV

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

Dyna

Dyna-HV 0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100
Seconds

H
V

Dyna

Dyna-HV
0
.6

4
0
.6

6
0
.6

8
0
.7

0
0.1 1 10 100

Seconds

H
V

Dyna

Dyna-HV

Figure 10: Experimental analysis of PLS combined with Epsilon-Grid for one bTSP instance (top), and two bQAP
instances with correlation −0.75 (middle) and −0.5 (bottom). The plots present the comparison of the quality
obtained by the dynamic epsilon grid, with and without the proposed hypervolume enhancement. Initial conditions
are RS (left), TS (middle) and HQS (right). The gray area corresponding to each curve shows the 95% confidence
interval across different runs.

between the original PLS algorithm and the two new anytime PLS variants widens, as it is most
clearly visible on the bTSP. Hence, the performance improvements introduced by the proposed
anytime PLS algorithms over the original PLS are particularly important when tackling large-scale
bi-objective problems.

6.2. Statistical Comparison of the Best Anytime PLS Algorithms
We perform a statistical comparison of the anytime PLS algorithms that were previously eval-

uated in this section. For the statistical tests, we focus on specific snapshots in time that are at a
1000th, a 100th, and a 10th of the cut-off time, and the cut-off time itself. Since the time steps that
we use increase exponentially (see Section 4.1), they do not necessarily correspond exactly to these
selected times: in this case we use the closest ones.

We use the Friedman test to assess the significance of the differences in terms of hypervolume,
with a standard confidence level of 0.95 (thus, a p-value < 0.05 indicates that the null hypothesis
is to be rejected). In the Friedman test, each instance and run is considered as a different block.

20



0
.0

0
.4

0
.8

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV 0
.4

0
.6

0
.8

1
.0

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV 1
.0

8
1
.1

0
1
.1

2

1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV

0
.4

0
0
.5

0
0
.6

0
0
.7

0

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.4

5
0
.5

5
0
.6

5

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.6

5
0
.6

7
0
.6

9
0
.7

1

0.12 1.2 12 120 1200
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV 0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV
0
.6

4
0
.6

6
0
.6

8
0
.7

0
0.1 1 10 100

Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

Figure 11: Experimental comparison of the original PLS algorithm, the best anytime PLS obtained in Section 4
(PLS〈OHI,⊀, 1∗〉 for the bTSP and PLS〈OHI,�⊀, ∗〉 for the bQAP), and the best anytime PLS obtained in Section 5
(Dynagrid-HV ), for one bTSP instance (top), and two bQAP instances with correlation −0.75 (middle) and −0.5
(bottom). Initial conditions are RS (left), TS (middle) and HQS (right). The gray area corresponding to each curve
shows the 95% confidence interval across different runs.

Table 3 presents this comparison for both problems. These results confirm (i) the improvement of
the proposed anytime PLS variants over the original PLS algorithm, and (ii) that Dynagrid-HV is
almost always statistically significantly better than other strategies.

7. Literature Survey of Related Work

Many previous works are based on the original PLS algorithm, here we only mention those that
are closer to our work. A more complete list of references can be found in a recent overview [10].

Liefooghe et al. [27, 28] also decompose the PLS algorithm into different components and study
the performance of some of their variants. Nonetheless, there are significant differences between
their study and our proposals here. First, they do not distinguish between acceptance criterion and
neighborhood exploration, and they do not consider variants that switch strategies during a single
run of PLS, such as the ones studied here (Sec. 4). Thus, we explore a more refined decomposition
of PLS and therefore also test more combinations. Second, their goal is to compare the results

21



Table 2: Cut-off times used for large instances of each problem.

Problem Instance type Cut-off time (s)

bTSP Size = 1000 30 000

bQAP Size = 150, Correlation = −0.75 2 000
Size = 150, Correlation = −0.5 1 000

obtained after a given computation time. More precisely, in their experimental setup, they choose
the same, predefined computation time limit for all variants, and variants that would finish before
this computation time limit are restarted from scratch. A variant is then judged by the final
aggregated non-dominated set found across the multiple restarts. Here, we focus on the anytime
behavior of the resulting algorithms, making our study rather different.

PLS [41] and similar algorithms [1] are used as either stand-alone algorithms [38, 41] or as
components of hybrid algorithms [7, 33, 34]. When tackling large instances, these algorithms may
require a long time to reach completion. One solution is to stop the algorithm before completion [7].
In this case, our proposed anytime PLS variants will produce much better results. An alternative
solution is to reduce the completion time by using problem-specific speed-up techniques to avoid
exploring the whole neighborhood of each solution [33]. Our proposed variants can be combined
with these problem-specific techniques in order to also improve the anytime behavior.

Drugan and Thierens [4, 5] focus on PLS-based algorithms that can successfully handle the
situation where PLS reaches completion and still additional computation time is available. They
show that promising results can be attained when restarting PLS from new solutions on a “path”
between two solutions in the Pareto local optimum set (in a manner similar to the path-relinking [17]
mechanism). A different approach to handle the same situation can be found in Geiger [16], where
the author proposes to apply a different neighborhood operator when PLS converges to a Pareto
local optimum: this idea can be seen as an adaptation of variable neighborhood descent [18] to PLS.
Despite the fact that their goal is different from ours, these studies can be seen as complementary
to this paper: they focus on time scales that are larger than the time required by PLS to terminate,
while we focus here on computation times that are shorter or roughly similar to the time required
by the original PLS to reach completion.

The Dynagrid mechanism proposed here is related to the concept of bounded archiving, that
is, limiting the size of an archive of non-dominated solutions. In particular, the idea of using
a hyper-grid on the objective space to limit the number of solutions in a nondominated archive
has been used extensively in the bounded archiving literature [31]. The Pareto archived evolution
strategy (PAES) [22] can be understood as a random mutation hill-climber that uses a discrete
grid to limit the size of its archive of solutions. One difference between PAES and PLS is that
PAES uses a random exploration of neighborhoods while PLS uses a systematic one analogous to
iterative improvement algorithms. The adaptive grid mechanism of PAES is quite different from
Dynagrid, since the former allows a new solution to enter an already populated box as long as the
maximum archive size has not been reached. By contrast, Dynagrid does not take into account a
maximum archive size, and new solutions can only enter an already populated box by replacing one
of the solutions already in the box. Moreover, the grid mechanism in PAES is adaptive because
the grid is recomputed when the ranges in the archive change, but the number of subdivisions is
static. By contrast, Dynagrid increases the number of subdivisions over time in order to refine

22



0
.0

0
.4

0
.8

3 30 300 30000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV 0
.4

0
.6

0
.8

1
.0

3 30 300 30000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV 1
.0

0
1
.0

5
1
.1

0
1
.1

5

3 30 300 30000
Seconds

H
V

RND,⊀,*

OHI,⊀,1*

Dyna-HV

0
.3

5
0
.4

5
0
.5

5
0
.6

5

0.2 2 20 200 2000
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.4

5
0
.5

5
0
.6

5

0.2 2 20 200 2000
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.6

0
0
.6

4
0
.6

8

0.2 2 20 200 2000
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

0
.3

0
.4

0
.5

0
.6

0
.7

0.1 1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV 0
.4

5
0
.5

5
0
.6

5

0.1 1 10 100 1000
Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV
0
.6

0
0
.6

4
0
.6

8
0.1 1 10 100 1000

Seconds

H
V

RND,⊀,*

OHI,≻⊀,*

Dyna-HV

Figure 12: Experimental comparison of the original PLS algorithm, the best anytime PLS obtained in Section 4
(PLS〈OHI,⊀, 1∗〉 for the bTSP and PLS〈OHI,�⊀, ∗〉 for the bQAP), and the best anytime PLS obtained in Section 5
(Dynagrid-HV ), for one large bTSP instance of size 1000 (top), and two large bQAP instances of size 150 with
correlation −0.75 (middle) and −0.5 (bottom). Initial conditions are RS (left), TS (middle) and HQS (right). The gray
area corresponding to each curve shows the 95% confidence interval across different runs.

the current approximation to the Pareto front. The ε-Pareto archiving algorithm [26] also uses an
epsilon-grid in the objective space, but the acceptance criterion is slightly different from the static
epsilon-grid mechanism [1] (and by extension from Dynagrid). In ε-Pareto archiving, dominance is
first tested with respect to the boxes in the grid, whereas epsilon-grid always considers dominance
among solutions. The dynamic version of ε-Pareto archiving starts from a small ε and increases it
every time the archive size exceeds a predefined maximum size. Its goal is to maintain a fixed-size
archive with minimal ε. The multi-level grid archiving algorithm [25] does not actually use an
explicit ε value but instead considers a succession of coarse-grained boxes when deciding whether
to accept each individual solution. The goal is again to maintain a fixed-size archive with a good
approximation quality. The dynamic adaptation of ε in Dynagrid is fundamentally different. It
starts with a large ε and decreases it every time PLS converges to a Pareto local optimum w.r.t.
the current value of ε. It allows PLS to quickly converge to a well-spread approximation set and,
once PLS converges, it allows PLS to continue the search by refining the grid.

Although there has been some work on anytime algorithms for single-objective optimization

23



problems (e.g., [29, 32, 45]), the anytime behavior of multi-objective optimization algorithms is
rarely considered. With respect to evolutionary multi-objective algorithms, some preliminary work
has shown that the anytime behavior of some popular algorithms is rather poor when using their
default settings [43]. A good anytime behavior is specially crucial for algorithms that have a natural
stopping criterion but are often stopped earlier in practice, such as PLS. In a previous work, we
have studied the anytime behavior of Two-Phase Local Search (TPLS) [6], which is a different local
search algorithm for multi-objective combinatorial optimization. Our work here shares a similar
goal, that is, to improve the anytime behavior of an existing local search algorithm. Nonetheless,
the improvements proposed to achieve such a goal are fundamentally different because TPLS and
PLS follow completely different search paradigms: TPLS is based on scalarizations, whereas PLS
is based on dominance [39].

Finally, recent studies [29, 43] have applied automatic configuration tools, also called tuners,
to automatically select and tune the algorithmic components and parameters of optimization algo-
rithms to obtain a good anytime behavior. This approach can only select among the components
provided and not devise new ones as we have done here. Applying automatic configuration to the
original PLS in order to improve its anytime behavior would not bring much improvement, since its
components do not provide a good anytime behavior. On the other hand, the diversity of behaviors
demonstrated by the anytime PLS variants proposed here, where particular variants are better for
certain problem characteristics, suggests that automatic configuration can be applied to select the
appropriate variant when tackling a new problem.

8. Conclusion

To the best of our knowledge, our present work and our preliminary study [8] are the first
to analyze and improve the anytime behavior of PLS, a high-performing multi-objective local
search algorithm, and an important component of state-of-the art algorithms for several well-known
MCOPs [7, 33, 34, 35].

The experimental analysis presented in this work studied the impact of various alternatives for
the algorithmic components of PLS. In particular, we considered different algorithm components
for the selection of the solutions to be explored, the type of neighborhood exploration and the ac-
ceptance criteria for new solutions. We also analyzed PLS variants that switch from one alternative
to a different one during a single run of PLS. Our results show that such “switching” variants of
PLS improve significantly the anytime behavior over the original PLS. However, we found that the
best variants are different for the bTSP and the bQAP, and, thus, the best variant depends on the
problem being tackled.

In addition, we proposed a radically different anytime PLS algorithm based on a dynamic
discretization of the objective space, where the objective space is divided into a grid. Our results
clearly showed that the dynamic adaptation of the grid size outperforms any static value in terms
of anytime behavior. Moreover, we found that results could be further improved by taking into
account the hypervolume contribution when deciding whether to add a new solution to an already
populated box of the grid. The resulting PLS variant, which we call Dynagrid-HV , is consistently
better than the other anytime PLS variants examined in this paper and completely outperforms
the original PLS for any given termination time.

Since our experimental study considered three different scenarios that include starting PLS from
random solutions of typically poor quality and also from nearly-Pareto-optimal solutions, we are
certain that our conclusions are useful for applications of PLS as a stand-alone algorithm and also

24



for hybrid algorithms where PLS is a major component. In particular, by replacing the original PLS
with the proposed anytime PLS variants, we expect significant improvements in the results obtained
by the current state-of-the-art algorithms for the multi-objective traveling salesman problem [34],
various bi-objective permutation flowshop problems [7], and the bi-objective multi-dimensional
knapsack problem [33].

Moreover, a combination of the variants proposed in this paper with the mechanisms that were
proposed to restart PLS [4, 5] once it has reached a Pareto local optimum [42] is also promising.
Such a combination will make the resulting algorithm applicable to a very wide range of computation
times and, thus, real-world situations.

Our study has considered the standard neighborhood operators for the benchmark problems
tackled. However, the choice of neighborhood operators has a strong influence on the number and
quality of non-dominated solutions found and, thus, it impacts the anytime behavior of PLS. A
possible direction of future research is to study the influence of different neighborhoods on the
anytime behavior of PLS.

Finally, our work has focused on bi-objective problems. We plan to extend our analysis to
three and more objectives. The number of nondominated solutions and the complexity of some
algorithmic components increase exponentially with the number of objectives. Thus, such problems
pose different computational challenges that may require different algorithmic components to design
PLS algorithms with good anytime behavior.

Acknowledgments. This work was supported by the META-X project, an Action de Recherche Concertée
funded by the Scientific Research Directorate of the French Community of Belgium, the COMEX project within the
Interuniversity Attraction Poles Programme of the Belgian Science Policy Office, and by the MIBISOC network, an
Initial Training Network funded by the European Commission, grant PITN–GA–2009–238819. Manuel López-Ibáñez
and Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher
and a senior research associate, respectively. The authors thank Mohamed S. bin Hussin for providing his Simulated
Annealing implementation for single-objective QAP instances.

References

[1] E. Angel, E. Bampis, and L. Gourvés. Approximating the Pareto curve with local search for
the bicriteria TSP(1,2) problem. Theoretical Computer Science, 310(1-3):135–146, 2004.

[2] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. Concorde TSP solver. http:
//www.math.uwaterloo.ca/tsp/concorde.html, 2014. Version visited last on 15 April 2014.

[3] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Operational Research, 181(3):1653–1669, 2007.

[4] M. M. Drugan and D. Thierens. Path-guided mutation for stochastic Pareto local search
algorithms. In R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, Parallel Problem
Solving from Nature, PPSN XI, volume 6238 of Lecture Notes in Computer Science, pages
485–495. Springer, Heidelberg, Germany, 2010.

[5] M. M. Drugan and D. Thierens. Stochastic Pareto local search: Pareto neighbourhood explo-
ration and perturbation strategies. Journal of Heuristics, 18(5):727–766, 2012.

[6] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Improving the anytime behavior of two-
phase local search. Annals of Mathematics and Artificial Intelligence, 61(2):125–154, 2011.

25

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html


[7] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. A hybrid TP+PLS algorithm for bi-
objective flow-shop scheduling problems. Computers & Operations Research, 38(8):1219–1236,
2011.

[8] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Pareto local search algorithms for anytime
bi-objective optimization. In J.-K. Hao and M. Middendorf, editors, Proceedings of EvoCOP
2012 – 12th European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion, volume 7245 of Lecture Notes in Computer Science, pages 206–217. Springer, Heidelberg,
Germany, 2012.

[9] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Supplementary material: Anytime pareto
local search. http://iridia.ulb.ac.be/supp/IridiaSupp2013-003, 2013.

[10] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle. Combining two search paradigms for
multi-objective optimization: Two-Phase and Pareto local search. In E.-G. Talbi, editor,
Hybrid Metaheuristics, volume 434 of Studies in Computational Intelligence, pages 97–117.
Springer Verlag, 2013.

[11] M. Ehrgott and X. Gandibleux. Approximative solution methods for combinatorial multicri-
teria optimization. TOP, 12(1):1–88, 2004.

[12] M. Ehrgott and X. Gandibleux. Hybrid metaheuristics for multi-objective combinatorial opti-
mization. In C. Blum, M. J. Blesa, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics:
An emergent approach for optimization, pages 221–259. Springer, Berlin, Germany, 2008.

[13] M. T. M. Emmerich and C. M. Fonseca. Computing hypervolume contributions in low dimen-
sions: Asymptotically optimal algorithm and complexity results. In R. H. C. Takahashi et al.,
editors, Evolutionary Multi-criterion Optimization, EMO 2011, volume 6576 of Lecture Notes
in Computer Science, pages 121–135. Springer, Heidelberg, Germany, 2011.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman & Co, San Francisco, CA, 1979.

[15] D. Garrett and D. Dasgupta. Multiobjective landscape analysis and the generalized assignment
problem. In V. Maniezzo, R. Battiti, and J.-P. Watson, editors, Learning and Intelligent
Optimization, Second International Conference, LION 2, volume 5313 of Lecture Notes in
Computer Science, pages 110–124. Springer, Heidelberg, Germany, 2008.

[16] M. J. Geiger. Decision support for multi-objective flow shop scheduling by the Pareto iterated
local search methodology. Computers and Industrial Engineering, 61(3):805–812, 2011.

[17] F. Glover. A template for scatter search and path relinking. In J.-K. Hao, E. Lutton, E. M. A.
Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution, volume 1363 of Lecture
Notes in Computer Science, pages 1–51. Springer, Heidelberg, Germany, 1998.

[18] P. Hansen and N. Mladenovic. Variable neighborhood search: Principles and applications.
European Journal of Operational Research, 130(3):449–467, 2001.

[19] H. H. Hoos and T. Stützle. Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco, CA, 2005.

26

http://iridia.ulb.ac.be/supp/IridiaSupp2013-003


[20] M. S. Hussin and T. Stützle. Tabu search vs. simulated annealing for solving large quadratic
assignment instances. Computers & Operations Research, 43:286–291, 2014.

[21] A. Jaszkiewicz, H. Ishibuchi, and Q. Zhang. Multiobjective memetic algorithms. In Handbook
of Memetic Algorithms, volume 379 of Studies in Computational Intelligence, pages 201–217.
Springer, 2012.

[22] J. D. Knowles and D. Corne. Approximating the nondominated front using the Pareto archived
evolution strategy. Evolutionary Computation, 8(2):149–172, 2000.

[23] J. D. Knowles and D. Corne. Instance generators and test suites for the multiobjective
quadratic assignment problem. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-criterion Optimization, EMO 2003, volume 2632 of Lec-
ture Notes in Computer Science, pages 295–310. Springer, Heidelberg, Germany, 2003.

[24] J. D. Knowles, D. Corne, and M. Fleischer. Bounded archiving using the Lebesgue measure. In
Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), volume 4, pages
2490–2497. IEEE Press, Piscataway, NJ, Dec. 2003.

[25] M. Laumanns and R. Zenklusen. Stochastic convergence of random search methods to fixed
size Pareto front approximations. European Journal of Operational Research, 213(2):414–421,
2011.

[26] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in
evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–282, 2002.

[27] A. Liefooghe, S. Mesmoudi, J. Humeau, L. Jourdan, and E.-G. Talbi. A study on dominance-
based local search approaches for multiobjective combinatorial optimization. In T. Stützle,
M. Birattari, and H. H. Hoos, editors, Engineering Stochastic Local Search Algorithms. De-
signing, Implementing and Analyzing Effective Heuristics. SLS 2009, volume 5752 of Lecture
Notes in Computer Science, pages 120–124. Springer, Heidelberg, Germany, 2009.

[28] A. Liefooghe, J. Humeau, S. Mesmoudi, L. Jourdan, and E.-G. Talbi. On dominance-based
multiobjective local search: design, implementation and experimental analysis on scheduling
and traveling salesman problems. Journal of Heuristics, 18(2):317–352, 2011.

[29] M. López-Ibáñez and T. Stützle. Automatically improving the anytime behaviour of optimi-
sation algorithms. European Journal of Operational Research, 235(3):569–582, 2014.

[30] M. López-Ibáñez, L. Paquete, and T. Stützle. Hybrid population-based algorithms for the bi-
objective quadratic assignment problem. Journal of Mathematical Modelling and Algorithms,
5(1):111–137, 2006.

[31] M. López-Ibáñez, J. D. Knowles, and M. Laumanns. On sequential online archiving of objective
vectors. In R. H. C. Takahashi et al., editors, Evolutionary Multi-criterion Optimization, EMO
2011, volume 6576 of Lecture Notes in Computer Science, pages 46–60. Springer, Heidelberg,
Germany, 2011.

[32] S. Loudni and P. Boizumault. Combining VNS with constraint programming for solving any-
time optimization problems. European Journal of Operational Research, 191:705–735, 2008.

27



[33] T. Lust and J. Teghem. The multiobjective traveling salesman problem: A survey and a new
approach. In C. A. Coello Coello, C. Dhaenens, and L. Jourdan, editors, Advances in Multi-
Objective Nature Inspired Computing, volume 272 of Studies in Computational Intelligence,
pages 119–141. Springer, 2010.

[34] T. Lust and J. Teghem. Two-phase Pareto local search for the biobjective traveling salesman
problem. Journal of Heuristics, 16(3):475–510, 2010.

[35] T. Lust and J. Teghem. The multiobjective multidimensional knapsack problem: a survey and
a new approach. International Transactions in Operational Research, 19(4):495–520, 2012.

[36] L. Paquete. Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization:
Methods and Analysis. PhD thesis, FB Informatik, TU Darmstadt, Germany, 2005.

[37] L. Paquete and T. Stützle. A two-phase local search for the biobjective traveling salesman
problem. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolu-
tionary Multi-criterion Optimization, EMO 2003, volume 2632 of Lecture Notes in Computer
Science, pages 479–493. Springer, Heidelberg, Germany, 2003.

[38] L. Paquete and T. Stützle. A study of stochastic local search algorithms for the biobjective
QAP with correlated flow matrices. European Journal of Operational Research, 169(3):943–959,
2006.

[39] L. Paquete and T. Stützle. Stochastic local search algorithms for multiobjective combinatorial
optimization: A review. In T. F. Gonzalez, editor, Handbook of Approximation Algorithms and
Metaheuristics, pages 29–1—29–15. Chapman & Hall/CRC, Boca Raton, FL, 2007.

[40] L. Paquete and T. Stützle. Design and analysis of stochastic local search for the multiobjective
traveling salesman problem. Computers & Operations Research, 36(9):2619–2631, 2009.

[41] L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets in the biobjective trav-
eling salesman problem: An experimental study. In X. Gandibleux, M. Sevaux, K. Sörensen,
and V. T’kindt, editors, Metaheuristics for Multiobjective Optimisation, volume 535 of Lecture
Notes in Economics and Mathematical Systems, pages 177–200. Springer, Berlin, Germany,
2004.

[42] L. Paquete, T. Schiavinotto, and T. Stützle. On local optima in multiobjective combinatorial
optimization problems. Annals of Operations Research, 156:83–97, 2007.

[43] A. Radulescu, M. López-Ibáñez, and T. Stützle. Automatically improving the anytime be-
haviour of multiobjective evolutionary algorithms. In R. C. Purshouse, P. J. Fleming, C. M.
Fonseca, S. Greco, and J. Shaw, editors, Evolutionary Multi-criterion Optimization, EMO
2013, volume 7811 of Lecture Notes in Computer Science, pages 825–840. Springer, Heidel-
berg, Germany, 2013. ISBN 978-3-642-37139-4.

[44] S. Verel, A. Liefooghe, L. Jourdan, and C. Dhaenens. On the structure of multiobjective
combinatorial search space: MNK-landscapes with correlated objectives. European Journal of
Operational Research, 227(2):331–342, 2013.

[45] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17(3):73–83,
1996.

28



[46] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca. Performance
assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evo-
lutionary Computation, 7(2):117–132, 2003.

29



Table 3: Statistical analysis of the best anytime variants of PLS and the original PLS at different time steps.
The time steps are those from (cutoff_time + 1)(i/100) − 1, i ∈ 1, . . . , 100 (see Section 4.1.2) that are closest to
cutoff_time/(10k), with k ∈ {0, 1, 2, 3}. Each run of the algorithms is ranked according to the hypervolume of
its output. The numbers in parenthesis are the differences of the sum of ranks relative to the best variant for 30
independent runs. ∆Rα gives the difference of the sum of ranks that is statistically significant, for an α value of
0.05. The best variant, and others that are not significantly different from it are indicated in bold face.

TSP
Time ∆Rα Strategies (∆R)

Size 500, Initial conditions RS
9.97 4.77 PLS〈OHI,⊀, 1∗〉, PLS〈RND,⊀, ∗〉 (69), Dynagrid-HV (147)

99.00 2.79 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (76), PLS〈RND,⊀, ∗〉 (149)
999.07 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

10000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
Size 500, Initial conditions TS

9.97 0 PLS〈OHI,⊀, 1∗〉, Dynagrid-HV (75), PLS〈RND,⊀, ∗〉 (150)
99.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
999.07 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

10000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
Size 500, Initial conditions HQS

9.97 5.47 PLS〈OHI,⊀, 1∗〉, Dynagrid-HV (67), PLS〈RND,⊀, ∗〉 (146)
99.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

999.07 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
10000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

Size 1000, Initial conditions RS
29.02 0 PLS〈OHI,⊀, 1∗〉, PLS〈RND,⊀, ∗〉 (75), Dynagrid-HV (150)
289.02 10.22 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (62), PLS〈RND,⊀, ∗〉 (136)
3104.75 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
30000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

Size 1000, Initial conditions TS
29.02 0 PLS〈OHI,⊀, 1∗〉, Dynagrid-HV (75), PLS〈RND,⊀, ∗〉 (150)
289.02 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
3104.75 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
30000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

Size 1000, Initial conditions HQS
29.02 2.79 PLS〈OHI,⊀, 1∗〉, Dynagrid-HV (76), PLS〈RND,⊀, ∗〉 (149)
289.02 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
3104.75 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
30000.00 0 Dynagrid-HV , PLS〈OHI,⊀, 1∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

QAP
Time ∆Rα Strategies (∆R)

Size 100, Correlation -0.75, Initial conditions RS
1.18 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
11.84 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
123.19 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
1200.00 18.722 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (48), PLS〈RND,⊀, ∗〉 (96)

Size 100, Correlation -0.75, Initial conditions TS
1.18 12.095 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (9), PLS〈RND,⊀, ∗〉 (117)
11.84 3.966 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (74), PLS〈RND,⊀, ∗〉 (148)
123.19 11.559 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (63), PLS〈RND,⊀, ∗〉 (132)
1200.00 23.767 PLS〈OHI,�⊀, ∗〉, Dynagrid-HV (15), PLS〈RND,⊀, ∗〉 (33)

Size 100, Correlation -0.75, Initial conditions HQS
1.18 11.937 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (15), PLS〈RND,⊀, ∗〉 (120)
11.84 12.173 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (51), PLS〈RND,⊀, ∗〉 (129)
123.19 16.328 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (63), PLS〈RND,⊀, ∗〉 (111)
1200.00 p-value > alpha (no significant difference)

Size 100, Correlation -0.5, Initial conditions RS
0.10 6.08 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (65), PLS〈RND,⊀, ∗〉 (145)
1.00 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
10.02 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
100.00 18.65 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (57), PLS〈RND,⊀, ∗〉 (96)

Size 100, Correlation -0.5, Initial conditions TS
0.10 8.31 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (72), PLS〈RND,⊀, ∗〉 (141)
1.00 11.87 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (17), PLS〈RND,⊀, ∗〉 (121)
10.02 6.82 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (72), PLS〈RND,⊀, ∗〉 (144)
100.00 18.51 PLS〈OHI,�⊀, ∗〉, Dynagrid-HV (10), PLS〈RND,⊀, ∗〉 (89)

Size 100, Correlation -0.5, Initial conditions HQS
0.10 16.74 PLS〈OHI,�⊀, ∗〉, PLS〈RND,⊀, ∗〉 (53), Dynagrid-HV (109)
1.00 9.82 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (61), PLS〈RND,⊀, ∗〉 (137)
10.02 12.92 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (78), PLS〈RND,⊀, ∗〉 (126)
100.00 21.68 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (53), PLS〈RND,⊀, ∗〉 (64)

Size 150, Correlation -0.75, Initial conditions RS
1.90 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
19.92 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
203.58 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
2000.00 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)

Size 150, Correlation -0.75, Initial conditions TS
1.90 9.75 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (45), PLS〈RND,⊀, ∗〉 (135)
19.92 2.79 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (73), PLS〈RND,⊀, ∗〉 (149)
203.58 5.56 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (76), PLS〈RND,⊀, ∗〉 (146)
2000.00 7.92 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (57), PLS〈RND,⊀, ∗〉 (141)

Size 150, Correlation -0.75, Initial conditions HQS
1.90 14.52 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (38), PLS〈RND,⊀, ∗〉 (118)
19.92 7.67 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (80), PLS〈RND,⊀, ∗〉 (142)
203.58 6.73 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (78), PLS〈RND,⊀, ∗〉 (144)
2000.00 6.08 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (65), PLS〈RND,⊀, ∗〉 (145)

Size 150, Correlation -0.5, Initial conditions RS
1.00 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
10.22 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
101.40 0 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (75), PLS〈RND,⊀, ∗〉 (150)
1000.00 15.62 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (62), PLS〈RND,⊀, ∗〉 (115)

Size 150, Correlation -0.5, Initial conditions TS
1.00 11.6 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (23), PLS〈RND,⊀, ∗〉 (124)
10.22 2.79 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (76), PLS〈RND,⊀, ∗〉 (149)
101.40 5.47 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (79), PLS〈RND,⊀, ∗〉 (146)
1000.00 17.67 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (15), PLS〈RND,⊀, ∗〉 (96)

Size 150, Correlation -0.5, Initial conditions HQS
1.00 16.06 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (7), PLS〈RND,⊀, ∗〉 (101)
10.22 6.18 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (77), PLS〈RND,⊀, ∗〉 (145)
101.40 6.73 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (78), PLS〈RND,⊀, ∗〉 (144)
1000.00 22.03 Dynagrid-HV , PLS〈OHI,�⊀, ∗〉 (1), PLS〈RND,⊀, ∗〉 (56)

30


	Introduction
	Pareto Local Search
	Multi-Objective Optimization
	The Original Pareto Local Search Algorithm
	Algorithmic Components of PLS

	Anytime Behavior of Pareto Local Search
	Alternative Algorithmic Components for Anytime Optimization
	Experimental Setup
	Initial Sets to Start PLS
	Performance Assessment of Non-Dominated Sets
	Experimental Benchmark, Computational Environment and Neighborhood Operators

	Experimental Evaluation of Alternative Components
	Selection Step
	Acceptance Criterion
	Neighborhood Exploration
	Combination of Components


	Dynagrid: Dynamic Objective Space Discretization for Anytime PLS
	Static Epsilon-Grid Discretization
	Dynamic Adaptation of Epsilon-Grid: Dynagrid
	Improving Dynagrid By Considering Hypervolume Contribution

	Comparison of Alternative PLS Components versus Dynagrid
	Scaling Behavior for Larger Instances
	Statistical Comparison of the Best Anytime PLS Algorithms

	Literature Survey of Related Work
	Conclusion

