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Cytomegalovirus (CMV) is the most common congenital infection and is the leading
non-genetic cause of neurological defects. CMV infection in early life is also associated
with intense and prolonged viral excretion, indicating limited control of viral replication.
This review summarizes our current understanding of the innate and adaptive immune
responses to CMV infection during fetal life and infancy. It illustrates the fact that studies
of congenital CMV infection have provided a proof of principle that the human fetus can
develop anti-viral innate and adaptive immune responses, indicating that such responses
should be inducible by vaccination in early life. The review also emphasizes the fact that
our understanding of the mechanisms involved in symptomatic congenital CMV infection
remains limited.
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INTRODUCTION
Cytomegaloviruses (CMV) belong to the betaherpesvirus fam-
ily and establish a lifelong infection in their host. A number of
species can be infected by CMV but each virus has adapted to its
host. Specifically, the virus infecting humans is unable to establish
a productive infection in animals (1). This review will be focused
on human CMV infection and data from mouse or non-human
primate CMV infection will be referred to when necessary. Dur-
ing the chronic phase of the human CMV infection, the virus
becomes latent and reactivates sporadically. Viral excretion during
the chronic phase can be related to the reactivation of the latent
virus or to superinfections with new CMV strains (2).

Human CMV is the most common congenital infection, affect-
ing 0.2–2.2% of all live births. Congenital CMV infection is the
leading non-genetic cause of neurological defects, including men-
tal retardation, cerebral palsy, and hearing impairment (3, 4).
Approximately 10% of CMV-infected newborns present clini-
cal signs and symptoms including small birth weight, petechiae,
jaundice, hepatosplenomegaly, microcephaly, and seizures. Symp-
tomatic infections are more common and more severe in newborns
infected during the first trimester of gestation. The prognosis of
symptomatic newborns is poor, as more than 90% have long-term
sequelae and mortality rates among the most affected ranges from
10 to 30%. Among asymptomatic newborns, 10–15% develops
long-term sequelae during the first years of life, primarily hearing
loss (5). Although 75–80% of infected newborns remain asymp-
tomatic, they all excrete the virus for at least 5 years after birth (6),
indicating a limited control of viral replication in some organs.

Post-natal CMV infection is usually asymptomatic but severe
disease, including respiratory distress syndrome and sepsis, can
develop in very premature babies (7). However, long-term seque-
lae have not been reported following post-natal CMV infection.
Prolonged viral excretion lasting for at least 2 years is also observed
following CMV infection in young children whereas it only lasts
several months in immunocompetent adults (8, 9). Together, these

observations indicate that the control of CMV replication is lim-
ited during early life as compared to adult life and that this reduced
viral control is associated with an increased risk of symptomatic
infection in the fetus and in the very premature newborn. Studies
of the immune response to CMV infection in early life have pro-
vided important information on the development of the human
immune system and on the capacity of the fetus to mount anti-
viral responses. However, our understanding of the pathogenesis
of symptomatic infections and of the mechanism involved in
the reduced control of viral replication remains limited. In this
review, we summarize the available data on the innate and adap-
tive immune responses to CMV infection in early life as compared
to adult life and we discuss their possible role in viral control and
in the development of symptomatic infections.

INNATE IMMUNE RESPONSES: γδ T LYMPHOCYTES AND
NATURAL KILLER CELLS
γδ T lymphocytes and natural killer (NK) cells are innate lym-
phocytes that develop and differentiate early during fetal life
(reviewed by Vermijlen and Prinz in this Research Topic). γδ T
cells express a receptor formed of a γ and a δ chain on their cell
surface and are a prototype of unconventional T cells: they can
react rapidly during the course of an immune response and they
are major histocompatibility complex (MHC)-unrestricted. NK
cells are innate lymphocytes that do not possess Rag recombinase-
dependent rearranged antigen receptors and that are activated by
the balance between activating and inhibitory invariant receptors.

γδ T LYMPHOCYTES
About 15 years ago, the group of Julie Déchanet-Merville reported
that γδ T cells participate in the response to CMV in solid organ
transplanted patients and that γδ T cell expansions are associated
with a better clinical outcome (10, 11). More recently, evidence of
a protective role of γδ T cells was obtained in the mouse model
of CMV infection (Myriam Capone and Julie Déchanet-Merville;
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Michael Mach and Thomas Winkler; 6th International γδ T cell
conference, May 2014, Chicago, USA). The γδ T cells expanded
by CMV in human adults are distinct from the phosphoantigen-
reactive Vγ9Vδ2 T cells and are collectively called Vδ2 negative
(Vδ2−) γδ T cells. Expansions of Vδ2− cells are also observed in
CMV-infected healthy adults and hematopoietic stem cell (HSC)
transplanted patients (12–14). The expansion of T cells expressing
particular combinations of Vγ and Vδ chains and the restriction
of the CDR3 repertoires among these cells strongly suggest an
antigen–ligand interaction. Confirming this prediction, a ligand
of a CMV-reactive Vγ4Vδ5 T cell receptor (TCR) derived from
an adult patient was recently shown to be the endothelial pro-
tein C receptor (EPCR) (15, 16). EPCR is a MHC-like molecule
that binds lipids analogously to the antigen-presenting molecule
CD1d. However, the Vγ4Vδ5 TCR binds EPCR in an antibody-like
way, independently of lipids. The EPCR-dependent recognition of
CMV-infected cells appears to be complex, as CMV infection does
not induce EPCR expression itself but rather promotes the expres-
sion of a co-stimulatory complex promoting the detection of CMV
infection by Vγ4Vδ5 cells (15). Importantly, although the Vγ4Vδ5
TCR binding EPCR was highly expanded in the single patient from
whom it was derived, this particular clone has not been detected
in other CMV-infected transplanted patients. This suggests that
other γδ TCR, that may recognize other ligands, participate in the
response to CMV infection in adults.

We have reported that congenital CMV infection elicits a
marked response of fetal γδ T cells (17). The fetal γδ T cell expan-
sions induced by CMV are restricted to Vγ9− cells and express
either Vδ1, Vδ2, or Vδ3 chains. So, in contrast to adults, CMV
induces the expansion of Vδ2+ cells in the fetus. Of note, these
fetal Vδ2+ cells are Vγ9− and are therefore distinct from the
“classical” phosphoantigen-responding Vγ9+Vδ2+ cells (17). As
Vγ9−Vδ2+ T cells are very rare in CMV seronegative or CMV
seropositive adults, it appears that CMV expands specific sub-
sets of γδ T cells in the fetus (10, 18). Strikingly, the fetal γδ

T cell population expanded by CMV is also enriched in a pub-
lic TCR formed by the Vγ8 and the Vδ1 chains and containing
the germ-line-encoded (no nucleotide addition between the V,
D, and J gene segments) CDR3δ1-CALGELGDDKLIF/CDR3γ8-
CATWDTTGWFKIF sequences. Cells expressing this public TCR
were detected as early as 21 weeks of gestation (17). Recently,
the same CDR3γ8-CATWDTTGWFKIF sequence was detected
in healthy adults (of unknown CMV status) by high-throughput
sequencing of the γ gamma chain repertoire (19). Until now, the
public CDR3δ1 sequence detected in CMV-infected fetuses has
not been detected in adults, either during primary of chronic
CMV infection (Vermijlen et al., unpublished observation). These
observations suggest important differences between the fetal and
the adult γδ T cell repertoires (discussed in this Research Topic
by Vermijlen and Prinz). This notion is supported by the fact that
public CDR3δ2 and CDR3δ3 chains were also readily expanded
in CMV-infected fetuses (17) (and Vermijlen et al., unpublished
observation) but not in CMV-infected adults with solid organ
transplantation (10, 12). Of note, the fetal public CDR3 sequences
were completely germline-encoded, a characteristic that probably
contributes to a higher probability of becoming a public CDR3δ

chain (17).

The fetal γδ T cells induced by CMV infection express a type 1
effector phenotype, including the transcription factors T-bet and
Eomes, the anti-viral cytokine IFN-γ, the cytolytic molecules per-
forin and granzymes as well as a range of NK receptors. Clones
derived from CMV-infected newborns and expressing the public
Vγ8Vδ1 TCR produce IFN-γ in a TCR/CD3-dependent manner
upon incubation with CMV-infected target cells and show anti-
viral activity (17). These data indicate that functional fetal γδ T cell
responses can be generated during fetal life and suggest that this
T cell subset could participate in the control of CMV replication.
The role of γδ T cells may be particularly important in early life
as this subset develops earlier than conventional αβ T cells during
immune ontogeny in humans and mice. Accordingly, a central role
of γδ T cells in immunity in early life has been demonstrated in
a mouse model of intestinal parasite infection (20). However, as
discussed later in this review, the possibility that γδ T cells as well
as other components of the immune response, may contribute to
fetal immunopathology cannot be excluded.

NATURAL KILLER CELLS
Natural killer cells play an important role in the immune response
to human CMV infection, as indicated by the multiple immune
evasion strategies developed by the virus to escape NK cell control
(21). As in other viral infections, the control of CMV replication by
NK cells depends on the balance between activating and inhibitory
receptors. In the mouse, NK cell depletion was shown to result
in decreased viral control indicating that the balance is in favor
of NK cell activation (22). In humans, CMV infection has been
associated with the expansion of NKG2C+ NK cells in healthy
subjects, in patients co-infected with HIV or hantavirus and in
HSC-transplanted patients (23–28). NKG2C is an activating recep-
tor recognizing HLA-E. Cell surface HLA-E expression is increased
by the signal peptide of the human CMV UL40 protein, indicat-
ing that NKG2C+ NK cells may be stimulated by CMV-infected
cells (29). More recently, a stable imprint of CMV infection has
been described on the repertoire of killer cell immunoglobulin
like receptors (KIRs) in healthy adults (30). Together, these obser-
vations indicate that specific subsets of NK cells are selectively
expanded by human CMV infection. These cells may have a“mem-
ory” phenotype as it was described for mouse NK cells expressing
the Ly49H receptor and recognizing the m157 mouse CMV protein
(31, 32).

Expansions of NKG2C+ NK cells have also been observed in
young children infected in utero with CMV and the frequencies
of NKG2C+ NK cells were higher in symptomatic as compared
to asymptomatic children (33). The potential role of NKG2C+

NK cells in congenital CMV infection was evaluated by assess-
ing the number of copies of the NKG2C gene. About 4% of
Japanese and European adults have a complete deletion of the
NKG2C gene and 32–34% of the populations are heterozygous
(34, 35). The NKG2C deletion frequency was comparable in chil-
dren with congenital CMV infection and in uninfected controls
(33). However, homozygous children had higher numbers of cir-
culating NKG2C+ NK cells and total NK cells as compared to
heterozygous children. These results suggest that NKG2C has an
impact on NK cell homeostasis during CMV infection in early life
but is not an essential determinant of CMV infection in exposed

Frontiers in Immunology | Immunotherapies and Vaccines October 2014 | Volume 5 | Article 552 | 2

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Huygens et al. Immunity to CMV in early life

fetuses. This hypothesis is further supported by a recent report
showing an association between deletions at the NKG2C locus
and the frequency of differentiated CD57+ NK cells in CMV-
infected children (36). The role of NK cells in the control of CMV
infection in early life is supported by the report of a 3-month-old
T−B+NK+ SCID infant who presented with a CMV gastroenteri-
tis that resolved spontaneously without anti-viral treatment (37).
NKG2C+ NK cells expressing a biased KIR repertoire were highly
expanded in this patient and normalized when CMV viral load
declined. Finally, CMV infection was shown to induce the matura-
tion of NK cells after cord blood transplantation (28). Interestingly,
this maturation is also observed in patients transplanted with
NKG2C−/− cord blood cells, indicating that activating KIRs can
also be involved (38).

INNATE IMMUNE RESPONSES: DENDRITIC CELLS
Human dendritic cells (DCs) can be classified into myeloïd DCs
(mDCs), whose main function is to prime and functionally polar-
ize naive T lymphocytes, and plasmacytoïd DCs (pDCs) that
produce high levels of type I interferons (IFNs). The interactions
between CMV and human DCs have been studied in vitro using
monocyte-derived DCs (moDCs) as a model of mDCs, CD34+

bone marrow progenitor cell-derived Langerhans cell-type DCs
(LDCs) as well as differentiated mDCs and pDCs purified from
peripheral blood. In the presence of CMV, adult mDCs, moDCs,
and pDCs produce high levels of pro-inflammatory cytokines and
type I IFNs (39–41). This activation of cytokine production by
moDCs and LDCs is associated with a decreased expression of
MHC and co-stimulatory molecules and with a reduced capac-
ity to stimulate T lymphocytes, suggesting an immune evasion
mechanism developed by the virus (42, 43). However, experiments
involving blood mDCs purified from healthy adults indicated no
interference with T cell stimulation (40). Inhibition of T cell acti-
vating properties was also observed in in vitro models of DC
infection by mouse CMV. In contrast, CMV markedly activates
mouse DCs in vivo and enables them to stimulate potent T cell
responses to the virus [reviewed in Ref. (44)]. These discrepancies
between in vitro and in vivo data have been attributed to differ-
ences in the nature of the DCs involved and to differences in the
frequency of cells infected by the virus (44).

Dendritic cells are detected early during the ontogeny of the
human immune system but their functional program is different
from that of adult DCs (reviewed in this Research Topic by De
Kleer et al.). Most of our current understanding of the biology of
DCs in early life comes from studies of the interactions between
pathogen-associated molecular patterns (PAMPs) with specific
innate receptors. In contrast, how DCs interact with complex
pathogens remains poorly understood. In vitro studies have shown
that cord blood-derived moDCs and adult moDCs are equally sus-
ceptible to CMV infection (39). As observed following activation
with PAMPs, cord blood moDCs infected with CMV produce low
levels of IL-12, IFN-β, and IFN-λ1 as compared to adult cells (39).
Similarly, cord blood pDCs produce lower amounts of IFN-α than
adult pDCs upon in vitro incubation with CMV (45). In con-
trast, cord blood and adult moDCs infected with CMV produce
similar levels of IFN-α and IFN-inducible genes, suggesting that
mDCs may represent an important source of type I IFNs during

CMV infection (39). The reduced capacity of newborn moDCs to
produce IL-12, IFN-β, and IFN-λ1 in response to CMV infection
probably involves a defective activation and nuclear translocation
of IRF3. In contrast, the adult-like production of IFN-α may be
related to IRF3-independent pathways (46). As discussed below,
the reduced capacity of newborn DCs to produce IL-12 upon CMV
infection may limit their capacity to promote the differentiation of
Th1 cells and effector CD8 T cells. However, Th1 and effector CD8
T cell responses were shown to be induced independently of IL-12
in several experimental settings (47–50). Also, as indicated above,
mouse studies have shown that the results obtained with in vitro
models of CMV–DC interactions may not predict the responses
of DCs to CMV infection in vivo.

ADAPTIVE IMMUNE RESPONSES: αβ T LYMPHOCYTES
More than 20 years ago, studies of mouse CMV infection demon-
strated the central role played by αβ CD4 and CD8 T lymphocytes
in the control of CMV infection (51–53). Clinical studies of adult
transplanted patients indicated that the development of potent T
cell responses to CMV is associated with a better clinical outcome.
Furthermore, adoptive transfer of CMV-specific T cell clones
demonstrated that T lymphocytes efficiently control CMV repli-
cation in humans (54–59). CD8 T lymphocytes are the dominant
T cell population in the brain of neonatally infected mice and play
a central role in the control of CMV replication in this organ (60).

The characteristics of CMV-specific T cells have been abun-
dantly studied during the chronic phase of the infection and
these studies have significantly contributed to our understand-
ing of anti-viral immunity in humans. A central feature of the
T cell response to CMV infection is that it involves large clonal
expansions occupying an important fraction of the T cell pool.
A comprehensive antigen repertoire analysis indicated that CMV-
specific T cells comprise on average 10% of the total CD4 and
CD8 memory T cell compartments in chronically infected healthy
adults (61). A second feature of the T cell response to CMV is that it
includes a large proportion of cells expressing a late differentiation
phenotype characterized by the loss of expression of the CD27 and
CD28 co-stimulatory molecules, a phenotype that is not or rarely
induced by other viral infections (62, 63). CMV-specific CD4 and
CD8 T cells produce high levels of anti-viral cytokines, including
IFN-γ, TNF-α, and MIP-1β, following in vitro stimulation with
viral antigens and both subsets express high levels of perforin and
granzyme and are cytolytic (64, 65).

As primary CMV infection is usually asymptomatic in
immunocompetent adults, studies of the early phase of the infec-
tion are relatively scarce and primarily involve populations of
transplanted patients and of pregnant women screened for CMV
infection. Primary CMV infection in adults is characterized by a
period of intense viral excretion in several body fluids that lasts
on average 6 months (9, 66). Viremia is controlled more rapidly
than viral excretion in body fluids but can persist several weeks
to months despite the presence of CMV-specific T cells (67).
Indeed, high frequencies of CMV-specific CD4 and CD8 T cells
appear early following primary CMV infection and the peak of
their response is followed by a drop in peripheral blood viral load
(68–70). The intense viral replication and excretion taking place
during the first months of primary CMV infection is associated
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with a reduced capacity of CMV-specific CD4 T cells to prolifer-
ate and to produce IL-2 (69, 71). The acquisition of CD4 T cell
proliferative responses correlates with the control of viremia and
with a reduced risk of mother-to-fetus transmission of CMV (67).
These defective IL-2 and proliferative responses are associated with
a lower functional avidity of CMV-specific CD4 T cells and with
a lower production of the anti-viral cytokines IFN-γ and TNF-α
as compared to the chronic stage of the infection (71). This state
of functional unresponsiveness is associated with the upregulation
of the inhibitory receptor program cell death (PD)-1 and inhibi-
tion of PD-1 increases CD4 T cell proliferative responses (71, 72).
Together, these results indicate that the prolonged viral replication
associated with primary CMV infection in adults is associated with
a state of functional exhaustion of CD4 T cells similar to the one
observed in patients with chronic HIV or hepatitis infections (73).

Historical studies detected weak or no T cell responses to con-
genital CMV infection. This defect lasted up to 5 years and was
more severe in symptomatic children (6, 74). More recent studies
using more sensitive assays demonstrated large responses of CD8
T cells following congenital or early post-natal CMV infection (8,
75–81). Fetal T cells activated in utero by CMV infection acquire a
late differentiation phenotype (CD27−/CD28−) equivalent to the
one acquired by adult T cells (75, 78, 79, 82). The differentiated
CD8 T cell population contains large expansions of a restricted
number of clones, strongly suggesting an antigen-specific rather
than a bystander response (75). Direct evidence for antigen-
specific responses was obtained using MHC class I tetramer stain-
ing and short-term peptide stimulation assays. CMV-specific fetal
CD8 T cells produce anti-viral cytokines, including IFN-γ, TNF-
α, and MIP-1β and express perforin-dependent cytolytic activity
(75–77, 80). CD8 T cell responses to CMV have been detected in
samples collected by cordocentesis as early as 22 and 28 weeks of
gestation (75, 81). As single positive CD8 T cells can be detected in
the human fetus by 14 weeks of gestation, it is likely that this subset
participates in the defense against CMV infection from the second
trimester of gestation (83). However, whether the magnitude and
the quality of this response are equivalent to that of adults has not
been studied in detail. Longitudinal studies of children infected
in utero or soon after birth indicate that the frequency of CMV-
specific IFN-γ-producing CD8 T cells as well as the repertoire of
peptides they respond to increase during the first year of life (77,
78). As CMV-specific CD8 T cells were identified in these studies
on the basis of their production of cytokines, it is unclear whether
their increasing frequency with time after infection is related to cell
multiplication or to an increased capacity to produce cytokines.

In contrast to CD8 T cell responses, very low or no CD4 T cell
responses to CMV are usually detected in young children infected
in utero or soon after birth (8, 74, 80). Similar results are obtained
using either proliferation or cytokine production assays follow-
ing in vitro stimulation with CMV antigens. These observations
contrast with the rapid expansion of CMV-specific CD4 T cells fol-
lowing primary infection in adults (68–70, 80). It is unclear from
the current literature whether the low responses observed in early
life involve a defective expansion of CMV-specific CD4 T cells or
an impaired differentiation of effector cells. Our recent studies
indicate that congenital CMV infection is associated with large
oligoclonal expansions of CD4 T cells expressing a Th1 phenotype

and having a restricted capacity to produce effector cytokines as
compared to adult cells (Huygens et al., unpublished observa-
tions). These results suggest that primary CMV infection in adults
and in the fetus is associated with the functional exhaustion of
virus-specific CD4 T cells and that the magnitude of this phe-
nomenon is particularly intense during fetal life. A more intense
functional exhaustion of fetal T cells could be related to their pro-
longed exposure to higher antigen loads, as observed in chronic
viral infections in humans and animals (73, 84–89). Indeed, clin-
ical studies indicate that higher CMV viral loads are detected
in the blood and urine of congenitally infected newborns and
post-natally infected infants as compared to adults (5, 67, 90–
92). Further supporting this possibility, CMV-specific CD4 T cells
responses increase during the first 2 years of life and the cessation
of viruria was shown to be associated with the acquisition of pro-
liferative T cell responses to CMV in congenitally infected children
(6, 80).

It could be expected that the functional regulation of CD4 T
cell responses to CMV in early life associated with high viral loads
may also affect CD8 T cells. Indeed, our recent studies using MHC
class I tetramer stainings indicate that CMV-specific fetal CD8
T cells have a reduced capacity to produce anti-viral cytokines
as compared to adult cells (Huygens et al., unpublished obser-
vations). These results suggest that the increased frequency of
cytokine-producing CD8 T cells observed during the first year after
congenital CMV infection is related to an increase in their func-
tional capacity (77, 78). Interestingly, a limited capacity of CD8
T cells to produce effector cytokines was also observed in chil-
dren infected with HIV (93). Together, these results suggest that
functional exhaustion may be an important mechanism limiting
anti-viral αβ T cell responses in early life.

ADAPTIVE IMMUNE RESPONSES: B LYMPHOCYTES
Studies of mouse CMV indicate that neutralizing antibodies pro-
tect against primary infection and reactivation by limiting viral
dissemination in tissues and that transfer of B lymphocytes from
immune animals protects immunocompromised hosts against
lethal infection (94, 95). Antibodies also reduce CMV replica-
tion in the brain of neonatally infected mice and attenuate the
morphological alterations caused by the virus (96). In humans,
immunization with an adjuvanted CMV glycoprotein B vaccine
primarily stimulating the production neutralizing antibodies pro-
tected against infection and viral replication (97, 98). On the other
hand, CMV hyperimmune IgG (HIG) have been shown to provide
protection against CMV-associated mortality in solid organ trans-
planted patients (99). HIG was also proposed for the prevention
of mother-to-fetus transmission of CMV following primary infec-
tion during pregnancy but a recent randomized trial did not sup-
port this approach (100, 101). The impact of maternal antibodies
on the post-natal transmission of CMV infection remains unclear.
The avidity of breast milk IgG was shown to be inversely correlated
with CMV milk viral load (102). However, intense transmission
through breastfeeding is observed in areas where maternal CMV
infection is universal and where babies are born with high lev-
els of maternal antibodies (103). These observations suggest that
maternal antibodies may not be sufficient to control the large viral
load to which infants are exposed through breastfeeding.
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Despite the evidence that antibodies are an important com-
ponent of immunity against CMV, very little is known about the
B lymphocyte response to CMV infection in humans. In chroni-
cally infected adults, an important part of the antibody response
is directed against tegument proteins. On the other hand, the
envelope glycoprotein B and UL128–131 pentamer complex are
important targets of antibodies neutralizing CMV infection of
fibroblasts and epithelial cells, respectively (104). Intriguingly, pri-
mary CMV infection is associated with the rapid acquisition of
antibodies directed against tegument proteins whereas envelope
glycoprotein-specific antibodies are only acquired after several
months (105). These observations suggest that CMV has devel-
oped evasion mechanisms delaying the acquisition of neutralizing
antibodies and that this may favor virus dissemination. Supporting
this hypothesis, the rapid acquisition of neutralizing antibodies,
particularly against epithelial cell infection, was shown to be asso-
ciated with a decreased risk of mother-to-fetus transmission of
CMV (106). The mechanism involved in the delayed production
of CMV envelope glycoprotein-specific antibodies has not been
elucidated. We recently reported that primary CMV infection in
pregnancy has an important impact on memory B cell subsets.
Indeed, large and sustained expansions of virus-specific activated
(CD27+CD20+CD21low) and atypical (CD27−CD20+CD21low)
memory B cells are detected in pregnant women diagnosed with
primary CMV infection, particularly in those who were viremic
at the time of analysis (107). Increased frequencies of activated
and atypical memory B cells have also been detected during HIV
infection and have been suggested to play an important role
in the defective antibody responses observed in these patients
(108). As observed in HIV-infected patients, atypical memory B
cells have a phenotype of exhausted cells during primary CMV
infection. This phenotype is characterized by the upregulation
of multiple inhibitory receptors and a decreased production of
cytokines (107). Further studies are needed to define the role
of memory B cell subsets in the delayed production of envelope
glycoprotein-specific B cells following primary CMV infection.

Very little is known about the B cell response to CMV infec-
tion in early life. Studies have shown that CMV-specific IgM are
commonly detected in congenitally infected newborns (109–111).
As maternal IgG are transferred through the placenta from the
second trimester of gestation, the capacity of the fetus to develop
a class-switched antibody response and to produce neutralizing
antibodies cannot be assessed by serology. Direct analyses of fetal
B cells will be required to address this important question. Several
parameters are likely to limit B cell responses to CMV in early life.
Firstly, vaccine studies indicated that the capacity of the newborn
and the young infant to differentiate antibody-secreting plasma
cells is lower than in adults. This limitation may be related to the
intrinsic characteristics of B lymphocytes in early life and to a lim-
ited help provided by follicular helper T cells, as observed in animal
models (112). Secondly, the intense viral replication observed in
CMV-infected fetuses and young infants may induce an impor-
tant functional exhaustion of B lymphocytes, as observed in adults
(107). Finally, maternal antibodies transferred in utero may inhibit
B cell responses to CMV in the fetus and in the young infant as they
inhibit B cell responses to vaccines (reviewed by Niewiesk in this
Research Topic). Study of the B cell response to CMV in early life

should help us understand the potential contribution of this sub-
set in viral control and may also provide important information
on the ontogeny of B cell responses during fetal life.

CONCLUDING REMARKS AND PERSPECTIVES
The study of the immune response to CMV infection during fetal
life and infancy demonstrated that cellular immune responses
can be induced very early during the ontogeny of the human
immune system (Table 1). Effector γδ T cells with anti-viral prop-
erties expand and differentiate during fetal life. Intriguingly, CMV
expands different γδ T cell populations in the fetus and in the adult.
This may be related to differences in the repertoire of γδ T cells
in early life and/or in the ligands induced by CMV in fetuses and
adults (discussed by Vermijlen and Prinz in this Research Topic).
Studies should be conducted to better understand the physiologi-
cal development of this important T cell subset in humans. CMV
infection in early life also activates NK cells with anti-viral poten-
tial. γδ T cells and NK cells are the first lymphocytes to develop
during fetal life and could therefore play a very important role in
the control of CMV infection during the first months of gestation.
CMV infection during fetal life induced the expansion and the
differentiation of effector CD4 and CD8 T cells. Effector CD8 T
cell responses are also triggered by congenital HIV, Trypanosoma
cruzi, and Toxoplasma gondii infections, indicating the capacity of
the fetal immune system to respond to a range of different intra-
cellular pathogens (113–118). These observations have important
implications for the immunization of newborns against intracel-
lular pathogens. Indeed, if effector T cell responses can be induced
in utero following natural infections, similar responses should be
inducible by neonatal vaccination.

The development of anti-viral effector T cells during fetal life
also indicates that the fetal immune system is not systematically
programed against inflammatory responses. Indeed, if the relative
defect of cord blood DCs to produce type 1 IFNs and IL-12 can be
extrapolated to DCs in the fetal organs, it does not appear to pre-
vent the differentiation of pathogen-specific cytolytic CD8 T cells
or Th1 cells (46). The differentiation of effector γδ T cells may not
require interactions with DCs as they may be directly stimulated
by the ligands expressed by infected cells in tissues (119). Identi-
fication of the ligand(s) of the public γδ TCR(s) expanded upon
congenital CMV infection, will not only provide insight into the
immune response toward CMV, but also into the general biology
of γδ T cells. Once activated, γδ T cells, as well as NK cells, may in
turn induce fetal DC maturation and thereby promote the differ-
entiation of αβ effector T cells (120–122). Also, the development
of effector T cell responses against intracellular pathogens such as
CMV does not appear to be prevented by the regulatory T cells
and erythroid cells that are detected at high frequencies during
fetal life and at birth (123, 124). It will be important to determine
whether these fetal regulatory cells are activated by CMV infection
and whether they impact effector T cell responses.

Large oligoclonal expansions of fetal CD8 and CD4 T cells
are detected following congenital CMV infection. It is unclear
whether the repertoire diversity of the fetal T cells activated by
CMV is similar to the one triggered by the virus in adults. In
neonatal mice, the activity of terminal deoxynucleotide trans-
ferase (TdT), the enzyme responsible for template-independent
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Table 1 | Immune response to CMV infection in early life: characteristics and gaps in knowledge.

Available information for early life infection Gaps in knowledge

INNATE IMMUNE RESPONSE

γδ T cells - Expansion of fetal Vγ9− cells with public TCRs (17) - Evolution of repertoire from fetal to adult life

- Anti-viral activity in vitro (17) - Identification of fetal γδ TCR ligands

- Role in viral control and in immunopathology following congenital

infection

NK cells - Expansion of NKG2C+ cells in infants (23–28) - Anti-viral activity of NK cells activated in early life

- Role in viral control and in immunopathology following congenital

infection

Dendritic cells - pDCs: limited production of IFN-α (45) - In vivo responses to early life infection

- moDCs: limited production of IL-12, IFN-β, and

IFN-λ1 and adult-type production of IFN-α and

IFN-inducible genes (39)

- Role of DC subsets in promoting adaptive immune responses in early

life

ADAPTIVE IMMUNE RESPONSE

CD8 T cells - Large clonal expansions of differentiated cells with

anti-viral activity (8, 75–82)

- Functional capacity and repertoire diversity of fetal and infant cells

- Persistence of memory cells following infection in early life

- Role in viral control and in immunopathology following congenital

infection

CD4 T cells - Limited frequencies of cytokine-producing cells

(8, 74, 80)

- Magnitude of response, repertoire diversity, and functional

programing of cells

- Mechanism underlying limited functional responses in the fetus and

young infant and the emergence of responses in older children

- Persistence of memory cells following infection in early life

- Role in viral control and in immunopathology following congenital

infection

B cells - IgM responses (109–111) - Development of effector cells and persistence of memory cells

following infection in early life

- Impact of maternal antibodies on fetal and infant B cell responses

- Role in viral control following infection in early life

Regulatory T cells

and erythroblasts

- No information available - In vivo responses to early life infection
- Role in controlling adaptive and innate responses in early life

nucleotide additions, is detected around 1 week of life and this
activity correlates with the acquisition of an increased diversity of
CDR3 sequences (125). In humans, TdT activity is detectable in
the fetal thymus from the 20th week of gestation (126). As single
positive thymocytes are already detected at 14th week of gestation,
the diversity of the T cell repertoire may increase during the second
trimester of gestation in humans as it does during the first week
after birth in the mouse and this may influence the recognition of
pathogen-derived peptides (125). Another dimension of the αβ T
cell response to CMV in early life that has not been studied is the
persistence of effector T lymphocytes. Longitudinal analyses of T
cell repertoire in kidney transplanted adults showed that CMV-
specific CD8 T cell clones that emerge during the early phase of
primary infection are maintained at high frequencies during the
next 5 years (127). Recent mouse studies indicated that the rapid
proliferation and differentiation of effector CD8 T cells impair the

development of memory cells in early life (128). It will be impor-
tant to determine whether a similar process limits the maintenance
of anti-viral T cells in early life in humans.

The development of effector and memory B cell responses
in early life remains poorly understood. This gap of knowledge
remains a major limitation to the improvement of neonatal immu-
nization strategies (112, 129). The study of the B cell response to
congenital CMV infection could provide important insight into
the molecular mechanisms controlling the differentiation and the
survival of B lymphocytes in early life.

As discussed above, our recent observations indicate that effec-
tor CD8 and CD4 T cells are functionally exhausted during pri-
mary CMV infection and suggest that this phenomenon is particu-
larly intense in early life. This intense degree of functional exhaus-
tion may be related to a more intense CMV replication in the fetus
and young infant than in the adult. A similar association between
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functional exhaustion and intense viral excretion was observed
following primary CMV infection of juvenile rhesus macaques
(130). As described in animal models of chronic viral infections,
the reduced anti-viral properties of exhausted T lymphocytes may,
in turn, limit their capacity to control CMV replication. Directly
assessing the impact of T cell exhaustion on CMV replication will
require an animal model such as the one recently described in
rhesus macaques (130). Of note, mouse studies have shown that
CMV replication in the salivary glands and viral excretion in saliva
are primarily controlled by CD4 T lymphocytes (52). Defining
whether human CD4 T cells are also central to the control of
viral replication in salivary glands and in the kidney has potential
implications for the design of vaccines aiming at reducing CMV
transmission.

Finally, our understanding of the pathogenesis of sympto-
matic congenital CMV infection in humans remains very lim-
ited. However, mouse studies have provided important insights in
the potential mechanisms involved and suggest that the immune
response to CMV may play a dual role in the neurological pathol-
ogy of neonatal mice by controlling CMV replication but also
by inducing inflammatory responses promoting developmental
abnormalities [reviewed in Ref. (131)]. The few histopatholog-
ical studies of symptomatic human fetuses indicate that severe
brain lesions, including microglial nodules, necrosis, and polymi-
crogyria, are associated with high tissue CMV viral load and
with intense infiltration of CD8 T lymphocytes. Tissue necrosis
may involve CD8 T cell-dependent immunopathology but may
also be caused by the hypoxia resulting from the dysfunction
of the CMV-infected placenta (132). Biomarker studies indicate
that severe brain damage in the fetus is correlated with periph-
eral blood viral load and with the intensity of the immune
response, measured as the plasma levels of β2-microglobulin and
anti-CMV IgM (91). Further studies are needed to increase our
understanding of the role of the immune system in the patho-
genesis of symptomatic congenital CMV infection and to identify
markers predicting the development of neurological complica-
tions in utero and after birth. Ganciclovir is recommended for
the prevention of long-term neurological sequelae in sympto-
matic infants (133). If the inflammatory response induced by
CMV plays a role in the development of these sequelae, anti-
inflammatory agents may complement this therapeutic strategy
(131). However, if research efforts are needed to better understand
the pathogenesis of congenital CMV infection and to develop bet-
ter therapies for affected children, the control of the disabilities
caused by congenital infection will require the development of an
efficient vaccine preventing the transmission of the virus to the
fetus.
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