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Abstract

We discuss a number of novel steplength selection schemes for proximal-based
convex optimization algorithms. In particular, we consider the problem where
the Lipschitz constant of the gradient of the smooth part of the objective func-
tion is unknown. We generalize two optimization algorithms of Khobotov type
and prove convergence. We also take into account possible inaccurate compu-
tation of the proximal operator of the non-smooth part of the objective func-
tion. Secondly, we show convergence of an iterative algorithm with Armijo-type
steplength rule, and discuss its use with an approximate computation of the
proximal operator. Numerical experiments show the efficiency of the methods
in comparison to some existing schemes.
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1. Introduction

In this paper we consider the problem of minimizing the sum of two given
functions

min
x∈RN

F(x) ≡ f(x) + g(x) (1)

where f : RN −→ R is a convex, continuously differentiable function and g :
RN −→ R is an extended-value convex function, possibly including constraints
on the unknown.

The minimization problem (1) has been handled by several algorithms es-
pecially tailored to deal with a non-differentiable function g. In particular,
numerical schemes known in the literature as proximal gradient methods have
earned a great popularity in the last years. They find a very general applicabil-
ity in problems concerning with large or high-dimensional datasets from several
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scientific areas, like compressed sensing, machine learning and signal processing
(see for example [1, 2, 3, 4]).

In this paper we discuss new techniques to select the steplength in the prox-
imal gradient methods, without the assumption of knowing the Lipschitz con-
stant of the gradient of the smooth part of the objective function. We start our
analysis from two approaches developed in the constrained differentiable opti-
mization context: the Khobotov extra-gradient method [5, 6] and the gradient
projection method along the feasible directions [7]. Due to the non-smooth term
g in the function (1), a possible generalization of these algorithms has to account
for the presence of the proximal operator of this term instead of a projection
onto a suitable set.

We study several extensions of constrained optimization algorithms of Khobo-
tov type. In particular, we propose an extension of Khobotov’s original scheme
[5] to the more general proximal case. We prove convergence, even when the
proximal operators cannot be computed exactly. We also consider the saddle-
point formulation for the minimization problem (1). The so-called Alternating
Extragradient Method (AEM) [8] is a variant of Khobotov’s method for con-
strained smooth saddle-point problems. We propose a generalization of the
AEM algorithm for a general (not necessarily smooth) saddle-point problem.
This extension is again achieved through the use of the proximal operator of
the non-smooth part of the objective function. Again, none of these algorithms
require any knowledge of the Lipschitz constant of the gradient of the smooth
part of the objective function. Such a problem is also recently discussed in [9].

Secondly, and following the basic idea behind the gradient projection meth-
ods, we suggest an iterative proximal algorithm that exploits an Armijo-type
steplength selection rule similar to [10]. A proof of convergence of the algo-
rithm is provided. We also explore its use in case only an approximation for the
required proximal operator is available.

Finally, in order to evaluate the effectiveness of the presented methods, we
conduct a numerical study on some signal recovering test problems that can be
modeled by equation (1): the performance of the discussed schemes is assessed
through a comparison with some algorithms already known in the literature and
designed to solve this type of problems.

Several problems arising from real-world applications [11, 12, 13] can be
formalized through the mathematical model introduced in equation (1): the ap-
plications of this work will be focused on one-dimensional and two-dimensional
signal restoration problems with data perturbed by Poisson noise [14, 15, 16].
Signal and image restoration consist in recovering an approximation of an ob-
ject detected by an acquisition system, starting from the data provided by the
instrument and a model representing the distortion occurring during the acqui-
sition process itself. More precisely, the signal formation process is an inverse
problem that can be formalized through a linear system g = Hx+ b+ η where
g ∈ RM is the observed data, x ∈ RN represents an ideal, undistorted object
to be recovered, H ∈ RM×N is a typically ill-conditioned matrix describing the
acquisition instrument effect, b ∈ RM expresses a non-negative constant back-
ground radiation and η ∈ RM is the noise corrupting the data. In this paper
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we will work under the hypothesis of having non-negative signals, therefore we
will take into account this type of constraint in the problem formulation. In
the Bayesian approach [17, 18], the approximated restored signal is found by
solving the following optimization problem

min
x≥0

J0(x) + µJR(x), (2)

where J0 : RN −→ R is a continuously differentiable function measuring the
distance between the model and the data, JR : RN −→ R is a regularization
term adding a priori information on the solution and µ is a positive parameter
balancing the role of the two objective function components J0 and JR. When
the data are affected by Poisson noise, the so-called Kullback-Leibler divergence
is used to describe J0:

J0(x) = KL(x) =

N∑

i=1

{
gi ln

gi

(Hx+ b)i
+ (Hx+ b)i − gi

}
(3)

with gi ln(gi) = 0 if gi = 0. As for the regularization term, we will consider
properly chosen functionals that enforce a priori information depending on the
features of the problem.

2. Mathematical tools

This section recalls some useful definitions and properties on proximal opera-
tors and describes a well-known proximal gradient method. For a more complete
discussion of proximal operator methods we refer the reader to [4, 3, 19, 20].
In the following we consider convex function that are proper (nowhere equal to
−∞ and not identically equal to +∞) and lower semi-continuous.

2.1. Proximal operators

The proximal operator proxh : RN −→ RN of a convex function h : RN −→ R
is defined as:

proxh(u) = argmin
x∈RN

1

2
‖x− u‖2 + h(x).

We remark that if h is convex and closed then proxh(u) exists and is unique
for all u ∈ RN .

Lemma 1 (Subgradient characterization). Let h : RN −→ R be an extended-
value function. The following characterization for the proximal operator of h
holds true: x = proxh(u) if and only if u − x ∈ ∂h(x) if and only if h(z) ≥
h(x) + 〈u − x, z − x〉, ∀z ∈ RN .

Proof. See [3].

Remark 1. From lemma 1 and by setting w = u−x, it follows that w ∈ ∂h(x)
iff x = proxh(x+w).
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Remark 2. The minimizer x̂ of problem (1) is characterized by the inclusion
0 ∈ ∇f(x̂) + ∂g(x̂), or equivalently by the relations α∇f(x̂) + w = 0 and
w ∈ ∂αg(x̂) with α > 0. Using Remark 1, these can be rewritten as the single
condition

x̂ = proxαg(x̂− α∇f(x̂)), α > 0. (4)

Lemma 2. Let h : RN −→ R be an extended-value convex function. The
proximal operator of h is a Lipschitz continuous function with constant 1:

‖proxh(u)− proxh(ũ)‖ ≤ ‖u− ũ‖, ∀u, ũ ∈ RN . (5)

Proof. See [3].

Remark 3. For fixed u ∈ RN and fixed function g, it can also be shown that
proxαg(u) is a continuous functions of α, for α > 0. It then follows from

Lemma 2 that proxαg(x) is continuous in (α,x) for all x ∈ RN and all α > 0.

The conjugate function h∗ : RN −→ R of a convex function h : RN −→ R is
defined as

h∗(w) = sup
x∈RN

〈w,x〉 − h(x).

Lemma 3 (Moreau decomposition). Given a convex function h : RN −→ R
and its conjugate h∗ : RN −→ R, their proximal operators are related by the
identity: proxh∗(u) + proxh(u) = u, ∀u ∈ RN .

Lemma 4. Let x+,x− and ∆ ∈ RN and h : RN −→ R be an extended-value
convex function. If x+ = proxh(x

− +∆) then

‖x+−x‖ ≤ ‖x−−x‖2−‖x+−x−‖2+2〈x+−x,∆〉+2h(x)−2h(x+), ∀x ∈ RN .
(6)

Proof. A simple application of the lemma 1 is sufficient to prove the required
inequality. Indeed, if x+ = proxh(x

− +∆) then

h(x) ≥ h(x+) + 〈x− − x+,x− x+〉+ 〈∆,x− x+〉

= h(x+) +
1

2
‖x+ − x−‖2 + 1

2
‖x+ − x‖2 − 1

2
‖x− − x‖2 − 〈x+ − x,∆〉

which gives (6).

Let us remark that it is possible to find an explicit expression for the proximal
operator of some special functions. If h : RN −→ R is the indicator function of a
closed, non-empty and convex set C: the proximal operator of h reduces to the
euclidean projection onto C: proxh(x) = PC(x) = argminz∈C ‖z − x‖2. When
h : RN −→ R is defined as h(x) = λ‖x‖1 (with λ ≥ 0), the proximal operator
of h is the so-called soft-thresholding operator proxh(x) = Sλ(x), with

Sλ(xi) =

{
xi −

xi

|xi|
λ if |xi| > λ

0 if |xi| ≤ λ,

applied component-wise.

4



2.2. Proximal gradient method

A famous approach [21, 22, 3, 19, 23, 24] for solving the minimization prob-
lem (1) is based on the proximal gradient method which consists of a proximal
step at a gradient point (see also equation (4)):

xn+1 = proxαg(xn − α∇f(xn)) (7)

where α is a suitable positive steplength. If the function f has a Lipschitz
continuous gradient and the Lipschitz constant L is known, a classical choice
for the steplength is

α =
1

L
(8)

(convergence can be shown for 0 < α < 2/L). However, the knowledge or the
computation of the Lipschitz constant is not always evident. To overcome these
difficulties, a backtracking steplength rule is proposed in [22].

Another possible formulation for the proximal gradient method is suggested
in [19] and it can be described by the scheme:

xn+1 = xn + λn

(
proxαng(xn − αn∇f(xn))− xn

)
, (9)

where {αn}n∈N is a sequence in ]0,+∞[ verifying:

0 < inf
n∈N

αn ≤ sup
n∈N

αn <
2

L
(10)

and {λn}n∈N is a sequence in ]0, 1] such that inf
n∈N

λn > 0.

The algorithm (7) equipped by a steplength rule as in (8) and the algorithm
(9) with the steplength strategy depicted in (10) are strongly connected to the
existence of the Lipschitz constant for the gradient of the function f . Clearly,
some problems occur in applying this type of method if the function f does
not admit a Lipschitz continuous gradient: this is, for example, the case of
the Kullback-Leibler divergence when the background is null. If the function f
has Lipschitz continuous gradient, the corresponding Lipschitz constant may be
hard (impossible) to compute.

In order to consider a function class broader than the one required to use
the criteria (8) and (10), we investigate other possible approaches for choosing
the steplength in the proximal gradient methods for both the versions (7) and
(9).

3. Khobotov-type algorithms

Khobotov’s method [5, 25] is a modified version of the extra-gradient method
[6] for solving minimization problems of type:

min
x∈X

f(x) , (11)
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where X is a closed convex subset of RN and f is a convex C1 function from X
to R. In particular, Khobotov’s idea for solving problem (11) consists of a two
step projection algorithm defined by the following relations:

{
x̄n = PX(xn − αn∇f(xn))
xn+1 = PX(xn − αn∇f(x̄n)),

(12)

where PX denotes the projection on to the feasible set X . If the steplength
parameters αn are chosen such that:

αmin ≤ αn ≤ αmax and α2
n

‖∇f(xn)−∇f(x̄n)‖2
‖xn − x̄n‖2

≤ ρ2, (13)

for some 0 < αmin < αmax and 0 < ρ < 1, the algorithm converges to a
solution of problem (11). If ∇f is Lipschitz continuous, the conditions (13) can
be satisfied [25]. A practical steplength selection procedure for this iteration is
also given in [25].

The choice of the steplength parameters however is not dependent on the
value of Lipschitz constant of the gradient of the objective function. This con-
venient aspect encourages us to apply the Khobotov technique also for the
proximal methods introduced in (7).

3.1. A generalization of Khobotov’s algorithm

The goal of this section is to provide an extension of algorithm (12) to
the more general problem (1), and to prove convergence. Let us consider the
algorithm {

x̄n = proxαng(xn − αn∇f(xn))
xn+1 = proxαng(xn − αn∇f(x̄n))

(14)

(x0 arbitrary) for solving the minimization problem (1). It is a generalization
of the method (12) as the latter belongs to the class of the schemes described
by (14) when the function g defines the indicator function of the set X .

Before introducing the main theorem of this section, we recall a simple prop-
erty of the differentiable convex functions.

Lemma 5 (Monotonicity). If f : RN −→ R is a differentiable convex function,
then 〈∇f(x)−∇f(y),x− y〉 ≥ 0, ∀x,y ∈ RN .

Proof. This follows by expressing the subdifferential inequality in x and y.

Theorem 1. Let x̂ be a minimizer of minimization problem (1) and {xn}n∈N be
the sequence defined by (14). Then we have, for any positive sequence {αn}n∈N:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 −‖xn − x̄n‖2
[
1− α2

n

‖∇f(xn)−∇f(x̄n)‖2
‖xn − x̄n‖2

]
. (15)

Furthermore, if the steplength parameters αn satisfy the relations (13), the se-
quence {xn}n∈N converges to a minimizer of problem (1).
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Proof. We apply Lemma 4 three times.

(i) Let us consider xn+1 = proxαng(xn−αn∇f(x̄n)), i.e. x
+ = xn+1, x

− =
xn, ∆ = −αn∇f(x̄n) and x = x̂:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − xn‖2 + 2〈xn+1 − x̂,−αn∇f(x̄n)〉
+2αng(x̂)− 2αng(xn+1).

(ii) Let us consider x̂ = proxαng(x̂− αn∇f(x̂)) (see equation (4), i.e. x+ =
x̂, x− = x̂, ∆ = −αn∇f(x̂) and x = x̄n:

‖x̂− x̄n‖2 ≤ ‖x̂− x̄n‖2 − ‖x̂− x̂‖2 + 2〈x̂− x̄n,−αn∇f(x̂)〉
+2αng(x̄n)− 2αng(x̂)

and, consequently,

0 ≤ 2〈x̂− x̄n,−αn∇f(x̂)〉+ 2αng(x̄n)− 2αng(x̂).

(iii) Let us consider x̄n = proxαng(xn − αn∇f(xn)), i.e. x+ = x̄n, x− =
xn, ∆ = −αn∇f(xn) and x = xn+1:

‖x̄n − xn+1‖2 ≤ ‖xn − xn+1‖2 − ‖x̄n − xn‖2 + 2〈x̄n − xn+1,−αn∇f(xn)〉
+2αng(xn+1)− 2αng(x̄n).

The sum of the inequalities obtained in (i), (ii) and (iii) provides the following
relation:

‖xn+1 − x̂‖2 + ‖x̄n − xn+1‖2 ≤ ‖xn − x̂‖2 + 2〈xn+1 − x̂,−αn∇f(x̄n)〉
+2〈x̂− x̄n,−αn∇f(x̂)〉 (16)

−‖x̄n − xn‖2 + 2〈x̄n − xn+1,−αn∇f(xn)〉.

Starting from (16), we obtain:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖x̄n − xn+1‖2 − ‖x̄n − xn‖2
+2αn〈xn+1 − x̄n,∇f(xn)−∇f(x̄n)〉
+2αn〈x̂− x̄n,∇f(x̄n)−∇f(x̂)〉

≤ ‖xn − x̂‖2 − ‖x̄n − xn+1‖2 − ‖x̄n − xn‖2
+2αn〈xn+1 − x̄n,∇f(xn)−∇f(x̄n)〉

= ‖xn − x̂‖2 − ‖x̄n − xn+1‖2 − ‖x̄n − xn‖2 + ‖xn+1 − x̄n‖2 +
+α2

n‖∇f(xn)−∇f(x̄n)‖2 +
−‖xn+1 − x̄n − αn [∇f(xn)−∇f(x̄n)] ‖2

≤ ‖xn − x̂‖2 − ‖x̄n − xn‖2
[
1− α2

n

‖∇f(xn)−∇f(x̄n)‖2
‖xn − x̄n‖2

]
,

where the second inequality follows from Lemma 5 and the other relations are
consequence of the scalar product properties.
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Furthermore, combining steplength conditions (13) and inequality (15) yields:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − (1− ρ2) ‖x̄n − xn‖2, (17)

and:

‖xN − x̂‖2 ≤ ‖xM − x̂‖2 − (1− ρ2)

N−1∑

n=M

‖x̄n − xn‖2 N > M. (18)

This implies that the sequence {xn}n∈N is bounded and that ‖x̄n − xn‖ tends
to zero (as n tends to infinity). Therefore there exists a converging subsequence

xnj

j→∞−→ x† and xnj

j→∞−→ x† also. It follows from the first line of iteration
(14), and from the continuity of the proximal operator and of ∇f that x†

satisfies x† = proxαg(x
† − α∇f(x†)) (by taking a further subsequence for

which αnjk

k→∞−→ α > 0). This means that x† is a minimizer of (1).

Replacing x̂ by x† in relation (18) yields:

‖xN − x†‖2 ≤ ‖xM − x†‖2

for N > M , and this implies the convergence of the whole sequence {xn}n∈N to
x†.

In case ∇f is Lipschitz continuous, one can show that the conditions (13)
can be satisfied. The proof is omitted here, as it is identical to the one for
the Khobotov algorithm for the constrained case [25, p. 260]. The practical
steplength selection scheme given in [25] for (12) can also be applied to iteration
(14). This practical realization does not depend on the value of the Lipschitz
constant (see also Algorithm 1 in Section 5.1 in the case of signal recovering
under Poisson noise).

In practice, it may often occur that the proximal operator proxαng may not
be computed exactly. The following theorem shows that the algorithm (14) is
robust with respect to the inexact computation of proxαng.

Theorem 2. Let x̂ be a minimizer of minimization problem (1) and {xn}n∈N
be the sequence defined by

{
x̄n = proxαng(xn − αn∇f(xn)) + en
xn+1 = proxαng(xn − αn∇f(x̄n)) + fn,

(19)

with errors en,fn satisfying
∑

n ‖en‖ < ∞ and
∑

n ‖fn‖ < ∞. If ∇f is
Lipschitz continuous and the steplength parameters αn satisfy relations (13),
the sequence {xn}n∈N converges to a minimizer of problem (1).

The proof follows the same lines as the proof of Theorem 1; it can be found
in Appendix A. The conditions of absolute summability of the error terms en
and fn that appear in algorithm (19) are identical to conditions on error terms
introduced in [19] for algorithm (9). It is necessary to assume that ∇f is Lip-
schitz continuous, but the value of the Lipschitz constant does not have to be
known.
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3.2. A generalization of the AEM algorithm

In certain cases it is worthwhile to cast the minimization problem (1) in the
form of a saddle-point problem. E.g., if g(x) can be written as maxy〈x,y〉 −
g∗(y), then problem (1) takes the form

min
x

max
y

f(x) + 〈x,y〉 − g∗(y). (20)

E.g. if g∗ is the indicator function of the ℓ∞-ball {x, ‖x‖∞ ≤ λ}, then g(x) =
λ‖x‖1.

A variant of Khobotov’s algorithm (12) has also been developed for con-
strained saddle-point problems, i.e. for problems of type

min
x∈X

max
y∈Y

F (x,y) (21)

where F is convex in x, concave in y and continuously differentiable with respect
to x and y. In this case, [8] have proposed the so-called alternating extragradient
method (AEM)





ȳn = PY [yn + αn∇yF (xn,yn)]

xn+1 = PX [xn − αn∇xF (xn, ȳn)]

yn+1 = PY [yn + αn∇yF (xn+1,yn)]

(22)

under the conditions

1− 2αnAn − 2α2
nB

2
n ≥ ǫ > 0, 1− 2αnCn ≥ ǫ > 0,

0 < αmin ≤ αn ≤ αmax, 0 < ǫ < 1
(23)

where An, Bn, Cn are given by:

An =
‖∇xF (xn+1, ȳn)−∇xF (xn, ȳn)‖

‖xn+1 − xn‖

Bn =
‖∇yF (xn,yn)−∇yF (xn+1,yn)‖

‖xn+1 − xn‖

Cn =
‖∇yF (xn+1,yn)−∇yF (xn+1, ȳn)‖

‖ȳn − yn‖
.

(24)

If a saddle point of problem (21) exists, convergence is shown in [8, Theorem 1].
The paper also shows that the conditions (23) are feasible if some Lipschitz
conditions are imposed on ∇xF and ∇yF . A practical implementation is also
given (again not depending on the knowledge of the Lipschitz constant). We do
not reproduce it here for lack of space.

We propose a generalization of the AEM algorithm (22):




ȳn = proxαng2 [yn + αn∇yF (xn,yn)]

xn+1 = proxαng1 [xn − αn∇xF (xn, ȳn)]

yn+1 = proxαng2 [yn + αn∇yF (xn+1,yn)]

(25)
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designed to solve the more general saddle-point problem:

min
x

max
y

g1(x) + F (x,y)− g2(y), (26)

where F and g1 are convex in x and F and −g2 are concave in y. F is also C1

with respect to x and y. If g1 and g2 are indicator functions of the sets X and
Y , this reduces to the constrained problem (21).

Theorem 3. Let {(xn,yn)}n∈N be the sequence defined by algorithm (25) with
steplength parameters satisfying conditions (23). If a solution to the saddle point
problem (26) exists, the sequence {(xn,yn)}n∈N converges to such a saddle-
point.

The proof of this theorem is included in Appendix B. It can also be shown
that the steplength conditions (23) are feasible if some Lipschitz conditions are
imposed on ∇xF and ∇yF . The proof is identical to the one for a similar
property of the AEM iteration (22) in [8, lemma 3.2]. It follows that the same
practical step-size rule as for the AEM method can be used here too [8, p 11 and
corollary 1]. Such a rule does not depend on the actual value of the Lipschitz
constants of ∇xF and ∇yF .

4. Armijo-type algorithm

This section is devoted to the study of a strategy for choosing the parameters
αn and λn in the proximal scheme of the form (9); in particular we are interested
in a procedure that does not need the Lipschitz continuity assumption of the
gradient of the function f in (1). Our analysis is similar to the paper by Tseng
and Yun [10], where the authors adapted the Armijo steplength selection rule [7,
Chapter 2 - Section 3], often used in gradient-type methods, to the presence of
a proximal operator instead of a projection. We explain how it’s possible to use
this generalization of the Armijo scheme in the algorithm (9), but we provide a
slightly different approach to the convergence analysis with respect to the one
proposed in [10]. In particular, we underline that the exact knowledge of the
proximal operator of the function g in (1) is not needed to obtain a descent
direction.

We are concerned with solving the optimization problem (1) by means of an
iterative method of type:

{
xn+1 = xn + λndn

dn = x̄n − xn = proxαng (xn − αn∇f(xn))− xn
(27)

where αn are positive steplengths (0 < αmin ≤ αn ≤ αmax) and λn ∈ (0, 1].
The parameters λn are chosen in order to ensure the decrease of the objective
function at each iteration. In particular, for a fixed β ∈ (0, 1) and σ ∈ (0, 1),
we set λn = βmn where mn is the first non-negative integer for which:

f(xn)+g(xn)−f(xn+βmndn)−g(xn+βmndn) ≥ −σβmn [〈∇f(xn),dn〉 − g(xn) + g(x̄n)] .
(28)

10



There is no further restriction on the steplengths αn.
We will show that every limit point of the sequence {xn} is a stationary point

of the algorithm and hence a minimizer of functional (1). This is a similar result
as in the constrained case [7]. The proof requires the use of several lemmas.

Lemma 6. If x̄n = proxαng (xn − αn∇f(xn)) and x̄n 6= xn then

〈∇f(xn),dn〉 − g(xn) + g(x̄n) ≤ − 1

αn
‖x̄n − xn‖2 < 0 ∀n.

Proof. We apply the Lemma 1 by setting u = xn − αn∇f(xn), x = x̄n and
z = xn. In particular the following inequalities hold true:

〈xn − αn∇f(xn)− x̄n,xn − x̄n〉 ≤ αng(xn)− αng(x̄n)

or

〈∇f(xn), x̄n − xn〉 − g(xn) + g(x̄n) ≤ − 1

αn
‖x̄n − xn‖2.

From the assumption on the direction x̄n − xn, the lemma is proved.

Lemma 7. For any subsequence {xn}n∈N (with N ⊂ N) that converges to a
non-stationary point and for which {αn}n∈N also converges, the corresponding
sequence {dn}n∈N is bounded and satisfies

lim sup
n→+∞, n∈N

〈∇f(xn),dn〉 − g(xn) + g(x̄n) < 0

Proof. Suppose the subsequence {xn}n∈N converges to a non-stationary point
x̃. Let limn∈N αn = α. By the continuity of the proximal operator and the
gradient of f we have:

lim
n→+∞, n∈N

proxαng(xn − αn∇f(xn)) = proxαg(x̃− α∇f(x̃))

and

lim sup
n→+∞, n∈N

∥∥proxαng(xn − αn∇f(xn))− xn

∥∥ =
∥∥proxαg(x̃− α∇f(x̃))− x̃

∥∥ .

This implies that {dn}n∈N is bounded.
To prove the second part of the thesis, we recall Lemma 6:

〈∇f(xn),dn〉 − g(xn) + g(x̄n) ≤ − 1

αn
‖xn − x̄n‖2.

By taking the limit on the above inequality, we obtain

lim sup
n→+∞, n∈N

[〈∇f(xn), x̄n − xn〉 − g(xn) + g(x̄n)] ≤ − 1

α
‖x̃−proxαg(x̃−α∇f(x̃))‖2

Since x̃ is a non-stationary point, it follows that:

lim sup
n→+∞, n∈N

[〈∇f(xn), x̄n − xn〉 − g(xn) + g(x̄n)] < 0.

11



Lemma 8. Let σ ∈ (0, 1). If the direction dn 6= 0 (i.e. xn not a fixed-point of
(4)), then the line-search (28) determining λn is well-defined, i.e. it is always
possible to find λn ∈ (0, 1] such that:

F(xn + λndn)−F(xn) ≤ λnσ
[
〈∇f(xn), x̄n − xn〉 − g(xn) + g(x̄n)

]
.

Proof. Choosing σ̃ such that 0 < σ < σ̃ < 1, one finds from Lemma 6 and the
fact that λn > 0 that:

(1− σ̃)λn〈∇f(xn),dn〉 − (1− σ̃)λng(xn) + (1− σ̃)λng(x̄n) < 0,

and hence:

〈∇f(xn), λndn〉 < λnσ̃
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
+ λng(xn)− λng(x̄n).

(29)
Since the function g is convex and λn ∈ (0, 1], we remark that:

g(xn + λndn) = g
(
(1 − λn)xn + λnx̄n

)
≤ (1− λn)g(xn) + λng(x̄n),

and therefore:

λng(xn)− λng(x̄n) ≤ g(xn)− g(xn + λndn). (30)

By considering equations (29) and (30), it follows that:

〈∇f(xn), λndn〉 < λnσ̃
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
+ g(xn)− g(xn +λndn)

or

f(xn)+〈∇f(xn), λndn〉−f(xn)−g(xn)+g(xn+λndn) < λnσ̃
[
〈∇f(xn),dn〉−g(xn)+g(x̄n)

]
.

This can be written as:

F(xn + λndn)−F(xn)− r(λn) < λnσ̃
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
, (31)

where f(xn+λndn) = f(xn)+〈∇f(xn), λndn〉+r(λn) and limλn→0 r(λn)/λn =
0 (by Taylor’s theorem).

As λn(σ−σ̃)
[
〈∇f(xn),dn〉−g(xn)+g(x̄n)

]
> 0, it follows from the definition

of r(λn) that there exists λn small enough such that:

r(λn) < λn(σ − σ̃)
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
. (32)

The inequalities (31) and (32) allow to reach the proof of the proposition. In
particular

F(xn + λndn)−F(xn) < λnσ̃
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
+ r(λn)

< λnσ
[
〈∇f(xn),dn〉 − g(xn) + g(x̄n)

]
.
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Theorem 4. Let x̂ be a minimizer for the problem (1), {xn}n∈N a sequence
generated by the algorithm (27) and assume that λn is chosen by the backtracking
rule (28). Then every limit point of the sequence {xn}n∈N is a stationary point.

Proof. We assume that x̃ is a limit point of {xn}n∈N. This means that there
exists a subsequence that converges to x̃. As the αn are bounded, there ex-
ists a further subsequence (i.e. n ∈ N , an infinite subset of N), for which
limn→∞,n∈N xn = x̃ and limn→∞,n∈N αn = α. To arrive at a contradiction, we
assume that x̃ 6= proxαg(x̃− α∇f(x̃)).

Since the sequence {F(xn)}n∈N is monotonically non-increasing and there
exists a minimizer x̂, it follows that the entire sequence {F(xn)}n∈N is conver-
gent. Hence

lim
n→+∞

F(xn)−F(xn+1) = 0.

By definition (28) and lemma (6) we have

F(xn)−F(xn+1) ≥ −σλn[〈∇f(xn),dn〉 − g(xn) + g(x̄n)] > 0,

and therefore

lim
n→+∞

λn[〈∇f(xn),dn〉 − g(xn) + g(x̄n)] = 0. (33)

By applying Lemma 7, we have

lim sup
n→∞,n∈N

〈∇f(xn),dn〉 − g(xn) + g(x̄n) < 0 (34)

and, from equation (33), limn→∞,n∈N λn = 0 (i.e. mn in expression (28) tends
to infinity).

By the definition of the rule (28), for some index n̄ ≥ 0, we must have:

f(xn)−f

(
xn +

λn

β
dn

)
+g(xn)−g

(
xn +

λn

β
dn

)
< −σ

λn

β
[〈∇f(xn),dn〉−g(xn)+g(x̄n)]

(∀n ∈ N , n ≥ n) or equivalently:

f(xn)− f (xn + λn/β dn)

λn/β
+
g(xn)− g (xn + λn/β dn)

λn/β
< −σ[〈∇f(xn),dn〉−g(xn)+g(x̄n)]

(∀n ∈ N , n ≥ n). From the mean value theorem and the convexity of the
function g, the previous relation can be rewritten as

− 〈∇f(xn),dn〉+ r (λn) + σ[〈∇f(xn),dn〉 − g(xn) + g(x̄n)] <

<
g (xn + λn/β dn)− g(xn)

λn/β
≤ (1− λn/β) g(xn) + λn/βg(x̄n)− g(xn)

λn/β

= −g(xn) + g(x̄n)

(∀n ∈ N , n ≥ n and with r(λ)/λ
λ→0−→ 0) and consequently:

(σ−1)〈∇f(xn),dn〉− (σ−1)g(xn)+(σ−1)g(x̄n)+ r(λn) ≤ 0 ∀n ∈ N , n ≥ n.
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Since σ − 1 < 0, it holds true that:

lim
n∈N

〈∇f(xn),dn〉 − g(xn) + g(x̄n) ≥ 0

which contradicts (34).

Remark 4. In practice, it may happen that the map proxαg is difficult to
evaluate exactly. In that case, one may use an approximation of the proximal
operator. As long as the x̄n obtained in this way satisfies the inequality:

〈∇f(xn),dn〉 − g(xn) + g(x̄n) < 0, (35)

it is always possible to find a step length λn that satisfies the inequality (28)
(see proof of Lemma 8) and that guarantees a decrease of the objective function.

5. Signal recovering applications

In this section we describe how to apply the algorithms presented in Sec-
tions 3 and 4 to the solution of the one-dimensional and two-dimensional signal
restoration problems formalized in (2). Henceforth, we restrict our analysis to
the problem of minimizing the following functional

F(x) = KL(x) + µJR(x) + I{x≥0}(x) (36)

where the regularization term JR depends on the application (it will be specified
in the next subsections) and I{x≥0} is the indicator function of the non-negative
orthant.

Hereafter we call the previously suggested generalizations of the Khobotov
and Armijo-type algorithms (defined in (14) and (27)-(28) respectively) as Prox-
imal Khobotov Method (PKM) and Proximal Armijo Method (PAM).

5.1. Algorithmic details

This subsection is devoted to explain the use of the PKM and PAM algo-
rithms, in the practical case of signal restoration. Algorithm 1 and Algorithm
2 report the implementation details. We first notice that the gradient of the
Kullback-Leibler divergence (3) is given by ∇KL(x) = HTe−HTY −1g, where
e ∈ RM is a vector whose components are all equal to 1 and Y is a diagonal
matrix with the entries of the vector Hx+ b. The weighted sum µJR + Ix≥0 is
denoted by Z.

5.2. One-dimensional signal restoration: compressed sensing

We consider a compressed sensing problem, i.e the reconstruction of a sparse
vector x∗ from noisy measurements. In particular, x∗ is a sparse vector of non-
negative values whose measurements are distorted by Poisson noise [14]. We
assume that the observed signal g ∈ ZM

+ is a realization of a Poisson random
variable with expected value given by Hx∗, where x∗ ∈ RN

+ is the signal of
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Algorithm 1 Proximal Khobotov Method (PKM) for signal recovering

Choose the starting point x0 and the parameters α0 > 0, ρ ∈ (0, 1).
for n = 0, 1, 2, ... do

STEP 1. x̄n = proxαnZ(xn − αn∇KL(xn))

STEP 2.

if α2
n

‖∇KL(xn)−∇KL(x̄n)‖
‖xn − x̄n‖

> ρ2

then αn = min

{
αn

2
,
‖∇KL(xn)−∇KL(x̄n)‖√

2‖xn − x̄n‖

}
, goto STEP 1

else goto STEP 3
endif

STEP 3. xn+1 = proxαnZ(xn − αn∇KL(x̄n)), αn+1 = αn

end for

Algorithm 2 Proximal Armijo Method (PAM) for signal recovering

Choose a feasible x0 and the parameters αmax ≥ αmin > 0 and β, σ ∈ (0, 1).
for n = 0, 1, 2, ... do

STEP 1.
Choose αn ∈ [αmin, αmax]
x̄n = proxαnZ(xn − αn∇KL(xn)),
dn = x̄n − xn,
λn = 1

STEP 2.
if F(xn+λnxn) < F(xn)+σλn [〈∇KL(xn),dn〉 − Z(xn) + Z(x̄n)]
then goto STEP 3
else
λn = βλn, goto STEP 2

endif

STEP 3. xn+1 = xn + λndn

end for
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interest and H ∈ RM×N is the (known) measurement matrix. A way to recover
the true signal x∗, starting from the observed one g is to find the solution of
the following optimization problem

min
x∈RN

KL(x) + µ‖x‖1 + I{x≥0} (37)

where KL is the Kullback-Leibler divergence, the ℓ1-norm ‖x‖1 promotes spar-
sity, µ > 0 is the regularization parameter governing the role of the sparsity-
inducing operator and I{x≥0} is the indicator function of the non-negative or-
thant.

In [15], the authors suggest an algorithm, called SPIRAL, designed to solve
problem (37). The Matlab code of SPIRAL and a collection of test problems
are available on-line [26]. The minimization problem (37) can be addressed also
by PKM and PAM, noting that the proximal operator of µ‖x‖1 + I{x≥0} is a
modified version of the soft-thresholding operator:

proxµ‖x‖1+I{x≥0}(xi) =

{
xi − µ if xi > µ
0 otherwise

applied component-wise [3].

Numerical experiments

The numerical experiments are carried out on two test problems. The first
one is taken from the collection provided in the SPIRAL package: the true
signal is of length 105 with 1500 non-zero entries and the observed data is the
results of 4000 compressive measurements; the average number of photons per
measurement is 15.03 with a maximum of 145.

The second test problem is generated in three steps: 1) a sensing matrix A ∈
R1000×5000 is created as proposed in [14]; 2) the true signal x∗ ∈ R5000 has all
zeros except for 20 non-zero entries drawn uniformly in the interval [0, 105] (the
positions of the nonzeros in x∗ are uniformly distributed in {1, 2, . . . , 5000}); 3)
the observed signal g ∈ R1000 has been fixed by multiplying the sensing matrix
and the true signal and by adding Poisson noise with the imnoise function
of the Matlab Image Processing Toolbox. The background is set to 10−10: in
practice this means that the background is zero, but it assures the Lipschitz
continuity of the gradient of the Kullback-Leibler divergence (this is also done
in [15]).

We chose the regularization parameter µ equal to 10−6 for the first test
problem and 10−3 for the second one. We set αmin = 10−10 and αmax = 1010.
Regarding the parameters used by PKM, we fixed α0 = 1010 and ρ = 0.99. We
tried several values for both α0 and ρ and we found that the best performance of
the algorithm is gained by selecting α0 large and ρ close to 1, but this dependence
is not critical. On the other hand, for PAM, we selected σ = 10−4, β = 0.5
(these values for σ and β are standard for Armijo line-search; the performance
is not affected by the precise values) and the steplength α variable with the
iterations in an interval [αmin, αmax]. In this case the choice of αn influences
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Test problem 1 Test problem 2
Method it. time (s) RRE it. time (s) RRE
PKM 431 45.76 0.0607 5000∗ 109.67 0.5769
PAM (αn = αBB1

n ) 38 2.74 0.0599 1073 13.31 0.0746
PAM (αn = αABB

n ) 58 3.89 0.0599 577 7.35 0.0746
SPIRAL 37 3.02 0.0599 1397 27.10 0.0746

Table 1: Results for the compressed sensing test problems with Poisson noise

the convergence rate significantly. In particular, we show the results obtained
by PAM equipped with two different steplength selection schemes based on the
Barzilai-Borwein rules [27]:

αBB1
n =

sn−1
Tsn−1

sn−1
Twn−1

and αBB2
n =

sn−1
Twn−1

wn−1
Twn−1

where sn−1 = xn−xn−1 and wn−1 = ∇KL(xn)−∇KL(xn−1). The first choice
we make sets αn = αBB1

n ∀n, while the second one defines αn through a proper
alternation between αBB1

n and αBB2
n proposed in [28]:

αn = αABB
n =





αBB2
n if

αBB2
n

αBB1
n

< τ

αBB1
n otherwise

where τ is a prefixed threshold.
SPIRAL, PKM and PAM are stopped when the relative distance between

two successive iterations is lower than 10−8: ‖xn+1 − xn‖/‖xn+1‖ ≤ 10−8.
The performance of each algorithm is measured through the evaluation of

the relative reconstruction error (RRE) that estimates the difference between
the nth approximation of the solution and the true object, in Euclidean norm,
namely:

RRE(xn) =
‖xn − x∗‖

‖x∗‖ ,

and where x∗ is the original non-blurred and non-noisy image (i.e. we do not
compare to the unknown true minimizers of the cost function). Table 1 reports
the number of iterations and the computational time needed by the different
methods to satisfy the stopping criterion and the corresponding relative recon-
struction error (RRE) obtained.

The main conclusion that can be drawn from these experiments is that PAM,
combined with both the steplength strategies, provides results comparable with
those reached by SPIRAL for the first test problem and shows the best per-
formance, with respect to the other methods, in terms of number of iterations
and computational time for the second test problem. On the other hand, PKM
presents a slow convergence rate: for the second test problem it reaches the
prefixed maximum number of iterations (5000) while still very far from the so-
lution. Analogous considerations can be deduced from the plots of the RRE
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Figure 1: First row: RRE and objective function decrease for the first test problem of Sec-
tion 5.2. Second row: RRE and objective function decrease for the second test problem.

and the objective function values obtained by the considered algorithms during
the iterative process (Figure 1).

Moreover, for both the compressed sensing test problems each algorithm
succeeds in recovering the support of the true signal; this is confirmed by similar
RRE values provided by all the methods when the stopping criterion is satisfied.
The only exception is the PKM algorithm for the second data set: the algorithm
stops because the maximum number of iterations is reached and the quality of
the corresponding reconstructed support is poor, with many false positives. The
support of the PKM reconstructions can be improved (i.e. closer to the true
one) by increasing the maximum number of iterations allowed. As a last remark,
we observe that PKM and PAM assure a monotone decrease of the objective
function with the iterations, while SPIRAL allows a non-monotone decreasing
behavior.

5.3. Two-dimensional signal restoration: image deblurring

Image deblurring [16] is the inverse problem of finding an approximation of a
true 2D object, given the data g, the background b and the blurring matrix H .
We recall that a classical assumption for the imaging matrix is Hij > 0 (∀i, j)
and

∑
iHij = 1 (∀j). A possible approach to face up the image deblurring

issue is given by the minimization of (36), where the 2D object x ∈ RN1×N2 is
identified with an element of RN (with N = N1N2).

In this paper we concentrate on handling the edge-preserving regulariza-
tion, therefore the regularizer JR can be expressed by means of the well-known
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discrete version of the Total Variation (TV) functional [29, 30, 31]:

JR(x) = TV(x) = ‖Dx‖1,2 (38)

where Dx denotes a discrete approximation of the gradient (finite differences)
of x ∈ RN1×N2 . In particular, by introducing the local differences Dx =
(Dhx, Dvx) as

{
(Dhx)i,j = xi+1,j − xi,j 1 ≤ i ≤ N1 − 1,
(Dvx)i,j = xi,j+1 − xi,j 1 ≤ j ≤ N2 − 1,

(39)

with (Dhx)N1,j = (Dvx)i,N2 = 0, the total variation TV(u) is given by:

TV(x) =

N1∑

i=1

N2∑

j=1

√
((Dhx)i,j)2 + ((Dvx)i,j)2. (40)

As the proximal operator for the total variation does not have an explicit ex-
pression, we compute its approximation in an iterative manner in order to com-
pute the first step for both PKM and PAM. The proximal operator of αµTV(x)
is defined as:

proxαµTV(u) = argmin
x∈RN

1

2
‖x− u‖2 + αµ‖Dx‖1,2. (41)

In order to solve problem (41) we used an iterative scheme on the dual formu-
lation similar to the one suggested in [32]. This scheme is stopped with two
different stopping criteria depending on the algorithm considered. In the PKM
case we decide to set a tolerance value, tol, and break off the iterations when

‖wk+1 −wk‖ ≤ tol, (42)

while for PAM we require that the inequality introduced in Lemma 6:

〈∇KL(xn),dn〉 − µTV(xn) + µTV(x̄n) < 0 (43)

is satisfied.

Remark 5. Regarding the non-negativity constraints, we project on the non-
negative orthant (at the end of the inner loop) before verifying the stopping
criterion (42) or (43). In this way each iterate satisfies the nonnegativity con-
straints.

Numerical experiments

In order to evaluate the behavior of the proposed algorithms, we perform
some numerical experiments on two two-dimensional image restoration test
problems, in MATLAB environment. We take into account two different ob-
jects: a 128 × 128 microscopy phantom [33] and the 256 × 256 cameraman
image, well-known in the literature. Blurred and noisy images are generated
by convolving each original image with a suitable PSF and by adding Poisson
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(a) Original (b) Blurred and
noisy

(c) PKM (2500 it.)
RRE = 0.0898

(d) PAM (844 it.)
RRE = 0.0892

(e) AEM (906 it.)
RRE = 0.0896

Figure 2: Miroscopy data set: (a) original image, (b) blurred and noisy image, (c) PKM
reconstruction, (d) PAM reconstruction, (e) AEM reconstruction.

(a) Original (b) Blurred and noisy (c) PAM (853 it.)
RRE = 0.0864

(d) AEM (873 it.)
RRE = 0.0865

Figure 3: Cameraman data set: (a) original image, (b) blurred and noisy image, (c) PAM
reconstruction, (d) AEM reconstruction.

noise simulated by the imnoise function in the Matlab Image Processing Tool-
box. The first PSF arises from confocal microscopy framework [33], while the
second one is a Gaussian PSF with standard deviation s = 1.3. As before the
background is set to 10−10 for both the test problems. Figures 2 and 3 show
the microscopy and cameraman data sets (first two panels).

Both images are reconstructed using model (2) with the TV penalty (38). We
fixed the regularization parameter µ equal to 0.09 and 0.0045 for the microscopy
and cameraman images, respectively. As for the parameters involved in the
description of the PKM method, we defined α0 = 2.5 and ρ = 0.99, while for
PAM we put σ = 10−4, β = 0.5 and αn equal to 2.5 (∀n) for the microscopy data
set or 150 (∀n) for the cameraman. For this application no benefits are gained
by using a variable steplength, so we preferred to fix it during the iterations. As
before the values chosen for ρ, σ and β do not affect the performance as much
as the choice of α. Since the AEM method is designed for the image restoration
problem involving the total variation regularization, we use this algorithm as a
comparative tool to assess the efficiency of PKM and PAM.

Table 2 reports the values of the RRE reached by the proximal versions of
Khobotov and Armijo methods and the AEM algorithm corresponding to dif-
ferent fixed numbers of iterations, for the microscopy test problem. Since the
PKM and PAM schemes also have an inner routine to calculate an approxima-
tion of the TV proximal operator in a given point, for a better comparison with

20



nr. of PKM PAM AEM
iter. RRE time (s) inn. it. RRE time (s) inn. it. RRE time (s)
100 0.1126 92.32 17368 0.1040 1.74 200 0.1044 1.99
200 0.1066 157.88 29747 0.0964 3.40 400 0.0972 3.82
500 0.0988 364.45 69269 0.0901 8.26 1000 0.0908 9.29
1000 0.0935 718.85 136602 0.0893 16.34 2000 0.0896 18.40
1500 0.0913 1076.81 205104 0.0898 26.13 3190 0.0903 27.51

Table 2: Microscopy test problem: reconstruction error and computational time reached by
the three different methods, corresponding to several fixed numbers of iterations. For PKM
and PAM the total number of iterations of the inner solver (inn. it.) are also reported.

number of PAM AEM
iterations RRE time (s) inn. it. RRE time (s)

100 0.0920 10.70 200 0.0934 9.01
200 0.0889 21.09 400 0.0893 18.82
500 0.0867 52.14 1000 0.0868 45.51
1000 0.0864 103.65 2000 0.0865 89.62
1500 0.0865 155.01 3000 0.0866 133.71

Table 3: Cameraman test problem: relative reconstruction error (RRE) and computational
time reached by PAM and AEM, corresponding to several fixed numbers of iterations. For
PAM the total number of iterations of the inner solver (inn. it.) are also reported.

AEM, we also show the computational time needed by the methods to run until
the settled numbers of iterations. Finally, for PKM and PAM, we present the
total number of iterations of the inner solver (inn. it.); for PKM, as one can
check from Algorithm 1, the number of the inner iterations, corresponding to
one outer iteration, is the sum of the number of iterations required in STEP 1
(computed as many times as required by the line-search) and STEP 3.

From the results of Table 2, we can observe that PKM has a very slow
convergence rate with respect to the other methods. We found out that the
slow PKM behavior doesn’t lie as much in the presence of the line-search on
the steplength αn, but rather in a quite high number of iterations required by
the inner solver to satisfy the stopping criterion (42). Particularly, for PKM,
the average number of iterations of the inner solver is 69. On the other hand
the computational costs of PAM and AEM are comparable and, for PAM, the
inner routine is not very expensive in terms of computational time (often just
2 inner iterations are sufficient). For these reasons, in solving the cameraman
test problem, we decided to compare only the PAM and AEM algorithms: the
results can be appreciated in Table 3.

For the sake of completeness, we also present the decrease of the objective
function obtained by applying the different methods to the two problems (Fig-
ure 4), and the reconstructed images provided by the different methods at the
iteration corresponding to the minimum RRE attained (Figures 2 and 3, right
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Figure 4: Objective functions provided by the different methods for the microscopy test
problem (left panel) and the cameraman test problem (right panel)

hand panels). The algorithms provide the same minimum objective function
value and similar image approximation. From the plots of the functional de-
crease it’s again possible to conclude that PAM and AEM are faster in finding
a solution with respect to PKM.

6. Conclusions

We have presented several proximal operator based iterative algorithms for
the minimization of convex cost functions consisting of a smooth data misfit
term and a possibly non-smooth penalty term. In case of the proximal Khobotov
algorithm (14), we prove convergence to a minimizer of problem (1). We also
show convergence in case the proximal operator cannot be computed exactly.
In case of the proximal algorithm (27) with Armijo steplength rule (28), we
show that any limit point is a minimizer of problem (1). The algorithms do not
require knowledge of the Lipschitz constant of the gradient of the smooth term,
which is useful in many cases in practice.

We have tested the proposed approaches in facing up to two different real-
life applications: the compressed sensing problem and the image deblurring
problem, both under Poisson noise. In the first case the proximal operator of
the non-differentiable part of the objective function is known, in the second
case an approximation strategy is necessary. Numerical experiments confirm
the effectiveness of the suggested methods.
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Appendix A. Proof of Theorem 2

The proof of Theorem 2 relies on the following lemma (see also [34]).

Lemma 9. Let an, γn, δn, ǫn ≥ 0,
∑

n γn < ∞,
∑

n δn < ∞,
∑

n ǫn < ∞ and
a2n+1 ≤ a2n + anγn + δnǫn, then the sequence {an}n∈N is bounded.

Proof. One finds:

an+1 ≤
√
a2n+1 + γ2

n/4

≤
√
(an + γn/2)2 + δnǫn

≤ (an + γn/2) +
√
δnǫn

≤ (an + γn/2) + (δn + ǫn)/2

and therefore aN ≤ a0 +
∑N−1

n=0 (γn + δn + ǫn)/2 ≤ a0 +
∑∞

n=0(γn + δn + ǫn)/2
which is independent of N .

We now prove Theorem 2.

Proof. Set ȳn = x̄n − en and yn = xn − fn−1. The iteration (19) becomes:

{
ȳn = proxαng (yn − αn∇f(yn) + ēn)
yn+1 = proxαng

(
yn − αn∇f(ȳn) + f̄n

)
,

(A.1)

where ēn = fn−1+αn

(
∇f(yn)−∇f(yn + fn−1)

)
and f̄n = fn−1+αn∇f(ȳn)+

−αn∇f(ȳn + en). One has that:

‖ēn‖ ≤ ‖fn−1‖+ αn

∥∥∇f(yn)−∇f(yn + fn−1)
∥∥ ≤ ‖fn−1‖+ αmaxL‖fn−1‖

and that:

‖f̄n‖ ≤ ‖fn−1‖+ αn ‖∇f(ȳn)−∇f(ȳn + en)‖ ≤ ‖fn−1‖+ αmaxL‖en‖

as a result of the Lipschitz continuity of ∇f . Hence, it follows that
∑

n ‖ēn‖ <
+∞ and

∑
n ‖f̄n‖ < +∞. One also finds that:

‖ȳn − x̂‖ = ‖proxαng (yn − αn∇f(yn) + ēn)− proxαng (x̂− αn∇f(x̂)) ‖
≤ ‖yn − αn∇f(yn) + ēn − x̂+ αn∇f(x̂)‖
≤ ‖yn − x̂‖+ αn‖∇f(yn)−∇f(x̂)‖+ ‖ēn‖
≤ ‖yn − x̂‖+ αnL‖yn − x̂‖+ ‖ēn‖
= C1‖yn − x̂‖+ ‖ēn‖,

(A.2)
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(where C1 does not depend on n because the sequence {αn}n∈N is bounded)
and that:

‖yn+1 − ȳn‖ =
∥∥proxαng

(
yn − αn∇f(ȳn) + f̄n

)
− proxαng (yn − αn∇f(yn) + ēn)

∥∥

≤ ‖ − αn∇f(ȳn) + f̄n + αn∇f(yn)− ēn‖
≤ αn‖∇f(ȳn)−∇f(yn)‖ + ‖f̄n − ēn‖
≤ αn L ‖ȳn − yn‖+ ‖f̄n − ēn‖
≤ αn L (‖ȳn − x̂‖+ ‖x̂− yn‖) + ‖f̄n − ēn‖

(A.2)
≤ αn L (C1‖yn − x̂‖+ ‖ēn‖+ ‖x̂− yn‖) + ‖f̄n − ēn‖
≤ C2‖yn − x̂‖+ C3‖f̄n − ēn‖+ C4‖ēn‖

(A.3)
(where C2, C3, C4 do not depend on n because the sequence {αn}n∈N is bounded).

On the other hand, using the same techniques as in the proof of Theorem 1
(see also equation (16)), one finds from iteration (A.1):

‖yn+1 − x̂‖2 ≤ ‖yn − ŷ‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2〈yn+1 − x̂,−αn∇f(ȳn) + f̄n〉+ 2〈x̂− ȳn,−αn∇f(x̂)〉
+2〈ȳn − yn+1,−αn∇f(yn) + ēn〉

= ‖yn − ŷ‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn〈yn+1 − ȳn,∇f(yn)−∇f(ȳn)〉
+2〈yn+1 − ȳn,−ēn + f̄n〉+ 2〈x̂− ȳn,−f̄n〉
+2αn〈x̂− ȳn,∇f(ȳn)−∇f(x̂)〉.

As 〈x̂− ȳn,∇f(ȳn)−∇f(x̂)〉 ≤ 0 (see Lemma 5), one has:

‖yn+1 − x̂‖2 ≤ ‖yn − x̂‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn〈yn+1 − ȳn,∇f(yn)−∇f(ȳn)〉
+2〈yn+1 − ȳn,−ēn + f̄n〉+ 2〈x̂− ȳn,−f̄n〉

≤ ‖yn − x̂‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+‖yn+1 − ȳn‖2 + α2
n‖∇f(yn)−∇f(ȳn)‖2

+2‖yn+1 − ȳn‖ ‖ēn − f̄n‖+ 2‖ȳn − x̂‖ ‖f̄n‖

= ‖yn − x̂‖2 − ‖ȳn − yn‖2
(
1− α2

n

‖∇f(yn)−∇f(ȳn)‖2
‖ȳn − yn‖2

)

+2‖yn+1 − ȳn‖ ‖ēn − f̄n‖+ 2‖ȳn − x̂‖ ‖f̄n‖
(13)
≤ ‖yn − x̂‖2 − (1− ρ2)‖ȳn − yn‖2 + 2‖yn+1 − ȳn‖ ‖ēn − f̄n‖

+2‖ȳn − x̂‖ ‖f̄n‖.
(A.4)
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Combining expressions (A.4), (A.2) and (A.3), one finally finds the inequal-
ity:

‖yn+1 − x̂‖2 ≤ ‖yn − x̂‖2 − (1 − ρ2)‖ȳn − yn‖2 + ‖yn − x̂‖ γn + δnǫn, (A.5)

where γn, ǫn and δn are three non-negative summable sequences (related to ēn
and f̄n). It now follows from Lemma 9 that the sequence {yn}n∈N is bounded.

Therefore, a converging subsequence exists: ynj

j→∞−→ y†. On the other hand,
the inequality (A.5) also implies that:

(1−ρ2)

N−1∑

n=M

‖ȳn−yn‖2 ≤ ‖yM−x̂‖2−‖yN−x̂‖2+
N−1∑

n=M

‖yn−x̂‖ γn+δnǫn (A.6)

for N > M .
As

∑N−1
n=M ‖yn − x̂‖ γn + δnǫn ≤ ∑N−1

n=M C5γn + δnǫn ≤ C6 (independent of

N), one finds that
∑N−1

n=M ‖ȳn − yn‖2 < ∞ and hence that ‖ȳn − yn‖ −→ 0 as
n → ∞. Making use of Remark 3, and possibly a further converging subsequence
of {αn}n∈N, this in turn implies that y† is a fixed-point of the iteration (a
minimizer of problem (1)).

Replacing x̂ by y† in inequality (A.6) yields:

‖yN − y†‖2 ≤ ‖yM − y†‖2 +
N−1∑

n=M

‖yn − y†‖ γn + δnǫn (A.7)

for N > M . The right hand side can be made arbitrarily small by choosing
M appropriately (the first term because a subsequence converges to zero, the
second term because the series

∑
n ‖yn −y†‖ γn+ δnǫn converges). This proves

that the whole sequence {yn}n∈N converges to y†.

Appendix B. Proof of Theorem 3

Proof. Let (x̂, ŷ) be a saddle point of problem (26), i.e.

f(x̂)+F (x̂,y)− g(y) ≤ f(x̂)+F (x̂, ŷ)− g(ŷ) ≤ f(x)+F (x, ŷ)− g(ŷ) ∀x,y,
(B.1)

or equivalently

x̂ = proxαg1 [x̂− α∇xF (x̂, ŷ)] , ŷ = proxαg2 [ŷ + α∇yF (x̂, ŷ)] , α > 0.
(B.2)
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Let (xn,yn, ȳn)n∈N satisfy the iteration (25). It follows from the first line of
iteration (25) and Lemma 4 that:

‖ȳn − yn+1‖2 ≤ ‖yn − yn+1‖2 − ‖ȳn − yn‖2 + 2
〈
ȳn − yn+1, αn∇yF (xn,yn)

〉

+2αng(yn+1)− 2αng(ȳn)

= ‖yn − yn+1‖2 − ‖ȳn − yn‖2 + 2αn

〈
ȳn − yn+1,∇yF (xn+1,yn)

〉

+2αn

〈
ȳn − yn+1,∇yF (xn,yn)−∇yF (xn+1,yn)

〉

+2αng(yn+1)− 2αng(ȳn)

(B.3)
and it follows from the third line of iteration (25) and Lemma 4 that:

‖yn+1 − ŷ‖2 ≤ ‖yn − ŷ‖2 − ‖yn+1 − yn‖2 + 2
〈
yn+1 − ŷ, αn∇yF (xn+1,yn)

〉

+2αng(ŷ)− 2αng(yn+1).
(B.4)

Summing inequalities (B.3) and (B.4), and rearranging the result yields:

‖yn+1 − ŷ‖2 ≤ ‖yn − ŷ‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn 〈yn − ŷ,∇yF (xn+1,yn)〉

+2αn 〈ȳn − yn,∇yF (xn+1,yn)〉

+2αn

〈
ȳn − yn+1,∇yF (xn,yn)−∇yF (xn+1,yn)

〉

−2αng(ȳn) + 2αng(ŷ).
(B.5)

By concavity of F in the second variable one has: 〈yn − ŷ,∇yF (xn+1,yn)〉 ≤
F (xn+1,yn) − F (xn+1, ŷ) and F (xn+1,yn) ≤ 〈yn − ȳn,∇yF (xn+1, ȳn)〉 +
F (xn+1, ȳn). It thus follows that:

‖yn+1 − ŷ‖2 ≤ ‖yn − ŷ‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn 〈ȳn − yn,∇yF (xn+1,yn)−∇yF (xn+1, ȳn)〉

+2αn

〈
ȳn − yn+1,∇yF (xn,yn)−∇yF (xn+1,yn)

〉

+2αn [F (xn+1, ȳn)− F (xn+1, ŷ)]

−2αng(ȳn) + 2αng(ŷ).
(B.6)

On the other hand, it follows from the second line of algorithm (25) and
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Lemma 4 that:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − xn‖2 + 2 〈xn+1 − x̂,−αn∇xF (xn, ȳn)〉

+2αnf(x̂)− 2αnf(xn+1)

= ‖xn − x̂‖2 − ‖xn+1 − xn‖2 − 2αn 〈xn+1 − xn,∇xF (xn, ȳn)〉

+2αn 〈x̂− xn,∇xF (xn, ȳn)〉+ 2αnf(x̂)− 2αnf(xn+1).
(B.7)

By convexity of F in the first variable one has: 〈x̂− xn,∇xF (xn, ȳn)〉 ≤
F (x̂, ȳn)−F (xn, ȳn) and−F (xn, ȳn) ≤ 〈∇xF (xn+1, ȳn),xn+1 − xn〉−F (xn+1, ȳn).
We thus find that:

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 − ‖xn+1 − xn‖2

+2αn 〈xn+1 − xn,∇xF (xn+1, ȳn)−∇xF (xn, ȳn)〉

+2αn [F (x̂, ȳn)− F (xn+1, ȳn)] + 2αnf(x̂)− 2αnf(xn+1).
(B.8)

Adding inequalities (B.6) and (B.8) one finds:

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ ‖xn − x̂‖2 + ‖yn − ŷ‖2

−‖xn+1 − xn‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn 〈ȳn − yn,∇yF (xn+1,yn)−∇yF (xn+1, ȳn)〉

+2αn

〈
ȳn − yn+1,∇yF (xn,yn)−∇yF (xn+1,yn)

〉

+2αn 〈xn+1 − xn,∇xF (xn+1, ȳn)−∇xF (xn, ȳn)〉

+2αn [−F (xn+1, ŷ)− g(ȳn) + g(ŷ)

+F (x̂, ȳn) + f(x̂)− f(xn+1)]
(B.9)

As (x̂, ŷ) is a saddle point, one has:

f(x̂)+F (x̂, ȳn)−g(ȳn) ≤ f(x̂)+F (x̂, ŷ)−g(ŷ) ≤ f(xn+1)+F (xn+1, ŷ)−g(ŷ),
(B.10)

such that the expression in square brackets in (B.9) is negative, and one finally
finds:

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ ‖xn − x̂‖2 + ‖yn − ŷ‖2

−‖xn+1 − xn‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn 〈ȳn − yn,∇yF (xn+1,yn)−∇yF (xn+1, ȳn)〉

+2αn

〈
ȳn − yn+1,∇yF (xn,yn)−∇yF (xn+1,yn)

〉

+2αn 〈xn+1 − xn,∇xF (xn+1, ȳn)−∇xF (xn, ȳn)〉 .
(B.11)
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The remainder of the proof now follows the same lines as the proof of conver-
gence of algorithm 22 (see [8, Theorem 1]). Using the Cauchy-Schwarz identity
three times in inequality (B.11), one has:

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ ‖xn − x̂‖2 + ‖yn − ŷ‖2

−‖xn+1 − xn‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn‖ȳn − yn‖ ‖∇yF (xn+1,yn)−∇yF (xn+1, ȳn)‖

+2αn‖ȳn − yn+1‖ ‖∇yF (xn,yn)−∇yF (xn+1,yn)‖

+2αn‖xn+1 − xn‖ ‖∇xF (xn+1, ȳn)−∇xF (xn, ȳn)‖ .
(B.12)

From the definition (25) of ȳn and yn+1, and from the Lipschitz continuity of
the proximal operators (see lemma 2), one also finds:

‖ȳn − yn+1‖ ≤
∥∥proxαng [yn + αn∇yF (xn,yn)]− proxαng [yn + αn∇yF (xn+1,yn)]

∥∥

≤ αn ‖∇yF (xn,yn)−∇yF (xn+1,yn)‖
(B.13)

such that (B.12) reduces to:

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ ‖xn − x̂‖2 + ‖yn − ŷ‖2

−‖xn+1 − xn‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn‖ȳn − yn‖ ‖∇yF (xn+1,yn)−∇yF (xn+1, ȳn)‖

+2α2
n ‖∇yF (xn,yn)−∇yF (xn+1,yn)‖2

+2αn‖xn+1 − xn‖ ‖∇xF (xn+1, ȳn)−∇xF (xn, ȳn)‖ ,
(B.14)
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or:

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ ‖xn − x̂‖2 + ‖yn − ŷ‖2

−‖xn+1 − xn‖2 − ‖ȳn − yn+1‖2 − ‖ȳn − yn‖2

+2αn‖ȳn − yn‖2
‖∇yF (xn+1,yn)−∇yF (xn+1, ȳn)‖

‖ȳn − yn‖

+2α2
n‖xn+1 − xn‖2

‖∇yF (xn,yn)−∇yF (xn+1,yn)‖2
‖xn+1 − xn‖2

+2αn‖xn+1 − xn‖2
‖∇xF (xn+1, ȳn)−∇xF (xn, ȳn)‖

‖xn+1 − xn‖
= ‖xn − x̂‖2 + ‖yn − ŷ‖2 − ‖ȳn − yn+1‖2

−‖xn+1 − xn‖2
(
1− 2αnAn − 2α2

nB
2
n

)

−‖ȳn − yn‖2 (1− 2αnCn) .
(B.15)

It follows from the conditions (23) that the iterates (xn,yn) are bounded and

that a converging subsequence exists: (xnj ,ynj
)

j→∞−→ (x†,y†). One also finds
that

‖xN − x̂‖2 + ‖yN − ŷ‖2 ≤ ‖xM − x̂‖2 + ‖yM − ŷ‖2 −
N−1∑

n=M

‖ȳn − yn+1‖2

+ǫ ‖xn+1 − xn‖2 + ǫ‖ȳn − yn‖2 (N > M),
(B.16)

which implies that ‖ȳn − yn+1‖, ‖xn+1 − xn‖ and ‖ȳn − yn‖ tend to zero as n
tends to infinity. It thus follows that xnj+1 (resp. ȳnj+1,ynj+1) also tend to

x† (resp. y†).

By considering a further subsequence for which αnjk

k→∞−→ α 6= 0, it follows
then from relations (25) and from the continuity of the proximal operators and
of ∇xF and of ∇yF that (x†,y†) satisfies the fixed-point equations (B.2).

Replacing (x̂, ŷ) by (x†,y†) in expression (B.16) shows that the whole se-
quence {(xn,yn)}n∈N converges to the saddle-point (x†,y†).
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