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When a voltage is applied across the electrodes of a flat piezoelectric transducer attached to a thin

plate structure, the transducer acts as equivalent loads applied to the host plate structure. In this pa-

per, analytical expressions of these equivalent loads are derived for the general case of an orthotropic

piezoelectric actuator using Hamilton’s principle and two different mathematical approaches leading

to the same results: Green’s theorem and derivation using the theory of distributions. The equivalent

loads are a function of the material properties as well as the normal to the contour of the transducer.

Examples of applications to simple geometric shapes (triangle, rectangle, and circle) are given.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3523338]
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I. INTRODUCTION

Piezoelectric transducers are commonly used in active

vibration control and structural health monitoring applica-

tions. In particular, thin piezoelectric sensors and actuators

are used to induce bending vibrations or propagating waves

in plate-like structures. The main advantages of such trans-

ducers are their small size, their broad bandwidth, and their

relatively low price. The most common piezoelectric flat

transducers are made either of lead zircanium titanium (PZT)

ceramic material (for actuation and/or sensing) or of polymer

polyvinylidene fluoride (PVDF) material (mainly for sens-

ing). During the last ten years, composite piezoelectric trans-

ducers have appeared on the market. By mixing piezoelectric

fibers with a softer epoxy matrix, the composite transducers

are more flexible and more robust1 and exhibit orthotropic

properties. Typical piezoelectric transducers found on the

market are rectangular or circular. Different researchers have

however studied the possibility to use more complex shapes.

This idea was mainly driven by the active control applica-

tions. The first developments in this direction concern trian-

gular actuators.2 Using the theory of distributions and the

beam theory, the authors show that applying a voltage differ-

ence V across the electrodes of the transducer is equivalent to

applying two point forces and one bending moment on the

supporting structure (Fig.F1 1). If the triangular actuator is

clamped along one edge, the resulting force is a single point

force at the tip of the triangle. Coupling this transducer with

an accelerometer placed at the tip of the triangle leads to a

collocated actuator/sensor pair and the possibility to develop

a simple and theoretically stable control strategy.3 Shaped

transducers have also been used for the design of modal sen-

sors and actuators,4 as an alternative to modal filters obtained

from discrete sensor arrays suffering from the spatial aliasing

effect and more recently in order to measure the bending

moment at the boundary of structures.5

In Refs. 2, 4, and 5, the equivalent loads have been com-

puted using the beam theory. In practice however, the effects

in the direction transverse to the beam neutral axis cannot be

neglected, as clearly demonstrated both numerically and

experimentally in Ref. 6 for modal filters. In order to cor-

rectly compute the equivalent loads of thin piezoelectric

transducers, it is therefore necessary to use the plate theory.

For triangular actuators, equivalent loads have been com-

puted using Kirchoff’s plate theory and the theory of distri-

butions in Refs. 7 and 8 using the general approach

developed in Refs. 9 and 10. These equivalent loads are rep-

resented in Fig. F22. The figure shows that the equivalent loads

consist in three point forces at the tips of the triangle and dis-

tributed lineic bending moments M1 and M2 along the edges.

With such equivalent loads, the use of an actuator/sensor

pair consisting of a triangular piezoelectric actuator and an

accelerometer will not lead to a collocated pair anymore,

therefore reducing the bandwidth of stability of the control-

ler, as shown in Ref. 3. The results demonstrated in Ref. 7

using the theory of distributions in two dimensions are how-

ever surprising: Consider an isotropic piezoelectric material

(e31 ¼ e32) and an equilateral triangle: The equivalent loads

computed clearly violate the symmetries of the problem. We

conclude that the equivalent loads of Fig. 2 are not correct.

This fact has also been noticed very recently in Ref. 11. At

the same period, equivalent loads were derived for piezo-

electric transducers with different shapes in Ref. 12. The

study was limited to isotropic piezoelectric materials, and

equivalent loads for a rhombus shape showed the appearance

of point forces. Here again, if the rhombus is made of two

equilateral triangles, the symmetries of the problem are vio-

lated, showing that the equivalent loads are not correct. Note

that the results for rectangular actuators presented in Refs. 7
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and 9 are correct, because the edges of the patch are aligned

with the structural axes. In fact, the main difficulty for the

computation of the equivalent loads arises when the edges

are not aligned with the structural axes, such as in the case

of the triangular actuator or the rhombus.

The motivation of this study is to derive the correct ana-

lytical expressions of the equivalent loads for orthotropic

piezoelectric actuators with arbitrary shapes, with the only

limitation that the contour must be a piecewise smooth

curve. These analytical expressions are derived based on

Hamilton’s principle using the flux linkage formulation for

piezoelectric structures and two different mathematical

approaches: (i) Green’s theorem and (ii) the theory of distri-

butions in two dimensions. The results show that the equiva-

lent loads are a function of the material properties as well as

the analytical expression of the normal to the contour.

Finally, as an illustration, we give the equivalent loads for

triangular, rectangular, and circular transducers in the case

of orthotropic and isotropic piezoelectric materials. The

application to a triangular transducer leads to equivalent

loads which are different from the ones found in Ref. 7 and

do not violate the symmetries for an equilateral triangle with

isotropic piezoelectric material. In particular, we show that

for an isotropic piezoelectric triangular actuator, there exist

only lineic moments along the edges and no point forces.

II. NOTATIONS

Consider a two-dimensional piezoelectric transducer of

thickness hp attached on a plate along a plane region X
(Fig. F33). We denote by C the closed curve bounding this

region X. We assume that there is no prescribed displace-

ment on this boundary. Let x, y be cartesian coordinates

along the neutral plane of the plate, parallel to the plane con-

taining X, and let z be the normal coordinate, so that h1 � z
� h2 in the transducer with hp ¼ h2 � h1 and z ¼ 0 is the

neutral plane of the supporting plate. We denote by

zm ¼ 1
2

(h1 þ h2) the distance between the mid-plane of the

transducer and the neutral plane of the supporting plate.

In these coordinates, the displacement field will be

denoted by (u, v, w)T. Using Kirchoff’s thin plate theory, the

displacements are approximated by

uðx; y; zÞ ¼ u0ðx; y; 0Þ � zw;x;

vðx; y; zÞ ¼ v0ðx; y; 0Þ � zw;y;

wðx; y; zÞ ¼ wðx; yÞ: (1)

The poling direction of the piezoelectric transducer is

assumed to be in direction z and according to the plane stress

hypothesis, the out of plane stress components are equal to

zero. A voltage difference V is applied between the top and

bottom surface electrodes of the transducer, resulting in an

electric field E3 ¼ �V/hp in the z-direction (E1 ¼ E2 ¼ 0).

Using the standard Institute of Electrical and Electronics

Engineers (IEEE) notations for linear piezoelectricity, the

constitutive equations (under the plane stress hypothesis and

in the material axes) for the transducer are given by

T1
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0
BBB@

1
CCCA ¼

cE
11 cE

12 0 �e31

cE
21 cE

22 0 �e32

0 0 cE
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0
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where Ei and Di are the components of the electric field vec-

tor and the electric displacement vector, respectively, and Ti

and Si are the components of stress and strain vectors,

respectively, defined according to
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FIG. 3. Two-dimensional piezoelectric transducer attached on a plate.

FIG. 1. Equivalent loads of a triangular piezoelectric transducer computed

using Euler–Bernoulli beam theory.

FIG. 2. Equivalent loads of a triangular piezoelectric transducer computed

using Kirchoff’s plate theory, from Ref. 7.
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The constitutive equations can also be written in a matrix

form

Tf g ¼ cE
� �

Sf g � e½ � Ef g;

and

Df g ¼ e½ �T Sf g þ eS
� �

Ef g: (2)

Assume that the piezoelectric transducer’s material axes

make an angle h with the structural axes noted x, y (Fig.F4 4).

In this case, the stress vector is expressed in the structural

axes as

Tf gxy¼ RT½ ��1 cE
� �

RS½ � Sf gxy� RT½ ��1 e½ � Ef g

and the electric displacement fDg is given by

Df g ¼ e½ �T RS½ � Sf gxyþ eS
� �

Ef g;

with (see for example Ref. 13)

RT½ ��1¼
cos2 h sin2 h �2 cos h sin h
sin2 h cos2 h 2 cos h sin h

cos h sin h �cosh sin h cos2 h� sin2 h

2
4

3
5

and

RS½ � ¼
cos2 h sin2 h sin h cos h
sin2 h cos2 h �sinh cos h

�2 sin h cos h 2 sin h cos h cos2 h� sin2 h

2
4

3
5:

One can easily check that

RT½ ��1 e½ � ¼ ð e½ �T RS½ �ÞT

so that the constitutive equations written in the structural

axes can be written in the general form

Tf gxy¼ cE�� �
Sf gxy� e�½ � Ef g;

and

Df g ¼ e�½ �T Sf gxy� eS
� �

Ef g:

Note that when matrix [e�] is expressed in the structural axes

and angle h = 0, we have

e�½ � ¼
e�31

e�32

e�36

2
64

3
75;

with

e�31 ¼ e31 cos2 hþ e32 sin2 h;

e�32 ¼ e31 sin2 hþ e32 cos2 h;

e�36 ¼ e31 � e32ð Þ cos h sin h:

It is important to point out the fact that e�36 is not a mate-

rial parameter as such and is a function of e31, e32, and h (for

piezoelectric materials e36 ¼ 0). Note also that for an iso-

tropic piezoelectric material (e31 ¼ e32), we have e�36 ¼ 0.

The supporting plate is assumed to be purely elastic so

that the constitutive equations (written in the structural axes)

reduce to Hooke’s law

T1

T2

T6

0
B@

1
CA ¼

c11 c12 0

c21 c22 0

0 0 c66

0
B@

1
CA

S1

S2

S6

0
B@

1
CA:

Using the small strain hypothesis, the strain components

written in the structural axes are given by

S1 ¼ u;x; S2 ¼ v;y; and S6 ¼ u;y þ v;x: (3)

III. HAMILTON’S PRINCIPLE USING THE FLUX
LINKAGE FORMULATION APPLIED TO
PIEZOELECTRIC STRUCTURES

In previous works, the equivalent loads resulting from

the application of a voltage difference V between the electro-

des of a piezoelectric patch attached to a plate (Fig. 3) were

computed by applying the differential operator L on a spatial

distribution K(x, y)7,9

LðKðx; yÞÞ ¼ �zmV e�31

@2Kðx; yÞ
@x2

þ e�32

@2Kðx; yÞ
@y2

�

þ 2e�36

@2Kðx; yÞ
@x@y

�
: (4)

K(x, y) has a unitary value inside the boundary of the piezo-

electric patch and a zero value outside. Because of the dis-

continuity of K(x, y) at the boundaries of the piezoelectric

patch, the second derivatives must be computed using the

theory of distributions. The derivatives involve Dirac distri-

butions and their derivatives, and it is not always straightfor-

ward to interpret these functions in terms of equivalent

loads, especially when the edges of the piezoelectric patch

are not aligned with the structural axes. It seems that this is

the origin of the erroneous computation of the equivalent

loads for the triangle7 and the rhombus12 in previous works.

In the following, we show that using Hamilton’s principle

the interpretation of the equivalent loads is straightforward.
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FIG. 4. Orientation of the material axes 1, 2 with respect to the structural

axes x, y.
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The piezoelectric transducer is assumed to be thin com-

pared to the thickness of the plate so that bending and in-

plane motion are not coupled. In addition, in-plane motion is

not considered so that only the equations related to the bend-

ing of the plate will be derived. In piezoelectric structures,

the total change of energy density stored in a unit volume is

given by the sum of the mechanical and the electrical work,

expressed here in the material axes

dweðS;DÞ ¼ fdSgTfTg þ fdDgTfEg:

Differentiating we(S, D) and comparing with the expression

above leads to

fTg ¼ @we

@S

� �
fEg ¼ @we

@D

� �
(5)

The coenergy density14 is obtained through the Legen-

dre transform

w�eðS;EÞ ¼ fEg
TfDg � weðS;DÞ;

and its differential is given by

dw�eðS;EÞ ¼ fdEgTfDg þ fEgTfdDg � fdSgT @we

@S

� �

� fdDgT @we

@D

� �
;

which, using Eq. (5), reduces to

dw�eðS;EÞ ¼ fdEgTfDg � fdSgTfTg;

and using Eq. (2) we get

dw�eðS;EÞ ¼ fdEgTð½e�TfSg þ ½eS�fEgÞ
� fdSgTð½cE�fSg � ½e�fEgÞ;

which is the differential of

w�eðS;EÞ ¼
1

2
fEgT ½eS�fEg þ fSgT ½e�fEg

� 1

2
fSgT ½cE�fSg:

The total coenergy W�e stored in a volume V is therefore

given by

W�e ¼
ð

V

w�edV

which, in the case of the structure considered in Fig. 3 reads

W�e ¼
1

2

ðh2

�h1

dz

ð
X
ðfEgT ½eS�fEg þ 2fSgT ½e�fEg

� fSgT ½cE�fSgÞdX:

The total coenergy is now written in the structural axes lead-

ing to

W�e ¼
1

2

ðh2

�h1

dz

ð
X
ðfEgT ½eS�fEg þ 2fSgT

xy½e��fEg

� fSgT
xy½cE��fSgxyÞdX:

It can be split into the contributions of the supporting plate

(in which case there is no dielectric or piezoelectric part)

and the piezoelectric patch

W�e ¼
1

2

ðh1

�h1

dz

ð
X
�fSgT

xy½c�fSgxydX

þ 1

2

ðh2

h1

dz

ð
X
ðfEgT ½eS�fEg þ 2fSgT

xy½e��fEg

� fSgT
xy½cE��fSgxyÞdX:

Hamilton’s principle using the flux linkage formulation

(Ref. 14, p. 121) reads

ðt2

t1

½dðT� þW�e Þ þ dWnc�dt ¼ 0 (6)

for any virtual vertical displacement dw complying with the

kinematic constraints and satisfying dw(t1) ¼ dw(t2) ¼ 0.

Note that dE ¼ 0 since the electric field is imposed on the

transducer and constant. T� is the kinetic coenergy given by

T� ¼ 1

2

ðh2

�h1

dz

ð
X

q _w2dX:

Taking into account the fact that dw(t1) ¼ dw(t2) ¼ 0, we

find

ðt2

t1

dT�dt ¼ �
ðt2

t1

dt

ð
X
ðqhÞeq €wdwdX

with

ðqhÞeq ¼ 2h1qS þ hpqp;

where qS is the density of the supporting plate and qp is the

density of the piezoelectric material.

Equations (1) and (3) (Kirchhoff’s plate theory) are used

to derive the virtual strains

dS1 ¼ �zdw;xx; dS2 ¼ �zdw;yy; and dS6 ¼ �2zdw;xy;

so that the variation of the coenergy function is given by

dW�e ¼ �
ð

X
ðAðx; yÞdw;xx þ Bðx; yÞdw;yy þ Cðx; yÞdw;xyÞdX;

(7)

with

Aðx; yÞ ¼ ðJc11Þeqw;xx þ ðJc12Þeqw;yy � zme�31V;

Bðx; yÞ ¼ ðJc21Þeqw;xx þ ðJc22Þeqw;yy � zme�32V;

Cðx; yÞ ¼ 4ðJc66Þeqw;xy � 2zme�36V:
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in which

ðJcijÞeq ¼ JpcE�
ij þ Jscij with Jp ¼

h3
2 � h3

1

3
;

Js ¼ 2
h3

1

3
:

(Jcij)eq is the total bending stiffness equal to the sum of the

bending stiffness of the supporting plate Jscij and of the pie-

zoelectric patch JpcE�
ij . Note also that E3 has been replaced

by –V/hp in the computation. The virtual work of the external

forces is given by

dWnc ¼
ð

X
pdwdXþ

ð
C
� @Mnt

@s
þ tnz

� �
dwdC

�
ð

C
Mnndw;ndC; (8)

where p is the pressure acting on the plate, Mnn, Mnt, and tnz

are the distributed bending moment, torsional moment and

shear forces acting on C (Fig.F5 5).

IV. COMPUTATION OF THE EQUIVALENT LOADS
USING GREEN’S THEOREM

Reexpressing the integrand of Eq. (7) using Leibniz’s

law and applying Green’s theorem, we obtain, after lengthy

but straightforward computations,

dW�e ¼ �
ð

X
ðA;xx þ B;yy þ C;xyÞdwdX

�
ð

C
ðAn2

x þ Bn2
y þ CnxnyÞdw;ndC

þ
ð

C
ðA;xnx þ B;yny þ C;xnyÞdwdC

þ
ð

C

@

@s
ððB� AÞnxny þ Cn2

xÞdwdC:

This formula is valid for a domain X bounded by a curve C of

class C1. Assume now that C is piecewise smooth and is

obtained as the union of smooth curves Ci, i ¼ 1, … , N start-

ing at point pi�1 and ending at point pi, with pN ¼ p0. Then

we can approximate C with a curve C� of class C1 obtained by

rounding the corners of C with arcs of circles of radii �. We

denote by X� the domain enclosed by C�. As � tends to zero,

the domain X� approaches X an the curve C� approaches C.

Applying the above formula to X� and C� with �! 0, we see

that the first three integrals converge to identical expressions

involving X and C because the integrands are bounded.

However, the fourth integrand is not because nx and ny vary

quickly over the small arcs of circles. The integral over the

arc near pi is equal to the variation of ðB� AÞnxny þ Cn2
x

over this arc. Let us denote the discontinuity jump of a func-

tion g defined on C at point pi by [g]i ¼ g(piþ) � g(pi�).

With this notation, as � ! 0, this variation converges to

ðB� AÞ½nxny�i þ C½n2
x �i. Hence, in the case of a piecewise

smooth curve C, the above formula becomes

dW�e ¼ �
ð

X
ðA;xx þ B;yy þ C;xyÞdwdX

�
ð

C
ðAn2

x þ Bn2
y þ CnxnyÞdw;ndC

þ
ð

C
ðA;xnx þ B;yny þ C;xnyÞdwdC

þ
ð

C

@

@s
ððB� AÞnxny þ Cn2

xÞdwdC

þ
XN

i¼1

ðB� AÞ½nxny�i þ C½n2
x �i:

Substituting dW�e ; dT�, and dWnc in Eq. (6), we get the

dynamic equation of motion in X

ðA;xx þ B;yy þ C;xyÞ þ ðqhÞeq €w ¼ p

and the two boundary conditions on C

ðAn2
x þ Bn2

y þ CnxnyÞ ¼ �Mnn;

�
�
ðA;xnx þ B;yny þ C;xnyÞ

þ @

@s
ððB� AÞnxny þ Cn2

xÞ

þ ðB� AÞ½nxny� þ C½n2
x �
�

¼ � @Mnt

@s
þ tnz;

where [ … ] denotes the discontinuity jump at the considered

point.

The piezoelectric contributions (terms in e�ij) in A(x, y),

B(x, y), and C(x, y) are independent of w(x, y) so that they

can be put in the right-hand side showing that applying a

voltage difference V between the electrodes is equivalent to

applying the following loads to the supporting plate:

�p ¼ @2

@x2
ðe�31zmVÞ þ @2

@y2
ðe�32zmVÞ þ 2

@2

@x@y
ðe�36zmVÞ;

�Mnn ¼ e�31n2
xzmV þ e�32n2

yzmV þ 2e�36nxnyzmV;

� � @Mnt

@s
þ tnz

� �
¼ @

@s
ððe�32 � e�31ÞnxnyzmV þ 2e�36n2

xzmVÞ

þ ððe�32 � e�31Þ½nxny� þ 2e�36½n2
x �ÞzmV

þ @

@x
ðe�31zmVÞnx þ

@

@y
ðe�32zmVÞny

þ 2
@

@x
ðe�36zmVÞny: (9)
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FIG. 5. Distributed external forces acting on the plate.
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In the most common case in which e�31; e
�
32; e

�
36; zm; and

V are constant, the equivalent loads are

p ¼ 0;

Mnn ¼ �e�31n2
xzmV � e�32n2

yzmV � 2e�36nxnyzmV;

� @Mnt

@s
þ tnz ¼ �ðe�32 � e�31ÞzmV

@

@s
ðnxnyÞ � 2e�36zmV

@

@s
ðn2

xÞ

� ððe�32 � e�31Þ½nxny� þ 2e�36½n2
x �ÞzmV;

and for isotropic piezoelectric material (e31 ¼ e32), we find

p ¼ 0;

Mnn ¼ �e31zmV;

� @Mnt

@s
þ tnz ¼ 0:

V. DERIVATION OF THE EQUIVALENT LOADS USING
DISTRIBUTIONS IN TWO DIMENSIONS

A. Distributions in two dimensions

Consider the space of smooth functions u with compact

support (in other words, u ¼ 0 outside a large disk) in the

plane with variables x and y. In this context, a distribution f
associates, to every function u, a scalar h f ;ui depending lin-

early and continuously (for a suitable topology) on u.

For example, if f(x, y) is a (locally integrable) function

on the plane, then it defines a distribution, still denoted f, by

h f ;ui ¼
ðþ1
�1

ðþ1
�1

f ðx; yÞuðx; yÞdxdy:

The function f(x, y) can be thought of as a density for the dis-

tribution f. Note however that some distributions are not

defined through a density function.

In our computations, we shall use a couple of operations

on distributions. First, for any distribution f and any smooth

function w, the multiplication wf is the distribution defined by

hwf ;ui ¼ h f ;wui:

Next, for any distribution f, its derivatives f,x and f,y are the

distributions defined by

h f;x;ui ¼ �h f ;u;xi and h f;y;ui ¼ �h f ;u;yi:

This definition is inspired from integration by parts, in the

case f is defined via a density function.

In the computation of the efforts for the transducer, we

shall encounter the following four examples of distributions:

(1) Let X be a region of the plane. The characteristic distri-

bution 1X of X is defined by

h1X;ui ¼
ð

X
uðx; yÞdX:

(2) Let C be a smooth curve in the plane, not necessarily

closed. The Dirac distribution dC along C is defined by

hdC;ui ¼
ð

C
uðx; yÞdC:

(3) Let n be the normal vector of the above curve C and g be

a smooth function defined on C. Then the distribution
@
@n ðgdCÞ is given by

@

@n
ðgdCÞ;u

� 	
¼ �

ð
C

gðx; yÞu;nðx; yÞdC:

(4) Let p ¼ (x0, y0) be a point of the plane. The Dirac distri-

bution dp at point p is defined by

hdp;ui ¼ uðx0; y0Þ:

B. Computation of the efforts

The quantity dWnc can be seen as the result of applying

a distribution TW to the function dw

dWnc ¼ hTW ; dwi:

Moreover, Eq. (8) shows that this distribution decomposes in

three terms, involving the first three examples of distribu-

tions in Sec. V A

TW ¼ p1X þ � @Mnt

@s
þ tnz

� �
dC þ

@

@n
ðMnndCÞ: (10)

On the other hand, we have shown in Sec. IV that the piezo-

electric loads were given by the piezoelectric part in the

expression of �dW�e , which, before applying Green’s theo-

rem, is given by

�dW�e jp ¼
ð

X
�zme�31Vdw;xx � zme�32Vdw;yy

� 2zme�36Vdw;xydX

¼ h�zme�31V1X; dw;xxi þ h�zme�32V1X; dw;yyi
þ h�2zme�36V1X; dw;xyi;

and using the definition of the derivatives of distributions,

we get

�dW�e jp ¼ � @2

@x2
ðzme�31V1XÞ; dw

� 	

þ � @2

@y2
ðzme�32V1XÞ; dw

� 	

þ � @2

@x@y
ð2zme�36V1XÞ; dw

� 	
:

We have therefore

TW ¼ �
@2

@x2
ðzme�31V1XÞ �

@2

@y2
ðzme�32V1XÞ

� 2
@2

@x@y
ðzme�36V1XÞ:
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We now have to compute the effect of the differential opera-

tor L ¼ @2

@x2 ðe�31�Þ þ @2

@y2 ðe�32�Þ þ 2 @2

@x@y ðe�36�Þ on 1X, as in

Eq. (4) from Ref. 9 and to identify the result with Eq. (10) in

order to interpret the results in the form of equivalent efforts.

This computation is a generalization of the computation

in Ref. 15 Sec. II 2 3. The first derivatives of the distribution

1X are given by

@

@x
1X ¼ nxdC; and

@

@y
1X ¼ nydC:

As in Sec. IV, let us consider the case of a piecewise smooth

curve C. For this, we decompose C as the union of smooth

curves Ci, i ¼ 1, … , N starting at point pi�1 and ending at

point pi, with pN ¼ p0. then dC ¼
PN

i¼1 dCi
:

Let us compute the first derivatives of nxdCi
and nydCi

.

@

@x
ðnxdCi

Þ;u
� 	

¼�
ð

Ci

nx
@

@x
udC

¼�
ð

Ci

n2
x

@

@n
udCþ

ð
Ci

nxny
@

@s
udC

¼ @

@n
ðn2

xdCi
Þ;u

� 	
þ
ð

Ci

@

@s
ðnxnyuÞdC

�
ð

Ci

@

@s
ðnxnyÞudC

¼ @

@n
ðn2

xdCi
Þ;u

� 	
þ hnCi

x nCi
y ðdpi

� dpi�1
Þ;ui

� @

@s
ðnxnyÞdCi

;u

� 	
:

Hence,

@

@x
ðnxdCi

Þ ¼ @

@n
ðn2

xdCi
Þ þ nCi

x nCi
y ðdpi

� dpi�1
Þ � @

@s
ðnxnyÞdCi

;

and summing over i, we deduce

@

@x
ðnxdCÞ ¼

@

@n
ðn2

xdCÞ �
XN

i¼1

½nxny�dpi
� @

@s
ðnxnyÞdC;

where [nxny] denotes the discontinuity jump of nxny at the

considered point. Similarly, we have

@

@y
ðnxdCÞ ¼

@

@n
ðnxnydCÞ þ

XN

i¼1

½n2
x �dpi
þ @

@s
ðn2

xÞdC;

@

@x
ðnydCÞ ¼

@

@n
ðnxnydCÞ �

XN

i¼1

½n2
y �dpi
� @

@s
ðn2

yÞdC;

@

@y
ðnydCÞ ¼

@

@n
ðn2

ydCÞ þ
XN

i¼1

½nxny�dpi
þ @

@s
ðnxnyÞdC:

In other words, the second derivatives of 1X are

@2

@x2
1X ¼

@

@n
ðn2

xdCÞ �
XN

i¼1

½nxny�dpi
� @

@s
ðnxnyÞdC;

@2

@y@x
1X ¼

@

@n
ðnxnydCÞ þ

XN

i¼1

½n2
x �dpi
þ @

@s
ðn2

xÞdC;

@2

@x@y
1X ¼

@

@n
ðnxnydCÞ �

XN

i¼1

½n2
y �dpi
� @

@s
ðn2

yÞdC;

@2

@y2
1X ¼

@

@n
ðn2

ydCÞ þ
XN

i¼1

½nxny�dpi
þ @

@s
ðnxnyÞdC:

Note that the second and third lines agree, since

n2
x þ n2

y ¼ 1.

Combining these derivatives and those of zmV with the

coefficients e�31; e
�
32 and e�36, we obtain

LðzmV1XÞ ¼


@2

@x2
ðzme�31VÞ þ @2

@y2
ðzme�32VÞ

þ 2
@2

@x@y
ðzme�36VÞ

�
1X

þ



2
@

@x
ðzme�31VÞnx þ 2

@

@y
ðzme�32VÞny

þ 2
@

@x
ðzme�36VÞny þ 2

@

@y
ðzme�36VÞnx

�
dC

þ zmV

�
e�31

@

@n
ðn2

xdCÞ þ e�32

@

@n
ðn2

ydCÞ

þ 2e�36

@

@n
ðnxnydCÞ

�

þ
XN

i¼1

ððe�32 � e�31Þ½nxny� þ 2e�36½n2
x �ÞzmVdpi

þ
�
ðe�32 � e�31Þ

@

@s
ðnxnyÞ þ 2e�36

@

@s
ðn2

xÞ
�

zmVdC:

Substituting @
@x ¼ �ny

@
@sþ nx

@
@n and @

@y ¼ nx
@
@sþ ny

@
@n in

some terms of the second bracket, then incorporating the

resulting terms with @
@n in the third bracket and the terms

with @
@s in the fifth bracket, we find

LðzmV1XÞ ¼


@2

@x2
ðzme�31VÞ þ @2

@y2
ðzme�32VÞ

þ 2
@2

@x@y
ðzme�36VÞ

�
1X

þ


@

@x
ðzme�31VÞnx þ

@

@y
ðzme�32VÞny

þ 2
@

@x
ðzme�36VÞny

�
dC

þ @

@n
ððe�31n2

x þ e�32n2
y þ 2e�36nxnyÞzmVdCÞ

þ
XN

i¼1

ððe�32 � e�31Þ½nxny� þ 2e�36½n2
x �ÞzmVdpi

þ @

@s
ðððe�32 � e�31Þnxny þ 2e�36n2

xÞzmVÞdC: (11)
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Comparing (10) and (11), we deduce the efforts for the

transducer

�p ¼ @2

@x2
ðzme�31VÞ þ @2

@y2
ðzme�32VÞ þ 2

@2

@x@y
ðzme�36VÞ;

� � @Mnt

@s
þ tnz

� �
¼ ððe�32 � e�31Þ½nxny� þ 2e�36½n2

x �ÞzmV

þ @

@s
ðððe�32 � e�31Þnxny þ 2e�36n2

xÞzmVÞ

þ @

@x
ðzme�31VÞnx þ

@

@y
ðzme�32VÞny

þ 2
@

@x
ðzme�36VÞny

�Mnn ¼ ðe�31n2
x þ e�32n2

y þ 2e�36nxnyÞzmV:

In the second equation, the discontinuity jump vanishes

everywhere, except at points p1, … , pN. In other words, this

can be interpreted as point forces at the points pi.

This result is identical to Eq. (9) derived using Green’s

theorem. The main advantage of the use of the theory of dis-

tributions is to avoid the lengthy computations when using

Green’s theorem (not detailed in Sec. IV). In both cases,

Hamilton’s principle is used to interpret the results in terms

of equivalent loads.

VI. APPLICATIONS

A. Triangular actuator

Let us consider the case when e�36 ¼ 0 (the material axes

are aligned with the structural axes) and X is a triangle, so

that N ¼ 3 and n is piecewise constant, we have

� @Mnt

@s
þ tnz ¼ �ðe32 � e31Þ½nxny�zmV;

Mnn ¼ ð�e31n2
x � e32n2

yÞzmV:

Placing the vertices of the triangle at points p1 ¼ (0,�b/2),

p2 ¼ (l, 0), and p3 ¼ (0, b/2) (Fig.F6 6), the normal vector is

given by

n ¼

ð�1; 0Þ on the edge p1p3;
1ffiffiffiffiffiffiffiffi
b2

4
þl2

p ðb
2
;�lÞ on the edge p1p2;

1ffiffiffiffiffiffiffiffi
b2

4
þl2

p ðb
2
; lÞ on the edge p2p3;

8>>><
>>>:

so that

� @Mnt

@s
þ tnz ¼

ðe32 � e31Þ bl

2ðb2

4
þl2Þ

zmV at point p1;

�ðe32 � e31Þ bl
b2

4
þl2

zmV at point p2;

ðe32 � e31Þ bl

2ðb2

4
þl2Þ

zmV at point p3;

8>>><
>>>:

Mnn ¼

�e31zmV on the edge p1p3;

�
b2

4
e31þl2e32

b2

4
þl2

zmV on the edge p1p2;

�
b2

4
e31þl2e32

b2

4
þl2

zmV on the edge p2p3:

8>>>><
>>>>:

The equivalent loads are summarized in Fig. F77.

Note that for an isotropic triangle (e31 ¼ e32), there are

no point forces and the distributed moments are M1 ¼ M2

¼ e31zmV. This is in contradiction with the results previously

derived in Refs. 7 and 12 which are not correct. This is easily

shown, as stated before, by considering an isotropic equilat-

eral triangle for which point forces of opposite sign cannot

appear at the tips due to the symmetries of the problem. The

general expressions derived in this paper show in fact that

there are no point forces when e31 ¼ e32, whatever the shape

of the contour.

B. Rectangular actuator with arbitrary orientation
of the material axes

We consider the case when e�36 6¼ 0 (the material axes

make an angle h with the structural axes) and X is a rectan-

gle, so that N ¼ 4 and n is piecewise constant. On the whole

contour C, the product nxny is equal to zero, leading to

� @Mnt

@s
þ tnz ¼ �2e�36½n2

x �zmV;

Mnn ¼ �ðe�31n2
x þ e�32n2

yÞzmV:
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946FIG. 6. Triangular actuator aligned with the structural axes.

FIG. 7. Equivalent loads for a triangular piezoelectric actuator.
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Placing the vertices of the rectangle at points p1 ¼ (0, 0), p2

¼ (0, b), p3 ¼ (l, b), and p4 ¼ (l, 0) (Fig.F8 8), the normal vector

is given by

n ¼

ð�1; 0Þ on the edge p1p2;
ð0; 1Þ on the edge p2p3;
ð1; 0Þ on the edge p3p4;
ð0;�1Þ on the edge p4p1

8>><
>>:

so that

� @Mnt

@s
þ tnz ¼

2e�36zmV at points p1 and p3;

�2e�36zmV at points p2 and p4;

�

Mnn ¼
�e�31zmV on the edges p1p2 and p3p4;

�e�32zmV on the edges p2p3 and p4p1:

�

We recall that e�31; e
�
32; e

�
36 are a function of the material

properties e31 and e32 and the orientation of the material

axes with respect to the structural axes, given by the angle h

e�31 ¼ e31 cos2 hþ e32 sin2 h;

e�32 ¼ e31 sin2 hþ e32 cos2 h;

e�36 ¼ ðe31 � e32Þ cos h sin h:

The equivalent loads are summarized in Fig.F9 9.

P ¼ �2e�36zmV

M1 ¼ �e�31zmV

M2 ¼ �e�32zmV

Note again that for an isotropic rectangle (e31 ¼ e32),

there are no point forces, and the distributed moments are

M1 ¼ M2 ¼ �e31zmV. The results are in agreement with the

ones published in Refs. 7 and 13.

C. Circular actuator

Without loss of generality, we will assume that the ma-

terial axes are aligned with the structural axes, giving the ref-

erence angle for the expression of the equivalent loads

(Fig. F1010). We have e36 ¼ 0 and e�31 ¼ e31 and e�32 ¼ e32,

s ¼ rx and the normal is a function of s given by

nx ¼ cos x

ny ¼ sin x

The equivalent loads are given by

� @Mnt

@s
þ tnz ¼ �

@

@s
ðe32 � e31Þ

sin 2x
2

� �
zmV

¼ � 1

r
ðe32 � e31Þ cos 2x;

Mnn ¼ �ðe31 cos2 xþ e32 sin2 xÞzmV:

In this case, because the normal depends on the position

along the contour (defined by the angle x), the generalized shear

distribution ð� @Mnt

@s þ tnzÞ and the normal bending moment Mnn

are also angle dependant. Note that for an isotropic circular actu-

ator (e31 ¼ e32), there is no generalized shear distribution on the

contour, and the bending moment reduces to Mnn¼ e31zmV.

VII. CONCLUSION

Shaped piezoelectric transducers are used in a variety of

applications. When a voltage difference is applied on the

electrodes of such transducers, it results in a distribution of

generalized loads applied to the host plate structure. In this

paper, we have derived the analytical expressions of these

equivalent loads assuming a piecewise linear contour. Ham-

ilton’s principle using the flux linkage formulation has been

used and two different mathematical approaches have been

used to derive the equivalent loads: Green’s theorem and the

theory of distributions in two dimensions. The main advant-

age of the theory of distributions is the simplicity of the cal-

culations allowing to avoid the lengthy computations when
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FIG. 10. Circular actuator with the reference angle given by the material

axes.
FIG. 8. Rectangular actuator with the material axes making an angle h with

the structural axes.
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using Green’s theorem. Both approaches lead to the same an-

alytical expressions of the equivalent loads which are a func-

tion of the topology of the contour (the normal of the contour

and its discontinuities), the piezoelectric material properties,

and the orientation of the material properties with respect to

the structural axes. It is thought that such general expressions

are presented for the first time in the literature. The equiva-

lent loads have then been evaluated for triangular, rectangu-

lar, and circular orthotropic piezoelectric transducers in order

to illustrate their application to simple geometric shapes. In

particular, the results derived for the triangular actuator

respect the symmetries for an isotropic equilateral triangle on

the contrary to previously published results.
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