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Equivalent loads for two-dimensional distributed anisotropic
piezoelectric transducers with arbitrary shapes attached
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When a voltage is applied across the electrodes of a flat piezoelectric transducer attached to a thin
plate structure, the transducer acts as equivalent loads applied to the host plate structure. In this pa-
per, analytical expressions of these equivalent loads are derived for the general case of an orthotropic
piezoelectric actuator using Hamilton’s principle and two different mathematical approaches leading
to the same results: Green’s theorem and derivation using the theory of distributions. The equivalent
loads are a function of the material properties as well as the normal to the contour of the transducer.
Examples of applications to simple geometric shapes (triangle, rectangle, and circle) are given.
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. INTRODUCTION

Piezoelectric transducers are commonly used in active
vibration control and structural health monitoring applica-
tions. In particular, thin piezoelectric sensors and actuators
are used to induce bending vibrations or propagating waves
in plate-like structures. The main advantages of such trans-
ducers are their small size, their broad bandwidth, and their
relatively low price. The most common piezoelectric flat
transducers are made either of lead zircanium titanium (PZT)
ceramic material (for actuation and/or sensing) or of polymer
polyvinylidene fluoride (PVDF) material (mainly for sens-
ing). During the last ten years, composite piezoelectric trans-
ducers have appeared on the market. By mixing piezoelectric
fibers with a softer epoxy matrix, the composite transducers
are more flexible and more robust' and exhibit orthotropic
properties. Typical piezoelectric transducers found on the
market are rectangular or circular. Different researchers have
however studied the possibility to use more complex shapes.
This idea was mainly driven by the active control applica-
tions. The first developments in this direction concern trian-
gular actuators.” Using the theory of distributions and the
beam theory, the authors show that applying a voltage differ-
ence V across the electrodes of the transducer is equivalent to
applying two point forces and one bending moment on the
supporting structure (Fig. 1). If the triangular actuator is
clamped along one edge, the resulting force is a single point
force at the tip of the triangle. Coupling this transducer with
an accelerometer placed at the tip of the triangle leads to a
collocated actuator/sensor pair and the possibility to develop
a simple and theoretically stable control strategy.’ Shaped
transducers have also been used for the design of modal sen-
sors and actuators,4 as an alternative to modal filters obtained
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from discrete sensor arrays suffering from the spatial aliasing
effect and more recently in order to measure the bending
moment at the boundary of structures.’

In Refs. 2, 4, and 5, the equivalent loads have been com-
puted using the beam theory. In practice however, the effects
in the direction transverse to the beam neutral axis cannot be
neglected, as clearly demonstrated both numerically and
experimentally in Ref. 6 for modal filters. In order to cor-
rectly compute the equivalent loads of thin piezoelectric
transducers, it is therefore necessary to use the plate theory.
For triangular actuators, equivalent loads have been com-
puted using Kirchoff’s plate theory and the theory of distri-
butions in Refs. 7 and 8 using the general approach
developed in Refs. 9 and 10. These equivalent loads are rep-
resented in Fig. 2. The figure shows that the equivalent loads
consist in three point forces at the tips of the triangle and dis-
tributed lineic bending moments M, and M, along the edges.
With such equivalent loads, the use of an actuator/sensor
pair consisting of a triangular piezoelectric actuator and an
accelerometer will not lead to a collocated pair anymore,
therefore reducing the bandwidth of stability of the control-
ler, as shown in Ref. 3. The results demonstrated in Ref. 7
using the theory of distributions in two dimensions are how-
ever surprising: Consider an isotropic piezoelectric material
(e3; = e3;) and an equilateral triangle: The equivalent loads
computed clearly violate the symmetries of the problem. We
conclude that the equivalent loads of Fig. 2 are not correct.
This fact has also been noticed very recently in Ref. 11. At
the same period, equivalent loads were derived for piezo-
electric transducers with different shapes in Ref. 12. The
study was limited to isotropic piezoelectric materials, and
equivalent loads for a rhombus shape showed the appearance
of point forces. Here again, if the thombus is made of two
equilateral triangles, the symmetries of the problem are vio-
lated, showing that the equivalent loads are not correct. Note
that the results for rectangular actuators presented in Refs. 7
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Mp = C31Vb Zm

FIG. 1. Equivalent loads of a triangular piezoelectric transducer computed
using Euler—Bernoulli beam theory.

and 9 are correct, because the edges of the patch are aligned
with the structural axes. In fact, the main difficulty for the
computation of the equivalent loads arises when the edges
are not aligned with the structural axes, such as in the case
of the triangular actuator or the rhombus.

The motivation of this study is to derive the correct ana-
lytical expressions of the equivalent loads for orthotropic
piezoelectric actuators with arbitrary shapes, with the only
limitation that the contour must be a piecewise smooth
curve. These analytical expressions are derived based on
Hamilton’s principle using the flux linkage formulation for
piezoelectric structures and two different mathematical
approaches: (i) Green’s theorem and (ii) the theory of distri-
butions in two dimensions. The results show that the equiva-
lent loads are a function of the material properties as well as
the analytical expression of the normal to the contour.
Finally, as an illustration, we give the equivalent loads for
triangular, rectangular, and circular transducers in the case
of orthotropic and isotropic piezoelectric materials. The
application to a triangular transducer leads to equivalent
loads which are different from the ones found in Ref. 7 and
do not violate the symmetries for an equilateral triangle with
isotropic piezoelectric material. In particular, we show that
for an isotropic piezoelectric triangular actuator, there exist
only lineic moments along the edges and no point forces.

m=b/21
P/2 M1 = 631VZm
M, = (m’e31+ €3) Vz,
P=2 e31VlT) Zm

FIG. 2. Equivalent loads of a triangular piezoelectric transducer computed
using Kirchoft’s plate theory, from Ref. 7.
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Plate neutral plane Supporting plate

FIG. 3. Two-dimensional piezoelectric transducer attached on a plate.

Il. NOTATIONS

Consider a two-dimensional piezoelectric transducer of
thickness £, attached on a plate along a plane region Q
(Fig. 3). We denote by I' the closed curve bounding this
region . We assume that there is no prescribed displace-
ment on this boundary. Let x,y be cartesian coordinates
along the neutral plane of the plate, parallel to the plane con-
taining Q, and let z be the normal coordinate, so that /; < z
< hy in the transducer with i, = h, — hy and z = 0 is the
neutral plane of the supporting plate. We denote by
Zm = %(hl + hy) the distance between the mid-plane of the
transducer and the neutral plane of the supporting plate.

In these coordinates, the displacement field will be
denoted by (u, v,w)T. Using Kirchoff’s thin plate theory, the
displacements are approximated by

M(X,y,Z) = MQ(X,y,O) — W,
v(x,y,z) = vo(x,¥,0) — zw,,,

w(x,y,z) = w(x,y). )]

The poling direction of the piezoelectric transducer is
assumed to be in direction z and according to the plane stress
hypothesis, the out of plane stress components are equal to
zero. A voltage difference V is applied between the top and
bottom surface electrodes of the transducer, resulting in an
electric field £5 = —V/h,, in the z-direction (£, = £, = 0).

Using the standard Institute of Electrical and Electronics
Engineers (IEEE) notations for linear piezoelectricity, the
constitutive equations (under the plane stress hypothesis and
in the material axes) for the transducer are given by

T, ok 0 —ey S
T, kL 0 —en Sy
To| [0 0 & o Se |
D3 €31 €3 0 8‘§3 E3

where E; and D; are the components of the electric field vec-
tor and the electric displacement vector, respectively, and 7;
and §; are the components of stress and strain vectors,
respectively, defined according to

T] T| 1 Sl Sl 1
T2 = T22 S2 — S22
T6 T|2 S() 24S12

Deraemaeker et al.: Equivalent loads for shaped piezo transducers
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FIG. 4. Orientation of the material axes 1,2 with respect to the structural
axes X, y.

The constitutive equations can also be written in a matrix
form

{1} = ["[{S} — [e}{E},
and
{D} = e {S} + [']{E}. o)
Assume that the piezoelectric transducer’s material axes
make an angle 6 with the structural axes noted x, y (Fig. 4).

In this case, the stress vector is expressed in the structural
axes as

{T}= [Rr) ™" [*] [Rs]{S} , —[Rr] ' [e]{E}
and the electric displacement {D} is given by
(D} = [l RS}, + [ {E}.
with (see for example Ref. 13)
cos? 0 sin® 0 —2cos 0sin 0
[Rr]'= sin? 0 cos? 0) 2 cos Osin 0
cosfOsin@ —cosfsin® cos? 0 — sin’ 0
and
cos? 0) sin® 0 sin 0 cos 0
[Rs] = sin® 0 cos” 0 —sinf cos 0
—2sinfcos 2sinfcosl cos? O — sin® 0
One can easily check that

[Rr]™'[e] = (le] [Rs])"

so that the constitutive equations written in the structural
axes can be written in the general form

{Thy= [ {Shy—le{E},

and
{D} = [e"]"{S},— [ |{E}-
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Note that when matrix [e*] is expressed in the structural axes
and angle 0 # 0, we have

«
€3
* *
] = |exn |,
*
€36
with

ey = e3 cos? 0 + e3; sin® 0,
* -2 2
e, = e31 sin” 0 + e3; cos” 0,

€3 = (e31 — e3) cosOsin 0.

It is important to point out the fact that €34 is not a mate-
rial parameter as such and is a function of e3, e3,, and 0 (for
piezoelectric materials e3s = 0). Note also that for an iso-
tropic piezoelectric material (e3; = e3,), we have e3¢, = 0.

The supporting plate is assumed to be purely elastic so
that the constitutive equations (written in the structural axes)
reduce to Hooke’s law

T, e ¢z O S
T, | = cu ¢ O hY)
T6 0 0 Ce6 S6

Using the small strain hypothesis, the strain components
written in the structural axes are given by

Si=uy, S2=v,, and Sg=uy,+v,. 3)

lll. HAMILTON’S PRINCIPLE USING THE FLUX
LINKAGE FORMULATION APPLIED TO
PIEZOELECTRIC STRUCTURES

In previous works, the equivalent loads resulting from
the application of a voltage difference V between the electro-
des of a piezoelectric patch attached to a plate (Fig. 3) were
computed by applying the differential operator L on a spatial
distribution A(x, y)"*°

* 32A(X7y) * 82/\()(,_)))
L) = 2 (e 552 4 e 00
. OPAx,y)
+ 20, 20 ) )

A(x,y) has a unitary value inside the boundary of the piezo-
electric patch and a zero value outside. Because of the dis-
continuity of A(x,y) at the boundaries of the piezoelectric
patch, the second derivatives must be computed using the
theory of distributions. The derivatives involve Dirac distri-
butions and their derivatives, and it is not always straightfor-
ward to interpret these functions in terms of equivalent
loads, especially when the edges of the piezoelectric patch
are not aligned with the structural axes. It seems that this is
the origin of the erroneous computation of the equivalent
loads for the triangle’ and the rhombus'? in previous works.
In the following, we show that using Hamilton’s principle
the interpretation of the equivalent loads is straightforward.

Deraemaeker et al.: Equivalent loads for shaped piezo transducers 3
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The piezoelectric transducer is assumed to be thin com-
pared to the thickness of the plate so that bending and in-
plane motion are not coupled. In addition, in-plane motion is
not considered so that only the equations related to the bend-
ing of the plate will be derived. In piezoelectric structures,
the total change of energy density stored in a unit volume is
given by the sum of the mechanical and the electrical work,
expressed here in the material axes

dw,(S,D) = {dS}" {T} + {dD}" {E}.

Differentiating w,(S,D) and comparing with the expression
above leads to

BWg awe
T} = E} = 5
m={% - {5] )
The coenergy density'® is obtained through the Legen-
dre transform

W:(S?E) = {E}T{D} - We(SvD)a

and its differential is given by

dw;(S,E) = {aE}' {D} + {E} {aD} ~ {ds}T{aav?}
- oy {55},

which, using Eq. (5), reduces to

aw}(S,E) = {dE}' {D} — {dS}'{T},
and using Eq. (2) we get

dw;(S,E) = {dE}" ([e] {S} + [*HE})
—{dS}" ([*HS} — [el{ED),

which is the differential of
» 1
w,(S,E) = E{E}T[Ss]{E} +{S}[el{E}

L ik
- L)),

The total coenergy W stored in a volume V is therefore
given by

W, = J wodV
1%
which, in the case of the structure considered in Fig. 3 reads

we=g | ar| (EEHEY 2y )

—h

— {S}Y["){S})aQ.

The total coenergy is now written in the structural axes lead-
ing to
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we=s | ar| dEEKE -2

—h
— {S}y S}, )a.

Xy

It can be split into the contributions of the supporting plate
(in which case there is no dielectric or piezoelectric part)
and the piezoelectric patch

W= h'h] dz L {8} [c]{S},d0

45 | aEyEE s
— (S5} a0

Hamilton’s principle using the flux linkage formulation
(Ref. 14, p. 121) reads

(5]
J [O(T" +W)) + oW,|dt =0 ©6)

]

for any virtual vertical displacement ow complying with the
kinematic constraints and satisfying ow(t;) = ow(t,) = 0.
Note that 0E = 0 since the electric field is imposed on the
transducer and constant. 7™ is the kinetic coenergy given by

1 ("
T" = —J dzJ pwdQ.
2) 0 Ja

Taking into account the fact that ow(t;) = ow(t,) = 0, we
find

15 15
J ST dt = —J dtJ (ph) g9 owdQ
! Q

f t
with
(ph)eq = 2hlpS + hppp7

where pg is the density of the supporting plate and p,, is the
density of the piezoelectric material.

Equations (1) and (3) (Kirchhoff’s plate theory) are used
to derive the virtual strains

0S) = —z20W,y, 08y = —z6w,,, and 6Sg = —2z0w .y,

so that the variation of the coenergy function is given by
oW, = — J (A(x,)0W o + B(x,y)0W 4y + C(x,y)0W 4, )dQ,
Q
)
with

A(x, ) = (Je1) oW + (JC12) Wy — Zme3,V,
B(x,y) = (Jea1) W + (J€22) (W yy — Zm€3 Vs
C(x,y) = 4(JC66) oW1y — 22m€36V .
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FIG. 5. Distributed external forces acting on the plate.

in which
h—n
(Jei)og = Jpci" +Jscy with  J, == 3 L,
h3
Jy = 2?‘.

(Jcij)eq 1s the total bending stiffness equal to the sum of the
bending stiffness of the supporting plate J,c;; and of the pie-
zoelectric patch J, ,,cg-*. Note also that E3 has been replaced
by —V/h,, in the computation. The virtual work of the external
forces is given by

OWye = J powdQ + J (— M. + tnz> owdI’
Q T Os

_J Myow T, ®)
I

where p is the pressure acting on the plate, M,,,, M,,;, and t,,
are the distributed bending moment, torsional moment and
shear forces acting on I" (Fig. 5).

IV. COMPUTATION OF THE EQUIVALENT LOADS
USING GREEN’S THEOREM

Reexpressing the integrand of Eq. (7) using Leibniz’s
law and applying Green’s theorem, we obtain, after lengthy
but straightforward computations,

oW, = — | (A + By + Cy)owdQ

JQ

- (An? + Bn)z, + Cnyny)ow ,dI’

+ | (A + Byny + Cny)dwdl
r

a 2
+ | #((B = A)nny 4 Cny)owdr .
r Js -

This formula is valid for a domain Q bounded by a curve I" of
class C'. Assume now that T is piecewise smooth and is
obtained as the union of smooth curves I';,, i = 1, ... , N start-
ing at point p; _; and ending at point p;, with py = po. Then
we can approximate I" with a curve I', of class C' obtained by
rounding the corners of I" with arcs of circles of radii e. We
denote by Q. the domain enclosed by I',. As € tends to zero,
the domain Q. approaches Q an the curve I'. approaches I'.
Applying the above formula to Q. and I'. with ¢ — 0, we see
that the first three integrals converge to identical expressions
involving Q and I' because the integrands are bounded.

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011

However, the fourth integrand is not because n, and n, vary
quickly over the small arcs of circles. The integral over the
arc near p; is equal to the variation of (B — A)nn, + Cn?
over this arc. Let us denote the discontinuity jump of a func-
tion g defined on I' at point p; by [gl; = g(pi+) — gpi—).
With this notation, as ¢ — 0, this variation converges to
(B — A)[nyn,]; + C[n?],. Hence, in the case of a piecewise
smooth curve I', the above formula becomes

W =—| (Aw+ B,y + C.y)owdQ

Q

— | (An} + Bn} + Cnyny)ow ,dT
r

+ | (Any+ Byny, + Cny)owdl’
r

9 2
+ | =((B—A)nny + Cn;)owdl’
r aS

+ Y (B =A)mn); + C[r]);.
i=1

Substituting 6W;,6T*, and 6W,. in Eq. (6), we get the
dynamic equation of motion in Q

(Axx + By + Coy) + (ph) % = p
and the two boundary conditions on I
(An? +Bn§ + Cnyny) = =My,

— <(A_an + Byny + C ny)

+ % ((B—A)neny, + Cn%)

(B )]+ C[nﬂ)

B OM,,
s

+ tﬂZ?

where [ ... ] denotes the discontinuity jump at the considered
point.

The piezoelectric contributions (terms in e;) in A(x,y),
B(x,y), and C(x,y) are independent of w(x,y) so that they
can be put in the right-hand side showing that applying a
voltage difference V between the electrodes is equivalent to
applying the following loads to the supporting plate:

? ? ?
=53 (e312mV) + a2 (€327mV) + 2879)} (e362mV);

* 2 * 2 *
—M,, = ez niz,,V + e32nysz + 2e36n.:y2,,V,

oM, o, ., )
_ <_ 8s t + tnz) = a ((632 — €3l)l’lxl’ly2mv —+ 2636”)2(2;11‘/)
+ (€5, — e3)mm] + 2€5 )2V

a . . a .,
+ Ee (€3,zmV )N, + aiy (€3zmV )1y

9 .
+2 " (€362mV )ny. ©)
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In the most common case in which €3, €3,, €3, z,, and
V are constant, the equivalent loads are

p=0,
M,, = —é5n’z,V — e§2n§sz — 2e56n1yz,,V,
6M % * 8 * a 2
T e = — (el — 631)vaa(”xny) - 26362mva(”x)
— ((e3, — e31)[neny] + 2e36[n 2])va
and for isotropic piezoelectric material (e3; = e3;), we find
P = Oa
Mnn = —eglsz,
8M,,t
nz — = 0.
9 +1

V. DERIVATION OF THE EQUIVALENT LOADS USING
DISTRIBUTIONS IN TWO DIMENSIONS

A. Distributions in two dimensions

Consider the space of smooth functions ¢ with compact
support (in other words, ¢ = 0 outside a large disk) in the
plane with variables x and y. In this context, a distribution f
associates, to every function @, a scalar (f, ¢) depending lin-
early and continuously (for a suitable topology) on ¢.

For example, if f(x,y) is a (locally integrable) function
on the plane, then it defines a distribution, still denoted f, by

(fi@)= J+OO roof (x,y) @ (x, y)dxdy.

—00 —00

The function f(x, y) can be thought of as a density for the dis-
tribution f. Note however that some distributions are not
defined through a density function.

In our computations, we shall use a couple of operations
on distributions. First, for any distribution f and any smooth
function , the multiplication f is the distribution defined by

(Wf o) = (f, Vo).

Next, for any distribution f, its derivatives f and f,, are the
distributions defined by

<f,X7 (P> = _<f7 qD,x) and <f)'7 (,0> = _<f7 qo,y>'

This definition is inspired from integration by parts, in the
case fis defined via a density function.

In the computation of the efforts for the transducer, we
shall encounter the following four examples of distributions:

(1) Let Q be a region of the plane. The characteristic distri-
bution 1 of Q is defined by

<ﬂ§27 §D> = JQ QD(X7y)dQ

(2) Let I" be a smooth curve in the plane, not necessarily
closed. The Dirac distribution o along I is defined by

6 J.Acoust. Soc. Am., Vol. 129, No. 1, January 2011
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(6, ) = j o(x,y)dT.

(3) Let n be the normal vector of the above curve I" and g be
a smooth function defined on I'. Then the distribution

% (gdr) is given by
0

<a— (851"), (/’> = _J g('x7y)(P,n(xay)dr'
n r

(4) Let p = (x0,0) be a point of the plane. The Dirac distri-
bution 9, at point p is defined by

(0ps @) = @(x0,0)-

B. Computation of the efforts
The quantity 6W,. can be seen as the result of applying
a distribution Ty, to the function dw

5W,w = <Tw, 5W>

Moreover, Eq. (8) shows that this distribution decomposes in
three terms, involving the first three examples of distribu-
tions in Sec. V A

0
TW _p]lg+( +ln—>5r+

o (M, 01). (10)

On the other hand, we have shown in Sec. IV that the piezo-
electric loads were given by the piezoelectric part in the
expression of — oW}, which, before applying Green’s theo-
rem, is given by

*) * *
—oW, |p = JQ —Zp €3 VOW o — 23, VOW

— 22,636V OW 1, dQ
= (—zmey Vg, ow ) + (—zme3, Vg, ow )
+ (—2z,€5V 1q, ow ),

and using the definition of the derivatives of distributions,
we get

2
w2
+

zme3lVlg) 5w>

< ay (zme32VTlg) 5w>

0 "
+ <— 5)(—3); (22”7636‘/]]‘9)7 5W> .

We have therefore

5 (Zme3,V1a)

Deraemaeker et al.: Equivalent loads for shaped piezo transducers
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We now have to compute the effect of the differential opera-
tor L= g—; (e5,-) + g—;z (e3,) + 2% (e4s:) on lg, as in
Eq. (4) from Ref. 9 and to identify the result with Eq. (10) in
order to interpret the results in the form of equivalent efforts.

This computation is a generalization of the computation
in Ref. 15 Sec. II 2 3. The first derivatives of the distribution
lq are given by

HQ = n, 5r, and — ﬂg = nyér.

Ox

As in Sec. IV, let us consider the case of a piecewise smooth
curve I'. For this, we decompose I" as the union of smooth
curves I';, i = 1,..., N starting at point p,_; and ending at
point p;, with py = po. then dr = vazl or,.

Let us compute the first derivatives of n,dr, and n,0r,.

0 0
<a (’7151",»)7(/)> = —JF,» ”X&‘pdr

, 0 0
= _Jri m godF—I-J nlny8 @dI’
= () +J 2(n ny@)dl
- " X l",- 7(P 1"[ as X y(p

9
P
P
B Jr,» () gdT

Hence,
8 a 2 I T; a
a (nxéri) = % (nxéri) +n, ny (5Pi - 5Pi—l) - a (nxny)érn

and summing over i, we deduce

N
25r E [nenyo

i=1

0
o (”xél") =

(”Xny)él"v

where [n.n,] denotes the discontinuity jump of n.n, at the
considered point. Similarly, we have

9 o 9, 5

a_y (l’lxér) 8 (ﬂxl’l)ér) + ; [i’l ]517: + a <n1)5F7
0 ul )

B (nyor) B (nxnyor) — Zl: [ni]ép, B (”yz)(sl"a
d d, , N

ay (nyor) n (nyor) + Zl [ncny)op, + B (ncny)or

In other words, the second derivatives of 1q are

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011
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o ., N d
) lo= %(”xéf) - ; [nxny]0p, — s (nxny)or,
> ) N, d
8y8x ILQ a (”xnyél") + ; [nx]éﬁi + a (nx)ér’
> 9 N, d
W&y Q ) (nx”lyél“) - Z [ny]élh - &(’%J)él"?

> o0 o N d
gyl = 5, (mor) + > my)oy, + 5 (mm)or.
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Comparing (10) and (11), we deduce the efforts for the

transducer
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In the second equation, the discontinuity jump vanishes M, = —e3z,V
everywhere, except at points py, ... ,py. In other words, this 2 )
can be interpreted as point forces at the points p;. M, = — w ZmV
This result is identical to Eq. (9) derived using Green’s % + 2

theorem. The main advantage of the use of the theory

tributions is to avoid the lengthy computations when using

of dis-

FIG. 7. Equivalent loads for a triangular piezoelectric actuator.

Green’s theorem (not detailed in Sec. IV). In both cases,

Hamilton’s principle is used to interpret the results in terms

of equivalent loads.

VI. APPLICATIONS

A. Triangular actuator

Let us consider the case when e3, = 0 (the material axes
are aligned with the structural axes) and € is a triangle, so

that N = 3 and » is piecewise constant, we have

_ OMy,
s
Milﬂ - (_631”{% — 632715)2,"‘/.

+ ty, = —(e30 — e31) [meny|z,V,

Placing the vertices of the triangle at points p; = (0,

so that
(€32 — e31) 2 ”+ )sz at point py,
4
oM,
- ty: = —(e3 — e31) sz at point p,,
Js
(€32 — e31) =" — e +/’) z,V  at point ps,
—e31z,V on the edge pip3,
ﬁ€31+12€32
M, =4~ A T 2,V on the edge ppa,

b2 2
- %ﬁ:nzm‘/ on the edge pyps.
4
The equivalent loads are summarized in Fig. 7.
Note that for an isotropic triangle (e3; = e3;), there are
—b/2), no point forces and the distributed moments are M; = M,

F6 p2 = (1,0), and p3 = (0,b/2) (Fig. 6), the normal vector is = e312,,V. This is in contradiction with the results previously
given by derived in Refs. 7 and 12 which are not correct. This is easily
shown, as stated before, by considering an isotropic equilat-

(—1,0) on the edge pps,

on the edge pp»,

. (ga_l)
n=1q 5

on the edge pyps,

FIG. 6. Triangular actuator aligned with the structural axes.
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eral triangle for which point forces of opposite sign cannot
appear at the tips due to the symmetries of the problem. The
general expressions derived in this paper show in fact that
there are no point forces when e3; = e3,, whatever the shape
of the contour.

B. Rectangular actuator with arbitrary orientation
of the material axes

We consider the case when e}, # 0 (the material axes
make an angle 0 with the structural axes) and Q is a rectan-
gle, so that N = 4 and n is piecewise constant. On the whole
contour I, the product n,n, is equal to zero, leading to

_ OMy,
Os
M, =

+ 1y = —2¢54[n; ]z,,,V

—(e31nx + egzni)zm\/.
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FIG. 8. Rectangular actuator with the material axes making an angle 6 with
the structural axes.

Placing the vertices of the rectangle at points p; = (0,0), p,
=(0,b), p3 = (I,b), and p4 = (I, 0) (Fig. 8), the normal vector
is given by

—1,0) on the edge pipa,

1) on the edge paps,
,0)  on the edge p3py,
0,—1) on the edge psp;

at points p; and p3,

oM, I 2e56zmV
s " —2€%¢z,V  at points p, and py,

—e3,z,V  on the edges pip, and p3pa,
M,, = %
—e3,z,V  on the edges paps and pap;.

We recall that e3,, 3,, €5, are a function of the material
properties e3; and ez, and the orientation of the material
axes with respect to the structural axes, given by the angle 0

* 2 -2
€3, = e3; cos” 0 + ez sin” 0,
€y, = e3 sin® 0 + e3, cos> 0,

€3 = (e31 — e3) cosOsin 0.

The equivalent loads are summarized in Fig. 9.

P = 252,V
M1 = 76’;12,,1‘/
M, = —e3,z,V

FIG. 9. Equivalent loads for a rectangular piezoelectric actuator.
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FIG. 10. Circular actuator with the reference angle given by the material
axes.

Note again that for an isotropic rectangle (e3; = e3»),
there are no point forces, and the distributed moments are
M, = M, = —e3,z,V. The results are in agreement with the
ones published in Refs. 7 and 13.

C. Circular actuator

Without loss of generality, we will assume that the ma-
terial axes are aligned with the structural axes, giving the ref-
erence angle for the expression of the equivalent loads
(Fig. 10). We have ez = 0 and e3; = e3; and e3, = e3,
s = ro and the normal is a function of s given by

Ny = COS

n, = sinw

The equivalent loads are given by

oM, 0 sin 2w
- 8sl+tnz =% <(€32 —e31) > )va

1
= 7;(632 — e31) cos 2w,

M, = —(e3 cos> w + ez, sin? @)z V.

In this case, because the normal depends on the position
along the contour (defined by the angle ), the generalized shear
distribution (— % + t,,) and the normal bending moment M,,,
are also angle dependant. Note that for an isotropic circular actu-
ator (e3; = es), there is no generalized shear distribution on the
contour, and the bending moment reduces to M,,, = e3,z,,V.

Vil. CONCLUSION

Shaped piezoelectric transducers are used in a variety of
applications. When a voltage difference is applied on the
electrodes of such transducers, it results in a distribution of
generalized loads applied to the host plate structure. In this
paper, we have derived the analytical expressions of these
equivalent loads assuming a piecewise linear contour. Ham-
ilton’s principle using the flux linkage formulation has been
used and two different mathematical approaches have been
used to derive the equivalent loads: Green’s theorem and the
theory of distributions in two dimensions. The main advant-
age of the theory of distributions is the simplicity of the cal-
culations allowing to avoid the lengthy computations when

Deraemaeker et al.: Equivalent loads for shaped piezo transducers 9
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using Green’s theorem. Both approaches lead to the same an-
alytical expressions of the equivalent loads which are a func-
tion of the topology of the contour (the normal of the contour
and its discontinuities), the piezoelectric material properties,
and the orientation of the material properties with respect to
the structural axes. It is thought that such general expressions
are presented for the first time in the literature. The equiva-
lent loads have then been evaluated for triangular, rectangu-
lar, and circular orthotropic piezoelectric transducers in order
to illustrate their application to simple geometric shapes. In
particular, the results derived for the triangular actuator
respect the symmetries for an isotropic equilateral triangle on
the contrary to previously published results.
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