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Tuning the period of square-wave oscillations for delay-coupled optoelectronic systems
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We analyze the response of two delay-coupled optoelectronic oscillators. Each oscillator operates under its own
delayed feedback. We show that the system can display square-wave periodic solutions that can be synchronized
in phase or out of phase depending on the ratio between self- and cross-delay times. Furthermore, we show
that multiple periodic synchronized solutions can coexist for the same values of the fixed parameters. As a
consequence, it is possible to generate square-wave oscillations with different periods by just changing the initial
conditions.
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I. INTRODUCTION

Time delays in physical, biological, or chemical systems
are known for their oscillatory instabilities [1]. For optical
and optoelectronic systems with feedback, the time scale
associated with the feedback is generally much larger than
the intrinsic time scales of the dynamical system. This large
delay of the feedback can be useful for applications [2,3].

An interesting dynamical regime that results from a large
delayed feedback [4] is square-wave switching [5]. The
generation of tunable pulsating dynamics has been studied
over the past few years [6–14], motivated by new applications
such as optical clocks [7] and other binary logical applications,
generation of stable microwave signals, or optical sensing
[8]. In particular, stable square waves oscillating in antiphase
have been observed in the intensities emitted in each of the
polarization directions in edge-emitting diode lasers (EELs)
subject to crossed-polarization reinjection (XPR). In this setup,
the natural polarization TE mode is rotated 90◦ and delayed
coupled to the normally unsupported TM mode. Asymmetric
square waves with a period close to but longer than twice
the coupling delay time have also been reported in mutually
coupled EELs, in a scheme where the TE mode of each laser
is injected into the TM mode of the other laser [10,11].
Moreover, square-wave oscillations have been investigated
for vertical-cavity surface-emitting lasers [6,12,15] subject to
XPR, semiconductor ring lasers subject to a delayed optical
feedback [13], optoelectronic oscillators (OEOs) [16], and
mode-locked fiber lasers [14]. Other studies on polarized
optical feedback have been proposed in [17,18].

One fundamental question raised by all these studies is
the possibility to generate square-wave oscillations with a
desired period. This question had already been discussed
as researchers analyzed the Ikeda delay differential equation
[19]. It was found that different periodic solutions exhibiting
frequencies that are multiples of a basic frequency appear
through successive Hopf bifurcations. Ikeda and Matsumoto
then realized that such multiple periodic regimes could be used
to encode information in high-capacity memory devices [20].
Experiments showed that an electro-optical hybrid bistable
system with a fiber delay loop could indeed sustain a large
number of oscillatory states [21]. However, the experiments
also produced evidence that such systems were very sensitive

to spurious resonances. Particularly disturbing was the fact
that a large number of harmonics predicted by numerical
simulations were not observed in physical implementations,
although they could be recovered by subjecting the system to
a periodic modulation with the same frequency as the missing
harmonics. This raised the question of the stability of all
the bifurcating time-periodic modes and their robustness with
respect to external perturbations. In this paper we examine
the emergence of stable square waves in a system of two
delay-coupled OEOs. Each oscillator operates on its own
delayed feedback and the presence of two distinct delays
allows a large number of stable square-wave time-periodic
regimes. By controlling the ratio of the two delays, we may
generate a square wave with a desired period as well as multiple
periodic states with different periods coexisting for the same
values of the parameters.

The effect of the ratio between different delay times on the
synchronization properties of two mutually coupled chaotic
lasers was recently investigated in [22]. Here we concentrate
on the multiplicity of stable periodic regimes generated by
the mutually coupled OEOs rather than their synchronization
efficiency as they are chaotic. By using asymptotic methods
based on the relatively large values of the two delays, we
propose a systematic analytical study of their bifurcation
mechanisms. The validity of all our results is tested by solving
numerically the original evolution equations for the OEOs.
Because of the two distinct delays, the bifurcation possibilities
are rich, but their derivations are relatively simple because the
analysis essentially relies on the solutions of coupled equations
for maps. In this sense, we expect that our analysis can be
applied to other two-delayed coupled systems and lead to
similar results.

Our choice of two mutually coupled OEOs is motivated
by the large variety of dynamical regimes [16,23] that are
generated by single optoelectronic systems. They have been
used as chaos generators for secure chaos-based commu-
nications [24–26]. These devices have also been proposed
and studied to produce efficient ultrapure microwaves in the
periodic regime [27–30]. In particular, their robustness to
noise has been studied both theoretically and experimentally
[31]. Finally, OEOs operating in the steady-state regime have
recently been implemented in an experimental demonstration
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of a photonic liquid-state machine performing as a kind of
neuromorphic computer [32]. As compared to optical feedback
systems and optical injection systems, in which the dynamics
depends on the frequency, phase, and amplitude of the field
and for which a frequency detuning of a few hundred MHz
between the two systems can lead to a large degradation of
the synchronization, optoelectronic systems are more flexible
due to their insensitivity to optical phase variations. Another
advantage of OEOs is that they can be electrically driven [33].

The paper is organized as follows. In Sec. II we describe
the system we are considering and its dynamical model. In
Sec. III we develop a theoretical approximation to determine
parameter conditions for which synchronized square-wave
periodic solutions appear. In Sec. IV we obtain a theoretical
prediction for the amplitude of the periodic oscillations. In
Sec. V we study the secondary instabilities of the periodic
square-wave oscillations. In Sec. VI we compare the the-
oretical predictions with numerical simulations of the full
dynamical model described in Sec. II. In Sec. VII we analyze
the effect of a small mismatch in the delay times. Finally, in
Sec. VIII we summarize our results.

II. DYNAMICAL MODEL

We consider two electro-optical delay systems [34] that are
mutually coupled as shown in Fig. 1. The light emitted by a cw
semiconductor laser diode (LD) with intensity P is split into
two beams, each beam feeding an electro-optical delay loop.
Each loop consists of a Mach-Zehnder interferometer (MZI),
an optical delay line, a photodiode (PD), and an amplifier. We
use subindex i, i = 1,2, to identify the variables associated
with loop i. For loop i the optical output of MZIi is split into
two parts. A fraction αii is delayed using a fiber loop by a
time Tii . A fraction αij with i,j = 1,2 and j �= i is injected
from loop i into loop j after a delay Tij . Self-feedback and
cross-feedback optical signals are combined and the resulting
intensity is detected by the PD. The electrical signal goes
through a bandpass amplifier and is finally used to drive the
Mach-Zehnder ac electrode. For each loop the dynamics results
from a combination of the nonlinear effect due to the MZI plus
a linear filtering process associated with the electrical part of
the loop.

FIG. 1. (Color online) Setup of two mutually coupled electro-
optical delay systems with Tf = Tii and Tc = Tji,j �=i .

The dynamics of each electro-optical system can be
described as follows. As in [34], we assume there is no
reflection in the optical path, so the optical electric field can
be described as a scalar E. Each arm of the MZI can be
considered as a Pockels cell exhibiting a linear dependence
of the refractive index n on E,

n(E) = n0 + dn

dE

∣∣∣∣
E=0

E, (1)

where n0 is the intrinsic refractive index of the material
(without an electric field). Light with wavelength λ0 crossing
the Pockels medium changes its phase depending on the
refractive index as well as on the length L of the arm:

�ϕ = 2π

λ0
n(E)L. (2)

When a voltage V is applied across an arm of transversal size
d, the corresponding electric field is given by E = V/d and
thus the phase change along that arm can be written as

�ϕ = �ϕ0 + π
V

Vπ

, (3)

where �ϕ0 = 2πn0/λ0 and Vπ is the voltage required for a
modulation of π in the phase,

Vπ = λ0d

2L

[
dn

dE

∣∣∣∣
E=0

]−1

. (4)

Considering that the optical field at the input of MZIi is√
Pρie

ϕi and that the voltage Vi applied to the MZIi has
a dc and a rf component VBi

and Vrfi (t), respectively, and
introducing the normalized voltages xi(t) = πVrfi (t)/2Vπi

and
�i = πVBi

/2Vπi
, the electric field at the output of the MZIi is

given by

EMZIi (t) =
√

Pρie
iφ0i {1 + ei[2xi (t)+2�i ]}, (5)

where φ0i
= �ϕ0i

+ ϕi . Without loss of generality and for
simplicity, we take φ01 = 0 and define �0 = φ02 . The optical
field arriving at photodiode PDi is given by

EPDi (t) = αiiEMZIi (t − Tii) + αjiEMZIj (t − Tji). (6)

The output of photodiode PDi with sensitivity Si is

VPDi (t) = Si |EPDi (t)|2. (7)

Finally, the voltage VPDi
(t) is amplified and filtered by the

linear bandpass amplifier with effective gain Gi and low
and high cutoff characteristic times θi = 5 μs and τi =
25 ps, respectively. The normalized voltage at the output of
the amplifier xi(t) (which is used to modulate the MZIi) is
given by(

1 + τi

θi

)
xi + τi ẋi + 1

θi

∫ t

t0

xi(s)ds = GiVPDi , (8)

where the dot stands for time derivatives. One can consider
the term 1 + τiθ

−1
i ≈ 1 due to the order of magnitude of

the actual time scales. Nevertheless, the integral part cannot
be neglected in general since it is responsible for the zero
mean value of V , which is achieved after a slow transient
characteristic of the bandpass dynamics that removes any dc
component; indeed, large transient dynamics of the order of
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the slowest time θ are observed [35]. Combining Eqs. (5)–(8),
one gets that the dynamics of the system is ruled by two
delay integro-differential equations. The integral terms are
eliminated through the introduction of two additional vari-
ables yi(t) = ∫ t

t0
xi(t ′)dt ′ leading to a system of four delay

differential equations

τi ẋi(t) = − xi(t) − θ−1
i yi(t) + P

{
γ 2

ii cos2[xi(t − Tii) + �i]

+ γ 2
ji cos2[xj (t − Tji) + �j ]

+ 2γiiγji cos[xj (t − Tji) + �j ]

× cos[xi(t − Tii) + �i] cos[xi(t − Tii) + �i

− xj (t − Tji) − �j + (−1)i�0]
}
,

ẏi(t) = xi(t), (9)

where i,j = 1,2; j �= i; and γij = √
GjSjρiρjαij are effective

coupling strengths.
In this work we address the case in which the two systems

have identical parameters θ1 = θ2 = θ , τ1 = τ2 = τ , �1 =
�2 = �, and T11 = T22 = Tf . We also consider �0 = 0 and
that the self- and cross- feedback parameters are the same:
γ11 = γ22 = γ12 = γ21 = γ . Finally we define the coupling
time as Tc = (T21 + T12)/2. Then the steady-state solution is
given by

xist = 0, yist = 4θPγ 2 cos2 �. (10)

Introducing Yi(t) = [yi(t) − yist ]/Tc and scaling the time with
Tc, s = t/Tc, we get

εx ′
i(s) = − xi(s) − δYi(s) + Pγ 2{cos2[xi(s − s0) + �]

+ cos2[xj (s − 1) + �] − 4 cos2 �

+ 2 cos[xi(s − s0) + �] cos[xj (s − 1) + �]

× cos[xi(s − s0) − xj (s − 1)]},
Y ′

i (s) = xi(s), (11)

where prime means differentiation with respect to s and

s0 = Tf /Tc, ε = τ/Tc, δ = Tc/θ. (12)

We consider that the delay time Tc has a value of the order
of tens of nanoseconds. Therefore, ε is of order 10−3 and
δ of order 10−2. Making use of the trigonometric identity
cos(α) cos(β) = 1

2 [cos(α − β) + cos(α + β)], Eqs. (11) can
be simplified as

εx ′
i(s) = − xi(s) − δYi(s) + Pγ 2{cos[2xi(s − s0) + 2�]

+ cos[2xj (s − 1) + 2�] − 1 − 2 cos(2�)

+ cos2[xi(s − s0) − xj (s − 1)]},
Y ′

i (s) = xi(s). (13)

These equations admit time-periodic square-wave solutions.
Note that the terms multiplying ε are only important for the
fast transition layers between plateaus of the square waves.
Fortunately, we may ignore these layers as we determine the
leading-order bifurcation equations. In the next two sections,
we first concentrate on the Hopf bifurcations of the basic steady
state and then derive nonlinear maps for the square waves valid

in the limit ε → 0. For the single optoelectronic oscillator, this
approach has been successfully applied and tested [36].

III. HOPF BIFURCATIONS OF THE STEADY STATE

Because the delays are large compared to the time scales
of each individual oscillator, periodic square-wave oscillations
are emerging as the dominant solutions [1]. We address now
the dependence of the period of these square-wave oscillations
on the ratio between the two delays. To do this we determine
the Hopf bifurcations of the zero solution. As discussed after
Eq. (8), the main role of δ is to ensure that the time average of
x(t) in the stationary regime is zero. While this is relevant for
any nonzero solution, the zero solution satisfies this condition
automatically. Therefore, to a first approximation we can
neglect the role of δ in the stability analysis of the zero solution.
By setting δ = 0 Eqs. (13) reduce to two coupled equations
for x1 and x2,

εx ′
i(s) = − xi(s) + Pγ 2{cos[2xi(s − s0) + 2�]

+ cos[2xj (s − 1) + 2�] − 1 − 2 cos(2�)

+ cos2[xi(s − s0) − xj (s − 1)]}, (14)

where, as before, i,j = 1,2 and j �= i.
We start by determining the Hopf bifurcations of the zero

solution. Specifically, we consider xi(t) = xst
i + ui(t) and

formulate the linearized equations for the small perturbations
ui ,

εu′
i(s) = −ui(s) − χ

2
[ui(s − s0) + uj (s − 1)], (15)

where

χ ≡ 4Pγ 2 sin 2� (16)

will play the role of an effective bifurcation parameter as seen
below. The solutions of the linearized equations are of the
form ui = ci exp[(λ + iω)s]. The zero solution is stable if
λ < 0 (perturbations decay in time) and unstable if λ > 0
(perturbations grow). At the Hopf bifurcation, λ = 0. The
linearized problem with ε = 0 then reduces to a homogeneous
system of two linear algebraic equations for c1 and c2:

0 = c1

[
1 + χ

2
exp(−iωs0)

]
+ c2

χ

2
exp(−iω),

(17)
0 = c1

χ

2
exp(−iω) + c2

[
1 + χ

2
exp(−iωs0)

]
.

The condition for a nontrivial solution is given by the
determinant∣∣∣∣∣

1 + χ

2 exp(−iωs0) χ

2 exp(−iω)
χ

2 exp(−iω) 1 + χ

2 exp(−iωs0)

∣∣∣∣∣ = 0, (18)

which leads to the characteristic equation

1 + χ

2
e−iωs0 ± χ

2
e−iω = 0. (19)

Thus, there are two families of Hopf bifurcations.
First, considering the plus sign in (19) and substituting this

into Eq. (17), one obtains c1 = c2. Thus this Hopf bifurcation
leads to oscillations where x1 and x2 are in phase. From the
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real and imaginary parts of (19) we obtain two equations for
χ and ω:

1 + χ

2
[cos(ωs0) + cos(ω)] = 0, (20)

sin(ωs0) + sin(ω) = 0. (21)

Equation (21) implies that either (i) ωs0 = −ω + 2nπ or
(ii) ωs0 = π + ω + 2nπ , where n ∈ Z.Only case (i) leads to
physical solutions if we consider Eq. (20). The solution for
Eqs. (20) and (21) is

ωn = 2nπ

s0 + 1
, (22)

χn = − 1

cos(ωn)
. (23)

The fact that s0 > 0 and ωn > 0 implies that n > 0.
Second, the minus sign in (19) leads to solutions for which

c1 = −c2. This is a Hopf bifurcation leading to oscillations
where x1 and x2 are in antiphase. From the real and imaginary
parts of (19) we obtain

1 + χ

2
[cos(ωs0) − cos(ω)] = 0, (24)

sin(ωs0) − sin(ω) = 0. (25)

Equation (25) implies that either (i) ωs0 = ω + 2nπ or
(ii) ωs0 = π − ω + 2nπ,where n ∈ Z. Using (24), we note
that only case (ii) leads to physical solutions. The solution of
Eqs. (24) and (25) is

ωn = (1 + 2n)π

s0 + 1
, (26)

χn = 1

cos(ωn)
. (27)

The fact that s0 > 0 and ω > 0 implies that n � 0.
We consider χ > 0. Note from either Eqs. (20) and (21) or

Eqs. (24) and (25) that there is no Hopf bifurcation solution
if s0 = 0 (the system has a single delay).1 We next consider
s0 as a control parameter and wish to determine the Hopf
bifurcation points in terms of χn. There is a family of Hopf
bifurcation curves χn(s0). In Fig. 2 we show the curves with
n = 1, 2, and 3 for the in-phase and antiphase solutions. All the
curves exhibit a minimum at χn = 1 and close to the minimum
have a parabolic shape. From a physical point of view we
are particularly interested in determining the possible Hopf
bifurcations that appear exactly at χn = 1 for specific values
of s0 since this corresponds to the first Hopf bifurcation that
is encountered when increasing χn, proportional to the LD
power P , in a system with given delay times. This situation
corresponds to cos ωn = −1 in (23) or cos ωn = 1 in (27).

1For a system with a single delay (s0 = 0) all the in-phase and out-
of-phase bifurcations take place at χn = −1, thus there is a degenerate
Hopf at that point. This degeneracy disappears if one considers ε �= 0.
Here the existence of a second delay time allows us to have Hopf
bifurcations also for χn > 0. The Hopf bifurcations arising for either
χn > 0 or χn < 0 occur at different values of χn, thus they are not
degenerate even in the case ε = 0.

1.0

1.5

2.0

χ 

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

χ  

s0

FIG. 2. (Color online) Hopf bifurcation curves for the in-phase
(top) and antiphase (bottom) solutions with n = 1 (solid red line),
n = 2 (dashed green line), and n = 3 (dotted pink line).

For the first case (in-phase oscillations), the condition
cos ωn = −1 implies ωn = (1 + 2m)π , where m ∈ Z. From
(22) we then obtain the following values of s0:

s in
0 = 2(n − m) − 1

2m + 1
= 2l + 1

2m + 1
, (28)

where l ≡ n − m − 1. The condition s in
0 > 0 restricts the value

of m to the range 0 � m < (2n − 1)/2, thus l � 0. The period
of the Hopf bifurcation oscillations is determined using (22)
and is given by

T in = 2

1 + 2m
. (29)

From (28) one has

1 − s in
0 = 2(m − l)

1 + 2m
, (30)

namely, for in-phase periodic solutions the dimensionless time
difference (Tc − Tf )/Tc = 1 − s0 has to be an even or odd
rational number, and using (28) the period can also be written
as

T in = 1 − s in
0

m − l
. (31)

For the second case (out-of-phase oscillations), the condi-
tion cos ωn = 1 implies ωn = 2mπ where m ∈ Z. From (26),
we then determine the following values of s0,

sout
0 = 1 + 2(n − m)

2m
= 2k + 1

2m
, (32)

where k ≡ n − m. The condition sout
0 > 0 now restricts the

value of m to the range 0 < m < (1 + 2n)/2, thus k � 0. The
period of the Hopf bifurcation oscillations is found using (26)
and is

T out = 1

m
. (33)

From (28) one has

1 − sout
0 = 2(m − k) − 1

2m
, (34)
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FIG. 3. (Color online) Hopf bifurcation points appearing at χn =
1 as a function of s0 leading to oscillatory solutions with different
periods T . Squares and crosses correspond to in- and out-of-phase
Hopf bifurcations, respectively. As T approaches zero, the number
of Hopf bifurcations increases dramatically (only the bifurcations
verifying T � 0.1 are shown).

that is, the dimensionless time difference 1 − s0 has to be an
odd or even rational number. From (32) and (34) the period
can be written as

T out = 2(1 − sout
0 )

2(m − k) − 1
. (35)

A few observations are worth pointing out. First, in-phase
and out-of-phase Hopf bifurcation points never appear for the
same s0. This can be verified by equating (28) with n1 > 0 and
m1 � 0 and (32) with n2 � 0 and m2 > 0. After simplifying,
we find 4m2n1 = (2m1 + 1)(1 + 2n2), which implies that an
even number should be equal to an odd number. Second,
several in-phase Hopf bifurcations or several out-of phase
solutions may appear for the same value of s0 with different
periods. This means that the Hopf bifurcation at χn = 1 can
be multiple. This degeneracy is not eliminated if we consider
ε �= 0. For example, if s0 = 1, Hopf bifurcations to in-phase
solutions appear if m = (n − 1)/2 (n > 0, m � 0). From
the conditions for a Hopf bifurcation with ε �= 0, we find
χn = √

1 + ε2 and all the frequencies satisfying tan ωn = −ε

(ωn 
 nπ − ε). These two results are illustrated in Fig. 3,
where the period of Hopf bifurcation points emerging from
χn = 1 is plotted as a function of s0. In this figure, points with
the same m are located in horizontal lines, points with the same
l or the same k are located in straight lines of positive slope
starting from the origin (s0 = 0,T = 0), and points with the
same m − l or the same m − k are located in straight lines that
start at (s0 = 1,T = 1).

We now discuss in more detail the coexisting solutions for
a given value of s0. We note that once s0 is fixed, not all the
values of l and m are possible. For instance, for an in-phase
solution with s0 = 5/7 smaller possible values for l and m are
lf = 2 and mf = 3, so the fundamental solution has a period
T in

f = 2/7. The first harmonic is associated with values of l

and m that can be obtained by multiplying both the numerator
and denominator of s0 = 5/7 by 3, namely, 15/21, so that
l1 = 7 and m1 = 10 and the period is T in

1 = T in
f /3 = 2/21.

Notice that multiplying by an even number will lead to a ratio

of two even numbers, which does not fulfill the condition (28).
In general, for a given s0 the fundamental in-phase solution is
given by the minima l and m that fulfill (28). Higher harmonics
are obtained by multiplying the numerator and denominator
of (28) by an odd number. Therefore, the values allowed for
m and l are given by

mj = (2j + 1)mf + j,
(36)

lj = (2j + 1)lf + j,

where j stands for the order of the harmonic. The period of
the harmonic is

T in
j = T in

f

2j + 1
= 1 − s0

(mf − lf )(2j + 1)
, (37)

where we have used (31). For out-of-phase solutions a similar
argument applies. For a given s0 the fundamental solution
is given by the minima k and m that fulfill (32), while the
harmonic of order j can be obtained by multiplying the
numerator and denominator of (32) by (2j + 1); therefore,
the values allowed for m and k are given by

mj = (2j + 1)mf ,
(38)

kj = (2j + 1)kf + j

and the period is

T out
j = T out

f

2j + 1
= 2(1 − s0)

[2(mf − kf ) − 1](2j + 1)
, (39)

where we have used (35).
Finally, we note that, according to Eqs. (28) and (32), in-

phase and antiphase periodic solutions appear when the ratio
between the self- and cross-feedback delays is odd/odd and
odd/even, respectively. Each OEO can be seen as having two
delay times τ1 = Tf and τ2 = 2Tc. Therefore, in- and out-of-
phase solutions exist when the ratio τ2/τ1 is even/odd. This
is in agreement with the conditions for synchronization found
for coupled chaotic lasers [22].

IV. NONLINEAR MAPS FOR PRIMARY PERIODIC
SQUARE-WAVE OSCILLATIONS

Following the understanding gained in the previous section
on the period of the solutions arising when the zero state
becomes unstable, we now develop a map to determine the
amplitude of these solutions. To this end, we plan to formulate
equations for a map relating x1(s) to x1(s − T/2), where T is
the period taking advantage of the small value of ε. Note that
we need to take into account the effect of δ to ensure that x(t)
has a zero time average in the stationary regime.

We first consider the case of the in-phase oscillations. With
the condition x2(s) = x1(s) ≡ x(s) and Y (s) ≡ Y1(s) = Y2(s),
Eqs. (13) with ε = 0 reduce to

x(s) = Pγ 2
{

cos
[
2x

(
s − s in

0

) + 2�
]

+ cos[2x(s − 1) + 2�] − 1 − 2 cos 2�

+ cos2
[
x
(
s − s in

0

) − x(s − 1)
]} − δY (s), (40)

Y ′(s) = x(s). (41)
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FIG. 4. (Color online) Numerical solution of the full dynamical
model (9) for � = π/4, γ = 0.5, P = 1.7, Tf = 30 ns, and Tc =
90 ns so that s0 = 1/3, ε = 2.78 × 10−4, and δ = 0.018.

The period T in of the in-phase Hopf bifurcation was defined
by (29). Starting with (28) and using (29), we may relate the
delays s in

0 to T in,

s in
0 = 2l

2m + 1
+ 1

2m + 1
= lT in + T in

2
. (42)

Furthermore, a second useful equation is obtained by relating
1 to T in as

1 = 2m + 1

2m + 1
= mT in + T in

2
, (43)

where we again used (29). Using (42) and (43), Eq. (40)
considerably simplifies as

x(s) = 4Pγ 2

{
cos2

[
x

(
s − T in

2

)
+ �

]
− cos2 �

}
− δY (s).

(44)

Equation (44) is a first equation for a map relating x(s)
and x(s − T in

2 ). To obtain a second equation relating Y (s)
and Y (s − T in

2 ), we integrate Eq. (41) from s − T in/2 to s.
As illustrated in Fig. 4, we consider square-wave solutions
in which x(s) remains practically constant over half of the
period. Introducing now the notation xk = x(s), xk−1 = x(s −
T in

2 ),Yk = Y (s), and Yk−1 = Y (s − T in

2 ), with xk located at the
beginning of the semiperiod (see Fig. 4), we have

xk = 2Pγ 2[cos(2xk−1 + 2�) − cos 2�] − δYk, (45)

Yk = Yk−1 + xk−1
T in

2
. (46)

Subtraction of Eq. (45) evaluated at xk and at xk−1 gives

xk − xk−1 = 2Pγ 2[cos(2xk−1 + 2�) − cos(2xk−2 + 2�)]

− δ(Yk − Yk−1). (47)

Then

xk =
(

1 − δ
T in

2

)
xk−1 + 2Pγ 2[cos(2xk−1 + 2�)

− cos(2xk−2 + 2�)]. (48)

For the out-of-phase solution, we assume that x1(s) and
x2(s) are T out-periodic solutions where T out is given by (33).

Using the fact that x(s) ≡ x1(s) = x2(s + T out/2) and Y (s) ≡
Y1(s) = Y2(s + T out/2) we obtain from Eqs. (13) with ε = 0
the following equations for x(s) and Y (s):

x(s) = Pγ 2

{
cos

[
2x

(
s − sout

0

) + 2�
]

+ cos

[
2x

(
s − T out

2
− 1

)
+ 2�

]
− 1 − 2 cos 2�

+ cos2

[
x
(
s − sout

0

) − x

(
s − T out

2
− 1

)] }
− δY (s),

(49)

Y ′(s) = x(s). (50)

As for the in-phase solutions, we now use (32) and (33) and
determine useful relations between the two delays sout

0 and 1,

and T out. Specifically, we find

sout
0 = kT out + 1

2m
= kT out + T out

2
, (51)

1 = m

m
= mT out. (52)

Using (51) and (52), Eq. (49) then simplifies as

x(s) = 4Pγ 2

{
cos2

[
x

(
s − T out

2

)
+ �

]
− cos2 �

}
− δY (s),

(53)

which is the same equation as (44) replacing T in by T out.
Introducing xk = x(s), xk−1 = x(s − T out

2 ), Yk = Y (s), and

Yk−1 = Y (s − T out

2 ), with xs located at the beginning of the
semiperiod one obtains exactly the same map as for in-phase
solutions, namely, Eq. (48).

V. NONLINEAR MAPS FOR SQUARE-WAVE
OSCILLATIONS GENERATED BY SECONDARY

BIFURCATIONS

We now consider a generalization of the map obtained in
the previous section in order to describe the instabilities of the
primary periodic square-wave solutions seen in the numerical
simulations described in the next section. In fact, the map (48)
can be extended to a more general class of lagged solutions of
the form

x2(s − 1 + s0) = x1(s) ≡ x(s). (54)

The lag time 1 − s0 corresponds physically to the difference
Tc − Tf normalized to Tc. In- and out-of-phase solutions are
particular cases. For the in-phase solution 1 − s0 is a multiple
of T in [see Eq. (31)] and therefore x2(s) = x1(s). For out-of-
phase solutions, from (35) s0 − 1 = (k − m)T out + T out/2 and
therefore x2(s + T out/2) = x1(s).

Substituting (54) in the set (13), cos[2x2(s − 1) + 2�] =
cos[2x1(s − s0) + 2�] and cos2[x1(s − s0) − x2(s − 1)] = 1,
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therefore one has

εx ′(s) = − x(s) − δY (s)

+ 2Pγ 2{cos[2x(s − s0) + 2�] − cos 2�}, (55)

Y ′(s) = x(s). (56)

We consider square-wave solutions in which x(s) remains
practically constant over a plateau of duration sp; for con-
sistency we require qsp = s0, q being an integer. Then
we can introduce xk = x(s), xk−1 = x(s − sp), Yk = Y (s),
and Yk−1 = Y (s − sp) and choose xk located at the begin-
ning of the plateau. Considering ε = 0, one has from (55)
and (56)

xk = 2Pγ 2[cos(2xk−q + 2�) − cos 2�] − δYk, (57)

Yk = Yk−1 + xk−1sp. (58)

Subtracting (57) evaluated at k − 1 from the same equation
evaluated at k one obtains

xk = (1 − δsp)xk−1 + 2Pγ 2[cos(2xk−q + 2�)

− cos(2xk−q−1 + 2�)]. (59)

We now make a few remarks about this map. First notice that
to obtain this map we have not imposed that the solutions
are periodic. Therefore, the map is, in principle, useful to
determine the secondary instabilities of the primary periodic
square waves. Second, for a given set of parameters, namely,
for a fixed value of s0, one has several coexisting solutions
with plateaus of length sp = s0/q. The amplitude of all these
solutions is given by the map with the corresponding value
of q. Third, for the primary in-phase square-wave periodic
solutions discussed in the previous section sp = T in/2; as a
consequence, from (42) it follows that s0 = (2l + 1)sp, so
q = 2l + 1. Similarly for the primary out-of-phase square-
wave periodic solutions sp = T out/2 and from (51) it follows
that s0 = (2k + 1)sp, so q = 2k + 1. Fourth, for solutions
whose period is twice the length of the plateau, as is the
case of primary square waves, xk−2l−1 = xk−1; this is why
the maps obtained in the previous section, where we explicitly
considered the periodicity of the solution, correspond to q = 1.
Fifth, the map for the primary square waves can in fact be
further simplified considering that the square wave is centered
at zero and defining x∗ = xk = xk−2 = −xk−1. Then one
has

x∗ = χ

2
sin 2x∗. (60)

Namely, the amplitude of all coexisting primary in-phase
periodic solutions is the same and it is given by the
fixed points of the sinus map (60) and similarly for all
coexisting out-of-phase periodic solutions with different
periods.

Figure 5(a) shows the bifurcation diagram of Eq. (59) for
q = 1 as function of χ , where χ is changed by increasing Pγ 2

while the offset phase is kept constant at � = π/4. For small
values of χ , the only stationary solution of the map is the fixed
point x∗ = 0, which corresponds to the zero solution in (14).
Increasing χ , the zero solution becomes unstable and at χ = 1,
as expected from the linear stability analysis, one encounters
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FIG. 5. Bifurcation diagram of the map (59) for q = 1 and offset
phases (a) � = π/4, (b) � = 0.3π , and (c) � = 0.35π .

a periodic solution whose amplitude x∗ can be obtained from
Eq. (60). Close to the bifurcation point χ = 1 the amplitude
grows as x∗ ≈ (χ − χc)1/2. With increasing χ the map (59)
shows a period doubling and for larger values of Pγ 2 one has
chaotic behavior. For the offset phase � = π/4 the map is
always symmetric around x = 0.

The effect of the offset phase is illustrated in Figs. 5(b)
and 5(c), which show the equivalent bifurcation diagram
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FIG. 6. In-phase periodic oscillations after the Hopf bifurcation
with � = π/4, γ = 0.5, Tf = 30 ns, and Tc = 90 ns so that s0 = 1/3,
ε = 2.78 × 10−4, and δ = 0.018. In (a) and (b) we consider P = 1.01
so that χ = 1.01, while in (c) and (d) P = 1.11 (χ = 1.11).

for offset phase � = 0.3π and 0.35π , respectively. Again
for small χ the system goes to the zero solution, which
becomes unstable at χ = 1. Above that value one encounters
in- or out-of-phase periodic solutions whose amplitude x∗ is
given by same sinus map (60). Then these solutions become
unstable and periodic solutions of higher order appear. The
point where the simple periodic solution becomes unstable
depends on the offset phase. The higher-order periodic
solutions that appear beyond this point are asymmetric, as
discussed in the next section. Finally, the map becomes
chaotic.

VI. NUMERICAL SIMULATIONS OF
PERIODIC SOLUTIONS

We have performed numerical simulations of the dynamical
model (11). We encounter that the zero solution becomes
unstable at χ = 1 for any value of s0 leading to an oscillatory
solution. In Fig. 6 we show the in-phase oscillatory solution
arising when increasing χ for s0 = 1/3. Already for χ = 1.01
the shape of the oscillation resembles a square wave, although
the plateaus are slightly tilted [see Figs. 6(a) and 6(b)]. As
shown in [36] for a single OEO, the tilting of the plateau is an
effect of δ. The square-wave form becomes even more clear
as χ increases, as shown in Figs. 6(c) and 6(d). Similarly,
Fig. 7 displays the shape of the antiphase periodic solution
obtained when considering s0 = 3/4. In both cases the period
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FIG. 7. Out-of-phase periodic oscillations after the Hopf bifur-
cation with � = π/4, γ = 0.5, Tf = 30 ns, and Tc = 40 ns so that
s0 = 3/4, ε = 6.25 × 10−4, and δ = 0.008. In (a) and (b) we consider
P = 1.01 so that χ = 1.01, while in (c) and (d) P = 1.11 (χ = 1.11).
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FIG. 8. (Color online) Amplitude of the square-wave periodic
oscillations as a function of the offset phase � with P = 1.11 and γ =
0.5. The solid line corresponds to the theoretical prediction. Symbols
correspond to the numerical integration of the full dynamical model
with Tc = 50 ns and Tf = 60 ns (+), Tc = 30 ns and Tf = 40 ns (�),
Tc = 30 ns and Tf = 60 ns (×), Tc = 70 ns and Tf = 50 ns �,
Tc = 30 ns and Tf = 50 ns �, and Tc = 30 ns and Tf = 90 ns ©.

of the oscillations coincides with the predicted one within
order ε as expected. Comparing Fig. 6 with Fig. 7, one sees
that for a given value of χ the amplitude of both the in- and
out-of-phase oscillations is the same. This is in agreement
with the fact that the amplitude of both in- and out-of-phase
oscillations are all given by (60). We further illustrate this
result in Fig. 8, where the solid line shows the amplitude given
by the fixed point of the map (60) for P = 1.11 and γ = 0.5
as a function of the offset phase � while the symbols show
the numerical results obtained for several values of s0 leading
to different in- and out-of-phase solutions. As can be seen,
the theoretical prediction for the oscillation amplitude is in
excellent agreement with the numerical simulations of the full
dynamical model.

As illustrated in the previous section, with increasing
Pγ 2 the in- and out-of-phase solutions become unstable,
leading to higher-order periodic solutions. Figure 9 shows
the bifurcation diagram of the map (59) for q = 1, γ = 0.5,
and P = 1.8. There is a central region around � = π/4 in
which the system has periodic solutions such as the in-phase
solution shown in Fig. 10 for � = 0.18π . Further away
from the center, the system has a period-doubling bifurcation
in which it shows lagged synchronization [see Figs. 10(a)
and 10(b)]. The values of the plateaus for these period-2
solutions are not symmetrically located around x = 0. This
is also noticeable in the bifurcation diagram shown in Fig. 9,
which is not symmetrical around the axis x = 0. Instead, it
is symmetrical around the point x = 0, � = π/4. The map
(59) predicts quite accurately the amplitude of these lag syn-
chronized solutions obtained numerically as shown by the red
points.

We now address the coexistence of multiple periodic
solutions for a fixed set of parameters. As shown in Fig. 3
and discussed in Sec. III, for a given value of s0, that is,
for a given value for the delay times Tf and Tc, there are
several Hopf bifurcations leading to oscillations with different
period T , all of them taking place at χ = 1. Thus the linear
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FIG. 9. (Color online) Amplitude of the square-wave oscillations
as a function of the offset phase � with P = 1.8 and γ = 0.5. The
solid line corresponds to the theoretical prediction (59) with q = 1.
Symbols correspond to the numerical integration of the full dynamical
model with Tf = 30 ns and Tc = 90 ns.

stability analysis of the zero solution indicates that multiple
periodic solutions with different periods can exist for χ = 1,
although it does not give information about the stability of
these solutions. It turns out that indeed there are several
stable periodic square-wave solutions coexisting for a fixed
set of parameters as illustrated in Fig. 11. The different
square-wave solutions are obtained by integrating numerically
the dynamical equations (11) starting from different initial
conditions. More precisely, we take as an initial condition for
x1(s) within the interval − max(1,s0) < s < 0 a square wave
with amplitude given by the fixed point x∗ of map (45) and
with a period T . For in-phase solutions, the initial condition for
x2 is given by x2(s) = x1(s), while for out-of-phase solutions
we take x2(s) = −x1(s). Regarding the initial condition for Yi ,
we take Y1(0) = x∗T/4 and Y2(0) = x∗T/4.

Figures 11(a)–11(d) show the coexistence of several in-
phase solutions obtained considering P = 1.5, γ = 0.5, � =
π/4, Tf = 30 ns, and Tf = 90 ns so that s0 = 1/3 and
χ = 1.5. For s0 = 1/3 the fundamental solution corresponds
to lf = 0 and mf = 1 as given by Eq. (28) and its period is
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FIG. 10. Time traces of the square-wave oscillations obtained
for P = 1.8, γ = 0.5, Tf = 30 ns, and Tc = 90 ns for (a) and (b)
� = 0.15π and (c) and (d) � = 0.18π .
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FIG. 11. Time trace of the square-wave periodic solutions with
P = 1.5, γ = 0.5, � = 0.25π , and Tf = 30 ns. (a)–(d) Coexisting
in-phase solutions for Tc = 90 ns (s0 = 1/3) obtained with suitable
initial conditions as indicated in the text. (e)–(h) Coexisting out-of-
phase solutions for Tc = 60 ns (s0 = 1/2). Also shown are (a) and (e)
the fundamental solution j = 0, (b) and (f) the first harmonic j = 1,
(c) and (g) the second harmonic j = 2, and (d) and (h) the twentieth
harmonic j = 20. Notice that the time scale used in (d) and (h) is 10
times smaller than that in the other panels.

given by T in
f = 2/3 while the period of the higher harmonics

is given by (37). Figure 11(a) shows x1(s), the fundamental
solution. The time trace for x2(s) (not shown) coincides with
the one for x1(s). Similarly, Figs. 11(b) and 11(c) show x1(s)
for the first and second harmonics, which have periods 1/3
and 1/5, respectively, as the fundamental period. Higher-order
harmonics are also found. As an example, Fig. 11(d) shows
the 20th harmonic, which has a period T in

20 = T in
f /41 = 2/123

(notice that we have used a different scale on the time
axis).

Figures 11(e)–11(h) illustrate the coexistence of several
out-of-phase solutions obtained with the same parameters
but Tc = 60 ns so that s0 = 1/2. The fundamental solution
corresponds to kf = 0 and mf = 1 as given by Eq. (32) and
has a period T out

f = 1. The period of the higher harmonics is
given by (39). As in the previous case, we only display the
time traces for x1(s). The time traces for x2(s) are identical,
but in opposite phase with respect to x1(s). Figure 11(e) shows
the fundamental solution while Figs. 11(f) and 11(g) show the
first and second harmonics. Finally, Fig. 11(h) displays the
twentieth harmonic.

All these solutions are stable against small numerical
perturbations. For ε = 0 one could have an infinite number
of such square-wave periodic orbits. In practice, in the full
model, the transition between the plateaus of the square waves
takes a time of order ε and this limits the minimal period
for square-wave periodic solutions. Nevertheless, as shown in
Fig. 11, it is perfectly feasible in this system to have tens of
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coexisting square-wave periodic solutions. The fundamental
solution is the one with a larger basin of attraction, therefore
starting from arbitrary initial conditions one usually ends up in
the fundamental solution. However, by setting appropriately
the initial condition, one can make the system operate in any
of the other higher-order square-wave solutions.

VII. EFFECT OF MISMATCH IN THE DELAY TIMES

In order to analyze the effect of a small mismatch in the
time delays we have performed numerical simulations of the
dynamical system (9) for filter characteristic times θ = 5 μs
and τ = 25 ps, low feedback and coupling rates (P = 1.5,
γ = 0.5), offset phases � = π/4 and �0 = 0, varying the
self-feedback delay Tf , and keeping fixed the coupling delay
Tc. As an initial condition we use an in-phase or antiphase
periodic solution as described in the previous section.

The dynamics of periodic solutions in which x1 and x2 are
in phase is shown in Fig. 12 for the fundamental square-wave
solution [Figs. 12(a), 12(c), 12(e), and 12(g)] and the first
harmonic [Figs. 12(b), 12(d), 12(f), and 12(h)]. We consider
Tc = 90 ns, while Tf is changed from Tf = 30.0 to 29.2 ns.
For Tf = 30 ns one has a perfect matching condition for
in-phase solutions, s0 = 1/3. The fundamental solution has
a period T in

f = 2/3, while the period of the first harmonic
is T in

f /3 = 2/9. In this case one observes periodic square
waves as discussed before [see Figs. 12(a) and 12(b)]. When
a small mismatch is introduced the square-wave form is
maintained, but the transition layer becomes progressively
wider as illustrated in Figs. 12(c) and 12(d). For a larger
mismatch, of the order of 2% in T in

f , the square-wave form
starts to degrade and small intermediate plateaus appear. These
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FIG. 12. (Color online) Dynamics of in-phase periodic solutions
with Tc = 90 ns and different values of Tf : (a) and (b) Tf = 30.0 ns,
(c) and (d) Tf = 29.6 ns, (e) and (f) Tf = 29.4 ns, and (g) and (h)
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FIG. 13. (Color online) Dynamics of out-of-phase periodic solu-
tions with Tc = 40 ns and different values of Tf : (a) and (b) Tf =
30.0 ns, (c) and (d) Tf = 29.8 ns, (e) and (f) Tf = 29.6 ns, and (g)
and (h) Tf = 29.4 ns.

small plateaus are not symmetrically located around x = 0. In
the case illustrated in the figure the jump from the main plateau
to the intermediate one at x > 0 is smaller than the equivalent
jump at x < 0. We note that, despite the degradation in the
shape of the square wave, the amplitude of the solution does
not change. Higher-order harmonics are more sensitive to the
mismatch since they have shorter periods and therefore will
be more affected by widening and progressive degradation of
the transition layer. Nevertheless, one can conclude that the
square-wave solutions are robust to mismatch in the delay
times of the order of a few percent and that several stable
in-phase solutions can coexist even in presence of mismatch.
Similar results are found for out-of-phase periodic solutions,
as shown in Fig. 13.

VIII. CONCLUSION

We have studied the synchronization conditions in the
delay times for in- and out-of-phase periodic square-wave
solutions in a system with two delay-coupled optoelectronic
delay loops. We have demonstrated that in- or out-of-phase
synchronization is possible if the ratio between the self- and
cross-delay times satisfies a rational relationship. In particular,
the synchronization is in phase if the ratio involves two odd
numbers, while it is out of phase for ratios involving an odd and
an even number. We have derived analytical expressions for
the period of the solutions and an approximated map for the
amplitude of the square-wave oscillations. Remarkably, the
map turns out to be the same for in-phase and out-of-phase
solutions. We have also given an extension of this map
that allows us to predict the secondary instabilities of the
periodic square-wave solutions. The theoretical predictions are
confirmed with numerical simulations of the full dynamical
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model. While the analytical mathematical treatment presented
here has been done for identical systems in the ideal case
without noise, we expect the results to be relevant for real
systems. The effect of noise in the periodic regime of OEOs is
small [31] and we have shown that the periodic square-wave
solutions are robust to mismatches in the delay times of the
order of a few percent. The rich dynamics of the system
allows for the coexistence of many in- or out-of-phase stable
periodic orbits with different periods for the same values of
the fixed parameters. This provides a large degree of flexibility,
allowing us to change the period of the square-wave periodic
solution without changing any parameter of the system, just
varying the initial condition or inducing a suitable perturbation
to the system. Such a system turns out to be interesting
for applications such as information encoding, which bene-
fits from high-frequency oscillations of controllable period
[20]. We finally note that the methodology and the results

presented here can be generalized to other systems consist-
ing of coupled nonlinear oscillators with multiple different
delays.
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