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Abstract 

This paper decomposes the R&D-patent relationship at the industry level to shed light on the 

sources of the worldwide surge in patent applications. The empirical analysis is based on a 

unique dataset that includes 5 patent indicators computed for 18 industries in 19 countries 

covering the period from 1987 to 2005. The analysis shows that variations in patent 

applications reflect not only variations in research productivity but also variations in the 

appropriability and filing strategies adopted by firms. The results also suggest that the patent 

explosion observed in several patent offices can be attributed to the greater globalization of 

intellectual property rights rather than to a surge in research productivity.  
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Keywords: appropriability, complexity, patent explosion, propensity to patent, research 

productivity, strategic patenting. 
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1. Introduction 

 

Patent-based indicators are increasingly used to assess the rate of technological change, to 

gauge firms’ competitive positions, or to study knowledge spillovers. The success of patent 

statistics is rooted in their wide availability, their intrinsic links to inventions, and their 

relatively homogeneous standards across countries. International treaties, such as the Paris 

Convention for the Protection of Industrial Property of 1883 or the Patent Cooperation Treaty 

(PCT) signed in 1978, have set some legal and quality standards across patent offices 

worldwide. Empirical studies on the R&D-patent relationship performed on cross-sectional or 

panel data unambiguously lead to the conclusion that there is a significant correlation 

between R&D inputs and patent counts, although the estimated elasticity varies greatly with 

the econometric specifications adopted. 

 

The idea that patents are relevant indicators of technological change is not without its 

detractors. It is well known that not all inventions are patentable and that not all patentable 

inventions are actually patented. There are noticeable differences in the use of patents across 

firms, industries, and countries, which make patent data rather difficult to interpret. In 

addition, patented inventions differ in terms of their quality, or “inventive step,” and their 

economic significance. Concerns about the use of patents as economic indicators have been 

further reinforced by the greater emphasis on strategic patenting in the literature (e.g. Hall 

and Ziedonis, 2001; Blind et al., 2006). Surely the significant increase in the number of 

patent filings observed worldwide over the last two decades is not entirely explained by an 

increase in R&D expenditures (Kortum and Lerner, 1999; Hall, 2005; WIPO, 2011).  

 

This paper aims to decompose the R&D-patent ratio into its many components in order to 

shed light on the sources of growth in patenting activity. Its contribution to the literature is 

both conceptual and empirical. On the conceptual level, we acknowledge that patent numbers 

reflect not only research productivity but also strategic considerations, such as the proportion 

of inventions patented (the “appropriability strategy”) and the number of patents filed to 

protect an innovation (the “filing strategy”). For instance, firms in the telecommunications 

industry patent many inventions and typically have a myriad of patents for any one product 

(e.g., the mobile phone). In contrast, firms in the pharmaceutical industry patent many 

inventions, but drugs are generally protected by a small number of key patents. While many 
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surveys measure the appropriability strategy (e.g., Levin et al., 1987; Arundel and Kabla, 

1998; Cohen et al., 2000), the filing strategy has rarely been considered thus far. 

Furthermore, although the filing strategies of firms have been studied by several authors (e.g., 

Hall and Ziedonis, 2001; Reitzig, 2004), their effect on the R&D-patent relationship has been 

largely neglected. 

 
The empirical contribution of the paper is twofold. First, this paper evaluates the R&D-patent 

relationship using a unique panel dataset covering 18 industries in 19 countries over 19 years 

(1987–2005). Most studies on the determinants of patenting activity are performed at the 

firm, regional, or country levels. Only rarely do such studies cover the industry level.1 While 

intellectual property strategies differ across firms, especially across firms of different sizes, 

they also vary widely across industries. Second, this study relies on five patent-based 

indicators – some of which are new – to further understand the nature of the patent explosion: 

priority filings, EPO filings, USPTO filings, “regional” filings (a combination of EPO and 

USPTO filings), and triadic filings.2 A priority filing is the first patent application protecting 

an invention. A subsequent patent application can then be filed at regional offices (such as the 

European patent office (EPO) for European applicants or the US Patent Office (USPTO) for 

North American applicants) or simultaneously at the three offices (the USPTO, the EPO and 

the Japanese Patent Office (JPO), or the so-called triadic patents) and covers a broader 

geographical area. The average quality or value of patent indicators is low for priority filings 

and higher for triadic applications, because of the higher legal and attorney fees, as well as 

translation costs arising from the broader geographic protection. 

 

The econometric analysis is conducted in two stages. The first stage involves estimating the 

determinants of the patent production function. The results confirm that the research 

productivity dimension matters and that it explains part of the variation in the patent-to-R&D 

ratio at the industry level. This finding serves as additional evidence that patents are valid 

economic indicators that can be used to measure technological progress. The long-term 

                                                 
1  To the best of our knowledge, Meliciani (2000) offers the only panel-based econometric analysis at the 

industry-level. The sample covers 15 industries in 12 countries over 20 years. The lack of studies at the 
industry level can partly be explained by the difficulty faced by researchers in matching patents with industry-
level data: patents are not classified by economic sectors, and the correspondence between technological and 
economic nomenclatures is not straightforward. 

2 “Regional” filings are those made at either the EPO or the USPTO, or a mix of both, as explained in section 
3.2. These two patent offices attract a large number of applications from non-domestic applicants—about half 
of the total number of filings in the two offices. 
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elasticity of patents with respect to R&D is about 0.12. The results also confirm that the 

inclusion of the two components of the propensity to patent – appropriability and filing 

strategies – helps to refine the link between R&D and patents. This finding sheds light on the 

strong variability in the patent-to-R&D ratio across industries and suggests that patent 

indicators are affected by ‘strategic’ considerations. 

 

In the second stage, we use the regression results to decompose the sources of growth in 

patenting activity. We find that R&D expenditures account for a modest share of the variance 

in patenting (from 1 to 5 per cent depending on model specifications) compared to the 

variables which control for research productivity and propensity to patent. Moreover, our 

analysis of the fixed effects related to the three dimensions of our panel dataset, which 

capture a large share of the variance in patent growth, provides additional insights into the 

sources of growth. While some industries (computers and communication technologies) and 

countries (South Korea, Spain, and Poland) have experienced a drastic increase in patent 

applications, the ratio of priority patent applications to R&D expenditure has been generally 

constant. This result suggests that there has been no spurt in innovation productivity. In 

contrast, regional applications (filings at the USPTO or at the EPO) have been increasing 

since the early 1990s, suggesting that the patent explosion observed in large regional patent 

offices is due to the greater globalization of intellectual property rights rather than a surge in 

research productivity. 

 

The paper is structured as follows. The next section surveys key empirical studies on the 

R&D-patent relationship and introduces the conceptual approach. Section 3 presents the 

empirical model, the five patent indicators and the explanatory variables. The empirical 

results are presented and interpreted in section 4. Section 5 presents the conclusions, as well 

as a discussion of research and policy implications. 

 

2. The components of the R&D-patent relationship 

 

Many empirical studies have investigated the relationship between R&D and patents using 

the methodology first proposed by Pakes and Griliches (1980) as illustrated in Table A1 in 

Appendix 1. Pakes and Griliches estimated a knowledge production function that models 

patent count as a function of current and past research expenditures. The estimated elasticity 
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of patents with respect to R&D is generally found to be positive and significant, but its 

amplitude varies greatly depending on the econometric specifications adopted. The wide 

variation is striking with firm-level analyses (see, for example, Hausman et al., 1984; Hall et 

al., 1986; Jaffe, 1986; Cincera, 1997; Duguet and Kabla, 1998; Crépon et al., 1998; Blundell 

et al., 2002; Czarnitzki et al., 2009) as well as in more aggregate levels of analyses (see, for 

instance, de Rassenfosse and van Pottelsberghe, 2009, at the country level, and Bottazzi and 

Peri, 2003, at the regional level). 

 

Few scholars have studied the R&D-patent relationship at the industry level. An exception is 

Meliciani (2000), who studies variations in USPTO patents across countries, industries, and 

over time. The author shows a quite low – but positive and significant – elasticity of R&D. 

She also points out that patterns of innovation are sector-specific rather than country-specific: 

the variability of relative measures of R&D and of patenting performance is larger across 

sectors than across countries. Other studies have also illustrated the strong variations in 

patents-to-R&D ratio across industries.3 Kim and Marschke (2004) have shown for instance 

that the pharmaceutical industry presents a low patent-R&D ratio (with 166 patents per 

billion R&D dollar in 1992) compared to other industries, especially cumulative technology 

industries (e.g. electronic instrument and communication equipment, computers and 

computational equipment). In addition to yielding a large number of patents per dollar of 

R&D, the latter industries have experienced a stronger growth of their patents-to-R&D ratio. 

 

Five potential explanations may account for the fluctuation in the estimated elasticity. First, 

R&D indicators encompass much more than the activity of generating new ideas and 

inventions. Therefore, R&D might not be a good indicator of innovative effort. Second, R&D 

expenditures represent only a fraction of the total resources a firm devotes to innovative 

activities. On the basis of detailed data for the Netherlands in 1992, Brouwer and Kleinknecht 

(1997) estimated that R&D expenditure represented about one-quarter of total innovation 

expenditure. Sirilli and Evangelista (1998) reported that R&D expenditure accounted for 36% 

of total innovation expenditure in Italian manufacturing firms. Investments in fixed assets, 

market research, and trial production are as many expenses that are not accounted for in 

official statistics. See also Cincera (1998) for similar figures. Third, patent series are, by their 

very nature, subject to a substantial bias, as most patents generate low or no value and only a 

                                                 
3 See also Table 3 in the next section. 
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few patents are associated with a high economic value. Fourth, more generally, the estimates 

could also be affected by the patent count methodology that is used (see de Rassenfosse et al., 

2012 for a recent detailed explanation of existing patent counts). 

 

A fifth concern relates to the strong influence of the propensity to patent in the R&D-patent 

relationship (e.g., Hall and Ziedonis, 2001). The R&D-patent relationship can be decomposed 

in two main dimensions: the productivity of the research efforts which can potentially lead to 

inventions and the propensity to patent in order to protect a given innovation. Scholars have 

long argued that patent counts reflect more the latter dimension than the former one. For 

instance, Scherer (1983, p 116) explicitly assumed that research productivity was constant for 

the sake of simplicity. While admitting the possibility of “differential creativity of an 

organization’s R&D scientists and engineers,” the author did not consider this element. 

Instead, Scherer chose to concentrate on other, “more systematic” factors. In Scherer’s study, 

the more “systematic” factors that drove the patenting performance of firms were related to 

the propensity to patent. 

 

In this paper we explicitly model the two dimensions of the R&D-patent relationship: the 

productivity of research on the one hand, and the propensity to patent, defined as the number 

of patents per innovation, on the other hand. The propensity to patent is itself composed of 

two dimensions: the decision to protect an invention with a patent and the number of patented 

inventions per innovation. We refer to the former as the “appropriability strategy” and to the 

latter as the “filing strategy.” It is important to emphasize the distinction between invention 

and innovation. While the former relates to an improvement in knowledge, the latter refers to 

a final product and is usually composed of a set of inventions and, thus, potentially 

encompasses several patent filings. 

 

A decision to patent an invention (appropriability strategy) is largely determined by the 

efficacy of patent protection to appropriate innovation rents. Companies rely on numerous 

mechanisms of rent appropriation, such as secrecy, lead time, complementary sales and 

services, complementary manufacturing facilities, barriers to entry, and tacit knowledge (e.g., 

Teece, 1986). These mechanisms may coexist with patent protection and are often paired 

with it. In the Carnegie Mellon Survey undertaken by Cohen et al. (2000), secrecy and lead 

time were found to be the two most effective appropriability mechanisms, and were top 
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ranked in 17 and 13 industries, respectively. Patent protection generally appears to be the 

least effective mechanism, although its importance varies significantly across industries (see 

Table 1). Patent protection is particularly important for pharmaceutical, chemical, and 

precision instrument firms. Based on survey data gathered from R&D executives in 

Switzerland, Harabi (1995) reported that the ability of competitors to invent around patents 

and the perception that patent documents disclose too much information were the most 

important factors that limited the use of patents.  

 

Nevertheless, an application for a patent is not always only driven by a desire to protect 

innovation rents; other motivations, related to the alternative roles of patents, encourage firms 

to seek patent protection. Patents can be used as a tool for technology negotiations with 

competitors or potential collaborators, to exclude rivals from a particular technology area, for 

communication and marketing purposes, to increase revenues through license agreements, to 

ensure the freedom to operate, or to attract investors. These considerations all influence the 

observed patenting performance of firms (see, for instance, Cohen et al., 2000; Hall and 

Ziedonis, 2001; Blind et al., 2006; or de Rassenfosse, 2012, for detailed investigations in this 

field).  

 

Once a decision is made to protect an invention, the applicant chooses the number of patents 

that are to be filed. We refer to this step as the “filing strategy.” Reitzig (2004) provided early 

evidence that this dimension matters. On the basis of survey data for 614 patents filed at the 

EPO, Reitzig found that innovations were protected by a coherent group of around five 

patents on average. In addition to the decision on how many patents to file, the applicant must 

also consider the necessary geographical scope of protection, i.e., in which countries patent 

protection should be sought.  

 

To summarize, we identify two key milestones when analyzing the R&D-patent relationship. 

The first milestone is the distinction between research productivity and patent propensity. 

The second milestone is the distinction between appropriability and filing strategies.  
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Table 1. Share of inventions that are patented (in percentages) 

  Arundel and Kabla (1998) Cohen et al. (2000) 

Mining 28 -

Food, beverages, and tobacco 26 15

Textiles and clothing 8 9

Petroleum refining 23 38

Chemicals 57 51

Pharmaceuticals 79 95

Rubber and plastic products 34 40

Glass, clay, and ceramics 29 43

Basic metals 15 4

Fabricated metal products 39 49

Machinery 52 38

Office and computing equipment 57 39

Electrical equipment 44 44

Communication equipment 47 51

Precision instruments 56 52

Automobiles 30 51

Other transport equipment 31 -

Power utilities 29 -

Transport and telecom services 20 -

Notes: The industry classification corresponds to that presented in Arundel and Kabla (1998). Figures from 

Cohen et al. (2000) were averaged across sub-industries when Cohen et al.’s industry classification system did 

not match Arundel and Kabla’s system.  

 

 

3. Empirical implementation 

 

The aim of the empirical analysis is to decompose the R&D-patent relationship taking the 

factors that affect the productivity of research efforts and the propensity to patent into 

account. In an ideal set-up, one would be able to observe both the number of inventions and 

the number of patents. However, as the only observable measure of inventive output is the 

patent count, one should be cautious when interpreting the parameters of the patent-
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production function because differences in patent numbers reflect both productivity and 

propensity effects.  

 

3.1 The model 

 

The dataset has three dimensions: time (t = 1,…, 19), industry (i = 1,…, 18), and country (j = 

1,…, 19). Each “individual” thus reflects an industry–country pair.4 As research efforts (R) 

lead to inventions (I), which, in turn, may lead to patent applications (P), the R&D-patent 

relationship for the N individuals in the sample can be expressed as follows (temporarily 

excluding the time dimension): 

 

 
RI   and IP  ,         (1)

  

where the parameter γ is a scalar measuring the average return to R&D across individuals, 

and Ω and Φ are diagonal matrices of size N capturing the productivity and the propensity 

effects for each individual, respectively.5 In this framework, the matrix Φ captures both the 

appropriability strategy and the filing strategy. It can also be expressed as a function of the 

two propensity components, but this would unnecessarily clutter the notation. If we let X and 

Z, respectively, denote the matrices of variables that affect Ω (productivity) and Φ 

(propensity), and if we let α and β, respectively, reflect the column vectors of coefficients, 

then equation (1) can be written as: 

 

 rxci   1  and izcp  2 ,       (2)

   

where the lower-case Roman letters denote the logs of the variables. If we expand the patent-

production function, we arrive at: 

 

 xzrcp   ,         (3)

  

                                                 
4 An alternative approach would be to estimate the parameters of a patent-production function for each industry, 

thereby allowing for differentiated impacts across industries. Nevertheless, the “pooled” approach was chosen 
because it is based on a larger number of observations and provides averages across industries and countries. It 
is the purpose of this paper to grasp cross-industry determinants of patent-to-R&D variation. 

5 The expression Rγ indicates that each of the N elements rij of R is taken to the power of γ. 
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where c = c1 + c2 is a scale parameter capturing the rate at which research efforts lead to 

patent applications (c1 reflects the average productivity of research across individuals and c2 

reflects the average propensity to file patents). As suggested in the literature (see the 

introduction and section 2), the propensity to patent has most probably increased since the 

1980s due to an unobservable greater reliance on the patent system for various strategic 

reasons. In other words, c2 may have increased over time even after accounting for the 

observable characteristics Z. Along a similar vein, research productivity has probably 

improved over the years (Kortum and Lerner, 1999). Therefore, the extent to which the scale 

variable c can capture the average growth rate of the productivity of research or of the two 

propensity effects is unclear. At this stage, we remain agnostic as to what the variable c 

captures. However, we analyze its various dimensions (country, industry, and year) in greater 

detail in section 4.2 in order to shed light on the sources of the patent explosion. 

 

The patent-production function for a given industry-country pair at a single point in time (ijt) 

can be written as: 

 

 ijtijtijtijtijtijt xzrcp   ,        (4)

  

where εijt is the error term. It is good practice to estimate panel data using first differences to 

avoid potential spurious-regression problems. If we let Δ denote the first-difference operator, 

equation (4) can be transformed as follows: 

 

 ijtijtijtijtijtijt xzrcp   ,       (5)

  

with υijt = Δεijt. As the variables are expressed in logs, equation (5) is an approximation of the 

growth rate of patenting. The term Δcijt is the growth rate of patent filings that is not 

accounted for by the explanatory variables. Equation (5) implies that a change in any of the 

explanatory variables has a contemporaneous impact on the number of patent applications. In 

other words, the parameters of the first-differenced variables capture the short-term 

elasticities.  
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Given that the R&D-patent process is co-integrated, the patent-production function is 

estimated by means of an error correction model (ECM) with a one-year lag structure.6 The 

ECM provides a rich econometric framework that allows for the estimation of both short-

term and long-term elasticities. The choice of a one-year lag is motivated by Hall et al. 

(1986).7 These authors estimated several panel data models at the microeconomic level and 

obtained evidence of a strong contemporaneous relationship between R&D expenditure and 

patenting, and of a small effect of R&D history on patent applications. This is consistent with 

the practice of starting to file patents early in the life of a research project, although the lag 

between initial R&D expenditures and patent applications can admittedly be much longer. 

 

The ECM involves estimating the model in first differences together with the previous year’s 

deviation from equilibrium (in parentheses), which leads to the following equation:  

 

∆    	∆ ∆ ∆

	  . 
(6)

 

Remember that the individual is defined as a country-industry pair. The term Δcijt in 

equation (5) is decomposed into a fixed industry effect (ψi), a fixed country effect (ψj), and a 

common time effect (ψt) in equation (6). 

 

The term in the parentheses in equation (6) is usually referred to as the error correction term. 

It can be interpreted as the deviation from equilibrium in the previous period. The variables 

expressed in first difference – those preceded by the operator Δ – capture the short-term 

impact on the number of patents. In other words, they indicate how a change in any 

explanatory variable contemporaneously affects the number of patents. The parameter λ 

usually fluctuates between 0 and 1, and measures the speed of adjustment to the long-term 

equilibrium (the closer to 1, the quicker the adjustment process). The long-run elasticities are 

calculated by dividing each estimated parameter associated with the lagged variables by the 

adjustment parameter λ (for a discussion, see Alogoskoufis and Smith, 1991). 

 

 

                                                 
6 The tests on unit roots and co-integration for our panel data suggest that the series are non-stationary and co-

integrated (see Appendix 2).  
7 Kondo (1999) analyzes the dynamic mechanism of the R&D-patent relationship of Japanese industry and 

shows that R&D effort leads to patent applications with a time-lag of about one and a half years. 
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3.2 The dependent variable: patent indicators 

 

Many ways of counting patents exist, each with its own strengths and weaknesses (see, for 

example, Dernis et al., 2001, and OECD, 2009, for a discussion). It is therefore particularly 

important to carefully select the patent indicators to be used to monitor innovation 

performance so as to reduce the potential biases as much as possible. Five alternative 

indicators are used in this empirical analysis in order to gauge the robustness of the results to 

the chosen dependent variable. These indicators are: the number of national priority filings, 

the number of patents filed at the EPO, the number of patents filed at the USPTO, a measure 

combining EPO and USPTO patents, and the number of patents filed simultaneously in 

Japan, the US, and Europe (“triadic” patents). Whereas the first indicator is composed of 

many patents with a highly skewed distribution of value, triadic filings are less numerous but 

are of a much higher economic value. Note that we focus on patent filings rather than on 

granted patents, so that the patent count is not affected by varying grant rates across patent 

offices or over time. The patent counts are assigned to the country of inventor(s) and are also 

expressed by priority year so that they better reflect the date of invention.  

 

The patent indicators are computed from the OECD-EPO PATSTAT database (April 2009) 

for each manufacturing industry following the International Standard Industry Classification 

scheme (ISIC, Revision 3), as indicated in Table A2 of Appendix 1. However, patents are not 

classified using the ISIC scheme but rather using the codes of the International Patent 

Classification (IPC) scheme, which represent the different areas of technology to which they 

pertain. Patents have therefore been assigned to the appropriate industries using the 

concordance table between IPC and ISIC codes provided by Schmoch et al. (2003). Schmoch 

et al. estimated the empirical concordance table by investigating the patenting activity in 

technology-based fields (IPC) of more than 3,000 firms classified by industrial sector (ISIC). 

When a patent contains more than one IPC code, the industry allocation is performed on a 

fractional basis.8 

 

The first indicator is the corrected count of national priority filings (NPFCORR), which was 

recently introduced by de Rassenfosse et al. (2012). This indicator captures all of the patents 

                                                 
8  Some patents had no IPC codes and some IPC codes were not in the concordance table. All “unassigned” 

patents were allocated to industries according to the observed share of successfully allocated patents. 
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“invented” in a country, regardless of the patent office of application. For example, the count 

for Austria is equal to the number of priority filings made by inventors based in Austria and 

filed at the Austrian patent office plus the priority filings made by inventors based in Austria 

but filed directly at other patent offices, such as the EPO, the USPTO, or the German patent 

office. This methodology assures the best match between R&D expenditure and patent 

applications at the country level. The inclusion of priority filings made abroad also reduces 

the bias against small countries, such as Belgium and the Netherlands, which file a higher 

share of their patents abroad than larger countries, such as France or Germany. This 

worldwide count of priority filings is a broad measure of patenting that encompasses both 

low-value and high-value patents. It is biased in favor of Japan and South Korea, as the share 

of these countries in the total number of national priority filings is much higher than their 

share of R&D expenditures. The patent systems in these countries favor patents that are much 

smaller in scope but more numerous. On average, patents filed at the Japanese and the 

Korean patent offices have one-third the number of claims than patents filed at the USPTO or 

the EPO. For this reason, the count for Japanese and Korean priority filings has been divided 

by three (for a discussion, see Kotabe, 1992, and Archontopoulos et al., 2007).9 

 

The second indicator is the count of patent applications filed at the EPO. This indicator is 

composed of the patents that were filed directly at the EPO and those that were extended to 

the EPO as second filings. As the EPO patenting procedure is expensive, EPO patents are 

generally of a higher value. This indicator is biased for two main reasons. The first is related 

to home bias, as companies in Europe tend to file a higher proportion of their patents at the 

EPO than companies from non-European countries (see Figure 1). de Rassenfosse, Schoen 

and Wastyn (2013) presented firm-level evidence that a count of EPO patents provided 

biased estimates of patent production functions. Second, the reliance on the EPO has 

increased over time for all countries, especially those in Europe. In this respect, de 

Rassenfosse and van Pottelsberghe (2007) showed the presence of a systematic bias in 

statistics based on European patents: the share of priority filings transferred to the EPO 

increases with the country’s age of membership in the European Patent Convention. This 

calls for a cautious interpretation of the evolution of the number of EPO patents over time.  

 

                                                 
9 As the dependent variable is the growth rate of patent applications, the econometric estimates are not affected 
by the normalization. 
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The third indicator is similar to the second except that the patent office of reference is the 

USPTO. For this indicator, long-term statistics are available for granted patents only. Given 

that many countries in the sample are European, this indicator probably reflects the value of 

patents better (a European applicant will find it easier to file at the EPO than at the USPTO 

and will seek a US patent only for the most valuable inventions).10 However, this indicator is 

subject to an important, and logical, home bias for North American applicants, as illustrated 

in Figure 1.  

 

Figure 1. Research effort and patenting activity 

 
Source: Own calculations based on data for the year 2005.  

Note: The count for Japanese and Korean priority filings (NPFCORR) has been divided by three.  

 

The fourth indicator (REGIONAL) is a mix of EPO and USPTO patents. As European 

applicants are more likely to file at the EPO and as other countries preferably file at the 

USPTO, the indicator is composed of EPO patents for European countries and USPTO 

patents for other countries. This mitigates the home biases that characterize the EPO and the 

USPTO indicators and allows for a geographical distribution that is closer to the actual 

distribution of research efforts. 

 

The count of triadic patent families is the fifth indicator (TRIADIC). It was developed  by the 

OECD to select patents of high quality that were comparable across countries. According to 

                                                 
10 To mitigate the effect of the grant lag in US patent statistics, which was especially strong in 2004 and 2005, 

the data are adjusted for each country-industry pair using the ratio of EPO patents to US patents for the year 
2003. 
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the OECD definition, the triadic patent family is “a set of patent applications filed 

simultaneously at the EPO, the JPO, and granted by the USPTO” that share one or more 

priority applications (OECD 2009, p 71). This indicator is more robust to differences in 

patent regulations across countries and changes in patent laws over time. Triadic patents are 

of high value given the high cost associated with applying for patents in the three patent 

offices. On average, only between 10% and 15% of priority filings ultimately become triadic 

patents. In 2005, the 19 countries included in the sample had a total of 368,436 priority 

filings for 49,670 triadic patent applications.  

 

The absolute number of patents, their relative shares across countries and industries, and their 

compound annual growth rates over the period from 1987 to 2005 are presented in Tables A3 

and A4 in Appendix 1. These tables show that the so-called patent explosion has taken place 

in most countries, in all industries, and for all patent indicators. More interestingly, Tables 2 

and 3 offer an overview of the patent-R&D ratio across countries and industries in order to 

illustrate some stylized facts about the R&D-patent relationship. First, the variability of the 

ratio – and of its growth rate between 1987 and 2005 – across countries (Table 2) and 

industries (Table 3) indicates that variations in patents are not only driven by change in R&D 

expenditures. Second, our panel dataset validates and generalizes the industry-level analysis 

of Kim and Marschke (2004) on USPTO patents by US firms over the period 1983–1992. 

While a few industries, such as computing machinery (COMP), exhibit both a high patent-

R&D ratio and a strong increase in this ratio, other industries have experienced a strong 

decrease of their relative number of patents. For instance, the patent-R&D ratio in 

pharmaceuticals decreased at approximately 5% per annum. As pointed out by Kim and 

Marschke (2004), such decrease is probably explained by the fact that the cost of developing 

new drugs has been increasing strongly rather than by a lower propensity to patent new drugs. 
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Table 2. Patent per R&D expenditures (in millions of 2000 USD) by country  

 
NPFCORR  EPO  USPTO  TRIADIC   REGIONAL 

Y05 CAGR  Y05 CAGR  Y05 CAGR  Y05 CAGR   Y05 CAGR 
AT 0.88 -2.0% 0.48 0.1% 0.18 -1.5% 0.31 2.2% 0.48 0.1% 
BE 0.60 2.1% 0.43 3.9% 0.13 2.6% 0.31 4.5% 0.43 3.9% 
CA 0.91 0.1% 0.18 0.0% 0.06 -3.5% 0.59 0.5% 0.59 0.5% 
DE 1.40 3.1% 0.70 5.1% 0.20 3.4% 0.49 5.8% 0.70 5.1% 
DK 0.89 -2.7% 0.59 3.0% 0.18 1.3% 0.53 3.4% 0.59 3.0% 
ES 0.65 -2.7% 0.24 4.6% 0.05 2.3% 0.14 2.7% 0.24 4.6% 
FI 0.86 -4.9% 0.36 0.6% 0.10 -1.8% 0.36 0.2% 0.36 0.6% 
FR 0.79 -0.5% 0.42 1.3% 0.14 0.4% 0.30 1.7% 0.42 1.3% 
GB 1.30 -0.7% 0.36 0.8% 0.13 0.1% 0.40 2.6% 0.36 0.8% 
IE 0.78 -12.2% 0.33 -0.9% 0.11 -0.9% 0.37 0.4% 0.33 -0.9% 
IT 1.80 4.0% 0.75 7.0% 0.13 2.7% 0.41 6.5% 0.75 7.0% 

JP* 1.43 -2.7% 0.30 -0.4% 0.23 1.5% 0.67 0.3% 0.67 0.3% 
KR* 1.84 6.1% 0.28 17.8% 0.17 16.8% 1.00 10.3% 1.00 10.3% 
NL 1.41 4.3% 0.92 4.8% 0.55 5.2% 0.80 5.5% 0.92 4.8% 
NO 1.78 1.4% 0.60 7.1% 0.21 5.4% 0.69 6.9% 0.60 7.1% 
PL 1.65 -7.9% 0.23 15.8% 0.02 12.0% 0.17 20.3% 0.23 15.8% 
SE 0.51 -4.8% 0.33 0.8% 0.12 -0.1% 0.27 0.4% 0.33 0.8% 
US 0.70 3.4%  0.12 0.4%  0.07 -1.8%  0.71 3.8%   0.71 3.8% 

Source: Own calculations 

Notes: * The number of priority fillings for Japan and Korea has been divided by 3. The columns labeled ‘Y05’ 

report the patent-R&D ratio in the year 2005 while the columns labeled ‘CAGR’ report the compound annual 

growth rate of the patent-R&D ratio over the largest available period. CH was excluded because of lack of R&D 

data. 
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Table 3. Patent per R&D expenditures (in millions of 2000 USD) by industry 

 
NPFCORR   EPO  USPTO  TRIADIC   REGIONAL 

Y05 CAGR   Y05 CAGR  Y05 CAGR  Y05 CAGR   Y05 CAGR
FOOD 1.00 -3.7% 0.27 -3.5% 0.12 -4.3% 0.52 -2.6% 0.53 -3.1%
TEXT 1.28 0.2% 0.32 1.8% 0.14 0.2% 0.66 1.3% 0.72 1.6%
WPAP 0.82 -2.6% 0.23 -1.0% 0.10 -2.4% 0.42 -1.4% 0.47 -1.2%
PETR 1.61 4.7% 0.53 5.4% 0.26 4.2% 0.90 5.4% 0.96 5.5%
CHEM 1.61 1.8% 0.54 2.6% 0.27 1.9% 0.90 2.8% 0.97 2.8%
PHAR 0.36 -5.3% 0.15 -4.8% 0.08 -6.0% 0.24 -4.4% 0.25 -4.2%
RUBB 1.15 -1.6% 0.32 0.0% 0.13 -1.6% 0.54 -1.0% 0.61 -0.6%
MINE 2.27 2.9% 0.62 4.7% 0.28 3.4% 1.22 4.9% 1.33 5.0%
META 1.71 2.0% 0.48 4.1% 0.22 2.9% 0.90 3.9% 0.98 4.1%
FABM 2.72 0.8% 0.70 3.3% 0.25 1.3% 1.21 1.4% 1.40 1.9%
MACH 1.66 -2.6% 0.44 0.1% 0.18 -1.5% 0.84 -1.0% 0.93 -0.7%
COMP 2.81 5.1% 0.65 6.1% 0.35 5.3% 1.90 8.5% 1.92 8.3%
ELEC 1.03 1.8% 0.27 4.3% 0.13 3.0% 0.63 4.4% 0.67 4.5%

COMM 1.32 -0.4% 0.35 2.0% 0.18 0.7% 0.90 1.1% 0.92 1.1%
INST 0.53 -1.5% 0.14 0.3% 0.07 -0.8% 0.32 0.5% 0.34 0.6%

AUTO 0.64 -0.6% 0.17 2.3% 0.08 0.6% 0.32 0.3% 0.36 0.7%
TRAN 0.35 -0.1% 0.10 3.8% 0.04 2.6% 0.19 1.7% 0.21 1.8%
MISC 3.21 -1.6%   0.52 -0.1%  0.19 -0.3%  1.48 3.2%   1.60 3.1%

Source: Own calculations 

Notes: The columns labeled ‘Y05’ report the patent-R&D ratio in the year 2005 while the columns labeled 

‘CAGR’ report the compound annual growth rate of the patent-R&D ratio over the largest available period. 

 

 

3.3 Explanatory variables 

 

The most important explanatory variable is the amount of R&D expenditure by country-

industry pair (R&D), which measures the research efforts. This variable is taken from the 

OECD’s ANBERD database and is expressed in constant 2000 US dollars (USD) at 

purchasing power parity (PPP). We use R&D stocks computed using the perpetual inventory 

method with a depreciation rate of 15%. The use of R&D stocks is motivated by the fact that 

the patent outcome is the result of an accumulated stock of knowledge over time and not 

simply the result of recent R&D activities. Estimations undertaken with R&D flows lead to 

similar results. 

 

The estimated elasticity of patents with respect to R&D provides an incomplete evaluation of 

research productivity. A more complete picture could be derived if inventions (rather than 
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patents) could be accurately measured or if the two types of propensity to patent were 

properly measured across countries and over time. As no such indicators are available, an 

indirect approach is necessary. This consists of finding variables that arguably induce (or 

reflect) differences in the productivity of research activities and variables that are correlated 

with the propensity to patent. 

 

Explanatory variables that could affect the propensity and the productivity components for a 

large group of countries are hard to find, especially variables that vary over industries and 

that are available over a long period of time. Moreover, it is also difficult to find indicators 

that impact only one component and not the other. Despite these limitations, three candidates 

that might affect the productivity of research and four that could affect the propensity to 

patent were identified. Some vary over time and across countries and industries, whereas 

some others vary only across one dimension, as indicated in Table 4.  

 

Table 4. Overview of the explanatory variables 

  Component  Variation 
 Productivity (x) Propensity (z) Country Industry Year

R&D STOCK  x x x 
SHARE HIGHER EDU x x  x 
SHARE BASIC x x  x 
RCA x x x x 
APPROPRIABILITY x  x  
COMPLEXITY x  x x 
IP INDEX x x  x 
QUALITY    x  x     

Source: Own computations of the stocks based on OECD STAN R&D Expenditure in Industry (ISIC Rev. 3), 
ANBERD ed2009 for R&D STOCK; and OECD Main Science & Technology Indicators for SHARE HIGHER 
EDU and SHARE BASIC. Own computation based on OECD STAN Bilateral Trade Database for RCA; 
Arundel and Kabla (1998) for APPROPRIABILITY; von Graevenitz et al. (2011) for COMPLEXITY; Park 
(2008) for IP INDEX, with yearly data computed on the basis of a compound annual growth rate between two 
available data points; de Saint-Georges and van Pottelsberghe (2012) for QUALITY. 
 
 
The three variables that are assumed to affect – or correlate with – research productivity are 

defined and measured as follows. The variable “SHARE HIGHER EDU” is defined as the 

percentage of gross domestic expenditure on R&D that is undertaken by the higher education 

sector (OECD Main Science & Technology Indicators (MSTI) 2009). The expected impact 

on the number of patents is ambiguous. On the one hand, the higher education sector 

develops and utilizes frontier knowledge that private companies can use, suggesting a 
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positive relationship. On the other hand, the propensity to patent is lower among universities, 

such that a negative impact is also possible. The second productivity variable, “SHARE 

BASIC,” reflects basic-research expenditure as a percentage of gross domestic expenditure 

on R&D (OECD MSTI). A higher value for this variable is expected to lead to greater 

productivity in research efforts, as basic research typically pushes the knowledge frontier and 

generates opportunities for further development. The third productivity variable is “RCA,” 

which measures the “revealed comparative advantage” of each country across different 

industries. It is defined for each country i–industry j pair as the ratio of the share of industry j 

in the export of country i to the share of industry j in world exports (own computation based 

on the OECD STAN Bilateral Trade Database). A ratio higher than one reveals a comparative 

advantage, as the country exports relatively more in that particular industry, suggesting that it 

is internationally competitive. A positive correlation is expected, as internationally 

competitive industries must be innovative in terms of new product performance or reduced 

production costs. In analyzing the determinants of patenting across a set of OECD countries, 

Furman et al. (2002: 899) found that “an extremely important role is played by factors 

associated with differences in R&D productivity [such as] openness to international trade.” 

Note that the RCA variable could be endogenous to the patenting activity because 

innovations increase export opportunities. This concern is addressed in the empirical analysis 

by estimating an ECM with lagged values of explanatory variables. 

 

Four proxies are used to measure the propensity effects. The first variable, 

“APPROPRIABILITY,” captures the appropriability strategy by industry and is based on a 

survey of the proportion of inventions that were patented in the French manufacturing sector 

(Arundel and Kabla, 1998). This observation reduces the noise in the R&D-patent 

relationship by directly correcting for a fundamental link between inventions and patents. 

This data source is preferred over Cohen et al. (2000) because it is the closest to the industry 

classification found in the ANBERD database. To the best of our knowledge, there exists no 

systematic industry-level data on the filing strategies of firms – the number of patent 

applications per innovation. A closely related concept is the discrete versus the complex 

nature of technologies. Complex technologies embed many different patented inventions in 

one final product, such that firms in complex industries adopt an aggressive filing strategy. A 

recent paper by von Graevenitz et al. (2011) provides a measure of complexity by industry. 

The authors constructed a measure of patent thickets by technology area based on “triples” of 
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firms that mutually block some of each others’ patents. They defined the most complex 

technology areas as those with the highest density of triples, as estimated from European 

patent citations data. We use the variable “COMPLEXITY” to capture differences in filing 

strategies across industries.11 

 

As there might be important differences in the propensity to patent across countries, the 

econometric analysis also controls for two country-level variables.  “IP INDEX” is a measure 

of the strength of the intellectual property (IP) system. It was developed by Ginarte and Park 

(1997) and updated by Park (2008). Countries with stronger IP regimes are expected to have 

a higher propensity to patent, as a strong protection increases the value of patent rights and 

signals a more advanced patent system.12 However, the variable is an imperfect proxy, as it is 

only computed every five years and is relatively stable over time.13 “QUALITY” is a cross-

country index of the quality of patent systems calculated by de Saint-Georges and van 

Pottelsberghe (2012). It measures the stringency and transparency of patent selection 

mechanisms. High-quality patent systems, defined as patent systems that prevent strategic 

games and abusive behaviors, should have a lower number of patents. These two variables 

might affect not only the filing strategy but also the appropriability strategy. For instance, a 

high-quality patent system may simultaneously discourage the strategic filing of minor 

improvements in existing technologies and increase the economic returns of patent 

protection, thereby increasing the incentives to apply for patents. 

 

4. Empirical results 

 

The empirical results are presented and interpreted in two stages. In the first stage, we present 

the results of the econometric regression. We start by estimating a basic R&D-patent model 

with the five patent indicators. We then introduce the productivity and the propensity 

variables to the regression model. In the second stage, we decompose the sources of growth 

in patenting activity. We perform a semi-partial R2 decomposition of the regression results 

                                                 
11 We thank von Graevenitz et al. for providing a time series of the variable. 
12 van Pottelsberghe (2011) argues that Ginarte and Park’s index is not so much an index of the strength of 

patent rights as a measure of the applicant-friendliness of the patent system. Both of these dimensions are 
likely to increase the strategic propensity. 

13 To avoid losing too many data points, we compute annual data on the basis of the compound annual growth 
rate. 
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and we provide an in-depth analysis of the fixed effects (industry, country, and time 

dummies). 

 

4.1. Econometric estimates 

 

The basic R&D-patent model 

 

The estimated parameters of the error correction model described in equation (6) are 

presented in Table 5 for the five patent indicators. The only explanatory variable taken into 

account is the stock of R&D expenditure. 

 

Table 5. Results of the error-correction model of the R&D-patent relationship 

log(#patents) 
NPFCORR  TRIADIC  EPO  USPTO   REGIONAL 

(1)  (2)  (3)  (4)   (5) 

log(R&D STOCK) 
0.100*** 0.111 0.095** 0.022 0.092** 

(0.026) (0.070) (0.040) (0.060) (0.040) 

log(#patents) (t-1) 
-0.118*** -0.293*** -0.157*** -0.144*** -0.151*** 

(0.013) (0.031) (0.019) (0.018) (0.019) 

log(R&D STOCK) (t-1) 
0.015*** 0.036*** 0.021*** 0.018*** 0.022*** 

(0.002) (0.006) (0.003) (0.003) (0.003) 

Country dummies Yes ***  Yes ***  Yes ***  Yes ***   Yes *** 

Industry dummies Yes *** Yes *** Yes *** Yes *** Yes *** 

Time dummies Yes ***  Yes ***  Yes ***  Yes ***   Yes *** 

Number of observations 5,143 5,143 5,143 5,143 5,143 

Adjusted R-Squared 0.187  0.188  0.155  0.174   0.129 

Long-run impact of R&D 
0.126***  0.123***  0.133***  0.127***   0.142*** 

(0.018)  (0.018)  (0.016)  (0.023)   (0.017) 
Notes: Robust standard errors in parentheses; ***, **, and * denote significance at the 1%, 5%, and 10% levels, 

respectively. The rows “country dummies,” “industry dummies,” and “time dummies” report the significance 

levels of the joint effect of these dummies.  

 

The short-term elasticity of patents with respect to R&D stock is about 0.10, while the long-

term elasticity of R&D stock is around 0.12, as indicated in the bottom rows of Table 3. Two 

remarks must be made regarding these estimated long-term elasticities. First, although the 

various point estimates are strikingly low, they are compatible with estimates performed at 
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the industry level by Meliciani (2000).14 Second, the elasticity is stable across patent counts, 

suggesting some degree of comparability between studies that use different patent indicators. 

This stability is all the more remarkable given the notable variations in the adjustment 

parameters (coefficients associated with the variable ‘log(R&D STOCK) (t-1)’) and the strong 

variations in patent counts illustrated in Figure 1. 

 

Depending on the patent indicator used, the regression model explains between 12% and 14% 

of the growth in patent applications. The explanatory power is fairly high despite the nature 

of the data and the simplicity of the patent production function. Country, industry, and time 

effects are all jointly significant. They are described and analyzed in the second stage of the 

empirical analysis. Note that the tests for autocorrelation of residuals reject the presence of 

correlated errors. 

 

Productivity and propensity variables 

 

The low estimated elasticity of patents with respect to R&D raises the question of whether 

other factors may help to explain variations in patent applications. This issue is investigated 

in Table 6, where the productivity and propensity components are both included in the model. 

For the sake of readability, the estimations are presented only with the NPFCORR, 

TRIADIC, and REGIONAL patent indicators as dependent variables. Regressions based on 

EPO and USPTO lead to similar results. 

 

                                                 
14 The low elasticity is also robust to changes in model specifications: ECM with R&D flows; IV estimation 
using past values of R&D as instruments; and within transformation of equation (4). The results are available 
upon request. 
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Table 6. Results of the full error-correction model  

log(#patents) 
NPFCORR  TRIADIC  REGIONAL 

(1)  (2)  (3) 

log(Stock R&D) 
0.036 0.010 -0.016 

(0.035) (0.086) (0.045) 

 SHARE HIGHER EDU 
-0.009*** -0.001 -0.008*** 

(0.002) (0.004) (0.002) 

 RCA 
-0.022 0.039 -0.044 

(0.021) (0.060) (0.037) 

log(#patents) (t-1) 
-0.149*** -0.286*** -0.145*** 

(0.019) (0.035) (0.022) 

log(Stock R&D) (t-1) 
0.013*** 0.016*** 0.009*** 

(0.003) (0.006) (0.003) 

SHARE HIGHER EDU (t-1) 
0.0001 -0.002 0.005*** 

(0.001) (0.002) (0.001) 

RCA (t-1) 
0.020*** 0.043*** 0.026*** 

(0.004) (0.009) (0.005) 

APPROPRIABILITY 
0.004*** 0.012*** 0.005*** 

(0.001) (0.002) (0.001) 

 COMPLEXITY 
-0.0004 -0.001 -0.0001 

(0.0003) (0.001) (0.0004) 

COMPLEXITY (t-1) 
0.0001 0.001* 0.001** 

(0.0002) (0.0004) (0.0003) 

IP INDEX 
0.031** 0.056** 0.075*** 

(0.016) (0.023) (0.019) 

QUALITY 
-0.008*** -0.007*** -0.007*** 

(0.001) (0.001) (0.001) 

Country dummies Yes ***  Yes ***  Yes *** 

Industry dummies Yes *** Yes *** Yes *** 

Time dummies Yes ***  Yes ***  Yes *** 

Number of observations 3,704 3,704 3,704 

Adjusted R-Squared 0.235  0.190  0.143 

Long-run impact of R&D 
0.088*** 0.055*** 0.063*** 

(0.018) (0.02) (0.02) 

Long-run impact of SHARE HIGHER EDU
0.001 -0.008 0.036*** 

(0.005) (-0.006) (0.009) 

Long-run impact of RCA 
0.135*** 0.151*** 0.180*** 

(0.03) (0.029) (0.032) 

Long-run impact of COMPLEXITY 
0.001 0.002* 0.004** 

(0.001) (0.001) (0.002) 
Notes: Robust standard errors in parentheses; ***, **, and * denote significance at the 1%, 5%, and 10% 

levels, respectively. The rows “country dummies,” “industry dummies,” and “time dummies” report the 

significance levels of the joint effect of these dummies. 
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Productivity variables – The three indicators that are likely to be correlated with research 

productivity are higher education’s share of total R&D expenditure, basic research’s share of 

total R&D expenditure, and an indicator of international comparative advantage. The first 

two indicators vary across countries and over time, while the third fluctuates in all three 

dimensions. The share of total R&D performed by the higher education sector (SHARE 

HIGHER EDU) only has a positive and significant impact on the regional patent indicator, 

suggesting that university-performed R&D leads to more valuable patents in the long run.15 

The negative short-term impact of this variable is probably due to a transitional effect caused 

by the diversion of resources towards institutions that are less patent minded. It can also be 

explained by the likelihood that R&D processes are more drawn out in universities than in the 

private sector.  

 

The share of basic research, which serves as an indicator of the relative efforts directed at 

potential breakthrough inventions, is tested separately. It is not included in the main 

specification due to the high amount of missing information. The results are presented in 

Table A5 of Appendix 1. The share of basic research has a strong productivity effect on all 

patent indicators, with long-term elasticity of 0.08 to 0.17. In other words, the higher the 

share of basic research in total R&D expenditure, the higher the number of patent 

applications induced by an increase in research productivity. This confirms that the allocation 

of more resources to basic research can be adopted as a long-term policy aimed at securing 

future innovation. 

 

Revealed comparative advantage (RCA) has a positive and significant impact on the number 

of patent filings in the long run. This result confirms the impact on research productivity that 

Furman et al. (2002) estimate with their variable OPENNESS. Note that the effect is higher 

with international patents than with priority filings, which indicates a correlation between 

international competitiveness and international patenting activity. Interestingly, the long-term 

elasticity of patents with respect to R&D drops substantially when productivity variables are 

added to the model. The decline is most severe for high-value patents, which underscores the 

importance of productivity effects for these patents. 

 

                                                 
15 A positive effect was also expected with triadic filings. However, this is not observed, probably due to the 

budgetary constraints for higher education institutions, which are not endowed to file simultaneously at the 
three main regional patent offices. 
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Propensity variables – Empirically implementing the distinction between appropriability 

strategies and filing strategies made in the present paper is not straightforward. The four 

proxies that are used to gauge these effects are imperfect measures because they vary only 

across countries or across industries, and because they are quite stable over time. Despite 

these limitations, the share of inventions patented (APPROPRIABILITY) is highly 

significant, which provides evidence that the appropriability strategy plays a key role in the 

R&D-patent relationship, especially for high-value triadic patents. 

 

The variable that aims to capture the filing strategy is the measure of complexity 

(COMPLEXITY). Industries in which complexity has increased have seen a rise in patent 

filings. The fact that the variable correlates with the regional and triadic indicators suggests 

that filing strategies are office specific (indeed, the complexity measure is built using 

“regional” EPO data). This result illustrates the need to collect such data on a more 

systematic basis. The variables IP INDEX and QUALITY measure various dimensions of the 

design of patent systems. Both variables are significant determinants of the number of 

patents. Countries with a high IP index are applicant friendly and, hence, likely to have a high 

number of patent filings per unit of R&D. For instance, the US has a very high IP index 

because there are many patentable subject matters (as opposed to Europe, where many 

restrictions apply), and because the enforcement system is well developed and historically 

supportive of patent holders. The opposite holds for the quality variable: countries which 

score high on QUALITY – those that prevent strategic patenting through a higher degree of 

transparency and more stringency – tend to have a lower number of patent applications, 

suggesting that the design of patent systems significantly influences filing strategies. 

 

4.2. Decomposition of the sources of growth in patenting activity 

 

The second stage of the empirical analysis involves decomposing the sources of growth in 

patenting activity. We provide a variance decomposition of the patent growth as well as an 

in-depth analysis of the fixed effects included in the ECM. 
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Variance decomposition: semi-partial R2 analysis 

 

A semi-partial R2 analysis measures to extent to which a regressor uniquely contributes to 

explaining the variance in the dependent variable. It involves computing the difference 

between the R² of the model estimated with all the variables of interest (henceforth, R² full) 

and the R² of the model excluding the focal regressor(s). The decomposition of R² full is 

presented in Table 7, for the three patent indicators. Note that the semi-partial R² are 

expressed as a percentage of R² full for ease of comparability. 

 

Table 7. Semi-partial R2 analysis of the ECM 

Specification R² full 
Semi-Partial R² (% of R² full) 

R&D 
stock 

Control 
variables

Country 
dummies

Industry 
dummies

Year 
dummies 

NPFCORR             

Full model 0.2474 1.36 5.68 49.48 18.80 23.80 

Average country 0.7121 1.85 2.49 - 14.86 37.54 

Average industry 0.3553 3.08 7.87 49.44 - 22.01 

Average year 0.6320 0.86 2.53 44.42 9.78 - 

TRIADIC             

Full model 0.2030 0.71 5.11 56.25 37.28 17.95 

Average country 0.7243 1.72 3.07 - 24.19 32.55 

Average industry 0.3707 4.90 8.60 54.00 - 20.02 

Average year 0.5448 1.98 2.91 41.11 17.10 - 

REGIONAL             

Full model 0.1566 0.98 14.69 41.25 24.92 18.81 

Average country 0.6780 1.57 3.81 - 25.57 32.89 

Average industry 0.3234 4.79 19.27 47.46 - 23.07 

Average year 0.4774 1.68 5.71 37.22 15.52  - 
Notes: R² and semi-partial R² are computed based on the econometric results of Table 6. The rows ‘Average 

country’, ‘Average industry’ and ‘Average year’ present the average of the estimations performed for each 

individual country, each industry and each year, respectively. 

 
Four observations are particularly noteworthy. First, R&D stock only accounts for a small 

share of variance explained (from 1 to 5 per cent according to the model specifications). This 

result illustrates that patent indicators do not merely reflect research intensity but also other 

aspects of the innovation process such as the productivity and the propensity dimensions. The 

low contribution of R&D must nevertheless be tempered by the very constraining 

econometric approach adopted. The study of the growth rates of patent numbers, as opposed 
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to their levels, reduces the contribution of R&D to patenting activity. This observation 

applies to all the variables though. Second, although the productivity and the propensity 

variables imperfectly capture the productivity and the propensity components, the control 

variables taken together explain more than R&D stock. Third, country, industry, and year 

effects account for the largest proportion of variance explained. In particular, it is shown that 

country dummies capture more variance in patenting activities than industry dummies. This 

observation is particularly true for priority filings (NPFCORR) but also for triadic and 

regional patents to a lesser extent, highlighting the importance of national innovation systems 

in explaining innovation performances. Finally, a large share of the variance remains 

unexplained, indicating the importance of idiosyncratic components in the R&D-patent 

relationship. 

 
Time, country, and industry effects 

 

Since the fixed effects included in our econometric model capture a large share of variance in 

patent growth, it is particularly interesting to analyze them in greater detail. Indeed, the time, 

country, and industry effects from the full model can be used to assess the average evolution 

of patent numbers along the three dimensions (see Appendix 3 for methodological details). 

As the model explains the growth rate of patent filings, the dummies capture the increase in 

patents net of the impact of all other observable characteristics. As explained in section 3, the 

fixed effects capture unobserved changes in productivity and in the propensity to patent. 

Looking at each effect separately provides a deeper understanding of the nature of the 

increase in patenting activity. In particular, the variation of the fixed effects across patent 

indicators is particularly worth looking at.  

 

Figure 2 depicts the growth of patents over time for the main patent indicators. It represents 

the cumulative time effects, net of the average industry and country effects. The most striking 

observation is that the propensity to file priority filings has been roughly constant over time, 

whereas the propensity to file international/regional applications has steadily increased. This 

result leads to two important conclusions. First, there has been no particular “spurt” in 

underlying inventiveness (beyond the increase in R&D efforts and the improvement in 

research productivity caputred in the empirical analysis). Second, the “patent warming” 

observed at major patent offices is driven by a globalization phenomenon – companies are 

not producing more patents, but they are extending them abroad more frequently. 
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Figure 2. Time effects 

 
Source: Own calculations (see Appendix 3 for more details) 

 

Figure 3 shows the normalized parameters associated with the country dummies. The 

rankings for the international indicators (TRIADIC, EPO, and USPTO) are roughly similar 

and clearly underline a strong catch-up effect for South Korea, Poland, Norway, Ireland, and 

Spain. Countries such as France, Canada, the United Kingdom, and the US rank last on 

triadic and regional patent statistics (EPO and USPTO), suggesting that they have lost some 

ground in their patenting performance as measured by international indicators. Interestingly, 

the ranking for NPFCORR is almost the reverse, with Poland ranking among the lowest and 

the US among the highest (Korea being a notable exception). This suggests that catch-up 

countries have not necessarily improved their research productivity bur rather increased their 

presence on the international patent scene.  
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Figure 3. Country effects 

  
  
Source: Own calculations 

Notes: The values are coefficients of country dummies taken from the full model and are normalized from 0 to 

1. See Appendix 3 for more details.  

 

The industry-specific growth in patents also exhibits strong variability, as illustrated in 

Figure 4. The industries related to communication, computers, and instruments are associated 

with the strongest increase in the propensity to patent, whereas fabricated metals, and rubber 

and plastics products have the lowest increase. There is a clear ICT (information and 

communication technologies) effect at play. Industries in this area scored high in at least one 

of the two propensity components and they have apparently further increased their 

willingness to patent. This observation is true for all patent indicators. Contrary to the country 

dummies, which illustrate a catch-up effect among newcomers, the increase in patent filings 

is visible in industries that make great use of strategic patenting, suggesting that most of the 

growth in these industries is driven by an increase in the propensity to patent. 
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Figure 4. Industry effects 

 
Source: Own calculations 

Notes: The values are coefficients of industry dummies taken from the full model and are normalized from 0 to 

1. See Appendix 3 for more details.  

 

 

5. Concluding remarks and policy implications 

 
This paper sheds light on the origins of the worldwide growth in patenting activity. The 

empirical investigation relies on a unique panel dataset composed of 18 manufacturing 

industries in 19 countries covering the period from 1987 to 2005, for which five broad patent 

indicators are developed. The paper has six main methodological and policy implications.  

 

The first contribution is conceptual. The literature has implicitly or explicitly assumed that 

the patent-to-R&D ratio is driven by a research productivity effect (the extent to which 

additional units of R&D generate additional inventions) and a propensity-to-patent effect. 

The variance decomposition confirms the importance of these effects, which account for a 
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significant share of the variance in the growth in patenting activity. This paper claims that a 

distinction between two main components of the propensity to patent improves our 

understanding of the R&D-patent relationship. These two components are the 

“appropriability strategy,” which indicates whether an invention is protected by a patent, and 

the “filing strategy,” which measures the number of patents used to protect an innovation. 

While the former component can be proxied by existing survey data on the share of 

inventions that are patented in each industrial sector (e.g., Arundel and Kabla, 1998), the 

latter can, thus far, only be gauged using measures of complexity. This theoretical insight has 

a major implication: large-scale surveys, such as the Community Innovation Survey in 

Europe, should assess the two propensity components on a regular basis. Data on the 

evolution of the share of inventions that are patented as well as on the average number of 

patents that are used to protect an innovation would drastically improve our understanding of 

patent indicators.  

 

Second, the econometric analysis of patenting activity across industries and countries, and 

over time confirms that the long-term elasticity of patents with respect to R&D stock is 

positive and significant, but small. It fluctuates at around 12% and is remarkably stable across 

patent indicators (from the all-encompassing national priority filings to the more restrictive, 

high-value triadic patents). However, the elasticity is much smaller than “hoped” for 

(Griliches, 1990) and R&D explains only a small share of the variance in patent filings.  

 

Third, the empirical analysis confirms the presence of a significant productivity effect, which 

explains part of the variance in the R&D-patent ratio, as demonstrated by the positive and 

significant premium associated with basic research and academic research, or by the 

noticeable impact of the revealed comparative advantage variable, which is an indicator of 

ultimate innovation performance. The positive impact of basic and academic research also 

suggests that allocating more resources to university-performed research and to basic projects 

can form the basis for a long-term policy aimed at securing future innovation. 

 

Fourth, the appropriability variable plays a positive, highly significant, role in the patent 

production function, even though it only varies across industries. The filing strategy is 

assessed using a measure of the complexity of industries. The variable has a positive and 

significant impact on the propensity to patent, but probably captures only one facet of the 
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filing strategy. The design of the patent system also plays a notable role in patent strategies; 

both the strength – or the applicant friendliness – of the patent system and its quality 

(stringency and transparency) affect the number of patent applications. 

 

Fifth, the country and industry dummies allow for some in-depth identification of the origins 

of the patent explosion. Two manufacturing industries that were already characterized by a 

high patent-to-R&D ratio – communications and computers – are associated with the sharpest 

increase in patenting activity. This is precisely the technological area in which a “patent 

paradox” was identified by Hall and Ziedonis (2001). In this respect, our results shed some 

additional light on the R&D-patent relationship and its industry dimension. The 

pharmaceutical industry has a high appropriability strategy but the associated industry 

dummy suggests a relatively stable propensity to patent. The countries that are associated 

with the sharpest increase in patenting activities are South Korea, Poland, and Spain, which 

suggests a clear catch-up effect. These results exemplify the pitfalls and advantages 

associated with patent data. Whereas such data highlight fundamental economic changes, 

such as catch-up effects, they are also greatly impacted by national industrial structures. This 

finding, therefore, stresses the need to improve our understanding of the “propensity” 

components.  

 

Finally, the time dummies provide a broad measure of the increase in patenting activity, net 

of country and industry specificities, and net of R&D expenditure and other control variables. 

Here the results depend on the patent indicators that are used. The sharpest increases are 

associated with regional patent filings (at the EPO or at the USPTO) followed by triadic 

applications. As far as national priority filings are concerned, hardly any increase is observed. 

In other words, the “global patent warming” that is currently underway is essentially the 

result of the internationalization of patent applications and not a consequence of increased 

research productivity. Innovative firms are increasingly targeting global markets and hence 

have a higher tendency to seek protection in key markets worldwide. This tendency would 

justify the closer coordination of patent offices at the global level, provided that their views 

on patent system design converge. 
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Appendix 1. Additional background tables 

Table A1. Literature on the R&D-patent relationship	
Reference Sample Model Results Specifications 
Firm Level     
Pakes and Griliches 
(1980) 

121 US firms 
1968-1875 
(USPTO) 

Panel (within dimension) 
0.61*** 

Sum of log R&D 
(contemporaneous + 5 lags) 

Bound et al. (1984) 
2,582 US firms 
1976 (USPTO) 

Cross section; OLS 0.32-0.38***  
Cross section; poisson, 
negative binomial, and non-
linear least squares 

0.58-2.18*** 
 

Hausman et al. 
(1984) 

128 US firms 
1968-1974 
(USPTO) 

OLS, poisson, and negative 
Binomial  

0.57-0.88*** 
Sum of log R&D 
(contemporaneous + 5 lags) 

Poisson and negative 
binomial with firm effects 

0.35-0.6*** 
Sum of log R&D 
(contemporaneous + 5 lags) 

Poisson and negative 
binomial “between” firms 

0.75-1.29*** 
Contemporaneous log R&D 

Hall et al. (1986) 

642 US 
manufacturing 
firms 
1972-1979 
(USPTO) 

Non-linear least squares, 
poisson, negative binomial 
and GMT 

0.39-0.66*** 
Sum of log R&D 
(contemporaneous + 3-7 lags) 

Conditional negative 
binomial and GMT with firm 
effects 

0.29-0.38*** 
Sum of log R&D 
(contemporaneous + 3-5 lags) 

Jaffe (1986) 
432 US firms 
1973 and 1979 
(USPTO) 

Cross section; pooled OLS 0.74*** Contemporaneous log R&D 
First differences 0.4*  
3SLS 0.88***  

Cincera (1997) 

181 international 
manufacturing 
firms 
1983-1991 (EPO) 

Panel; GEC, QGPML-
gamma, conditional poisson 
and GMM 

0.35-0.9*** 

Sum of log of R&D 
(contemporaneous + 4 lags) 

Duguet and Kabla 
(1998) 

299 FR firms 
1990-1992 (EPO) 

Cross-section; poisson 
model estimated by 
asymptotic least squares 

0.34-0.67*** 
Log R&D 

Crépon et al. (1998) 

4164 FR 
manufacturing 
firms 
1986-1990 (EPO) 

Cross-section; non-negative 
binomial 

0.88-1.08*** 

Patents per employee and R&D 
capital per employee 

Blundell et al. 
(2002) 

407 US firms 
1972-1979 
(USPTO) 

Linear feedback model 
0.9*** 

Level (without individual 
effects) 

0.34*** Within-group mean scaling 

Arora et al. (2008) 

790 US 
manufacturing 
R&D Units 
1991-1993 

Cross section; 2SLS 

0.61*** 

 

Czarnitzki et al. 
(2009) 

122 BE firms 
1993-2003 (EPO) 

Pooled cross sectional 0.52-0.6*** Log(R&D/employment) 
Fixed effect panel 0.28-0.3*** Log(R&D/employment) 

Aggregate (industry, region, or country) level

Acs and Audretsch 
(1988) 

247 US 
manufacturing 
industries  

Cross section 
0.36*** 

Log (innovations)1982 and 
log(total R&D)1977 

0.41*** 
Log (innovations)1982 and 
log(company R&D)1977 

Meliciani (2000) 

Panel of 15 
industrial sectors, 
12 OECD 
countries, 1973-
1993 (USPTO) 

Negative binomial 0.18*** With country and sector effects 

0-0.56*** 

Regressions by sector (with 
country effects) 

Botazzi and Peri 
(2003) 

86 European 
regions 
1977-1995 (EPO) 

Cross section of long run-
averages 0.76-0.95** 

Patent and R&D per square 
kilometer 

Bottazzi and Peri 
(2007) 

15 OECD 
countries 
1973-1999 

Long-run cointegration 
relation; DOLS 0.30-0.79*** 

International patent 
applications 
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(USPTO) 

de Rassenfosse and 
van Pottelsberghe 
(2009) 

34 countries 
2003 (USPTO, 
EPO, TRIAD, 
PF) 

Cross section 

0.33-1.56*** 

Log researchers 

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.



	

Table A2. Abbreviations of countries and industries 

Abbr. Country Abbr. 
ISIC 
Rev.3 

Industry definition 
Technological 
classification*

Complexity** 

AT Austria FOOD 15-16 Manufacture of food products, beverages, and tobacco products LOTE 0 

BE Belgium TEXT 17-19 
Manufacture of textiles and apparel; dressing and dyeing of fur; tanning and dressing of 
leather; manufacture of luggage, handbags, saddlery, harnesses, and footwear LOTE 4 

CA Canada WPAP 20-22 
Manufacture of wood and products made of wood and cork, except furniture; manufacture 
of articles made of straw and plaiting materials; manufacture of paper and paper products; 
publishing, printing, and reproduction of recorded media 

LOTE 
13 

CH Switzerland PETR 23 Manufacture of coke, refined petroleum products, and nuclear fuel MLTE 6 
DE Germany CHEM 24 less 2423 Manufacture of chemicals and chemical products MHTE 6 
DK Denmark PHAR 2423 Pharmaceuticals and medicinal chemicals HTE 4 
ES Spain RUBB 25 Manufacture of rubber and plastics products MLTE 15 
FI Finland MINE 26 Manufacture of other non-metallic mineral products MLTE 2 
FR France META 27 Manufacture of basic metals MLTE 2 
GB United Kingdom FABM 28 Manufacture of fabricated metal products, except machinery and equipment MLTE 2 
IE Ireland MACH 29 Manufacture of machinery and equipment n.e.c. MHTE 2 
IT Italy COMP 30 Manufacture of office, accounting, and computing machinery HTE 55 
JP Japan ELEC 31 Manufacture of electrical machinery and apparatus n.e.c. MHTE 24 
KR Korea COMM 32 Manufacture of radio, television, and communication equipment and apparatus HTE 99 
NL Netherlands INST 33 Manufacture of medical, precision, and optical instruments, and watches and clocks HTE 22 
NO Norway AUTO 34 Manufacture of motor vehicles, trailers, and semi-trailers MHTE 21 
PL Poland TRAN 35 Manufacture of other transport equipment MHTE 21 
SE Sweden MISC 36 Manufacture of furniture; manufacturing n.e.c. LOTE 
US United States   

 
Notes: * Based on the OECD technological classifications. LOTE, MLTE, MHTE, and HTE stand for low technology, medium-low technology, medium-high technology, and high 
technology, respectively. ** Own industry matching based on the average of “triples” data across time, as presented by von Graevenitz et al. (2011). 
 



	

Table A3. Absolute and relative number of patents by country 

COUNTRY
NPFCORR  EPO  TRIADIC  USPTO  REGIONAL 

Y05 % CAGR  Y05 % CAGR  Y05 % CAGR  Y05 % CAGR  Y05 % CAGR 
AT 2485 0.7 2.9% 1345 1.3 4.6% 304 0.6 2.9% 886 0.4 5.2% 1345 0.6 4.6% 
BE 1803 0.5 3.5% 1283 1.2 5.4% 398 0.8 3.9% 939 0.4 5.9% 1283 0.6 5.4% 
CA 6040 1.6 4.2% 1198 1.2 4.1% 384 0.8 0.5% 3909 1.8 4.7% 3909 1.7 4.7% 
CH 3599 1.0 0.8% 2738 2.6 2.5% 1029 2.1 0.7% 1938 0.9 2.1% 2738 1.2 2.5% 
DE 49150 13.3 3.4% 24529 23.6 4.9% 6994 14.1 2.7% 17422 8.0 4.8% 24529 10.6 4.9% 
DK 1545 0.4 2.1% 1021 1.0 8.3% 319 0.6 6.5% 920 0.4 8.6% 1021 0.4 8.3% 
ES 2657 0.7 2.8% 988 1.0 10.6% 198 0.4 8.2% 581 0.3 8.6% 988 0.4 10.6% 
FI 2535 0.7 1.8% 1069 1.0 7.7% 291 0.6 5.2% 1078 0.5 7.4% 1069 0.5 7.7% 
FR 14789 4.0 1.4% 7904 7.6 3.3% 2677 5.4 2.3% 5577 2.6 3.6% 7904 3.4 3.3% 
GB 18708 5.1 0.2% 5159 5.0 1.6% 1937 3.9 1.0% 5768 2.7 3.5% 5159 2.2 1.6% 
IE 610 0.2 -5.1% 255 0.2 7.1% 88 0.2 7.1% 291 0.1 8.5% 255 0.1 7.1% 
IT 10334 2.8 1.9% 4279 4.1 5.1% 754 1.5 1.4% 2373 1.1 3.7% 4279 1.9 5.1% 

JP* 112715 30.6 0.6% 23693 22.8 3.0% 18554 37.4 5.0% 52932 24.3 3.7% 52932 22.9 3.7% 
KR* 33980 9.2 22.0% 5255 5.1 37.0% 3145 6.3 38.2% 18424 8.5 28.9% 18424 8.0 28.9% 
NL 5560 1.5 5.0% 3631 3.5 5.5% 2149 4.3 6.0% 3139 1.4 6.3% 3631 1.6 5.5% 
NO 1295 0.4 2.2% 436 0.4 8.0% 157 0.3 6.2% 501 0.2 7.8% 436 0.2 8.0% 
PL 866 0.2 -9.8% 122 0.1 9.2% 12 0.0 6.4% 91 0.0 11.5% 122 0.1 9.2% 
SE 2831 0.8 -1.7% 1825 1.8 4.1% 694 1.4 3.2% 1500 0.7 3.7% 1825 0.8 4.1% 
US 96935 26.3 4.4% 17292 16.6 1.5% 9587 19.3 -0.8% 99274 45.6 4.8% 99274 43.0 4.8% 

TOTAL 368436 100.0 2.5%  104021 100.0 3.7%  49670 100.0 2.8%  217543 100.0 4.9%  231123 100.0 4.8% 
Source: Own calculations 

Notes: * The number of priority fillings for Japan and Korea has been divided by 3. The columns labeled ‘Y05’ report the total patent count per country in the year 2005, the 

columns labeled ‘%’ report the share of each country in the total of each patent count for the year 2005, expressed as percentages, and the columns labeled ‘CAGR’ report the 

compound annual growth rate of each patent count indicator over the largest available period. 

 



	

Table A4. Absolute and relative number of patents by industry 

INDUSTRY
NPFCORR  EPO  TRIADIC  USPTO  REGIONAL 

Y05 % CAGR  Y05 % CAGR  Y05 % CAGR  Y05 % CAGR  Y05 % CAGR 
FOOD 7625 2.1 2.0% 2131 2.0 2.5% 955 1.9 1.0% 3995 1.8 3.2% 4108 1.8 3.0% 
TEXT 2441 0.7 2.3% 622 0.6 3.2% 269 0.5 2.1% 1269 0.6 4.0% 1383 0.6 4.0% 
WPAP 4550 1.2 1.7% 1325 1.3 2.9% 594 1.2 1.9% 2366 1.1 3.4% 2606 1.1 3.5% 
PETR 4476 1.2 0.6% 1499 1.4 1.1% 737 1.5 0.2% 2502 1.2 1.9% 2678 1.2 1.9% 
CHEM 36016 9.8 1.1% 12317 11.8 1.7% 6253 12.6 0.8% 20196 9.3 2.6% 21895 9.5 2.6% 
PHAR 20427 5.5 1.7% 8779 8.4 2.3% 4858 9.8 1.2% 13425 6.2 3.3% 14357 6.2 3.2% 
RUBB 7058 1.9 1.8% 2021 1.9 2.9% 822 1.7 1.8% 3300 1.5 3.0% 3781 1.6 3.2% 
MINE 6537 1.8 1.5% 1824 1.8 2.7% 825 1.7 1.9% 3517 1.6 3.9% 3846 1.7 3.8% 
META 7565 2.1 0.7% 2154 2.1 2.2% 993 2.0 1.5% 3962 1.8 3.0% 4342 1.9 3.1% 
FABM 9794 2.7 1.9% 2576 2.5 3.6% 904 1.8 2.5% 4352 2.0 3.3% 5078 2.2 3.5% 
MACH 43844 11.9 1.5% 11991 11.5 3.6% 4692 9.4 2.5% 22165 10.2 3.8% 24630 10.7 3.9% 
COMP 53685 14.6 3.5% 12589 12.1 4.7% 6698 13.5 4.1% 36124 16.6 7.1% 36745 15.9 6.9% 
ELEC 14118 3.8 2.9% 3774 3.6 4.7% 1790 3.6 4.0% 8640 4.0 6.0% 9143 4.0 5.9% 

COMM 82057 22.3 3.8% 21827 21.0 5.6% 11330 22.8 4.9% 55830 25.7 7.3% 57167 24.7 7.1% 
INST 15047 4.1 2.4% 4152 4.0 3.8% 2082 4.2 3.1% 9202 4.2 4.9% 9633 4.2 4.9% 

AUTO 33411 9.1 2.7% 9832 9.5 5.0% 4010 8.1 3.9% 16580 7.6 4.4% 18712 8.1 4.7% 
TRAN 10551 2.9 1.8% 3084 3.0 3.7% 1308 2.6 2.8% 5861 2.7 4.0% 6410 2.8 4.1% 
MISC 9235 2.5 3.3% 1523 1.5 3.8% 551 1.1 3.3% 4256 2.0 4.1% 4607 2.0 4.1% 

TOTAL 368436 100.0 2.5%  104021 100.0 3.7%  49670 100.0 2.8%  217543 100.0 4.9%  231123 100.0 4.8% 
Source: Own calculations 

Notes: The columns labeled ‘Y05’ report the total patent count per industry in the year 2005, the columns labeled ‘%’ report the share of each industry in the total of each 

patent count for the year 2005, expressed as percentages, and the columns labeled ‘CAGR’ report the compound annual growth rate of each patent count indicator over the 

largest available period.



	

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A5. Partial model with share of basic research in total R&D 

log(#patents) 
NPFCORR   TRIADIC    REGIONAL

(1) (2)  (3) (4)   (5) (6)

log(Stock R&D) 
0.110** 0.132***  0.045 0.085   0.074 0.108
(0.048) (0.048) (0.131) (0.138) (0.084) (0.086)

 SHARE BASIC 
0.016*** -0.0001 -0.005
(0.004) (0.009) (0.007)

log(#patents) (t-1) -0.135*** -0.111*** -0.364*** -0.368*** -0.180*** -0.193***
(0.017) (0.017) (0.050) (0.050) (0.037) (0.038)

log(Stock R&D) (t-1) 0.020*** 0.014*** 0.040*** 0.037*** 0.026*** 0.025***
(0.004) (0.003) (0.010) (0.009) (0.006) (0.006)

SHARE BASIC (t-1) 0.019*** 0.028*** 0.023***
(0.003) (0.005) (0.004)

Country dummies Yes *** Yes ***  Yes *** Yes ***   Yes *** Yes ***
Industry dummies Yes *** Yes *** Yes *** Yes *** Yes *** Yes ***

Time dummies Yes *** Yes ***  Yes *** Yes ***   Yes *** Yes ***
Number of observations 1,812 1,812 1,812 1,812 1,812 1,812

Adjusted R-Squared 0.303 0.327  0.231 0.241   0.149 0.171
Long-run impact of 

R&D 
0.147*** 0.129*** 0.11*** 0.101*** 0.144*** 0.13***
(0.024) (0.027) (0.024) (0.023) (0.028) (0.027)

Long-run impact of 
SHARE BASIC 

0.171*** 0.076*** 0.119***

  (0.029)   (0.015)     (0.019)
Notes: Robust standard are errors in parentheses; ***, **, and * denote significance at the 1%, 5%, and 10% 

levels, respectively. The rows “country dummies,” “industry dummies,” and “time dummies” report the 

significance levels of the joint effect of theses dummies. 

 

  



	

Appendix 2. Panel unit root and co-integration tests 

 

In order to analyze the dynamics of the R&D-patent relationship within an ECM framework, 

one must test whether the variables have a unit root and are co-integrated. Three tests on unit 

roots in panel data are implemented. They are the test developed by Levin, Li, and Chu 

(2002); the test developed by Im, Pesaran, and Shin (2003), and a Fisher-type test (Choi, 

2001), denoted LLC, IPS, and Fisher, respectively, in Table A6.  

 

The three tests are devised under the null hypothesis that all of the variables in the panel have 

a unit root. LLC assumes that all individuals have the same autoregressive parameter, 

whereas IPS and Fisher allow for heterogeneous roots and for a heterogeneous presence of a 

unit root. As some of these tests require a strongly balanced panel, they were performed on a 

restricted sample of our initial panel dataset (this restriction was based on the availability of 

data that would allow us to obtain the largest possible balanced panel; the number of 

observations therefore fell from 3,704 to 2,516). 

 

Table A6. Panel unit root tests 

P-values NPFCORR TRIADIC REGIONAL EPO USPTO R&D stock 

LLC 1 1 1 1 1 0.79 
IPS 0.79 0.63 1 1 0.28 1

Fisher 0.87 0.81 1 1 0.37 1
Notes: We include a one-year lag structure in the regressions performed in computing the test statistics. LLC: 

no panel-specific mean included. IPS: panel-specific mean included; cross-sectional averages subtracted from 

the series. Fisher: statistic based on individual Augmented Dickey Fuller statistics with associated p-values 

using the inverse normal transformation; panel-specific mean included; cross-sectional averages subtracted 

from the series. 

 

Most of these tests do not allow for a rejection of the null hypothesis of a unit root. Therefore, 

the series are non-stationary. With regard to co-integration, the four panel data tests 

developed by Westerlund (2007) are performed for the “basic” R&D-patent model (see Table 

A7). Two tests (denoted G) refer to group-mean statistics and are defined under the 

alternative hypothesis that there is evidence of co-integration for at least one of the cross-

sectional units. The second pair (denoted P) formulates the alternative, such that a rejection of 

the null should be taken as a evidence of co-integration for the panel as a whole. 

 



	

Table A7. Panel co-integration tests 

P-values NPFCORR TRIADIC REGIONAL EPO USPTO

Gt 0 0 0 0.01 0
Ga 0 0 0 0.06 0.04
Pt 0 0 0.04 0.76 0.04

Pa 0 0 0 0.01 0
Notes: Replication of the tests presented by Westerlund (2007) on the basic R&D-patent model. They are 

implemented with a constant and one lag in the error correction equation.  

 

The null hypothesis of no co-integration is rejected for most of the five dependent variables 

(patent indicators), indicating that the panel is co-integrated. Thus, these results seem to 

confirm that a long-run equilibrium level exists between the number of patents and R&D 

effort. 

 



	

Appendix 3. Construction of the time, country, and industry effects 

 

The variables presented in Figures 2, 3, and 4 are based on ψt, ψj, and ψi in equation (6), 

which are the time, country, and industry effects, respectively. As the dependent variable is 

the first difference in the log of patent filings, the fixed effects can be interpreted as the 

growth rate in patenting when all of the potential explanatory variables are taken into 

account.  

 

Note that the fixed effects cannot be immediately recovered from equation (6). Indeed, the 

fact that the error correction term is left open in equation (6) means that the estimated fixed 

effects also include the parameter c (recall from equation (3) that c captures the rate at which 

research efforts lead to patent applications). For this reason, the fixed effects presented in 

Figures 2, 3, and 4 have been recovered in the following way. We first estimated the residuals 

from equation (4) and plugged them into equation (6) in lieu of the lagged long-term 

relationship (the expression in parentheses in equation (6)). The fixed effects of this modified 

specification (time, country and industry dummies – variables ψt, ψj, and ψi – in equation (6)) 

can be interpreted as the time, country, and industry components of the unexplained change 

in patent counts. Figure 2 presents the cumulative effect of the time dummies on patent 

counts, including the average industry effect, the average country effect, and the constant. 

Figures 3 and 4 present the parameters ψj and ψi, respectively. They are normalized to lie 

between 0 and 1 for ease of readability.  

 

 


