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Abstract

Decomposing volatilities into a common market-driven component and an idiosyncratic item-

specific one is an important issue in financial econometrics. This, however, as any study involv-

ing market-related features, requires the statistical analysis of large panels of time series, hence

faces the usual challenges associated with high-dimensional data. Factor model methods in such

a context are an ideal tool, but they do not readily apply to the analysis of volatilities. Focusing

on the reconstruction of the unobserved market shocks and the way they are loaded by the various

items (stocks) in the panel, we propose an entirely nonparametric and model-free two-step general

dynamic factor approach to the problem, which avoids the usual curse of dimensionality. Applied

to the S&P100 asset return dataset, the method provides evidence that a non-negligible proportion

of the market-driven volatility of returns originates in the volatilities of level-idiosyncratic com-

ponents.

JEL Classification: C32, C38, C58.

Keywords: Volatility, Dynamic Factor Models, Block Structure.

1 Introduction

Decomposing risks or volatilities into a common, market–driven component and an individual, id-

iosyncratic one, is one of the main issues in financial econometrics, risk management, and portfolio

optimization. Market–driven risks indeed cannot be diversified away, while individual ones can be

eliminated through clever portfolio diversification.

‡Supported by the IAP research network grant P7/06 of the Belgian government (Belgian Science Policy) and the Discovery

grant DP150100210 of the Australian Research Council.
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Since market features are involved, achieving such decompositions unavoidably involves the anal-

ysis of large portfolios, hence the usual challenges associated with high-dimensional datasets—here,

moreover, in a time-series context. This problem lately has attracted much interest, in conjunction

with the surge of activity in the estimation of high-dimensional covariance matrices and the analysis

of large panels of time series data. A number of methods have been proposed; see the references

below or the recent monograph by Ghysels (2014) for a review of the literature.

Among the latest and most effective contributions is Fan et al. (2013), where the analysis is based

on a decomposition of the covariance matrix Γ of the observed high–dimensional process {Yt}—in

the context of portfolio optimization, the time series of returns, or levels, of the collection of stocks

under study—into a sum of the “low rank plus sparse” type (as in Fan et al., 2013), which also can be

interpreted as a factor model decomposition of {Yt} into a common component plus an idiosyncratic

one.1

That approach, which is exclusively based on the marginal covariance matrix Γ of the series under

study (in practice, an estimator thereof), is entirely static: it does not take into account, hence fails to

exploit, the time–series nature of the problem. If the same dataset is considered from a dynamic point

of view—if, for instance, dynamic portfolio management, that is, minimization of the conditional risk

at specific time t, is the objective—that static approach can be improved on several counts.

(i) Rather than unconditional variances and covariances, conditional volatilities (that depend on

past values) at specific time t should serve as the cornerstone of the analysis.

(ii) The “low rank plus sparse” type decomposition of Γ corresponds to a strictly static factor model

decomposition of {Yt} of the type considered by Chamberlain and Rothschild (1983), while

the econometric literature has established the superiority, in the presence of serial dependence,

of the various forms of dynamic factor models over the strictly static ones (see Forni et al., 2000;

Stock and Watson, 2005; Bai and Ng, 2007; Forni et al., 2009; Forni and Lippi, 2011; Hallin

and Lippi, 2013; Forni et al., 2014, to quote only a few). Dynamic factor models here are likely

to be the most appropriate tool.

(iii) The same decomposition moreover exclusively relies on the common/idiosyncratic features of

the process {Yt} of levels or returns, surmising that the “common components of return volatil-

ities" coincide with “the volatilities of the common components of returns”, and the “idiosyn-

cratic components of return volatilities" with “the volatilities of the idiosyncratic components

of returns”: an assumption which is unlikely to hold true.

In this paper, we propose a two–step dynamic factor approach taking care of those three points,

then apply that method to the problem of reconstructing the unobserved market volatility shocks.

The first step yields a level–common plus level–idiosyncratic general dynamic factor model de-

composition of the levels, {Yt}. Based on recent results by Forni et al. (2014), that decomposition is

one–sided, i.e. only involves one-sided filters, hence past observations. The same results also yield

a (reduced rank) fundamental VAR representation of the level–common components, hence residuals

that provide a consistent reconstruction of the level–common, market-driven, fundamental shocks. As

for the level–idiosyncratic components, which by definition are only mildly cross–correlated, resid-

uals can be obtained via univariate AR fitting, providing a reconstruction of the level–idiosyncratic

fundamental shocks.

1with a definition of “idiosyncratic” which is not the same as the one we are using here, though.
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Those shocks in turn serve as the basis of a dynamic factor analysis of volatilities. After adequate

nonlinear transformation, they constitute a panel of volatility proxies—actually, if the original dataset

consisted of n stocks observed over a time period T , a panel of 2n × T observations, subdivided

into two n × T blocks or subpanels, the level–common and the level–idiosyncratic one, respectively.

The dynamic factor analysis of such panels with block structures has been studied by Hallin and

Liška (2011), who show how to extract mutually orthogonal strongly common components (common

to both subpanels), strongly idiosyncratic ones (idiosyncratic to both), as opposed to weakly common

(common to one block but not to the other) and weakly idiosyncratic components. That approach,

which perfectly applies here, allows fus to take into account the presence of volatility–common shocks

(market volatility shocks) both in the level–common residuals as well as in the level–idiosyncratic

ones—only the strongly idiosyncratic components are free of market volatility impacts.

The method is applied to a panel of stock returns of the S&P100 index over a period spanning

the last ten years. Results confirm the impact of market volatility shocks both on level–common as

on level–idiosyncratic components. In particular, we find evidence of one market volatility shock

accounting for about 60% of the total variation of logged level–common volatilities and about 13% of

the total variation of logged level–idiosyncratic volatilities.

Multivariate models of conditional variance and covariance matrices are not new in the litera-

ture. Among the first proposed are the GARCH–DCC models by Engle (2002) and the multivariate

stochastic volatility models by Harvey et al. (1994). We refer to the surveys by Bauwens et al. (2006),

Asai et al. (2006), and Silvennoinen and Teräsvirta (2009) for recent reviews of the subject. How-

ever, being parametric, those models all suffer of the “curse of dimensionality”: when considering

high–dimensional panels, estimation rapidly becomes unfeasible. In order to solve this problem and

in agreement with the idea of a market volatility common to all components of a financial index, fac-

tor structures in volatilities have been developed by Engle and Marcucci (2006), Engle et al. (2008),

Rangel and Engle (2012), Luciani and Veredas (2014), and Ghysels (2014), among others, while a

semiparametric approach is proposed by Barigozzi et al. (2014). Recently, Fan et al. (2013) improved

this model relaxing the assumptions and allowing for the presence of idiosyncratic variances which are

modelled as a sparse matrix. Finally, the papers most related to our work are those proposing a factor

structure on the returns and then assuming a GARCH model for the latent factors, as, for example,

Ng et al. (1992), Harvey et al. (1992), Diebold and Nerlove (1989), Van der Weide (2002), Connor

et al. (2006), and Sentana et al. (2008), among others; see Jurado et al. (2013) for an application to

macroeconomic data. All those factor models, however, are static, and of the exact type (strictly no

idiosyncratic cross-correlations); thus, they neither exploit the serial correlation in the data nor the

high dimensionality of the cross–section.

In contrast with most of that literature, our analysis is purely nonparametric, and essentially

model-free (see Hallin and Lippi (2013) for a discussion of this latter fact); it allows for cross–

sectional correlation among idiosyncratic components, and avoids the dimensionality problems in-

herent to multivariate volatility models. Our main contribution with respect to the existing literature is

then the introduction of a two-step generalized dynamic factor model: one for the returns, and another

one for volatilities, with a focus not only on level–common but also on level–idiosyncratic volatility

shocks.

The rest of the paper is organized as follows. Section 2.1 presents the general dynamic factor

model for returns, Sections 2.2–2.4 a block dynamic factor model for volatilities based on the level–

common and level–idiosyncratic shocks derived in the previous decomposition. Section 3 describes

estimation. Section 4 provides empirical results for the S&P100 market volatility. Finally, in Sec-

tion 5, we conclude and discuss possible extensions of the present framework.
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2 A two-step general dynamic factor model for volatilities

2.1 A general dynamic factor model for returns

We throughout assume that all stochastic variables in this paper belong to the Hilbert spaceL2(Ω,F ,P),

where (Ω,F ,P) is some given probability space. The observation we are dealing with is an n × T
panel of stock returns or levels, that is, a finite realization

Y11, Y12, . . . , Y1T
...

...
...

Yn1, Yn2, . . . , YnT

of a double–indexed stochastic process, of the form

Y := {Yit|i ∈ N, t ∈ Z},

where t stands for time and i is the cross–sectional index; equivalently, a collection of n observed

time series (length T ), or a unique observed time series in dimension n. We assume that {Yit}, as a

process, is centered and strictly stationary. As both n and T are “large”, (n, T )-asymptotics, where

both n and T tend to infinity, are considered throughout.

Let Yn := {Yn,t = (Y1t, Y2t, . . . , Ynt)′| t ∈ Z} be the n–dimensional subprocess of Y and

consider the following assumptions.

ASSUMPTION (A1). For all n ∈ N, the vector process Yn is strictly stationary, with mean 0 and finite

variances.

ASSUMPTION (A2). For all n ∈ N, the spectral measure of Yn is absolutely continuous with respect

to the Lebesgue measure on [−π, π], that is, Yn has a spectral density matrix ΣY;n(θ), θ ∈ [−π, π].

For any θ ∈ [−π, π], denote by λY;n,1(θ), . . . , λY;n,n(θ) the eigenvalues (in decreasing order of

magnitude) of ΣY;n(θ); the mapping θ 7→ λY;n,i(θ) is also called ΣY;n(θ)’s ith dynamic eigenvalue.

The n observed series Yn are exposed, in general, to the influence of the same environment of

unrecorded covariates, inducing complex interrelations that are not statistically tractable, or would

involve prohibitively many parameters. Parametric methods thus, as a rule, are helpless or unrealistic.

Factor model methods in this context are the ideal tool—arguably, the only successful ones. We say

that Y admits a dynamic factor representation with q factors if Yit for all i and t decomposes into

Yit = “common”it + “idiosyncratic”it

=: Xit + Zit =:
q∑

k=1

bik(L)ukt + Zit, i ∈ N, t ∈ Z, (2.1)

(L, as usual, stands for the lag operator) where

(i) the q–dimensional vector process u := {ut = (u1tu2t . . . uqt)′| t ∈ Z} is orthonormal zero–

mean white noise;

(ii) the idiosyncratic n–dimensional processes Zn := {Zn,t = (Z1tZ2t . . . Znt)′| t ∈ Z} are zero–

mean second–order stationary for any n, with θ–a.e. bounded (as n → ∞) dynamic eigenval-

ues;

(iii) Zkt1 and uht2 are mutually orthogonal for any k, h, t1 and t2;
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(iv) the filters bik(L) are one–sided and square–summable:
∑∞

m=1 b
2
ikm < ∞ for all i ∈ N and

k = 1, . . . , q;

(v) q is minimal with respect to (i)–(iv).

In particular, the common and idiosyncratic components are identified by means of the following

assumption.

ASSUMPTION (A3). For some q ∈ N, the qth dynamic eigenvalue of ΣY;n(θ), λY;n,q(θ), diverges

as n → ∞, θ-a.e. in [−π, π], while the (q + 1)th one, λY;n,q+1(θ), is θ-a.e. bounded. Moreover, the

divergence is at least linear in n, i.e.

liminf
n→∞

(
inf
θ

λY;n,q(θ)
n

)
> 0.

We know from Forni et al. (2000) and Forni and Lippi (2001) that, given Assumptions (A1)

and (A2), Assumption (A3) is necessary and sufficient for the process Y to admit the dynamic factor

representation (2.1)2. Hallin and Lippi (2013) moreover provide very weak primitive conditions under

which (2.1), hence Assumption (A3), holds for some q <∞.

For any n ∈ N, we can write (2.1) in vector notation as

Yn,t = Xn,t + Zn,t = Bn(L)ut + Zn,t, t ∈ Z. (2.2)

The decomposition (2.2) of Yn induces (with obvious notation) a decomposition

ΓY;n,k = ΓX;n,k + ΓZ;n,k

of the cross–covariance matrices ΓY;n,k := E[Yn,tY′n,t−k] of the Yn’s, and a decomposition

ΣY;n(θ) = ΣX;n(θ) + ΣZ;n(θ)

of their spectral density matrices ΣY;n(θ).

The statistical treatment of (2.1) comprises

(i) a consistent (as both n and T tend to infinity) reconstruction of Yn’s decomposition into com-

mon and idiosyncratic components based on Brillinger’s concept of dynamic principal compo-

nents (Forni et al., 2000);

(ii) a consistent data–driven method for the identification of q (Hallin and Liška, 2007);

(iii) a one–sided version of (i) (Forni et al., 2014) exploiting properties of the so–called tall processes

(Anderson and Deistler, 2008).

Since Yn decomposes into two components Xn and Zn, where Xn is driven by “common”, that is,

“market” shocks, and Zn is orthogonal to the same, two distinct sources of volatility are to be ex-

pected: the volatility originating in the shocks driving the level–common components Xn (volatil-

ity of level–common components), and the volatility originating in the shocks driving the level–

idiosyncratic components Zn (volatility of level–idiosyncratic components). It is tempting to call

2Those references in Assumption (A1) only assume second-order stationarity, though. We are assuming strict stationarity

in order to apply factor model methods to nonlinear transformations of the Yit’s (Sections 2.2-2.4).
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“market volatility” the volatility of the level–common components, and “idiosyncratic" the volatility

of the level–idiosyncratic ones.

“Natural” as it is, that idea is likely to be oversimplistic. The decomposition (2.2) between com-

mon and idiosyncratic indeed has been based on level autocovariances only, which do not carry any

information on volatilities—a fact we emphasize by calling Xn and Zn level–common and level–

idiosyncratic, respectively. There is no reason for volatilities to exhibit the same common/idiosyncratic

pattern as the levels. For instance, the volatilities of level–idiosyncratic components are quite likely to

be affected by market–wide volatility shocks and there is no reason for level–common volatilities to

be driven by market volatility shocks only: both are likely to present market–driven and item–specific

features. The very concept of an identifiable market–driven volatility shock therefore requires a com-

mon/idiosyncratic analysis that cannot be based, as the one that has been performed so far, on the

autocovariances of returns.

The analysis of volatility, typically, is based on the autocovariance structure of some nonlinear

transform of innovation processes—something the factor model decomposition (2.1) does not readily

provide. For the common component Xn, however, such residuals can be obtained (see Section 2.2)

from results by Forni and Lippi (2011) and Forni et al. (2014). As for the idiosyncratic components

Zn, since they are only mildly cross–correlated, componentwise residuals can be obtained (see Sec-

tion 2.3) via univariate AR fitting.

2.2 The volatility of the level–common component

Assume, without loss of generality and for the simplicity of notation, that n is an integer multiple

of (q + 1), that is, n = m(q + 1) for some m ∈ N. Forni and Lippi (2011) and Forni et al. (2014)

show that, under Assumptions (A1)–(A3) and the mild additional condition of a rational spectrum,

there exist

(i) an m(q + 1)×m(q + 1) block–diagonal matrix of one–sided filters

An(L) =


A(1)(L) 0 · · · 0

0 A(2)(L) · · · 0
...

...
. . .

...

0 0 · · · A(m)(L)

 (2.3)

with (q+ 1)× (q+ 1) blocks A(i)(L) such that the VAR operators Iq+1 −A(i)(L) are square-

summable and fundamental;

(ii) a full–rank n× q matrix of constants Hn;

such that Yn admits a VAR representation of the form

(In −An(L)) Yn,t = Hnut + (In −An(L)) Zn,t =: Hnut + Z̃n,t, t ∈ Z, (2.4)

where Z̃n := (In −An(L)) Zn,t is idiosyncratic, i.e. only has θ–a.e. bounded (as n→∞) dynamic

eigenvalues.

The form of the extreme–right–hand side of (2.4) is of particular importance. It shows, indeed,

that the filtered panel (In −An(L)) Yn,t, where the AR filters in An(L) can be estimated via low-

dimensional AR fitting, admit a static factor model representation: the (unlagged) common shocks ut

6



indeed are loaded via the matrix loadings Hn. Those shocks, their loadings, and the Z̃n,t,’s there-

fore can be recovered from the observations by means of traditional static factor methods—as de-

scribed, for instance, in Stock and Watson (2005) of Bai and Ng (2007)—applied to the filtered

panel (In −An(L)) Yn,t.

Contrary to a widespread opinion, general dynamic model methods thus are not technically more

involved than the apparently simpler static ones, as the difference essentially consists in the n/(q+ 1)
(q + 1)-dimensional AR fittings required in the estimation of An(L).

Denote by e := {eit := (Hnut)i| i ∈ N, t ∈ Z}, the double–indexed process of those level–

common residuals. The n–dimensional singular subprocess en := Hnu of e is the innovation process

of Yn’s common component Xn, hence is zero-mean second-order white noise.

For any fixed i ∈ N, classical volatility analyses are based on the autocovariance structure of some

nonlinear transform sit, called volatility proxy, of the residual eit resulting from some second–order

fit. Standard volatility proxies, in that context, are squared residuals (sit := e2it), or absolute values

thereof (sit := |eit|); but any monotone increasing function of e2it, in principle, could serve as well,

and many other choices have been considered in the literature. In particular, a reasonable candidate,

as proposed by Engle and Marcucci (2006), is

sit := log(e2it) = 2 log |eit|, t ∈ Z. (2.5)

The advantage of a logarithmic proxy as sit over the squared residuals e2it lies in the fact that it can

be analyzed via an additive factor model, while a similar analysis of the e2it’s would require imposing

intricate positivity constraints when estimating the model. Just as the original observations, the sit’s
constitute a double–indexed process s, hence, for any finite n and T , an n×T panel of level–common

volatility proxies; the notation sn := {sn,t = (s1t, s2t, . . . , snt)′| t ∈ Z} will be used for the n–

dimensional subprocess of s.

If the panel of volatilities is to be analyzed via general dynamic factor model techniques, we need

the existence of spectral densities.

ASSUMPTION (B1). The moments E[s2it] exist for all i ∈ N and, for all n ∈ N, the spectral density

of sn is absolutely continuous with respect to the Lebesgue measure over [−π, π], that is, sn has

spectral density matrix Σs;n(θ) for θ ∈ [−π, π].

We now make the following assumption on the dynamic eigenvalues of the level–common volatil-

ity panel.

ASSUMPTION (B2). There exists a qs ∈ N such that the qsth eigenvalue λs;n,qs(θ) of Σs;n(θ) diverges

as n→∞, θ–a.e. in [−π, π], while the (qs + 1)th one, λs;n,qs+1(θ), is θ-a.e. bounded.

Assumption (B2) implies that the panel sn of level–common volatility proxies admits a dynamic fac-

tor representation with qs common factors with common and idiosyncratic components χs;it and ξs;it,
respectively. Namely, writing s̊it for sit − E[sit], Assumption (B2) entails the existence of a decom-

position

s̊it = χs;it + ξs;it =
qs∑
k=1

ds;ik(L)εs;kt + ξs;it i ∈ N, t ∈ Z, (2.6)

or, with obvious vector notation,

s̊n,t = χs;n,t + ξs;n,t, t ∈ Z, n ∈ N (2.7)
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such that (i)–(v) of Section 2.1 hold. Intuitively, the existence of such a factor structure for the level–

common volatility panel is motivated by the fact that en is a reduced–rank process; it is reasonable

thus to assume a similar structure for the volatility proxy which is a function of en. Moreover, Hallin

and Lippi (2013) show that the existence of a finite qs is a very natural assumption, which is also

justified empirically in Section 4.

2.3 The volatility of the level–idiosyncratic component

A general dynamic factor analysis of the volatilities of the level–idiosyncratic components Z̃it’s sim-

ilarly requires a volatility proxy, hence, to begin with, a definition of residuals. Since, being idiosyn-

cratic, those Z̃it’s are only mildly cross–correlated, a componentwise residual analysis only overlooks

negligible information, and we therefore assume, for each {Z̃it| t ∈ Z}, a univariate AR representa-

tion, of the form (
1− ci(L)

)
Z̃it = vit, i ∈ N, t ∈ Z, (2.8)

where the AR filters ci(L) are one–sided, square–summable, and such that the roots of c(z) = 0 all

lie outside the unit disc. Denote by v := {vit| i ∈ N, t ∈ Z} the corresponding double–indexed

process of residuals: the vit’s are zero–mean second-order white noise, with some possible mild

cross-correlation among them, and constitute the univariate innovations of the level–idiosyncratic

components Z̃it’s. In general, they are not mutually orthogonal. The corresponding n–dimensional

subprocess is denoted as vn := {vnt = (v1t, v2t, . . . , vnt)′| t ∈ Z}.
Analogously to (2.5), we consider, for the level–idiosyncratic component of Yn, the volatility

proxy

wit := log(v2
it), t ∈ Z. (2.9)

The wit’s constitute a double–indexed process w, hence, for any finite n and T , an n × T panel of

level–idiosyncratic volatility proxies; the notation wn := {wn,t = (w1t, w2t, . . . , wnt)′| t ∈ Z} will

be used for the n–dimensional subprocess of w. In order to analyze also this panel by means of

general dynamic factor models, we have to assume the existence of spectral densities.

ASSUMPTION (C1). The moments E[w2
it] exist for all i ∈ N, and For all n ∈ N, the spectral density

of wn is absolutely continuous with respect to the Lebesgue measure on [−π, π], that is, wn has

spectral density matrix, Σw;n(θ) for θ ∈ [−π, π].

Finally, we make the following assumption on the dynamic eigenvalues of those level–idiosyncratic

volatility proxies.

ASSUMPTION (C2). There exists a qw ∈ N such that the qwth eigenvalue λw;n,qw(θ) of Σw;n(θ)
diverges as n→∞, θ–a.e. in [−π, π], while the (qw + 1)th one, λw;n,qw+1(θ), is θ-a.e. bounded.

As for the case of level–common volatilities, the existence of a finite qw, as shown by Hallin and

Lippi (2013), is a very natural assumption, and is justified empirically in Section 4. As a consequence,

we have a dynamic factor model representation for wn with qw factors, of the form

ẘit = χw;it + ξw;it =
qw∑
k=1

dw;ik(L)εw;kt + ξw;it i = 1, . . . , n t ∈ Z, (2.10)

with common and idiosyncratic components χw;it and ξw;it, respectively, or, in obvious vector nota-

tion,

ẘn,t = χw;n,t + ξw;n,t, t ∈ Z, n ∈ N (2.11)

such that (i)–(v) hold.
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2.4 A block structure for volatilities

Limiting the analysis to one of the two factor model decompositions (2.6) and (2.10), however, means

throwing away a lot of information about market volatility shocks. Two separate analyses, on the

other hand, are, in general, not adequate: indeed, while ξw;n, by definition, is orthogonal to χw;n, it is

not orthogonal, in general, to χs;n; nor is ξs;n orthogonal to χw;n. Both ξs;n and ξw;n thus may yield

a market–driven component (in the terminology below, a weakly idiosyncratic component). A joint

analysis of (2.6) and (2.10) is thus in order, leading to a two–block general dynamic factor analysis of

the type studied in Hallin and Liška (2011).

When put together, the two n–dimensional panels {̊sit} and {ẘit} indeed constitute the two sub-

panels or blocks of a 2n–dimensional panel of level–common and level–idiosyncratic volatility prox-

ies with block structure. Consider the joint process η := {ηit| i ∈ N, t ∈ Z}, where ηit is either s̊jt
or ẘjt for some j ∈ N. It follows from Lemma 1 in Hallin and Liška (2011) that, given the sets of

Assumptions B and C, there exists Q ∈ N, with max(qs, qw) ≤ Q ≤ qs + qw, such that the Qth

eigenvalue, λη;n,Q(θ), of the spectral density matrix, Ση;n(θ), diverges (θ-a.e. in [−π, π]) as n→∞,

while the (Q + 1)th one, λη;n,Q+1(θ), is θ-a.e. bounded. Therefore, η also admits a dynamic factor

representation with Q factors, of the form

ηit =


s̊it = χs

η;it + ξsη;it =
∑Q

k=1 d
s
η;ik(L)εkt + ξsη;it i ∈ N, t ∈ Z

ẘit = χw
η;it + ξwη;it =

∑Q
k=1 d

w
η;ik(L)εkt + ξwη;it i ∈ N, t ∈ Z,

(2.12)

such that (i) to (v) hold for ε, ξsη;n, ξwη;n, dsη;ik(L) and dwη;ik(L).

Combining (2.6), (2.10), and (2.12) yields

χs
η;it︷ ︸︸ ︷

s̊it = φs;it + ψs;it︸ ︷︷ ︸
χs;it

+ ζs;it + ξsη;it︸ ︷︷ ︸
ξs;it

i ∈ N, t ∈ Z,

(2.13)
χw

η;it︷ ︸︸ ︷
ẘit = φw;it + ψw;it︸ ︷︷ ︸

χw;it

+ ζw;it + ξwη;it︸ ︷︷ ︸
ξw;it

i ∈ N, t ∈ Z.

The φs;it and φw;it components are called strongly common, as they are driven by shocks which are

common both to the volatilities of the level–common and the volatilities of the level–idiosyncratic

components. The components ψs;it and ψw;it are called weakly common; they are indeed common

either to the s or to the w block, but not to both. Being idiosyncratic to one block but not to the

other, ζs;it and ζw;it are called weakly idiosyncratic. Finally, ξsη;it and ξwη;it are called strongly id-

iosyncratic. We refer to Hallin and Liška (2011) for details.

All those components, except for the strongly idiosyncratic ones, are market–driven, i.e. they are

driven by the market volatility shocks ε := {εt = (ε1t, . . . , εQt)′| t ∈ Z}. The decompositions (2.13),

thus provide an insight into the impacts of the shocks and the way they are loaded through the φit’s,

the ψit’s, and the ζit’s. Those various loadings could be obtained from an application of the Forni

et al. (2014) one–sided method (as described in (i)–(vi) of Section 3.1) to the 6n–dimensional panel

consisting of all φit’s, ψit’s, and ζit’s. If the objective is limited to the estimation of market volatility
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shocks and the way they are loaded by level–common and level–idiosyncratic returns, the same anal-

ysis can be limited to the 2n–dimensional panel of the s̊it’s and ẘit’s, yielding an estimation of the

decomposition (2.12). Indeed, since φs;it, ψs;it and ζs;it are mutually orthogonal, the loadings for s̊it
are the sum of the loadings for those three components; the same holds, of course, for ẘit.

When, however, Q = qs = qw, implying that all market volatility shocks are common to both the

level–common and level–idiosyncratic blocks, the weakly common and weakly idiosyncratic compo-

nents are vanishing. Hence, (2.13) reduces to
s̊it = φs;it + ξsη;it = χs

η;it + ξsη;it i ∈ N, t ∈ Z,

ẘit = φw;it + ξwη;it = χw
η;it + ξwη;it i ∈ N, t ∈ Z,

(2.14)

where (φs;it, φw;it) and (ξsη;it, ξ
w
η;it) now are mutually orthogonal at all leads and lags,3 and the

above-mentioned 6n–dimensional panel reduces to a 2n–dimensional one. The analysis then can

be conducted along the same ways as for the Yit’s in Section 3.1, applying the Forni et al. (2014)

methodology to the 2n–dimensional panel (2.14). This is what we are doing in Section 3.2 below. A

reconstruction of the market volatility shocks ε follows, which involves only one–sided filters (i.e.,

based on present and past observables only), along with an estimation of their loadings by the level–

common volatility proxies sit and the level-idiosyncratic ones wit, respectively. Details are provided

in Section 3.

The above factor decompositions correspond to a multiplicative factor model for the squared in-

novations of the level–common and level–idiosyncratic components. Thus, from (2.14) we have

e2it = exp
(
φs;it + ξsη;it + E[sit]

)
i ∈ N, t ∈ Z,

(2.15)

v2
it = exp

(
φw;it + ξwη;it + E[wit]

)
i ∈ N, t ∈ Z.

3 Estimation

The main objects of interest here are the market volatility shocks and the way they are loaded, via the

corresponding proxies, by the level–common and level–idiosyncratic components of returns. Their

estimation, based on a finite n × T panel of Yit’s, proceeds in two steps, which we now describe. A

superscript T is used for estimated quantities, as opposed to population ones.

3.1 Step 1: estimating the level–common and level–idiosyncratic shocks

Estimation of the level–common and level–idiosyncratic innovations is in seven steps.

(i) Start with a consistent estimator ΣT
Y;n(θ) of the spectral density matrix of the returns. Use the

Hallin and Liška (2007) information criterion to select the number qT of level-common shocks,

and compute the eigenvectors pTY;n,1(θ), . . . ,pT
Y;n,qT (θ) corresponding to ΣT

Y;n(θ)’s qT largest

dynamic eigenvalues λTY;n,1(θ), . . . , λT
Y;n,qT (θ).

(ii) Decompose the spectral density matrix ΣT
Y;n(θ) into the contributions

qT∑
k=1

λTY;n,k(θ)p
T
Y;n,k(θ)p

T∗
Y;n,k(θ) =: ΣT

X;n(θ)

3Unlike, for instance, (ψs;it, ψw;it) and (ζs;it, ζw;it), in case Q = qs = qw does not hold.
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of those qT largest eigenvalues and its complement

ΣT
Y;n(θ)−ΣT

X;n(θ) =: ΣT
Z;n(θ)

(p∗ stands for the transposed complex conjugate of p). In line with the notation, ΣT
X;n(θ)

and ΣT
Z;n(θ) are our estimates for the spectral density matrices of the common component

process Xn and the idiosyncratic one Zn, respectively.

(iii) By classical inverse Fourier transform of ΣT
X;n(θ), estimate the autocovariances ΓTX;n,k, k ∈ Z

of the level–common components.

(iv) Assuming, for simplicity, that n = m(q + 1) for some m ∈ N, consider the m (qT + 1) ×
(qT + 1) diagonal blocks of the ΓTX;n,k’s. From each of them, estimate (via standard AIC

or BIC methods) the order, and, via a Yule–Walker method, the coefficients, of a (qT + 1)–

dimensional VAR model. This yields, for the ith diagonal blocks, an estimator A(i)T (L) of

the autoregressive filter A(i)(L) appearing in (2.4), hence an estimator of the block–diagonal

operator in (2.3), which we denote by AT
n (L). Let ỸT

n :=
(
In −AT

n (L)
)
Yn.

(v) An estimator ΓT
Ỹ;n,0

of the covariance matrix ΓỸ;n,0 of Ỹn := (In −An(L)) Yn can be ob-

tained either in the time domain as

ΓT
Ỹ;n,0

=
1
T

T∑
t=1

ỸT
n ỸT ′

n ,

or in the frequency domain as

ΓT
Ỹ;n,0

=
1
H

H∑
h=1

(
In −AT

n (e−iθh)
)

ΣT
Y;n(θh)

(
In −AT

n (eiθh)
)′
,

where θh = 2hπ/H .

(vi) Projecting the Ỹ T
it ’s onto their qT largest static principal components (computed from the eigen-

vectors of ΓT
Ỹ;n,0

) provides an estimate eTn = HT
nuT of the level–common innovation pro-

cess en.4

(vii) The estimator of the idiosyncratic component Z̃n is then Z̃Tn :=
(
In −AT

n (L)
)
YT
n − eTn .

Fitting a univariate AR model (the order of which, again, is identified via standard AIC or

BIC methods) to each of the n components of Z̃Tn , denote by vTn the resulting n × 1 vector of

residuals.

The results of Forni et al. (2014) establish the consistency, as n, T →∞, of all those estimators.

3.2 Step 2: estimating the market volatility shocks

The estimated innovations eTn and vTn obtained in Step 1 (vi)–(vii) are the starting point of the block–

factor analysis of Step 2, which leads to the estimation of the market volatility shocks.

4If, furthermore, the identification constraint H′nHn = Iq is imposed, estimators HT
n of the loadings Hn can be

disentangled from those, uT
n , of the shocks un by enforcing HT ′

n HT
n = IqT .
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(viii) From the components of eTn and vTn , compute the (estimated) volatility proxies sTn and wT
n as

in (2.5) and (2.9).

(ix) Apply the Hallin and Liška (2007) method to identify the number of factors in the two subpanels

and the pooled panel; this yieldsQT , qTs and qTw , respectively. As already mentioned, we obtain,

for the S&P100 dataset in Section 4, QT = qTs = qTw = 1, and we suspect this is a general

feature of financial data; the method described in steps (iii) below applies to this case.

(x) Repeat steps (i)–(vi) of Section 3.1, on the 2n–dimensional joint panel of centered volatility

measures s̊it and ẘit, with (using obvious notation) an estimator

ΣT
η;n(θ) :=

(
ΣT

s;n(θ) ΣT
sw;n(θ)

ΣT
ws;n(θ) ΣT

w;n(θ)

)
of their joint spectral density matrix Ση;n(θ).5 Step (iv) produces a 2n–dimensional block-

diagonal VAR operator (with 2–dimensional diagonal blocks) of the form (I2n − BT
2n;η(L)).

Step (vi) eventually yields estimated innovations(
HT

s;n

HT
w;n

)
εTt , t = 1, . . . , T, (3.1)

hence transfer or impulse-response functions of the form

CT
2n(L) := (I2n −BT

2n;η(L))−1

(
HT

s;n

HT
w;n

)
, (3.2)

where HT
s;n and HT

w;n are n × 1, while εTt is scalar; CT
2n(L), typically, is a 2n × 1 vector of

one-sided filters describing the dynamic loading, by the volatility proxies sTit and wTit , of the

market volatility shocks.

The estimated shocks εT in (3.1) still are not fully identified. Their scale can be fixed by enforcing

the identification constraint HT ′
s;nH

T
s;n + HT ′

w;nH
T
w;n = IQT (here, 1), and their sign (as well as that

of HT
s;n and HT

w;n) can be chosen so that the empirical covariance (nT )−1
∑T

t=1 ε
T
∑n

i=1(sTit +wTit)
be positive.

This estimator fully exploits the fact that the shock is present both in eTn and vTn . Combining the

loadings HT
s;n and HT

w;n with the inverse6 of the VAR operator (I2n−BT
2n;η(L)), one easily computes,

for any given stock i, the volatility impulse–response functions of the market–driven components of

the level–common proxies s̊it, and that of the idiosyncratic proxies ẘit, respectively.

As already mentioned, the consistency, as n, T → ∞, of all estimators derived in this Section

is established in Hallin and Liška (2011) and Forni et al. (2014) in case they are computed from

observed data. Here, however, they are based on the estimated volatility proxies sTn and wT
n obtained

in Section 3.1. A formal consistency proof thus is needed, which, with consistency rates and results

on volatility forecasting, is the subject of a companion paper.

5Note that step (vii) here is not required.
6Due to block-diagonality, computing (I2n−BT

2n;η(L))−1 only requires the inversion of (QT +1)-dimensional VARs,

that is, for QT = 1, the inversion of bivariate autoregressive operators.
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4 The S&P100 panel

As an application, we consider the panel of stocks used in the construction of the Standard &Poor’s 100

(S&P100) index and, based on daily adjusted closing prices, we compute daily log–returns from Jan-

uary 3rd 2000 to September 30th 2013. We have thus an observation period of T = 3457 days. Since

not all 100 constituents of the index were traded during the observation period, we end up with a panel

of n = 90 time series.7

4.1 Extracting the market volatility shocks

We first run Step 1 of the method to estimate model (2.4) on the centered log–returns Yit. Applying

the Hallin and Liška (2007) criterion, we obtain qT = 1, that is, a one-dimensional common shock.

Proceeding as described in Section 3.1, we compute the estimated shocks uT , the estimated residu-

als eTn = HT
nu

T , and the the n–dimensional vector of idiosyncratic shocks vTn to be used in Step 2

of the procedure. Autocorrelation in the level-idiosyncratic components apparently is weak, as AIC

mostly returns an autoregressive fit of order zero of the Z̃it’s: those components thus can be treated as

white noise without the need of further filtering.

Figure 1 shows a plot of the estimated market shocks uTt on the returns. From that plot, one easily

can spot some well–identified periods of highly volatility: the 2001–2003 series of crisis, related to

the dot–com bubble, the Enron (late 2001) and Worldcom (mid–2002) scandals, and with the 2003

Iraq war; the Great 2008–2009 Financial crisis starting with Lehman Brothers bankruptcy (September

2008); the 2010–2012 euro sovereign bond crisis. The largest shocks over the period, by far, are those

related with the 2008–2009 financial crisis.

FIGURE 1: The market shocks uTt on returns, period 2000–2013.
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Still from Step 1, we can quantify the contribution of market shocks to the total variation of returns,

as the ratio between the sum of the (empirical) variances of the estimated common components XT
t

to the sum of the (empirical) variances of the observed returns:

R2
Y.market :=

∑n
i=1

∑T
t=1(XT

it )
2∑n

i=1

∑T
t=1(Yit)2

.

Those XT
t ’s can be obtained at the end of part (vi) of Step 1, as

XT
t = (In −AT (L))−1HT

nu
T
t = (In −AT (L))−1eTn,t, t = 1, . . . , T.

7The dataset is downloadable from Yahoo Finance and a list of the series used is provided in the Appendix.
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The same quantity equivalently can be estimated in the spectral domain, as the ratio of (an approximate

value of) the integral over all frequencies of Yn’s first dynamic eigenvalue and (an approximate value

of) the integral over all frequencies of the sum of Yn’s first n dynamic eigenvalue, that is,

R2
Y.market :=

∑H
h=1 λ

T
n;1(2hπ/H)∑H

h=1

∑n
j=1 λ

T
n;j(2hπ/H)

.

In both cases, we obtain R2
Y.market ≈ 0.36: the market-driven level-common component accounts for

about 36% of the total variance of returns. The same quantity can be evaluated for each individual

stock, or each time point, by computing

R2
Yi.market :=

∑T
t=1(XT

it )
2∑T

t=1(Yit)2
, i = 1, . . . , n, and R2

Yt.market :=
∑n

i=1(XT
it )

2∑n
i=1(Yit)2

, t = 1, . . . , T,

respectively. A histogram of theR2
Yi.market’s and a plot of theR2

Yt.market’s are shown in Figures 2 and 3.

Concerning the distribution of explained variances we notice that market shocks explain up to 60%

of total variation of returns, but in general this percentage is lower, pointing towards an important

role for idiosyncratic returns. On the other hand, when looking at R2
Yt.market, the periods of crisis are

clearly captured by the market shocks to returns.

FIGURE 2: Distribution of market–driven variances of returns, period 2000–2013.
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Histogram for the proportions R2
Yi.market of variance explained by the market shocks to returns across the panel.

Both this analysis of the impact of market shocks and the fact that qT = 1 are in close agree-

ment with most of the empirical literature on financial returns and with classical asset pricing theory

models like the CAPM or APT, which imply that the unexpected return of risky assets can be ex-

pressed as a linear function of a systematic common factor representing the market and an idiosyn-

cratic component. Moreover, the single common shock uT has a correlation of 0.95 with the total

daily return
∑n

i=1 Yit of the panel, which is consistent with the interpretation of uT as the market

return shock.

Turning to Step 2, as described in Section 3.2, we first compute the volatility proxies sTn and wT
n

from the logs of squared estimated residuals (equations (2.5) and (2.9)), and center them about their

empirical means, obtaining the centered proxies s̊Tn and ẘT
n which constitute the two blocks of the

joint panel ηTn .
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FIGURE 3: Evolution of market–driven variances of returns, period 2000–2013.
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Time series of the proportion R2
Yt.market of variance explained by the market shocks to returns at time t.

Before estimating a dynamic factor model from the ηTn ’s, however, it is wise to check for their

stationarity. It is well known that realized volatilities typically exhibit long-memory dependence (see

for example Andersen et al., 2003). Therefore, we first estimate an ARFIMA(1, d, 0) on each compo-

nent of sTn and wT
n . Following Beran (1995), we obtain estimators dT for the fractional differencing

parameters d which are compatible with the assumption of stationarity. Indeed, the maximum values

of these estimators indicate that dT never reaches 0.25, which is significantly less than 0.50.

A general dynamic factor structure for volatility proxies is justified by looking at the behavior

of dynamic eigenvalues. In particular, in Figure 4 (a)-(c), we show, for subpanels of increasing

sizes nj ↑ n = 90, the dynamic eigenvalues, averaged over frequencies, of the level–common volatil-

ity and the level–idiosyncratic volatility panels, and for subpanels of increasing sizes nj ↑ 2n = 180
for the joint volatility panel. For all three of them, we clearly see one eigenvalue dominating over all

others, and diverging faster as nj increases. This finding is the empirical justification for Assump-

tions (B2) and (C2) on the factor structure of the two volatility subpanels, and supports the idea that

a unique common shock is driving both subpanels. The Hallin–Liška identification method confirms

(see Figure 4 (d)–(f)) that fact—recall that the method identifies the number of common shocks as the

value shown by the red curve at the second stability interval8 of the blue one. We thus proceed with

estimation and QT = qTs = qTw = 1.

The block decomposition (2.13) in this case reduces, in each block, to a sum of two terms: a

strongly common component, and a strongly idiosyncratic one. Those strongly common components

are estimated by φTs;n = χsT
η;n and φTw;n = χwT

η;n , respectively. Since QT = 1, a single volatility

market shock εTt driving both the level–common and level–idiosyncratic volatilities of the S&P100

is identified, in line with the remark made after (3.1). Rather than a plot of εTt itself, Figure 5 is

providing a plot of the multiplicative shocks exp(εTt ), which have the same scale as the squared level-

residuals e2it and v2
it; that series of course is intrinsically non–negative. It has to be noticed that this

shock does not represent the volatility of the market shock on returns uT and with respect to it this

shock shows periods of high volatility mainly in correspondence of the 2008–2009 and 2010–2012

crisis while lower volatility is related to the 2002–2003 crisis.

8A stability interval is an interval over which the blue curve coincides with the horizontal axis; see Hallin and

Liška (2007) for details.
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FIGURE 4: Evidence of factor structure in the volatility proxy panels.
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Top: ten largest dynamic eigenvalues, averaged over frequencies, computed for panels of increasing sizes:

45 ≤ nj ≤ n = 90 for the level–common and level–idiosyncratic volatility panels, and 135 ≤ nj ≤ 2n = 180
for the joint volatility panel. Bottom: the plots associated with the Hallin–Liška identification for the same

panels.

4.2 Analyzing the volatility shocks and their impact

The method described in the previous sections does not just yield an estimation of the market volatility

shocks (as plotted in Figure 5), it also provides insightful information on the way those shocks are

loaded by the various stocks in the panel.

The overall contribution of market shocks to the variances of the volatility proxies sit and wit can

be evaluated by means of the ratios

R2
s.market :=

∑T
t=1

∑n
i=1(φTs;it)

2∑T
t=1

∑n
i=1(sTit)2

and R2
w.market :=

∑T
t=1

∑n
i=1(φTw;it)

2∑T
t=1

∑n
i=1(sTit)2

. (4.1)
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FIGURE 5: The market shock exp(εTt ) on volatilities, period 2000–2013.
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For each individual stock i, a measure of the same impact is

R2
si.market :=

∑T
t=1(φTs;it)

2∑T
t=1(sTit)2

and R2
wi.market :=

∑T
t=1(φTw;it)

2∑T
t=1(sTit)2

, i = 1, . . . , n; (4.2)

while their evolution through time is captured by

R2
st.market :=

∑n
i=1(φTs;it)

2∑n
i=1(sTit)2

and R2
wt.market :=

∑n
i=1(φTw;it)

2∑n
i=1(sTit)2

, t = 1, . . . , T. (4.3)

The values of R2
s.market and R2

w.market in (4.1) are displayed in Table 1: the market–driven compo-

nents φTs;n of the volatility of level–common components account for about 60% of the total variance

of the sTn panel. The same measure, for the market–driven components φTw;n of the wT
n panel, is still

about 13%, which is highly non–negligible.

Figures 6 and 7 show histograms of the ratios R2
si.market and R2

wi.market in (4.2) and evolution

through time of the market impact, i.e., plots of R2
st.market and R2

st.market against time. The distribution

of explained variances is quite homogeneous inside each block. As for the evolution through time

of proportions of explained variances, most of the contribution of market volatility shocks to level–

idiosyncratic volatility is observed during the recent Great Financial crisis (2008–2009); during that

period, that contribution is comparable to the one observed for level–common volatility.

TABLE 1: Explained variances of market volatility proxies, period 2000–2013.

Volatility Strongly common Strongly idiosyncratic

Level–common R2
s.market = 0.5997 1−R2

s.market = 0.4003
sT

n φT
s;n ξsT

η;n

Level–idiosyncratic R2
w.market = 0.1740 1−R2

w.market = 0.8260
wT

n φT
w;n ξwT

η;n
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FIGURE 6: Distribution of market–driven variances of volatility proxies, period 2000–2013.
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Histograms for the proportions of variances explained by the market volatility shocks across the panel: R2
si.market (left) and

R2
wi.market (right).

FIGURE 7: Evolution of market–driven variances of volatility proxies, period 2000–2013.
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Time series of the proportions of variances explained by the market volatility shocks: R2
st.market (black) and R2

wt.market (red).

The transfer or impulse–response functions (3.2), which describe how market shocks are loaded

dynamically by the volatility proxies, is another most informative byproduct of our method. For

each stock i, those functions take the form of scalar filters (one for sit, another one for wit), hence

a sequence of coefficients associated with the various lags. Those coefficients are shown in Figure 9

for a selection of ten stocks; median, maximum and minimum values are provided in Figure 8. Two

findings emerge from inspection of Figures 8 and Figures 9. First, the reaction to market shocks

of level–common volatilities (the sit’s) and level–idiosyncratic volatilities (the wit’s) are markedly

different. That reaction, for the sit’s, is extremely homogenous across the panel with a strong loading

coefficient at lag zero and very short persistence: the coefficients rapidly decrease with the lag, and

essentially vanish within one week time (5 lags). Quite on the contrary, the same reaction, for thewit’s,

varies considerably across the panel, and is more persistent, sometimes lasting over one month (20

lags). Finally, except for a few level–idiosyncratic volatilities (such as Apple Inc.), the instant impact

of a market shock is always positive.

18



FIGURE 8: Impulse-response functions for market volatility shocks.
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Median, maximum, and minimum of the distribution of impulse–response functions of volatilities to a one–standard-

deviation market volatility shock, that is, the sequence of loading coefficients divided by the standard error of the shocks,

for level–common (left) and level–idiosyncratic (right) volatilities, respectively.

FIGURE 9: Impulse-response functions for market volatility shocks to level–idiosyncratic volatilities.
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Impulse–response functions of volatilities to a one–standard-deviation market volatility shock, that is, the sequence of

loading coefficients divided by the standard error of the shocks, for level–idiosyncratic volatilities of selected stocks from

the Financial (left) and Technology (right) sectors, respectively; see Appendix for tickers’ definitions.

Finally, to conclude, we turn to the analysis, for a few selected stocks, of the market-driven volatil-

ities, which we define as (referring to (2.15))

χTe2;it := exp(φTs;it + s̄Tit), χTv2;it := exp(φTw;it + w̄Tit), i = 1, . . . , n, t = 1, . . . , T,

where s̄Tit and w̄Tit stand for empirical means. In Figure 10, we show kernel-smoothed cross–sectional

averages of these quantities, while in Figures 11 and 12 we show the market volatilities (level-common

and level-idiosyncratic), for selected stocks from the Financial and Technology sectors respectively,

together with their smoothed versions.

The time span under study is known to display at least three periods of high volatility: (i) the Great

Financial crisis of 2008–2009, (ii) the European Sovereign debt crisis of 2011–2012, and (iii) a period
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in the early 2000s including the dot–com bubble, the Enron and Worldcom scandals, and the Second

Iraq war. The market volatilities of the level–common and level–idiosyncratic components exhibit

somewhat distinct reactions to those events. Level–idiosyncratic volatility is affected mainly by the

Great Financial crisis of 2008–2009, the effect of which is particularly significant for the Financial

sector. The more recent European Sovereign debt crisis of 2011–2012 is contributing to the market

volatility of level–common components only, in agreement with the fact that this crisis represents an

external shock to the US market , so that no idiosyncratic return is likely to be seriously affected.

Finally, the dot–com bubble of the early 2000s affects the Technology sector through level–common

market volatilities only. Overall these figures confirm the heterogeneity in the contributions of market

volatility shocks to level–idiosyncratic volatilities, with a significant impact on the Financial sector

but a more limited one on the Technology sector.

FIGURE 10: Cross–sectional averages of market volatilities.
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The figure shows kernel-smoothed cross–sectional averages of market volatilities. The bandwidth used corresponds to 3

weeks of trading (15 days).

5 Conclusion

In this paper, we propose a two-step general dynamic factor method for the analysis of financial

volatilities in large panels of stock returns. Our focus throughout is on identifying and recovering the

market volatility shocks. We show that the decomposition into “common” or “market-driven” and

“idiosyncratic” of the returns does not necessarily coincide with the corresponding decomposition for

volatilities, in the sense that level-idiosyncratic components, just as much as the the level-common

ones, are affected by market volatility shocks. The empirical study of Section 4 actually suggests that

the market shocks are univariate quantities, a finding practitioners seem to agree with. Whether this

is a general feature of financial data is quite plausible, but should be checked against other financial

datasets.

The present framework can be extended in many directions of potential interest in financial econo-

metrics and risk management. Our approach is a first step towards a general model-free and nonpara-

metric analysis of covolatilities, with obvious applications in risk management and the optimization of

financial portfolios. Moreover, the various variance decompositions and impulse-response functions

following as by-products of our approach open the way to model-free and nonparametric simultaneous

forecasting of large numbers of volatilities.
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FIGURE 11: Market volatilities – Financial sector.
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Estimated market volatilities for five selected stocks from the Financial sector, along with their smoothed versions (black

solid line); see Appendix for tickers’ definitions.
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FIGURE 12: Market volatilities – Technology sector.
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The figure shows the estimated market volatilities for five selected stocks from the Technology sector, along with their

smoothed versions (black solid line); see Appendix for tickers’ definitions.
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A Data

TABLE 2: S&P100 consituents.

Ticker Name

AAPL Apple Inc. HPQ Hewlett Packard Co.

ABT Abbott Laboratories IBM International Business Machines

AEP American Electric Power Co. INTC Intel Corporation

AIG American International Group Inc. JNJ Johnson & Johnson Inc.

ALL Allstate Corp. JPM JP Morgan Chase & Co.

AMGN Amgen Inc. KO The Coca-Cola Company

AMZN Amazon.com LLY Eli Lilly and Company

APA Apache Corp. LMT Lockheed-Martin

APC Anadarko Petroleum Corp. LOW Lowe’s

AXP American Express Inc. MCD McDonald’s Corp.

BA Boeing Co. MDT Medtronic Inc.

BAC Bank of America Corp. MMM 3M Company

BAX Baxter International Inc. MO Altria Group

BK Bank of New York MRK Merck & Co.

BMY Bristol-Myers Squibb MS Morgan Stanley

BRK.B Berkshire Hathaway MSFT Microsoft

C Citigroup Inc. NKE Nike

CAT Caterpillar Inc. NOV National Oilwell Varco

CL Colgate-Palmolive Co. NSC Norfolk Southern Corp.

CMCSA Comcast Corp. ORCL Oracle Corporation

COF Capital One Financial Corp. OXY Occidental Petroleum Corp.

COP ConocoPhillips PEP Pepsico Inc.

COST Costco PFE Pfizer Inc.

CSCO Cisco Systems PG Procter & Gamble Co.

CVS CVS Caremark QCOM Qualcomm Inc.

CVX Chevron RTN Raytheon Co.

DD DuPont SBUX Starbucks Corporation

DELL Dell SLB Schlumberger

DIS The Walt Disney Company SO Southern Company

DOW Dow Chemical SPG Simon Property Group, Inc.

DVN Devon Energy T AT&T Inc.

EBAY eBay Inc. TGT Target Corp.

EMC EMC Corporation TWX Time Warner Inc.

EMR Emerson Electric Co. TXN Texas Instruments

EXC Exelon UNH UnitedHealth Group Inc.

F Ford Motor UNP Union Pacific Corp.

FCX Freeport-McMoran UPS United Parcel Service Inc.

FDX FedEx USB US Bancorp

GD General Dynamics UTX United Technologies Corp.

GE General Electric Co. VZ Verizon Communications Inc.

GILD Gilead Sciences WAG Walgreens

GS Goldman Sachs WFC Wells Fargo

HAL Halliburton WMB Williams Companies

HD Home Depot WMT Wal-Mart

HON Honeywell XOM Exxon Mobil Corp.
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