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A NOTE ON THE SIMULTANEOUS STABILITY OF TATONNEME_NT
PROCESSES FOR COMPUTING EQUILIBRIA*

By VicTor GINSBURGH AND JEAN WARLBROECK!

1. INTRODUCTION

This paper is motivated by recent experience which suggests that tatonnement
processes may prove quite efficient in computing equilibria.?  These processes
are in fact today the only effective method of solving equilibrium models of
realistic size. Their weakness relative to Scarf type algorithms is that convergence
is not guaranteed.

General equilibrium problems can be solved by several titonnement processes.
Price tatonnement is of course well known.® Mantel [1971] has proposed
a welfare weight adjustment process, and compared its stability properties with
those of price titonnement. Dixon [1975a] introduced a atility adjustment
process, and applied it to a simple model. Ginsburgh and Waelbroeck [1975]
suggested a fourth process and applied this orie and Dixon’s to an equilibrium

model of the world economy. ;

The four processes are generated from one optimizing model by means of minor
changes, and it is easy to switch to another process when one approach has failed
to converge. The model builder has, so to speak, several strings to fit his bow:
but is this worthwhile? The answer would be negative if alternative processes
were simultaneously stable, so that failure of one implied failure of the others.

It turns out that tdtonnement processes are not simultaneously stable locally
—and a fortiori globally. It appears worthwhile therefore to make the minor
investment in additional programming which permits switching among the four
processes instead of being restricted to only one. Our analysis also generalizes
Mantel’s [1971] and Dixon’s [1975] in considering a wider set of processes and
in giving slightly more general results on simultaneous stability.

The paper is organized as follows. In Section 2, we build up the various
computational procedures; in Section 3 we show how the processes can be locally
approximated, and in Section 4, we turn to the local stability properties.

* Manuscript received September 30, 1977; revised April 19, 1978.

' We are grateful to M. Todd and to an anonymous referee for very careful reading and
- for.pointing out some serious errors in the previous version. .

% See, e.g., P. Dixon [1975a, 1975b], I. Adelman and S. Robinson [1978], V. Ginsburgh and
J. Waelbroeck [1975, 1976].

A good overview can be found in K. J. Arrow [1974].

e

367



368 V. GINSBURGH AND J. WAELBROECK

2. DEFINITION OF THE TATONNEMENT PROCESSES

Let x; (i=1, 2,..., r) denote the n-dimensional vector of net trades of consumer
i and assume his preferences to be represented by the real valued, monotone
and strictly concave twice continuously differentiable utility function Ux,); p
is an n-vector prices. We also assume that the set of net trades which are at least
as good as the no trade position have a lower bound, not attained at the no
trade position. Then, we define a competitive equilibrium as

DerINITION. A Competitive Equilibrium (C. E.) is a bundle of net trades
x¥, x3,..., x} and a vector of prices p* such that
(a) x¥ maximizes U(x)) subject to p*x;, < 0, x; e R, P=1,2,...,7;
by >x¥<o.

TreEOREM 1. (Arrow-Debreu and Negishi) There exist vectors x¥,..., x¥ and
a vector p*>0 such that the conditions (a)~(b) of the definition are satisfied.
There also exist scalars a¥>0,..., u*>0, vectors X, xF and a vector p*>0
such that the solution of the problem max Ya*Ux) s.t. 3 x,<0 satisfies the
definition of a C.E.

Let G(x)=[U(x;) Us(x,)---U/x,)] be a vector valued function whose elements
are the utility functions of the » consumers. Consider the following mathematical
program:

(2.1 vecmax G(x)

subject to both or either of the following constraints (2.2)

(2.2) >x; <0 px, 20 i=1,2,..,r;
(2.3) x, e R" i=1,2,...,r

We show that the four tAtonnement processes, the properties of which will be
examined, can formally be derived from the mathematical program (2.1)-(2.3).

Indeed, the classical price tAtonnement process (p-tatonnement) can be ob-
tained from max 3 Uyx) s.t. px;<0(i=1, 2,....r). The first order conditions

for a maximum are

2.4) a_%gﬂlm Ap =0 P=1,2,r
(2.5.1)-(2.5.3) px; <05 Apx; =0; 4,20 i=1,2,...,r

A; is a Lagrange multiplier associated to the constraint px;<0. Assuming 1,>0
for all i, (2.4) and (2.5.1) can be solved, leading to individual excess demand
functions x{p); aggregation of these functions gives the market excess demand
functions ¥ x(p)=f(p) and the Walrasian titonnement is defined by the system

of differential equations p=/(p) where p=dp/dt. It is easy to check that a solu-
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tion p* of the system of differential equations with f(p*)=0 satisfies condition
(b) of the C.E. Condition (a) is satisfied by the individual utility maximization
problems.

A second “‘adjustment of accounting to shadow prices” (n-tdtonnement) is
obtained by consideration of the program max 2Ux) st T x,<0 and 7-x,20
(i=1, 2,..., r) where r is a vector of accounting pr‘ices used in evaluating the budget
constraints,

The first order conditions for a maximum are

oU(x;) \ .

i it Sl = — AT == —

(2.6) A p—An=0 i=1,2,..,r
(2.7.1)-(2.7.3) 2%,<0; pyx;=0; p>0

(2.8.1)-(2.8.3) nx; <05 Amx; =05 4, >0 i=1,2,..,r.

Assuming p>0, ;>0 (i=1, 2,..., r) the system (2.6)—(2.7.1)~(2.8.1) can be solved
for the shadow prices p(n) and the n-titonnement will be defined by the system
of differential equations 7=p(n)—n. To show that for a vector 7* such that
p(n*)—n* =0 we obtain a C. E., we need

Tureorem 2. (Ginsburgh-Waelbroeck [1975]) The vectors p¥, ¥ x¥ (i=1,
2,..., ¥) such that
(1) x¥--x}area solution of max 2Ux) st Yx;<0and n*x,<0 (i=1, 2,..., )
(i) p*=n* (p* is a vector of mulltipliers associated to the constraints ¥ x,<0)
are a solution of a C. E.

A third “‘welfare weight”” process (a-tAtonnement) can be obtained by consider-
ing Negishi’s mathematical program max Y e, U (x,) s. t. 2.%;,<0. This problem
leads to the following first order conditions

(2.9) aﬁ%.g) —p=0 =1, 2

(2.10.1)—(2.10.3) 2%, <05 pYx; =0, p>0.

If we assume that ;>0 all i and p>0, we can solve the system (2.9)~(2.10.1), find
r net trade vectors x{a) (i=1,2,...,r) and a vector p(x), and compute the
“savings” of consumer i as s(«)= — p(«)x(x); the a-tAtonnement can then very
naturally be defined by the differential equations d=s(«x) where d=da/dt.

It has been shown by Negishi [1960] that a solution «* >0 such that s(a*)y=0,
satisfies both conditions (a) and (b) of a C. E.

The fourth ““Pareto Optimum” process (U-tAtonnement) is obtained from the
following mathematical program max U(x,) s.t. Ux)=U; (i=1,2,..,r=1)
and > x;<0, where U, are fixed utility levels, Again, the first order conditions
for a maximum are
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(2.1 Céz--“*@ @iéwx‘) - p=0 i=1,2,...,r—1
oU(x,)

2.12 Balludl A Sad ZAN =

(2.12) 2x. p=20

(2.13.)=(2.13.3) = Ufx) + U, <0; o[ — U(x) + U] = 0; %, > 0

1

i=1,2,...,7— 1.
(2.14.1)-(2.14.3) ¥x,<0: pYx; =0; p > 0.
The o’s (i=1, 2,..., r—1) are Lagrange multipliers associated to the constraints
Ulx)=U,; (i=1, 2,..., r—1).
Assuming p>0, «,>0 (i=1, 2,..., r—1), the system (2.11) to (2.14.1) can be
solved to give a vector p(U) and r vectors x(U) (i=1, 2,..., r), where U is the
vector (U; U,-++U,_,); again we can compute the savings of consumer i, s{(T)

= —p(U) - x{0); the U-tAtonnement can now be defined by the system of differ-

ential equations U=s(U), where U=dU/dt. Using the same arguments as
Negishi, it can be shown that a solution U* such that s( U*)=0 satisfies condi-
tions (a) and (b) of a C. E.

We are now faced with four titonnement processes

p-titonnement p = f(p)
n-titonnement % = p(n) —n
o-tAtonnement ¢ = s(c)
U-titonnement U = s(T)

and we show that, locally, they are not necessarily stable or unstable simultane-
ously.

3. LOCAL APPROXIMATION OF THE PROCESSES

To simplify the analysis, we make the following assumptions:

AssumpTIoN 1. (Normalization of equilibrium welfare weights.) The utility
functions are chosen in such a way that, at equilibrium, =1 (i=1,2,..., 7).

Since k,:g—j at equilibrium,* we also have A;=1 (i=1, 2,..., r).

ASSUMPTION 2. (Positiveness of prices at equilibrium.) At equilibrium,
p>0. This will be ensured if the utility functions are strictly monotone.

From these two assumptions, it follows that, at equilibrium, ¥ x; =0, Ufx)=U;
and px;=0 all i.

* For the proof of this, see, e.g., Negishi [1960].
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The mathematical derivations which follow are lengthy but not difficult. In
each case, a local approximation of the titonnement process is defined; this
approximation is obtained in three steps:

(a) the conditions holding at the optimum of each problem defined in Section 2
are totally differentiated, in the neighborhood of equilibrium;

(b) the resulting linear system is solved for the unknowns;

(¢) the tatonnement is defined in terms of the solution obtained in St tep (b).

We will need well-known results on the inversion of partitioned negative definite
matrices, which we briefly recall in Lemmas 1 and 2.

T R
LevMMa 1. Let A=r | be a full rank symmetric matrix; if T is a
R!

w

Sull rank matrix, A=t can be obtained as follows:
(’ T4+ TR(W — R'T-1R)"'R'T-1
(3.) A=
L — (W - RT 'Ry IR'T-!
- T7'R(W — R'T-1R)"1 }
(W — R'T-1R)~! '
If Tand W are full rank matrices, then we also have
(T — RW-1R)H! ~ (T — RW-IRY1RW~!
(3.2) A= .
L —(W—RTRy-I1R'T"! (W — R'T-1R)™!

LemMma 2. Let 4 be as in Lemmal and negative definite.  Then,
(W—R'T™R)"! and (T—RW~R')"! are negative definite.

It will also be useful to define the following matrices:

02U (x.) . . o .
V= %;‘C—(f—'l is the n x n matrix of second derivatives of consumer i’s
i

utility function, evaluated at equilibrium.

V, 0een
11
Q= [ 0 Vareee: J is a block diagonal rn x ra matrix.
: |
|0 0w v, |
=[S I7is an n x rn matrix with I the n x n identity matrix.

is the same matrix as J', with the last row deleted.
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. .
~~~~~ 0 | is an rn x r matrix; p and O are column vectors of »n
: | elements; p is the equilibrium price.

P is the same matrix as P, with the last column deleted.
Note that for the n process, we will need a matrix I, identical to P, but with
prices m instead of p. However, since both matrices are evaluated at equilibrium,
by Theorem 2, P=1II. For notational convenience, we will express all processes
in terms of the P matrix.

X =[x, xy---x.]1s an n X r matrix; x,; is a column vector of n elements (the net
trades of consumer [ at equilibrium)

X =[xy x5, 4]

X is the same matrix as X, with the last row deleted.

(3.3) F=J Q“‘J:élV;i
(3.4) F=Jo'J
(3.5) S=J Q1P
(3.6) S=J0Q'P
(3.7 S=Jotp
(3.8) D=P QP
(3.9) D=P 0P

Two more lemmas will be needed.

Lemma 3. The matrices (F~3D '8 and (D—5 F~'5), are negative
definite. :

Proor.?  We give the proof for the first matrix. The same type of argument
holds for the second matrix. - -
(@ We first show that (F—S D! §’) is negative semi-definite. Using (3.4),
(3.7) and (3.8), we have
F—-8D '8 =J[0 ' -~ QPP Q' P PO T=T MJ

with M=Q"1—Q~' P(P' Q=1 Pyt P Q~!. Tt can easily be checked that M=
M QM, so that Y MJI=T M QMJI=(MJY Q(MJ). Since O is a block

* We are grateful to the referee for simplification of the proof.
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diagonal matrix, the blocks of which are negative definite matrices (as matrices
of second derivatives of strictly concave utility functions), Q is negative definite
and (MJ) Q(MJ) is negative semi-definite. Sois F—3 D-1 §.

(b) Wenow show that F~5 D=t §" is non singular. Clearly, the matrix [J P]

~ 7T -
has full column rank. Since Q! is non singular, so is i ‘;,, JQ“IEJ FP].  But
using (3.4), (3.7) and (3.8), we have -

{J"“ - rF §7
[ =RCE
LP .S D]
 SneiE o
Postmultiplying this result by !F* I_x§,] gives f—F SOD S ]and F—-SD™1§
[ e

must be non singular,
(¢) It is a well-known result that a negative semi-definite matrix is negative
definite if it is non singular.® Hence F—5 D-1 § is negative definite.

LemMMa 4. Ler Q be negative definite and M of full column rank. Then

Gz[%, %’] is non singular.

Proor. Cousider the system (%, %’q[x]:(). We show that the only

L y

solution is [;j=0 Consider the system M'x=0. But M'x=—-M' Q! My

=0. Since M is of full column rank, M’ 0~' M is non singular and the only
solution is y=0. Then, Qx+My=0x=0 has x=0 as the only solution. Hence
G cannot be singular.

We are now ready to handle the local approximations.

3.1 p-tatonnement. Total differentiation of (2.4)-(2.5.1) with respect to x,,
/; and p gives

i=12 ¥,

secesy

Vidx; — pdi; — Ldp = 0 }
xidp + pldx; = (

Writing these relations for all consumers, and using Assumption 1 (4;=1), we

have
[ g P dx 7 J
O I e
PO ] ~dA -X" 4

where dx'=(dx,,..., dx,), di' =(dJ,,..., d1,) and dp'=(dp,....dp,). As is well-
known, this system defines demand as a zero homogeneous function of prices.
As a result, the p-titonnement defined in this way converges possibly to a price

% See, e.g., Gantmacher [1960, p. 305].
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ray and not to a unique price vector. Usually the difficulty is solved by normaliz-
ing the prices. Setting p,=1, dp,=0, the equations can be written:

(Q P*F dx7 T 7 .
rol il —x 7

where dp’=(dp, dp,---dp,_,).
The matrix on the left hand side of this last expression has full rank, by Lemma
4. Using (3.1) to invert this matrix, we end up with

dx=[Q'J - Q' P(P'Q 1Pyt P' Q"' J — Q"L P(P' 0~* P)~! X']dp.

Total excess demand f(p) is equal to J'x so that p=df=J'dx; but we need only
p=J'dx. Hence, using (3.4), (3.7) and (3.8), we find

(3.10) p=Jdx=[F-8D Y5 + XV - 5"
where dp=p— p* is the deviation from the equilibrium value 5*.

3.2. m-tdtonnement. From Theorem 2, it is clear that, at the solution point
for which p=mn, one of the constraints nx;=0 or one of the n balances T x,=0

will be redundant, and can be omitted. If the n-th of these balances is omitted,
we have as first order conditions for a maximum

ggi —p — AT = i=1,2..,7
Zfl‘—“—o
nx; =0 i=1,2,..,r

where X; is the vector of net trades of the n— 1 first commodites for trader i.

Totally differentiating these expressions with respect to x;, A; and p gives

Vidx; — dp — Adn — ndX; = 0 i=1,2,..,r
xydn + n'dx; = 0 P=1,2,...,r

Taking into account that the n-th element of both vectors dp and dn is identically
zero (the normalization implies p, and =, constant), we can write these equations
under matrix form, as:

;fQ J HW( dx”: ’ﬁ .7'1
(.10 70 0| ~dj = 0 =

1 | o

0 o)l -a) %]

with dp'=(dp,, dp,,..., dp,—;) and d7'=(dn,, dr,,...,dn,_,). The matrix
on the left hand side of (3.11) is non singular (Lemma 4).
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- , o N7
Let N=[J IT] and invert first the matrix N0 J using (3.1)

{Q NTU [ Q' =Q'N(N'QIN)TIN'Q™t QT'N(N'Q™'N)~1
(3.12) L= .
LN 0 L

Note that

(N'OT'N)"IN'Q™! - (N'g-IN)!

|

S

L

(N'OTIN

i

%]

T ) r
oIm =

m ]

We now use (3.2) to invert (N’ Q"1 N). This gives

(N'Q-IN)™! = [(F s ~ (F - 8p~1§8)-1§p~17

e

(D — §'F1§)~1§ F-t (D — S'F15)~t
Inserting this result into (3.12), we derive, from (3.11) the following expression
for dp:
(3.13) = —(F =S Dt §)F - § DY§ + X]d7.
Since we defined the n-titonnement by 7= p(r)—n, locally we have,
dp—dn=(p-p*)—(n—n*)=p-—n=1.
Hence, we have, after substracting d7 from both sides of (3.13)
(314 A= - (F—-SD 8y AF-5D13)=8 D1 X7~ 7).
3.3. o-tétonnement. Total differentiation of (2.6)-(2.7.1) with respect to X
o; and p gives

ag(xi)da +a; V,dx; — dp =0 i=1,2,..,r

def == 0-

Replacing —5}% by T‘:L and taking into account Assumption 1 (¢;=1) these
equations can also be written for all | as:

ol wl Lok

dx and dp have already been defined, do’=(du,---da,). The same problem of
normalization arises as with the p-titonnement.
Setting «, =1 reduces the system to

M
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with & = (oo, ).
By Lemma 4, [’J, O} is non singular. Using (3.1), the solution of the
system can be written:
(3.15) dx =[~ Q' — Q VJUJ' Ot Iyt J ¢g~1)Pda
(3.16) dp={J Q"' Jy ' J Q7% Pda.

Savings of consumer i are equal to —p x,. Differentiating this result leads to
ds;=—xjdp—p' dx, or, in matrix notation, for all consumers, except consumer
r:

di = — X' dp — P dx.
Then, using (3.3), (3.6), (3.9), (3.15) and (3.16), we have
ds =[D — (S + X"F! §]da
or, since & =d3
(3.17) %=[D— (8 + X)F ' §](d — &%)
where & —&* is the deviation from the equilibrium value &*

3.4, U-tdtonnement. Total differentiation of (2.11), (2.12), (2.13.1) and
(2.14.1) with respect to x;, o, p and U, gives

V.dx, — dp =20

a[g(x)d + oV ds, —dp=0 P=1,2.., 0= 1)
OUx) 4. _ a7 = - (-
—-dex, dU, =0 i=1,2,..,(r=1
2dx; =0,

Since and o;=1 at equilibrium, we can write these relations in

0Uilxy) _ p
3

i i

matrix form as:

with dg=[da,---de,_,] and dU=[dU,---dU,_,]. By Lemma 4, the matrix
on the left is non-singular.

Defining M=[J P], we first invert the partitioned matrix {]%[' Ag] using
(3.1). The result is: )
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M [0 = QTMOMQT MY MO QT MM M)
=|

o ‘ ;
JL_M' 0 _J‘ (MO~ M)~ M0 —(MOM)L |

We now have to invert (M'Q7IM). Bur

ll
"y
o

ol
|

wor=| o
L

e
i
SR

Using (3.1}, we obtain
F~' 4+ F7iI§(D — §'F18)1§'F~t  — F-1§(D — §'F~1§)~t
(MQ'M)™t = o - .
— (D =S F-15)~1§ 1 (D~ S F8)-t
After some further matrix algebra, we end up with
dx = — Q Y(JF 'S - Py(D — 8§ F~1 §1dU
dp= ~ F1 5D —~ § F-t §14U.

Finally, noting that, as in the «-titonnement, §=—X'p and di=—X'dp— P'dx,
we find

d3=[X'F 'S+ P QYWF'5~P](D -5 F'3 14U
= —[D~(§+ XY 13D~ § F ' 54U
and
(3.18) U= —[D - (S + XH)F 1 5](D~ 8 F ' 8§ Y(U - U¥

where U — U* is the deviation from the equilibrium value U*,

4. LOCAL STABILITY PROPERTIES
For easy reference, we group the four approximations so far obtained
@0  p=[F-5D%5+ X1 - 5
(4.2) —(F=8D '8 [2F-8D 15y -3 D' X% - 7%
(4.3) & =[D— (X' + §)F! S1@ — a%)
44  U=—[D~(X' + 5)F ' 51(D =5 F' ST - U".

H

We now turn to local stability. We shall see that, in general, the four
processes are not necessarily simultaneously stable. To study the question, we
first recall a few results on the stability of systems of linear differential equa-
tions.
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Lemsa 5. The system of differential equations % = Ax is stable’

(a) if all the characteristic roots of A have negative real parts.
(b) (Negative Definiteness) if A is (quasi) negative definite®
(¢) (Diagonal Dominance) if a;<0 all i and there exist numbers ¢;>0 such
that ¢;lay| > ‘F;.cjla,.jf all i,
PR

Lemma 6.° Let G be a quasi negative definite matrix and H be a positive
definite symmetric matrix. Then the roots of HG (and GH) have negative real
parts.

4.1. Simultaneously stable systems. There are two general cases in which
the four systems can be shown to be stable at the same time. These cases are
discussed in the theorems and corollaries which follow.

TuBorEM 3. If the income effects vanish, ie., if SD ' X'=0 and X' F~' §
=0, the processes are simultaneously locally stable.

Proor. If S D! X' and X' F~! §=0, we have

p=(F -8D' 85 -5
To= — 2T — 7%
%=(D—§ F 11 §)(@ - a%)

U= —(0-0U»

In Lemma 3, we proved that F—~§ D1 §' and D—§ F~' § are negative definite.
Processes p and a are thus stable. It is obvious that the = and U processes are
stable since — I is negative definite.

CoroOLLARY 1. If there is no trade at equilibrium, the processes are simul-
taneously locally stable.

Proor. The no trade at equilibrium situation implies X=0, X=0 and
X=0; hence § D' X'=0 and X' F-' §=0 and the assumptions of Theorem
3 are satisfied.

CoroLLARY 2. Ifthe matrices V; (i=1, 2,..., r) are all identical, the processes
are simultaneously locally stable.

Proor. We show that § D"' X’ and X' F~! § vanish, as in Theorem 3.
Indeed, if all Vs are equal to ¥, D7! is a diagonal matrix with diagonal terms

" There are some other cases which we do not consider here, e.g., Mukerji [1972], Ohyama
[1972] and Rader [1977].

® The matrix 4, not necessarily symmetric, is quasi negative definite if, for x=0, x’Ax<0.

¥ For a proof, see Karlin [1954, p. 332].
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equal to (p" V7' p)~', a scalar. Hence, SD" 1 X'=5"1§ ¥'=p1 J O tPX
=D IVt p Vi pV 1 1T =D1T V-1 >x;=0(D is a diagonal (n—1)
matrix with diagonal terms equal to (p' V=1 p)='; [ is the identity matrix with
the last row deleted).

Likewise, if V=V, F=r V"' gnd X F-! S‘:—}; X Vv-tp..p-t p}=~117

X'[p-p]=0.
The assumptions of Theorem 3 are thus satisfied and the result follows.

Instability can thus result only from income effects — a well-known conclusion
of classical titonnement analysis, which carries over to the broader range of
processes considered here. The “‘income effects” are respectively

p process: -8 D1 X
n process: [F—8D-1§7-1§p1 X
o process: — X' F-1 §
U process: X' F~! §[D— § F-1 §]1,

It does not seem possible to draw up general rules about these matrices, which
would ensure the simultaneous stability of the processes. The only result which
can apparently be stated is the weak theorem

THEOREM 4. If the matrix of the p (or &) process is quasi negative definize,
then the p and n (or « and U) processes are simultaneously stable.

Proor. The conclusion follows from Lemma 6.

COROLLARY 3. If the matrix § D= X' is quasi positive semi definite, then
the p and the 1 processes are simultaneously stable. If the matrix X' F1 §
is quasi positive semi definite, the « and the U processes are simultaneously
stable.

Proor. We know that F~§ D=1 §' is negative definite. The assumption of
the corollary implies that [F— 5 D='(X +5§")] is negative quasi definite. Using
Theorem 4, we see that the p and 7 processes are stable. Similar reasoning
proves the assertion concerning the « and U processes.

Some other (rather unlikely) cases can be found in which some of the processes
would be simultaneously stable. One of them is given in Mantel [1971, p. 429]
for the p- and the a-process. Others can be found by imposing severe restric-
tions on the matrices of the processes, which would be meaningless from the
economic viewpoint and impossible to check in practice.

4.2. Other cases. It is obvious that the conditions stated for simultaneous
stability are far from being general. Indeed, it seems in general impossible to
infer the properties of one process from the properties of another. Mantel
gives an interesting example of this in showing that if there are two consumers
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and several goods, the o-tAtonnement will always converge, although the p-
tatonnement is not necessarily convergent.

It seems thus worthwhile to devise alternative adjustment rules, the properties
of which are likely to be different.

University of Brussels, Belgium
University of Louvain, Belgium
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