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Abstract

We extend a recently developed DEA methodology for cost efficiency anal-

ysis towards profit efficiency settings. This establishes a novel DEA toolkit

for profit efficiency assessments in situations with multiple inputs and multiple

outputs. A distinguishing feature of our methodology is that it assumes output-

specific production technologies. In addition, the methodology accounts for the

use of joint inputs, and explicitly includes information on the allocation of in-

puts to individual outputs. We also establish a dual relationship between our

multi-output profit inefficiency measure and a technical inefficiency measure

that takes the form of a multi-output directional distance function. Finally,
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we demonstrate the empirical usefulness of our methodology by an empirical

application to a large service company.

Keywords: DEA, multiple outputs, profit efficiency, joint inputs, output-

specific inputs, directional distance function.
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1 Introduction

Production processes that generate multiple outputs are typically characterized by

jointly used inputs, i.e. inputs that simultaneously benefit different outputs. These

joint inputs give rise to economies of scope, which actually form a prime economic

motivation for Decision Making Units (DMUs) to produce more than one output. In

the current paper, we establish a methodology for multi-output profit efficiency eval-

uation that explicitly accounts for jointly used inputs. In particular, our methodology

distinguishes between joint inputs and inputs that are allocated to specific outputs.

The method that we develop fits within the popular Data Envelopment Analysis

(DEA; after Charnes, Cooper and Rhodes (1978)) approach to productive efficiency

measurement. This DEA approach is intrinsically nonparametric, which means that

it does not require a parametric/functional specification of the (typically unknown)

production technology. It “lets the data speak for themselves” by solely using techno-

logical information that is directly revealed by the observed production units. It then

reconstructs the production possibility sets by (only) assuming standard production

axioms (such as monotonicity and convexity).1 A DMU’s efficiency is measured as the

distance of the corresponding input-output combination to the efficient frontier of this

empirical production set. Typically, a DMU’s efficiency can be computed by simple

linear programming. Its nonparametric nature and its easy computation largely ex-

plain DEA’s widespread use as an analytical research instrument and decision-support

tool.

Recently, Cherchye et al (2013, 2014a) introduced a novel DEA methodology to

1See Fare, Grosskopf and Lovell (1994), Cooper, Seiford and Zhu (2004), Cooper, Seiford and
Tone (2007), Fried, Lovell and Schmidt (2008) and Cook and Seiford (2009) for extensive reviews of
DEA. From an economic perspective, DEA itself is rooted in the structural approach to modeling
efficient production behavior that was initiated by Afriat (1972), Hanoch and Rothschild (1972),
Diewert and Parkan (1983) and Varian (1984). Given the explicit economic motivation of our
following analysis, our contribution also fits in this tradition of structural efficiency analysis.
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analyze cost efficiency in multi-output settings. The methodology assumes output-

specific production technologies, accounts for joint inputs in the production process,

and incorporates specific information on how inputs are allocated to individual out-

puts. These authors have also shown that their cost efficiency measure evaluated at

shadow prices is dually equivalent to a specific multi-output version of the Debreu

(1951) - Farell (1957) measure of (radial) input efficiency. This is an attractive fea-

ture, as DEA practitioners often use this Debreu-Farrell measure for evaluating the

technical efficiency of a DMU’s input use (when assuming a fixed output).

The current paper extends this methodology for multi-output efficiency assess-

ments to profit efficiency settings. We strongly believe this provides a significant

and relevant addition to the existing cost efficiency framework. In many practical

settings, profit efficiency is considered to be the best suited criterion for evaluating

the performance of productive activities. In addition, by its very definition cost ef-

ficiency is a necessary condition for profit efficiency. Profit efficiency evaluations are

generally more stringent than cost efficiency evaluations. As a result, they can signal

additional sources of inefficiency and, thus, potential performance improvements. In

this respect, as we will indicate, an appealing feature of our multi-output approach is

that it also allows us to allocate a DMU’s aggregate profit inefficiency to individual

outputs. This helps to better identify specific output production processes where sub-

stantial profit efficiency gains are possible, which can usefully assist DMU managers

to direct their performance improvement actions in an effective way (i.e. primarily

towards outputs that are characterized by considerable inefficiency).

In developing our profit efficiency methodology, we also start from output-specific

technologies and distinguish between joint inputs and output-specific inputs in the

process of multi-output production. Next, we will show that our profit inefficiency

measure under shadow prices has a dual representation as a directional distance func-
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tion. We believe this is an interesting property, as directional distance functions have

become increasingly popular as a technical inefficiency measure that simultaneously

includes outputs produced and inputs used. Basically, this duality result extends the

one of Chambers, Chung and Fare (1998) towards our specific multi-output setting. A

particular feature of our analysis here is that we explicitly account for output-specific

technologies with jointly used inputs in establishing the duality relationship.

The rest of the paper is structured as follows. Section 2 introduces some necessary

notation and terminology. Section 3 introduces our method for multi-output profit

inefficiency measurement. Section 4 establishes the dual representation of our profit

inefficiency measure as a directional distance function. Section 5 shows the practical

usefulness of our method through an application to a large service company. Section

6 concludes.

2 Preliminaries

The distinction between inputs and outputs becomes less relevant in profit efficiency

analysis. Therefore, to simplify notation it will often be convenient to work with

“netputs” in our following exposition. As we will explain, netput vectors simul-

taneously capture inputs used (as negative components) and outputs produced (as

positive components). We will define this netput concept for our specific setting

with joint and output-specific inputs. In turn, this will allow us to introduce our

notion of output-specific technologies and, correspondingly, our particular concept of

multi-output profit.

Netputs and multi-output technologies. We consider a production technol-

ogy that uses N inputs to produce M outputs, which we represent by the vectors
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X = (x1, . . . , xN)′ ∈ RN
+ and Y = (y1, . . . , yM)′ ∈ RM

+ , respectively. Our method

distinguishes between joint and output-specific inputs.

• Output-specific inputs are allocated to individual outputs m, i.e. they specifi-

cally benefit the production process of (only) the m-th output. In our formal

analysis, we will use αmk ∈ [0, 1] (with
∑M

m=1 α
m
k = 1) to represent the fraction

of the k-th output-specific input quantity that is allocated to output m.

• Joint inputs are not allocated to specific outputs but are simultaneously used in

the production process of all the outputs. Clearly, these joint inputs generate

interdependencies between the production processes of different outputs.2

We will represent the allocation of inputs to outputs by means of a vector Am ∈

RN
+ for each output m, for which the entries are defined as (with αmk ∈ [0, 1] and∑M
m=1 α

m
k = 1)

(Am)k =


1 if input k is joint and used to produce output m,

αmk if input k is output-specific and used to produce output m,

0 if input k is not used to produce output m.

Then, each vector Am defines the input vector Xm = Am �X, which thus contains

the input quantities used in the production process of output m.3

As indicated above, we can often simplify our notation by working with net-

puts, which simultaneously stand for outputs and inputs. Specifically, we use Z = Y

−X

 ∈ RM+N to denote the aggregate netput vector. In a similar vein, Zm =

2See Cherchye, De Rock and Walheer (2015) for the introduction of sub-joint inputs. These
inputs play a similar role as joint inputs, but only for a subset of (instead of all) outputs. It is
straightforward to include this third type of inputs in our methodology, but for the ease of the
exposition we abstract from this in the current paper.

3The symbol � stands for the Hadamard (or element-by-element) product.
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 ym

−Xm

 ∈ R1+N
+ represents the netput vector that is specific to output m.

Our multi-output analysis will involve a specific representation of each output

m’s production technology. This technology defines the output-specific production

possibility set

Tm = {Zm ∈ R1+N | Zm is technically feasible},

which contains all the combinations of output-specific and joint inputs (in Xm) that

can produce the output quantity ym.

Prices and profits. To define profit, we use Px = (p1x, . . . , p
N
x )′ ∈ RN

+ for input

prices and Py = (p1y, . . . , p
M
y ) ∈ RM

+ for output prices. Correspondingly, the netput

price vector is given as P =

 Py

Px

 ∈ RM+N
+ .

To incorporate our distinction between output-specific and joint inputs, we make

use of output-specific input prices Pm
x ∈ RN

+ . First, for output-specific inputs, these

prices coincide with the actual prices, i.e.

(Pm
x )k = (Px)k for k an output-specific input.

Next, following Cherchye et al (2013, 2014a) we make use of output-specific prices

(Pm
x )k for every joint input k. Essentially, these prices (Pm

x )k capture the fractions of

the aggregate input price (Px)k that are allocated to individual outputs m. Efficient

production requires the output-specific prices (Pm
x )k to add up to the aggregate DMU-

level prices, i.e. they must satisfy

M∑
m=1

(Pm
x )k = (Px)k for k a joint input.
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As explained in detail by Cherchye, De Rock and Vermeulen (2008), these output-

specific prices have a similar interpretation as Lindahl prices for public goods. Specif-

ically, Pareto efficient provision of public goods equally requires these Lindahl prices

to sum up to the aggregate prices.

Taken together, the output-specific price vector Pm for each output m is given as

Pm =

 pmy

Pm
x

 .
Correspondingly, for every output m we can define the output-specific profit

πm = Pm′
Zm.

In turn, by summing these output-specific profit, we obtain the aggregate profit4

π =
M∑
m=1

πm =
M∑
m=1

Pm′
Zm = P′Z.

The last equality also shows that summing the profit levels associated with indi-

vidual netputs Zm yields, by construction, the DMU’s profit level defined in terms of

the aggregate netput Z. Given this, we will work with the sum profit
∑M

m=1 Pm′
Zm

in what follows, without explicitly considering P′Z.

3 Multi-output profit efficiency

In practice, the true production technology is typically unknown. Therefore, in em-

pirical efficiency evaluations, we need to reconstruct the production possibilities from

4To obtain the last equality we use that∑M
m=1 P

m′
Zm =

∑M
m=1(pmy ym)−

∑M
m=1 (Pm′

x Xm) = P′yY −P′xX = P′Z.
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a set of T observed DMUs. In what follows, we assume a setting in which we ob-

serve, for each DMU t, the netput vectors Z1
t , . . . ,Z

M
t , which contain the joint and

output-specific inputs, as well as the resulting outputs.

In the current section, we will additionally assume that the empirical analyst

also observes the associated netput price vector Pt =

 Py,t

Px,t

 ∈ RM+N
+ . At this

point, two remarks are in order. First, the assumption of observed prices is often

restrictive in empirical settings. In the next section, we will show how we can relax this

assumption by using shadow prices. Second, throughout we will assume that we do

not have any information about the output-specific prices for the joint inputs, which

typically holds true in practical applications (including our own application in Section

5). However, it is worth to indicate that, if extra information on output-specific prices

were available, it would actually be fairly easy to integrate this information in our

profit efficiency analysis.

Taken together, we assume that we observe a data set

S = {(Z1
t , . . . ,Z

M
t ,Pt) | t = 1, . . . , T}.

Empirical efficiency criterion. Following a nonparametric approach, we recon-

struct the production possibilities while avoiding (non verifiable) parametric assump-

tions regarding the DMUs’ technologies. In our profit efficiency analysis, we (only)

use the following minimalistic prior regarding the production possibility sets.

Axiom T1 (observability means feasibility): Observing the netputs Z1
t , . . . ,Z

M
t

implies for all m = 1, . . . ,M that Zm ∈ Tm.

This axiom has a very natural interpretation. Basically, it says that what we
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observe is certainly feasible. Or, if we observe the netput vector Zm
t =

 ymt

−Xm
t

,

then we conclude that the input Xm
t can effectively produce the output ymt .5

Adopting our above notation of the previous section, we let Pm
t =

 pmy,t

Pm
x,t

 rep-

resent the m-th output-specific prices for DMU t, with the subvector Pm
x,t containing

the prices for the output-specific and joint inputs as characterized in Section 2. Then,

building on Axiom T1, we obtain our empirical condition for profit efficient produc-

tion behavior.

Definition 1 (Profit efficiency): Let S = {(Z1
t , . . . ,Z

M
t ,Pt) | t = 1, . . . , T} be a

data set. Then, DMU t is profit efficient if there exist, for all outputs m, output-

specific price vectors Pm
t =

 pmy,t

Pm
x,t

 ∈ R1+N
+ , such that

(i) (Pm
x,t)k = (Px,t)k for output-specific inputs k,

(ii)
∑M

m=1(P
m
x,t)k = (Px,t)k for joint inputs k,

(iii) Pm′
t Zm

t ≥ Pm′
t Zm

s for all observations s = 1, . . . , T .

In words, this definition states that DMU t is profit efficient if, for the input and

output prices that apply to t (captured by Pm
t for every output m), there does not

exist another observed DMU s (with netput vector Zm
s ) that attains a larger profit.

As such, given our multi-output setting, we have a separate profit efficiency criterion

for each different output m.

While we do observe the aggregate prices Pt, we typically do not observe the

output-specific prices Pm
t because of jointly used inputs (i.e., for a joint input k, we

5Essentially, this axiom excludes measurement errors. Importantly, however, it is fairly easy to
extend our methodology to account for measurement problems. For compactness, we will not discuss
this question here, but refer to Cherchye et al (2013) for a detailed treatment.
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do not observe the price fraction (Pm
x,t)k that is borne by m). Therefore, the criterion

in Definition 1 (only) requires that there exists at least one possible specification

of these prices that makes the observed behavior of DMU t consistent with profit

efficiency. As soon as such a specification exists, we conclude that profit efficient

behavior cannot be rejected given the information that is available (contained in the

data set S).

Measuring profit efficiency. In practice, if a DMU t does not meet the profit

efficiency criterion in Definition 1, we quantify the degree of profit inefficiency as the

extent to which actual profit deviates from maximum profit. In what follows, we will

introduce a method to measure profit inefficiency in our multi-output framework. In

doing so, we will adapt the “directional” profit efficiency framework of Chambers,

Chung and Fare (1998) to our particular setting.

As a first step, we define, for each output m, the profit function

πmt (Pm
t ) = max

s∈{1,...,T}

(
Pm′

t Zm
s

)
,

which gives the maximum attainable profit over the observed set S for the prices Pm
t

that apply to DMU t. Correspondingly, when summing over all outputs m, we obtain

the aggregate profit function

πt(P
1
t , ...,P

M
t ) =

M∑
m=1

πmt (Pm
t ).
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In the sequel, we will focus on the profit inefficiency measure6

PEC
t (P1

t , ...,P
M
t ) =

∑M
m=1 π

m
t (Pm

t )−
∑M

m=1

(
Pm′
t Zm

t

)∑M
m=1 Pm′

t gZm

,

which we see as a natural translation of Chambers et al’s “directional” profit inef-

ficiency measure to our specific multi-output setting. In this definition, each gZm

represents the directional distance vector for the output m.7 Equivalently, we can

also express it as gZm =

 gym

gXm

, with gym ∈ R and gXm ∈ RN defining the output

and input directions, respectively. In practice, these directional vectors are chosen by

the empirical analyst prior to the actual efficiency evaluation (see our own application

in Section 5 for example specifications of gZm). Clearly, PEC
t (P1

t , ...,P
M
t ) = 0 reveals

profit efficiency, while higher values PEC
t indicate a greater degree of profit inefficient

behavior.

In general, the value of the measure PEC
t (P1

t , ...,P
M
t ) will depend on the output-

specific input prices that are used to evaluate the joint inputs (and contained in

(P1
t , ...,P

M
t )). As indicated above, these prices are typically not known by the em-

pirical analyst. In what follows, we will choose prices that minimize the value of the

profit inefficiency measure PEC
t for DMU t under evaluation, i.e. we solve

PEC
t = min

P1
t ,...,P

M
t ∈R

1+N
+

PEC
t (P1

t , ...,P
M
t ),

where each output-specific price vector Pm
t is subject to the conditions outlined in

6We assume that the denominator (
∑M

m=1 P
m′

t gZm) is positive. For the shadow profit ineffi-

ciency measure P̂E
C

t that we introduce below, this is guaranteed by the normalization constraint∑M
m=1 P̂

m′

t gZm = 1.
7In DEA applications, the directional vectors are often DMU-specific, i.e. we have gZm = gZm

t
.

It is common in the literature to drop the subscript t for compactness.
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Definition 1. Intuitively, by minimizing the profit inefficiency, we actually choose

“most favorable” prices Pm
t for DMU t under evaluation. In other words, we evaluate

DMU t in the best possible light, which gives this DMU the benefit of the doubt

in the absence of true price information. Attractively, this falls in line with usual

DEA efficiency analysis, which typically can be given a similar benefit-of-the-doubt

interpretation.8

We conclude that DMU t meets our empirical profit efficiency criterion in Defini-

tion 1 if and only if PEC
t = 0. In that case, there effectively does exist a specification

of the prices Pm
t that makes the observed production behavior profit maximizing over

the data set S. By contrast, profit inefficiency occurs if PEC
t > 0, with higher values

revealing a greater degree of profit inefficiency.

As a final remark, we note that the measure PEC
t can be computed by means

of linear programming. The associated program has a structure that is formally

analogous to the one of (LP-1) that we present below.9 Given this direct similarity,

and for the sake of compactness, we do not report it here.

4 Shadow prices and duality

In the previous section, we have assumed that the empirical analyst knows the netput

price vector Pt for every DMU t. In practical applications, however, reliable price

information is often not available. In such a case, we can conduct efficiency analysis

with endogenously defined shadow prices. In what follows, we will apply this shadow

8See, for example, Cherchye et al (2007) for a detailed discussion of the benefit-of-the-doubt
interpretation of common DEA models.

9The only difference between the linear program for PEC
t and the program (LP-1) for P̂E

C

t

involves the inclusion of the price information contained in the data set S (whereas (LP-1) applies
to shadow pricing). This price information is easily included in the form of linear constraints, which
obviously does not interfere with the linear programming nature of (LP-1).
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pricing idea to the multi-output profit efficiency framework set out above. Next, we

will show that the resulting profit inefficiency measure (under shadow prices) has

a dually equivalent representation as a multi-output directional distance function,

which establishes a multi-output version of the original duality result in Chambers,

Chung and Fare (1998).

Shadow prices. If we do not observe the true prices that apply to each DMU t,

the relevant data set becomes

Ŝ = {(Z1
t , . . . ,Z

M
t ) | t = 1, . . . , T}.

When only Ŝ (instead of S) is given, we are forced to use a weakened version of

the efficiency criterion in Definition 1. Specifically, we can (only) check whether there

exists at least one feasible “shadow” price specification that supports profit efficiency

of the evaluated DMU t.

Definition 2 (Shadow profit efficiency): Let Ŝ = {(Z1
t , . . . ,Z

M
t ) | t = 1, . . . , T}

be a data set. Then, DMU t is shadow profit efficient if there exist, for each output

m, non-zero output-specific shadow price vectors P̂m
t =

 p̂my,t

P̂m
x,t

 ∈ R1+N
+ such that

P̂m′
t Zm

t ≥ P̂m′
t Zm

s for all observations s = 1, . . . , T .

In this case, we can choose the shadow price vector P̂m
t freely (except from the

non-zero and nonnegativity constraints). Implicitly, the shadow prices (P̂
m

x,t)k for the

joint inputs k define the (aggregate) DMU prices (P̂x,t)k =
∑M

m=1(P̂x,t)k. Next, we

note that shadow prices for the output-specific inputs can be different for different

outputs, i.e. for output-specific inputs k we can have (P̂m
x,t)k 6= (P̂m′

x,t)k whenm 6= m′.10

10In principle, of course, one can impose the constraint that (P̂m
x,t)k = (P̂m′

x,t)k for some output-
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Following our reasoning of the previous section, we can evaluate our shadow

profit efficiency criterion by the following efficiency measure, which endogenizes the

(shadow) price selection in the efficiency evaluation process:

P̂E
C

t = min
P̂1

t ,...,P̂
M
t ∈R

1+N
+

∑M
m=1 π

m
t (P̂m

t )−
∑M

m=1

(
P̂m′
t Zm

t

)
∑M

m=1 P̂m′
t gZm

.

Similar to before, P̂E
C

t selects the most favorable netput price vectors P̂m
t to

evaluate DMU t’s shadow profit efficiency, which effectively applies the benefit-the-

doubt pricing in the absence of full price information. It is easy to verify that DMU t

satisfies the shadow profit efficiency criterion in Definition 2 if and only if P̂E
C

t = 0,

which reveals that there exists at least one possible specification of the shadow price

vectors P̂m
t under which DMU t is profit maximizing over the data set Ŝ.

To operationalize the measure P̂E
C

t , we need to normalize the denominator. In

what follows, we will use
M∑
m=1

P̂m′

t gZm = 1.

Then, we can formulate our (shadow) profit inefficiency measure P̂E
C

t as solving

specific input k (and m 6= m′), which obtains a stronger efficiency criterion. We refer to Cherchye,
De Rock and Hennebel (2014b) for an exploration of such a stronger criterion in a multi-output cost
efficiency setting that is formally close to the profit efficiency setting that we consider here.
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the linear program (LP-1)

P̂E
C

t = min
π̂1
t ,...,π̂

M
t ∈R,

P̂1
t ,...,P̂

M
t ∈R

1+N
+

M∑
m=1

π̂mt −
M∑
m=1

(
P̂m′

t Zm
t

)

s.t.

∀m ∈ {1, . . . ,M} : π̂mt ≥ P̂m′

t Zm
s for all s ∈ {1, . . . , T},

M∑
m=1

P̂m′

t gZm = 1,

where each π̂mt represents πmt (P̂m
t ), i.e. the maximum attainable profit (over the data

set Ŝ) in the production of output m given the output-specific prices P̂m
t that apply

to the evaluated DMU t.

As a final note, apart from the “aggregate” profit inefficiency measure P̂E
C

t , we

can also define profit inefficiency measures P̂E
C,m

t that are specific to individual

outputs m. In particular, let π̂m∗t and P̂m∗
t solve the above linear problem. Then, we

can use

P̂E
C,m

t =
π̂m∗t − P̂m∗′

t Zm
t

P̂m∗′
t gZm

Clearly, for P̂E
C

t = 0 we will have P̂E
C,m

t = 0 for all m. However, if P̂E
C

t > 0, the

measures P̂E
C,m

t allow us to allocate DMU t’s profit inefficiency to specific outputs.

We will illustrate this feature in our empirical application in Section 5.

Dual representation. Interestingly, our shadow profit inefficiency measure has a

dual representation as a multi-output version of the directional distance function in-

troduced by Chambers, Chung and Fare (1998). We believe this is an appealing

property as directional distance functions are frequently used in DEA technical effi-

ciency evaluations that simultaneously account for inputs used and outputs produced.
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This directional distance function representation appears from the dual version

of our linear program (LP-1). Specifically, let λms represent the dual variables for

the first constraint (for each output m and DMU s) and β the dual variable for the

second constraint of that program. Then, the dual can be written as (LP-2)

P̂E
C

t = max
λ1s,...,λ

M
s ,β∈R+

β

∀m ∈ {1, . . . ,M} :
T∑
s=1

λms Zm
s ≥ Zm

t + βgZm ,

∀m ∈ {1, . . . ,M} :
T∑
s=1

λms = 1.

To interpret P̂E
C

t as a multi-output version of the directional function, we first

note that in the case of a single output m, Chambers et al’s original version of the

general directional distance function is defined as

~D(Zm
t ; gZm) = max {β| (Zm

t + βgZm) ∈ Tm} .

As a natural extension towards our framework with output-specific technologies,

we can define the multi-output version of this distance function as

~D(Z1
t , . . . ,Z

M
t ; gZ1 , . . . ,gZM ) = max {β|∀m ∈ {1, . . . ,M} : (Zm

t + βgZm) ∈ Tm} .

Then, it is easy to see that we obtain

P̂E
C

t = ~D(Z1
t , . . . ,Z

M
t ; gZ1 , . . . ,gZM ),

17



if we define the production possibility set of output m as

Tm = {Zm | Zm ≤
T∑
s=1

λms Zm
s ,

T∑
s=1

λms = 1, λms ≥ 0},

i.e. the convex monotone hull of the observed netput vectors Zm
s . Actually, this

convex monotone hull of observed netput vectors is often used as an (empirical) pro-

duction possibility set in practical DEA analysis. Banker, Charnes and Cooper (1984)

first proposed this technology specification in the DEA literature.11 A distinguishing

feature of our framework is that it uses this specification to construct a production

possibility set for each different output m. This follows naturally from our particu-

lar set-up, which explicitly considers output-specific production technologies (while

accounting for interdependencies through joint inputs).

Summarizing, we conclude that our shadow profit inefficiency measure can also

be represented as a multi-output technical inefficiency measure. In particular, it can

be characterized as a multi-output directional distance function defined for output-

specific technologies that are convex and monotone. A specific feature of this char-

acterization is that it accounts for joint input use in the process of multi-output

production.

11Banker, Charnes and Cooper (1984) show that we obtain the convex monotone hull as a DEA-
type technology approximation if we add the technology assumptions convexity and monotonicity
to our Axiom 1. In words, monotonicity implies that the outputs and inputs are freely (or strongly)
disposable; i.e. producing less outputs cannot lead to use more inputs and using more inputs never
reduces the outputs. It also implies that marginal rates of substitution/transformation (between
inputs, outputs, and inputs and outputs) are nowhere negative or, in other words, there is no
congestion. Next, convexity says that convex combinations of feasible netput vectors are themselves
also technically feasible. This implies that marginal rates of substitution/transformation (between
inputs, output and inputs and outputs) are nowhere increasing. The fact that the dual representation
of our shadow profit inefficiency measure implies a production set that is convex and monotone
follows from the result that these technology properties are essentially “irrelevant” for profit efficiency
analysis (i.e. imposing the properties will not interfere with the profit efficiency results). See, for
example, Varian (1984) for a detailed discussion of this last point.
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5 Application

We illustrate the empirical usefulness of our (shadow) profit efficiency method by an

application to the input and output data that were also analyzed by Cherchye et al

(2013) in their original study. These authors specifically focused on multi-output cost

efficiency. Thus, we complement this first study by assessing the profit efficiency of

the same DMUs. In the following, we will first discuss the specificities of our data.

Subsequently, we present the findings of our empirical analysis. After showing our

results for DMUs’ aggregate profit inefficiency, we also consider output-specific profit

inefficiencies.

The data. Our data set contains input and output information for 290 offices

(DMUs) of a large European service company. Each DMU uses 7 inputs, i.e. three

types of labor (x1, x2 and x3), three types of transport (x4, x5 and x6) and other over-

head cost (x7), for the production of 7 outputs. Thus, we have N = 7 and M = 7.

The service company uses an “activity-based costing system”, which allows us to al-

locate the first 6 inputs to the specific outputs. That is, adopting the terminology

of Section 2, the three types of labor and transport are output-specific, i.e. they can

be allocated to the 7 individual outputs. The other overhead cost is modeled as a

joint input, which simultaneously benefits the production of all 7 outputs. We refer

to Cherchye et al (2013) for more detailed information on the input and output data

that we use.12

Because we have no data on input and output prices, we conduct a shadow profit

efficiency analysis by using the methodology that we presented in Section 4. That

is, we evaluate each DMU’s profit efficiency in the best possible light by using “most

12Cherchye et al (2013) also explain that confidentiality and strict non-disclosure agreements
prohibit us from providing more details on the nature and operations of the service company under
study.
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favorable” input and output prices. In doing so, we do impose some restrictions on

the shadow prices for the inputs. In particular, we use the restrictions that were also

used by Cherchye et al (2013) for the same data, and which have been defined in

consultation with the management of the service company.

Multi-output profit efficiency. To compute the shadow profit inefficiency mea-

sure P̂E
C

, we first need to specify the directional vector gZm for each output m. To

demonstrate the versatility of our approach, we will consider three different direc-

tional vectors. These three directional vectors are the most popular ones in applied

DEA analysis and, as we will explain below, imply alternative interpretations of the

observed degree of profit inefficiency. The first two directional vectors are:

• gZm = (ym,0) for each output m, which measures profit inefficiency in terms of

proportional output increase, and

• gZm = (0,Xm) for each output m, which measures profit inefficiency in terms

of proportional input reduction.

An attractive feature of these directional vectors is that they imply shadow profit

inefficiency measures that have a dual representation in terms of the input and output

oriented Debreu (1951) - Farrell (1957) technical efficiency measures, respectively.13

The third specification of the directional vector is:

13In particular, gZm = (ym,0) obtains (a multi-output version of) the Debreu-Farrell output mea-

sure (DFO) minus one as the outcome of our program (LP-2), i.e. P̂E
C

= DFO−1 (where DFO ≥ 1
and DFO = 1 indicates efficiency). Similarly, gZm = (0,Xm) obtains one minus (a multi-output

version of) the Debreu-Farrell input measure (DFI) as the outcome of (LP-2), i.e. P̂E
C

= 1−DFI

(where DFI ≤ 1 and DFI = 1 indicates efficiency). See, for example, Chambers, Chung and Fare
(1998) and Fare and Grosskopf (2000) for a detailed discussion on the relations between directional
distance functions and Debreu-Farrell efficiency measures (including dual representations). Using
our results in Section 4, we can extend these authors’ arguments to our particular multi-output
setting.

20



• gZm = (ym,Xm) for each output m, which measures profit inefficiency in terms

of equiproportional output increase and input reduction.

We opt for using this additional specification because it simultaneously considers

output and input improvements in the DMUs’ efficiency assessment. Basically, in its

dual form, the resulting profit inefficiency measure combines the Debreu-Farrell input

and output efficiency measures in a single metric.

Table 1 summarize our results for these three directional vectors. P̂E
C,E

refers

to profit inefficiency with equiproportionate output increase and input reduction,

P̂E
C,I

to profit inefficiency with input reduction only, and P̂E
C,O

to profit inefficiency

with output increase only. We provide summary statistics on the distribution of the

inefficiency measures as well as information on the number of efficient DMUs (in

absolute and relative terms).14

Interestingly, we observe quite some variation in profit inefficiency across the

DMUs in our sample, for all three directional vectors under consideration. For the

measure P̂E
C,E

the mean profit inefficiency amounts to 15.9%. This implies that,

on average, DMUs should equiproportionally reduce inputs and expand outputs by

15.9% to attain shadow profit efficiency. Next, for the measure P̂E
C,I

, we find a

mean inefficiency of 26.9%. Thus, if output is kept fixed, we need an average input

reduction of 26.9% to achieve efficiency.15 Finally, the mean value of P̂E
C,O

equals

31.1%, which signals that profit efficiency requires an average output expansion of

31.1% when inputs are fixed at their given level.

14It can be verified that, for a given DMU, the value of P̂E
C,E

can never exceed the values of

P̂E
C,O

and P̂E
C,I

, by the very construction of these measures. This definitional property also
appears from the results in Table 1.

15These results for P̂E
C,I

are directly comparable with the cost efficiency results in the column
“Basic” in Panel A of Table 2 in Cherchye et al (2013), which equally measure (in casu cost) efficiency
in terms of proportional input reduction. As we can expect a priori, the efficiency scores based on
profit maximizing behavior are lower due to the more stringent nature of the underlying efficiency
criterion.
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As a final remark, note that the numbers of efficient offices is the same for the

three directional vectors. This could be expected a priori, as the benchmark of shadow

profit efficient behavior is the same for the three exercises. The basic difference be-

tween these exercises relates to the way in which we measure the degree of inefficiency

(i.e. the directional vectors), which indicates alternative possible strategies to “rem-

edy” observed profit inefficiencies (i.e. through (only) input reduction, (only) output

expansion or simultaneous input reduction and output expansion).

P̂E
C,E

P̂E
C,I

P̂E
C,O

Min 0 0 0
Mean 0.159 0.269 0.369

Median 0.149 0.283 0.311
Max 0.649 0.790 1

St. dev. 0.12 0.13 0.15
#Efficient 33 33 33
%Efficient 11.38 11.38 11.38

Table 1: Multi-output profit efficiencies

Output-specific multi-output profit efficiency. As indicated in Section 4, we

can allocate a DMU’s aggregate profit inefficiency to individual outputs by computing

output-specific profit inefficiencies. We believe this provides useful management input

as it helps to better identify specific output production processes where substantial

profit efficiency gains are possible. By using this information, DMU managers can

direct their performance improvement actions in a more effective way.

We will illustrate this practice for the (aggregate) profit inefficiency measure

P̂E
C,E

. Table 2 summarizes our results.16 In that table, each P̂E
C,m

gives the

profit inefficiency specific to output m (m = 1, ..., 7). These measures have the same

interpretation as the aggregate measure P̂E
C,E

, but now the equiproportionate input

16The results for the measures P̂E
C,I

and P̂E
C,O

are reported in Tables 5 and 6 in the Appendix.
The interpretation of these tables is directly analogous to the one of Table 2.
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reduction and output expansion specifically applies to the m-th output production

process.

Table 2 reveals substantial heterogeneity across the 7 outputs. For example, we

find that the production process of output 2 is generally the most inefficient one. It

is characterized by the highest average inefficiency score (no less than 95%) and the

lowest number of efficient DMUs (3.10 % of our sample). By contrast, the produc-

tion process of output 1 appears to be most efficient, in terms of both the average

inefficiency (only 12.1%) and the number of efficient DMUs (31.03 %). It is useful

to relate these observations to the production shares of the 7 outputs that are given

in Table 3. Interestingly, the most efficient output 1 has by far the greatest average

share, whereas the production share of the least efficient output 2 is virtually zero.

P̂E
C,E

P̂E
C,1

P̂E
C,2

P̂E
C,3

P̂E
C,4

P̂E
C,5

P̂E
C,6

P̂E
C,7

Min 0 0 0 0 0 0 0 0
Mean 0.159 0.121 0.950 0.617 0.546 0.393 0.523 0.443

Median 0.149 0.084 1 0.701 0.632 0.390 0.611 0.474
Max 0.649 1 1 1 1 1 1 1

St. dev. 0.12 0.09 0.05 0.13 0.13 0.11 0.13 0.12
#Efficient 33 90 9 29 28 49 27 32
%Efficient 11.38 31.03 3.10 10 9.66 16.90 9.31 11.03

Table 2: Output-specific profit efficiencies

Apart from revealing interesting efficiency patterns at the level of the full sample

of DMUs (see table 2), our output-efficiency scores also provide useful information for

individual DMUs. We illustrate this by means of Table 4, which shows the inefficiency

results for two selected DMUs. DMU 8 is close to profit efficiency in terms of our

aggregate efficiency score, whereas DMU 70 exhibits considerable inefficiency in terms

of its aggregate score.

The output-specific efficiency scores give a more balanced picture of the efficiency

performance of these two DMUs. For example, we find that the high efficiency of
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Share of the
total production

(%)
Output 1 90.78
Output 2 0
Output 3 6.84
Output 4 0.32
Output 5 0.04
Output 6 0.91
Output 7 1.09

Total 100

Table 3: Share of the total production per output (sample average)

DMU 8 is particularly due to its efficient production of the outputs 1, 2, 3 and 7.

However, there is substantial potential to realize efficiency gains in the production

of the outputs 4 and 5 (and also, but to a far lesser extent, in the production of

output 6). As for DMU 70, we find that the high level of aggregate inefficiency is

caused by inefficient production of all the outputs. But, again, we observe substantial

heterogeneity across outputs (with output-specific inefficiencies ranging from 13.8%

to 77.4%).

We believe these two examples clearly show the usefulness of our output-specific

efficiency measures to direct the attention of DMU managers towards individual out-

puts that are characterized by profit inefficiency. Importantly, this holds not only for

DMUs with low efficiency (like DMU 70) but also for DMUs of which the aggregate

performance is close to efficient (like DMU 8).

DMUs P̂E
C

P̂E
C,1

P̂E
C,2

P̂E
C,3

P̂E
C,4

P̂E
C,5

P̂E
C,6

P̂E
C,7

DMU 8 0.061 0 0 0 0.446 0.563 0.050 0
DMU 70 0.218 0.138 0.672 0.282 0.745 0.615 0.774 0.593

Table 4: Output-specific profit efficiencies for selected DMUs
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6 Conclusion

We presented a novel DEA toolkit for profit efficiency analysis in the context of multi-

output production. A distinguishing feature of our methodology is that it assumes

output-specific production technologies. In addition, the methodology accounts for

the use of joint inputs, and explicitly includes information on the allocation of inputs

to specific outputs.

We have specified a multi-output profit inefficiency measure when prices are ob-

served, as well as a shadow profit inefficiency measure that can be used if prices are

unknown. Our framework also allows us to define output-specific profit inefficiency

measures, which allocate a DMU’s aggregate profit inefficiency to individual outputs.

Finally, we established a dual relationship between our multi-output profit inefficiency

measure and a technical inefficiency measure that takes the form of a multi-output

directional distance function.

We illustrated our methodology by an empirical application to a large European

service company. This demonstrated the practical usefulness of our measure for

(shadow) profit inefficiency at the aggregate DMU level. Next, we showed that our

output-specific profit inefficiency measures provide useful management input. They

can identify individual outputs that are characterized by substantial inefficiency, so

that performance improvement actions can be directed primarily towards these out-

puts.
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Appendix

P̂E
C

P̂E
C,1

P̂E
C,2

P̂E
C,3

P̂E
C,4

P̂E
C,5

P̂E
C,6

P̂E
C,7

Min 0 0 0 0 0 0 0 0
Mean 0.269 0.197 0.151 0.633 0.587 0.472 0.576 0.513

Median 0.283 0.162 0 0.795 0.754 0.556 0.732 0.607
Max 0.790 1 1 1 1 1 1 1

#Efficient 33 93 242 51 54 62 46 50
%Efficient 11.38 32.07 83.45 17.59 18.62 21.38 15.86 17.24

Table 5: Output-specific profit inefficiencies for the input reduction direction

P̂E
C

P̂E
C,1

P̂E
C,2

P̂E
C,3

P̂E
C,4

P̂E
C,5

P̂E
C,6

P̂E
C,7

Min 0 0 0 0 0 0 0 0
Mean 0.369 0.272 0.961 0.821 0.817 0.649 0.811 0.755

Median 0.3106 0.179 1 1 1 1. 1 1
Max 1 1 1 1 1 1 1 1

#Efficient 33 85 8 30 28 47 26 30
%Efficient 11.38 29.31 2.76 10.34 9.66 16.20 8.97 10.34

Table 6: Output-specific profit inefficiencies for the output expansion direction
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