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Abstract. In several previous papers we have shown that the resolution of a confocal
scanning microscope can be improved by recording the full image at each scanning point
and then inverting the data. These analyses were restricted to the case of coherent
illumination. In this paper we investigate, along similar lines, the incoherent case, which
applies to fluorescence microscopy. We investigate the one-dimensional and two-
dimensional square-pupil problems and we prove, by means of numerical computations of
the singular value spectrum and of the impulse response function, that for a signal-to-noise
ratio of, say, 10%, it is possible to obtain an improvement of approximately 60% in
resolution with respect to the conventional incoherent light confocal microscope. This
represents a working bandwidth of 3.5 times the Rayleigh limit,

1. Introduction

In a previous paper ([1], hereafter referred to as 1) we have investigated the
improvement in resolution (super-resolution) which can be obtained in confocal
scanning light microscopy (cst.m) when the full image is detected at each step of the
scanning procedure. We recall that in the usual csum the image is detected only on the
optical axis and that the two-dimensional image is the result of the two-dimensional
scanning. In I the analysis was restricted to the coherent case. In this paper we
investigate, along parallel lines, the case of incoherent imaging.

Incoherent csim applies to the imaging of fluorescent objects. In such a case the
intensity of the fluorescent light is proportional to the intensity of the incident
radiation. Then it is easy to show that, when the primary and the fluorescent
wavelengths essentially coincide, the bandwidth of the usual instrument is four times
the bandwidth of the conventional coherent microscope. The improvement in resolu-
tion, however, is only a factor of 1.8 times the classical Rayleigh resolution distance [2].
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This is a consequence of the behaviour of the transfer function of the instrument,
which tends to zero very rapidly at the edges of the band. In other words, the highest
Fourier components of the object in this band are not transmitted in practice by the
instrument. In order to increase the information about these components, one can
consider a modification of the microscope such as that considered in 1. This consists of
detecting the full image at any scanning position and in using data inversion methods
for recovering the transmitted components of the object. In the following we will call
conventional csim the well established technique where the image is detected only on
the optical axis and super-resolving csim the new technique where the full image is
determined by means of a suitable array of detectors. We point out that this new
technique does not modify the transmitted band but introduces a considerable
improvement of the transfer function [3].

If f(x) is the distribution of the fluorescent centres in the focal plane and if §,(x),
Sy(x) are the point-spread functions of the illuminating and of the imaging lenses,
respectively, then, assuming complete incoherence of the fluorescent radiation, the
basic relationship between the object f(x) and the intensity distribution g(x) in the
image plane is

g(x)=f |S2(x = »)P[S:() Pf(y) dy. (1.1)

Notice that, even in the reflection mode of operation [4], the two point-spread
functions do not coincide because the primary and the fluorescent wavelengths are
different. This effect, however, is not large—of the order of 10%—and it can be
neglected in the first approximation.

In this paper the basic relationship will be (1.1). This means that we do not
consider here one of the most interesting properties of fluorescence csim, i.e. the
possibility of obtaining a three-dimensional image of the sample by means of three-
dimensional scanning [4, 5]. Also in this case one can investigate the improvement in
resolution provided by super-resolving csim. This will be the subject of future studies.
Here, as in I, we restrict the analysis to two-dimensional objects or, more precisely, to
objects whose size along the optical axis is of the order of the axial resolution
(approximately 1um). As a consequence we only investigate the improvement in
lateral resolution.

We briefly discuss now the relationship between the basic equation of conventional
csim and that of super-resolving csim. The scanning of the sample consists of
considering all the possible translations of the sample itself. Now, to a translation — &
there corresponds a new object f(x+ &) and a new image g( &, x) which, as follows
from (1.1), is given by

(& x)=jISl(x".v)I:lS:(.r)l:f(.HS)d)h (1.2)

In conventional csim the image is recorded only on the optical axis, i.c. x=0.
Then, if we neglect the finite size of the pinhole, if we ignore the difference between
the two point-spread functions, i.e. 5,(x) =S,(x) = S(x), and if we assume that S(x) is
an even function, then (1.2) implies that the image provided by conventional cSim is

G(§)=IIS(§—.V)I‘I(.V)¢V- (1.3)

where G(&)=g(§.0).
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On the other hand, in super-resolving csim the full image g( &, x) is detected for
any given & (of course, in practice, only a finite set of values of g( &, x) is measured).
Then (1.2) is an integral equation which must be solved to determine f(y+ §). As is
obvious, it is sufficient to recover the object at y =0 since this value is just f( §). More
precisely, we do not obtain the exact value of f( §) but an approximation to it, which
will be denoted by f( &). This approximation is the image provided by super-resolving
csim and this must be compared with the image G( &) provided by conventional csum.

The solution of (1.2) implies the inversion of an integral operator and an important
fact is that this operator is the same for any scanning position. As a consequence, the
inversion algorithm is also independent of the scanning position.

As in I we first consider in detail the one-dimensional problem. In such a case, if
we take the Rayleigh distance associated with the two identical lenses as length unit
and if we assume that the lenses are ideal low-pass filters, then the appropriate
integral equation can be written in the form

g=Af (1.4)
where

(Af)(x) = f " siné(x—y) sin()f(y) dy (15)
and

: _sin(:rx)

sinc(x) = = (1.6)

In §§2 and 3 we investigate several mathematical properties of the integral
operator (1.5) which are relevant to the solution of (1.4). Since the basic tool is the
singular system of the operator (1.5), in §4 we describe a numerical method for the
determination of such a system. This method consists of discretising the integral
equation using the well known sampling expansion of band-limited functions. The
numerical results obtained by means of this method are discussed in §5. In §6 we
determine the impulse response function and the transfer function of the super-
resolving cstm and in this way we determine the improvement in resolution with
respect to the conventional csum. Finally in §7 we extend the results to the two-
dimensional problem in the case of square pupils.

2. The one-dimensional integral operator

As we discussed in § 1, we must investigate the following problem. Given the image
g(x), find the value at y =0 of the solution f(y) of (1.4) and (1.5).

The existence and uniqueness of the solution of this problem are related respect-
ively to the structure of the range and of the null space of the integral operator (1.5).
In fact, a solution of (1.4) exists if and only if g belongs to the range of A, denoted by
R(A). This set will be called the set of the noise-free images. Moreover the solution of
(1.4) is unique if and only if the null space of A, denoted by N(A), is trivial, i.e. if it
coincides with the null element of the space. If N(A) is not trivial, then it is called the
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subspace of invisible objects, since the elements of N(A) produce an image which is
zero everywhere.

We assume that both objects and images are elements of L’( — =, + = ). Then our
first result is the following: the range of A is dense in the subspace of the band-limited
functions with bandwidth 2. The proof is as follows. From (1.4) and (1.5) it is
obvious that a function g € R(A) must be band limited with bandwidth 2z, Therefore,
in order to prove the result it is sufficient to prove that if a band-limited function y(x)
with bandwidth 2 is orthogonal to R(A), then y=0. Now, if y(x) is such that
(y, Af)=0 for any fe L’(— =, + =), this implies that A*y =0, where A* is the
adjoint operator given by

(A‘g)(_v)=sincz(y)fﬂ sinc’(x — y)g(x) dx. (2.1)

Since the function sinc*(y) is different from zero almost everywhere, the equation
A*y =0 is equivalent to

fﬂ sinc’(y — x)y(x) dx=0. (2.2)

Now, the Fourier transform of the function s(x) =sinc’(x) is
1—(1/27)|w| |w|<2x

0 |w|>2x ()

$w)= {
and therefore from (2.2) we derive §(w)y(w)=0 everywhere. It follows that P(w)=0
when |w|<2x and, since y(x) is band limited with bandwidth 2z, it also follows that
y(x) =0 everywhere. This completes the proof of the result.

The previous result implies that a noisy image, in general, does not belong to R(A)
(the noise may not be band limited) and in such a case the solution of (1.4) does not
exist. In other words, the problem is ill posed and one must use well established
techniques, such as regularisation methods, truncated singular function expansions ete
[6] in order to find stable approximate solutions.

As concerns the null space N(A), a complete characterisation will be given in §3.
Here we just point out that N(A) is not trivial and therefore the solution of (1.4) is not
unique. Now, an arbitrary object f(y) can be uniquely decomposed into a component
on N(A), its invisible component, and a component orthogonal to N(A), its transmit-
ted component.

It is obvious that, given the image g, we can at most recover the transmitted
component of the object. The latter is a band-limited function with bandwidth 4, as
follows from (2.1) if we recall that the orthogonal complement of N(A) coincides with
the closure of the range of A*. This result justifies the statement contained in §1,
namely that the bandwidths of super-resolving csim and conventional csum coincide.

Another basic property of the operator (1.5) is compactness. More precisely, the
operator A is of the Hilbert—Schmidt class [7] since its kernel is a square-integrable
function. Then we can introduce the singular system of A, i.e. the set of the triples
{a; g, v} which solve the coupled homogeneous equations

Auy=auu, Ao = auuy. (2.4)

As usual, the singular values «, are ordered in such a way that they form a
decreasing sequence.
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From general properties of the singular functions «;, v, and from the results
derived above we can make the following deductions.

(i) The singular functions &, form an orthonormal basis in the orthogonal comple-
ment of N(A); they are band-limited function with bandwidth 47 and they have
double zeros at the integer sampling points.

(ii) The singular functions v, are band-limited functions with bandwidth 2z and
they form an orthonormal basis in the closure of R(A).

The singular system of the operator A provides a representation of the generalised
solution of (1.4). As is well known, this is a least-squares solution of minimal norm [8].
It is always unique and it exists when g is a noise-free image. Another basic property
of the generalised solution, denoted by f'(y), is that it is orthogonal to N(A).
Therefore the generalised solution coincides with the transmitted component of the
object. Its expansion in terms of singular functions is [9]

.z

!
f)=23 & o) (2.5)

A=0

where (g, v,) denotes the usual scalar product of L*(—o, + ).
Since we are only interested in the value of f'(y) at y =0, in the case of noise-free
data g= Af, from the relation

(8, v)=(Af, v)=(f, A*v) = a:(f, u,) (2.6)
we obtain

1= f T0)f0) dy @7)
where

Ty)= i u (O (y). (2.8)

k=0

If we take into account now the effect of the scanning, i.e. if we replace f(y) by
fy + &), if we denote by f'(£, y) the corresponding generalised solution and if we put

F(&)=1"(&,0), then we get
7(§)=J'" T(§-y)f(y) dy. (2.9)

This is the image provided by super-resolving csim, in the case of noise-free data,
and it must be compared with the image (1.3) of conventional csim, which in the
present case becomes

G(&)= f & sinc*'(E—y)f(y) dy. (2.10)

This point will be discussed in §6.
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3. The null space of the one-dimensional operator

In this section we derive a characterisation of the null space of the integral operator
(1.5), which will be used for the solution of the following problem: given an arbitrary
object f{y), determine its invisible component, i.e. its projection onto N(A).

We first notice that N(A) contains all the functions whose Fourier transform is zero
over the band [ —4x, 4x|. This subset will be denoted by Ny(A). Therefore the
interesting part of N(A) is the subspace of the functions with bandwidth 4x. More
precisely, we must investigate the solutions of the equation A¢ =0 assuming that ¢ is
band limited with bandwidth 4. This subset will be denoted by N,(A) so that we have
N(A) = N(A)BN(A).

If §(w) is the function defined in (2.3) then, by taking the Fourier transform of
both sides of the equation A¢ =0, we get

f(w)f”f(w—w')é(w')dw'=0. (3.1)

This equation is non-trivial only on the interval |w|< 2, Since on such an interval
$(w)#0 and since @(w’)#0 only when |w'|<4x, it follows that

a
f Slw—o')p(w')do' =0 || <2x. (3.2)

-4

This equation can be written in a more explicit form using (2.3). We obtain

- w—o'\ . weln w-o'\ .
f (l— e )¢(w')dw'+f“ (l+ o >¢(w')dw'=0 |w|<2a

=2

(3.3)

and, by a change of variable in the second integral, we find

fw é(w')dw'+jm %(é(w'-ﬁ»h)—é(w'))dw‘--o lw|<2x.  (3.4)
w-2x

w-2x

Now, let us denote by y(w) the left-hand side of (3.4). Then one easily obtains that
1 [= . o
y'(w =EJ (¢p(w' +271)— ¢p(w')) do’ |@|<2s. (3.5)

Since y'(w) is absolutely continuous, the second derivative y"(w) exists almost
everywhere and is given by

Y (@)= p(w +27) —2¢(w) + §(w — 21) |lw|<2x. (3.6)

Finally, if we observe that the original condition y(w) =0, |w|<2x, is equivalent
to the following set of conditions:

V(@) =0,|o|<2x v'(0)=0 w(0)=0 (3.7)
then we conclude that N,(A) is the set of all the functions ¢ satisfying the conditions
2¢(w) — plw + 27) — Pp(w—27) =0 |o| <27 (3.8)

i Plw') do' = f ] Plw') do’ (3.9)




Super-resolution in confocal scanning microscopy: Il 447

Iz 2n 0
I_h é(w')dw’=%f“ w'&(w')da;'—-ll_lj.hw’q‘b(a)’)dw'. (3.10)
Condition (3.9) is just ¢'(0) =0, while condition (3.10) is (0)=0.

We notice that the conditions (3.9) and (3.10) involve only the value of é(w) on
the interval [ — 27, 2] while condition (3.8) gives essentially the continuation of ¢(w)
from the interval [ — 27, 27] into the intervals | - 4, —2x] and (27, 47]. Therefore,
let us denote by d@(w) the values of ¢(w) on the interval [—2x,27]. This is a
square-integrable function which is arbitrary except for being subjected to conditions
(3.9) and (3.10). The latter can now be written in the following form:

jl' ew')a(w')do' =0 (3.11)

-2

f‘h (l —%s(m')w')d(w’)dw’ﬂ) (3.12)
where £(w") denotes the sign of @’. Then (3.8) with w € (-2, 0) gives the values of
@(w) in the interval (—4x, —27) while the same equation with @ € (0, 2) gives the
values of ¢(w) in the interval (27, 47).

The final result can be formulated as follows: the null space N(A) is given by the
direct sum N(A)= N (A)BN,(A) where Ny(A) is the set of all the functions ¢ whose
Fourier transform is zero over the interval [ — 4a, 4| while N(A) is the set of all the
band-limited functions ¢, with bandwidth 4, whose Fourier transform is given by

2a(w + 27) — a(w + 47) —dn<w<-—-21 313
J)(w)={d(w) —-r<w<2x (3:13)
2a(w —271) — a(w — 47) r<w<Ax

where @(w) is an arbitrary function of L*( — 2z, 2) satisfying conditions (3.11) and
(3.12).

We notice that, as one can easily check, (3.4) is satisfied by all the functions
P.(w)=exp(inw), |w|<4x, with n#0. From the sampling theorem it follows that
N,(A) contains all the band-limited functions with bandwidth 47 whose sampling
values are different from zero only at the sampling points x,=n, with n=%1,
+2,. ... The subspace of these functions, however, does not coincide with Ny(A) but
is a proper subset of N((A).

We can now solve the problem stated at the beginning of the section. In fact, let
f(y) be an arbitrary object and let f(w) be its Fourier transform. If we denote by folw)
the function which coincides with f(@) for || > 4 and which is zero for |w| < 4x, then
fo€ No(A). Therefore, in order to completely determine the invisible component of
f(y), we must determine the projection onto N,(A) of the restriction of f(w) to the
interval [ —4x, 4z]. This projection can be determined by looking for a function ¢
which satisfies conditions (3.13), (3.11), (3.12) and which is a solution of the following
variational problem:

f P |[f(w) — @(@)]* dw» = minimum. (3.14)

~d4x

This is a constrained minimisation problem for the function @(w) and it can be
solved in a standard way using the method of Lagrange multipliers. Since the
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constraints are provided by (3.11) and (3.12), the constrained problem (3.14) can be
replaced by the following unconstrained problem:

f“ |](w)-¢3(w)|’dw+2).fb c(w)d(w)dw+2,ufb’ (I—Zl—”wt(w))d(w)dw

~4a
= minimum (3.15)

where ¢(w) is given in terms of G(w) according to (3.13). This problem must be solved
for any value of the Lagrange multipliers 4 and x and the values of these parameters
must be chosen in order to satisfy conditions (3.11) and (3.12).

If one considers separately the variation of @(w) when w € (0, 27) and the variation
of @(w) when w € ( — 2, 0), then after some elementary but lengthy computations one
finds that the minimum of the functional (3.15) is given by

G(w) = h{4f (@ — 27) + 3f(w) + 2] (0 + 27) + f(@ + 47) + 4 —u[3 + (1127w ]}

w<0 (3.16)
a(w = h{4f(w + 27) + 3f () + 2f (0 — 27) + (0 — 47) = A — u[3 = (1/27) o]}
w>0. (3.17)

If we now insert (3.16) and (3.17) into (3.11) and (3.12) we easily recognise that A
is determined by (3.11) while u« is determined by (3.12). The result is

A=(1/4x)(31,+ I,— 1,—31)) (3.18)
where

]

I= f Hw) do j=1,2,3,4 (3.20)
~dx+2a{j~1)
1 —4x+ 2y g

=5 J ofw)de  j=1,2,3,4. (3.21)

—dx+2a(j-1)

These formulae solve completely the problem of determining the invisible compo-
nent of an arbitrary object f(y). In particular they will be used in §6 for determining
the impulse response function (2.8).

4. Discretisation of the integral equation

A basic property of the integral operator related to the one-dimensional coherent
problem is that its singular values and singular functions have very simple analytic
expressions [10]. As a consequence they can be easily computed with any desired
degree of accuracy. Moreover, as proved in I using sampling expansions both for the
image and for the object, the determination of the generalised inverse of the coherent
integral operator is equivalent to the inversion of an infinite-dimensional matrix. This
equivalence is used in I for investigating the problem with discrete data and for
computing its singular system. In a subsequent paper [11] it was shown that the inverse
of the infinite-dimensional matrix also has a very simple analytic expression. As far as
we know, similar results do not hold true in the incoherent case and therefore we must
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find a numerical approach for the determination of the singular system of the integral
operator (1.5).

In this section we describe in detail a method based on sampling expansions, which
is an extension of the method introduced in I and which has already been briefly
discussed in [12].

If g(x) is an image in the range of the operator (1.5) (noise-free image) then, as
proved in §2, g(x) is a band-limited function with bandwidth 2. As a consequence it
can be represented by means of the sampling expansion

-

gx)= Y glx,)sinc[2(x—x,)] (4.1)
where
x,=nl2 n=0, £1, £2,... (4.2)
and the following equality holds true:
4+ ’ 1 b Lo =
[ isora=3 3 tacor (@.3)

As concerns the generalised solution (1.4), it is an element of N(A)*, the
orthogonal complement of the null space of A, and therefore we can restrict A to
N(A)*. The elements of N(A)* are band-limited functions with bandwidth 4z and
they have zeros at the integer sampling points, except y=0, i.e. f(m)=0 if m=
+1, £2,. ... These properties follow from the results of §3. As a consequence f(y)
can be represented by means of the sampling expansion

)= fly.)sinc[4(y - y.)] (4.4)
where y,=0, y, ;= %4, yoo =14, yaa=11, yao= %1, etc. In general, for m#0
m=+ (3k+j) Vo= (k+ji4) k=013, ....j=1.2.3,

(4.5)

Equality (4.3) is replaced by

+= l + =
[Trora=3 3 o (@.6)

m=—x

If we now consider (1.4) at the point x, and if we use the expansion (4.4) for f(y),
we find

+=

gix) =Y, Conflym) n=0,+1,... 4.7

where

C.= j' y sinc’(y —x,) sinc?(y) sinc[4(y — y,,)] dy. (4.8)
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If we notice that the functions £, (y) = sinc’(v — x,) sinc’(y) are band limited with
bandwidth 4z and if we use the projection properties of the sampling functions
sinc[4(y — y,)], we get

Co = 1 8inc’*(x,, — y,,) sinc’(y,,). (4.9)
As follows from (4.2) and (4.5), it is convenient to introduce the coefficients
b= (1/V2)g(x,) =4 f(V)- (4.10)

Then the L*-norms of the functions g(x) and f(y) coincide with the /*-norms (sum of
squares) of the sequences {b,},"_. and {a,}. . respectively.
In terms of the coefficients (4.10) the infinite-dimensional linear system (4.7) takes

the form

b,= 2 A G, n=0, +1,... (4.11)
where
A= (1/2%%) sinc* (x, — ¥,n) SINC* (V). (4.12)

We notice that the inverse of this infinite-dimensional matrix does not exist. In fact
this matrix is isomorphic to the restriction of the integral operator (1.5) to the
subspace of band-limited functions represented by the expansion (4.4). Since this
subspace is broader than N(A)*, the null space of the restricted integral operator is
not trivial.

The infinite-dimensional matrix (4.12) has exactly the same singular values as the
integral operator (1.5). Moreover, if «, is one of the singular values and if {u; }.~ .,
{04 oJa-_ . are the singular sequences associated with this singular value, the corres-
ponding singular functions of the integral operator (1.5) are obtained by means of
(4.1). (4.4) and (4.10):

w()=2 D e sincl4(y = y,)] (4.13)
0x)=V2 Y vy, sinc[2(x—x,)]. (4.14)

Approximations of the singular values and singular functions can be obtained by
considering finite sections of the infinite-dimensional matrix (4.12).

5. Numerical results

The discretisation of the basic integral equation, as described in the previous section,
is an extension of the method proposed in I for the coherent problem. In 1 it is shown
that the method can provide excellent approximations of the largest singular values
(we recall that the exact values are known from the result of Gori and Guattari [10]),
using a rather small number of sampling points for the image and a sufficiently large
number of sampling points for the object. This result has important practical
implications. Since only the largest singular values are important for practical data
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inversion, it means that the problem with continuous data is practically equivalent to a
problem with a small number of discrete data. It is interesting to verify whether a
similar result holds true also in the incoherent case.

Let us denote by Al ™' the section of the infinite-dimensional matrix (4.12) which
is obtained by taking n=0, £1,..., EN;m=0, £1,..., + M. We put

Ny=2N+1 M,=2M +1. (5.1)

We recall that the sampling distance is ! for the image and | for the object (the
Rayleigh distance is the unit of length). Therefore, if N is even, N, sampling points
corresponds to the interval [ — N/2, N/2] in the image space. As concerns the sampling
of the object, we recall that we have only three sampling points inside any unit
interval. Then, if M is a multiple of 3, M, sampling points corresponds to the interval
[ =M/3, M/3] in the object space. In other words, the integral from — = to + = in
(1.5) is approximated by the integral extended to [ — M/3, M/3]. For example, M, =97
corresponds to [ - 16, 16].

The matrix AN, is a N, x M, matrix. In general it is not a square matrix since we
do not take the same number of sampling points for the image and the object. Its
singular values provide approximations of the largest singular values of the infinite
matrix (4.12). In fact, in the limit N—=, M— o, the singular values of A"
converge to the singular values of A, as follows from standard results of pertur-
bation theory [13]. The matrix A}, " can be considered, indeed, as a perturbation of
A,.., obtained by annihilating the matrix elements of A, with [n|> N and/or |m|>M.
Analogously the singular vectors of AN provide approximations of the singular
vectors (sequences) of A,,. The corresponding approximations of the singular
functions of the integral operator (1.5) are obtained by truncating the expansions
(4.13) and (4.14). For example, in the case of the singular functions «,(y), we have the
approximation

M
ufM0y)=2 > uf’;M sinc[4(y - y.)] (5.2)

me =M

where {t{",'})_ _ is the singular vector of the matrix ALy ", normalised to one with
respect to the usual Euclidean norm.

The computation of the singular system of the matrix A" is a standard
numerical problem and one can use standard routines. The convergence of the
approximation can be checked by increasing N and M.

We have first verified the convergence with respect to M for various fixed values of
N. The numerical results obtained for values of N, between 5 and 25 (N between 2 and
12) indicate that as M, is increased from 49 to 97 the first five digits of the first 20
singular values do not change. We give an example in table 1.

This result implies that for an accurate computation of the largest singular values it
is sufficient to take M, =49, i.e. to restrict the integral in (1.5) to the interval [ -8, §].
This is reasonable because, as we will see, the singular functions associated with the
largest singular values are concentrated inside this interval. On the other hand, the
singular functions associated with small singular values tend to spread out of this
interval and therefore a larger number of sampling points in the object space is
required for a correct computation.

The next point is to verify the convergence of the largest singular values (for
instance, the first eleven singular values), for M,=49 fixed, when N, increases. This is
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Table 1. Singular values of ALY for Ny= 11 and for various values of M,,, corresponding
1o the intervals [y|=2, 4, 8 and 16.

k M,=13 M,=25 My=49 M,=97
0 0.6033185 06033185 0.6033185 0.603 3185
1 02567505 02567506 0.2567507  0.256 7506
2 01075034  0.1075038 0.1075038  0.107 5038
3 0.0402823  0.0402860  0.0402860  0.040 2860
4 00237160 0.0237641  0.0237641  0.023 7641
5 0.0198000 0.0198619 0.0198619  0.0198619
6 00097259 0.099324 0.0099324  0.0099324
7 00043345 00076321  0.0076322  0.007 6322
8 00021716 00073423 0.0073423  0.007 3423
9 0.0007147 00040795 0.0040795  0.004 0795

10 0.0002587 0.0018277  0.001 8280  0.001 8280

an important problem from the practical point of view because its solution indicates
the minimum number of sampling points in the image space which is required for the
computation, within a given accuracy, of a given number of singular values. The
results are given in table 2. In the last column we give the values obtained with
No=97, My;=97. In this case all the digits are correct, as we have verified by
increasing the number of sampling points.

Table 2. Singular values of AL for M,=49 and for various values of N,. In the last
column the singular values are for Ny= M,=97.

k Ne=35, My;=49 Ny=T7, M,=49 No=9, My=49 No=11, M,=49
0 0.6026863 0.603 2066 0.603 2544 0.603 3185
1 0.2566841 0.256 7172 0.256 7494 0.256 7507
2 0.1068757 0,107 0939 0.107 4633 0,107 5038
3 0.0399315 0,040 1201 0.040 2858 0.040 2860
4 0.0136988 0.023 1449 0.0237211 0,023 7641
5 - 0.018 8646 0.019 8424 0.019 8619
6 — 0.007 4985 0,009 9261 0.009 9324
7 - — 0.005 4959 0.007 6322
8 — — 0,003 3284 0.007 3423
9 - — - 0.004 0795

0 — - - 0.001 8280

k No=13. M;=49 Ny=17, My=49 N;=21, My=49 N;=97, M,=97
0 0.6033270 0.603 3462 0.603 3530 0.603 3609
1 0.256 7530 0,256 7537 0.256 7539 0.256 7540
2 0.1075614 0.107 5893 0.107 6001 0.107 6124
3 0.0402925 0.040 2935 0.040 2937 0.040 2938
4  0.0237666 0.023 7718 0.023 7735 0,023 7752
5  0.0198708 0.0198718 0.019 8720 0.019 8721
6  0.0100815 0.010 1126 0,010 1251 0.010 1390
7 0.008 0475 0.008 0665 0.008 0674 0.008 0676
8 0.007 6615 0.007 6939 0.007 6968 0.007 6991
9 0.004 2106 0.004 3175 0,004 3228 0.004 3232

10 0.0027954 0.004 0275 0.004 (466 0.004 0481
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Figure 1. Singular value spectrum of the one-dimensional coherent problem (O) and
singular value spectrum of the incoherent problem (A ). In both cases log «, is plotted as a
function of the index k.

As follows from table 2, a satisfactory approximation of the first five singular
values is already obtained using nine sampling points in the image space. Analogously
the first nine singular values are well approximated using thirteen sampling points.

In figure 1 we compare the singular value spectrum of the incoherent problem with
that of the coherent one. We plot the first 25 singular values, obtained with
Ny=M,=49. We notice that the singular values of the incoherent problem tend to
zero more rapidly than the singular values of the coherent one, i.e. the incoherent
problem is more ill posed. This implies, as will be discussed in the next section, that it
can be rather difficult to obtain a transfer function which completely fills the available
band | —4x, 47].

Finally in figure 2 we plot the first eight singular functions w«,(y) obtained with
Ny=M,=49. We notice the saturation of the number of zeros inside the central
region, a property of the singular functions already remarked in the coherent
problem. Starting from the fifth singular function (k=4), all the even singular
functions have four zeros inside ( — 1, 1) while all the odd singular functions have five
zeros inside the same interval. We recall that the Rayleigh resolution distance is 1.
The points * 1 are double zeros of the singular functions, as was already remarked in
§2. We also observe that for increasing k (and therefore decreasing a;) the singular
functions spread out of the central region, which corresponds to the central lobe of the
illuminating beam.

6. The impulse response function

As follows from (2.9), the function 7(y), defined in (2.8), is the impulse response
function of the super-resolving microscope in the absence of noise. In fact, 7(y) is the
response to a unit impulse of the system which consists of the confocal microscope, of
the detectors for the measurement of the full image, of the computer where the
inversion algorithm (2.5) is implemented and of the scanning table. This inter-
pretation is correct only when the full image is detected in the absence of noise and the
reconstruction formula (2.5) is used in the absence of round-off errors. In practice,
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since the image is noisy, the series (2.5) does not converge and it must be truncated
(see I). Moreover we have only a finite set of values of the image g(x). Under these
conditions, if the image is sampled at the Nyquist rate and if we use N, sampling points
for the image, M, sampling points for the object and K singular functions for the
inversion, then the impulse response function (2.8) is replaced by

K1
TP M(y) = 2 U™ O0)ul™ M (y). (6.1)

h=0

We notice that, since the singular functions are alternatively even and odd, only
the even singular functions contribute to (2.8) or to (6.1).

6.1. Noise-free data

We use the results of §3 for determining the impulse response function (2.8), which
corresponds to the case of noise-free data.
We first remark that the function

P(x,y)= Y wlx)uly) (6.2)
A=
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Figure 2. Plot of the first eight singular functions &, of the one-dimensional incoherent
problem.
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is the kernel of the projection operator onto the orthogonal complement of the null
space of the operator (1.5). Since the functions w,(x) have bandwidth 4z, from the
projection property of the sinc function we have

T(y)=AJ’H P(x, y) sinc(4x) dx (6.3)

and therefore 7T(y) is the projection onto N(A)* of the function
fly)=4sinc(4y). (6.4)

If ¢(y) is the projection of f(y) onto N(A) then, from the well known decompo-
sition theorem, we have

T(y)=f(y)— (). (6.5)

The Fourier transform of ¢(y), ¢(w), can be computed by means of (3.13) and
(3.16)~(3.21). If we notice that f(w) =1 when |@|<4x (and 0 elsewhere), from (3.16)
and (3.17) we have

1+ 1A = u|3 + (1/27) e w<0

‘i(‘”)={1 —:::}. +:{3-:|/2Jr;w]l; w>0. o)
Moreover, from (3.20) and (3.21), always in the case f(w)= 1, we obtain

=2n j=1,2,3,4 (6.7)

Ji=—5n+2nj j=1,2,3,4. (6.8)
Then, from (3.18) and (3.19) it follows that

A=0 u=%x, (6.9)
By substituting in (6.6) we get

a(w)=1-3[3—(1/27)|w|]. (6.10)

Since d(w) is even, @(w) given by (3.13) is also even. Therefore it is sufficient to
compute ¢(w@) for we (2, 4x). In such a case @ — 2 belongs to (0, 27) and @ —4x
belongs to (=2, 0). It follows that

Plw)=2d(w —27) = d(w —47) = 1 = }[7 - (3/27)) 2r<w<da. (6.11)

If we now denote by T(w) the Fourier transform of 7(y), using (6.5), (6.10) and
(6.11), we have

13- (1270 || <27

7x(w)={ﬁ[7—(3/2:r)|w|l 2n< |w| < 4. (6.12)

In figure 3 we plot the function 7(w) and also the function T,(w) which is the
Fourier transform of the impulse response function of conventional csim, i.e.

T(y) =sinc'(y) (6.13)

as follows from (2.10). We notice that, while T(w)—0 when |w|—4x, T(w) is never
zero over the interval | —4x, 4] and therefore all the Fourier components of the
object in this band are transmitted by super-resolving cstM, at least in the absence of
noise.
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Figure 3. Plots of (a) the transfer function Ty(w) for the conventional confocal scanning
microscope and (b) the transfer function T(w) for the noise-free super-resolving micro-

scope,

In figure 4 we plot the impulse response functions 7(y) and 7(y). As one can

casily derive from (6.12), 7(y) is given by

T(y) = ¥ sinc’(2y) — 1 sinc’(y) — 3 sinc(2y) sin’(7y). (6.14)

The super-resolving effect corresponds to the fact that the central peak of T(y) is
much narrower than the central peak of 7(y). This improvement in central resolution
is accompanied by decaying side lobes similar to those of the coherent case.

20 -5 - 05 0 0.5 w0 1.5 20

Figure 4. Plots of (a) the impulse response function Ty(y) of the conventional confocal
microscope and (b) the impulse response function T(y) of the noise-free super-resolving
microscope. The unit of length is the Rayleigh resolution distance.
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6.2. Noisy and discrete data

In the case of noisy data the expansion (2.5) does not in general converge. Then one
must consider a truncated singular function expansion. As discussed in I, this
approximation is especially good in the case of the recovery of f'(0), since one can use
only the singular functions which are large in the central region. Moreover, when we
have a finite set of sampled data, we must use the approximate singular functions
discussed in §5. Under these conditions the approximate value of the restored object
is given by

K-1
0= Zﬁl-‘ﬁ(g. ol MNuf™ (0) (6.15)
k=0

and the corresponding impulse response function is given by (6.1).
The stability of the inversion procedure (6.15) is controlled by the condition
number
SN M)

cond(K; N, M)——?—,,—, (6.16)

As follows from table 2, for K=3, 5, 7, 9 and 11, the values of the condition
number in the case Ny=M,=97 are respectively 5.61, 25.4, 59.6, 78.4 and 149. For
smaller values of N, M, the values of the condition number do not change signifi-
cantly. This result indicates that if the data are affected by a few per cent noise then
eight terms in (6.15) can be taken into account. In this case we have a non-zero
contribution only for k=0, 1, 3, 5, 7.

In figure 5 we plot the transfer functions 7§ *(@), i.e. the Fourier transforms of
the functions 7% ™(y), defined in (6.1), for various values of K, in the case
No=M;=97. We see that for K =49 the shape of the transfer function is very similar
to that of the limit N=M = =, plotted in figure 3. We also notice that the behaviour of
the transfer functions is rather irregular over the band. This means that the image
provided by the super-resolving microscope can be strongly distorted. Filtering
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Figure 5. Plot of the transfer functions T} “(w) for various values of K (number of
singular functions used) computed in the case N, = M,=97.
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Figure 6. Plot of the impulse response functions T) M(y) for various values of K,
computed in the case Ny= M, =97. The unit of length is the Rayleigh resolution distance.

techniques, such as Tikhonov regularisation [6], can be used, however, in order to
improve the fidelity of the image in the centre of the band.

In order to estimate the improvement in bandwidth we compare, for example, the
transfer function T§%“*(w), with K=7, with the transfer function Ty(w) of the
conventional csum (see figure 3). We consider the interval where the transfer function
is greater than 0.1. This is a symmetric interval, say [ — wy, @,]. Then in the case of
Ti(w) we have w,=2.1x while in the case of ¥ *(w) we have w,= 3.5x. This means
that super-resolving csLm provides a 60% improvement in bandwidth (and therefore a
60% improvement in resolution) with respect to conventional csum. The improve-
ment corresponding to K=9 and K=11"does not differ significantly from the
improvement corresponding to K=7. These predictions have been verified closely in
recent laboratory experiments at King's College, London and this work will be the
subject of a separate publication.

In figure 6 we plot the impulse response functions 7§ *(y) for the same values of
K as in figure 5.

7. The two-dimensional problem with square pupils

The solution of the one-dimensional problem discussed in the previous sections
provides also the solution of the two-dimensional problem in the case of square pupils.
In fact, in such a case in (1.1) we have

Si(x) = 8,(x) = S(x) = sinc(x,) sinc(x,) (7.1)

and the singular system of the integral operator

(ADf)(x)= f |S(x=y)*|SO)*f(y) dy (7.2)

can be obtained from the singular system of the integral operator (1.5) as follows. The
singular values of the operator (7.2) are all the possible products of the singular values
of the operator (1.5)

;= @y i,k=0,1,2... (7.3)
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and the corresponding singular functions are given by the tensor products of the
singular functions of (1.5)

w () = uy)ulys) (7.4)
v, (x) = p/(x))o(xy). (7.5)

It is obvious that the singular values with i # k have multiplicity 2 while the singular
values with i =k have multiplicity 1.

Only the singular functions corresponding to even values of both indices contri-
bute to the reconstruction of the object at the origin. The two-dimensional problem is,
however, more ill conditioned than the one-dimensional problem. As we have seen, in
the case of K=5 where we use three singular functions with k=0, 2, 4, the condition
number is 25.4 in the one-dimensional case. In the two-dimensional case, in order to
obtain the same resolution, we must use nine singular functions, corresponding to all
the possible pairs of the values 0, 2, 4. But the condition number is now (25.4)° =645
and this value could be inconveniently high for the reduction of experimental data,
since it would require very large values of the signal-to-noise ratio.

8. Concluding remarks

In §6 we have estimated that super-resolving csim can provide an improvement in
resolution of about 60% with respect to conventional csim. This improvement is
much more evident if regularisation techniques [6] are used in order to deconvolve the
image provided by super-resolving and/or conventional csum. For example, in the
case of the Tikhonov regularisation method, the transfer function 7% “(w) is replaced
by the following one:

| TR M)
N M) =
a.K(w) I Z,u(w)|1+a (81)
where a is the so-called regularisation parameter whose value is related to the
signal-to-noise ratio. Analogously To(w) is replaced by

| T@)?

|1.o(‘”)|2+a.

T,.ow)= (8.2)

In a recent paper Sheppard [14] has proposed an alternative version of super-
resolving cstM. Also in this case one must use many detectors and the signals from the
detectors must be appropriately delayed and integrated. One can easily prove that for
the one-dimensional problem discussed in this paper the transfer function correspond-
ing to the Sheppard method is given by

T(w)= (1 _u_a:r!)! |w|<4x (8.3)

and T,(w)=0 elsewhere. Also in this case one can deconvolve the image and this

procedure provides a transfer function given by

O i +a g
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Figure 7. (@) Comparison of the transfer functions of the conventional confocal micro-
scope (full curve), of the multidetector microscope proposed by Sheppard (broken curve)
and of the super-resolving microscope discussed in this paper (chain curve). (b)
Regularised versions of the transfer functions plotted in (a).

In figure 7 we compare the transfer functions of the various methods. In figure 7(a)
we plot the unregularised transfer functions and in figure 7(b) the regularised ones,
assuming a value of the regularisation parameter of the order of 1077, It is seen that
Sheppard’s method provides an improvement in resolution with respect to conven-
tional csum which is smaller than the improvement provided by the method discussed
in this paper.
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