
Inverse Problems 5 (1989) 441 -461 . Printed in Great Britain 

Super-resolution in confocal scanning microscopy: II. The 
incohérent case 

M Ber t e ro t , P Boccaccit , M Defr i se t§ , C D e MoI||§ and E R PikeH 
t Dipartimento di Fisica deU'Università di Genova and Istituto Nazionale di Fisica 
Nucleare, Via Dodecaneso 33, 1-16146 Genova , Italy 
t Radioisotopen, Akademisch Zieicenhuis, Vrije Universiteit Brussel, B-1090 Brussel, 
Belgium 
Il Département de Mathématique, Université Libre de Bruxelles, B-1050 Bruxelles, 
Belgium 
Il Department of Physics, King's Col lège, London W C 2 R 2 L S , U K and R S R E , Great 
Malvern, WR14 3PS, U K 

Received 24 January 1989 

Abstract. In several previous papers we have shown that the resolution of a confocal 
scanning microscope can be improved by recording the full image at each scanning point 
and then inverting the data. Thèse analyses were restricted to the case of cohérent 
illumination. In this paper we investigate, along similar lines, the incohérent case, which 
applies to fluorescence microscopy. We investigate the one-dimensional and two-
dimensional square-pupil problems and we prove, by means of numerical computations of 
the singular value spectrum and of the impulse response function, that for a signal-to-noise 
ratio of , say, 10%, it is possible to obtain an improvement of approximately 60% in 
resolution with respect to the conventional incohérent light confocal microscope. This 
represents a working bandwidth of 3.5 times the Rayleigh limit. 

1. Introduction 

In a previous paper ([1], hereaf ter referred to as I) we have investigated the 
improvement in resolution (super-resolution) which can be obtained in confocal 
scanning light microscopy (CSLM) when the full image is detected at each step of the 
scanning procédure. We recall that in the usual CSLM the image is detected only on the 
optical axis and that the two­dimensional image is the resuit of the two­dimensional 
scanning. In I the analysis was restricted to the cohérent case. In this paper we 
investigate, along parallel lines, the case of incohérent imaging. 

Incohérent CSLM applies to the imaging of fluorescent objects. In such a case the 
intensity of the fluorescent light is proportional to the intensity of the incident 
radiation. Then it is easy to show that , when the primary and the fluorescent 
wavelengths essentially coincide, the bandwidth of the usual instrument is four times 
the bandwidth of the conventional cohérent microscope. The improvement in resolu­
tion, however , is only a factor of 1.8 times the classical Rayleigh resolution distance [2]. 
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This is a conséquence of the behaviour of the t ransfer funct ion of the ins t rument , 
which tends to zéro very rapidly at the edges of the band . In o ther words, the highest 
Four ier components of the object in this .band are not t ransmit ted in practice by the 
ins t rument . In order to increase the information about thèse components , one can 
consider a modification of the microscope such as that considered in I. This consists of 
detect ing the full image at any scanning position and in using data inversion methods 
for recovering the t ransmit ted components of the objec t . In the following we wili call 
conventional CSLM the well estabUshed technique where the image is detected only on 
the opticai axis and super-resolving CSLM the new technique where the full image is 
de te rmined by means of a suitabie array of detectors . W e point out that this new 
technique does not modify the t ransmit ted band but introduces a considérable 
improvement of the t ransfer funct ion [3]. 

If / ( x ) is the distribution of the fluorescent centres in the focal plane and if 5|(jc), 
S2{x) are the point-spread functions of the illuminating and of the imaging lenses, 
respectively, then , assuming complète incohérence of the fluorescent radiat ion, the 
basic relat ionship between the object f{x) and the intensity distribution g{x) in the 
image plane is 

Notice that , even in the reflection mode of opéra t ion [4], the two point-spread 
funct ions do not coïncide because the pr imary and the fluorescent wavelengths are 
d i f férent . This effect , however , is not large—of the order of 1 0 % — a n d it can be 
neglected in the first approximat ion. 

In this paper the basic relationship will be (1.1). This means that we do not 
consider here one of the most interesting proper t ies of fluorescence CSLM , i .e. the 
possibility of obtaining a three-dimensional image of the sample by means of three-
dimensional scanning [4, 5]. Also in this case one can investigate the improvement in 
resolution provided by super-resolving CSLM . This will be the subject of fu tu re studies. 
H e r e , as in I, we restrict the analysis to two-dimensional objec ts or , more precisely, to 
objects whose size along the opticai axis is of the o rde r of the axial resolution 
(approximately 1 jxm). A s a conséquence we only investigate the improvement in 
latéral resolution. 

W e briefly discuss now the relationship between the basic équat ion of conventional 
CSLM and that of super-resolving CSLM . The scanning of the sample consists of 
considering ail the possible translations of the sample itself. Now, to a translation - § 
the re corresponds a new ob jec t / ( j r + a n d a new image g{^,x) which, as follows 
f r o m (1.1), is given by 

In conventional CSLM the image is recorded only on the opticai axis, i.e. x = 0. 
Then , if we neglect the finite size of the pinhole, if we ignore the d i f férence between 
the two point-spread funct ions, i .e. 5|(jc) = 52(4:) = S(A:), and if we assume that S{x) is 
an even funct ion , then (1.2) implies that the image provided by convent ional CSLM is 

(1.1) 

(1.2) 

(1.3) 

where G ( § ) = g ( § , 0). 
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On the o ther hand , in super-resolving CSLM the full image g{^,x) is detected for 
any given ^ (of course, in practice, only a finite set of values of x) is measured) . 
Then (1.2) is an intégral équation which must be solved to détermine / (y + §) . As is 
obvious, it is sufficient to recover the object âXy = Q since this value is just / ( §) . More 
precisely, we do not obtain the exact value o f / ( | ) but an approximation to it, which 
will be denoted b y / ( ^ ) . This approximation is the image provided by super-resolving 
CSLM and this must be compared with the image G ( ^ ) provided by conventional CSLM. 

The solution of (1.2) implies the inversion of an intégral opera tor and an important 
fact is that this operator is the same for any scanning position. As a conséquence, the 
inversion algorithm is also independent of the scanning position. 

As in I we first consider in détail the one-dimensional problem. In such a case, if 
we take the Rayleigh distance associated with the two identical lenses as length unit 
and if we assume that the lenses are idéal low-pass filters, then the appropriate 
intégral équation can be written in the form 

g = Af (1.4) 

where 

{Af){x)= [^\\ne{x-y)ûnc-{y)f{y)ày (1.5) 

and 

sinc(A:) = . (1.6) 
JIX 

In §§2 and 3 we investigate several mathematical propert ies of the intégral 
operator (1.5) which are relevant to the solution of (1.4). Since the basic tool is the 
singular System of the operator (1.5), in §4 we describe a numerical method for the 
déterminat ion of such a System. This method consists of discretising the intégral 
équation using the well known sampling expansion of band-limited functions. The 
numerical results obtained by means of this method are discussed in §5. In §6 we 
détermine the impulse response function and the transfer function of the super-
resolving CSLM and in this way we détermine the improvement in resolution with 
respect to the conventional CSLM . Finally in §7 we extend the results to the two-
dimensional problem in the case of square pupils. 

2. The one-dimensional intégral operator 

As we discussed in §1, we must investigate the following problem. Given the image 
g{x), fînd the value at >' = 0 of the solution f{y) of (1.4) and (1.5). 

The existence and uniqueness of the solution of this problem are related respect-
ively to the structure of the range and of the null space of the intégral opera tor (1.5). 
In fact, a solution of (1.4) exists if and only if g belongs to the range oiA, denoted by 
R{A). This set will be called the set of the noise-free images. Moreover the solution of 
(1.4) is unique if and only if the null space of A, denoted by N{A), is trivial, i.e. if it 
coincides with the null é lément of the space. If N{A) is not trivial, then it is called the 
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subspace of invisible abjects, since the é léments of N{A) p roduce an image which is 
zéro everywhere . 

W e assume that both objec ts and images are é léments of L-( - <» , + <» ). Then our 
first resuit is the following: the range of A is dense in the subspace of the band-l imited 
funct ions with bandwidth 2JI. T h e proof is as follows. F rom (1.4) and (1.5) it is 
obvious that a funct ion ^6 / ? ( /4 ) must be band limited with bandwidth In. T h e r e f o r e , 
in o rde r to p rove the resuit it is sufficient to prove that if a band- l imited funct ion rp{x) 
with bandwidth In is o r thogonal to R{A), then i/' = 0. N o w , if V(^) is such that 
{xp,Af) = *d fo r any f e L \ — ^, + 0 ° ) , this implies that A*-ip = Q, whe re A* is the 
ad jo in t ope ra to r given by 

{A*g)(y) = ûnc'{y)^' smc-{x-y)g{x) àx. (2.1) 

Since the funct ion s\nc^{y) is d i f férent f r o m zéro almost eve rywhere , the équat ion 
/1*V = 0 is équivalent to 

sinc-(>'-A:)v(A:)djc = 0. (2.2) 

Now, the Four ie r t ransform of the funct ion ^(ji:) = sinc'(A:) is 

l - ( l / 2 7 r ) | « | |<u|<2jr 
^'^^> = | 0 W\>2n (2.3) 

and the re fo re f r o m (2.2) we dérive s{a))^!{(jL>) = Q everywhere . It fol lows that t/ '(w) = 0 
when | w | < 2 j r and , since ^p{x) is band limited with bandwidth 2n, it also follows that 
xp{x) = () everywhere . This complè tes the proof of the resuit . 

T h e previous resuit implies that a noisy image, in gênera i , does not be long to R{A) 
( the noise may not be band limited) and in such a case the solution of (1.4) does not 
exist. In o ther words , the problem is ill posed and one must use well establ ished 
techniques , such as régularisat ion methods , t runcated singular func t ion expans ions etc 
[6] in o rde r to find stable approximate solutions. 

As concerns the null space ^ ^ 4 ) , a complè te character isat ion will be given in §3. 
H e r e we just point out that N{A) is not trivial and the re fo re the solution of (1.4) is not 
un ique . N o w , an arbi trary o b j e c t / ( j ) can be uniquely decomposed into a c o m p o n e n t 
on N{A), its invisible c o m p o n e n t , and a componen t o r thogona l to N{A), its t ransmit-
ted c o m p o n e n t . 

It is obvious tha t , given the image g, we can at most recover the t ransmi t ted 
c o m p o n e n t of the ob jec t . T h e latter is a band-l imited funct ion with bandwid th An, as 
follows f r o m (2.1) if we recall that the or thogonal complémen t of N{A) coïncides with 
the closure of the range oi A*. This resuit justifies the s t a t ement conta ined in §1, 
namely that the bandwidths of super-resolving CSLM and convent ional CSLM coïncide. 

A n o t h e r basic p roper ty of the opera to r (1.5) is compactness . M o r e precisely, the 
ope ra to r A is of the Hi lbe r t -Schmid t class [7] since its kerne l is a square- in tegrable 
funct ion . T h e n we can int roduce the singular system oi A, \.e,. the set of the triples 
{a^; u^, f l̂̂ T^o which solve the coupled h o m o g e n e o u s équa t ions 

Au^ = ai,Vk A*v,, = a^u^. (2.4) 

As usual , the singular values a re o rde red in such a way tha t they fo rm a 
decreasing séquence . 
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From gênerai p roper t ies of the singular funct ions M ,̂ and f r o m the results 
derived above we can make the foilowing déduct ions . 

(i) T h e singular funct ions fo rm an o r thonormal basis in the o r thogona l comple-
njent of N{A)\ they are band-l imited funct ion with bandwidth An and they have 
double zéros at the integer sampling points . 

(ii) T h e singular func t ions are band-l imited funct ions with bandwid th 2n and 
they fo rm an o r thono rma l basis in the closure of R{A). 

T h e singular System of the ope ra to r A provides a représenta t ion of the generalised 
solution of (1.4). As is well known, this is a least-squares solution of minimal norm [8]. 
It is always un ique and it exists when g is a noise-free image. A n o t h e r basic p rope r ty 
of the general ised solut ion, deno ted by / ' ( y ) , is that it is o r thogonal to N{A). 
There fo r e the general ised solution coincides with the t ransmi t ted c o m p o n e n t of the 
objec t . Its expansion in te rms of singular funct ions is [9] 

ny)=^^^is,"My) (2.5) 
* = 0 * 

where (g, v^j déno tes the usual scalar product of L\ — <» , + oo ). 
Since we are only interested in the value of f'(y) dXy = 0, in the case of noise-f ree 

da ta g = Af, f r o m the relation 

(g, V,) = {Af, u,) = {f,A*u,) = a , { f , u,) (2.6) 

we obtain 

r(o)= r ( 0 ) = | Tiy)f(y)dy (2.7) 

where 

Tiy) = ^u,iO)u,iy). (2.8) 
*=() 

If we take into account now the effect of the scanning, i .e. if we replace /(_y) by 
f(y + ^ ) , if we déno te by / ' ( ^ , y) the corresponding general ised solution and if we put 
/ ( ^ ) = r ( ^ , 0 ) , then we get 

/ ( e ) = I ' T{^-y)fiy)dy. (2.9) 

This is the image provided by super-resolving CSLM , in the case of noise-f ree da ta , 
and it must be compared with the image (1.3) of convent ional CSLM , which in the 
présent case becomes 

G ( ^ ) = smc\^-y)fiy)dy. (2.10) 

This point will be discussed in §6. 
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3. The null space of the one-dimensional operator 

In this section we dérive a characterisation of the null space of the intégral operator 
(1.5), which will be used for the solution of the following problem: given an arbitrary 
object / (} ' ) , détermine its invisible component , i.e. its projection onto N{A). 

We fïrst notice that N{A) contains ail the fonctions whose Fourier t ransform is zéro 
over the band [ - 4 7 r , 4jr]. This subset will be denoted by No(/l). Therefore the 
interesting part of N{A) is the subspace of the fonctions with bandwidth An. More 
precisely, we must investigate the solutions of the équation A<p = 0 assuming that (j) is 
band limited with bandwidth 4jr. This subset will be denoted by N\{A) so that we have 
N{A) = N,{A)®N,{A). 

If s{oji) is the function defined in (2.3) then, by taking the Fourier t ransform of 
both sides of the équation A(p = ^, we get 

S{w) s{u)-œ')^{w')àuj' = 0. (3.1) 

This équation is non-trivial only on the interval |w| < 2 ; r . Since on such an interval 
s{u>)^Q and since ^{w')i=Q only when \(o'\<A7t, it follows that 

4,T 

s{o}-w')4>{w')ào}' = 0 |a>|<27r. (3.2) 
in 

This équation can be written in a more explicit form using (2.3). We obtain 

f ( 1 —\(pia)')doj'+\ l l + ^ ] <p{(o')doj' = 0 \œ\<2ji 

(3.3) 

and, by a change of variable in the second intégral, we find 

f " . (U — Ù)' ^ 
^((o')dco'+\ —^((p{o}' + 2jt)-<p{o}'))dœ' = 0 \œ\<2ji. (3.4) 

J w-2ji J ti}~2n 

Now, let us dénote by ^p{u)) the left-hand side of (3.4). Then one easily obtains that 

1 
V^'{(o) = —- ((p(w' + 27i)-4>((û'))da)' \œ\<27t. (3.5) 

Since ip'(u)) is absolutely continuous, the second derivative ip"{co) exists almost 
everywhere and is given by 

ip"iœ) = 4>iw + 2jz)-2^{(o) + ^{(o-27T) \a)\<2ji. (3.6) 

Finally, if we observe that the original condition yj{(o) = 0, | (y |<2 j r , is équivalent 
to the following set of conditions: 

V"(<y) = 0, k l < 2 7 r V''(0) = 0 1/̂ (0) = 0 (3.7) 

then we conclude that Ni{A) is the set of ail the functions <p satisfying the conditions 

24){u))-^icD + 2jt)-4>{(o-27i) = 0 \CO\<2JI (3.8) 

J^0(w')d«;' = J" 0 ( w ' ) d w ' (3.9) 
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(p{w')du)'= —\ w ' 0 ( « > ' ) d w ' - — w'0(a> ' )da; ' . (3.10) 
J -1,1 J 0 J -2.T 

Condition (3.9) is just ip'(0) = 0, while condition (3.10) is V(0) = 0. 
We notice that the conditions (3.9) and (3.10) involve only the value of 0(w) on 

the interval [ - 2JI, 2JI\ while condition (3.8) gives essentially the continuation of ^{w) 
from the interval [ — 2jt,27t] into the intervais [-in, - 2jt] and [2jr, 47r]. Therefore, 
let us dénote by â(a)) the values of <^(w) on the interval [ — 2jt,27i]. This is a 
square-integrable function which is arbitrary except for being subjected to conditions 
(3.9) and (3.10). The latter can now be written in the following form: 

£(a) ' )â(co ' )d(u '=0 (3.11) 

l-—eiw')a)' \â{(o')dùj'=0 (3.12) 
2ji 

where f{w') dénotes the sign of a»'. Then (3.8) with we{ — 2ji, 0) gives the values of 
^((t>) in the interval {-4JI, - 2JI) while the same équation with a»e(0, 27r) gives the 
values of 0(a») in the interval (27r, An). 

The final resuit can be formulated as follows: the null space N{A) is given by the 
direct sum N{A)- N„{A)®N\{A) where N»{A) is the set of ail the functions 0 whose 
Fourier transform is zéro over the interval [ - 4 ; r , An] while N\{A) is the set of ail the 
band-limited functions 0 , with bandwidth An, whose Fourier transform is given by 

f 2â((jj + 2n) — â((i} + An) —An<cu<—2n 
(3.13) 

â{uj) -2n<u)<2n 
2â{a) — 2n) — â{u> — An) 2n<u)<An 

where â{w) is an arbitrary function of L-{-2n,2n) satisfying conditions (3.11) and 
(3.12). 

We notice that, as one can easily check, (3.4) is satisfied by ail the functions 
4>„{a>) = exp{inw), \a)\<An, with n^O. From the sampling theorem it follows that 
N|(/4) contains ail the band-limited functions with bandwidth 4jr whose sampling 
values are différent from zéro only at the sampling points x„ = n, with « = ± 1 , 
± 2, . . . . The subspace of thèse functions, however, does not coïncide with Nt{A) but 
is a proper subset of Ni(A). 

We can now solve the problem stated at the beginning of the section. In fact, let 
/ (y) be an arbitrary object and let f{w) be its Fourier transform. If we dénote by/,(a>) 
the function which coincides with / (w) for |a»| >4 ; r and which is zéro for |co| <4:/r, then 

yV||(/4). Therefore, in order to completely détermine the invisible component of 
f(y), we must détermine the projection onto Ni{A) of the restriction of / (w) to the 
interval [ — An, An]. This projection can be determined by looking for a function 0 
which satisfies conditions (3.13), (3.11), (3.12) and which is a solution of the following 
variational problem: 

|/(a>) — 0(a>)p dw = minimum. (314) 

This is a constrained minimisation problem for the function â{w) and it can be 
solved in a standard way using the method of Lagrange multipliers. Since the 
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constraints are provided by (3.11) and (3.12), the constrained problem (3.14) can be 
replaced by the following unconstrained problem: 

J | / ( w ) - 0 ( a > ) | 2 d w + 2A J £(w)â((o)d(o + 2/< J ^ 1 - ^ f t > £ ( w ) ^ â((o) do; 

= minimum (3.15) 

where 0((y) is given in terms of â{w) according to (3.13). This problem must be solved 
for any value of the Lagrange multipliers X and n and the values of thèse parameters 
must be chosen in order to satisfy conditions (3.11) and (3.12). 

If one considers separately the variation of d(&)) when u> e (0, 27c) and the variation 
of â((o) when co e ( — 2n, 0), then after some elementary but lengthy computations one 
finds that the minimum of the functional (3.15) is given by 

d(û>) = T^{4/((u - 27t) + 3f(a)) + 2/(û> + 2jr) + / ( « + 4;r) + A - / i [ 3 + (1/2JT)M]} 

OJ<0 (3.16) 

àiw = î^{4/(co + 2jr) + 3/(ft>) + 2f((o - 2n) +f((o-4jT)-X-^[3- (l/2ji)a}]} 

a)>0. (3.17) 

If we now insert (3.16) and (3.17) into (3.11) and (3.12) we easily recognise that A 
is determined by (3.11) while fi is determined by (3.12). The resuit is 

A = ( l /4^)(3 /4 + / 3 - / 2 - 3 / , ) (3.18) 

lu = (3/ 16jr) (7/4 + 3/3 + 3/2 + 7/, - 3/4 - /3 + 72 + 3/ , ) (3.19) 

where 

/y= /(û ')dc« / = 1 , 2 , 3 , 4 (3.20) 
J ~4jr+2ir(i-l) 

^ J -4:>r+lT(/- l ) 
•fi = ^ \ (ofi(o)d(o 7 = 1 , 2 , 3 , 4 . (3.21) 

Thèse formulae solve completely the problem of determining the invisible compo-
nent of an arbitrary ob j ec t / (y ) . In particular they will be used in §6 for determining 
the impulse response function (2.8). 

4. Discrétisation of the intégral équation 

A basic property of the intégral operator related to the one-dimensional cohérent 
problem is that its singular values and singular functions have very simple analytic 
expressions [10]. As a conséquence they can be easily computed with any desired 
degree of accuracy. Moreover, as proved in I using sampling expansions both for the 
image and for the object , the détermination of the generalised inverse of the cohérent 
intégral operator is équivalent to the inversion of an infinite-dimensional matrix. This 
équivalence is used in I for investigating the problem with discrète data and for 
Computing its singular system. In a subséquent paper [11] it was shown that the inverse 
of the infinite-dimensional matrix also has a very simple analytic expression. As far as 
we know, similar results do not hold true in the incohérent case and therefore we must 
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find a numerical approach for the détermination of the singular System of the intégral 
operator (1.5). 

In this section we describe in détail a method based on sampling expansions, which 
is an extension of the method introduced in I and which has already been briefly 
discussed in [12]. 

If g{x) is an image in the range of the operator (1.5) (noise-free image) then, as 
proved in §2, g{x) is a band-limited function with bandwidth 2;r. As a conséquence it 
can be represented by means of the sampling expansion 

+ 00 

g ( ^ ) = s ^('^' ')^'"'=t2(.ï-;c„)] (4.1) 

where 

x„ = nl2 n = 0, ± 1 , ± 2 , . . . (4.2) 

and the following equality holds true: 
+ 00 

2 
\g{xWàx = \ 2 \g{x„W. (4.3) 

As concerns the generalised solution (1.4), it is an élément of N{A)^, the 
orthogonal complément of the null space of A, and therefore we can restrict A to 
N{AY. The éléments of N(A)^ are band-limited functions with bandwidth 4n and 
they have zéros at the integer sampling points, except y = 0, i.e. f(m) = 0 if w = 
± 1, ± 2 , . . . . Thèse propert ies foUow from the results of §3. As a conséquence / (y ) 
can be represented by means of the sampling expansion 

+ 00 

/ ( y ) = X / 0 ' " . ) s i " c [ 4 0 ; - > ; J ] (4.4) 

where yo= 0, y+i = ± j , y±2 = ± I , y±3 = ± 1 , ^±4= ± h etc. In gênerai , for w#=0 

m=±{3k+j) y„ = ±{k+jlA) A: = 0, 1, 2, . . . , / = 1, 2, 3. 
(4.5) 

Equality (4.3) is replaced by 

I +00 

4 
m = - 00 

If we now consider (1.4) at the point x„ and if we use the expansion (4.4) f o r / ( y ) , 
we find 

+ 0 0 

g{x„) = 2 C„J{y„) rt = 0, ± 1 , . . . (4.7) 
m = - = o 

where 

Ç + 0 0 

C„,„ = J s inc-(y- j :„)s inc-(> ' )s inc[4Cy-> 'J]d> ' . (4.8) 
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If we notice that the functions /:„(>') = sinc"(>' —J:„) sinc^(y) are band Hmited with 
bandwidth 47r and if we use the projection properties of the sampHng functions 
sinc[4(y-y,„)], we get 

C„,„ = I sinc-(x„ - y , „ ) sinc-(3',„). (4.9) 

As follows f rom (4.2) and (4.5), it is convenient to introduce the coefficients 

b,=il/V2)g(x,.) a„,= i / ( j , „ ) . (4.10) 

Then the L--norms of the functions g{x) and / (y ) coincide with the /--norms (sum of 
squares) of the séquences {b„}*^.„ and {a,„}*2-^ respectively. 

In terms of the coefficients (4.10) the infinite-dimensional linear System (4.7) takes 
the form 

+ 00 

b„= X A„„,a„, « = 0, ± 1 , . . . (4.11) 

m = - oo 

where 

= (l/2"=)sinc-(j:„-y„)sinc=(>'„,). (4.12) 
We notice that the inverse of this infinite-dimensional matrix does not exist. In fact 

this matrix is isomorphic to the restriction of the intégral operator (1.5) to the 
subspace of band-limited functions represented by the expansion (4.4). Since this 
subspace is broader than N{A)^, the null space of the restricted intégral operator is 
not trivial. 

The infinite-dimensional matrix (4.12) has exactly the same singular values as the 
intégral operator (1.5). Moreover , if is one of the singular values and if {«A m l m S - o o » 

{vk.„}^=-^ are the singular séquences associated with this singular value, the corres-
ponding singular functions of the intégral operator (1.5) are obtained by means of 
(4.1), (4.4) and (4.10): 

Uk(y) = 2 2 u,,,„sinc[4(y-y,„)] (4.13) 

v,ix) = V2 2 ; y , , „ s inc [2 (^ -^„ ) ] . (4.14) 
rt = —M 

Approximations of the singular values and singular functions can be obtained by 
considering finite sections of the infinite-dimensional matrix (4.12). 

5. Numerical results 

The discrétisation of the basic intégral équat ion, as described in the previous section, 
is an extension of the method proposed in I for the cohérent problem. In I it is shown 
that the method can provide excellent approximations of the largest singular values 
(we recall that the exact values are known f rom the resuit of Gori and Guat tar i [10]), 
using a rather small number of sampling points for the image and a sufficiently large 
number of sampling points for the object . This resuit has important practical 
implications. Since only the largest singular values are important for practical data 
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inversion, it means that the problem with continuons data is practically équivalent to a 
problem with a small number of discrète data. It is interesting to verify whether a 
similar resuit holds true also in the incohérent case. 

Let us dénote by/4*,^^' the section of the infinite-dimensional matrix (4.12) which 
is obtained by taking n = 0, ± 1, . . . , ±N; m = 0, ± 1, . . . , ±M. We put 

N„ = 2N+l A/o = 2 M + l . (5.1) 

We recall that the sampling distance is j for the image and j for the object (the 
Rayleigh distance is the unit of length). Therefore , if N is even, N,, sampling points 
corresponds to the interval [ - N/2, N/2] in the image space. As concerns the sampling 
of the object , we recall that we have only three sampling points inside any unit 
interval. Then , if M is a multiple of 3, M,, sampling points corresponds to the interval 
[ - M/3, M/3] in the object space. In other words, the intégral f rom — <» to + in 
(1.5) is approximated by the intégral extended to [ - M/3, M/3]. For example, M„ = 97 
corresponds to [ - 16,16]. 

The matrix A['^^'^^ is a N^fX M,, matrix. In gênerai it is not a square matrix since we 
do not take the same number of sampling points for the image and the object . Its 
singular values provide approximations of the largest singular values of the infinité 
matrix (4.12). In fact, in the limit N ^ œ , M ^ œ , the singular values of 
converge to the singular values of A„„„ as follows from standard results of pertur­
bation theory [13]. The matrix /4J,̂ „ '*^'can be considered, indeed, as a perturbation of 
A,„„, obtained by annihilating the matrix éléments of A,„„ with |n| > A' and/or |m| > M . 
Analogously the singular vectors of Al^,;^^ provide approximations of the singular 
vectors (séquences) of A,„„. The corresponding approximations of the singular 
functions of the intégral operator (1.5) are obtained by truncating the expansions 
(4.13) and (4.14). For example, in the case of the singular functions u^iy), we have the 
approximation 

M 

M r « ) ( y ) = 2 2 ui%''^sinc[4{y-y,„)] (5.2) 
m = - M 

where {U[^;,^^}^,^.M is the singular vector of the matrix normalised to one with 
respect to the usual Euclidean norm. 

The computat ion of the singular system of the matrix ^ i m " * ' is a standard 
numerical problem and one can use standard routines. The convergence of the 
approximation can be checked by increasing N and M. 

We have first verified the convergence with respect to M for varions fixed values of 
N. The numerical results obtained for values of N„ between 5 and 25 {N between 2 and 
12) indicate that as A/,, is increased f rom 49 to 97 the first five digits of the first 20 
singular values do not change. We give an example in table 1. 

This resuit implies that for an accurate computation of the largest singular values it 
is sufficient to take Mo = 49, i.e. to restrict the intégral in (1.5) to the interval [ - 8, 8]. 
This is reasonable because, as we will see, the singular functions associated with the 
largest singular values are concentrated inside this interval. On the other hand, the 
singular functions associated with small singular values tend to spread out of this 
interval and therefore a larger number of sampling points in the object space is 
required for a correct computat ion. 

The next point is to verify the convergence of the largest singular values (for 
instance, the first eleven singular values), for A/(,=49 fixed, when No increases. This is 
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Table 1. Singular values of /4!,^ *" for ^,1= 11 and for various values of M,,, corresponding 
to the intervais \y\^2, 4, 8 and 16. 

k M „ = 1 3 M„ = 25 M, = 49 ;W„ = 97 

0 0.603 3185 0.603 3185 0.603 3185 0.603 3185 
1 0.256 7505 0.256 7506 0.256 7507 0.256 7506 
2 0.107 5034 0.107 5038 0.107 5038 0.107 5038 
3 0.040 2823 0.040 2860 0.040 2860 0.040 2860 
4 0.023 7160 0.023 7641 0.023 7641 0.023 7641 
5 0.019 8000 0.019 8619 0.019 8619 0.019 8619 
6 0.009 7259 0.(H)9 9324 0.(K)9 9324 0.009 9324 
7 0.004 3345 0.007 6321 0.007 6322 0.007 6322 
8 ().(K)2 1716 0.(H)7 3423 0.(K)7 3423 0.007 3423 
9 0.0(K)7147 0.004 0795 0.004 0795 0.004 0795 

10 0.000 2587 0.001 8277 0.001 8280 0.001 8280 

an important problem from the practical point of view because its solution indicates 
the minimum number of samphng points in the image space which is required for the 
computat ion, within a given accuracy, of a given number of singular values. The 
results are given in table 2. In the last column we give the values obtained with 
No = 97, A/,| = 97. In this case ail the digits are correct, as we have verified by 
increasing the number of sampling points. 

Table 2. Singular values of /t!,^,*" for A/„=49 and for various values of N,,. In the last 
column the singular values are for N„= M„ = 91. 

k /V„ = 5, A/o = 49 N „ = 7 . M„ = 49 N„ = 9, M„ = 49 N „ = l l , M„ = 49 

0 0.602 6863 0.603 2066 0.603 2544 0.603 3185 
1 0.256 6841 0.256 7172 0.256 7494 0.256 7507 
2 0.106 8757 0.107 0939 0.107 4633 0.107 5038 
3 0.039 9315 0.040 1201 0.040 2858 0.040 2860 
4 0.013 6988 0.023 1449 0.023 7211 0.023 7641 
5 0.018 8646 0.019 8424 0.019 8619 
6 0.007 4985 0.009 9261 0.009 9324 
7 0.005 4959 0.007 6322 
8 0.003 3284 0.007 3423 
9 0.004 0795 

10 0.001 8280 

k No = 1 3 , JW„ = 49 No = 1 7 , Mo = 49 No = 21, A/„ = 49 No = 97, Afo = 97 

0 0.603 3270 0.603 3462 0.603 3530 0.603 3609 
1 0 .2567530 0.256 7537 0.256 7539 0.256 7540 
2 0.107 5614 0.107 5893 0.107 6001 0.107 6124 
3 0 .0402925 0.040 2935 0.040 2937 0.040 2938 
4 0.023 7666 0.023 7718 0.023 7735 0.023 7752 
5 0.019 8708 0.019 8718 0.019 8720 0.019 8721 
6 0 .0100815 0.010 1126 0.010 1251 0 .0101390 
7 0.(K)8 0475 0.008 0665 0.008 0674 0.008 0676 
8 0.007 6615 0.(K)7 6939 0.007 6968 0.007 6991 
9 0.004 2106 0.004 3175 0.004 3228 0.004 3232 

10 0.002 7954 0.004 0275 0.004 0466 0.004 0481 
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Figure 1. Singular value spectrum of the one-dimensional cohérent problem (O) and 
singular value spectrum of the incohérent problem ( A ) . In both cases log is plotted as a 
function of the index k. 

As follows f rom table 2, a satisfactory approximation of the first five singular 
values is already obtained using nine sampiing points in the image space. Analogously 
the first nine singular values are well approximated using thirteen sampiing points. 

In figure 1 we compare the singular value spectrum of the incohérent problem with 
that of the cohérent one. We plot the first 25 singular values, obtained with 
No = Mo = 49. We notice that the singular values of the incohérent problem tend to 
zéro more rapidly than the singular values of the cohérent one , i.e. the incohérent 
problem is more ill posed. This implies, as will be discussed in the next section, that it 
can be rather difficult to obtain a transfer function which completely fills the available 
band [ — 4JI, 4jt]. 

Finally in figure 2 we plot the first eight singular functions u^(y) obtained with 
NQ = MO = A9. We notice the saturation of the number of zéros inside the central 
région, a property of the singular functions already remarked in the cohérent 
problem. Starting f rom the fifth singular function (fc = 4), ail the even singular 
functions have four zéros inside ( — 1 ,1) while ail the odd singular functions have five 
zéros inside the same interval. We recall that the Rayleigh resolution distance is 1. 
The points ± 1 are double zéros of the singular functions, as was already remarked in 
§2. We also observe that for increasing k (and therefore decreasing a^) the singular 
functions spread out of the central région, which corresponds to the central lobe of the 
illuminating beam. 

6. The impulse response function 

As follows f rom (2.9), the function T{y), defined in (2.8), is the impulse response 
function of the super-resolving microscope in the absence of noise. In fact, T(y) is the 
response to a unit impulse of the System which consists of the confocal microscope, of 
the detectors for the measurement of the fuU image, of the computer where the 
inversion algorithm (2.5) is implemented and of the scanning table. This inter­
prétation is correct only when the full image is detected in the absence of noise and the 
reconstruction formula (2.5) is used in the absence of round-off errors. In practice. 
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since the image is noisy, the séries (2.5) does not converge and it must be t runcated 
(see I). Moreover we have only a finite set of values of the image g{x). Under thèse 
conditions, if the image is sampled at the Nyquist rate and if we use Nu sampling points 
for the image, A/Q sampling points for the object and K singular functions for the 
inversion, then the impulse response function (2.8) is replaced by 

^ ^ ^ ' ( y ) = 2; unQ)uf -^^{y). (6.1) 

We notice that , since the singular functions are alternatively even and odd, only 
the even singular functions contribute to (2.8) or to (6.1). 

6.1. Noise-free data 

We use the results of §3 for determining the impulse response function (2.8), which 
corresponds to the case of noise-free data. 

We first remark that the function 
+ 00 

P{x,y) = ^u,{x)u,{y) (6.2) 

J 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 L 

1.2 - I I /r=4 . I I A-=5 . I I /r=6 . i i /f=7 

-U -2 0 2 i - 4 - 2 0 2 4 - 4 - 2 0 2 4 - 4 - 2 0 2 4 

y y y y 

Figure 2. Plot ot the first eight singular functions of the one-dimensional incohérent 
problem. 
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is the kernel of the project ion opera to r on to the or thogonal complément of the nul! 
space of the ope ra to r (1.5). Since the funct ions MA(JC) have bandwidth An, f rom the 
project ion proper ty of the sine funct ion we have 

T(y) = A^ P{x,y)smc{Ax)Ax (6.3) 

and there fore T{y) is the project ion on to ^(^4)^ of the funct ion 

/ (y ) = 4s inc(4y) . (6.4) 

If (j)iy) is the project ion of/(_v) on to N{A) then , f rom the well known décompo­
sition t heo rem, we have 

T{y)=f(y)-<l>{y). (6.5) 

T h e Four ier t ransform of ^ ( y ) , ^(o)), can be computed by means of (3.13) and 
(3 .16)- (3 .21) . If we notice that / (co) = 1 when |a»| < 4 j r (and 0 e lsewhere) , f rom (3.16) 
and (3.17) we have 

(l + U^-^[3 + (l/2ji)(o]} w<0 

" ^ " ' ^ " | l - î i { A + / i [ 3 - ( l / 2 7 r ) H } o,>0. ^^'^^ 

Moreover , f rom (3.20) and (3.21), always in the case f{(o) = 1, we obtain 

I. = 27c 7 = 1 , 2 , 3 , 4 (6.7) 

Ji=-57t + 27ij / = 1 , 2 , 3 , 4 . (6.8) 

Then , f rom (3.18) and (3.19) it follows that 

X = 0 n = 'i. (6.9) 

By substituting in (6.6) we get 

â{a)) = \-l{?>-{\l2n)\u)W. (6.10) 

Since â{w) is even, 0 ( w ) given by (3.13) is also even. The re fo re it is sufficient to 
compute 0 ( w ) for 0}e{2K,An). In such a case a » - 2 j r belongs to (0, 2jr) and m-Aji 
beiongs to { — 2n, 0). It follows that 

^{u)) = 2â{w-2n)-â{w-An)^\-l[l-{31271)0)] 2n<(o<An. (6.11) 

If we now dénote by f{o)) the Fourier t ransform of T{y), using (6.5), (6.10) and 
(6.11), we have 

f( . m 3 - ( l / 2 ^ ) k l ] k l < 2 ^ 
^"^^ [ | [ 7 - ( 3 / 2 ; r ) | « ; | ] 27i<\œ\<A7i. ^ 

In figure 3 we plot the funct ion T{w) and also the funct ion T^){(o) which is the 
Fourier t ransform of the impulse response funct ion of conventional CSLM, i .e. 

T,(y) = smc'{y) (6.13) 

as follows f rom (2.10). W e notice that , while ta{a))^Q when |c(j|^4;n:, f{(o) is never 
zéro over the interval [ — An, An] and therefore ail the Fourier componen t s of the 
object in this band are t ransmit ted by super-resolving CSLM, at least in the absence of 
noise. 
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Figure 3. Plots of (a) the transfer function t^iu)) for the conventional confocal scanning 
microscope and (b) the transfer function t(u>) for the noise-free super-resolving micro­
scope. 

In figure 4 we plot the impulse response fonctions T{y) and T^^{y)• As one can 
easily dérive f rom (6.12), T(y) is given by 

T{y) = f sinc2(23') - I sinc-Cv) - 3 sinc(2y) ûn^{ny). (6.14) 

The super-resolving effect corresponds to the fact that the central peak of T{y) is 
much narrower than the central peak of T^ly). This improvement in central resolution 
is accompanied by decaying side lobes similar to those of the cohérent case. 

T 

-2.0 -1 .5 -1.0 - 0 . 5 0 0 .5 1.0 1.5 2.0 

y 

Figure 4. Plots of (a) the impulse response function T„(y) of the conventional confocal 
microscope and (b) the impulse response function T(y) of the noise-free super-resolving 
microscope. The unit of length is the Rayleigh resolution distance. 
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6.2. Noisy and discrète data 

In the case of noisy data the expansion (2.5) does not in gênerai converge. Then one 
must consider a truncated singular function expansion. As discussed in I, this 
approximation is especially good in the case of the recovery o f /* (0) , since one can use 
only the singular functions which are large in the central région. Moreover , when we 
have a finite set of sampled data, we must use the approximate singular functions 
discussed in §5. Under thèse conditions the approximate value of the restored object 
is given by 

*=0 * 

N.M), (0) (6.15) 

and the corresponding impulse response function is given by (6.1). 
The stability of the inversion procédure (6.15) is controUed by the condition 

number 

cond(/^; N,M) = 
M) 

.M)- (6.16) 

As follows f rom table 2, for K = 3, 5, 7, 9 and 11, the values of the condition 
number in the case No = Mo = 97 are respectively 5.61, 25.4, 59.6, 78.4 and 149. For 
smaller values of No, M g the values of the condition number do not change signifi-
cantly. This resuit indicates that if the data are affected by a few per cent noise then 
eight terms in (6.15) can be taken into account. In this case we have a non-zero 
contribution only for k = 0, 1, 3, 5, 7. 

In figure 5 we plot the transfer functions f'^ '^\(o), i .e. the Fourier t ransforms of 
the functions T'^ '^^iy), defined in (6.1), for various values of K, in the case 
Nu = Mo = 97. We see that for K^49 the shape of the transfer function is very similar 
to that of the Umit N = M = °o, plotted in figure 3. We also notice that the behaviour of 
the transfer functions is rather irregular over the band. This means that the image 
provided by the super-resolving microscope can be strongly distorted. Filtering 

- t i T -2it 0 271 Un-Un -2ix 0 2n Un -Un-2n 0 2n 4 n - 4 n - 2 n 0 2n Un 

Figure 5. Plot of the transfer functions f ie *'(cu) for various values of K (number of 
singular functions used) computed in the case A',, = MQ = 97. 
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Figure 6. Plot of the impulse response functions Tx ^iy) for various values of K, 
computed in the case No= A/o = 97. The unit of length is the Rayleigh resolution distance. 

techniques , such as T ikhonov régularisat ion [6], can be used, however , in o rde r to 
improve the fidelity of the image in the centre of the band . 

In o rde r to es t imate the improvemen t in bandwidth we compare , for example , the 
t ransfer funct ion f^'^\(o), with K^l, with the t ransfer fonct ion fi){u>) of the 
convent ional CSLM (see figure 3). W e consider the interval where the t ransfer funct ion 
is greater than 0.1. This is a symmetr ic interval , say [ - w o , «>o]. Then in the case of 
fo{u)) we have a)o = 2.1;r while in the case of t^ '^\(o) we have coo = 3.57r. This means 
that super-resolving CSLM provides a 60% improvement in bandwidth (and the re fo re a 
60% improvemen t in resolut ion) with respect to convent ional CSLM . T h e improve­
ment cor responding to K = 9 and / C = l l * d o e s not d i f fer significantly f r o m the 
improvement cor responding to K = 7. Thèse prédict ions have been verified closely in 
récent labora tory exper iments at King's Collège, L o n d o n and this work will be the 
subjec t of a sepa ra te publ icat ion. 

In figure 6 we plot the impulse response funct ions T^-'^^(y) f o r the same values of 
K as in figure 5. 

7. The two-dimensional problem with square pupils 

T h e solution of the one-dimensional p rob lem discussed in the previous sections 
provides also the solution of the two-dimensional p rob lem in the case of square pupils. 
In fact , in such a case in (1.1) we have 

S,(jc) = S2ix) = S{x) = sinc(j:,) sinc(x2) (7.1) 

and the singular system of the intégral ope ra to r 

{A^'V)ix) = J \S{x-yW\S(y)\'f(y)dy (7.2) 

can be ob ta ined f r o m the singular system of the intégral ope ra to r (1.5) as follows. T h e 
singular values of the ope ra to r (7.2) are ail the possible p roduc ts of the singular values 
of the ope ra to r (1.5) 

a , t = a,a^ i,k = 0 , l , 2 . . . (7.3) 
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and the corresponding singular funct ions are given by the tensor products of the 
singular funct ions of (1.5) 

Ui.k(y) = Ui(y])uk(y2) ( 7 . 4 ) 

Vi.kix) = ViiXi)vi,{x2). ( 7 . 5 ) 

It is obvious that the singular values with /=^A: have multiplicity 2 while the singular 
values with i = k have multiplicity 1. 

Only the singular funct ions corresponding to even values of both indices contri-
bute to the reconstruct ion of the object at the origin. T h e two-dimensional problem is, 
however , more ill condit ioned than the one-dimensional p rob lem. As we have seen, in 
the case of K = 5 where we use three singular funct ions with k = 0,2, 4, the condit ion 
number is 25.4 in the one-dimensional case. In the two-dimensional case, in order to 
obtain the same resolut ion, we must use nine singular funct ions, corresponding to ail 
the possible pairs of the values 0, 2, 4. But the condition number is now (25.4)^ = 645 
and this value could be inconveniently high for the réduction of expér imenta l da ta , 
since it would require very large values of the signal-to-noise rat io. 

8. Concluding remarks 

In §6 we have es t imated that super-resolving CSLM can provide an improvement in 
resolution of about 60% with respect to conventional CSLM. This improvement is 
much more évident if régularisation techniques [6] are used in order to deconvolve the 
image provided by super-resolving and /o r conventional CSLM. For example , in the 
case of the Tikhonov régularisation me thod , the t ransfer funct ion '"(co) is replaced 
by the following one: 

r „ , a « ^ ) - | ^ ^ , M ( ^ ) | 2 + „ ( 8 . 1 ) 

where a is the so-called régularisation pa ramete r whose value is related to the 
signal-to-noise rat io. Analogously fo{u)) is replaced by 

In a récent paper Sheppard [14] has proposed an al ternative version of super-
resolving CSLM. Also in this case one must use many detectors and the signais f rom the 
detectors must be appropriately delayed and integrated. O n e can easily prove that for 
the one-dimensional problem discussed in this paper the t ransfer funct ion correspond­
ing to the Sheppard me thod is given by 

t,(co) = (^l-^y \co\<4jt (8.3) 

and fi(a)) = 0 e lsewhere. Also in this case one can deconvolve the image and this 
procédure provides a t ransfer funct ion given by 
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Figure 7. (a) Comparison of the transfer functions of the conventional confocal micro­
scope (full curve), of the multidetector microscope proposed by Sheppard (broken curve) 
and of the super-resolving microscope discussed in this paper (chain curve). (b) 
Regularised versions of the transfer functions plotted in (a). 

In figure 7 we compare the transfer functions of the various methods. In figure 7(a) 
we plot the unregularised transfer functions and in figure l{b) the regularised ones, 
assuming a value of the régularisation parameter of the order of 10"^ It is seen that 
Sheppard's method provides an improvement in resolution with respect to conven­
tional CSLM which is smaller than the improvement provided by the method discussed 
in this paper. 
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