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Abs tracl 

We conaider the problciri of reoLoring a signal degraded by a band­pass filter, in the case 
where this signal is m o d u l a t e d by a given profile function. We study the p r o p e r t i e s of the 
associated singular System and dérive analytic e x p r e s s i o n s for the singular f u n c t i o n s in 
some particular cases. 

Introduction 

Many inverse p r o b l e m s encountered in practice consist in restoring an object function or 
input signal from its image or output produced by a d e g r a d i n g linear system. In many in­
stances, the effect of this linear System can be viewed as a filtering process, since the 
System atténuâtes or s u p p r e s s e s some frequency c o m p o n e n t s in the Fourier transform of the 
input signal. In gênerai the Systems cuts off the highest frequency c o m p o n e n t s and b e h a v e s 
thus as a low­pass filter. The problem of restoring an object function from its l o w ­ p a s s 
filtered image has been extensively studied in the l i t e r a t u r e . In several s i t u a t i o n s of prac­
tical relevance, however, the system also filters off the low­frequency c o m p o n e n t s and it is 
to be considered as a b a n d ­ p a s s filter. We think in p a r t i c u l a r to optical Systems with cen­
trally obstructed pupils and to inverse scattering p r o b l e m s when low­frequency i n f o r m a t i o n 
is missing either because of expérimental constrainps or b e c a u s e of the limited v a l i d i t y of 
the linear a p p r o x i m a t i o n . In spite of its interest, the r e s t o r a t i o n problem from b a n d ­ p a s s 
filtered outputs has not received much attention so far. In the présent paper, we c o n s i d e r 
this question in the case where the input signal is w e i g h t e d by some known profile function. 

The band­pass filter vjitl̂  wc.'ighted input 

Let us assume that the effect of the linear system on the input signal f(x) is d e s c r i b e d 
by the following intégral operator 

(Af)(x) = K(x­y) P(y) f(y) dy X < , (1) 

where the impulse response K(x) is given by 

K(x) ­ 2y sinc(2\) x) ­ 2M sinc(2v x) 
2 2 1 1 

0 < V < y 
­ 1 2 

the symbol "sine" being the usual notation for the following function 

sinc(x) = sin( 71 x ) / ( n x ) 

(2) 

(3) 

The corresponding transfer function K(v), which is the Fourier transform of K(x), is just the 
characteristic f u n c t i o n of the frequency band 

K ( y ) = 1 for ­ V 2 1 ^ ­

= 0 elsewhere 

and < V < \) 

1 ­ ­ 2 

(4) 

The restoration problem associated to this band­pass filter c o n s i s t s in recovering f(x) from 
continuous or sampled v a l u e s of the image g(x) = (Af)(x). We will essentlally c o n s i d e r hère 
the case of continuous data on the whole real axis. 

The "profile" or w e i g h t i n g function P(x) Is a given function which can be viewed as an 
entrance window a f f e c t i n g the object before the filtering. The physical i n t e r p r é t a t i o n of 
P(x) dépends of course on the application under study. For example, in Fourier optics, w h e r e 
f(x) represents the transmission function of a coherently illuminated transparency, the 
profile function allows to describe the field distribution in the i l l u m i n a t i n g beam, e. g. 
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a gaussian profile for a laser beam or a sine - function for a beam focused by d i f f r a c t i o n -
limited optics. A l t e r n a t i v e l y , P(x) could be used for expressing some a priori K n o w l e d g e 
about the localization of the unknown object f(x). For example, P(x) can be the c h a r a c t e r -
istic function of the support of the object. Such weighted Inputs have already been used in 
the case of a low-pass filter (i. 
integrable 

= 0) 'We assume that the profile function is square 

lP(x) I dx < + (5) 

and that |P(x) I is.bounded by 1. 

Properties of the singular System 

With the a s s u m p t i o n (5), it is easily seen that the o p e r a t o r A given by (1) b e l o n g s to the 
class of H i l b e r t - S c h m i d t and hence defines a compact o p e r a t o r in L {-°°,+ '°), the space of 
square integrable f u n c t i o n s on the line. A useful tool for analysing the r e s t o r a t i o n p r o b l e m 
for a linear System modelled by a compact operator A is the so-called singular System of A, 
which is the set of n o n - t r i v i a l solutions { ; ui< , vi, } of the coupled é q u a t i o n s 

A u ^ = «kVk A*v, a,U|. (6) 

The quantlties % , which are real positive numbers by définition, are called the s i n g u l a r 
values of A and the symbol A* dénotes the adjoint operator 

(A* g)(y) = P * C y ) K(x-y) g(x) dx (7) 

where P* is the complex conjugate of P. The functions U|, and v^ , called the s i n g u l a r func­
tions of A, are also the e i g e n f u n c t i o n s (with e i g e n v a l u e s a^) of the s e l f - a d j o i n t o p e r a t o r s 
A*A and AA*, respectively, as seen from (6). The operator AA* has a simple e x p r e s s i o n in 
Fourier space and the c o r r e s p o n d i n g eigenvalue équation for the Fourier transform v\^{ y) is 

V|,(c) Q(v-ç) dç + I V|<(0 Q(v-ç) dC = a? v^(v) (8) 

where Q ( \ i ) is the Fourier transform of |P(x)l' 

From (5) and (7), we see that Vk(x) is a bandlimited function to the band V] < |v| < v 2. 
The functions form an orthogonal basis in the space of bandlimited f u n c t i o n s . Moreover, 
it follows from (7) and (6) that 

u^ (x) = (1/ a^) P* (x) v j x ) (9) 

The restoration problem has a unique solution or, in o t h e r words, the o p e r a t o r A is invert-
ible when P ( v) , the Fourier transform of P, is analytic and, in particular, when P ( x ) van-
ishe^ outside of some bounded support.„In such a case the singular f u n c t i o n s u^ form a b a s i s 
in L (-«>,+ ">). On the o t h e r hand, when P( \>) has a bounded support, A cannot be invertible and 
the singular functions u s p a n only the orthogonal complément of the n u l l - s p a c e of A, i. e. 
of the set of input functions f(x) which produce a zéro output. 

From (9) and from the orthogonality properties of the uk and Vk , it is seen that the 
singular functions V|,(x) satisfy a double-orthogonality relation'" which g e n e r a l i z e s the well-
known double o r t h o g o n a l i t y of the prolate spheroidal wave functions. ^ The v^ reduce indeed 
to the prolate functions in the particular case of a low-pass filter and of a p r o f i l e func­
tion which is the c h a r a c t e r i s t i c function of a finite interval, say (-1,+1). 

The separability condition 

In some circumstances, the solutions of equatipns (6) or (8) can be reduced to a problem 
relative to a low-pass filter. This happens when Q(v) v a n i s h e s for \v\ g r e a t e r than a given 
value, say . In such a case, if 

Q 1 2 1 (10) 

équation (8) splits into two separate équations, one for the p o s i t i v e - f r e q u e n c y part and one 
for the n e g a t i v e - f r e q u e n c y part of Z ^ { v ) . Each part can be determined from the s i n g u l a r func­
tions of the c o r r e s p o n d i n g low-pass filter and a two-fold degeneracy occurs. 
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The sine - p r o f i l e 

LeU us now c o n s i d e r the case where the profile f u n c t i o n is g i v e n by 

P ( x ) = sin ( i i x)/ (n x) • ( 11 ) 

The f u n c t i o n Q(v) is then the follov/ing t r i a n g u l a r f u n c t i o n 

A (« ) ' = 1 - I y I for I I < 1 

(J u 1 ;;,cvjhui-c- ( 1 2 ) 

We have put here = 1, for aiinpllcity, but Lliis c o n d i t i o n is not r e s t r i c t i v e . W h e n i 1/2, 
the s e p a r a b i l i t y c o n d i t i o n h o l d s and é quation (8) can be s o l v e d e x p l i c i t l y , at least w h e n 
V2 - £ 1 • The e x p r e s s i o n of v . ( x ) and the c o n d i t i o n s w h i c h d é t e r m i n e the s i n g u l a r v a l u e s 
can then be easily d e r i v e d from the results relative to the l o w - p a s s f i l t e r w i t h a sine -
p r o f i l e . 

When the s e p a r a b i l i t y c o n d i t i o n d o e s not hold, we can still solve e x p l i c i t l y é q u a t i o n (8), 
v;hatever be Vj, p r o v i d e d that \) < 1/2 . Indeed, w h e n p u t t i n g (12) into (8) and d i f f e r e n -
t i a t i n g tv/o times, we see that the f u n c t i o n s ( v ) s a t i s f y the f o l l o w i n g d i f f e r e n t i a l é q u a ­
tion 

d V, ~ ~ 

H e n c e , they are h a r m o n i e f u n c t i o n s and by direct i n s e r t i o n of a h a r m o n i e f u n c t i o n in (8), we 

find that they are e v e n o r odd and have the f o l l o w i n g e x p l i c i t e x p r e s s i o n for Vj < |v| < 

V|< ( V ) = cos[ Bk ( 1 y I - v j ) 1 for even k 

V|< ( v ) = sign( v ) cos[ 6i( ( I \> I - \>2) ] for odd k (14) 

w h e r e s i g n ( v ) = 1 for v >_ 0 and sign(\)) = -1 for M < 0 . The allov;ed v a l u e s for are the 
s o l u t i o n s of the t r a n s c e n d e n t a l é q u a t i o n s 

tg [ 6|< ( - V| ) ] = 1 / [ 6^ {1 - ) ] for even k 

The s i n g u l a r v a l u e s are then g i v e n by 

0^ = /2 / (16) 

T h a n k s to é q u a t i o n (9), the s i n g u l a r System in now c o m p l e t e l y d e t e r m i n e d . 

O t h e r explicitly s o l v a b l e c a s e s 

\le h a v e also b e e n able to d é t e r m i n e e x p l i c i t l y the s i n g u l a r S y s t e m s c o r r e s p o n d i n g to o t h e r 
c h o i c e s of the p r o f i l e f u n c t i o n . Thèse results have b e e n r e p o r t e d e l s e w h e r e 3 and are r e l a ­
tive to the cases w h e r e ' P ( x ) is p r o p o r t i o n a l to the I m p u l s e r e s p o n s e (2) and w h e r e (x) is 
a L o r e n t z i a n f u n c t i o n . 

R e g u l a r i z e d s o l u t i o n s of the r e s t o r a t i o n p r o b l e m 

In o r d e r to o v e r c o m e the p r o b l e m s of e x i s t e n c e and u n i q u e n e s s , the r e s t o r a t i o n p r o b l e m 
is to be solved by m e a n s of the standard concept of g e n e r a l i z e d solutions.^ The s o - c a l l e d 
g e n e r a l i z e d s o l u t i o n f o f the é q u a t i o n (Af)(x) = g ( x ) is o r t h o g o n a l to the n u l l - s p a c e of A 
and a d m i t s the f o l l o w i n g e x p a n s i o n onto the s i n g u l a r S y s t e m of the c o m p a c t o p e r a t o r A 

f + = Ul/aJ (g,v̂  ) û  (17) 

w h e r e (g,V|^) d é n o t e s the u s u a l s c a l a r product in L^. H o w e v e r , r e s t o r a t i o n by m e a n s of f o r m u l a 
(17) is u n s t a b l e in the p r é s e n c e of noise, since the s i n g u l a r v a l u e s a c c u m u l a t e to z é r o . 
R e g u l a r i z e d (i. e. s t a b l e a p p r o x i m a t e ) s o l u t i o n s are o b t a i n e d by s u p p r e s s i n g in the sum (17) 
ail t e r m s for which a <. e/E, w h e r e (E/e) ^ is the s i g n a l - t o - n o i s e ratio. 
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When analytic e x p r e s s i o n s for the singular functions are not available, the s i n g u l a r Sys­
tem of A can be computed n u m e r i c a l l y . ' Such a c o m p u t a t i o n is easier for sampled data, 
since it reduces to a m a t r i x diagonalization. When the n u m b e r of data points is s u f f i c i e n t l y 
high, we can obtain very good approximations of the singular System c o r r e s p o n d i n g to c o n t i n u -
ous data. Numerical e x a m p l e s of singular Systems and of restored signais are to be presented 
during the oral d i s c u s s i o n of the paper. 
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