Singular value analysis for band-pass filtering systems
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AbsLract

We consider the problem of restoring a signal degraded by a band-pass filter, in the case
where this signal is modulated by a given profile function. We study the properties of the
associated singular system and derive analytic expresslions for the singular functions in
some particular cases.

Introduction

Many inverse problems encountered in practice consist in restoring an object function or
input signal from its image or output produced by a degrading linear system. In many in-
stances, the effect of this linear system can be viewed as a filtering process, since the
system attenuates or suppresses some frequency components in the Fourier transform of the
input signal. In general the systems cuts off the highest frequency components and behaves
thus as a low-pass filter. The problem of restoring an object function from its low-pass
filtered image has been extensively studied in the literature. In several situations of prac-
tical relevance, however, the system also filters off the low-frequency components and it is
to be considered as a band-pass filter. We think in particular to optical systems with cen-
trally obstructed pupils and to inverse scattering problems when low-frequency information
is missing either because of experimental constrain;s or because of the limited validity of
the linear approximation. In spite of its interest, the restoration problem from band-pass
filtered outputs has not received much attention so far. In the present paper, we consider
this question in the case where the input signal {s weighted by some known profile function.

The band-pass filter with weighted input

Let us assume that the effect of the linear system on the input signal f(x) is described
by the following integral operator

(AL)(x) = r K(x-y) Ply) £ly) dy ("% B ) (1)

—-
where the impulse response K(x) is given by

K(x) = 2v, 51nc(2vzx) = 2wy sinc{2v x) DLv, <v (2)
the symbol "sinc" being the usual notation for the following function

sinc(x) = sin(sx)/(sx) (3)

The corresponding transfer function K(v), which is the Fourier transform of K(x), is just the
characteristic function of the frequency band

Rv) =1 for-v, < vg-v, and v <v sV

= ! 1 2

= 0 elsewhere (4)

The restoration problem associated to this band-pass filter consists in recovering f(x) from
continuous or sampled values of the image g(x) = (Af)(x). We will essentially consider here
the case of continuous data on the whole real axis.

The "profile" or weighting function P(x) is a given function which can be viewed as an
entrance window affecting the object before the filtering. The physical interpretation of
P(x) depends of course on the application under study. For example, in Fourier optics, where
f(x) represents the transmission function of a coherently illuminated transparency, the
profile function allows to describe the field distribution in the illuminating beam, e. g.
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a gaussian profile for a laser beam or a sinc - function for a beam focused by diffraction-
¥, limited optics. Alternatively, P(x) could be used for expressing scme a priori knowledge
R about the localization of the unknown object f(x). For example, P(x) can be the character-
2 istic function of the support of the object. Such weighted inputs have already been used in
g the case of a low-pass filter (i. e.v = 0).2+3We assume that the profile function is square

¥‘ integrable
: , - ;

< I P(x)!"dx <a+= (5)
-2 v

b and that IP(x) | is.bounded by 1.

;

ﬁ Properties of the singular system

e With the assumption (5), it is easily seen that the operator A given by (1) belongs to the
class of Hilbert-Schmidt and hence defines a compact operator in L°(-=,+®), the space of
square integrable functions on the line. A useful tool for analysing the restoration problem
for a linear system mcdelled by a compact operator A is the so-called singular system of A,
which is the set of non-trivial solutions leog;uyx,vx | of the coupled equations

T:- Au, = o v, A%v, = ou, (6)

" The quantities oy, which are real positive numbers by definition, are called the singular
values of A and the symbol A" denotes the adjoint operator

'. (A* g)(y) = P*(y) r K{x-y) g(x) dx (7)

e where P* 1s the complex conjugate of P. The functions u,; and vy, called the singular func-
=% tions of A, are also the eigenfunctions (with eigenvalues aof) of the self-adjoint operators
b A®A and AA", respectively, as seen from (6). The operator AA® has a simple expression in

Fourier space and the corresponding eigenvalue equation for the Fourier transform vi(v) is

o ) 5 LI 2k S - o

i J vile) Q(v-g) dg + I Vil €) Qlv=-2) d& = a? v (v) (v, 2 1vl 2 v,) (8)
‘5 -v 2 vy

4

33 where Q(v) is the Fourier transform of |P(k)[2.

From (6) and (7), we see that viy(x) is a bandlimited function to the band v; £ |v| < v,.
R The functions Vi form an orthogonal basis in the space of bandlimited functions. Moreover,
é it follows from (7) and (6) that

u (x) = (1/¢) P"(x) v, (x) (9)

The restoration problem has a unique sclution or, in other words, the operator A is invert-
% ible when P( v), the Fourier transform of P, is analytic and, in particular, when P(x) van-

it ishes outside of some bounded support..In such a case the singular functions u, form a basis
vl in L°{-=+®, On the other hand, when P( v) has a bounded support, A cannot be invertible and
4 the singular functions u, span only the orthogonal complement of the null-space of A, i. e.
of the set of finput functions [(x) which produce a zero output.

G

- From (9) and from the orthogonality properties of the uk and v, , it is seen that the
singular functions v, (x) satisfy a double-orthogonality relation * which generalizes the well-

'f"‘*-&-"""

known double orthogonality of the prolate spheroidal wave functions.’ The v, reduce indeed
to the prolate functions in the particular case of a low-pass filter and of a profile func-
R tion which is the characteristic function of a finite interval, say (-1,+1).
x‘ The separability condition
In some circumstances, the solutions of equations (6) or (8) can be reduced tc a problem
relative to a low-pass filter. This happens when Q(v) vanishes for |v| greater than a given
£ value, say Vg - In such a case, if
vop<2v, (10)
3 equation (8) splits into two separate equations, one for the positive-frequency part and one

for the negative-frequency part of v, (v). Each part can be determined from the singular func-
3 tions of the corresponding low-pass filter and a two-fold degeneracy occurs.
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The sinc - profile

Let us now consider the case where the profile function is given by
P(x) = sin{nx)/(ax) : (11)
The function Q(v) is then the following triangular function
alv) =1 - |y for |v| < 1
) clsewluere (12)

wWe have put here vg= 1, for simplicity, bul Lhis conditlon is not restrictive. When v, 2482
the separability condition holds and equation (8) can be solved explicitly, at least when

vy - v, £ 1 . The expression of v, (x) and the conditions which determine the singular values
can then_be easily derived {rom the results relative to the low-pass filter with a sinc -
profile.

When the separability condition does not hold, we can still solve explicitly equation (8),
whatever be v,, provided that v, < 1/2 . Indeed, when putting (12) into (8) and differen-
tiating two times. we see that %he functions %k(V) satisfy the following differential equa-
tion

2n
d\elk(v) N (2/03) '{,k(‘,) = 0 v S vl 2 v, (19

d v

Hence, they are harmonic functions and by direct insertion of a harmonic function in (8), we
find that they are even or odd and have the following explicit expression for v, £ lv] £ v,

Vi(v) = cos(g (Iv] = v;)) for even k
TV = sign(v) coslgy (1v] - v; )] for odd k (14)
where sign(v) = 1 for v > 0 and sign(v) = -1 for v < 0 . The allowed values for 3* are the

solutions of the transcendental equations

tg [g (v, - "l)l 1/ [Bk(l - vz)] for even k

Ly [Bk(v) - ul) e« 1/ (Bk ul) for odd k (15)

The singular values are then given by
9 =72/ 8 (16)
Thanks to equation (9}, the singular system in now completely determined.

Other explicitly solvable cases

We have also been able to determine explicitly the singular systems corresponding to other
choices of the profile function. These results have been reported elsewhere 3 and are rela-
tive to the cases where'P(x) is proportional to the impulse response (2) and where F (x) is
a Lorentzian function.

Regularized solutions of the restoration problem

In order to overcome the problems of existence and uniqueness, the restoration problem
1s to be solved by means of the standard concept of generalized solutions.” The so-called
generalized solution f' of the equation (Af)(x) = g(x) is orthogonal to the null-space of A
and admits the following expansion onto the singular system of the compact operator A

£1= 1(1/0) (gv,) u (17)

where (g,v,) denotes the usual scalar product in L?. However, restoration by means of formula
(17) is unstable in the presence of noise, since the singular values accumulate to zero.
Regularized (i. e. stable approximate) sclutions are obtained by suppressing in the sum (17)

all terms for which 6 S ¢/E, where (E/¢) ? is the signal-to-noise ratio.
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When analytic expressions for the §ingular functions are not available, the singular sys-
tem of A can be computed numerically.*‘ Such a computation is easier for sampled data,
since it reduces to a matrix diagonalization. When the number of data points is sufficiently
high, we can obtain very good approximations of the singular system corresponding to continu-
i_ ous data. Numerical examples of singular systems and of restored signals are to be presented
i ' during the oral discussion of the paper.
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