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Sufficient Conditions for the Existence of Bound States
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We give in this paper several sufficient conditions for the existence of negative energy
bound states in a purely attractive potential without spherical symmetry. These conditions
generalize the condition obtained recently by K. Chadan and A. Martin (C. R. Acad. Sci.
Paris 290 (1980), 151), and can ensure the existence of n bound states, For the spherically
symmetric case, one gets simple formulae which are also new.

I. INTRODUCTION

In a recent paper [1], a sufficient condition was given which ensures the existence of
at least one bound state for a nonrelativistic particle in a purely attractive potential
without spherical symmetry. It is the purpose of the present work to generalize the
above condition in order to ensure the existence of 7 bound states.

As usual, we choose the units in such a way that # = 2M = [, where M is the mass
of the particle. The Schrédinger equation then reads

HY = [—4 + V(n)]¥(r) = E¥(r), (1)

where 4 is the Laplacian, and V(r) the potential. We shall not enter into the details of
various sufficient couditions under which the Hamiltonian is self-adjoint and what
are its spectral properties in each case, and we refer the reader to the literature for
more details about the brief mathematical discussion which follows [2, 3]. We assume
again that the potential is purely attractive: V' < 0,
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SUFFICIENT CONDITIONS FOR BOUND STATES 467

To be on the safe side concerning the Hamiltonian as a self-adjoint operator with
usual spectral properties: given a continuum from 0 to infinity, plus a point spectrum
whose negative elements (negative energy bound states) are bounded from below
and are finite in number, we assume the following conditions:

V(r) € LR®) N LYRY). (2)

These conditions guarantee that / has a unique self-adjoint extension, and that its
spectrum is as expected. Moreover, according to [2, Theorem 1.22], the operator

K(E) = | V '(E — Hy)™ | V 72

= | Ve

ST V@Rs,  Imk >0, 3)

is a Hilbert-Schmidt operator for all E off the positive real axis. It is analytic in E
in the cut plane, and has a continuous extension to the real axis from above and below,
i.e., the limit is also Hilbert-Schmidt, including at £ = 0. The negative energy bound
states ¥ satisfy the homogeneous Fredholm integral equation (£ = —y2, y = 0)

D) = ()t [[| VO S | VR 0) dvr, (4a)

where @ = | V |12¥ [2, Theorems I11.2 and 111.4]. As is known, the possible zero
energy (L*) solution of this equation, which usually corresponds to a resonance rather
than a true bound state, is not a solution of H¥ = 0 with ¥ in L*. This means that,
in principle, we should keep the energy strictly negative in the analysis which follows.
However, as has been done by Schwinger (see [2, Chapter 111] for details), for counting
the negative energy bound states (including the possible resonance at zero energy),
we can use the zero energy limit of (4a) essentially because the kernel stays Hilbert-
Schmidt at y = 0. According to Schwinger, the existence or nonexistence of such
states is related to whether or not the kernel K(£ = 0) has characteristic values
(inverse of eigenvalues) less than 1 or not, that is, whether or not one can solve the
Fredholm integral equation
¢ = | y|l/a+j(4")—ll yll/!;'.
Ie—x|
by iteration, and obtain a convergent Born series. Iterating the above equation, we
obtain, essentially, the usual Born series of the physicist’s scattering equation at
zero energy

| V272 d’ (4b)

¥ =1+ @m0 vy 3)

whose terms are finite to all orders [2]. Therefore, what we have to study is this last
equation, as was done in [1].
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As we shall see, the conditions for having bound states are of the form /, = 1,
where I, are appropriate integrals of the potential. With equality sign, we may have
either bound states, or resonances at zero energy. To be sure of having true bound
states, it would therefore be sufficient to take the inequality sign. This means that
we strengthen the potential, and therefore the possible resonances become true bound
states.

In paper [1], considering the totality of the potential, it was shown that a sufficient
condition for the existence of at least one bound state would be

dr’ | V(r') & Ve L.
| bt A e S

i<k 47 |r—1 | wipr 4w | =71 || T

Here, R is arbitrary, and can be chosen at will. Our purpose in the present paper is
to find the generalization of (6) which would guarantee the existence of at least n
bound states. The method of proof is quite similar to that of [1], to which we refer
the reader for details.

Divide the space into spherical shells £2,, 2,,..., 2,, 2, ={R,, < |r| < R},
Jj=1, 2., n, R, =0, R, = oo, and consider the potential (henceforth, we shall
write | r | = r, etc.)

Vir) = V(e)B(R; — r)f(r — R,y (7a)

so that ¥(r) = 3 V(r).
Suppose now that each

H; = —4 + V/r), ref;, (7b)

defined as a self-adjoint operator in L*£2;) by imposing some boundary condition
on & £2, has one eigenstate with £ << 0. Would it be then possible for H = —4 + V(r),
defined as a unique self-adjoint operator in L¥R") to have n bound states with £ < 07?
The answer is yes provided we impose on each £2; the Dirichlet boundary condition

Y(r) = 0, redf;. (7c)

It amounts to putting infinite walls between each shell. For the proof of this lemma
and complete references, see [4]. It is now obvious that what we need in order to secure
the existence of at least n bound states is the analogue of (6) for each £2, with Dirichlet
boundary condition. Remember now that the (simple) proof of (6) was based on the
zero energy solution of the Schrédinger equation, i.e., Eq. (5), where | represents the
boundary value, i.e., the value of ¥(oc). We must now write the corresponding equa-
tion for each £2;. We have therefore to get first the Green's function (4)* for £,
with Dirichlet boundary condition. Such a Green’s function can easily be found by
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the method of images known in electrostatics [5], and is given by (r = | r |, etc.,
Ry <r,r <R):

G(x, )—(—'m)"‘[u ¥ Z( X ( -ql"}'y,-'yl " lx—l""yryl)]

where /{™ are obtained by recursion from

Go=9q4 =1, @ =0 —y| (9a)
Onsr = QRAII®,  Ghns = QRII®, (9b)
l(_u+l) - RJ'—IH(:)- Iiu-n) ezt R,'/'I(_"). (90)

It can be easily verified that indeed G; vanishes whenever x is on the spheres R, , or
R;, and that it is strictly negative inside. To show this last point, we use the fact
that G(X, X") is a harmonic function except at X = X'. Therefore, it cannot have
local maxima and minima inside £2; punctured at X', Therefore, since G, vanishes on
d £2; , it cannot vanish elsewhere. At X = X', it reaches its absolute minimum, — o0,
All these facts are well known [6, 7]. Notice also that, when R, ; — 0, or R, — + 0,
or both, we recover the Green's function for 0 << r < R, r > R, or the entire space,

respectively [6]:

G"’""z-W[IX—yI ’ylx—R‘wy’l]’ ol R
G =———[ = . x,y >R  (10b)
S aw Uix—y| ~ yIx—Rypr| I 77~

II. BoUND STATES WITH DIRICHLET CONDITIONS

We consider now the Schrédinger equation (1), with Dirichlet boundary conditions,
in each domain £2, . Since the potential is well behaved (locally £?), and the domain
£, is finite, we have only a discrete infinity of eigenvalues E, < E, < - tending to
+4- o0, and bounded from below. They are given by the L? solutions of the Fredholm
equation

W - j' G,V — E) W, d*". (11a)
2y

When the potential is weak, we haye E, > 0. Increasing the strength of the potential
and making it more attractive, there appears a situation where the ground state E,
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crosses the value zero and becomes negative. Just at that point, the inhomogeneous
integral equation at zero energy

Y -1+ grear (11b)

2y

fails to have a solution because of the fact that the ground-state wave function, i.e.,
the solution of the homogeneous equation, is always strictly positive (Ref. [3, Vol. 1V,
p. 201 ff]), and therefore is not orthogonal to I. Before such a situation occurs, the
inhomogeneous equation has a unique solution, which is given by iteration. Since all
the terms of this series are positive (remember that G, and V are both negative) ¥
itself is positive, and we are in a situation very similar to that treated in [1].

Indeed, in [1], the starting point was the well-kbown fact that when the potential
is weak (no bound states present), the Eq. (5) could be solved by iteration, and that
the Born series thus obtained is convergent. Each term of this series being positive,
we obtain that the solution ¥ itself is everywhere bounded and positive. We then choose
an arbitrary sphere of radius R, which divides the space into two regions, take the
infimum of ¥ inside the sphere, and the infimum of | r |¥ outside, replace them into
the integral equation (5), and obtain that a necessary condition for having no bound
states is / < 1, where 7 is the left-hand side of (6). It follows that (6) is a sufficient
condition for the existence of at least one bound state.

The reason why we take the infimum of | r |¥ outside the sphere R instead of the
infimum of ¥ itself, as for the interior region, is that the asymptotic behaviour of the
right-hand side of (5) for large r is given by 1 - ¢ | r |~ It is then obvious that the
infimum of ¥ for |r| > R would be 1, reached for | r| = oo, and this leads to no
significant result.

In order to see how the method works in the present case, let us consider in detail
the problem for the sphere 2,

Yir) =1+ d®r' G(r, ¢') V(r') Y(r"), (12)

e <Ry

where G is given by (10a). Remember that both G and V are negative, and for X,
Y <R ,d,G(X,Y)=8X—Y).

We assume now, as was done in [1], that there are no bound states, and proceed
along similar lines. We introduce a sphere of radius R, R < R,, and consider (12)
in r < R and R < r < R, separately. Since ¥ is positive and bounded (convergent
Born series), and the Green'’s function vanishes on the sphere R, , it is obvious,
according to (12), that the infimum of ¥ for R < | r| << R, is 1, and is reached on the
sphere R, . We have therefore to study first the exact behaviour of ¥ near the boundary
|r| = R,. We are looking for a behaviour independent of angles, similar to | r |~* of
the previous case (see lemma below), and so it is sufficient to assume here that the
potential is spherically symmetric. We then easily obtain (see the Appendix)

o) =1+ =T oy ~ 1), (13)
rRy
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where r = | r| and C is a positive constant. Now we go back to the general case (no
spherical symmetry). Let

M, = "llrg, Pr), (14a)

M, = ) ¥a), (14b)

Ri>itiaR (R, —_r
Using these definitions in (12), we easily obtain

M, =1+ M, Inf

I""<" J;r'mnl Griey

+ M, Inf N s (15a)

ISR Jpeie’I<R, r

and

M, = (7?,—57) + M, n<l|n£n, (R, "_ r) L,-,<, el

+ My R<l|£‘I£l| (R, ’— r) J'Kx.'mu, o (_Rl’_—’_") GV, (15b)

In order to go further, we need the folloling:

LemMmA.  Let X € 2,, where £, is the domain ( finite or infinite) R, , < | X | < R,
introduced before, and G(X, Y) the corresponding Green's function, given by (8), (10a),
or (10b). Let r be arbitrary, R;_y <r < R;, and W = 0, and define

F(X) = ‘f., G(X, Y) W(Y) d*Y,
1(6) = Jaf, F,

where W, besides being nonnegative, satisfies the same integrability conditions as those
given at the beginning for the potential (locally L:,..., etc.). Then r(r — R,_,\)"f(r) is a
decreasing function of r, and Ry(R; — r)f(r) an increasing function, for r in the
interval (Ry_y , Ry). Notice that both products are positive. Also, because of the vanishing
of G, on the boundary, the first one vanishes at R, , and the second one at R, _, .

For the proof of this lemma, see the Appendix. We only notice here the following
facts. Making R,y — 0, we find that f(r) is a decreasing function of r inside the
sphere R, . This is a simple consequence of the fact that f(r), defined as the infimum of
superharmonic functions F(X), is itself a superharmonic function [7]. Indeed, we have
4 F(X) = —W(X) < 0, which is just one of the definitions of superharmonic func-
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tions (remember that a superharmonic function is just minus a subharmonic function).
We can also make R; — o0. We get then that r f(r) is an increasing function of r
outside the sphere R;_, . When both R;_; = Oand R, = oo, we find that f(r) is decreas-
ing, and r f(r) increasing, for all r > 0. These two properties were shown in [1], and
were used to prove (6).

From the above lemma, it follows immediately that the infima in (15a) are reached
on the intermediate sphere R. Calling these infima J; and J, respectively, we obtain

M, =14+ MJ, 4+ MJ,
and

R
M; = m“ + MyJy + MyJy)

since the infima in (15b) are also reached on the sphere R. Combining these two
inequalities we get

M, + MyJ, = (1 + MyJ, + MyJ,) (Jx -+ TQIEJ-—-’T)

It follows from this last inequality that a necessary condition for the validity of our
assumptions:

No bound states — convergence of the Born series — positivity of ¥,

is J; + RJ/(Ry — R) < 1. Therefore, a sufficient condition for having at least one
bound state with the potential V(r)#(R, — r) is

'!lef"' J’w“ d*' G(r, ') V(r')

R ’ v ’ Rl =
(=) dh [ a T SOOI VEOZ T > (9

where G is the Green's function (10a). This condition is, of course, stronger than
condition (6) with V(r)@(R, — r) because we impose now the vanishing of ¥ on R, ,
whereas (6) was obtained without imposing any condition at finite distances. However,
as we saw in the introduction, Dirichlet boundary conditions are necessary in order
to be sure of the additivity of the number of bound states when we add up several
regions, each with one bound state.

In the case of spherical symmetry, we find, by using the expansion [8]

(£)" Piteos ) a7
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valid for p < r, where @ is the angle between r and p, and integrating over the angles

(“;T - -};T) L " 2| V) dr + f ‘R' 1 vy dr > (18)

Making R, — oo in (16) and (18), we get, respectively. formula (6), and an old result
of Calogero for the radial case [9]

-I—fkr"l V(r)Idr-{-ijl V(r) dr > 1 (19)
RJ, R =¥

Condition (16), although not easily amenable to explicit and simple calculations for
potentials with complicated shapes, is nevertheless not too complicated and computer
calculations seem feasible. Notice also that R is arbitrary, and can be chosen at will.

Consider now the problem for | r | = R, , with the Green's function given by (10b),
which vanishes on the sphere R, , and assume again that there are no bound states.
It is shown in the Appendix that the behaviour of the solution of

Y(r) =1+ f &' G(r') V(r') ¥(r") (20)
' I>Ry
with a spherically symmetric potential, near the sphere R, , is given by
¥=1+c" R’+o(r—R,) (21)

We introduce now again an arbitrary sphere of radius R(> R,), and consider separa-
tely the two regions Ry < |r| < Rand |r| > R. Let

M= k.lﬂfa ¥m) (r—;R,)'

M, = !;1{ | v | ¥(r).

Reasoning exactly as before, and using again our lemma, we obtain that a sufficient
condition for having at least one bound state with the potential V(r)f(r — R,) in
| r| = R, with Dirichlet condition on R, is

5 R R =) dek .[,.,a,',“ G(r, ¥) V(r) (%) il

Gle,¥) o P’ (22)
where G is given by (10b). Making here R, —» 0, we obtain again, as expected, formula

(6). When the potential is spherically symmetric, we obtain, after integration over the
angles, the sufficient condition

( R R’)f (r — Ry)*| V(r)| dr + (R — Ry) f | V() dr = 1. (23)

+ R Inf

iri=& Ilr‘l)k
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Again, in (22) and (23), R is arbitrary, and can be varied in order to obtain the
optimum inequality.

For the general case of a finite spherical shell 0 < R, < [r| << R, < 0, it is
shown in the Appendix that we have behaviour similar to (13) for r — R, and (21)
for r — R, . Starting now from the integral equation (12), introducing R, and

.
M, = Nt (—x) Yo

M 2= ‘1’(!’)

R<I!PI£R, (R, )

and following the same procedure as before, we obtain, thanks to our lemma, that the
condition

(7—§T,) I8 [ e GBI VO
Ir]

e (ﬁ) Anf Im.'m G(r, ') V(')(_Fl—) dv' =1, (24)

lrl )d,r,

where G is given by the general formula (8) with j = 2, is sufficient to secure the exis-
tence of at least one bound state for the potential V(r)d(r — R,)NR, — r) with
Dirichlet condition on the spheres R, and R, . Again, R is arbitrary here, and can be
varied in order to make the inequality optimal. Making R, — 0, R, —= o0, or both,
we recover our previous conditions,

In the case of spherical symmetry, integrating over the angles (tedious but straight-
forward), and using formulae (30) and (31) of the Appendix, leads to the condition

!(ﬁ) L‘: (r—R)r| V(r)l dr+ ( R ’i R ) J':l V(r)| (Ry — r)dr

R »
g ( (Ry — R,)(lR R)) ) (’ R)(r — Ry) | V(r)| dr

+((R,—R)(RR: Rl))-" | V(r)| (r — R)(r — Ry) dr

R | V(r) | dr —

“((R,—R,;R—R,))f,,(’_ ((R,—R)%Q,—-R,))
< [ 1o @ —rpa] > (25)

from which all our previous conditions can be obtained by taking the appropriate
limits.
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We have therefore completed our programme of finding conditions which would
secure the existence of at least # bound states. Indeed, as was explained in the introduc-
tion, if we can divide the space into n spherical shells (R,_, , R))j =0, 1,...,n, Ry = 0,
R, = oo, in such a way that (24) or (25) are satisfied for each shell with the appropriate
Green’s function (8), (10a) or (10b), we are sure that the potential ¥(r), r € R¥ has at
least n bound states.

So far, we have assumed that the potential satisfies (2). However, this condition is
not really necessary because it excludes r—**¢ behaviour at the origin and r—*-¢ at
infinity. As is shown in [2, 3], all that is needed is to assume the Rollnik condition

J'I Vi) ':Vg N oy oy’ < o, (26)

In fact, it is obvious from our results that they are valid under very general assump-

tions, i.e., as long as the integrals are meaningful. For the spherically symmetric case,
it is obvious, as expected, that what is needed is only

j°r| V(r) dr < co. @7
0

Like many other bounds on the number of bound states, it is easily seen here also
that our bounds are saturated by é-function potentials

V(r) = —g 8(r — ry). (28)
Indeed, considering this potential in the domain R, < r < R, with Dirichlet boundary
conditions, one finds that the exact condition for having one bound state is (it is

necessarily an S-state)
(= + ) (29)

ry — R, Ry —ry

L%

4

The same conclusion is reached by considering our formula (25), and by choosing
R=ry,—corrg+e

We mention also another kind of sufficient condition for having at least one bound
state in each domain 2, which is [1]

TrK® —Te K > 0, (30)
where the positive kernel K is given by
K; = — | VI'AG, | V '3, (31)

G, being the Green’s function (8), and the superscripts (2) and (3) meaning the second
and the third iterates of K .
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We end up by reminding the reader that there are various necessary conditions
(Bargmann, Schwinger, Calogero, Glaser-Grosse-Martin-Thirring, Martin, Ghirardi-
Rimini, Cwickel-Simon, etc.) which must be satisfied in order to have n bound states
[2, 3). Therefore, before trying to see whether a potential admits n bound states,
one must verify that the necessary conditions are indeed satisfied. Also, one can choose,
instead of spherical shells used in this paper, other shapes (cubes, ellipsoids,...)
provided one can calculate the corresponding Green's functions. Finally, there is no
difficulty for generalizing our results to spaces of higher dimensions N > 3 [1].

APPENDIX

(a) Behaviour of ¥ near the Boundaries

Let us consider first the case of the sphere 2, with radius R, , when ¥ is the solution
of Eq. (12). The potential V' = V(r) being spherically symmetric by assumption, we
separate the integrations for r’ < r and for 7' = r, and we use expansion (17) for the
two terms of the Green’s function (10a). When integrating over the angles, only the
term / = 0 gives a non-zero contribution of 4= /r, where r > p. Hence we get

1

¥ =1+ (5 — ) [ r1ven e

33 fl (1- 7'{;) V) ) dr

"y R| — R ’ ’ r '
=1+ B[ v W ar
+ R ) PR + (R, — 1), (A1)

which proves the behaviour (13) for r tending to R, .
In the case of the region | r | = r = R, , the behaviour of the solution ¥ of (20) near
the boundary is obtained in a similar way:

Wt (1= ) [ ey e ar
+1 " (1- Ra) v vy ey ar
=1+ ('—_r&)[j: r'| V()| ) dr

£ Ry | VR WIRY) (“572) + o — Ra), (A2)

which yields the behaviour (21) for r — R, .
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In the case of the finite spherical shell 0 < R; ; < r < R, < + o, i.e., of the inte-
gral equation (12) with the Green’s function (8), we find, after similar but lengthy
calculations,

¥Y=14C (____r _rR’_l ) +oolr — Ry y), r—= R, (A3)
w1 +c'R’R_r’ + ofR, —r), el (Ad)
5}

where C and C' are positive constants. The computations are too long for writing
them down explicitly but present no new difficulty with respect to the previous cases,
provided one uses the following summation formulas

N R
2 ere=pt-1 =<1, (Asa)

S Raizs.
26 for = = R,-.( : 1), (A5b)

which can be easily derived from (9a), (9b), (9¢).

(b) Proof of the Lemma

The function F(X) = f,,‘ — G(X, Y)YW(Y)d*Y is superharmonic in £, since
AF(X) = — W(X) < 0. The function f(r) defined as the infimum of superharmonic
functions F(X) is also superharmonic and it follows that (see [10] for the differentiality
properties of singular integrals)

4 =54 o) = Ly + 21 <. (A6)

In order to check that R;r(R; — r)~'f(r) is an increasing function, let us verify that its
derivative is positive, or that (R; — r) rf" -+ R;f = 0. This results from the fact that
the quantity (d/dr)[(R; — r)rf" + R, f] = (R; — r)(rf" -+ 2f’) is negative as follows
from (32). Integrating this expression from r to R; we get

[(R; — r)(rf") + R f] > [(Ry — r) tf" + R;f)run,

the right-hand side vanishing because of the assumptions on W(y) and the boundary
conditions on G, .

On the other hand, the function r(r — R,_;)"'f(r) is a decreasing function. Indeed,
its derivative is proportional to r(r — R;_,)f" — R,_,f, which is a negative quantity.
This follows from (A6) since

@ [rr — R f* — Rysf] = (¢ — Re)Of + 1f) <.
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Integrating this inequality between R;_, and r we have

[r(r — R ) f — R f] < [r(r— R_)f — Rl—l.f]r-l,_l ’

where the right-hand side is again zero.
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