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Abstract
The objective of this paper is to propose an exact closed-form solution to the ∞H optimization of
piezoelectric materials shunted with inductive-resistive passive electrical circuits. Realizing that
Den Hartogʼs method which imposes fixed points of equal height in the receptance transfer
function is approximate, the parameters of the piezoelectric tuned vibration absorber are
calculated through the direct minimization of the maxima of the receptance. The method is
applied to a one-degree-of-freedom primary oscillator considering various values of the
electromechanical coupling coefficients.

Keywords: piezoelectric tuned vibration absorber, shunted piezoelectric transducer, optimum
tuning rule, equal-peak method, exact closed-form solution

1. Introduction

The mechanical tuned vibration absorber (MTVA) is prob-
ably the most popular passive anti-vibration device [1].
Successful applications of the MTVA can be found in civil
engineering structures (e.g., the Burj Al Arab Hotel in Dubai,
the Taipei World Financial Center in Taiwan and the Mil-
lenium Bridge in London) and in other engineering applica-
tions (e.g., cars and high-voltage lines). Different studies
contributed to the development of analytic tuning procedures
for the MTVA starting from the work of Den Hartog [2] and
Brock [3] to the more recent contributions of Asami and
Nishihara [4, 5].

An interesting alternative to the MTVA is the piezo-
electric tuned vibration absorber (PTVA) implemented with a
piezoelectric transducer (PZT) bonded to the structure and
shunted with an electrical impedance. As the structure
deforms, the PZT converts a portion of the mechanical energy
into electrical energy which is in turn dissipated by the
electrical circuit. Resonant circuit shunting is most often
considered where the inherent capacitance of the PZT is

shunted with a resistor and an inductor [6]. Linear [7, 8] and
nonlinear [9–11] shunting strategies have been proposed in
the literature. Even if they have their own limitations, PTVAs
possess several advantages with respect to MTVAs, such as
the absence of moving parts and the possibility to be fine-
tuned online to compensate for any modeling errors. For
instance, PTVAs have been proposed for bladed disks
assemblies, see, e.g., [12–15].

Resonant circuit shunting enhances piezoelectric vibra-
tion damping through appropriate values of the frequency
tuning and damping parameters. In [7], two different methods
were proposed relying on the receptance transfer function and
on pole placement, respectively. The former rule extends Den
Hartogʼs fixed-point method [2] to PTVAs and is widely used
in the literature [16]. Minimization of the frequency response
amplitude is achieved by selecting the frequency tuning
parameter that gives two fixed points in the receptance of the
primary structure of equal heights. The later rule maximizes
the attainable modal damping by finding the value of the
frequency tuning parameter for which the distinct poles coa-
lesce in double complex conjugate pairs. Hogsberg and Krenk
recently proposed a tuning rule that is a balanced compromise
between these two design criteria [17]. Through the devel-
opment of an equivalent mechanical model of a piezoelectric
element, Yamada et al [18] introduced a new approximate
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analytic expression for the damping parameter that improves
the PTVA performance compared to the formulae proposed
in [7].

Because all the aforementioned tuning rules are approx-
imate, the contribution of the present paper is to derive an
exact closed-form solution for the design of piezoelectric
vibration absorbers based on resonance circuit shunting. The
paper is organized as follows. Section 1 briefly reviews Den
Hartogʼs fixed-point method for MTVAs together with the
exact solution proposed by Asami and Nishihara [4]. In
section 3, the formulation for shunted PZTs is introduced, and
the tuning rules proposed by Hagood and von Flotow [7] and
Yamada and co-workers [18] are discussed. An exact tuning
rule for PTVAs is derived in section 4 and compared to the
other tuning rules using a one-degree-of-freedom mechanical
oscillator. Finally, the conclusions of the present study are
drawn in section 5.

2. The mechanical tuned vibration absorber

The steady-state response of an undamped mass–spring sys-
tem subjected to a harmonic excitation at a constant frequency
can be suppressed using an undamped tuned vibration
absorber (TVA), as proposed by Frahm in 1909 [19]. How-
ever, the TVA performance deteriorates significantly when
the excitation frequency varies. To improve the performance
robustness, damping was introduced in the absorber by
Ormondroyd and Den Hartog [20]. The equations of motion
of the coupled system are

ω+ + − + − =

+ − + − =
( )
( )

m x k x c x y k x y f t

m y c y x k y x

¨ ˙ ˙ ( ) sin ,

¨ ˙ ˙ ( ) 0, (1)

1 1 2 2

2 2 2

where x(t) and y(t) are the displacements of the harmonically-
forced undamped primary system and of the MTVA,
respectively. k1 and k2 are the stiffness of the primary struc-
ture and of the MTVA, in that order. c2 represents the
damping of the MTVA.

Den Hartog demonstrated that the receptance ωg ( )m of
the primary mass passes through two fixed points independent
of absorber damping, as illustrated in figure 1. He proposed a
tuning rule that provides two fixed points of equal height in
the receptance curve [2]. Brock then computed the optimum
damping by taking the mean of the damping values that
realize a maximum of the receptance at the two fixed points
[3]. The corresponding analytic formulae for the frequency
tuning δm and damping ξ2 ratios are:
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where ω1 and ω2 are the natural frequencies of the primary
system and of the absorber, respectively, β = m m2 1 is the
mass ratio and ξ2 is the damping ratio. Table 1 shows that the
two fixed points have the same amplitudes, unlike the two
maxima of the receptance curve. Even though they have most
likely sufficient accuracy considering the uncertainty inherent
to practical applications, formulas (2) are therefore only
approximate.

Interestingly, it is only recently that an exact closed-form
solution to this classical problem could be found [4]. Instead
of imposing two fixed points of equal amplitude, the direct
minimization of the ∞H norm of the frequency response of the
controlled structure is achieved:

ω ω ω∥ ∥ → = ∥∞g g gmin ( ) ( ) ( ) , (3)m m A m B

where ωA and ωB represent the resonance frequencies.
Eventually, exact analytic formulas can be obtained for the
frequency tuning and damping ratios:
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Table 2 confirms that this tuning rule yields resonance peaks
of equal amplitude. It also shows that, for this optimum
design, the fixed points of the receptance curve do not have
the same amplitude.

We note that all the developments in this section assume
an undamped primary system. To date, there is no exact

Figure 1. Illustration of Den Hartogʼs fixed-point method for
β = 0.05, δ = 0.952m and for various absorber damping values
(ξ = 0.04472 , ξ = 0.0672 , ξ = 0.134opt2, and ξ = 0.2682 ; line

thicknesses are proportion to ξ2).

Table 1.Amplitude of the fixed-points and maxima of the receptance
transfer function for Den Hartogʼs tuning rule ( =m 11 kg and

=k 11 N m−1).

Mass
ratio

Fixed
point P

Fixed
point Q Maximum A Maximum B

0.05 6.4031 6.4031 6.4075 6.4084
0.1 4.5826 4.5826 4.5884 4.5902
0.5 2.2361 2.2361 2.2453 2.2530
1.0 1.7321 1.7321 1.7417 1.7544
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solution for damped primary systems, but accurate approx-
imate analytic formulas have been derived [5].

3. The piezoelectric vibration absorber: existing
tuning rules

3.1. Governing equations of structures with shunted
piezolectric materials

Because we aim at mitigating one specific structural reso-
nance, a one-degree-of-freedom modal model of the host
structure, assumed to be undamped, is considered to which a
shunted PZT is attached. The PZT shunt is a series RL circuit.
This system is schematized in figure 2.

Assuming linear characteristics under constant tempera-
ture, the general form of the piezoelectric constitutive
equations are standardized by IEEE [21]:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ϵ

= +

= +

d s

d

S E T

D E T

[ ] ,

[ ]* . (5)

E

T

where T and S are the material stress and strain vectors,
respectively; ⎡⎣ ⎤⎦sE is the compliance matrix of the piezo-

ceramic under constant electric field; ⎡⎣ ⎤⎦ϵT represents the
permittivity under constant stress; d[ ] is the matrix of piezo-
electric constants, and ∗ denotes matrix transpose. The
components of the aforementioned vectors and matrices for a
general 3D problem are described in [7]. The current problem
considers the PZT rod as a one-dimensional element in which
both the expansion and polarization direction coincidence
with the central axis of the rod (conventionally called the ‘3’-
direction). Hence, the PZT rod operates in its thickness
transduction mode or d33-mode. The constitutive equations of
the PZT rod then become:
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By integrating equations (6) over the volume of the PZT
rod, the charge q and the displacement x are written as
functions of the force fPZT and the voltage between the

electrodes vPZT:

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎧⎨⎩
⎫⎬⎭={ }q

x

c d

d
k

v

f1 . (7)
PZT 33

33
PZT

PZT

PZT

The coefficient cPZT is the capacitance between the
electrodes of the PZT rod with no external force, and kPZT is
the stiffness of the short-circuited PZT rod. They are defined
as:
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where s0 and l0 are the cross section area and length of the
PZT rod, respectively. Equation (7) can be reformulated
as:
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are the capacitance of the PZT rod under constant strain,
the stiffness of the PZT rod with open electrodes, and the
electromechanical coupling factor θ, respectively. These
parameters are defined as functions of the electro-
mechanical coupling coefficient in d33-mode:

ϵ
= =k d

k
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d

s

1
. (11)

E T
0 33
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33

33 3

Finally, placing a resistive–inductive (RL) shunt across
the electrodes of the piezoelectric and applying Newtonʼs
and Kirchhoffʼs law yield the governing equations of the

Table 2. Amplitude of the fixed-points and maxima of the receptance
transfer function for Asami and Nishiharaʼs tuning rule ( =m 11 kg
and =k 11 N m−1).

Mass
ratio

Fixed
point P

Fixed
point Q Maximum A Maximum B

0.05 6.4027 6.4035 6.4079 6.4079
0.1 4.5819 4.5833 4.5892 4.5892
0.5 2.2334 2.2387 2.2480 2.2480
1.0 1.7281 1.7360 1.7456 1.7456

Figure 2. Piezoelectric vibration absorber with a series RL shunt.

3
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system:
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where the primary host structurer is considered undamped
(i.e. =b 01 ). By defining the parameters similarly to [9]:
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equations (12) can be conveniently recast into
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where prime denotes differentiation with respect to the
dimensionless time τ. We note that the parameter
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depends only on the stiffness ratio κ = k k1 PZT and the
electromechanical coupling coefficient k0. Since PZT rods
typically have ≅k 0.70 in d33-mode, α takes values between
0 and 0.7. It is related to the generalized electromechanical
coupling coefficient Kij defined in [7] according to the
relation

α κ
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3.2. Tuning rules for resonant shunt circuits

Given a value of the parameter α, the tuning of a RL shunt
requires to determine the frequency tuning δ and damping r
parameters. As briefly discussed in the introductory section,
different rules exist for finding appropriate values of these
parameters. Two methods that apply Den Hartogʼs fixed-
point method to PTVAs, namely those of Hagood and von
Flotow [7] and Yamada et al [18], are described in this
section.

3.2.1. Hagoodʼs tuning rule. In 1991, Hagood and von
Flotow introduced the first tuning method for resonant shunt
circuits based on the receptance transfer function of the

primary mass:

γ

δ γ δ γ
γ δ γ δ γ δ γ α δ
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∼
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f
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j r j r
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1 1
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(17)

e
0

2 2 2

4 2 3 2 2 2 2 2

with = −j 1 . Since then, this method has often been used in
the literature (e.g., Inman and co-workers applied the method
for tuning the linear part of the proposed nonlinear
piezoelectric shunt [9]).

The first step consists in selecting the frequency
tuning parameter δ that yields two fixed points of equal
amplitude in the receptance γg ( )e . At the fixed points, the
open circuit ( = ∞r ) and the closed circuit (r = 0)
receptance function should be coincident. Solving the
equation:

γ γ== =∞g g( ) ( ) , (18)e er r0

yields the dimensionless frequencies of the fixed points P
and Q:

γ
δ δ δ α δ

δ
=

+ ± + − +2

2
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. (19)P Q,
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The optimum value δ = 1opt is subsequently obtained by
imposing

γ γ=
=∞

g g( ) ( ) . (20)P Q P Qe , e ,
r

Because the parameters (13) are somewhat different from
those considered in [7], the value of δopt is also different.
At the optimum, the frequency of the fixed points and the
corresponding amplitudes of the transfer function are

γ α γ γ
α

= ± = =g g
2

2
2 2 and ( ) ( )

2
(21)P Q P Q, e e

Determining the optimal circuit damping is more
challenging. To this end, Hagood and von Flotow proposed
to set

γ δ=g g( ) ( ). (22)P Qe , e opt

As we shall see, this expression is approximate. Combining
equations (17), (21) and (22) yields

α=r 2 . (23)opt H

3.2.2. Yamadaʼs tuning rule. Through the development of
an equivalent mechanical model of a piezoelectric
element, Yamada et al [18] improved the analytic
approximations proposed in [7]. Specifically, they still
consider the value δ = 1opt for the frequency tuning, but
the damping ratio of the PTVA is derived such that the
derivative of the receptance γg ( )e should be zero at the

4
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fixed points:

γ
γ

=γ γ
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d
0. (24)e

P Q,

By substituting equation (21) into equation (24), two
different optimum circuit damping values are calculated
for points P and Q:

α
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2 2
. (25)P Q,

4

meaning that the two maxima of γg ( )e cannot
simultaneously coincide with the fixed points. They
proposed to define the optimum value through the root

mean square:
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2
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The performance of the two tuning rules are illustrated in
figure 3 for different dimensionless coupling parameters α.
For α = 0.1, the rule proposed by Yamada et al provides two
peaks of almost identical amplitudes, whereas the rule of
Hagood and von Flotow is less accurate. For larger values of
α, none of these rules provides equal peaks in the receptance
function.

4. The piezoelectric vibration absorber: exact
tuning rule

4.1. Theory

As discussed in section 2 for MTVAs and as also shown in
the previous section, a fixed-point-based absorber design
cannot yield resonance peaks of equal amplitude. Following
the method proposed by Nishihara and Asami [4] for
MTVAs, an exact solution for the ∞H optimization of pie-
zoelectric materials shunted with resistive-inductive passive
electrical circuits is derived in this section. It is obtained by
focusing only on the resonant points A and B, therefore
ignoring the existence of the fixed points. So, for a given
value of α

γ δ

γ γ
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For simplicity, the square of the receptance function
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Because only terms of even power appear in these expres-
sions, we can pose γ γ=1

2 such that γ γ γ=g N D( ) ( ) ( )e
2

1 1 1
with
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Following the definition of γN ( )1 and γD ( )1 , the fourth-order
polynomial is obtained

(a)

(b)

(c)

Figure 3. Performance of existing tuning rules for PTVAFs for
different values of α. (a) α = 0.1, =r 0.1184optY , =r 0.1414optH

,

δ = 1. (b) α = 0.3, =r 0.3337optY , =r 0.4243optH
, δ = 1. (c) α = 0.7,

=r 0.7012optY , =r 0.9899optH
, δ = 1.
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γ γ
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= −F D
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, (31)1 1
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2

equation (27) shows that two obvious roots of this polynomial
are γ A1 and γ B1 . Because the receptance transfer function
possesses horizontal tangents at the resonant points A and B, it
also follows that

γ γ′ = ′ =F F( ) ( ) 0, (32)A B1 1

where prime represents the derivative with respect to γ1.
According to equation (32), the multiplicity of the roots γ A1
and γ B1 is two:
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By substituting the expression of γN ( )1 and γD ( )1 from
equations (30) into (31), another expression of the coefficients
bi can be obtained:
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Equations (35) therefore becomes
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Equation (37) is solved for r1 equal to the square of the
optimum circuit damping:
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The substitution of r1 into equation (38) provides a fourth-
order polynomial in δ1, which is directly related to the fre-
quency tuning ratio δ:
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The coefficients of the polynomial depend only on α1, related
to the coupling factor α, and h1, related to the amplitude h0 of
the receptance function:
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The parameter α1 is an input to the problem whereas h1 should be
minimized so as to minimize the resonance peak amplitude h0.

To ensure the existence of a multiple real root of
equation (40), the value of h1 should be selected so that the
discriminant of this polynomial Δ4 is zero. For a nth-order
polynomial f(x), a linear relation exists between the dis-

criminant and the resultant ∂
∂( )R f , f

x
[22]. This relation can be

written for the quartic function f2 as:

⎛
⎝⎜

⎞
⎠⎟Δ

δ
=

∂
∂a

R f
f1

˜
, . (42)4 2

2

1

Hence, the resultant R can be set to zero instead of Δ4. Since
the expression of R is very complex and cannot be solved by
hand, the symbolic algebraic software Maple is used to sim-
plify the resultant as:

⎡⎣
⎤⎦

α α α

α α

α α α

α

− + −

− + + −

+ − + −

+ − + − =

( )

( )

( )

h

h h

h

h h

1

64
54 54 144 144

128 128 2

27

32

27

16

1

64
171 117

272

64
1 1 0. (43)

1
3

1
2

1
2

1

1
2

1
2

1
2

1

1
4

1
3

1
2

1
2

1
2

1 1
4

The common factor α −( )h h1024 11
4

1
2 3

1
10

⎡⎣ ⎤⎦χ α χ+ − +( )h h1
2

1 1
2 2

2
was eliminated from the resultant
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during the simplifications. Four different roots are found for
equation (43):

α α α α α

= ±

× − − + ± − +

h
1

8

9 16 64 2 54 144 64

(44)

1

1
2

1 1
4

1
3

1
2

Considering that h1 should be positive and should be mini-
mized, the following root is the solution:

α α

α α α

=

×
− − +

− − +

h
1

8

9 16 64

2 54 144 64
. (45)

1

1
2

1

1
4

1
3

1
2

opt

This value of h1 should be inserted into equation (41) to
obtain the coefficients in terms of α1, and equation (40) can be
solved analytically for δ1. Eventually:

δ = −S a b

a

4 ˜ ˜

4 ˜
. (46)1opt

where

⎛
⎝⎜

⎞
⎠⎟

Δ

Δ Δ Δ

= + −

= −

=
+ −

S
a

Q
Q

p

p
ac b

a

Q

1

2

1

3 ˜

2

3
,

8 ˜ ˜ 3 ˜

8 ˜
,

4

2
(47)

0

2

2

1 1
2

0
3

3

while the parameters Δ0 and Δ1 are:

Δ

Δ

= − +

= − + + −

c bd ae

c bcd b e ad a

˜ 3 ˜ ˜ 12 ˜ ˜,

2 ˜ 9 ˜ ˜ ˜ 27 ˜ ˜ 27 ˜ ˜ 72 ˜. (48)

0
2

1
3 2 2

In summary, the solution to the tuning of the resonant
shunt circuit can be written in terms of the original para-
meters δ, r and α by considering equations (49)–(52). From
the knowledge of the coupling factor α, h0 and χ are com-
puted:

α α α α
=

− + + +
h

8

2 54 144 64 9 16
, (49)0

4 2 2

χ

α α α α α

=

× − − + + −

1

8

64 2 54 144 64 55 144
(50)

2 4 2 4 2

To obtain real values for h0 and χ , the allowable range of

α is α ⩽ − ≅954 212 7 0.748 152

53
. This limit on the

maximum value of α should not pose any practical difficulty
since electromechanical coupling factors should usually be
lower than this limit. The coefficients of the quartic

Figure 4. Variation of (a) the tuning frequency ratio δ, and (b) the
dimensionless damping of the shunt r predicted by the different
tuning rules against the electromechanical coupling parameter α.

Figure 5. (a) Performance of the three tuning rules for α = 0.01, (b)
close-up of the resonant peak.
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polynomials (40) are then calculated:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

χ α

α χ α

χ α χ α α α

=
−

= −
+ −

= + − + −

= + − − − + −

=

( )

( )( )

a
h

h

b
h

h

c
h h h h h

d
h h

e
h

˜
1

,

˜ 2
2 1

,

˜ 5
4 8 6 6

,

˜ 2 4 2
2

2 2 2 ,

˜
1

. (51)

0
2 2

0
6

2
0
2

0
4

4

0
2

0
2

0
2

2

0
2

0
4

3 2

0
2

2

0
2

6 4

0
2

From these coefficients, variables Δ0, Δ1, p, Q and S in
equations (47) and (48) are determined. The optimal

parameters can then be obtained:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ

δ α χ

χ δ δ

=
−

=
+ + + −

+ −

( )( )
( )

a

Sa b

r
h

h

2
˜

4 ˜ ˜
,

2 1 1 1

1 1
. (52)

opt

opt

opt
2 2

0
2

opt
2

0
2

opt
2

The resistance R and inductance L of the shunt circuit are
calculated directly from ropt and δopt using equations (13):

⎛
⎝⎜

⎞
⎠⎟δ κ ϵ

=
+

L
m s l

s

1

(1 )
(53)

T
opt
2

1

3

33 0

0

2

⎛
⎝⎜

⎞
⎠⎟ϵ κ

=
+

R
r m

s
l

s1
. (54)

T

opt

3

1
33

0

0

3

Figure 6. (a) Performance of the three tuning rules for α = 0.01, (b) close-up of the resonant peak.
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4.2. Numerical results

The transfer function of the primary oscillator (17) is com-
puted for the optimal values proposed by the three tuning

rules investigated in this paper:

δ δ

δ

= =

=
−

a

Sa b

1,

2
˜

4 ˜ ˜
, (55)

opt,H opt,Y

opt,exact

α

α

α

=

=
+

=
−

r

r
r r

2 ,

2

3

2
, (56)

P Q

opt,H

opt,Y

2 2

2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ α χ

χ δ δ
=

+ + + −

+ −

( )( )
( )

r
h

h

2 1 1 1

1 1
. (57)opt,exact

2 2
0
2

2
0
2 2

These values are plotted in figure 4 as a function of the
dimensionless coupling parameter α within its allowable
domain. Because a rapid computation of the optimal para-
meters could be useful in some applications (e.g., for potential
digital implementation of the shunt circuit), very precise
simplified formulas are also proposed in the appendix.
figures 5–8, which depict the transfer functions for four dif-
ferent values of α, fully validate the analytic developments
carried out in the previous section. Indeed, the transfer
function for the exact rule possesses two resonance peaks
with identical amplitude. The corresponding amplitude is also
consistently lower than the maximum peak amplitude given
by the other tuning rules.

For a very low value of the coupling parameter, α = 0.01
in figure 5, there is almost no visible difference between
Yamada and exact rules. The damping value proposed by
Hagoodʼs formula is associated with a noticeable performance
decrease. For α = 0.1 and α = 0.3 in figures 6 and 7,
respectively, both Hagood and Yamada rules lead to lower
performance compared to the exact rule. Finally, for α = 0.7
in figure 8, a complete detuning is observed for Yamadaʼs
rule. For a more quantitative comparison, figure 9 displays the
percentage of peak amplitude reduction provided by the exact
rule as a function of α. It confirms the superiority of this
tuning methodology over the existing methods. For realistic
values of α, an improvement of a couple of percents can be
expected.

Table A1. The coefficients ai in equation (A.1).

δ̂ a5 a4 a3 a2 a1 a0

α ⩽ 0.2 0.092 25 0.0808 0.002 94 0 0 0
α > 0.2 4.263 14 −6.4942 3.9275 −1.0805 0.1335 −0.005 771

Table A2. The coefficients ni in equation (A.2).

r̂ n3 n2 n1 n0

α ⩽ 0.2 0.5256 −0.000 92 1.2247 0
α > 0.2 1.178 61 −0.5223 1.353 53 −0.00901

Figure 7. Performance of the three tuning rules for α = 0.3.

Figure 8. Performance of the three tuning rules for α = 0.7.

Figure 9. Percentage of peak amplitude reduction provided by the
exact closed-form solution against the dimensionless coupling
parameter α.
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5. Conclusion

In this paper, an exact closed-form solution to the ∞H opti-
mization of piezoelectric material shunted with inductive-
resistive passive electrical circuits is proposed. This solution
imposes exactly two equal peaks in the receptance function that
are associated with the smallest possible vibration amplitude of
the host structure. The performance of this method is therefore
superior to all existing tuning rules for resonant circuit shunt-
ing, even if the improvement may be marginal for small
electromechanical coupling parameters. Simplified, though
very accurate, formulas for the optimum tuning ratio and the
dimensionless damping are also provided in the Appendix.
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Appendix. Simplification of the exact formulas

The curves δ δ α= ( )opt opt and α=r r ( )opt opt in figure 4 are
fitted using fifth and third-order polynomials:

δ α α α

α α

= + + +

+ + +

(
)

a a a

a a a

ˆ 1

, (A.1)

opt 5
5

4
4

3
3

2
2

1 0

α α α= + + +r n n n nˆ . (A.2)opt 3
3

2
2

1 0

The coefficients ai (i = 0, 1, 2,..., 5) and nj (j = 0, 1, 2, 3)
are listed in tables A1 and A2, respectively.

Table A3. Exact and fitted values of δopt, ropt and h0.

α δ δ̂ r r̂ h0 ĥ0

0.001 1.000 000 0 1.000 000 0 0.0012 0.0012 1414.2 1414.2
0.005 1.000 000 0 1.000 000 0 0.0061 0.0061 282.8433 282.8434
0.01 1.000 000 0 1.000 000 0 0.0122 0.0122 141.4233 141.4234
0.02 1.000 000 0 1.000 000 0 0.0245 0.0245 70.7146 70.7148
0.05 1.000 000 1 1.000 000 1 0.0613 0.0613 28.2942 28.2945
0.1 1.000 010 7 1.000 011 9 0.1230 0.1230 14.1621 14.1624
0.2 1.000 176 7 1.000 182 4 0.2492 0.2491 7.1118 7.1123
0.3 1.000 951 1 1.000 832 9 0.3819 0.3819 4.7772 4.7753
0.4 1.003 300 6 1.003 512 0 0.5254 0.5243 3.6242 3.6283
0.5 1.009 248 5 1.009 127 1 0.6848 0.6845 2.9482 2.9481
0.6 1.023 655 8 1.023 542 4 0.8680 0.8697 2.5200 2.5174
0.65 1.038 020 0 1.038 476 2 0.9728 0.9738 2.3705 2.3697

(a)

(c)

(b)

(d)

Figure A1. Receptance transfer function for the exact (solid line) and fitted (circles) values of δopt and ropt for different dimensionless
coupling parameters α. (a) α = 0.1 (b) α = 0.1 (c) α = 0.3 (d) α = 0.7
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Table A3 compares the exact and fitted values of the
design parameters δ and r together with the corresponding
maximum amplitude of the receptance function h0. The
maximum relative error on δ and r is 0.04% and 0.2%,
respectively. Figure A1 depicts the comparison between the
exact and fitted transfer functions for different dimensionless
coupling parameters α. Overall, these results demonstrate the
very high accuracy of the proposed simplifications
(A.1)–(A.2).
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