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Modal parameters of structures are often used as inputs for finite element model
updating, vibration control, structural design or structural health monitoring (SHM).
In order to test the robustness of these methods, it is a common practice to introduce
uncertainty on the eigenfrequencies and modal damping coefficients under the form of a

of independent Gaussian noise at each measured location. A more rigorous approach
consists however in adding uncorrelated noise on the time domain responses at each
sensor before proceeding to an operational modal analysis. In this paper, we study in
detail the resulting uncertainty when modal analysis is performed using the stochastic
subspace identification method. A Monte-Carlo simulation is performed on a simply
supported beam, and the uncertainty on a set of 5000 modal parameters identified with
the stochastic subspace identification method is discussed. Next, 4000 experimental
modal identifications of a small clamped–free steel plate equipped with 8 piezoelectric
patches are performed in order to confirm the conclusions drawn in the numerical case
study. In particular, the results point out that the uncertainty on eigenfrequencies and
modal damping coefficients may exhibit a non-normal distribution, and that there is a
non-negligible spatial correlation between the uncertainty on mode shapes at sensors of
different locations.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Further to huge advances in the development of operational modal analysis (OMA) tools [1,2], there is an increasing
interest in the estimation of modal parameters from vibration responses for different purposes. Finite element model
updating which consists in adapting a numerical model of the structure of interest is a field in which modal parameters are
extensively used. Typically, finite element model updating aims at improving the numerical models by minimizing the
distance between the measured data and the model by modifying the numerical model. While any dynamic signature can
be considered for this purpose (time histories, frequency responses or energies for instance), the use of mode shapes and
eigenfrequencies is probably the most common approach [3–5].

Methods considering modal parameters for damage assessment have been widely studied in the last few decades. The
techniques for structural health monitoring (SHM) can be classified into two big families, depending on the need or not of a
numerical physical model (finite element model) of the structure of interest. Doebling et al. propose a detailed overview of
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the first category of methods based on updating modal parameters in [6]. While model-based methods require a numerical
model of the structure to identify the damage, the second category of methods which is referred to as data-based methods
rely only on measured data to identify damage. While time domain responses of sensors can be used for damage assessment
by considering guided waves [7], or autoregressive models [8–10], methods using frequency responses and modal
parameters are much more studied. The use of eigenfrequencies has been widely investigated for damage assessment,
since cracks typically decreases the eigenfrequencies. Salawu provides a wide overview of the methods using changes of
eigenfrequencies for damage assessment in [11]. Modal damping coefficients have also been considered for structural health
monitoring: cracks create new surfaces increasing the dissipation energy in most cases [12], but these parameters are more
sensitive to the test procedure as well as to the analysis methods than eigenfrequencies, making them less reliable [13].
While eigenfrequencies and modal damping coefficients are global structural parameters, mode shapes are locally affected
by a damage, which makes them particularly interesting to locate the damages. The most straightforward way to proceed
consists in comparing directly the undamaged and the damaged mode shapes. The idea to locate damage from curvature
mode shapes has been proposed by Pandey in [14], since it has been observed that the effect of damage is located in the
close vicinity of the damage. Other methods use approximations of the stiffness and flexibility matrices [15] from the
identified mode shapes and eigenfrequencies in order to locate damages. Stubbs and Kim have also proposed in [16] to take
advantage of the decrease of strain modal energy in beam-like structures to identify the position of damages, and the
technique has been extended to plate-like structures in [17].

Because noise is always present in measurements, and that operational modal analysis introduces some uncertainty in
the identified modal parameters [18], the validation of the previous methods calls for a study of their efficiency when some
uncertainty is taken into account in the modal parameters of interest. Traditionally, when testing the robustness of such
types of methods, numerical models are used in order to compute the modal parameters which will be used as input
measurements, and noise is added directly on the modal parameters. Most of the time, robustness studies consider
uncertainties on the mode shapes in the form of independent white noise added at each measured location such as in
[19–21]. Similarly, the uncertainty on the identified eigenfrequencies and modal damping coefficients consist very often in
perturbing the reference eigenfrequency or modal damping with a white noise (Gaussian noise), as in [22]. Other research
studies consider noise added directly on the time domain sensor response which is more realistic, but the methods
developed are mainly using time domain sensor responses, as in [23,24].

Several studies which deal with the estimation of the uncertainty on modal parameters from a single stochastic subspace
identification can be found in the literature [18,25,26]. Using a perturbation analysis, these techniques are interesting to
estimate the variance of identified eigenfrequencies and modal damping coefficients as well as the covariance of the
identified mode shapes, and are usually validated with a Monte-Carlo simulation which is much more computationally
expensive, but which gives a better estimation of the (co)variances. However, Carden and Mita pointed out in [27] that the
modal parameters may exhibit non-normal distribution, and that the variances are not adequate to estimate the confidence
intervals in that case. The aim of the present paper is to study in detail the effect of noise measurement on the uncertainty of
modal parameters obtained with stochastic subspace identification [1]. A Monte-Carlo simulation on a numerical case study
and an experimental validation are performed. These results are used to assess the uncertainty on the modal parameters
obtained with successive modal identifications, and a comparison is performed when the uncertainty is directly added on
the modal parameters obtained with a unique modal identification.

This paper is organized as follows: Section 2 deals with a numerical study of the uncertainty on modal parameters due to
measurement noise. The structure investigated is a simply supported beam equipped with 11 equally distributed strain
sensors. 5000 samples of the dynamic response of the beam excited by a band-limited white noise signal are computed, and
the modal properties are identified for each sample. Noise measurement is added directly on the sensor responses before
the modal identification, and we compare the uncertainty obtained on eigenfrequencies, modal damping coefficients and
mode shapes with the classic approach in which the uncertainty is modeled as a Gaussian noise added directly on the modal
parameters. In particular, the correlation matrices are computed for each mode shape of interest and show that the classic
approach for which the noise of the mode shapes projected on the sensors is added independently at each sensor location
neglects the spatial correlation which exists between the noise of sensors at different locations. Section 3 investigates the
experimental uncertainty of modal parameters on a small clamped–free steel plate equipped with 8 piezoelectric patches
and excited with piezoceramic patch. The same analysis as in the numerical case study is performed, and the experimental
results confirm the main numerical observations which are: (i) the spatial correlation in the noise of mode shapes between
sensors at different locations, and (ii) the non-normal distribution of the identified eigenfrequencies and modal damping
coefficients. These observations illustrate very well that the robustness with respect to noise measurement of any method
using modal parameters should be based on Monte-Carlo simulations in which the noise is introduced on the sensor
responses in time domain, before the modal identification.

2. Numerical study of the uncertainty on modal parameters due to measurement noise

2.1. Description of the case study

The numerical case study deals with a 1 m� 0:1 m� 0:1 m simply supported beam made of concrete (Fig. 1) that has
already been investigated [28]. The beam is modeled with 100 Euler–Bernoulli beam elements using the Structural Dynamics



Fig. 1. Simply supported concrete beam equipped with 11 strain sensors.
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Toolbox under Matlab [29], and a force with a band-limited white noise between 0 Hz and 4000 Hz exciting the first four
modes (at 193 Hz, 773 Hz, 1740 Hz and 3094 Hz) is applied. A network of 11 equally spaced strain sensors with a gauge
length of 0.01 m is placed on the beam, and their time histories are obtained thanks to an in-house numerical simulator
which is applying a time integration scheme based on Duhamel's formula [30], and which has already been used in [31].
Each measurement lasts for 10 s with a sampling rate of 8000 Hz, resulting in a set of 80 000 measurement points for each
sensor. The noise added on the sensor responses takes the following form:

ynðtÞ ¼ y0nðtÞþβ1λ max
j½0 s;10 s�

ðy0nðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise

; (1)

where yn(t) and y0nðtÞ are the noisy and non-noisy responses of sensor n (n¼ 1;…;11) at time t respectively. λ is the random
parameter, with its continuous distribution f ðλÞ following a Gaussian distribution with zero mean and unitary standard
deviation as it is usually assumed [32], and will be confirmed experimentally in Sections 3.2 and 3.3. The level of noise β1 is
fixed at 5 percent, which leads to a signal-to-noise ratio (SNR) around 25 for each sensor, when SNR is defined as the ratio
between the average power of the signal yn and the average power of the corresponding noise during the 10 s of
measurements:

SNR¼ Pyn

Pnoise
¼ RMSðynÞ

RMSðnoiseÞ

� �2

; (2)

where RMS stands for the root mean square. The modal identification is performed using the covariance based stochastic
subspace identification method (SSI-cov) [18] implemented in the Macec Toolbox [2] under Matlab, using output-only
measurements.

The modal identification is performed 5000 times with different realizations of the input excitation signal and the output
measurement noise on the sensors. After a brief description of the stochastic subspace identification method, the following
sections will study the effect of noise on the uncertainty of the modal parameters that will be obtained using that
operational modal analysis technique.

2.2. Operational modal analysis based on the stochastic subspace identification method

Before discussing the uncertainty on modal parameters estimated with the stochastic subspace method, we briefly
present this output-only technique which is the most commonly used for operational modal analysis.

The discrete-time state-space model of a mechanical structure reads as

xkþ1 ¼ AxkþBfk
yk ¼ CxkþDfkþny;k (3)

where xk is the state of the structure, yk the outputs (measured), and ny;k the output measurement noise. A zero-order hold
assumption is made on the (not measured) inputs fk. The stochastic terms

wk ¼ Bfk
vk ¼Dfkþny;k (4)

are unknown but assumed to have a discrete white noise nature with an expected value equal to zero [18]. The concept of
subspace identification for linear systems applied to modal analysis of structures [33] uses the Hankel matrix. In the case of
the covariance based stochastic subspace identification method applied in this study, the Hankel matrix reads as [34]

Hp;q ¼

Λ0 Λ1 ⋯ ⋯ Λq�1

Λ1 Λ2 ⋯ ⋯ Λq

⋮ ⋮ ⋯ ⋯ ⋮
Λp�1 Λp ⋯ ⋯ Λpþq�2

2
66664

3
77775; (5)

where the parameters p and q are chosen by the user so that pZq. Each component Λi of the Hankel matrix represents the
output covariance matrix estimated from a set of N samples yk:

Λi ¼
1

N� i
∑
N� i

k ¼ 1
ykþ iy

T
k (6)



Fig. 2. Stabilization diagram obtained with one sample of the numerical case study (the grey thick curve represents the sum of PSDs of all sensors).
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This Hankel matrix can be factorized into two subspaces from which the modal information can be extracted. The A
and C matrices of the discrete-time state-space model (Eq. (3)) can be extracted from the Hankel matrix. The mode shapes,
eigenfrequencies and damping ratios can finally be identified from these matrices.

2.3. Uncertainty on mode shapes

Fig. 2 shows the stabilization diagram from which the modal parameters have been automatically identified. In the
present case study, the default model order for all mode shapes has been fixed to 16. However, such a choice of model order
failed in the automated modal identification of several samples, so that it has been necessary to manually identify the modal
parameters with other model orders between 10 and 15.

The first four bending mode shapes have been identified after each of the N measurement and each realization is noted
as Φi;k (k¼ 1;…;5000 and i¼1, 2, 3 or 4). The ith reference mode shape Φ0

i is the mean of the N¼5000 identified mode
shapes:

Φ0
i ¼

1
N

∑
N

k ¼ 1
Φi;k; (7)

with Φi;k ¼ fϕi;k1⋯ϕi;k11gT . Note that the SSI-cov method implemented in Macec normalizes the mode shapes with respect to
the largest component, which leads to a zero covariance for that component. The modes are therefore renormalized using
their Euclidian norm: ~Φi;k ¼Φi;k=‖Φi;k‖. Since all the modes considered in this paper will be normalized based on their
Euclidian norm, we will use the notation Φi;k instead of ~Φi;k in the rest of the paper in order to simplify notations. A very
simple manner to introduce noise on mode shapes which has been adopted in several studies is to add spatially
uncorrelated noise directly on the mode shapes:

ϕi;kn ¼ ϕ0
i;nþβ2λϕ

0
i;n; (8)

where ϕi;kn is the nth component of the kth noisy sample of mode i, and ϕ0
i;n is the corresponding non-noisy component.

Similar to Eq. (1), β2 is the level of noise and λ follows a normal distribution f ðλÞ with zero mean and unitary standard
deviation.

Because the effect on mode shapes of a noise introduced following Eq. (1) or (8) is very different, we cannot choose
β1 ¼ β2 if we wish to have noise on mode shapes that are of the same order of magnitude. In particular, the level of noise in
Equation (1) depends on the position of the excitation while the one in Eq. (8) is only related to the mode shape, so that
there is no way to link β1 with β2. We have therefore arbitrarily fixed the value of β2 using the mean value of noise on all
sensors as follows:

β2 ¼
1
11

∑
11

n ¼ 1
β1 max

j½0 s;10 s�
y0n tð Þ� �

; (9)

which leads to β2 ¼ 0:858 percent. For clarity, we will refer to the solutions obtained with Eqs. (1) and (8) as schemes S1 and
S2 respectively.

Before the statistical analysis on the identified mode shapes, it has been chosen to proceed to a first cleaning of the
obtained mode shapes in order to remove the mode shapes which have been badly identified. One mode automatically
identified is rejected if the MAC value (modal assurance criterion, [35]) computed between the current mode shape Φi;k and
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the reference mode shape Φ0
i is smaller than 0.9:

MAC Φi;k;Φ0
i

� �¼ ΦT
i;kΦ

0
i

ðΦT
i;kΦi;kÞðΦ0T

i Φ0
i Þ
o0:9 (10)

As it can be seen from Table 1, only a very few modal identifications failed. In order to quantify the spatial correlation
between the uncertainty on the different mode shape components, we compute the correlation matrices as defined in [36]
of the identified mode shapes for modes 1, 2, 3 and 4 separately. If we note Ci the correlation matrix of mode shape Φi based
on ns samples, the spatial correlation between sensors m and n reads as

ci;mn ¼
∑ns

k ¼ 1ðϕi;km�ϕ0
i;mÞðϕi;kn�ϕ0

i;nÞ
ðns�1Þsmsn

; (11)

where sm and sn are the estimated standard deviations of sensors m and n. Before analyzing the spatial correlation between
the sensors, it was necessary to check that the correlation matrices taken into account can be considered as converged. In
order to do that, we have computed the evolution of the normalized modal difference (NMD) [35] for each column of the
correlation matrix Ci (for scheme S1), as a function of the number of samples:

NMD Ci;ns ;Ci;ns �50
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MACðCi;ns ;Ci;ns �50Þ
MACðCi;ns ;Ci;ns �50Þ

s
; (12)

where the MAC is computed between a specific column of the correlation matrix computed with ns samples (Ci;ns ) and the
same column of the correlation matrix computed with ns�50 samples (Ci;ns �50). Fig. 3 depicts the evolution of NMD for the
first column of the covariance matrix C1 for the four mode shapes of interest.

From that plot, we can conclude that the estimate of the correlation matrix can be considered as converged when we
take into account all the N samples summarized in Table 1, since the NMD value is below 1 percent from 3000 samples for
all the mode shapes. The same conclusion can be made by analyzing the evolution of NMD computed for the other columns
of the correlation matrix.

In addition to this preliminary test, another verification has been made to guarantee that the variability described by the
covariance matrices was mainly due to the noise acting on the sensors, and not due to the identification process itself. The
idea that has been applied consisted in performing 5000 identifications without noise added on the sensors (with different
realizations of the input signal), and to compute the resulting covariance matrix. This matrix was found to be several orders
of magnitude lower than the covariance matrix computed with noise added on the sensors.

Fig. 4 shows the mean of the identified mode shapes, as well as the 10s intervals. In particular, it has been observed that
the distribution of each mode shape component was very close to a normal distribution centered on the mean value of the
modal component, as depicted in Fig. 5 for the fifth sensor of the first mode shape. In this figure, we also provide the normal
Table 1
Success rates of modal identifications.

Success quantifier Φ1 Φ2 Φ3 Φ4

Number of samples retained N 4998 4999 4998 5000
Proportion of failed identifications (%) 0.04 0.02 0.04 0

Fig. 3. Evolution of NMD with the number of samples (first column of the correlation matrix C1).
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Fig. 5. Normal probability plot and histogram for the fifth component of Φ1. Dashed line: normal distribution, crosses: sample data.
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probability plot which is a graphical tool often used in statistics in order to check the normality of a random variable [37]. In
this plot, the samples of the random variable of interest are ranked from smallest to largest, and plotted against their
cumulative frequency. If the normal distribution describes correctly the random variable, the plotted points will follow
closely a straight line.



Fig. 6. Variance on the identified mode shape components (scheme S1).
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Fig. 6 shows that for the present numerical case study, the uncertainty s on the modal components increases when
modes of increasing order are identified.

It is interesting to compare the two noise schemes previously defined by considering the correlation matrices. Indeed,
because noise is added independently on each component of the mode shape with scheme S2, the correlation matrix of Φi

will converge to a diagonal matrix. On the other hand, the correlation matrix for scheme S1 is clearly not diagonal, showing
that the noises on each component are not independent. Fig. 7 plots the correlation coefficients obtained with noise
modeling scheme S1 for the third sensor (third column/row of the correlation matrix).

Scheme S2 presents columns close to unitary vectors because the noise is added independently on each component as
already explained. The noise at sensor m has therefore no influence on the other sensors man. On the other hand, with
scheme S1, noise at sensor m influences the noise at the other sensors. Note that a non-negligible correlation can exist
between distant sensors such as sensors 3 and 9 (Fig. 7(d)). We have also checked that there is no correlation between two
different mode shapes. Indeed, if we define the spatial correlation between sensors m and n for mode shapes i and j as
follows:

cij;mn ¼
∑ns

k ¼ 1ðϕi;km�ϕ0
i;mÞðϕj;kn�ϕ0

j;nÞ
ðns�1Þsimsjn

; (13)

we found that cij;mn was very close to 0 for all mode shapes man and all sensors.
By performing a singular value decomposition of the correlation matrix based on Eq. (11), it is possible to represent the

variability in the form of uncorrelated variables. Because Ci is symmetric, the singular value decomposition reads as

Ci ¼UiSiU
T
i (14)

Whatever the noise scheme considered, each noisy normalized mode shape can be decomposed into its noisy and non-
noisy parts as Φi;k ¼Φ0

i þδΦi;k, where the noisy part of sample k can be rebuilt by combining the eigenvectors of Ui:

δΦi;k ¼Uiα
T
k (15)

Fig. 8 shows the different energy distributions of the two noise schemes. Scheme S1 has a spatial correlation which is
explained by 10 principal components with decreasing energy, amongst which one or two components have a clear
predominant contribution (Fig. 8(a), (c) and (d)). On the other hand, scheme S2 shows an almost constant energy
distribution on all the 11 components. Comparing the eigenvectors uj of Ui allows us to figure out how the energy is
distributed in an uncorrelated variables space (Fig. 9).

Since the correlation matrix of scheme S2 is the identity matrix by definition of this uncorrelated noise modeling, the
eigenvectors are pulses because the noise is already described in an independent variables space. On the other hand, the
eigenvectors corresponding to the noise scheme S1 are waves of different lengths due to the spatial correlation. We can
therefore conclude that the models based on scheme S2 generally adopted to introduce some uncertainty on the
identification of the mode shapes are not very realistic. By considering Eq. (15), we see that the noise on mode shapes
can be computed thanks to a linear combination of eigenvectors, of which linear coefficients αk ¼ fα1;k⋯α11;kg are random
variables. It is therefore interesting to study the statistical distribution of these coefficients. In the case of noise scheme S1,
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the coefficients αn;k ðn¼ 1;…;11Þ have been found to be approximatively normally distributed, as it can be seen in Fig. 10
which shows the statistical distribution of the coefficient α2;k corresponding to the first sensor of δΦ2;k (noise on the first
sensor for the second mode shape).
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Fig. 10. Normal probability plot and histogram for α2;k (sensor 1). Dashed line: normal distribution, crosses: sample data.

Table 2
Uncertainties on the identified eigenfrequencies.

μ (Hz) s (%)

f1 192.56 0.0792
f2 760.99 0.0115
f3 1679.1 0.0130
f4 2908.2 0.0136
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The same analysis for the noise scheme S2 leads also to coefficients αi;k as normally distributed, due to the definition of
that noise scheme.
2.4. Uncertainty on eigenfrequencies and modal damping coefficients

This section investigates the uncertainty due to the noise measurement on the eigenfrequencies and the modal damping
coefficients of the first four mode shapes. Tables 2 and 3 summarize the mean values and the corresponding standard
deviations of each eigenfrequency and modal damping coefficient.

These two tables illustrate very well the fact that the eigenfrequencies can be identified with a high accuracy, while it is
more difficult to identify the modal damping coefficients, since they present a much higher standard deviation. A common
practice which is widely applied in the literature consists in adding an uncorrelated white noise independently on each
modal parameter, as suggested below:

θi ¼ θ0i þβλθ0i ; (16)

where θi is the ith noisy eigenfrequency or modal damping coefficient and θi
0
the corresponding non-noisy value. Similar to

the noise scheme S1, λ is a random parameter, with its continuous distribution f ðλÞ following a Gaussian distribution with
zero mean and unitary standard deviation. For this reason, it is interesting to check the correlation of uncertainties on the
modal parameters, as well as their normality. From Fig. 11, it seems that the hypothesis of uncorrelated noise is acceptable,
since the correlation matrices of fi and ξi are mostly diagonal.

The normal probability plots of Fig. 12 show that the assumption of a normal distribution is a quite rough approximation.
Indeed, despite the fact that the noise acting on the sensors is Gaussian, the uncertainty on the eigenfrequencies and modal
damping coefficients obtained with a stochastic subspace identification method is not Gaussian: the data in the tails of the
normal probability plot clearly departs from the straight line, which is an indication that the normal distribution is not a
good model for the eigenfrequency and the modal damping.



Table 3
Uncertainties on the identified modal damping coefficients.

μ ð%Þ s ð%Þ

ξ1 1.0004 0.0596
ξ2 1.0000 0.0131
ξ3 1.0034 0.1791
ξ4 1.0010 0.0762
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Fig. 11. Correlation of the uncertainty on the (a) eigenfrequencies and (b) modal damping coefficients.
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3. Experimental study of the uncertainty on modal parameters due to measurement noise

In order to confirm the observations that have been obtained in the previous numerical study, it has been decided to
develop a small experimental setup in order to assess the effect of real noise measurement on the uncertainty of the
identification of modal parameters. The present section summarizes the experimental results. As with the numerical
investigation, we analyze first the uncertainty on mode shapes with a particular emphasis on the spatial correlation
between the sensors, and then analyze the uncertainty on the eigenfrequencies and the modal damping coefficients.
3.1. Description of the case study

The structure consists in a 100 mm� 670 mm� 3 mm clamped–free steel plate as shown in Fig. 13, and was studied in
[38] in the context of experimental damage localization. One PZT actuator is used to excite the structure, and eight 13 mm�
60 mm� 50 μmm low-cost PVDFs sensors have been fixed with double-coated tape. These sensors which measure the
average dynamic strains over the area where they are glued are numbered from the clamped edge of the plate, and cover
continuously the structure along its length. A National Instrument PXIe-1082 data acquisition system with a NI PXIe-4492



Fig. 12. Normal probability plots and histograms of the eigenfrequencies and modal damping coefficients corresponding to the first mode shape. Dashed
line: normal distribution, crosses: sample data. (a) f1, (b) ξ1.
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module (24 bits) is used to measure the eight voltages from the PVDFs at the same time. The PZT actuator is driven with a
band-limited white noise between 0 Hz and 50 Hz generated by the PXI, and powered by a MIDE high voltage amplifier.

3.2. Verification of noise of the acquisition system

We have first performed measurements without any sensor connected to the NI PXIe-4492 module, in order to study the
noise of the acquisition system itself. This study aims at characterizing the noise of the different channels, and to check if
there is any form of correlation between them. For this purpose, we measure the empty channels for different sampling
frequencies, as well as different levels of full-scale range (71 V and 710 V). In order to be statistically comparable, the
different tests consider the same number of measurement points (102 400), leading to different durations of acquisitions
T for each sampling frequency fs, which are summarized in Table 4.

Fig. 14 displays the evolution of the level of noise (variance s of the time histories) with respect to the sampling
frequency for the different channels.

We observe two general properties which are already known [32]: the noise increases with (i) the full-scale range and
(ii) with the sampling frequency. We have also checked that the channel presenting the maximum level of noise changes
arbitrarily with the sampling frequency.

As it can be seen in Fig. 15, the noise is uncorrelated and follows a normal distribution on all the channels.
Moreover, the noise between the channels is normally distributed, which can justify the uncorrelated white noise

scheme S1 on the sensors proposed in Section 2 (Eq. (1)).



Fig. 13. Experimental setup. (a) Overall view, (b) clamped–free steel plate instrumented with 8 PVDF sensors.

Table 4
Durations of acquisition for the sampling frequencies tested.

fs (Hz) 1600 3200 6400 12 800 25 600 51 200 102 400 204 800
T (s) 64 32 16 8 4 2 1 0.5
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Fig. 14. Levels of noise for different sampling frequencies.
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3.3. Verification of noise of the sensors

We have then investigated the noise on the sensors when (i) the sensors are connected to the acquisition system but not
yet installed on the structure and (ii) when the sensors are installed on the structure. Fig. 16 depicts a typical time history
and its FFT for a sensor not yet fixed on the structure. In this test, all the sensors were lying on a foam installed on the
antivibration table.

From these measurements it is very difficult to assess correctly the noise. Indeed, the time history shows that the signal is
not steady, and its FFT reveals a non-negligible low frequency content due to the ground motion, despite the fact that the
sensors were lying on a foam installed on the antivibration table. Other sources of vibration as observed in [39] can also
explain these variations of time histories such as acoustic noise or operating machines in the laboratory. We can also
observe sharp peaks at 50 Hz harmonics due to electrical interferences. The FFT is however quite flat in a large frequency
bandwidth. This suggests some kind of normality in the noise, since a white noise has a constant frequency content.
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Fig. 15. Noise on channel 1 (f s ¼ 204 800 Hz, full-scale range of 10 V). (a) Autocorrelation, (b) normal probability plot and histogram. Dashed line: normal
distribution, crosses: sample data.
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Fig. 17 gives an example of the time history and its FFT when the sensors have been fixed on the clamped–free setup, but
with no forced excitation.

As for the sensors not fixed to the structure, the FFT is quite flat in a large frequency bandwidth and 50 Hz harmonics can
be seen, but there are also other peaks. These peaks have been found to correspond to some eigenfrequencies of the
clamped–free steel plate. For that reason, it was anew not possible to identify the noise, since most of the variability in the
time history results from structural vibration and the 50 Hz harmonics. Fig. 18 illustrates the autocorrelation and the normal
probability plot of the time history of Fig. 17.

Because of the 50 Hz harmonics and the structural vibration that has been discussed previously, there is a small
correlation in the sensor response that can be observed, and the distribution does not follow a normal distribution since the
data in the tails of the normal probability plot deviates from the straight line. Despite the fact that the results in the present
section did not allow us to isolate the noise, we consider that the flat frequency content in a large frequency bandwidth that
has been observed justifies the model of uncorrelated white noise proposed by Eq. (1).

3.4. Uncertainty on mode shapes

The clamped–free steel plate has been excited with the PZT patch shown in Fig. 13(b) with a band-limited white noise
(flat PSD) between 0 Hz and 50 Hz exciting the two first bending mode shapes at 5.44 Hz and 33.07 Hz respectively, and the
measurements last for 0.5 s with a sampling frequency of 51 200 Hz. In order to perform a statistical analysis of the



Ground motion
50Hz harmonics

Fig. 16. Time history (top) and FFT (bottom) of sensor 1 lying on foam.

Structural peaks
50Hz harmonics

Fig. 17. Time history (top) and FFT (bottom) of sensor 1 fixed on the clamped–free setup (ambient vibration).
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uncertainty on modal parameters due to noise measurement, a set of 4000 measurements has been collected, from which
the modal parameters (mode shapes, eigenfrequencies and modal damping coefficients) have been identified with the
Macec toolbox under Matlab as in the numerical case study. All the measurements have been acquired in a row within 12 h,
during which no major environmental changes have been observed as discussed in Section 3.5. Fig. 19 shows a typical
stabilization diagram obtained with the experimental case study. In this experiment, all the samples of the first mode shape
have been obtained with a model order of 32, while all the samples of the second mode shape have been obtained with a
model order of 28.

Similar to the numerical study, a pre-processing based on Eq. (10) to remove the wrong identifications of mode shapes
from the baseline has been applied. Table 5 summarizes the success rates of the modal identifications for the first two
bending mode shapes of the clamped–free steel plate.

It can be seen that the success ratio of modal identification is very good since maximum 6.3 percent of the modal
identifications failed, but is much smaller than the numerical case study, for which maximum 0.04 percent of the modal
identifications failed (see Table 1). Fig. 20 shows the mean of the identified mode shapes, as well as the 3s variability
intervals.
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Fig. 18. Noise on sensor 1 (f s ¼ 1600 Hz, full-scale range of 1 V) under ambient excitation. (a) Autocorrelation, (b) normal probability plot and histogram.
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Fig. 19. Stabilization diagram obtained with one sample of the experimental case study (the grey thick curve represents the sum of PSDs of all sensors).
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Table 5
Success rates of modal identifications.

Success quantifier Φ1 Φ2

Number of samples retained N 3748 3985
Proportion of failed

identification (%)
6.3 0.38
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Fig. 20. Strain mode shapes of interest. Full line: strain mode shape (mean over all the samples), dashed line: 3s interval. (a) Φ1, (b) Φ2.

Fig. 21. Normal probability plot and histogram for the first component of Φ2. Dashed line: normal distribution, crosses: sample data.
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It can be observed that the uncertainty on the strain mode shapes (i.e. the 3s interval) is bigger with the first bending
mode shape, which explains why more samples of the first bending mode shape were rejected. Moreover, this observation
shows that considering the same level of uncertainty for all the mode shapes is wrong. Indeed, depending on the excitation,
the mode shapes will be more or less excited and therefore more or less easy to identify. It is also worth mentioning that
while the noise on the channels was shown to be Gaussian, the hypothesis of a Gaussian distribution of the mode shape
component at each sensor is less satisfying, as it can be seen from Fig. 21. Indeed, significant departure from the straight line
is observed. This observation shows that the idea according to which the effect on the identified mode shape of an
uncorrelated white noise on measurements can be modeled with a white noise on each component is not exact.

As with the numerical case study, we checked the convergence of the correlation matrices based on the NMD for each
column of the correlation matrix when it is computed with ns and ns�50 samples. Fig. 22 shows the evolution of the NDM
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Fig. 22. Convergence of the correlation matrix based on the NMD value. (a) Φ1, (b) Φ2.

Fig. 23. Correlation coefficients. (a) Sensor 1, (b) Sensor 4, (c) Sensor 6, (d) Sensor 8.
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value computed for all the columns of the correlation matrices of modes Φ1 and Φ2. It can be seen that the correlation
matrices calculated with 3748 and 3985 samples for the first and the second bending mode shapes respectively can be
considered as converged, since the NMD value stays below 2 percent for the first mode shape and 0.2 percent for the
second one.

The analysis of Fig. 23 confirms the numerical predictions obtained in Section 2: the uncertainties at the different sensors
are strongly spatially correlated. Indeed, there are many correlation coefficients ci;mn close to 71 for man.

Similar to the numerical case study, we then perform a singular value decomposition to illustrate the energy distribution
in an independent variables space. Fig. 24 illustrates the singular values of the correlation matrices for modes Φ1 and Φ2.

Fig. 24 shows that the energy is contained in only a very few singular values, and confirms the properties observed
previously in the numerical study. The uncertainty on the first mode shape is mainly explained by 3 eigenvectors, while only
one eigenvector allows us to characterize most of the uncertainty on the second mode shape. Figs. 25 and 26 compare the
first, fourth and eighth eigenvectors of the correlation matrices for modes 1 and 2 respectively. We see that the principal
eigenvector u1 is quite similar to the correlation coefficients of the first columns for Φ1 with an opposite sign (see Fig. 23(a),
(b) and (c)), while the first eigenvector for Φ2 is almost identical (again with an opposite sign) to all the columns of the
correlation matrix (see Fig. 23), since there is only one main singular value.

3.5. Uncertainty on eigenfrequencies and modal damping coefficients

Tables 6 and 7 summarize the mean values and the corresponding standard deviations of each eigenfrequency and modal
damping coefficient. In particular, a huge uncertainty on the modal damping coefficients can be observed.

It is worth mentioning that the uncertainty on f1 and ξ1 is bigger than on f2 and ξ2. Similarly, the uncertainty on Φ1 is
bigger than on Φ2 as illustrated in Fig. 20. This observation can be explained by the fact that the second mode shape is more
excited than the first one as it can be seen on the stabilization diagram of Fig. 19: the sum of PSDs (grey curve) has a much
higher peak at the second eigenfrequency than at the first one. Also, the very short acquisition time (0.5 s) makes the
identification of low frequency mode shapes less accurate. It is therefore more difficult to identify the modal parameters of
Fig. 24. Singular values of the correlation matrices. (a) Φ1, (b) Φ2.



Fig. 25. Eigenvectors of the correlation matrix of Φ1. (a) u1, (b) u4, (c) u8.
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the first mode shape than the second one (Table 5 shows that there are more identifications which failed for the first mode
shape). Consequently, there is more uncertainty on the modal parameters of the first mode shape.

The normal probability plots of Figs. 27 and 28 confirm also the non-Gaussian nature of the uncertainties on the
identified eigenfrequencies and modal damping coefficients that was previously observed with the numerical investigation.
In fact, the histograms of Fig. 28 suggest that the modal damping coefficients follow a lognormal distribution, despite the
fact that there are some identified values of ξ1 and ξ2 that are negative, but such modal damping coefficients are not
physical. The damping coefficients of lightly damped modes estimated with the stochastic subspace identification can have a
nonzero probability at negative values because the identified system description is not restricted to be stable.

Since it is well known that environmental changes such as changes of temperature can strongly affect the eigen-
frequencies [40,41], it is important to verify whether the non-Gaussian distribution is due to any environmental changes. For
this purpose, we display in Fig. 29 the chronological evolution of identified eigenfrequencies. It is very clear that the
eigenfrequencies are steady and do not follow any trend. This shows that the non-Gaussian distribution of the identified
eigenfrequencies does not come from any environmental effects, but is a property of the uncertainty on modal parameters
estimated with the stochastic subspace method.



Fig. 26. Eigenvectors of the correlation matrix of Φ2. (a) u1, (b) u4, (c) u8.

Table 6
Uncertainties on the identified eigenfrequencies.

μ ðHzÞ s ð%Þ

f1 5.44 1.51
f2 33.07 0.01
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The non-correlation between modal parameters that was obtained with the numerical case study (see Fig. 11) has
also been observed with the experimentally identified eigenfrequencies and modal damping coefficients, as illustrated
in Fig. 30.



Table 7
Uncertainties on the identified modal damping.

μ ð%Þ s ð%Þ

ξ1 1.09 1.55
ξ2 0.20 0.66

Fig. 27. Normal probability plots and histograms of the eigenfrequencies. Dashed line: normal distribution, crosses: sample data. (a) f1, (b) f2.
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4. Conclusion

In this paper, we have studied the effect of noise measurement on the uncertainty of modal parameters identified using
stochastic subspace identification. A first numerical investigation deals with a simply supported beam, and 5000 modal
identifications have been performed in a Monte-Carlo simulation to estimate the uncertainty on modal parameters when
the noise is added on the sensors before modal analysis under the form of uncorrelated white noise. A comparison of the
results obtained from this Monte-Carlo simulation with the common approach which consists in adding uncorrelated white
noise on the modal parameters directly to model the effect of noise measurement pointed out that the uncertainty on modal
parameters might exhibit a non-normal distribution. We have also illustrated by computing the correlation matrices that
the modal identification introduces some spatial correlation in the noise between the sensors, so that adding spatially
uncorrelated white noise on the mode shapes is not correct. These observations have been then verified experimentally



Fig. 28. Normal probability plots and histograms of the modal damping coefficients. Dashed line: normal distribution, crosses: sample data. (a) ξ1, (b) ξ2.
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Fig. 29. Evolution of the identified eigenfrequencies in chronological order.
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with a small clamped–free steel plate instrumented with 8 piezoelectric patches, and actuated with a piezoceramic patch.
After characterizing the noise of the data acquisition system, 4000 modal identifications of the two first bending mode
shapes have been performed, and the correlation matrices have been computed, confirming the spatial correlation between
the noise on the sensors as numerically pointed out. In addition, a non-normal distribution is also observed for the first two
eigenfrequencies and the corresponding modal damping coefficients. This study suggests that caution should be taken when
assuming noise models directly on identified modal parameters. It is important to note that the findings of this work are
only valid for the stochastic subspace method, for which it was not possible to propose a noise model to be applied directly
on the modal parameters. Also, all the results discussed in this study have been obtained for specific model orders. More
investigations are needed to check out if these results depend on the choice of model order. Although expensive in
computation, it is advised to identify noise models based on time domain simulations in which the noise is directly added
on the time domain sensor responses. As these models will be specific to each structure as well as the modal identification
method used, it requires to perform costly computations but ensures much more realistic representation of the effect of
noise on the modal parameters.
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