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The convective dissolution of carbon dioxide (CO2) in salted water is theoretically

studied to determine how parameters such as CO2 pressure, salt concentration and

temperature impact the short-time characteristics of the buoyancy-driven instability.

On the basis of a parameter-free dimensionless model, we perform a linear stabil-

ity analysis of the time-dependent concentration profiles of CO2 diffusing into the

aqueous solution. We explicit the procedure to transform the predicted dimension-

less growth rate and wavelength of the convective pattern into dimensional ones for

typical laboratory-scale experiments in conditions close to room temperature and

atmospheric pressure. This allows to investigate the implicit influence of the experi-

mental parameters on the characteristic length and time scales of the instability. We

predict that increasing CO2 pressure, or decreasing salt concentration or temperature

destabilizes the system, leading to a faster dissolution of CO2 into salted water.
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When carbon dioxide (CO2) dissolves in an aqueous solution, a buoyancy-driven

fingering instability can develop because of the formation of a denser layer of

CO2-rich solution on top of the less dense water. By a theoretical analysis, we

predict how the short-time characteristics of this instability depend on exper-

imental control parameters. To do so, we use a linear stability analysis based

on a parameter-free model along with empirical correlations to compute the

characteristic time and length scales of the fingering instability. We find that

the growth rate of the convective instability increases with increasing CO2 pres-

sure or decreasing salt concentration or temperature. These results allow to

interpret experimental data1,2 on the impact of salt concentration and gaseous

CO2 pressure on the convective dissolution of CO2. Another main result of our

analysis is that temperature has only a slight effect for CO2 pressures close to

atmospheric pressure. This study therefore suggests that carefully controlling

the temperature of the setup is not needed for reproducibility of experimental

studies of convective dissolution of CO2 in laboratory conditions.

I. INTRODUCTION

The convective mixing of CO2 with aqueous solutions is a key process for the sequestra-

tion of CO2 in saline aquifers. CO2 sequestration is one of the several techniques considered

to reduce the emissions of CO2 to the atmosphere, with a view to mitigating climate change3.

Among possible geological sites for CO2 sequestration, saline aquifers are promising candi-

dates because, unlike hydrocarbon reservoirs, they are evenly distributed in various parts of

the world3,4. Upon injection in a saline aquifer, the less dense CO2 rises above the aqueous

phase and spreads laterally under the upper impermeable cap rock. As CO2 dissolves into

the salted water, the resulting CO2-rich solution is denser than the salted water located be-

low it in the gravity field. The contact zone between these two solutions becomes unstable

and develops buoyancy-driven fingering. The resulting convective mixing5 accelerates the

dissolution of CO2 as it is transported faster further away from the interface, thus speeding

up the storage process in underground aquifers and favoring further dissolution. To assess

the efficiency of such a convective dissolution process, there is a need to quantify how this
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buoyancy-driven instability affects the dynamics of CO2 sequestration.

As in-situ measurements in sequestration sites are difficult to do, laboratory-scale experi-

ments are needed to benchmark the theoretical modeling of the convective dissolution of CO2

into aqueous solutions. These experiments are typically carried out in vertical Hele-Shaw

cells, which consist of two transparent plates separated by a small gap (≤ 1 mm). For small

enough gap widths, the flow evolution in a Hele-Shaw cell is described by Darcy’s equations

similar to the evolution equations for flows in porous media5. Hence, such reactors can be

used as a simplified experimental analogue of a porous medium with easy visualization of

flow dynamics, by using for example a pH-sensitive indicator1,6,7, a dye8, a colored solute9,

Mach-Zender interferometry10, shadowgraphy11, or Schlieren techniques12.

Among these laboratory-scale experiments, some of them have been conducted using

analogues of CO2 dissolving into water, like for instance two miscible fluids8,11 or a solid

dissolving into water9. The other studies have used gaseous CO2 dissolving in aqueous so-

lutions dyed by a pH indicator at conditions close to room temperature and atmospheric

pressure1,6,7. Kneafsey and Pruess 6,7 quantified the transfer of gaseous CO2 down to water

contained in a Hele-Shaw cell with or without beads by measuring the area of the pH-

depressed zone and the decrease in CO2 pressure. They also measured the average wave-

length of the fingers as a function of time. In a similar set-up, Outeda et al. 1 computed

experimental dispersion curves in the early stages of the instability. They evaluated the

growth rate and wavenumber of the most unstable convection mode as a function of the

pressure of CO2 and of the concentration of the pH-sensitive indicator. Using a glass tube,

Farajzadeh et al. 2 studied how the mass transfer of CO2 into aqueous solutions containing

a salt and/or a surfactant is enhanced by increasing the pressure in the gas phase.

Quantitative comparison of these experimental results with theoretical predictions re-

mains however difficult as current theoretical works do not explicitly consider the influence

of experimental control parameters on the characteristics of the instability. Such parame-

ters are, for instance, CO2 pressure, salt concentration and temperature, which can easily

be tuned in laboratory-scale experiments. The influence of pressure on CO2 convective dis-

solution has been studied experimentally by Outeda et al. 1 and Farajzadeh et al. 2 . Both

works show that increasing CO2 pressure enhances convection but, to the best of our knowl-

edge, no theoretical work has been performed to explain these trends. Similarly, studying

the influence of salt concentration on the buoyancy-driven instability has not been done
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yet, despite its relevance for sequestration as possible storage sites for CO2 often contain

variable quantities of dissolved salts. The influence of temperature on the characteristics of

the instability has not been investigated either, although it could impact laboratory-scale

experiments on CO2 convective dissolution as experiments are typically carried out without

any control of the temperature. There is therefore a need to test whether the properties

of the instability are sensitive to changes of temperature by a few degrees, in which case,

it might be necessary to maintain the temperature constant, for example by placing the

Hele-Shaw cell in a thermostat, to ensure the reproducibility of the measurements13.

In this context, we study theoretically the influence of these three experimental control

parameters (pressure of the gas, salt concentration in the aqueous phase and temperature) on

the buoyancy-driven instability that develops during the dissolution of CO2 in salted water.

We use a one-phase model of convective dissolution focusing on the dynamics in the aqueous

phase, and perform a linear stability analysis (LSA). We discuss the implicit influence of the

experimental parameters on the time and length scales needed to switch from dimensionless

theoretical results to dimensional predictions, and therefore explicit their influence on the

stability properties of the system.

The outline of the article is the following: in section II, we present the theoretical model

and nondimensionalize the equations. In section III, we compute the diffusive base state

profile of the CO2 concentration dissolved in salted water and describe the linear stability

analysis used to determine the influence of experimental parameters on the stability of

the system. We present our dimensionless results and the way to compute the scalings in

section IV. Finally, we study the influence of experimental parameters on the dimensional

characteristics of the instability in section V and conclude with a discussion and some

prospects for further research in section VI.

II. MODEL

We consider a two-dimensional porous medium or Hele-Shaw cell vertically oriented in

the gravity field. At time t̃ = 0, gaseous CO2 is placed above an aqueous solution containing

a salt in concentration B0 along a fixed horizontal flat interface (see figure 1). Gaseous CO2

dissolves across the interface and diffuses down in the salted water. Although in the context

of CO2 dissolution into oil, Rongy, Haugen, and Firoozabadi 14 modeled the CO2 gaseous
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FIG. 1. Two-dimensional model system: gaseous CO2 dissolves in salted water from the upper

boundary of the aqueous solution, located at z̃ = 0.

phase coupled with a hydrocarbon liquid phase, most studies consider the aqueous phase

only, with a fixed CO2 concentration at the interface. Similarly, our model focuses on the

aqueous solution, which is supposed to be semi-infinite, i.e. to extend from −∞ to +∞
along the horizontal axis ỹ and from 0 to +∞ downwards along the vertical axis z̃.

Experiments in Hele-Shaw cells are usually conducted at low pressures of CO2 of the

order of atmospheric pressure, and at room temperature. We therefore assume that the

corresponding low aqueous concentrations of CO2 (< 0.5 mol/L) do not affect significantly

the viscosity of the solution which is taken as constant. Experiments and simulations show

that the diffusion coefficient of CO2 does not depend on the pressure of CO2 up to 100 bars,

although it depends on temperature and salt concentration15–17. The solvent is treated as

incompressible and we make the Boussinesq approximation5. The only density changes in the

system are due to the solutal contributions of both CO2 and salt. The system is considered

as isothermal to focus on the solutal contribution of CO2 dissolution on the density field.

This assumption is reasonable as Javaheri, Abedi, and Hassanzadeh 18 have shown that the

effect of geothermal gradients can be neglected in front of solutal effects in real sites for CO2
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sequestration.

To describe the dynamics in the aqueous layer, we use the incompressible Darcy’s equa-

tions (1a, 1b) for the flow field and a diffusion-convection equation (1c) governing the evo-

lution of the concentration field of dissolved CO2. These two equations are coupled via an

equation of state for the density of the solution (1d):

∇̃p̃ = −µ
κ

ũ + ρ̃g , (1a)

∇̃ · ũ = 0 , (1b)

φ
∂̃Ã

∂̃t̃
+ (ũ · ∇̃) Ã = φD ∇̃2 Ã , (1c)

ρ̃ = ρ̃0 + ρw αA Ã , (1d)

where p̃ is the pressure, ũ = (ũ, ṽ) the fluid velocity, ρ̃ the density, Ã the concentration

of CO2, and t̃ is the time. The tilde on these variables denote dimensional variables. In

addition, µ is the dynamic viscosity, φ the porosity, κ the permeability, g = (0, g) the

acceleration due to gravity, D the molecular diffusion coefficient of CO2 in the solution, ρw

the density of pure water, and αA = 1
ρw

∂̃ρ̃

∂̃Ã
is the solutal expansion coefficient of CO2 and

ρ̃0 is the density of the salted water.

Initially, ũ and Ã are zero everywhere in the aqueous solution, except at the interface

where, due to local equilibrium with the gaseous phase, Ã is fixed by Henry’s law mA =

pCO2/HCO2 . Here, mA is the solubility of CO2 expressed in molality (mol/kg), HCO2 is

Henry’s constant and pCO2 is the partial pressure of gaseous CO2, assumed to be maintained

constant. Henry’s constant depends on temperature and salt concentration as detailed in

Appendix A (Eq. (A6)). As the interface is supposed to remain fixed, we impose ṽ = 0 at

z̃ = 0. At z̃ →∞, we impose ṽ and Ã→ 0 as boundary conditions.

We nondimensionalise the variables as A = Ã/A0, z = z̃/lc, t = t̃/tc, u = ũ/uc, ρ = ρ̃−ρ̃0
∆ρ

,

where ∆ρ = ρ̃(z̃ = 0)−ρ̃0 = ρw αAA0 is the density difference between the solution saturated

with CO2 and the initial solution with no CO2. The ambient pressure p̃a and the hydrostatic

pressure ρ̃0 g z̃ are used to define a dimensionless dynamic pressure p = p̃−p̃a−ρ̃0 g z̃
pc

. We choose

the hydrodynamic velocity, time, pressure and length scales, given by

pc =
µD φ

κ
, uc =

∆ρ g κ

µ
, tc =

φ2D

u2
c

, lc =
φD

uc
. (2)

As the flow is incompressible, the streamfunction Ψ formulation is employed for conve-
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nience. Using u = −Ψz and v = Ψy gives the parameter-free dimensionless model

∇2Ψ = Ay, (3a)

At −Ψz Ay + Ψy Az = ∇2A, (3b)

ρ = A, (3c)

with ∇2 = ∂2

∂y2
+ ∂2

∂z2
and subscripts denote derivative as for instance fx = ∂f

∂x
. The boundary

conditions read

z = 0 : A = 1, Ψ = 0; (4a)

z →∞ : A→ 0, Ψ→ 0, (4b)

while the initial conditions are

A(z = 0) = 1, A(z > 0) = 0; (5a)

Ψ = 0. (5b)

III. LINEAR STABILITY ANALYSIS (LSA)

On the basis of Eqs. (3a)-(3b), a LSA can be performed to obtain dispersion curves giving

the growth rate of the perturbations as a function of the wavenumber. In our case, the LSA

is performed using a Quasi-Steady State Approximation, assuming that the diffusive base

state does not change significantly on the typical time of growth of the perturbation19. We

note that other LSA methods20 can be used as well to provide theoretical predictions. The

next step is to switch from these dimensionless predictions towards dimensional results to

be compared to experiments. Our methodology for this step is independent of the chosen

method of LSA.

In the absence of any flow (Ψ = 0), the analytical time-dependent concentration base

state As, solution of Eq. (3b) in a semi-infinite system (i.e. with boundary conditions (4))

reads:

As(z, t) = 1− erf

(
z

2
√

t

)
. (6)

Figure 2 shows that, as ρs(z, t) = As(z, t), dissolved CO2 increases the density of the aqueous

solution, creating a denser layer above pure salted water, the extent of which increases with
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FIG. 2. (Color online) Diffusive concentration profiles of CO2 given by Eq.(6) or density profiles

at increasing times from top to bottom. The two times written in bold are the onset time t0 and

the characteristic time t∗ defined in sections IV B and IV C.

time. Beyond a certain time, the denser layer is large enough to trigger a buoyancy-driven

instability.

The LSA consists in adding perturbations of ampitude a or ψ to the base state solution

at a frozen time tf , characterized by the concentration profile (6) and Ψs = 0 as (A,Ψ) =

(As, 0)(z, tf ) + (a, ik−1ψ)(z) exp (σ t+ i k y), where i2 = −1, k is the wavenumber of the

perturbation and σ its growth rate21. The linearised evolution equations for the disturbances

a and ψ are thus

ψzz − k2ψ = k2a, (7a)

σa− ψAsz = azz − k2a, (7b)

The boundary conditions for the disturbances are

z = 0 : a = 0, ψ = 0, (8a)

z →∞ : a→ 0, ψ → 0. (8b)

We solve Eq.(7) with boundary conditions (8) numerically on a discrete set of points, with

the second-order derivatives approximated by finite differences21,22. We check the accuracy
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of our numerical scheme by varying the domain size and refining the mesh. The domain

size L is taken large enough to effectively replace condition (8b) by a = 0, ψ = 0 at z = L.

Typical values for L and the mesh size to achieve an accuracy of 0.1% in the computation

of the maximum growth rates are 500 and 0.20, respectively. We note that for growth rates

corresponding to small wavenumbers (typically smaller that 0.005), L must be at least four

times larger to reach sufficient convergence. We also check that the numerical dispersion

curve of the initial condition (5) converged to the analytical dispersion curve23 σ = −k2

and that the numerical dispersion curve of a step function converged to the one predicted

analytically24.

IV. CHARACTERISTICS OF THE INSTABILITY

A. Dimensionless universal dispersion curve

Figure 3 shows dimensionless dispersion curves computed numerically for the base state

profiles (6). For small values of t, all growth rates are negative, which means that the system

remains stable. This is coherent with the fact that, initially, CO2 diffuses without convection

as observed experimentally1,6,7. After some time, however, CO2 accumulates in the aqueous

layer and increases the unfavorable density stratification in the gravity field. A band of

wavenumbers have their associated growth rate that becomes positive, which is the sign of

instability as the related perturbations are then growing exponentially in time. The time

when the maximum growth rate of the dispersion curve, σm, becomes positive, is defined

as the onset time t0. Figure 4(a) shows that the maximum growth rate of the dispersion

curve, σm, increases in time up to a maximum value and then decreases. This decrease is

related to a weakening of the unstable density gradient by diffusion as time goes by. The

wavenumber km associated to the maximum growth rate also varies non monotonically as a

function of time as shown in figure 4(b).

B. Onset time t0 and wavenumber k0
m

Most previous papers devoted to a LSA of CO2 dissolving into water have characterized

the buoyancy-driven instability by the onset time t0 at which σm = 0, beyond which the

system thus becomes unstable, and by the related onset wavenumber k0
m. In our case, the

9



0.00 0.02 0.04 0.06 0.08 0.10 0.12

−0.006

−0.004

−0.002

0.000

0.002

0.004

σ k
t = 30

t = 55.55 ≈ t0

t = 100

t = 252.86 ≈ t∗

t = 500

t = 1000

FIG. 3. (Color online) Dimensionless dispersion curves characterizing the stability of the diffusive

profiles given by Eq.(6) at various times.
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FIG. 4. (a) Maximum growth rate σm of the dispersion curves of figure 3, as a function of time.

(b) Wavenumber km associated to σm, as a function of time.
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onset characteristics are

σ0
m = (0.000± 0.004)× 10−3, t0 = 55.59± 0.07, (9a)

k0
m = (5.83± 0.01)× 10−2, λ0

m = 2π/k0
m = 107.7± 0.2. (9b)

These onset time and wavenumber are in good agreement with those found in several

previous theoretical studies25–31. Additionally, these onset characteristics are close to those

evaluated experimentally in systems analogous to the CO2/water system9,11. Backhaus,

Turitsyn, and Ecke 11 also measured the ratio between the vertical length of the fingers and

their wavelength at the onset of the instability. To evaluate this ratio here, we suppose

the concentration profile at the onset of the instability is still close to the analytical profile

(6). We use that profile (6) to define the length of the fingers as the length over which the

dimensionless diffusive CO2 concentration is larger or equal to 0.01. We found a ratio, 0.25,

in good agreement with the experimental values reported to be between 0.22 and 0.2711 and

with the value we extract from Ref.32.

C. Characteristic growth rate σ∗

The onset time t0 (and the related wavenumber k0
m) of the instability are difficult to

determine experimentally as perturbations are then so small that the dynamics remains

mainly diffusive. To compare LSA results to experimental measurements in the linear regime

as done by various authors1,33,34, it is of interest to predict a characteristic growth rate σ∗

of the instability quantifying the rate at which fingers grow out of the diffusive base profile

once the system is unstable.

Following Trevelyan et al.21, we compute the growth rate σ∗
m as the one for which σ∗

m t
∗ = 1

such that the amplification factor exp(σ∗
m t

∗) of the perturbation at t∗ is of order unity. For

this definition, we find the following characteristic values:

σ∗
m = (3.96± 0.02)× 10−3 , t∗ = 252± 2 (10a)

k∗m = (6.192± 0.009)× 10−2 , λ∗m = 2π/k∗m = 101.5± 0.1. (10b)

The growth rate σ∗
m is of the same order of magnitude as that we estimate from figure 6 of

Riaz et al.32 and as those estimated by Slim et al.9 and Elenius et al.35.
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FIG. 5. a(z) and ψ(z), amplitude of the perturbations of the concentration and the streamfunction,

at the characteristic time t∗ and wavenumber k∗m, along with the base state density profile ρs(z, t∗).

Figure 5 shows that, at this time t∗, the convective rolls have their largest amplitude

at a given distance below the gas-liquid interface, in good agreement with experimental

observations1,6,7,9.

D. Dimensional scales

Most LSAs stop at this stage and refrain from direct comparison with laboratory-scale

experiments. This comparison is indeed not trivial to perform as results (10) are free of any

experimental parameter and need to be dimensionalised back as:

σ̃∗ = σ∗/tc; λ̃∗ = λ∗ lc, (11)

where the characteristic scales

lc =
Dµφ

∆ρ g κ
; tc =

l2c
D

(12)

are specific to each experiment. We insist on the fact that these scales are independent of

the length of the experimental set-up, and are intrinsic to the porous medium (porosity φ,

permeability κ), to the liquid at hand (viscosity µ) and to the properties of CO2 dissolved
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in the solvent (diffusion coefficient D and difference of density ∆ρ). We thus see that the

parameters that are typically varied in laboratory-scale experiments such as the pressure

pCO2 of CO2, the salt concentration B0, and the temperature T do not appear explicitly in

(12). Their effect on the spatial and time scales - and thus on the characteristic growth rate

and wavelength of the fingering pattern - is implicit and not trivial to characterize. Our goal

here is to show how to estimate these characteristics as a function of the control parameters

to allow a direct comparison between theoretical predictions and experiments.

The various parameters involved in the characteristic scales (12) implicitly depend on B0,

T , and pCO2 . We review these dependences below. The first two characteristics - porosity and

permeability - depend only on the nature of the porous medium and are constant for a given

experimental set-up. The viscosity µ of the aqueous solution and the diffusion coefficient

D on the other hand both depend on B0 and T , but not on pCO2 as explained in section

II. Increasing B0 hinders CO2 transport (as this increases µ and decreases D) because of

the interactions of the solvent with the salt ions. Increasing T on the contrary improves the

transport (decreases µ and increases D) because it increases the thermal molecular motion.

Eventually, the implicit dependence of ∆ρ on B0 and T is even more tricky as these

parameters affect the solubility A0 of CO2, the density ρw of water and the solutal expansion

coefficient αA of CO2 which all come into play in ∆ρ. ρw depends on temperature (see Eq.

(A8)) and does not vary significantly with pressure over the range of pressures studied here36

(1-5 atm). αA is also assumed to depend only on temperature37. A0, however, depends on

CO2 pressure, salt concentration and temperature. Indeed, all three parameters influence

the equilibrium between the gaseous CO2 and the dissolved CO2.

We propose in Appendix A correlations to compute all implicit dependences of µ, D,

and ∆ρ on B0 and T to compare our theoretical predictions with results obtained from

experiments in Hele-Shaw cells1,6,7. On the basis of these correlations, we discuss now the

explicit influence of CO2 pressure, salt concentration and temperature on the development

of the buoyancy-driven instability.
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FIG. 6. Characteristic dimensional (a) growth rate σ̃∗m in s−1, and (b) wavelength λ̃∗m in mm as a

function of pCO2 , the pressure of CO2 in atm, at T = 26oC for various concentrations B0 of NaCl.

V. INFLUENCE OF EXPERIMENTAL PARAMETERS ON THE

CHARACTERISTICS OF THE INSTABILITY

A. Pressure of CO2

Inspired by recent experiments1, we vary the pressure of CO2, pCO2 , between 1 and 5 atm

for various salt concentrations B0, while the temperature T is kept constant at 26oC. The

salt chosen here is pure NaCl.

Figure 6 shows that the growth rate σ̃∗
m increases and the wavelength λ̃∗m decreases (i.e.

k∗m increases) with pCO2 . The system becomes thus more unstable when CO2 pressure

is increased. This can be related to the increase of the solubility of CO2, A0, which is

proportional to the pressure of CO2 (see section II). Consequently, the unfavorable density

gradient responsible for the onset of the instability increases, as can be seen in figure 7.

Figure 7 also shows that a density difference ∆ρ = ρ̃(z̃ = 0)− ρ̃0 as small as 0.3 g/L can be

large enough to trigger the instability.
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FIG. 7. Density profiles ρ̃ − ρ̃0 in g/L computed from Eq. (6) for B0 = 0 mol/L, T = 26oC,

and various pressures pCO2 of CO2, at the same dimensionless characteristic time t∗ (Eq. (10a))

corresponding to different dimensional times t̃∗.

B. NaCl concentration

The amount of NaCl dissolved in the water, B0, impacts several physico-chemical charac-

teristics defining the length and time scales needed to redimensionalise our predictions (see

explicit formulas in Appendices A and B). These characteristics are the diffusion coefficient

D of CO2, the viscosity µ of the solution, and the solubility A0 of CO2 needed to compute

∆ρ. The global effect of B0 on the length and time scales is therefore not intuitive to pre-

dict. We thus vary B0 between 0 mol/L and 5 mol/L for various pressures of CO2 while the

temperature T is kept constant at 26oC.

Figure 8 shows that the growth rate σ̃∗
m decreases while the wavelength λ̃∗m increases

slightly (i.e. k∗m decreases) with B0. Increasing the concentration of NaCl thus stabilizes

the system with regard to buoyancy-driven convection. We explain this stabilization by the

effect of B0 on µ and A0 being larger than the effect of B0 on D. The decrease of D with

B0 tends to destabilize the system as diffusion smoothes the unstable concentration profile.

On the contrary, the increase of µ with B0 stabilizes the system because viscosity hinders

the transport of flow. Figure 9 shows that the decrease of the solubility A0 of CO2 with

the concentration B0 of salt (see Eq. (A5)-(A6)) decreases the density difference ∆ρ at the
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FIG. 8. Characteristic dimensional (a) growth rate σ̃∗m in s−1 and (b) wavelength λ̃∗m in mm as
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0 1 2 3 4 5

B0 (mol/L)

0.05

0.10

0.15

0.20

0.25

0.30

∆
ρ
(g
/L
)

FIG. 9. Difference of density between the solution saturated with CO2 and the initial solution with

no CO2 as a function of the concentration of NaCl, B0 in mol/L, for pCO2 = 1 atm and T = 26oC.

origin of the instability and thus also stabilizes the system.
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FIG. 10. Characteristic dimensional (a) growth rate σ̃∗m in s−1 and (b) wavelength λ̃∗m in mm as a

function of temperature T , at pCO2 = 1 atm for various concentrations of NaCl, B0 in mol/L.

C. Temperature

The temperature T of the system impacts even more physico-chemical characteristics

than the salinity. It influences not only D, µ, and A0, but also the density of water ρw and

the solutal expansion coefficient of CO2, αA. The impact of T on the instability is thus

clearly not intuitive. To explicit it, we vary the temperature from 10 to 27 oC for various

concentrations of NaCl at pCO2 = 1 atm and for various pressures of CO2 at B0 = 0 mol/L.

As we could not find any empirical correlation for D that takes simultaneously into account

T and B0, we choose low concentrations of NaCl to assume that D and µ are the same as

in pure water.

Figure 10 shows that increasing the temperature stabilizes the system as σ̃∗
m decreases

and λ̃∗m increases. The stabilization of the system with temperature can be explained by the

effect of T on D, ρw and A0 being larger than that on µ and αA. In particular, figure 12

shows that although αA increases with T , the global effect of increasing temperature is to

reduce the density difference ∆ρ.

We note, however, that changes in the absolute values are much smaller than those

induced by a change of pressure (Fig.6) or salinity (Fig.8) and are in the range of typical
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FIG. 11. Characteristic dimensional (a) growth rate σ̃∗m in s−1 and (b) wavelength λ̃∗m in mm as a

function of temperature T , at B0 = 0 mol/L for various pressures of CO2, pCO2 in atm.
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FIG. 12. Difference of density between the solution saturated with CO2 and the initial solution

with no CO2 as a function of temperature T , for pCO2 = 1 atm and B0 = 0 mol/L.

experimental errors. This is rather counter-intuitive since the temperature affects most of

the physical quantities of the problem. As an example, at B0 = 0 mol/L and pCO2 = 1 atm,

between 20oC and 25oC, which correspond to two different typical room temperatures, the

wavelength varies between 2.5 and 2.8 mm only. Provided that the whole set-up is at the
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same room temperature, it seems therefore not crucial to control the temperature of the

set-up with a thermostat if the temperature changes by only a few degrees. Figure 11 shows

that these trends hold for different pressures of CO2 as well.

D. Comparison with experiments

Only few laboratory-scale experiments have characterized the convective dissolution of

CO2 in salted water. Farajzadeh et al. 2 showed that the rate of the mass transfer of CO2 to

an aqueous solution is larger than that predicted in a purely diffusive case. This confirms

that the buoyancy-driven convection developing upon CO2 dissolution plays an important

role in the transport of dissolved CO2. They also evaluated the effect of the pressure of CO2,

of the presence of a salt (NaCl) and of the concentration of a surfactant on the transfer rate

of CO2. This transfer rate increases with pCO2 and decreases when NaCl is added. We

explain this result with the fact that the growth rate of the instability increases with pCO2

(Fig.6a) and decreases with the concentration of NaCl (Fig.8a). As convection transports

CO2 away from the interface more efficiently, any parameter that increases the growth rate

of the convective instability will increase the transfer rate of CO2 to the aqueous solution.

Other studies have explicitly measured the wavelength and/or the growth rate character-

izing the buoyancy-driven instability in the CO2/water system. Outeda et al. 1 showed that

the growth rate of the instability increases with the pressure of CO2, which is coherent with

our predictions. From a quantitative point of view, this increase is slower than predicted.

For example, for T = 20oC, pCO2 = 2 atm, and a gap width of 1 mm, Outeda et al. 1 mea-

sured a growth rate of 0.17 s−1, while we predict σ̃∗
m = 0.63 s−1. However, if we account for

an experimental error of 10 % in the gap width, our predicted σ̃∗
m can be reduced to 0.41

s−1. We also note that Darcy’s law might be overestimating the growth rate for such a large

gap38. In a similar system, at T = 22oC, pCO2 = 1 atm, and κ = 4.08× 10−8 m2, Kneafsey

and Pruess 6 measured a wavelength of 10 mm when they first saw fingers, while we predict

that λ̃∗m is 1.4 mm but can be as large as 1.7 mm if we account for an experimental error of

10% in the gap width.

Even if our theoretical predictions allow to interpret the trends observed experimentally1,2,

we note that the exact quantitative comparison faces two problems. First, as pointed out by

Riaz et al.32, it is unclear at what time exactly buoyancy-driven fingering becomes observable
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in the experiment. We evaluate indeed a characteristic time t̃∗m of 71 s for the experiment

of Kneafsey and Pruess 6 , which is smaller than the time where they first observed fingers,

i.e. 180 s. Similarly, in the experiment of Outeda et al. 1 at pCO2 = 1.5 atm, fingers are

first observed at 60 s, while we predict that t̃∗m is 2.8 s only. Since the instability could have

started before the first fingers are observed, we suggest, in further experiments, to mea-

sure the growth rate of the instability by quantifying the difference between the measured

concentration profile and the predicted diffusive one9.

Second, the time at which fingers are observed experimentally depends on the visualiza-

tion technique used. All experiments cited here use a pH indicator to visualize the dynamics

of dissolved CO2
1,6,7. In that case, the change of color is related to a given pH threshold,

which does not necessarily follow the contour of the finger. In addition, instead of being

a mere visualization mean, a pH indicator can have a dramatic effect on hydrodynamic

instabilities as its presence can affect the density profile39,40. This is indeed likely in the

CO2 experiments1,6,7 as Outeda et al.1 reported that varying the concentration of the pH

indicator affects the growth rate of the instability. We therefore suggest that future experi-

ments devoted to benchmark theoretical predictions should be done without the use of pH

indicators41.

VI. CONCLUSION

In the context of CO2 sequestration, experimental studies of dissolution-driven convective

instabilities in Hele-Shaw cells have regained interest. Indeed, convection enhances the mass

transfer of CO2 in the aqueous solution, thereby improving the safety of the sequestration.

The benchmarking of theoretical predictions remains, however, difficult because of the use

of dimensionless parameter-free models. Using a linear stability analysis, we have thus

predicted the explicit effect of experimental control parameters on the buoyancy-driven

instability that develops when CO2 dissolves at the top of an aqueous solution. To do so,

we have dimensionalized the theoretical LSA predictions, by using the dependence of time

and length scales of the problem on CO2 pressure, salt concentration and temperature. We

note that the procedure used here can easily be applied to dimensionalize back other results

obtained with different theoretical methods.

We have studied the influence of experimental parameters on the short-time characteris-
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tics of the instability: the onset time t̃0 and wavenumber k̃0
m, and the characteristic growth

rate σ̃∗
m and wavenumber k̃∗m. We have explained the destabilizing effect of CO2 pressure

by its impact on the solubility of CO2 in the aqueous solution. By contrast, the stabilizing

effect of salt concentration or temperature on the instability is less intuitive as both param-

eters implicitly impact several physical quantities appearing in the time and length scales.

These predicted effects are coherent with experimental trends1,2. We also show that the

characteristics of the instability are not much sensitive to changes of room temperature by

a few degrees, so that experimental results should be robust without a need to place the

set-up in a thermostat.

Our study paves the way to future benchmarking of theoretical predictions with laboratory-

scale experiments. Our model could easily be applied to study the influence of other dissolved

salts than NaCl as encountered in geological systems. It could also be developed to take

into account the non ideality of the solutions, as most certainly is the case in sequestration

sites, where pressure and temperature are higher. A study of the effect of chemical reactions

on the convection has been undertaken.
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Appendix A: Empirical correlations for physical properties

We describe here the correlations used to compute the length and time scales, lc and

tc respectively, needed to dimensionalise back the theoretical predictions and give some

realistic values for experiments in Hele-Shaw cells conducted at low pressures of CO2 and

room temperature. As lc = Dµφ/∆ρ g κ and tc = l2c/D , we need to evaluate the porosity φ,

the permeability κ, the dynamic viscosity µ and the molecular diffusion coefficient D of CO2

in water. The gap width of the Hele-Shaw cell b, the temperature T , the concentration of

the salt dissolved in water B0, and the pressure pCO2 of CO2 are given by the experimental
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conditions.

In a Hele-Shaw cell, the porosity φ is equal to one. The permeability, κ = b2/12, is

evaluated as 2.08 ×10−8 m2 for a cell of thickness b = 0.5 mm. The gravity acceleration is

cos(β) 9.81 m/s2 where β is the angle between the vertical and the orientation of the cell.

To compute the dynamic viscosity µ of the solution in mPa.s for a given salt concentration

and temperature, we use the empirical expression42:

µ = µwww

n∏
i=1

µwii , (A1)

where ww is the mass fraction of water in the solution, wi is the mass fraction of the solute i

in the solution computed from the concentration with Eq. (B3), and n is the total number

of solutes dissolved in water. µw is the viscosity of water and µi is the contribution of the

solute i to the viscosity. µw in mPa.s is computed as a function of the temperature T in oC

with the empirical expression42:

µw =
T + a3

a2 T 2 + a1 T + a0

, (A2)

with a3 = 246 oC, a2 = 0.05594 oC−1 mPa−1 s−1, a1 = 5.2842 mPa−1 s−1 and a0 = 137.37

oC mPa−1 s−1. For example, using formula (A2), we find that the viscosity of water is 1.002

mPa.s at 20 oC. µi is computed from Ref.42 as:

µi =
exp

(
ν1 (1−ww)ν2+ν3

ν4 T+1

)
ν5 (1− ww)ν6 + 1

. (A3)

For NaCl, ν1 = 16.222, ν2 = 1.3229, ν3 = 1.4849, ν4 = 0.0074691 oC−1, ν5 = 30.78, and ν6

= 2.0583.

We have not found an empirical correlation taking simultaneously into account the depen-

dence of the diffusion coefficient of CO2 on temperature and salt concentration. Therefore,

we use two different exponential correlations of the type

D = a exp(bX). (A4)

The dependence of D on temperature T is computed by a regression of experimental data

giving the diffusion coefficient of CO2 in pure water as a function of T 36. In this case, a =

9.6861 ×10−10 m2/s, b = 0.02691 oC−1, and X = T in oC.

The dependence of D on the concentration of NaCl, B0 in mol/L, follows the empirical

correlation (A4) at 26oC with a = 1.75 ×10−9 m/s2, b = -0.229 (mol/L)−1, and X = B0 in

mol/L15.
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We note that we can use both empirical regressions (A4) to calculate the diffusion coef-

ficient of CO2 at T = 26oC and B0 = 0 mol/L. The obtained values differ by about 10%

probably because of uncertainties in the different methods of measurement of both studies.

To compute the difference in density ∆ρ between the pure aqueous solution and the

aqueous solution saturated with CO2, we need to know the solubility of CO2, the density of

the aqueous solution and the solutal expansion coefficient of CO2.

First, the solubility of CO2 in the aqueous solution is computed using Henry’s law

mA = pCO2/HCO2 , (A5)

where mA is the molality of CO2 in the liquid phase, pCO2 is the partial pressure of CO2 in the

gas phase, and HCO2 is Henry’s constant. This expression is valid for the ranges of pressure,

temperature and salt concentration that we are studying43. We used the following empirical

correlation for the dependence of the dimensionless Henry’s constant ĤCO2 = HCO2/ (106

Pa kg/mol) on the temperature and the composition in salt:

ln ĤCO2 = (192.876 + 0.024125 m̂B − 0.00752 m̂2
B)

+(−9624.4 + 0.000199 m̂B)/T̂

+(0.01441− 0.002111 m̂B) T̂

+(−28.749 + 0.1446 m̂B) ln T̂ , (A6)

with the dimensionless temperature T̂ = T / (1 K), with T in Kelvin, and the dimensionless

molality of NaCl m̂B = mB / (1 mol/kg). We use expression (B4) to compute mB from

B0, the concentration of NaCl. Henry’s constant increases with temperature and with the

concentration of NaCl, meaning that the solubility of CO2 decreases with temperature and

the concentration of NaCl. Increasing the temperature displaces the equilibrium towards the

gas phase while increasing the concentration of NaCl induces a “salting-out” effect probably

due to electrostatic interactions.

Second, ρ, the density of the aqueous solution in kg/m3, is computed from the mass

fraction of solute i, wi, as44

ρ =
1

1
ρw

+
n∑
i=1

(
Vi − 1

ρw

)
wi
, (A7)

with ρw the density of water in kg/m3 and Vi the specific apparent volume of the solute

i in m3/kg. ρw is calculated as a function of the temperature T in oC with the empirical
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regression44:

ρw =
b5 T

5 + b4 T
4 + b3 T

3 + b2 T
2 + b1 T + b0

1 + b6 T
, (A8)

where b5 = - 2.8054253 ×10−10 oC−5 kg/m3, b4 = 1.0556302 ×10−7 oC−4 kg/m3, b3 =

- 4.6170461 ×10−5 oC−3 kg/m3, b2 = - 0.0079870401 oC−2 kg/m3, b1 = 16.945176 oC−1

kg/m3, b0 = 999.83952 kg/m3, b6 = 0.01687985 oC−1. Vi reads44

Vi =
wi + c2 + c3 T

(c0wi + c1) exp (c5(T + c4)2)
. (A9)

For NaCl, c2 = 1.01660, c3 = 0.014624 oC−1, c0 = -0.00433 kg/m3, c1 = 0.06471 kg/m3, c5

= 10−6 oC−2 and c4 = 3315.6 oC. To compute the specific apparent volume of CO2, we used

the empirical correlation adapted from Ref.37:

VA = (d0 + d1 T + d2 T
2 + d3 T

3)/MCO2 , (A10)

where MCO2 is the molar mass of CO2 = 0.04401 kg/mol, d0 = 37.51 ×10−6 m3/mol, d1

= -9.585 ×10−8 m3/mol oC−1, d2 = 8.740 ×10−10 m3/mol oC−2, and d3 = -5.044 ×10−13

m3/mol oC−3.

Third, the solutal expansion coefficient of CO2, αA in m3/mol, is computed as

αA =
MCO2

ρw
−MCO2 VA. (A11)

For example, for the following set of parameters: b = 0.50 mm, φ = 1.00, pressure of

CO2 = 1.00 atm, concentration of NaCl = 0 mol/L, temperature = 26.0 oC, we have the

following length and time scales : lc=2.95 ×10−5 m and tc=4.47 ×10−1 s, respectively.

Appendix B: Expressions for the quantity of a solute in a solvent

In this section, we explain how to convert different types of expressions for the quantity

of a solute i in a solvent containing n different solutes: the molality mi, the mass fraction

wi, the molarity Ci and the mole fraction xi. Mi is the molar mass of the solute i in kg/mol.

1. Expressing the composition knowing the molality

The mass fraction wi is computed from the molality mi by using

wi =
miMi

1 +
n∑
j=1

mjMj

. (B1)
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The molarity Ci is computed from the molality mi by using

Ci = ρ
mi

1 +
n∑
j=1

mjMj

, (B2)

where ρ is the density of the solution calculated with expression (A7) from the mass fraction

wi, computed with expression (B1) from the molality mi. As most experiments use mol/L

as units, Eq.(B2) is used to convert mA in mol/kg into A0 in mol/L.

2. Expressing the composition knowing the molarity

The mass fraction wi is computed from the molarity Ci by using

wi =
CiMi

ρ
(B3)

The molality mi is computed from the molarity Ci as

mi =
Ci

ρ−
n∑
j=1

CjMj

. (B4)

To use all these expressions, the density of the solution must be known as a function of

molarity. For a solution with one single solute i, we insert expressions (B3) and (A9) in

(A7) to have the following equation for ρ(Ci):

P ρ2 +Qρ+R = 0 , (B5)

where

P = c1 e,

Q = MiCi [(c0 − c1) e+ ρw (c2 + c3 T )]− ρwc1e,

R = (MiCi)
2 (ρw − c0e)−MiCiρwc1e. (B6)

The constants c0 to c4 are defined as in (A9), e is exp(c5(T + c4)2), Mi is the molar mass of

the solute i in kg/mol, and ρw is the density of the pure solvent in kg/m3.
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