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Abstract. The open issues in the development of models for the breakup of exotic

nuclei and the link with the extraction of structure information from experimental

data are reviewed. The question of the improvement of the description of exotic

nuclei within reaction models is approached in the perspective of previous analyses

of the sensitivity of these models to that description. Future developments of reaction

models are suggested, such as the inclusion of various channels within one model. The

search for new reaction observables that can emphasise more details of exotic nuclear

structure is also proposed.
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1. Introduction

The development of radioactive-ion beams (RIB) in the mid-eighties has enabled the

exploration of the nuclear landscape away from stability. This technical breakthrough

has revealed the existence of unexpected exotic nuclear structures near the driplines

such as halo nuclei [1, 2] or shell inversions [3]. Halo nuclei are neutron-rich nuclei that

exhibit a significantly larger matter radius than their isobars. This exceptional size of

these nuclei is now understood as being due to their low binding energy for one or two

neutrons [4, 5]. Thanks to this lose binding, the valence neutrons can tunnel far away

from the other nucleons and exhibit a high probability of presence in the classically

forbidden region [6]. They thus form a sort of halo around the core, which exhibits

the same characteristics (size, density. . . ) as stable nuclei. Proton haloes are also

possible, though less probable due to the presence of a Coulomb barrier, which hinders

the formation of a long tail in the nuclear density.

Being located away from stability halo nuclei cannot be studied through usual

spectroscopic techniques and one must rely on indirect methods such as nuclear reactions

to infer information about their exotic structure. The best known reactions used to probe

the nuclear structure far from stability are elastic scattering [7], breakup [8], knockout
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[9] and transfer [10]. The breakup reaction is particularly well suited to study loosely-

bound systems, such as halo nuclei. In that reaction, the nucleus under study is sent on a

target and events are studied, in which the projectile breaks up into its constituents, e.g.

the halo neutrons and the core, hence revealing its structure. Because all final fragments

are detected in coincidence, one often speaks about elastic or diffractive breakup.

To infer valuable nuclear-structure information from reaction data, an accurate

reaction model coupled to a realistic description of the projectile is needed. Various

such models have been developed: the coupled-channel technique with a discretised

continuum (CDCC) [11, 12, 13], the time-dependent model (TD) [14, 15, 16, 17, 18],

and models based upon the eikonal approximation [19], such as the eikonal-CDCC (E-

CDCC) [20], the dynamical eikonal approximation (DEA) [21] or the Coulomb-corrected

eikonal model (CCE) [22, 23, 24] (see Ref. [25] for a recent review). The goal of this

contribution is to present the various issues that need to be addressed in order to better

extract structure information from breakup reactions. After a brief reminder of the

theoretical framework, the major issue of the improvement of the projectile description

in existing reaction models is presented in Sec. 3. Then, ideas to extend the validity range

and/or reduce the computation cost of existing models are listed in Sec. 4. In Sec. 5,

the development of new reaction observables that are more sensitive to the projectile

structure is suggested. The example of the recent ratio method [26] is discussed. An

outlook is proposed in Sec. 6.

2. Theoretical framework

The theoretical description of reactions involving loosely-bound nuclei is usually

expressed in the following few-body framework. The projectile P , i.e. the nucleus under

study, is described as a two- or three-body system: an inert core c to which one or

two valence particles, denoted as the fragment(s) f , are loosely bound. For a two-body

projectile, e.g. a one-neutron halo nucleus, the internal structure is described by the

Hamiltonian

H0 = − h̄2

2µ
∆r + Vcf (r), (1)

where µ is the c-f reduced mass and r is the relative coordinate of the fragment to the

core (see Fig. 1). The parameters of the phenomenological potential Vcf are adjusted

to physical data: the binding energy of the system, the energy of excited states, which

may be bound or correspond to resonances in the c-f continuum, the spin and parity of

these states etc. The eigenstates Φ of Hamiltonian H0 describe the c-f relative motion.

The negative-energy states correspond to the bound states of the system, while the

positive-energy states simulate the c-f continuum.

In most reaction models, the target is seen as a structureless particle, which interacts

with the projectile constituents through optical potentials chosen in the literature: UcT

and UfT . Within this framework, studying the P -T collision reduces to solving the
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Figure 1. Jacobi set of coordinates used to describe the collision of a two-body

projectile P on a target T . The components of the P -T relative coordinate R

longitudinal Z and transverse b to the beam axis are displayed.

three-body Schrödinger equation[
− h̄2

2µPT

∆R +H0 + UcT (RcT ) + UfT (RfT )

]
Ψ(R, r) = EΨ(R, r), (2)

with µPT the P -T reduced mass and E the total energy in the P -T centre-of-mass

restframe. Eq. (2) must be solved with the boundary condition that the projectile is

impinging on the target in its ground state Φ0:

Ψ(R, r) −→
R→∞

eiK0ZΦ0(r) + outgoing waves, (3)

where K0 is the wave number of the initial P -T relative motion. It is related to the total

energy E and the energy ε0 of the initial bound state following E = h̄2K2
0/2µPT + ε0.

The outgoing waves describe the scattering of the projectile by the target in any of the

eigenstates Φ of the Hamiltonian H0 (1). This includes elastic scattering if Φ = Φ0,

inelastic scattering if Φ is another bound state of H0, and breakup if Φ is a positive-

energy state of H0.

Although this equation could in principle be exactly solved within the Faddeev

technique, only a few cases can actually be handled by this method. Due to a divergence

problem induced by the P -T Coulomb interaction, only (very) light targets can be

considered up to now [27, 28]. In most cases, approximations must be performed to

solve Eq. (2). Various models have been developed to do so. Below the models mostly

used for the analysis of experimental data are briefly presented. The interested reader

is referred to Ref. [25] for more details.

In the continuum discretised coupled channel model (CDCC), the wave function

Ψ is expanded over the eigenstates Φ of the projectile Hamiltonian H0. This method

leads to a set of coupled equations [12]. The major approximation of CDCC lies in the

truncation of the set of Φ used to compute the wave function Ψ (see Refs. [29, 30, 31]

for more details on the theoretical foundations of CDCC). Since no assumption is made

on the projectile-target relative motion CDCC is valid on the whole beam-energy range.

However, to reach convergence, CDCC requires a rather large model space, which can

be computationally challenging, especially at large energy [32, 33]. This hinders the

extension of the CDCC framework to descriptions of the projectile beyond the simple
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two-body model mentioned above (see Sec. 3). Since the channel of interest corresponds

to the dissociation of the halo from the core, the projectile continuum must be included

in this expansion in a tractable way. One then uses a set of square-integrable states

that simulate the continuum. Usually, these states are obtained by the binning (or

average) technique, in which exact continuum states are averaged over small intervals

of continuum energies, or bins [12]. Pseudostates obtained by diagonalising H0 within

a finite basis of square-integrable functions such as Gaussians [34], by transformation of

a harmonic-oscillator basis (THO) [35] or within the R-matrix technique [36] can also

be used.

Other models make assumptions on the projectile-target relative motion. This

greatly simplifies the calculations but limits the models in energy range and/or breakup

observables that can be reliably described. The time-dependent model (TD) relies

on the semiclassical approximation in which the projectile-target relative motion is

described by a classical trajectory [37]. Along that trajectory, the projectile feels a time-

dependent potential that simulates its interaction with the target. This approximation

leads to the resolution of a time-dependent Schrödinger equation. Various algorithms

have been developed to solve numerically this time-dependent equation for two-body

projectiles [14, 15, 16, 17, 18]. Thanks to this simplification in the treatment of the P -T

relative motion, the computational effort of the TD technique is much lower than that

of CDCC. However, relying on the semiclassical approximation, quantal effects, such as

interferences observed in angular distributions, cannot be reproduced [32].

At sufficiently high energy, the eikonal approximation can be used to describe

nuclear reactions [19]. In that approximation the P -T relative motion is supposed

not to vary much from the incoming plane wave (3). The idea is thus to factorise that

plane wave out of the wave function Ψ and consider what remains as smoothly varying

with R, hence simplifying the Schrödinger equation (2). Both the eikonal CDCC (E-

CDCC) [20] and the dynamical eikonal approximation (DEA) [21] make use of that

idea. In the former, the eikonal equation is solved by expanding the wave function Ψ on

the projectile eigenstates Φ, exactly as in CDCC. E-CDCC is nevertheless much more

computationally tractable thanks to the underlying eikonal approximation. In DEA,

the wave function is expanded over a three-dimensional mesh, which enables a faster

convergence than the continuum discretization [38]. Unlike the TD model, the eikonal

approximation is fully quantal and hence can reproduce the interferences in angular

distributions [39]. However being a high-energy approximation, it cannot be used to

analyse breakup observables at too low energy, e.g. from ISOL experiments. A recent

comparison between CDCC, TD and DEA details these differences [32].

The usual eikonal approximation assumes a subsequent adiabatic or sudden

approximation to the E-CDCC and DEA. This corresponds as seeing the projectile

to be frozen during its interaction with the target. While valid for the short-range

nuclear interaction, the sudden approximation is incompatible with the (infinite-range)

Coulomb force. The usual eikonal approximation hence diverges when applied to the

Coulomb breakup of loosely-bound nuclei [39]. To circumvent this problem, Margueron,
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Bonaccorso and Brink have introduced a first-order correction to the treatment of the

Coulomb interaction within the usual eikonal model [22]. This Coulomb-corrected

eikonal model (CCE), studied in Ref. [23], has been confronted to the DEA in Ref. [24].

The ability of the CCE to reproduce both Coulomb- and nuclear-dominated reactions

coupled to its computational simplicity make it ideal to extend reaction models to three-

body projectiles [40, 41] (see Sec. 3.3).

3. Projectile description

3.1. Microscopic description of the projectile

The major issue that should be addressed in future developments in breakup modelling is

that of the projectile description. As mentioned in Sec. 2, most current reaction models

treat the projectile as a simple two-body system: a valence particle loosely-bound to

an inert core. The analyses of reactions which aim at disentangling the various states

in which the core can be in the projectile ground state, or which probe more complex

projectile structures, such as two-nucleon halo nuclei, require a finer description of the

projectile than this simple single-particle structure.

The ultimate goal would be to combine a microscopic description of the projectile

within the CDCC reaction model. In this way, one would be able to study at all beam

energies the breakup of any kind of nucleus, naturally including all possible structure

channels. Although some efforts have already been made in this direction [42], they

remain limited to the elastic-scattering channel. Moreover it is not clear that such

a model is actually needed. Indeed, previous studies have shown that breakup, both

Coulomb and nuclear dominated, is a peripheral reaction in the sense that it probes

mostly the asymptotics of the projectile wave function, i.e. its asymptotic normalization

constant (ANC) [43]. Therefore, changes in the interior of the wave function, even

significant ones, do not seem to affect breakup observables [43]. It is therefore not clear

what a fully microscopic description of the projectile, very expensive in a computational

viewpoint, would bring to the analysis of breakup reactions. However, it has also

been shown that breakup reactions are sensitive to the description of the continuum of

projectile mostly through the phaseshifts [44]. A correct analysis of breakup reactions

hence requires a realistic description of the projectile continuum. As mentioned in Sec. 2,

the parameters of the core-fragment potential Vcf are adjusted to reproduce the binding

energy of the system and some of its low-lying states. However this is usually not

sufficient to constrain Vcf in all partial waves and in particular to fix their phaseshifts.

Moreover, little—if any—information about this continuum is known experimentally:

the core itself is usually radioactive and measuring neutron scattering off it is very

difficult—if not impossible. Being built on first principles, microscopic descriptions of

the projectile have more predictive power than phenomenological c-f potentials. They

could provide the missing inputs, like phaseshifts, to better constrain Vcf .

Various techniques could be used to deduce two-body potentials from microscopic
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models. One obvious way is to explore the parameter space to reproduce the phaseshifts

provided by the microscopic description of the nucleus. Another way is to build

Vcf in each partial wave directly from these phaseshifts. This can be easily done

using supersymmetric techniques [45]. The recent developments in halo effective-field

theories (EFT) [46, 47], open another way to constrain the c-f interaction. The various

parameters of this EFT can indeed be fitted to the microscopic-model predictions and

hence produce an effective interaction between the core and the fragment that can be

used in two-body breakup models.

This would provide a way to include the microscopic inputs that matter in usual

reaction models while keeping affordable computational times. Unfortunately not every

kind of reaction can be described in this manner. A simple two-body description of

the projectile is not sufficient to model the case in which there is a significant probably

to find the core in one of its excited states. The breakup of the projectile in three

clusters, also known as four-body breakup, can obviously not be reliably modelled using

a two-body description for the projectile. These two cases need special attention.

3.2. Core excitation

The inclusion of the core excitation within the projectile description has first been

implemented within the CDCC framework by Summers, Nunes and Thompson [48, 49].

The calculations performed within this eXtended CDCC model (XCDCC) for 11Be show

little effect of the core excitation on breakup cross sections compared to single-particle

calculations [48, 49, 50]. However, this seems contradicted by recent DWBA calculations

in which a projectile description including core excitation has been implemented

[51, 52, 53]. These calculations show significant effects of the core excitation in angular

distributions for resonant breakup, which cannot be reproduced with a single-particle

model. This is illustrated in the left panel of Fig. 2: the diffractive pattern of the

experimental breakup cross sections of 11Be on C at 67AMeV [8] cannot be reproduced

considering a single-particle model of the projectile (dashed line) [53]. The contribution

of the core excitation (dash-dotted line) and especially its interference with the single-

particle breakup plays a crucial role. This suggests that interesting information about

the projectile structure, and in particular its resonant continuum, can be inferred from

experimental data using such a model.

Nevertheless, higher-order effects, such as couplings within the projectile

continuum, which are neglected in the DWBA framework, may reduce these effects

as suggested by XCDCC calculations [49]. This seems to be confirmed within the new

formulation of XCDCC developed by de Diego et al [54]. These results also suggest that

the influence of core excitation upon breakup cross sections depends on the considered

observable: resonant breakup seems to be more affected than non-resonant breakup.

Further studies of this reaction mechanism will be needed to fully grasp the role played

by core excitation in reactions involving halo nuclei.
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Figure 2. Left: Study of the resonant breakup of 11Be on C at 67AMeV within a

DWBAmodel including core excitation [53] (data from Ref. [8]). The calculation within

a single-particle model (dashed line) and the contribution of the core excitation (dash-

dotted line) are shown separately. Reprinted figure with permission from Ref. [53].

Copyright (2012) by the American Physical Society. Right: CDCC calculations of the

elastic scattering of the two-neutron halo nucleus 6He off Bi at 22.5 MeV [61] (data

from Refs. [56, 57]). The roles of the three-body structure of the projectile and of the

coupling to the breakup channel are illustrated. Reprinted figure with permission from

Ref. [61]. Copyright (2006) by the American Physical Society.

3.3. Four-body breakup

Another critical issue in the description of breakup reactions is the development of a

model for the four-body breakup, i.e. the breakup of the projectile into three clusters,

as it happens for two-nucleon halo nuclei [55, 56, 57, 58, 59]. Obviously this reaction

cannot be correctly described assuming a two-body description of the projectile. Various

extensions of the CDCC framework have been developed for three-body projectiles

[60, 61, 62, 63]. The major difficulty lies in handling the large model space required

to describe the projectile and in particular its three-body continuum. In early works

the pseudo-state technique has been applied to describe this continuum. These works

have used either a Gaussian basis [60, 61] or a THO basis [62] to discretise the continuum.

This leads to tractable calculations but in which the breakup part of the wave function

is difficult to analyse: in a pseudo-state it is not clear how the energy is shared between

the three fragments. These calculations were nevertheless able to describe the elastic-

scattering of three-body projectiles including a breakup channel. This shows that both

the three-body description of the projectile and the inclusion of the breakup channel are
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necessary to reproduce elastic-scattering data of 6He on various targets and at different

beam energies [60, 61, 62] (see the right panel of Fig. 2). This emphasises the need for

including the coupling of different reaction channels in accurate descriptions of collisions

involving exotic nuclei (see Sec. 4.1).

To obtain breakup observables with a better accuracy the binning method has

recently been introduced in four-body CDCC calculations [63]. This method is heavier

in a computation point of view than the pseudo-state technique but it provides a finer

description of the projectile continuum, which gives more detailed information about

the breakup channel. In particular, total-energy distribution, i.e. the breakup cross

section as a function of the total three-body energy in the continuum, is now accessible.

Efforts are also performed to better exploit the calculations involving pseudo-states.

In Ref. [64], the complex scaling method is coupled to CDCC to smooth the energy

distribution obtained from breakup calculations using pseudo-states to describe the

continuum. This technique is shown to work quite well on a three-body test case

and leads to a faster convergence and smoother energy distribution than with the

binning technique. Good agreement with experimental data has been obtained for both

Coulomb and nuclear-dominated breakups of 6He [64]. More recently, this technique

has been extended to obtain double-differential cross sections, i.e. Dalitz plots [65].

These observables show how the energy is distributed among the projectile fragments

after the breakup, which provides significant information about the correlation between

the projectile constituents [65, 66]. They also emphasise the effects of the interactions

between the clusters in the projectile continuum (final-state interaction). As in the

two-body case, these interactions are shown to be significant in the calculation of the

breakup of Borromean systems [66].

These results illustrate the significant research activity in this field and also the

difficulty to manage a fine description of the continuum for three-body projectiles within

the CDCC framework. Nevertheless, the progresses made recently indicate that we are

at the dawn of an era in which a more detailed confrontation between the thee-body

structure model of the projectile and experimental data will be possible using four-body

CDCC.

Another way to study theoretically the breakup of three-body projectiles is to use

a simpler, less computationally intensive, reaction model than CDCC (see Sec. 4). In

Ref. [40], the CCE is used to study the Coulomb breakup of 6He on Pb at 240AMeV

measured experimentally in Ref. [55]. Being based on the eikonal model, the CCE

requires less computational time to evaluate the breakup cross sections than CDCC.

Thanks to this advantage, a finer description of the core-n-n continuum can be used,

which enables an easier calculation of double-differential cross sections. These results

confirm the significance of the final-state interactions in breakup calculations and

suggest a slightly dominant α-dineutron structure in the 6He continuum [40]. This

technique has also been applied for the breakup of 11Li on Pb at 70AMeV [58] and

fair agreement between theory and experiment has been observed for angular and total-

energy distributions [41]. The calculation of the corresponding double-differential cross
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section suggests less correlation between both halo neutrons in 11Li continuum than in
6He. Unfortunately, no experimental double-differential cross section is available yet,

which would enable to constrain theoretical models of Borromean nuclei. Significant

efforts, both theoretical and experimental, should be made in order to obtain such

observables as they seem to convey interesting information about the structure of two-

neutron halo nuclei.

Albeit interesting for its low computational cost, the CCE remains a simple reaction

model, valid only at sufficiently high energy, and which neglects part of the reaction

dynamics [24]. In this, CDCC is superior since it is valid at all beam energies and

includes all couplings at all orders. As one can see here a compromise has still to

be made between the quality of the projectile description and the accuracy of the

reaction model. Maybe an intermediate solution could be found by developing a four-

body breakup model within the E-CDCC or DEA frameworks. These models are more

computationally effective than CDCC, while including sufficient projectile dynamics

to reproduce CDCC calculations at sufficiently high energy [32, 38]. They are thus

interesting alternatives to the full CDCC and the simple CCE to describe reactions

involving three-body nuclei. Hopefully both requirements of an accurate reaction model

coupled to a precise projectile description will be met within one model of four-body

breakup in a near future.

4. Reaction modelling

Another key point to improve the quality of the structure information inferred from

breakup experiments is the description of the reaction process itself. The first analyses

of breakup reactions were performed using perturbative models, in which the transition

from the initial bound state to the projectile continuum takes place in one single

step. The development of more accurate reaction models has shown that the reaction

mechanism is more complex than this simple transition, and that couplings inside the

continuum affect breakup observables. As explained in Refs. [67, 68, 69, 70], this may

lead to misinterpretation of experimental data (see also Secs. 3.2 and 3.3 and Ref. [33]).

Besides being able to describe accurately the reaction mechanisms, breakup models

should also be numerically tractable. As mentioned previously, it is challenging to

include within CDCC descriptions of the projectile that go beyond the simple two-body

model. This is due to the huge model space required to reliably include finer descriptions

of the projectile, aggravated by the heaviness of the CDCC calculations. Using simpler

approximations may help keeping computational times affordable without necessarily

loosing predictive power in the reaction modelling [32]. However, the validity range of

these approximations must be well established, e.g. using other models and/or precise

experimental data for validation.
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4.1. Coupling breakup models to other reaction processes

Recent experiments have confirmed the complexity of the reaction process. Measuring

the elastic scattering of 9,10,11Be isotopes on Zn around the Coulomb barrier [7], Di Pietro

et al have seen that the results obtained for 11Be differ significantly from those for the

other beryllium isotopes: the 11Be elastic-scattering cross section cannot be reproduced

using a simple folding procedure, even if its halo structure is taken into account.

The confrontation with CDCC calculations has shown that this is due to a significant

coupling between the elastic-scattering channel and breakup [7, 71], as already noted

in four-body CDCC calculations [60, 61, 62] and in a theoretical analysis of angular

distributions [72]. This strong coupling between these two processes indicates that the

description of a reaction involving exotic nuclei may have to encompass more than the

sole mechanism in which one is interested.

Another example in which the analysis of experimental data is at stake is the one-

nucleon knockout reaction (KO) [9]. In that reaction one nucleon is removed from the

projectile through its interaction with a light target (e.g. C or Be). The KO cross sections

are inclusive in the sense that the removed nucleon is not measured in coincidence with

the core. This reaction thus includes not only the deeply inelastic removal of the nucleon,

but also the elastic breakup channel described here. A coherent description of both

processes is therefore needed for a reliable analysis of the data.

KO experiments are usually performed to extract spectroscopic factors [73]. This

is done confronting experimental cross sections with eikonal calculations of the reaction

that use shell-model results as structure inputs. Surprisingly, this confrontation leads

to a systematic reduction of the measured cross sections relative to their theoretical

predictions [74]. Part of the problem comes from the description of the nuclear structure

because the shell model cannot account for the coupling with the nucleus spectrum

above the nucleon-emission threshold, which is significant for loosely-bound nuclei [75].

However, it seems also that part of the problem is due to the use of the sudden

approximation in the reaction modelling [76]. To test this hypothesis, the role played by

the sudden approximation in the description of KO should be evaluated. Since E-CDCC

and DEA are eikonal-based models, which do not include the sudden approximation,

they could be extended to study KO reactions. This has been suggested by Yahiro et

al for the E-CDCC model [77]. However no differential cross section has been obtained

within this new model so that the hypothesis of Ref. [76] has not yet been tested.

The development of new KO models that include the projectile dynamics and that

can describe elastic breakup and KO on the same footing may hence help to solve the

long-standing problem summarised in Ref. [74].

4.2. Extending the range of validity of existing models of breakup

As mentioned in Sec. 3, it is computationally challenging to include within CDCC

descriptions of the projectile that go beyond the simple two-body model. Simpler

reaction models may enable the use of more realistic descriptions of the projectile, while
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keeping computational times affordable. For example, in Refs. [51, 52, 53], DWBA-

based models have been used to analyse the influence of core excitation upon breakup

observables (see Sec. 3.2). In Refs. [40, 41], the CCE is used to describe the breakup of

the two-neutron halo nuclei 6He and 11Li (see Sec. 3.3). In both cases, these analyses

have revealed interesting effects of the projectile structure upon breakup observables,

which are difficult to access to full CDCC calculations. These models are thus an

interesting way to explore the influence of the projectile structure on reaction data.

The eikonal-based reaction models E-CDCC [20] and DEA [21] are particularly

interesting for such an extension. First, they are less time-consuming than full CDCC

calculations, while providing reliable theoretical cross sections [32, 38]. Second, they

include the dynamical effects missing in DWBA and CCE, which may play a significant

effect on breakup observables (see Secs. 3.2 and 3.3). Unfortunately, E-CDCC and DEA

are limited to intermediate/high energies and therefore cannot be applied for ISOL-

type experiments. As shown in Ref. [32], the major problem of these approximations is

the lack of Coulomb deflection. They indeed assume that the projectile-target relative

motion is not much different from the incoming plane wave (see Sec. 2). This assumption

is no longer valid at low energy, at which the projectile is significantly deflected by

the Coulomb field of the target. An inclusion of the Coulomb deflection would help

increasing the range of validity of eikonal-like models down to lower energies. This would

help analysing low-energy experiments without the need of heavy CDCC calculations.

For example, being based on an expansion of the wave function identical to that

of CDCC (see Sec. 2), E-CDCC can be improved readily into a hybrid version [20] in

which the P -T relative angular momenta L are separated into two distinct regions. Low

Ls are treated exactly within CDCC, i.e. including all possible couplings, whereas the

simpler eikonal approximation is used to compute larger Ls. This enables to include

the Coulomb deflection and hence obtain results identical to those of CDCC within a

shorter computational time [38].

On the other side of the energy range, a problem that has not yet been fully

investigated is that of the relativistic effects. If one excepts an extension of the first-

order perturbation theory of Alder and Winther [37], breakup models have mostly been

developed within non-relativistic quantum mechanics. In a first analysis of relativistic

effects in breakup reactions, Bertulani indicates that these effects play a role, even at

intermediate energies [78]. In Refs. [79, 80] Ogata and Bertulani study these effects in

more details using a relativistic correction to E-CDCC. They show that this correction

affects mostly the Coulomb P -T interaction, which leads to changes in the breakup cross

section at forward angles. These changes are of the order of 10% at 100AMeV and 15%

at 250AMeV. Due to the strong non-linearity of the Coulomb couplings to and within the

continuum, no simple correction could be found to simulate relativistic effects in cross

sections obtained from non-relativistic reaction models. Therefore, relativistic models

seem to be unavoidable to accurately analyse data obtained at large beam energies,

i.e. above 100AMeV. With the increase of beam energies at various RIB facilities, these

effects should be taken into account for a proper study of nuclear structure from breakup
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Figure 3. The ratio evaluated for 11Be impinging on Pb at 69AMeV (solid line) and

C at 67AMeV (dashed line) are shown to be very similar. They are also in excellent

agreement with an adiabatic reaction model (thick grey line) [26]. Reprinted figure

from Ref. [26], Copyright (2011), with permission from Elsevier.

measurements.

5. New reaction observables

An alternative to developing complex models to describe accurately the reaction

mechanism is to search for observables that are not sensitive to that mechanism. In this

way only a simple reaction model is necessary to analyse experimental data. Moreover,

such observables would emphasise information about the projectile structure as it would

not be hidden by reaction artefacts.

The ratio method is such a new reaction observable [26, 81]. It consists of the ratio

between two angular distributions for two different processes, e.g. breakup and elastic

scattering. As shown in Ref. [72], both angular distributions exhibit similar patterns

reflecting the way the projectile is scattered off the target: Coulomb rainbow, Near/Far

interferences etc. Taking their ratio removes most of this angular dependence, leading

to an observable nearly independent of the reaction process. Calculations within the

DEA show that, for one-neutron halo nuclei, the ratio is nearly the same for light and

heavy targets, confirming its independence to the reaction mechanism (see Refs. [26, 81]

and Fig. 3).

Thanks to this independence, the ratio is strongly sensitive to the structure of the

projectile. In particular it provides precise information about the binding energy of the

halo neutron and its partial wave. Depending on the scattering angle, the ratio probes

different parts of the radial wave function of the projectile: the ANC at forward angles,

and, unlike most reaction observables, the internal part at larger angles [81].

Up to now this ratio has been developed only for a simple two-body description of

one-neutron halo projectiles. Preliminary calculations suggest that charged cases, such

as proton haloes, and three-body projectiles, such as two-neutron halo nuclei, can also

be studied with this method. Although there are not yet data on which to apply the

ratio method, the breakup probability measured in Ref. [59] for the collision of 11Li on
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Pb around the Coulomb barrier shows great similarities with one of the ratios suggested

in Ref. [81]. This seems to confirm the possibility to extend the ratio technique to

Borromean nuclei and to low energies. It would also be interesting to see whether this

idea can be extended to other reactions, such as transfer. This would certainly help

analysing data in a more model-independent way.

6. Outlook

Breakup reaction is one of the best tools to study the structure of halo nuclei. Various

models have been developed to describe the reaction process and infer information about

this exotic nuclear structure: CDCC [11, 12, 13], TD [14, 15, 16, 17, 18], E-CDCC [20],

DEA [21], CCE [22] (see also Ref. [25] for a recent review). Thanks to intensive studies of

breakup, the reaction mechanism is now rather well understood. However, these studies

have shown the need of an accurate description of the reaction mechanism as significant

higher-order effects take place during the collision, which may affect the quality of the

structure information inferred from experimental data [67, 68, 69, 70].

Most of the current reaction models are limited to a simple two-body description

of the projectile. Due to the peripheral nature of breakup reactions, it is probably

not necessary to include a fully microscopic description of the projectile within

accurate reaction models. Nevertheless, microscopic structure calculations could provide

important information to constrain phenomenological core-fragment potentials. To

go beyond this simple model, various efforts have been made to extend the CDCC

framework to descriptions of the projectile in which the core can be in an excited

state [48, 49, 54] or for three-body projectiles [60, 61, 62, 63, 64]. Unfortunately

these extensions are computationally challenging and provide mostly inclusive breakup

observables. To obtain more differential observables one has to rely on simpler models,

such as DWBA [51, 52, 53] or CCE [40, 41]. These studies suggest that interesting

information can be inferred from differential cross sections. They also indicate that a

full CDCC model might not be necessary to analyse experimental data and that simpler

descriptions of breakup, such as E-CDCC or DEA, may be used, as long as their domain

of validity is well under control [32]. Possible extensions of these domains of validity,

e.g. to lower beam energies, would help analysing data without having to resort to full

CDCC calculations.

An alternative to the development of accurate reaction models is the search for

reaction observables that are independent of the reaction process. One example of such

observable is the ratio of angular distributions [26], which, thanks to its independence

to the reaction mechanism, does not require precise models for its analysis. It is also

more sensitive than other observables to the projectile structure [81].

The aforementioned studies show how complicated the description of reactions

involving exotic nuclei can be, not only because of the intrinsic complexity of the reaction

mechanism, but also because of the coupling it can have with other processes. The

development of new RIB facilities such as RIBF in Japan, FRIB in the USA or FAIR
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in Europe will improve the rate at which exotic nuclei can be produced and hence the

statistics in reaction measurements. This will require precise theoretical reaction models

that can account for the aforementioned effects in order to extract valuable structure

information from future data.
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N. Curtis, M. Freer, S. Grévy, C. Le Brun, M. Lewitowicz, E. Liégard, F.M. Marqués, P. Roussel-

Chomaz, M.G. Saint Laurent, M. Shawcross, and J.S. Winfield. One-neutron removal reactions

on neutron-rich psd-shell nuclei. Phys. Lett. B, 491:1, 2000.

[10] K. L. Jones, A. S. Adekola, D. W. Bardayan, J. C. Blackmon, K. Y. Chae, K. A. Chipps, J. A.

Cizewski, L. Erikson, C. Harlin, R. Hatarik, R. Kapler, R. L. Kozub, J. F. Liang, R. Livesay,

Z. Ma, B. H. Moazen, C. D. Nesaraja, F. M. Nunes, S. D. Pain, N. P. Patterson, D. Shapira,

J. F. Shriner, M. S. Smith, T. P. Swan, and J. S. Thomas. The magic nature of 132Sn explored

through the single-particle states of 133Sn. Nature, 465:454, 2010.

[11] M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama, and M. Kawai. Projectile breakup

processes in nuclear reactions. Prog. Theor. Phys. Suppl., 89:1, 1986.

[12] M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M. Kawai. Effects of deuteron virtual

breakup on deuteron elastic and inelastic scattering. Prog. Theor. Phys. Suppl., 89:32, 1986.



Extracting nuclear structure information from the breakup of exotic nuclei 15

[13] J. A. Tostevin, F. M. Nunes, and I. J. Thompson. Calculations of three-body observables in 8B

breakup. Phys. Rev. C, 63:024617, 2001.

[14] T. Kido, K. Yabana, and Y. Suzuki. Coulomb breakup mechanism of neutron drip-line nuclei.

Phys. Rev. C, 50:R1276, 1994.

[15] H. Esbensen, G. F. Bertsch, and C. A. Bertulani. Higher-order dynamical effects in Coulomb

dissociation. Nucl. Phys. A, 581:107, 1995.

[16] S. Typel and H. H. Wolter. Dynamical description of Coulomb dissociation. Z. Naturforsch. Teil

A, 54:63, 1999.

[17] P. Capel, D. Baye, and V. S. Melezhik. Time-dependent analysis of the breakup of halo nuclei.

Phys. Rev. C, 68:014612, 2003.

[18] D. Lacroix, J. A. Scarpaci, and Ph. Chomaz. Theoretical description of the towing mode through

a time-dependent quantum calculation. Nuclear Physics A, 658:273, 1999.

[19] R. J. Glauber. High energy collision theory. In W. E. Brittin and L. G. Dunham, editors, Lecture

in Theoretical Physics, volume 1, page 315. Interscience, New York, 1959.

[20] K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, and M. Kamimura. New coupled-channel approach

to nuclear and Coulomb breakup reactions. Phys. Rev. C, 68:064609, 2003.

[21] D. Baye, P. Capel, and G. Goldstein. Collisions of halo nuclei within a dynamical eikonal

approximation. Phys. Rev. Lett., 95:082502, 2005.

[22] J. Margueron, A. Bonaccorso, and D. M. Brink. A non-perturbative approach to halo breakup.

Nucl. Phys. A, 720:337, 2003.

[23] B. Abu-Ibrahim and Y. Suzuki. Breakup of one-neutron halo nuclei within eikonal model. Prog.

Theor. Phys., 112:1013, 2004.

[24] P. Capel, D. Baye, and Y. Suzuki. Coulomb-corrected eikonal description of the breakup of halo

nuclei. Phys. Rev. C, 78:054602, 2008.

[25] D. Baye and P. Capel. Breakup reaction models for two- and three-cluster projectiles. In Christian

Beck, editor, Clusters in Nuclei, Vol.2, volume 848 of Lecture Notes in Physics, pages 121–163.

Springer Berlin Heidelberg, 2012.

[26] P. Capel, R.C. Johnson, and F.M. Nunes. One-neutron halo structure by the ratio method. Phys.

Lett. B, 705:112, 2011.

[27] A. Deltuva, A. C. Fonseca, and P. U. Sauer. Momentum-space treatment of the Coulomb

interaction in three-nucleon reactions with two protons. Phys. Rev. C, 71:054005, 2005.

[28] A. Deltuva, A. C. Fonseca, and P. U. Sauer. Momentum-space description of three-nucleon breakup

reactions including the Coulomb interaction. Phys. Rev. C, 72:054004, 2005.

[29] M. Kawai. Formalism of the method of coupled discretized continuum channels. Prog. Theor.

Phys. Suppl., 89:11, 1986.

[30] N. Austern, M. Yahiro, and M. Kawai. Continuum discretized coupled-channels method as a

truncation of a connected-kernel formulation of three-body problems. Phys. Rev. Lett., 63:2649,

1989.

[31] N. Austern, M. Kawai, and M. Yahiro. Three-body reaction theory in a model space. Phys. Rev.

C, 53:314, 1996.

[32] P. Capel, H. Esbensen, and F. M. Nunes. Comparing nonperturbative models of the breakup of

neutron-halo nuclei. Phys. Rev. C, 85:044604, 2012.

[33] I. Thompson. Computational challenges in theories of nuclear reactions. J. Phys. G, **:***, 2014.

[34] T. Matsumoto, T. Kamizato, K. Ogata, Y. Iseri, E. Hiyama, M. Kamimura, and M. Yahiro. New

treatment of breakup continuum in the method of continuum discretized coupled channels. Phys.

Rev. C, 68:064607, 2003.
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D. Galaviz, J. Gómez-Camacho, R. Kanungo, J. A. Lay, M. Madurga, I. Martel, A. M. Moro,
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