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In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations
using finite range Gogny force have been performed to study electromagnetic excitations of several
axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to
the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog
and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing
experimental data is presented. The role of nuclear deformation is shown. Special attention is paid
to β-decay half-lives calculations for which experimental data exist and for specific isotone chains
of relevance for the r-process nucleosynthesis.

I. INTRODUCTION

Spin-isospin nuclear excitations, in particular the
Gamow-Teller (GT) resonances, play nowadays a cru-
cial role in several fields of physics. First, in nuclear
physics since they can provide information on the nu-
clear interaction, on the equation of state of asymmetric
nuclear matter and on the nuclear skin thickness. Sec-
ond, in astrophysics, they govern β-decay, electron and
neutrino capture processes hence, as a consequence in-
fluence stellar evolution and nucleosynthesis. Finally, in
particle physics in connection with the evaluation of the
Vud element and the unitarity of the Cabibbo-Kobayashi-
Maskawa quark-mixing matrix on the one hand and with
the neutrino physics beyond the standard model (neutri-
noless double beta decay and neutrino oscillation) on the
other hand.

Experimentally the spin-isospin nuclear excitations are
studied via charge-exchange reactions, such as (p,n),
(n,p), (d,2He), (3He,t) or (t,3He) and β-decay measure-
ments. In spite of the great efforts and interest, the whole
nuclear chart cannot be experimentally studied. To study
the nuclei experimentally inacessible one can rely on the-
oretical models. In this context one of the most em-
ployed models is the so called proton-neutron quasipar-
ticle random-phase approximation (pnQRPA) [1, 2]. To
treat consistently isotopic chains from drip line to drip
line two main features of the theoretical model are in
order: the possibility to deal with deformed nuclei and
the use of an unique effective nuclear force. The term
unique has here two meanings. First of all, it means
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that the interaction is the same for all the nuclei; sec-
ond, that the nuclear interaction used to describe the
ground state and the excited states is the same (this is
the so-called self-consistency property of the calculation).
In spite of the relatively large number of pnQRPA cal-
culations, only a very few of those include both features.
Furthermore, even in such self-consistent calculations, it
remains at least one coupling constant, typically in the
particle-particle channel, which should be considered as
a free parameter usually fitted to half-lives or to the ex-
perimental position of the GT excitation energy.

Here we present the fully consistent axially-symmetric-
deformed pnQRPA calculation based on the finite range
Gogny force. The originality of the present work con-
sists in the use of the Gogny force, since up to now the
other self-consistent (spherical or axially deformed) calcu-
lations were performed either with a zero-range Skyrme-
type force or within the relativistic covariant descrip-
tion. In the present approach, no additional parameters
are introduced in the pnQRPA calculation beyond those
characterizing the effective nuclear force (namely D1M
[3] or D1S [4]). This work represents a transposition to
the charge-exchange field of the fully consistent axially-
symmetric-deformed QRPA calculations presented in [5]
and devoted to the study of the electromagnetic excita-
tions of deformed nuclei [6, 7]. In this approach pairing
correlations which play an important role in open shell
nuclei are automatically included. The possibility to take
into account the nuclear deformation is also fundamen-
tal. The β-decay properties of nuclei (including their
impact on the r-process nucleosynthesis [8]) as well as
the nuclear matrix elements for the double β decay have
been shown to depend significantly on the deformation
parameter. Furthermore, deformed nuclei present strong
fragmentation in their response functions and different
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FIG. 1. pnQRPA Fermi (upper panels) and GT (lower panels) strength distributions in 90Zr, 114Sn and in 208Pb calculated the
with D1M and D1S forces. The experimental data of the energy peaks position [9–11] are shown as diamonds on the x-axis.

nuclear shapes can be experimentally distinguished.

II. METHOD

Our approach is based on the pnQRPA on top
of axially-symmetric-deformed Hartree-Fock-Bogoliubov
(HFB) calculations. The HFB equations are solved in a
finite harmonic oscillator (HO) basis. As a consequence,
the positive energy continuum is discretized. The num-
ber of HO major shells included in the model space de-
pends on the atomic mass number. All HFB quasiparti-
cle states are included to generate the 2-quasiparticle (2-
qp) excitations. This means that our calculation can be
performed without cut in energy or in occupation prob-
abilities. According to the symmetries imposed in the
present axially-symmetric-deformed HFB calculation in
even-even nuclei, the projection K of the angular mo-
mentum J on the symmetry axis and the parity π are
good quantum numbers. Consequently, pnQRPA calcu-
lations can be performed separately for each Kπ block.
To solve the pnQRPA matrix equation we use the same
numerical procedure as recently applied to the study of
giant resonances of the heavy deformed 238U [7]. This
procedure is based on a massive parallel master-slave al-
gorithm. The solution of the pnQRPA matrix equation
provides the energies ωn of the excited states of the par-
ent nucleus and the set of amplitudes describing the wave
function of the excited state in terms of the two quasi-
particle excitations.

Once the pnQRPA matrix equation is solved, we can
calculate the response to the Fermi, or isospin lowering,

operator

ÔIAR =

A∑

i=1

τ−(i), (1)

to obtain the isobaric analog resonance (IAR), the sim-
plest charge-exchange transition in which a neutron is
changed into a proton without any other variation of the
quantum numbers. In an axially-symmetric-deformed nu-
clear system, the response function of a given Jπ contains
different Kπ = 0π,±1π, ...,±Jπ components. In the case
of the IAR the Jπ = 0+ distribution is obtained per-
forming the pnQRPA calculation for Kπ = 0+. For the
Gamov-Teller excitations the external operator is

ÔGT =
A∑

i=1

�σ(i) τ−(i), (2)

generating a spin-flip (ΔS = ΔJ = 1) response. In
this case the GT Jπ = 1+ distributions are obtained by
adding twice the Kπ = 1+ result to the Kπ = 0+ result.
Details to go from the intrinsic to the laboratory frame
can be found in [5].

III. RESULTS

We consider the closed neutron shell 90Zr and the
208Pb, as well as neutron open shell nucleus 114Sn as
test cases. Their Fermi and GT strength distributions
calculated with D1M and D1S interactions are shown in
the upper and lower panels, respectively, in Fig 1. In the
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FIG. 2. pnQRPA GT strength distributions in 76Ge obtained
with the D1M force for several values of the deformation pa-
rameter β2, including the HFB ground state minimum of
β2 = 0.15. The experimental low energy data [12] as well
as the energy position of the main GT peak are also shown.

same figure, are shown the corresponding experimental
values [9–11] for the major excitation energies obtained
from scattering data. The results are expressed as a func-
tion of the excitation energy Eex referred to the ground
state of the daughter nucleus. In our model it is ob-
tained by subtracting the lowest two-quasiparticle energy
E0 from the excitation energy ωn of the parent nucleus
calculated in the pnQRPA, i.e. Eex = ωn − E0. The two
interactions give quite similar results for the position of
the main peak. The agreement between our calculations
and experimental data is rather satisfactory. We have
also verified that the Fermi and the Ikeda sum rules are
exhausted by our strength distributions.

The above results refer to three spherical nuclei. As
already emphasized, our approach describes axially sym-
metric deformed nuclei. As an example of deformed nu-
cleus, we show in in Fig. 2 the 76Ge spin-isospin excita-
tions, more precisely the GT distributions obtained with
D1M Gogny interaction for several values of the defor-
mation parameter β2 including the HFB minimum at
β2=0.15. Experimental data [12] are also included. As
expected, the deformation tends to increase the fragmen-
tation of the response. Calculations with different defor-
mations produce peaks that are displaced. Deformation
effects also influence the low-energy strength and conse-
quently can be expected to affect β−-decay half-lives.

In the allowed GT decay approximation (hence neglect-
ing the first-forbidden transitions), the β−-decay half-life
T1/2 can be expressed in terms of the GT strength func-
tion SGT according to

ln 2

T1/2

=
(gA/gV )2eff

D
×

Qβ∑

Eex=0

f0(Z, A, Qβ − Eex)SGT (Eex). (3)

FIG. 3. Ratio between the pnQRPA and experimental [15]
β−-decay half-lives as a function of A, β2 and Qβ for 108
even-even nuclei.

For the phase-space volume f0 as well as the D fac-
tor and the vector and axial vector coupling constants
(including the quenching factor), we refer to the work of
[13]. To estimate the Qβ mass differences, we take ex-
perimental masses [14] when available or the D1M mass
predictions [3], otherwise.

The pnQRPA calculation provides a discrete strength
distribution. In order to derive a smooth continuous
strength function, the pnQRPA GT strength is folded
with a Lorentz function, as classically done. The spread-
ing width is expressed as Γ[MeV]= 1 + 0.055E2

ex with
an upper value limited to 6 MeV in order to reproduce
the experimental GT widths found experimentally in Sn
isotopes [10].

To give an idea of the global predictions of our model,
we compare in Fig. 3 the pnQRPA β−-decay half-lives of
108 even-even nuclei with experimental data [15]. The
results are plotted as a function of the mass number, the
deformation parameter and the Qβ value. They turn to
be quite homogeneous with respect to A and more par-
ticularly β2. Larger deviations are found for nuclei close
to the valley of β-stability (right panel), as found in most
models [16, 17]. Globally, deviation with respect to ex-
perimental data rarely exceeds one order of magnitude.

A comparison between different theoretical predictions
(and with data when available) for the β−-decay half-lives
of the N = 82 isotones is given in Fig. 4. We choose to
focus on this region of the nuclear chart owing to its rel-
evance for the r−process nucleosynthesis [8]. Our results
closely agree with the HFB plus continuum QRPA ap-
proach [13] but tend to give rather larger half-lives than
the shell-model predictions [18]. Nice agreement with ex-
perimental data is found for 130Cd and 132Sn.

IV. CONCLUSIONS

In conclusion, we presented here for the first time a
fully consistent pnQRPA approach using a finite-range
Gogny force. We applied our model to the analysis of
charge-exchange modes paying a special attention to
the GT resonances. The crucial role of deformation,
automatically included in our approach, was analyzed.
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FIG. 4. Comparison between HFB9+cQRPA [13], shell model
[18] and our D1M-pnQRPA predictions of the β−-decay half-
lives along the N = 82 isotonic chain. Experimental results
[15] are also shown.

The agreement with experiment is satisfactory both for
the strength distribution and the β−-decay half-lives of
even-even nuclei.
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