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ABSTRACT: Density variations induced by gas absorption in reactive aqueous solutions
often trigger buoyancy-induced motions, generally in the form of plumes monotonically
sinking into the bulk liquid and enhancing the absorption rate. Here, we contrast two
types of CO2-absorbing alkaline solutions, studying their dynamics inside a vertical Hele-
Shaw cell by interferometry. While the first one indeed behaves as expected, the second
one leads to a quite unusual oscillatory (phase-slipping) dynamics of convective plumes,
which moreover does not lead to a significant transfer enhancement. Thanks to a
simplified model of momentum and species transport, we show that this particular
dynamics is related to a nonmonotonic density stratification, resulting in a stagnant layer
close to the interface. Conditions for this to occur are highlighted in terms of the ratios of
species’ diffusivities and their contribution to density, a classification deemed to be useful
for optimizing chemisorption (e.g., for CO2 capture or sequestration) processes.

■ INTRODUCTION

Rayleigh-Taylor instabilities (RTI) are buoyancy-induced flows
developing from small fluctuations whenever a heavier fluid
layer lies on top of a lighter one in the field of gravity.1−3 They
are observed in a wide range of fields, such as geology,4

hydrology,5 astrophysics,6 and even plasma science.7 Whatever
the origin of density gradients in the fluids, RTI are generally
expected to occur in the form of plumes monotonically sinking
into the bulk liquid, hence, driving an intense mixing and
enhancing the rate of heat and mass transfer. For this reason,
RTI are also increasingly studied nowadays in the framework of
carbon dioxide (CO2) sequestration in deep saline aquifers,8−10

a process for which mixing is expected to add up to the effect of
chemical reactions in boosting the overall efficiency.
Figure 1, explained in more detail later on, presents

experimental results obtained when gaseous CO2 is absorbed
in two different initially quiescent aqueous solutions, in
otherwise similar conditions. Figure 1a−f is obtained when
absorbing gaseous CO2 into an aqueous solution of
monoethanolamine (MEA, 870 mol/m3, hereafter solution 1).
It illustrates the classical scenario where denser plumes
monotonically finger downward. In contrast, Figure 1g−l,
obtained for the absorption of CO2 in an aqueous solution of
sodium bicarbonate (NaHCO3, 790 mol/m3) and sodium
carbonate (Na2CO3, 625 mol/m3), shows a quite unusual
behavior. Hereafter, this solution will be referred to as solution
2. Indeed, instead of plunging deep inside the fresh liquid,
plumes here appear to slow down at some depth, soften, and
almost vanish. Meanwhile, a second generation of plumes
appears in between the primary ones, eventually repeating the
same scenario and leading to an oscillatory dynamics (this is
more easily seen in some of the movies included as Supporting

Information). Note that this behavior is observed in solution 2
for any pair of the initial NaHCO3 and Na2CO3 concentrations
used. In most cases, the spatial wavenumber of the plume
pattern is comprised between 1.5 and 3 mm−1 and tends to
increase for successive plume generations. In addition, it is
observed that the period between the first and the second
generations is usually close to 2 min and that this time-delay
between successive generations tends to increase with time.
The goal of the present paper is therefore to understand the

physicochemical mechanisms at the origin of such a particular
dynamics and, more generally, to propose a classification of
possible RTI dynamics occurring during the absorption of CO2
in a liquid solution, on the basis of the relevant properties of the
CO2-absorbing solution at hand. In addition, it is also crucial to
quantify the impact of such flows on the enhancement of the
global absorption/conversion rate. As it will be seen hereafter,
the density profile prior to instability, monotonic for solution 1
and nonmonotonic for solution 2 (see top of Figure 1),
essentially determines the overall dynamics. Note in this respect
that the present analysis goes beyond recent works concerned
with miscible reactive two-liquid systems.11−13 Indeed, these
authors do not evidence any oscillatory dynamics in the
nonlinear regime, as we do here both experimentally and on the
basis of a simplified model of the CO2 chemisorption process.
The experimental sequences depicted in Figure 1 have been

recorded in a vertical Hele-Shaw cell (two glass plates separated
by a gap of thickness 0.5 mm for solution 1 and 1.9 mm for
solution 2, width 30 mm, liquid filling the gap up to a height of
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50 mm), as often used to study RTI, as this configuration
enables quasi-bidimensional visualization while at the same
time mimicking porous media flows.14 We here focus on the
liquid phase behavior just underneath the horizontal gas−liquid
interface (located on top of each image). Using a Mach−
Zehnder interferometer (MZI) and thanks to the procedure
described in Wylock et al.,15 the refractive index variation
(RIV) field induced in the liquid by the CO2 absorption can be
extracted. For both solutions, a calibration has been carried out
and a linear correlation has been found between RIV and
density variation Δρ. Such a device therefore enables following
the spatiotemporal dynamics of the density variations (DV).
Besides what was already said above in relation with Figure 1,

another important observation is that the plumes are formed
about 1 mm below the interface for solution 2, while they
appear right at the interface for solution 1. This fact, which will
be further examined numerically in what follows, suggests that
the key to understand the different dynamical regimes lies in
the different DV shapes before instability sets in (see the top of
Figure 1). Indeed, for solution 1, the maximum DV is located at
the interface and the DV decreases monotonically with the
depth Z. For solution 2, the DV is minimum at the interface. It
first increases with Z, reaching a positive maximum at 0.75 mm
below the interface and then starts to decrease. In order to
explain this and to highlight further differences between
solutions 1 and 2, we now turn to a simplified (yet realistic)

model of the reaction−diffusion−convection dynamics. It is
worth mentioning, however, that the goal of the present study
is not an exact modeling of the experiments, but rather to
extract the essence of the phenomena with the help of a simple
model.

■ MATHEMATICAL MODELING
Basic Hypotheses. For both considered solutions, the

reactions are rather fast as compared to the species transport
(see Aboudheir et al.16 for solution 1 and Vas Bhat et al.17 for
solution 2). The reactions are then confined to a thin liquid
layer at the interface, beyond which CO2 is nearly depleted.
This permits the simplification of the reaction scheme by
considering an instantaneous reaction A + B → C taking place
only at the gas−liquid interface. Such an approach, which is
described in more detail in Supporting Information, is
commonly used for gas absorption, coupled with fast
reactions.18,19 It is deemed to be quite a reasonable one in
our case, the actual reaction zone being much thinner than the
diffusive boundary layer at the instability onset. In our model, A
corresponds to CO2 (not penetrating in the liquid), whereas B
and C are the reactant and the product transported from/to the
bulk of the liquid, respectively. Let [B] and [C] be the
corresponding concentration fields. Before the gas−liquid
absorption begins, these are equal to the initial (homogeneous)
concentrations [B]0 and [C]0, respectively.

Figure 1. Experimental density variation (DV) fields in the liquid at various times during CO2 absorption in solution 1 (a−f) and in solution 2 (g−l).
Shown above each sequence are horizontally averaged DV profiles computed for (a) and (g), that is, before instability onset. Z is the depth into the
liquid (i.e., down vertical coordinate) from the interface (where Z = 0). Dashed vertical lines indicate the position of initial plumes.
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Due to the instantaneous character of the reaction, B is
totally depleted at the interface, with [B] = 0 at this point.
Before the instability onset, B and C are transported only by
diffusion. For the configuration used in the experiments, the
DV profile before the onset can be approached by a one-
dimensional (1-D) model. We shall work in terms of the
dimensionless concentrations b = [B]/[B]0 and c = [C]/[B]0
and define c0 = [C]0/[B]0. In general, the species B and C have
different diffusion coefficients and contribute differently to the
density ρ (assumed to vary linearly with [B] and [C]). Let
* = � �D /C B and δρ* = ∂[C]ρ/∂[B]ρ be the diffusivity and

density contribution ratios, respectively.
The dimensionless spatial coordinates and time t are defined

using the scales lref and = �t l / Bref ref
2 , respectively, where lref will

be specified later on.
One-Dimensional Reference Profiles. Considering the

model hypotheses, the dimensionless 1-D diffusion equations
read

∂ = ∂b bt zz (1)

∂ = *∂c D ct zz (2)

At the interface (z = 0), the complete depletion of B (due to
the instantaneous interfacial reaction) and a production of C
equal to the consumption of B are considered (see Supporting
Information):

=b 0 (3)

*∂ = −∂D c bz z (4)

At t = 0, as well as for z → +∞, we specify

=b 1 (5)

=c c0 (6)
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yielding the dimensionless concentration profiles of B and C in
the reference state, the stability of which will be considered in
the next section.
The dimensionless DV profile is calculated as

ρ ζ δρΔ = − + * −b c c(( 1) ( ))0 (9)

where ζ = ∂[B]ρ[B]0/Δρref is a constant coefficient, in which
Δρref is a dimensional reference DV value to be specified.
Hence, we have
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showing that the DV profile is self-similar and that its shape is
controlled by the values of D* and δρ*. Figure 2 classifies the
different shapes found from this expression, depending on the
values of these two parameters.
In particular, Figure 2 shows that the nonmonotonic DV

profiles observed for solution 2 occur when D* > 1 and δρ* <
(D*)1/2, which indeed turns out to be the case (from the
physicochemical parameters deduced for solution 2,15 it is
found that D* ≈ 1.25, δρ* ≈ 0.9). In contrast, it has been
estimated that D* ≈ 1 and δρ* ≈ 2.2 for solution 1 (from MZI
experiment analysis). The profile shapes predicted in Figure 2
are therefore in qualitative agreement with those obtained
experimentally. Note that besides the two cases 1 and 2 studied
here, several other DV shapes can, in principle, be induced,
depending on the values of D* and δρ*.

Momentum and Mass Transport Model. In order to
analyze the RTI dynamics, we consider a two-dimensional (2-
D) formulation of the liquid phase flow inside the Hele-Shaw
cell, using the Boussinesq approximation together with an
effective (gap-averaged) Navier−Stokes−Darcy20−23 equation
for the velocity field. It should be stressed here that the balance
equations for B and C do not include any reaction terms since
the reaction is considered to take place at the interface and not
in the bulk (see above and in the Supporting Information). The
dimensionless continuity, momentum, and species transport
equations are thus written as

∇· =u 0 (11)

∂ + ·∇ = −∇ + ∇ − + Δϱ⎜ ⎟⎛
⎝

⎞
⎠ p

u
eu u u u
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(12)

∂ + ·∇ = ∇b b but
2

(13)

∂ + ·∇ = *∇c c D cut
2

(14)

where ∇ = (∂x, ∂z), x and z are the horizontal and vertical
dimensionless coordinates, the latter directed downward as
before with ez the corresponding unit vector, u = (u,v), and p
are the velocity and pressure fields adimensionalized with
� l/B ref and μ� l/B ref

2 , respectively, μ is the dynamic viscosity
and Δρ is given by the earlier expression. Ra, Da, and Sc are the
Rayleigh, Schmidt and Darcy numbers, respectively, defined as

ρ
μ

=
Δ
�

gl
Ra

B

ref ref
3

(15)

Figure 2. Dimensionless DV profile shapes (here with Δρref = ∂[B]ρ[B]0, i.e., ζ = 1) for D* < 1 (a), D* = 1 (b), and D* > 1 (c). To define, all profiles
are drawn at the same dimensionless time t = 0.25.
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where ρ0 is the initial liquid density and h is the distance
between the two plates of the Hele-Shaw cell. Note that eq 12
differs from the Navier−Stokes equation by the presence of the
Darcy term as well as by a coefficient 6/5 multiplying the
nonlinear term, as shown to be applicable for such kind of 2-D
description of Hele-Shaw flows.21

At the top boundary (the interface, z = 0), the conditions for
b and c, already defined by eqs 3 and 4, are complemented by
the conditions applicable to a motionless impermeable stress-
free interface:

υ = 0 (18)

∂ + ∂ =u v 0z x (19)

It is worth mentioning that possible solutal and thermal
(CO2 chemisorption is slightly exothermic) Marangoni effects
at this boundary are not considered here, our intention being to
capture the essence with a model as minimalistic as possible.
Moreover, we do not observe any clear sign of a Marangoni-
type convection in experiments with solution 2. In particular,
the interfacial stagnant layer of this solution remains largely
motionless during the whole process, even after the instability
onset. Admittedly though, this argument does not hold for
solution 1, where the interfacial layer is not stagnant. Yet,
solution 1 is not studied in such detail here, as it merely serves
as an illustration of “classical” plume dynamics with which we
contrast the unusual dynamics of solution 2.
The bottom boundary is set as an open boundary regarding

the flow and the species transport, characterized by the
following conditions:

υ∂ + ∂ =u 0z x (20)

υ− + ∂ =p 2 0z (21)

∂ =b 0z (22)

∂ =c 0z (23)

The horizontal dimension is treated by means of periodic
boundary conditions applied between the left and right
boundaries.
Clearly, the 1-D diffusion profiles found above correspond to

a particular solution (the reference, or rest state solution) of
this general boundary-value problem, with u = 0 and p
balancing the buoyancy term of eq 12. In order to explore its
stability with respect to hydrodynamic disturbances, we impose
as initial conditions either a numerical or an imposed controlled
noise (see below), superposed to initial fields b = 1, c = c0, and
u = v = 0. Note finally that for the so far undefined reference
values, we choose Δρref = Δρmax, which is the maximum of the
dimensional DV in the reference state, and lref is selected such
that Ra = 1.

■ RESULTS AND DISCUSSION
Flow Simulations. Two simulation cases are investigated,

namely, cases 1 and 2. The parameters D* and δρ* for cases 1
and 2 are selected such as to roughly correspond to the DV
profile shapes experimentally observed in solutions 1 (Figure
2b) and 2 (Figure 2c), respectively. From the physicochemical
parameters for solution 2 (see above), the following values are
used for case 2: D* = 1.25, δρ* = 0.9. We then also obtain ζ =
68.5, lref = 1.4 × 10−4 m, and Da = 15.15. In order to have for
simplicity the same ζ for cases 1 and 2, the following values are
then deduced to represent case 1: D* = 1 and δρ* = 1.014. For
the other parameters, we use Sc = 500, Da = 15.15 (used for
both cases, again for simplicity), Ra = 1 (from the definition of
lref), and c0 = 0. The dimensionless length and height of the
computational domain are taken to be 250. The problem is
numerically solved by a finite element method using COMSOL
Multiphysics.
As expected, given the density profiles considered, a

Rayleigh-Taylor-like dynamics is observed for both cases 1
and 2. Importantly, when simulations are ran without imposing
a controlled noise (i.e., when the perturbations originate from
the numerical noise only), there are 7 plumes that are most
often observed in our computational domain at the instability
onset for both cases. However, further evolutions might be
different between different runs of the same simulation since

Figure 3. Simulated dimensionless DV fields (color) and velocity fields (arrows) at various dimensionless times for case 1 (a−d) and case 2 (e−h).
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the system is highly unstable and the numerical noise is
randomly distributed. In order to trigger RTI from a controlled
perturbed state, a noise function in the form AN exp(−FNz)
sin(−FNx) is superimposed on the initial field of b, with AN =
10−8 the noise amplitude and FN = 14π/250 the noise spatial
frequency (7 wavelengths in the domain).
The simulation results obtained for both cases are shown in

Figure 3, where the DV fields are presented at various times
after the instability onset. It is observed that the simulation
results are in qualitative agreement with the experimental ones.
In case 1, the plumes are formed at the interface and sink
monotonically. In the case 2, a first generation of plumes are
formed at a small finite distance from the interface (actually
where Δρ has its maximum). They seem to soften down a short
time later, and it is clearly observed that a second generation of
plumes is formed in between the previous ones (i.e., the phase
of the periodic disturbance slips by half a wavelength). By
examining the velocity field (see the movies provided as
Supporting Information), it appears that the liquid velocity in
the zones where the plumes are sinking slows down during the
softening phase, before being reversed (see Figure 3e−g). The
zones where the liquid is flowing downward during the first
generation of plumes become the zones where the liquid is
flowing upward at the second generation. For longer times than
those presented in Figure 3d,h for cases 1 and 2, respectively,
the plumes tend to move laterally and to merge for both cases,
reducing the spatial frequency of the plume pattern, which is
also in agreement with experiments (though such coarsening is
eventually observed after longer times than those presented in
Figure 1).
By further analyzing the simulation results, it clearly appears

that the difference in dynamics between cases 1 and 2 is linked
to the existence in case 2 of a quiescent zone near the interface,
where the density stratification is stable (see blue zone in
Figure 3e−h). In both cases, however, right after the plumes
formation, the rate of the interfacial chemical reaction is
enhanced at horizontal locations where the liquid flows upward
(i.e., in between the plumes) because of the resulting
convective supply of fresh reactant B. One could therefore
expect a density increase there in both cases 1 and 2, as both B
and C contribute positively to the density. While in case 1,
convection along the interface is sufficiently strong to transport
this interplume density excess laterally toward the falling
plumes (hence, sustaining this falling motion), this does not
appear to be the case for case 2, where a significant excess of
density remains in between the initial plumes, in the zone of
transition between the quiescent layer and the convective zone.
At the same height, it can be seen from Figure 3e that the
density at the plumes is comparatively lower. After a certain
time, this density field configuration is able to slow down and
even reverse the flow, triggering a second generation of plumes
in between the initial ones, and hence, explaining this particular
phase-slipping dynamics.
Linear Stability Analysis. To further investigate the

particular nonmonotonic RTI dynamics observed in case 2
and contrast it with case 1, we use a frozen-time linear stability
analysis to calculate the complex growth rates σ + iω of spatially
periodic normal modes ∝ exp(ikx), perturbing the horizontally
uniform (reference) state u = 0, b = b(t,z), c = c(t,z). We
consider a moment of time right before the instability onset
becomes manifest in the simulations (at t = 80 for case 1 and t
= 50 for case 2). Here k is the wavenumber. It is made
dimensionless with lref

−1, whereas σ and ω are scaled by tref
−1. The

results for cases 1 and 2 are shown in Figure 4. We see that the
system is strongly linearly unstable (the maximal values of σ are

positive and significantly greater than t−1) already well before
the plume eruption actually occurs. The reason for why it does
not occur earlier can be attributed to the fact that the initial
noise needs time to get sufficiently amplified. We note that the
maximum growth rate can be verified to correspond to about 6
wavelengths (plumes) in our computational domain for both
case 1 and case 2. As expected, this is reasonably well in
agreement with the number of plumes (generally 7) initially
erupting in the simulations starting from the numerical noise.
Arguably the most remarkable result of Figure 4 is the

presence, rather unexpected for problems of this kind, of
oscillatory modes (ω ≠ 0) in case 2. It is worth mentioning that
a similar diagram has been obtained for a different setup
(miscible liquid layers) in Trevelyan et al.13 However, these
authors did not observe oscillatory dynamics in their nonlinear
analysis of the corresponding regimes. On the other hand, case
1 remains “usual” in this regard, with only monotonic modes
throughout. In case 2, even though the most unstable modes
are still monotonic, their nonlinear interactions are likely to
involve higher-wavenumber oscillatory ones, damped or
(slightly) amplified. It is apparently such an intrinsic
mechanism of oscillations present in case 2 that is at the core
of the observed (both experimentally and numerically)
peculiarities of the initial plume eruption discussed earlier.
Curiously enough, even though this is not of direct relevance to
the instability outbreak observed here, the linear stability
analysis (frozen-time) reveals that, in case 2, the first unstable
modes appearing at smaller t values are all oscillatory. It is just
later, as t is increased, that they turn monotonic at the most
unstable interval of k, as in Figure 4.

Transfer Rate. Finally, another remarkable difference
between case 1 and case 2 concerns the impact of convection

Figure 4. Dimensionless growth rate (a) and frequency (b) of small
perturbations vs the wavenumber right before a manifest instability
onset in 2-D simulations.
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on the interfacial mass transfer rate. The already-mentioned
existence of a stably stratified quiescent layer (growing with
time) near the interface in case 2 must indeed modify
considerably the mass transfer dynamics as compared to case
1, in which RTI induce considerable liquid motion/mixing
close to the interface. To assess its influence, a dimensionless
mass transfer rate J is evaluated by integrating −∂zb along the
interface boundary in the computational domain for both cases
and compared to the corresponding result in the absence of
convection (i.e., when u = 0).
The results, represented in Figure 5, clearly show that the

transfer rate is significantly enhanced by the RTI for case 1,

whereas it is just very slightly enhanced for case 2. This is
indeed due to the fact that, in case 2, mass transport in the
quiescent interfacial region remains mainly diffusive. This result
highlights that the RTI development does not necessarily lead
to a significant mass transport enhancement, contrary to what is
commonly expected.

■ CONCLUSIONS AND PERSPECTIVES

We have here considered CO2 absorption in an initially
quiescent and horizontal aqueous solution, where it is
consumed in a fast chemical reaction. Depending on the ratios
of species’ diffusivities and their contribution to density, the
density stratification generated by the CO2 absorption may in
some cases turn out to be nonmonotonic, with a stable region
near the interface, which has several important consequences:
stagnant layer at the interface, oscillatory RTI dynamics, and
very weak mass transfer enhancement after the RTI appearance,
contrary to what happens for a monotonically unstable density
stratification. Density profiles observed experimentally before
the RTI onset can be predicted by a rather simple 1-D model of
the diffusive transport of the reactant and the product, and the
observed RTI dynamics can be reproduced by coupling in a 2-
D formulation the species transport to the momentum
transport, described by a Navier−Stokes−Darcy model
(adapted to Hele-Shaw cells or porous media). A promising
perspective would be to identify solutions corresponding to the
nonmonotonic profiles of Figure 2a and to study their RTI
dynamics. We hope that the present work will stimulate further
research both on the fundamentals of gas chemisorption and on
applications in CO2 capture and storage technologies
(including milli- or microfluidic devices), together with more
classical processes of the chemical industry.
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SUPPORTING INFORMATION

Nonmonotonic Rayleigh-Taylor Instabilities Driven by

Gas-Liquid CO2 Chemisorption

C. Wylock, A. Rednikov, B. Haut, and P. Colinet

Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs),
av. F.D. Roosevelt 50, CP 165/67, 1050 Brussels, Belgium

For gas A absorption into an aqueous solution of B and C accompanied by
an irreversible chemical reaction A+B → C, the following reaction-diffusion
formulation can be considered as standard:

∂t[A] = DA ∂zz[A]− k[A][B] , (S.1)

∂t[B] = DB ∂zz[B]− k[A][B] , (S.2)

∂t[C] = DC ∂zz[C] + k[A][B] , (S.3)

[A] = [A]f , ∂z[B] = 0 , ∂z[C] = 0 at z = 0 , (S.4)

[A] = 0 , [B] = [B]0 , [C] = [C]0 as z → +∞ . (S.5)

Here [A]f is the interfacial concentration of A (the saturation concentration
in contact with a gas A atmosphere, e.g. as given by Henry’s law) and k is
the reaction rate coefficient. The second and third conditions (S.4) stand for
non-penetration of the corresponding species through the interface. We note
that in our case the bulk concentration of B is typically much higher than
that of the dissolved gas A at the interface (several hundreds versus some
tens of mol/m3). Thus, a relation

[A]f � [B]0 (S.6)

will be implied throughout.
Now if we are speaking of an instantaneous reaction, what is going here

is well described in textbooks, see e.g. Bird et al.19 Namely, the reaction
occurs just in a plane parallel to the interface and located at a certain well-
defined distance from the latter. Both A and B are totally consumed at this
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plane and cannot coexist elsewhere due to the instantaneous character of the
reaction. In particular, [A] = 0 below the plane, whereas [B] = 0 between
the plane and the interface. In view of (S.6), this plane is actually situated
sufficiently close to the interface in our case, so that at a global scale we may
not distinguish the two. In this way, we arrive at an instantaneous interfacial
chemical reaction and hence the formulation used in the present study.

On the other hand, we note that what is discussed above is in fact already
an extreme version of an instantaneous reaction, with an “unconditionally
large” kinetic coefficient k. In particular, the reaction zone is supposed to
be much narrower (hence a “plane”) than even its distance to the interface,
which is also small on account of (S.6). In reality, however, one does not
need so strong assumptions for the validity of the simplified chemical reaction
model we rely upon here: the reaction zone, while staying narrow may well be
allowed to extend up to the interface. We shall illustrate this by approaching
the problem from the opposite end: the reaction will still be considered fast
in an appropriate sense, but no assumptions on its instantaneous character
will a priori be made.

Namely, the reaction is considered fast with respect to diffusion at the
length scale lref of interest, which can here be just the boundary-layer thick-
ness at the onset of the Rayleigh-Taylor instability. In other words, as it
can be conjectured e.g. from the form of the reaction and diffusion terms of
Eq. (S.1) with z ∼ lref and [B] ∼ [B]0,

k[B]0 � DA/l
2
ref . (S.7)

If so, the reaction occurs only in a zone with z ∼ (DA/k[B]0)
1/2, where the

reaction and diffusion effects are of the same order of magnitude and which
is narrow at the global scale z ∼ lref . Outside of this zone, at z ∼ lref , we
have [A] = 0 (we shall see shortly that [A] decays exponentially away from
the reaction zone), and the reaction terms vanish in Eqs. (S.2) and (S.3) to
yield simply

∂t[B] = DB ∂zz[B] , (S.8)

∂t[C] = DC ∂zz[C] . (S.9)

In the narrow reaction zone z ∼ (DA/k[B]0)
1/2, on the other hand, Eqs. (S.1)–

(S.3) become quasi-stationary on the time scale l2ref/DA:

0 = DA ∂zz[A]− k[A][B] , (S.10)

0 = DB ∂zz[B]− k[A][B] , (S.11)

0 = DC ∂zz[C] + k[A][B] . (S.12)
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We note that the diffusion coefficients are all considered to be of the same
order of magnitude. Given that [B] ∼ [B]0 and [A] ∼ [A]f , we see on account
of (S.6) that should the reaction appear at the leading order in (S.10), it must
just be a correction in (S.11) and (S.12). Hence, in particular, ∂zz[B] = 0
to leading order. On account of the boundary condition (S.4), this brings to
[B] = constant to leading order in the reaction zone. If so, Eq. (S.10) with
the boundary condition (S.4) can be solved assuming further a non-singular
behavior at infinity (i.e. toward the bulk) to yield

[A] = [A]f exp

⎛
⎝−

√
k[B]

DA

z

⎞
⎠ , (S.13)

which indeed decays exponentially. To proceed, one needs to account for
the influence of the reaction on [B], which comes from calculating the corre-
sponding correction over [B] = constant. However, one can spare a large part
of such a calculation by just integrating Eq. (S.11) along z from 0 to infinity
with [B] = constant and (S.13) used in the reaction term. On account of the
boundary condition (S.4), we obtain

DB∂z[B]
∣∣∣
z→+∞

= [A]f
√
kDA[B] . (S.14)

The matching condition with the main bulk z ∼ lref can symbolically be
written as

∂z[B]
∣∣∣
(k[B]0/DA)1/2z→+∞

= ∂z[B]
∣∣∣
z/lref→0

, (S.15)

implying an overlap in an intermediate zone, where (k[B]0/DA)
1/2z � 1, but

z/lref � 1, which is clearly possible in view of (S.7). The left-hand side
in (S.14) must actually be understood as the one in (S.15). Using (S.15) in
(S.14) and taking into account that to leading order the condition for the
main zone (z ∼ lref) can formally be written directly at z = 0, we arrive at

DB∂z[B] = [A]f
√
kDA[B] at z = 0 . (S.16)

A similar boundary condition, now proceeding from (S.12), can be derived
for [C]:

DC∂z[C] = −[A]f
√
kDA[B] at z = 0 ,

which is better to be combined with (S.16) to yield

DB∂z[B] = −DC∂z[C] at z = 0 . (S.17)

Thus, the problem in the main bulk is reduced on account of (S.6) and
(S.7) to the one with an effective interfacial chemical reaction, emerging
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de facto in the boundary condition (S.16), and with no reaction in the bulk
equations (S.8) and (S.9). The other interface boundary condition, given
by (S.17), also has a clear physical meaning: the consumption of B in this
interfacial reaction is equal to the production of C. The boundary conditions
as z → +∞ are still given by (S.5) for [B] and [C].

The interfacial reaction (S.16) is generally of a finite rate. On the other
hand, it can be seen that an instantaneous one can thereof be obtained as a
limiting case under the assumption

DB[B]0/lref � [A]f
√
kDA[B]0 , (S.18)

which on account of (S.6) and DB ∼ DA is a stronger condition than just (S.7).
In this limit, the boundary condition (S.16) turns into

[B] = 0 at z = 0 . (S.19)

Thus, the simplified chemical reaction formulation used in the present
study is fully recovered. In the framework of a full standard model (S.1)–
(S.5), its validity conditions are given by (S.6) and (S.18).

Note that sufficiently deep into the limit (S.18), the reaction zone develop-
ments like (S.13) cease to be valid as actually obtained under the assumption
[B]� [A] (after all, Eq. (S.13) becomes meaningless for [B]→ 0 with a van-
ishing exponent). Then a different approximation scheme, suitable for the
case [A] ∼ [B]� [B]0, must be adopted for the reaction zone, which for even
higher values of k would permit recovering the reaction-in-the-plane limit
we started with in the present model. Anyhow, all such details are already
immaterial for our goals here, since the boundary condition (S.19) (instan-
taneous interfacial chemical reaction) holds anyway to leading order for any
such transformations of the reaction zone.

Finally, we note that the present developments also hold in the presence
of advective contributions in the reaction-diffusion equations, provided that
the reaction zone is thin enough for the locally defined Peclet numbers to be
small (even if the global ones are not).
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