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Abstract

Density variations induced by gas absorption in reactive aqueous solutions often

trigger buoyancy-induced motions, generally in the form of plumes monotonically sink-

ing into the bulk liquid and enhancing the absorption rate. Here, we contrast two

types of CO2-absorbing alkaline solutions, studying their dynamics inside a vertical

Hele-Shaw cell by interferometry. While the first one indeed behaves as expected, the

second one leads to a quite unusual oscillatory (phase-slipping) dynamics of convective

plumes, which moreover does not lead to a significant transfer enhancement. Thanks

to a simplified model of momentum and species transport, we show that this particular

dynamics is related to a non-monotonic density stratification, resulting in a stagnant

layer close to the interface. Conditions for this to occur are highlighted in terms of the

ratios of species’ diffusivities and their contribution to density, a classification deemed

to be useful for optimizing chemisorption (e.g. for CO2 capture or sequestration) pro-

cesses.
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Introduction

Rayleigh-Taylor instabilities (RTI) are buoyancy-induced flows developing from small fluc-

tuations, whenever a heavier fluid layer lies on top of a lighter one in the field of gravity.1–3

They are observed in a wide range of fields, such as geology,4 hydrology,5 astrophysics6

and even plasma science.7 Whatever the origin of density gradients in the fluids, RTI are

generally expected to occur in the form of plumes monotonically sinking into the bulk liquid,

hence driving an intense mixing and enhancing the rate of heat and mass transfer. For this
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reason, RTI are also increasingly studied nowadays in the framework of carbon dioxide (CO2)

sequestration in deep saline aquifers,8–10 a process for which mixing is expected to add up

to the effect of chemical reactions in boosting the overall efficiency.

Figure 1, explained in more detail later on, presents experimental results obtained when

gaseous CO2 is absorbed in two different initially quiescent aqueous solutions, in otherwise

similar conditions. Figure 1(a-f) is obtained when absorbing gaseous CO2 into an aqueous

solution of monoethanolamine (MEA, 870mol/m3, hereafter solution 1). It illustrates the

classical scenario where denser plumes monotonically finger downwards. In contrast, Fig-

ure 1(g-l), obtained for the absorption of CO2 in an aqueous solution of sodium bicarbonate

(NaHCO3, 790mol/m3) and sodium carbonate (Na2CO3, 625mol/m3) shows a quite unusual

behavior. Hereafter, this solution will be referred to as solution 2. Indeed, instead of plung-

ing deep inside the fresh liquid, plumes here appear to slow down at some depth, soften, and

almost vanish. Meanwhile, a second generation of plumes appears in between the primary

ones, eventually repeating the same scenario and leading to an oscillatory dynamics (this

is more easily seen in some of the movies included as Web-enhanced objects). Note that

this behavior is observed in solution 2 for any pair of the initial NaHCO3 and Na2CO3 con-

centrations used. In most cases, the spatial wavenumber of the plume pattern is comprised

between 1.5 and 3 mm−1 and tends to increase for successive plume generations. In addition,

it is observed that the period between the first and the second generations is usually close to

2 min and that this time-delay between successive generations tends to increase with time.

The goal of the present paper is therefore to understand the physico-chemical mechanisms

at the origin of such a particular dynamics, and more generally to propose a classification

of possible RTI dynamics occurring during the absorption of CO2 in a liquid solution, on

the basis of the relevant properties of the CO2-absorbing solution at hand. In addition, it

is also crucial to quantify the impact of such flows on the enhancement of the global ab-

sorption/conversion rate. As it will be seen hereafter, the density profile prior to instability,

monotonic for solution 1 and non-monotonic for solution 2 (see top of Figure 1), essentially
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1: MEA 2: NaHCO3/Na2CO3

Figure 1: Experimental density variation (DV) fields in the liquid at various times during
CO2 absorption in solution 1 (a-f) and in solution 2 (g-l). Shown above each sequence are
horizontally averaged DV profiles computed for (a) and (g), i.e. before instability onset. Z
is the depth into the liquid (i.e. down vertical coordinate) from the interface (where Z = 0).
Dashed vertical lines indicate the position of initial plumes.

determines the overall dynamics. Note in this respect that the present analysis goes be-

yond recent works concerned with miscible reactive two-liquid systems.11–13 Indeed, these

authors do not evidence any oscillatory dynamics in the nonlinear regime, as we do here both

experimentally and on the basis of a simplified model of the CO2 chemisorption process.

The experimental sequences depicted in Figure 1 have been recorded in a vertical Hele-

Shaw cell (two glass plates separated by a gap of thickness 0.5 mm for solution 1 and 1.9 mm

for solution 2, width 30 mm, liquid filling the gap up to a height of 50 mm), as often used
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to study RTI as this configuration enables quasi-bidimensional visualization while at the

same time mimicking porous media flows.14 We here focus on the liquid phase behavior just

underneath the horizontal gas-liquid interface (located on top of each image). Using a Mach-

Zehnder interferometer (MZI) and thanks to the procedure described in Wylock et al.,15 the

refractive index variation (RIV) field induced in the liquid by the CO2 absorption can be

extracted. For both solutions, a calibration has been carried out and a linear correlation has

been found between RIV and density variation Δρ. Such a device therefore enables following

the spatio-temporal dynamics of the density variations (DV).

Besides what was already said above in relation with Figure 1, another important obser-

vation is that the plumes are formed about 1 mm below the interface for solution 2, while

they appear right at the interface for solution 1. This fact, which will be further examined

numerically in what follows, suggests that the key to understand the different dynamical

regimes lies in the different DV shapes before instability sets in (see the top of Figure 1).

Indeed, for solution 1, the maximum DV is located at the interface and the DV decreases

monotonically with the depth Z. For solution 2, the DV is minimum at the interface. It

first increases with Z, reaching a positive maximum at 0.75 mm below the interface, and

then starts to decrease. In order to explain this and to highlight further differences between

solution 1 and 2, we now turn to a simplified (yet realistic) model of the reaction-diffusion-

convection dynamics. It is worth mentioning however that the goal of the present study is

not an exact modeling of the experiments but rather to extract the essence of the phenomena

with the help of a simple model.

Mathematical modeling

Basic hypotheses

For both considered solutions, the reactions are rather fast as compared to the species trans-

port (see Aboudheir et al. 16 for solution 1 and Vas Bhat et al. 17 for solution 2). The reac-
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tions are then confined to a thin liquid layer at the interface, beyond which CO2 is nearly

depleted. This permits to simplify the reaction scheme by considering an instantaneous re-

action A + B → C taking place only at the gas-liquid interface. Such an approach, which

is described in more detail in Supporting Information, is commonly used for gas absorption

coupled with fast reactions.18,19 It is deemed to be quite a reasonable one in our case, the

actual reaction zone being much thinner than the diffusive boundary layer at the instabil-

ity onset. In our model, A corresponds to CO2 (not penetrating in the liquid), whereas

B and C are the reactant and the product transported from/to the bulk of the liquid, re-

spectively. Let [B] and [C] be the corresponding concentration fields. Before the gas-liquid

absorption begins, these are equal to the initial (homogeneous) concentrations [B]0 and [C]0,

respectively.

Due to the instantaneous character of the reaction, B is totally depleted at the interface,

with [B] = 0 thereat. Before the instability onset, B and C are transported only by diffu-

sion. For the configuration used in the experiments, the DV profile before the onset can be

approached by a one-dimensional (1-D) model. We shall work in terms of the dimensionless

concentrations b = [B]/[B]0 and c = [C]/[B]0 and define c0 = [C]0/[B]0. In general, the

species B and C have different diffusion coefficients and contribute differently to the density

ρ (assumed to vary linearly with [B] and [C]). Let D∗ = DC/DB and δρ∗ = ∂[C]ρ/∂[B]ρ be

the diffusivity and density contribution ratios, respectively.

The dimensionless spatial coordinates and time t are defined using the scales lref and

tref = l2ref/DB, respectively, where lref will be specified later on.

One-dimensional reference profiles

Considering the model hypotheses, the dimensionless 1-D diffusion equations read

∂tb = ∂zzb , (1)
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∂tc = D∗∂zzc . (2)

At the interface (z = 0), the complete depletion of B (due to the instantaneous interfacial

reaction) and a production of C equal to the consumption of B are considered (see Supporting

Information):

b = 0 , (3)

D∗∂zc = −∂zb . (4)

At t = 0 as well as for z → +∞, we specify

b = 1 , (5)

c = c0 . (6)

The solution of the problem (1)-(6) is

b(z, t) = erf

(
z

2
√
t

)
, (7)

c(z, t) = c0 +
1√
D∗ erfc

(
z

2
√
D∗t

)
, (8)

yielding the dimensionless concentration profiles of B and C in the reference state, the

stability of which will be considered in the next section.

The dimensionless DV profile is calculated as

Δ� = ζ((b− 1) + δρ∗(c− c0)) , (9)

where ζ = ∂[B]ρ[B]0/Δρref is a constant coefficient, in which Δρref is a dimensional

reference DV value to be specified. Hence, we have

Δ�(z, t) = ζ

(
δρ∗√
D∗ erfc

(
z

2
√
D∗t

)
− erfc

(
z

2
√
t

))
, (10)
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showing that the DV profile is self-similar and that its shape is controlled by the values

of D∗ and δρ∗. Figure 2 classifies the different shapes found from this expression, depending

on the values of these two parameters.

(a) (b) (c)

Figure 2: Dimensionless DV profile shapes (here with Δρref = ∂[B]ρ[B]0, i.e. ζ = 1) for
D∗ < 1 (a), D∗ = 1 (b) and D∗ > 1 (c). For definiteness, all profiles are drawn at the same
dimensionless time t = 0.25.

In particular, Figure 2 shows that the non-monotonic DV profiles observed for solution

2 occur when D∗ > 1 and δρ∗ <
√
D∗, which indeed turns out to be the case (from the

physico-chemical parameters deduced for solution 2,15 it is found that D∗ ≈ 1.25, δρ∗ ≈ 0.9).

In contrast, it has been estimated that D∗ ≈ 1 and δρ∗ ≈ 2.2 for solution 1 (from MZI

experiment analysis). The profile shapes predicted in Figure 2 are therefore in qualitative

agreement with those obtained experimentally. Note that besides the two cases 1 and 2

studied here, several other DV shapes can in principle be induced, depending on the values

of D∗ and δρ∗.

Momentum and mass transport model

In order to analyze the RTI dynamics, we consider a two-dimensional (2-D) formulation of

the liquid phase flow inside the Hele-Shaw cell, using the Boussinesq approximation together

with an effective (gap-averaged) Navier-Stokes-Darcy20–23 equation for the velocity field. It

should be stressed here that the balance equations for B and C do not include any reaction

terms since the reaction is considered to take place at the interface and not in the bulk (see

above and in the Supporting Information). The dimensionless continuity, momentum and
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species transport equations are thus written as:

∇ · u = 0 , (11)

1

Sc
(∂tu+

6

5
u · ∇u) = −∇p+∇2u− u

Da
+ RaΔ�ez , (12)

∂tb+ u · ∇b = ∇2b , (13)

∂tc+ u · ∇c = D∗∇2c , (14)

where ∇ = (∂x, ∂z), x and z are the horizontal and vertical dimensionless coordinates, the

latter directed downwards as before with ez the corresponding unit vector, u = (u, v) and p

are the velocity and pressure fields adimensionalized with DB/lref and μDB/l
2
ref , respectively,

μ is the dynamic viscosity and Δ� is given by the earlier expression. Ra, Da and Sc are the

Rayleigh, Schmidt and Darcy numbers, respectively, defined as:

Ra =
Δρrefgl

3
ref

μDB

, (15)

Sc =
μ

ρ0DB

, (16)

Da =
h2

12 l2ref
, (17)

where ρ0 is the initial liquid density and h the distance between the two plates of the Hele-

Shaw cell. Note that Eq. (12) differs from the Navier-Stokes equation by the presence of the

Darcy term as well as by a coefficient 6/5 multiplying the nonlinear term, as shown to be

applicable for such kind of 2-D description of Hele-Shaw flows.21

At the top boundary (the interface, z = 0), the conditions for b and c, already defined

by (3) and (4), are complemented by the conditions applicable to a motionless impermeable

stress-free interface:

v = 0 , (18)
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∂zu+ ∂xv = 0 . (19)

It is worth mentioning that possible solutal and thermal (CO2 chemisorption is slightly

exothermic) Marangoni effects at this boundary are not considered here, our intention being

to capture the essence with a model as minimalistic as possible. Moreover, we do not observe

any clear sign of a Marangoni-type convection in experiments with solution 2. In particular,

the interfacial stagnant layer of this solution remains largely motionless during the whole

process, even after the instability onset. Admittedly though, this argument does not hold

for solution 1, where the interfacial layer is not stagnant. Yet, solution 1 is not studied in

such detail here, as it merely serves as an illustration of “classical” plume dynamics with

which we contrast the unusual dynamics of solution 2.

The bottom boundary is set as an open boundary regarding the flow and the species

transport, characterized by the following conditions:

∂zu+ ∂xv = 0 , (20)

−p+ 2∂zv = 0 , (21)

∂zb = 0 , (22)

∂zc = 0 . (23)

The horizontal dimension is treated by means of periodic boundary conditions applied

between the left and right boundaries.

Clearly, the 1-D diffusion profiles found above correspond to a particular solution (the

reference, or rest state solution) of this general boundary-value problem, with u = 0 and

p balancing the buoyancy term of Eq. 12. In order to explore its stability with respect to

hydrodynamic disturbances, we impose as initial conditions either a numerical or an imposed

controlled noise (see below), superposed to initial fields b = 1, c = c0 and u = v = 0. Note

finally that for the so far undefined reference values, we choose Δρref = Δρmax, which is the
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maximum of the dimensional DV in the reference state, and lref is selected such that Ra = 1.

Results and discussion

Flow simulations

Two simulation cases are investigated, namely case 1 and case 2. The parameters D∗ and

δρ∗ for cases 1 and 2 are selected such as to roughly correspond to the DV profile shapes

experimentally observed in solutions 1 (Figure 2(b)) and 2 (Figure 2(c)), respectively. From

the physico-chemical parameters for solution 2 (see above), the following values are used

for case 2: D∗ = 1.25, δρ∗ = 0.9. We then also obtain ζ = 68.5, lref = 1.4 10−4 m and

Da = 15.15. In order to have for simplicity the same ζ for cases 1 and 2, the following values

are then deduced to represent case 1: D∗ = 1 and δρ∗ = 1.014. For the other parameters,

we use Sc = 500, Da = 15.15 (used for both cases, again for simplicity), Ra = 1 (from the

definition of lref) and c0 = 0. The dimensionless length and height of the computational

domain are taken to be 250. The problem is numerically solved by a finite element method

using COMSOL Multiphysics.

As expected given the density profiles considered, a Rayleigh-Taylor-like dynamics is

observed for both cases 1 and 2. Importantly, when simulations are ran without imposing a

controlled noise (i.e. when the perturbations originate from the numerical noise only), it is

7 plumes that are most often observed in our computational domain at the instability onset

for both cases. However, further evolutions might be different between different runs of the

same simulation since the system is highly unstable and the numerical noise is randomly

distributed. In order to trigger RTI from a controlled perturbed state, a noise function in

the form AN exp (−FNz) sin (FNx) is superimposed on the initial field of b, with AN = 10−8

the noise amplitude and FN = 14π/250 the noise spatial frequency (7 wavelengths in the

domain).

The simulation results obtained for both cases are shown in Figure 3, where the DV
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fields are presented at various times after the instability onset. It is observed that the

Case 1 Case 2

Figure 3: Simulated dimensionless DV fields (color) and velocity fields (arrows) at various
dimensionless times for case 1 (a-d) and case 2 (e-h).

simulation results are in qualitative agreement with the experimental ones. In case 1, the

plumes are formed at the interface and sink monotonically. In the case 2, a first generation

of plumes are formed at a small finite distance from the interface (actually where Δ� has

its maximum). They seem to soften down a short time later and it is clearly observed that

a second generation of plumes is formed in between the previous ones (i.e. the phase of

the periodic disturbance slips by half a wavelength). By examining the velocity field (see

the movies provided as Supplementary Material), it appears that the liquid velocity in the

zones where the plumes are sinking slows down during the softening phase, before being

reversed (see Figure 3(e-g)). The zones where the liquid is flowing downward during the

first generation of plumes become the zones where the liquid is flowing upward at the second

generation. For longer times than those presented in Figure 3(d) and (h) for the cases 1 and

2, respectively, the plumes tend to move laterally and to merge for both cases, reducing the

spatial frequency of the plume pattern, which is also in agreement with experiments (though

such coarsening is eventually observed after longer times than those presented in Figure 1).

By further analyzing the simulation results, it clearly appears that the difference in
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dynamics between cases 1 and 2 is linked to the existence in case 2 of a quiescent zone

near the interface, where the density stratification is stable (see blue zone in Figure 3(e-

h)). In both cases however, right after the plumes formation, the rate of the interfacial

chemical reaction is enhanced at horizontal locations where the liquid flows upward (i.e.

in between the plumes), because of the resulting convective supply of fresh reactant B.

One could therefore expect a density increase there in both cases 1 and 2, as both B and

C contribute positively to the density. While in case 1, convection along the interface is

sufficiently strong to transport this inter-plume density excess laterally towards the falling

plumes (hence sustaining this falling motion), this does not appear to be the case for case

2, where a significant excess of density remains in between the initial plumes, in the zone

of transition between the quiescent layer and the convective zone. At the same height, it

can be seen from Figure 3(e) that the density at the plumes is comparatively lower. After a

certain time, this density field configuration is able to slow down and even reverse the flow,

triggering a second generation of plumes in between the initial ones, and hence explaining

this particular phase-slipping dynamics.

Linear stability analysis

To further investigate the particular non-monotonic RTI dynamics observed in case 2 and

contrast it with case 1, we use a frozen-time linear stability analysis to calculate the com-

plex growth rates σ + i ω of spatially periodic normal modes ∝ exp(ikx), perturbing the

horizontally uniform (reference) state u = 0, b = b(t, z), c = c(t, z). We consider a moment

of time right before the instability onset becomes manifest in the simulations (at t = 80 for

case 1 and t = 50 for case 2). Here k is the wavenumber. It is made dimensionless with l−1ref ,

whereas σ and ω are scaled by t−1ref . The results for cases 1 and 2 are shown in Figure 4.

We see that the system is strongly linearly unstable (the maximal values of σ are positive

and significantly greater than t−1) already well before the plume eruption actually occurs.

The reason for why it does not occur earlier can be attributed to the fact that the initial
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noise needs time to get sufficiently amplified. We note that the maximum growth rate can

be verified to correspond to about 6 wavelengths (plumes) in our computational domain for

both case 1 and case 2. As expected, this is reasonably well in agreement with the number of

plumes (generally 7) initially erupting in the simulations starting from the numerical noise.

(a)

(b)

Figure 4: Dimensionless growth rate (a) and frequency (b) of small perturbations versus the
wavenumber right before a manifest instability onset in 2-D simulations.

Arguably the most remarkable result of Figure 4 is the presence, rather unexpected for

problems of this kind, of oscillatory modes (ω 	= 0) in case 2. It is worth mentioning that a

similar diagram has been obtained for a different set-up (miscible liquid layers) in Trevelyan

et al..13 However, these authors did not observe oscillatory dynamics in their nonlinear anal-

ysis of the corresponding regimes. On the other hand, case 1 remains “usual” in this regard,

with only monotonic modes throughout. In case 2, even though the most unstable modes

are still monotonic, their nonlinear interactions are likely to involve higher-wavenumber os-

cillatory ones, damped or (slightly) amplified. It is apparently such an intrinsic mechanism

of oscillations present in case 2 that is at the core of the observed (both experimentally and

numerically) peculiarities of the initial plume eruption discussed earlier. Curiously enough,
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even though this is not of direct relevance to the instability outbreak observed here, the linear

stability analysis (frozen-time) reveals that, in case 2, the first unstable modes appearing at

smaller t values are all oscillatory. It is just later, as t is increased, that they turn monotonic

at the most unstable interval of k, as in Figure 4.

Transfer rate

Finally, another remarkable difference between cases 1 and 2 concerns the impact of con-

vection on the interfacial mass transfer rate. The already-mentioned existence of a stably-

stratified quiescent layer (growing with time) near the interface in case 2 must indeed modify

considerably the mass transfer dynamics as compared to case 1, in which RTI induce consid-

erable liquid motion/mixing close to the interface. To assess its influence, a dimensionless

mass transfer rate J is evaluated by integrating −∂zb along the interface boundary in the

computational domain for both cases, and compared to the corresponding result in the ab-

sence of convection (i.e. when u = 0).

Figure 5: Dimensionless integral mass transfer rates versus time for cases 1 and 2 and
comparison with the 1-D diffusional regime (without RTI) with D∗ = 1.

The results, represented in Figure 5, clearly show that the transfer rate is significantly

enhanced by the RTI for case 1, whereas it is just very slightly enhanced for case 2. This is

indeed due to the fact that, in case 2, mass transport in the quiescent interfacial region re-

mains mainly diffusive. This result highlights that the RTI development does not necessarily

lead to a significant mass transport enhancement, contrarily to what is commonly expected.
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Conclusions and perspectives

We have here considered CO2 absorption in an initially quiescent and horizontal aqueous

solution, where it is consumed in a fast chemical reaction. Depending on the ratios of

species’ diffusivities and their contribution to density, the density stratification generated

by the CO2 absorption may in some cases turn out to be non-monotonic with a stable

region near the interface, which has several important consequences: stagnant layer at the

interface, oscillatory RTI dynamics, and very weak mass transfer enhancement after the RTI

appearance contrary to what happens for a monotonically unstable density stratification.

Density profiles observed experimentally before the RTI onset can be predicted by a rather

simple 1-D model of the diffusive transport of the reactant and the product, and the observed

RTI dynamics can be reproduced by coupling in a 2-D formulation the species transport to

the momentum transport, described by a Navier-Stokes-Darcy model (adapted to Hele-Shaw

cells or porous media). A promising perspective would be to identify solutions corresponding

to the non-monotonic profiles of Figure 2(a), and to study their RTI dynamics. We hope that

the present work will stimulate further research both on fundamentals of gas chemisorption

and on applications in CO2 capture and storage technologies (including milli or micro-fluidic

devices), together with more classical processes of the chemical industry.

Acknowledgement

The authors are thankful to Prof. A. De Wit and her team for helpful discussions. C. Wylock

and P. Colinet are respectively a Postdoctoral Researcher and a Senior Research Associate

of the Fonds de la Recherche Scientifique-FNRS, which is gratefully acknowledged for its

support. The authors also acknowledge financial support of BELSPO and ESA via the

PRODEX programme. This study is also related to the activity of the European network

action COST MP1106 “Smart and green interfaces - from single bubbles and drops to in-

dustrial, environmental and biomedical applications”.

16
This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in The Journal 
of Physical Chemistry B, copyright © American Chemical Society after peer review.  To access the final edited and published work, 
see http://pubs.acs.org/doi/pdf/10.1021/jp5070038.



Supporting Information Available

The rationale behind the simplified chemical reaction model (instantaneous interfacial chemi-

cal reaction) used in the present study are elaborated in Supporting Information. Animations

of the time evolution of the experimental DV fields for solutions 1 and 2 (as presented in

Figure 1), another aqueous solution NaHCO3 (519mol/m3) and Na2CO3 (617mol/m3) and

time evolution of the simulated DV for cases 1 and 2 (as presented in Figure 3) are also

available as Web-enhanced objects. This material is available free of charge via the Internet

at http://pubs.acs.org/.
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SUPPORTING INFORMATION

Non-Monotonic Rayleigh-Taylor Instabilities Driven

by Gas-Liquid CO2 Chemisorption

C. Wylock, A. Rednikov, B. Haut, and P. Colinet

Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs),
av. F.D. Roosevelt 50, CP 165/67, 1050 Brussels, Belgium

For gas A absorption into an aqueous solution of B and C accompanied by
an irreversible chemical reaction A+B → C, the following reaction-diffusion
formulation can be considered as standard:

∂t[A] = DA ∂zz[A]− k[A][B] , (S.1)

∂t[B] = DB ∂zz[B]− k[A][B] , (S.2)

∂t[C] = DC ∂zz[C] + k[A][B] , (S.3)

[A] = [A]f , ∂z[B] = 0 , ∂z[C] = 0 at z = 0 , (S.4)

[A] = 0 , [B] = [B]0 , [C] = [C]0 as z → +∞ . (S.5)

Here [A]f is the interfacial concentration of A (the saturation concentration
in contact with a gas A atmosphere, e.g. as given by Henry’s law) and k is
the reaction rate coefficient. The second and third conditions (S.4) stand for
non-penetration of the corresponding species through the interface. We note
that in our case the bulk concentration of B is typically much higher than
that of the dissolved gas A at the interface (several hundreds versus some
tens of mol/m3). Thus, a relation

[A]f 
 [B]0 (S.6)

will be implied throughout.
Now if we are speaking of an instantaneous reaction, what is going here

is well described in textbooks, see e.g. Bird et al.19 Namely, the reaction
occurs just in a plane parallel to the interface and located at a certain well-
defined distance from the latter. Both A and B are totally consumed at this
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plane and cannot coexist elsewhere due to the instantaneous character of the
reaction. In particular, [A] = 0 below the plane, whereas [B] = 0 between
the plane and the interface. In view of (S.6), this plane is actually situated
sufficiently close to the interface in our case, so that at a global scale we may
not distinguish the two. In this way, we arrive at an instantaneous interfacial
chemical reaction and hence the formulation used in the present study.

On the other hand, we note that what is discussed above is in fact already
an extreme version of an instantaneous reaction, with an “unconditionally
large” kinetic coefficient k. In particular, the reaction zone is supposed to
be much narrower (hence a “plane”) than even its distance to the interface,
which is also small on account of (S.6). In reality, however, one does not
need so strong assumptions for the validity of the simplified chemical reaction
model we rely upon here: the reaction zone, while staying narrow may well be
allowed to extend up to the interface. We shall illustrate this by approaching
the problem from the opposite end: the reaction will still be considered fast
in an appropriate sense, but no assumptions on its instantaneous character
will a priori be made.

Namely, the reaction is considered fast with respect to diffusion at the
length scale lref of interest, which can here be just the boundary-layer thick-
ness at the onset of the Rayleigh-Taylor instability. In other words, as it
can be conjectured e.g. from the form of the reaction and diffusion terms of
Eq. (S.1) with z ∼ lref and [B] ∼ [B]0,

k[B]0 � DA/l
2
ref . (S.7)

If so, the reaction occurs only in a zone with z ∼ (DA/k[B]0)
1/2, where the

reaction and diffusion effects are of the same order of magnitude and which
is narrow at the global scale z ∼ lref . Outside of this zone, at z ∼ lref , we
have [A] = 0 (we shall see shortly that [A] decays exponentially away from
the reaction zone), and the reaction terms vanish in Eqs. (S.2) and (S.3) to
yield simply

∂t[B] = DB ∂zz[B] , (S.8)

∂t[C] = DC ∂zz[C] . (S.9)

In the narrow reaction zone z ∼ (DA/k[B]0)
1/2, on the other hand, Eqs. (S.1)–

(S.3) become quasi-stationary on the time scale l2ref/DA:

0 = DA ∂zz[A]− k[A][B] , (S.10)

0 = DB ∂zz[B]− k[A][B] , (S.11)

0 = DC ∂zz[C] + k[A][B] . (S.12)
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We note that the diffusion coefficients are all considered to be of the same
order of magnitude. Given that [B] ∼ [B]0 and [A] ∼ [A]f , we see on account
of (S.6) that should the reaction appear at the leading order in (S.10), it must
just be a correction in (S.11) and (S.12). Hence, in particular, ∂zz[B] = 0
to leading order. On account of the boundary condition (S.4), this brings to
[B] = constant to leading order in the reaction zone. If so, Eq. (S.10) with
the boundary condition (S.4) can be solved assuming further a non-singular
behavior at infinity (i.e. towards the bulk) to yield

[A] = [A]f exp

⎛
⎝−

√
k[B]

DA

z

⎞
⎠ , (S.13)

which indeed decays exponentially. To proceed, one needs to account for
the influence of the reaction on [B], which comes from calculating the corre-
sponding correction over [B] = constant. However, one can spare a large part
of such a calculation by just integrating Eq. (S.11) along z from 0 to infinity
with [B] = constant and (S.13) used in the reaction term. On account of the
boundary condition (S.4), we obtain

DB∂z[B]
∣∣∣
z→+∞

= [A]f
√

kDA[B] . (S.14)

The matching condition with the main bulk z ∼ lref can symbolically be
written as

∂z[B]
∣∣∣
(k[B]0/DA)1/2z→+∞

= ∂z[B]
∣∣∣
z/lref→0

, (S.15)

implying an overlap in an intermediate zone, where (k[B]0/DA)
1/2z � 1, but

z/lref 
 1, which is clearly possible in view of (S.7). The left-hand side
in (S.14) must actually be understood as the one in (S.15). Using (S.15) in
(S.14) and taking into account that to leading order the condition for the
main zone (z ∼ lref) can formally be written directly at z = 0, we arrive at

DB∂z[B] = [A]f
√
kDA[B] at z = 0 . (S.16)

A similar boundary condition, now proceeding from (S.12), can be derived
for [C]:

DC∂z[C] = −[A]f
√

kDA[B] at z = 0 ,

which is better to be combined with (S.16) to yield

DB∂z[B] = −DC∂z[C] at z = 0 . (S.17)

Thus, the problem in the main bulk is reduced on account of (S.6) and
(S.7) to the one with an effective interfacial chemical reaction, emerging
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de facto in the boundary condition (S.16), and with no reaction in the bulk
equations (S.8) and (S.9). The other interface boundary condition, given
by (S.17), also has a clear physical meaning: the consumption of B in this
interfacial reaction is equal to the production of C. The boundary conditions
as z → +∞ are still given by (S.5) for [B] and [C].

The interfacial reaction (S.16) is generally of a finite rate. On the other
hand, it can be seen that an instantaneous one can thereof be obtained as a
limiting case under the assumption

DB[B]0/lref 
 [A]f
√
kDA[B]0 , (S.18)

which on account of (S.6) and DB ∼ DA is a stronger condition than just (S.7).
In this limit, the boundary condition (S.16) turns into

[B] = 0 at z = 0 . (S.19)

Thus, the simplified chemical reaction formulation used in the present
study is fully recovered. In the framework of a full standard model (S.1)–
(S.5), its validity conditions are given by (S.6) and (S.18).

Note that sufficiently deep into the limit (S.18), the reaction zone develop-
ments like (S.13) cease to be valid as actually obtained under the assumption
[B]� [A] (after all, Eq. (S.13) becomes meaningless for [B]→ 0 with a van-
ishing exponent). Then a different approximation scheme, suitable for the
case [A] ∼ [B]
 [B]0, must be adopted for the reaction zone, which for even
higher values of k would permit recovering the reaction-in-the-plane limit
we started with in the present model. Anyhow, all such details are already
immaterial for our goals here, since the boundary condition (S.19) (instan-
taneous interfacial chemical reaction) holds anyway to leading order for any
such transformations of the reaction zone.

Finally, we note that the present developments also hold in the presence
of advective contributions in the reaction-diffusion equations, provided that
the reaction zone is thin enough for the locally defined Peclet numbers to be
small (even if the global ones are not).
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