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Abstract

Standard discretizations of Stokes problems lead to linear systems of equations
in saddle point form, making difficult the application of algebraic multigrid meth-
ods. In this paper, a new approach is proposed. It consists in first transforming
the system by pre- and post-multiplication with simple, algebraic, sparse block tri-
angular matrices. This is a form of pre-conditioning in the literal sense, designed to
make sure that the transformed matrix is well adapted to multigrid. In particular,
after transformation, all the diagonal blocks are symmetric and positive definite, and
correspond to, or resemble, a discrete Laplace operator. Then, to each of these di-
agonal blocks is associated a prolongation that works well for it, using any relevant
algebraic or geometric multigrid method. Next, a multigrid scheme for the global
system is naturally set up by combining these partial prolongations with a Galerkin
coarse grid matrix. For this approach combined with damped Jacobi-smoothing, a
uniform two-grid convergence bound is derived for the global system under the as-
sumption that the two-grid schemes for the different diagonal blocks are themselves
uniformly convergent. This result is illustrated by a few examples, showing further
that time-dependent problems and variable viscosity can be handled in a natural way,
without requiring parameter adjustment. A numerical comparison also shows that
the new approach can be more effective than state-of-the-art block preconditioning
techniques.
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1 Introduction

Stokes equations appear in numerous applications such as incompressible fluid dynamics
and some structural mechanics problems. Their discretization lead to linear systems whose
matrix has a 2×2 block structure, in which the lower diagonal block (the one related to the
pressure unknowns) is either a zero block or a block containing very small matrix elements.

This makes uneasy the application of multigrid methods to solve these linear systems,
since standard smoothing iterations such as damped Jacobi or Gauss–Seidel methods may
be either undefined or not convergent. Nevertheless, the tradition of solving Stokes equa-
tions with multigrid is long, and interesting approaches have been presented during the last
35 years, each of them characterized by the use of a specific smoother. This includes the
Vanka smoother [34], in which the primary unknowns, pressure and the velocities in a grid
cell, are updated simultaneously. Another approach is called “distributive smoothing”, in
which one first transforms the discrete system in such a way that standard Gauss–Seidel
smoothing performs well on the transformed system [5, 39]. Inexact Uzawa type proce-
dures (e.g., [2, Section 8.1]) have also been considered as smoothing iterations for multigrid
schemes; see [18, 14].

It is worth noting that these approaches have rarely been considered in combination
with algebraic multigrid (AMG) schemes (see, however, [20, 36, 37]). There are indeed
two obstacles. On the one hand, it is part of the philosophy of AMG methods to fix the
smoother to a simple scheme such as damped Jacobi or Gauss–Seidel, and address any
peculiarity of the linear system via the design of the prolongation operator. On the other
hand, the lack of a proper diagonal block for the pressure unknowns does not permit to use
the “unknown-based” coarsening [9, 32], in which the prolongation operator is set up by
considering separately the different type of unknowns (in the present case, velocity com-
ponents and pressure). Another possible approach is “point-based” AMG [9, Section 3.4],
in which a general coarsening scheme is set up for the discretization grid, and then used
separately on each type of unknown. A difficulty might be here that the discretization
of Stokes equations often uses different grids for the different types of unknowns: stag-
gered grids in the finite difference case [38], or different order of accuracy for finite element
discretizations [12].

In the present paper we develop the foundation of a novel approach that naturally
overcomes these difficulties. Like distributive smoothing, it is based on a transformation of
the original linear system. However, distributive smoothing considers the transformation
only as a mean to obtain convergent smoothers for the original system, whereas here we
propose a transformation designed to allow the straightforward application of multigrid
schemes in their whole.

The transformation consists in pre- and post-multiplication with simple, algebraic,
sparse block triangular matrices. It provides a form of pre-conditioning in the literal sense,
the multigrid scheme being afterwards applied to the transformed system. The transformed
matrix is “well adapted” to multigrid firstly because all the diagonal blocks are symmetric
and positive definite (SPD), and resemble, or correspond to, a discrete Laplace operator.
Hence, it is straightforward to apply the “unknown-based” coarsening strategy. Secondly,
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we show that the approach is theoretically well founded by proving a uniform bound on
the two-grid convergence factor associated with damped Jacobi-smoothing for the global
system, under the main assumption that the two-grid schemes for the different diagonal
blocks are themselves uniformly convergent — a requirement easy to meet given that these
blocks are discrete Laplace-like matrices.

Our results are general since they are compatible with virtually any type of algebraic
or even geometric coarsening scheme. The proposed approach can thus be combined with
each one’s favorite method: classical AMG [6, 32], smoothed aggregation AMG [35], or
plain (unsmoothed) aggregation AMG [22, 25]. On the other hand, we focus on rigorous
convergence proofs, which goes along with some limitations: only two-grid schemes with
Galerkin coarse grid matrices and a single step of damped Jacobi smoothing are covered.
Of course, to fully validate a method, some practically oriented questions should be further
investigated, such as: which smoothing scheme performs best in practice, which multigrid
cycle is recommended, etc. However, a proper answer to these questions would likely
depend on the type of coarsening used and possibly also on the class of Stokes problems
under considerations. To keep the present study general, these questions are therefore
deliberately left for future research. The results presented here are thus to be seen as a
proof of concept for a class of methods, rather than a complete study of one particular
instance.

To conclude this introduction, let us stress that the above remarks on the use of AMG
schemes to solve discrete Stokes problems focus on their direct application to the system of
coupled PDEs. It goes without saying that the mentioned difficulties do not concern the use
of AMG techniques within the framework of block preconditioning methods. These (see,
e.g., [2, 11, 12, 29]) require approximations of the inverse of certain matrix blocks, and are
in fact most effective when multigrid is used for this purpose. Here, one may apply AMG
without particular difficulty because these matrix blocks are related to scalar Poisson-
like problems. Therefore, when geometric multigrid cannot be used, this combination of
block preconditioning with AMG is often the most effective option. It is also widely used
in practice. Note, however, that when geometric multigrid can be used, the comparison
developed in [16] tends to favor multigrid schemes for the coupled system. This gives strong
motivation in the development of AMG schemes that can similarly be directly applied to
the coupled system. In Section 6 below, we give a limited comparison of the approach
proposed here with the most popular of these block preconditioners.

The remaining of this paper is organized as follows. In Section 2, we present the class
of Stokes problems that serves us as motivation, and give some properties of the associated
linear systems. The proposed approach is then described in Section 3, whereas its analysis
is developed in Section 4. In Section 5, we discuss two particular examples, providing also
some numerical illustrations. Some further numerical results including a comparison with
block diagonal preconditioning is provided in Section 6. Concluding remarks are given in
Section 7.
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Notation

For any (possibly complex) vector v , vT is its transpose, ‖v‖ is its 2-norm and, for ar-
bitrary SPD matrix G , ‖v‖G is the associated energy norm: ‖v‖G =

√
v∗Gv . For any

square matrix C , ρ(C) is its spectral radius (i.e., its largest eigenvalue in modulus) and
σ(C) is its spectrum. If C has only real eigenvalues (e.g., if it is similar to a symmetric
matrix), λmin(C) and λmax(C) further stand for its smallest and largest eigenvalue, respec-
tively. Finally, inequalities between square symmetric matrices are to be understood in the
nonnegative definite sense: C1 ≤ C2 if and only if C1 − C2 is nonnegative definite.

2 Stokes equations and their discretization

We consider the following problem: find the velocity vector u and the pressure field p
satisfying

ξu− ν∆u+∇p = f , in Ω ,
∇ · u = 0, in Ω ,

(2.1)

and appropriate boundary conditions on ∂Ω . In (2.1), Ω is a bounded domain of R2 or R3 ,
f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0 are given.
The latter is often a quantity proportional to the inverse of the time-step in an implicit
time integration method applied to a nonstationary Stokes problem; ξ = 0 corresponds to
the classical stationary Stokes problem.

With most schemes, the discretization of (2.1) leads to a linear system of the form

A
(
u

p

)
=

(
bu

bp

)
(2.2)

where

A =

(
A BT

B −C

)
, (2.3)

In this matrix, A is the discrete representation of the operator ξ−ν∆; more precisely, A is
block diagonal with one diagonal block per spatial dimension, being the discrete operator
acting on one of the velocity components. It further follows that A is SPD. The matrix
block BT is the discrete gradient and (−B) the discrete divergence; C is a stabilization term
which is needed by some discretization schemes to avoid spurious solutions. Such spurious
solutions arise when the discrete gradient admits more than the constant vector in its null
space or near null space; i.e., when the discrete gradient is zero or near zero for some
spurious pressure modes. The existence of such modes depends on which discretization
scheme is used for velocities and pressure. We refer to, e.g., [38] and [12] for more details on,
respectively, finite difference and finite element discretizations. Note a required property
of the stabilization operator: if B is not full rank, C has to be positive definite on the null
space of BT , which further entails that the system matrix is nonsingular [2].

An important exception to this latter rule is when the boundary conditions are such that
the physical pressure is only determined up to a constant. In such cases some additional
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condition is needed to make the problem well-posed. Often, one imposes that the mean
pressure is equal to zero. Then, the discrete system is singular but compatible, and,
regarding iterative methods, one has to care that the iteration is actually performed in
a subspace in which the system is regular. Often this raises no particular difficulty, and
this approach is in general preferred to the alternative that consists in fixing the discrete
pressure at some point. Indeed, this latter approach transforms the singular system in
a near singular one; i.e., it introduces a form off ill-conditioning, which may spoil the
convergence iterative methods.

However, a nice features of multigrid methods lies in their ability to handle efficiently
near singular systems, and the approach presented here makes no exception. For the exam-
ples considered in Section 5, we even numerically checked that the eigenvalue distribution
of the iteration matrix was nearly identical with both the techniques mentioned in the
previous paragraph. Hence we shall only discuss explicitly the second one (in which the
problem is regularized). This further displays the robustness of our approach while keep-
ing the overall presentation simpler, allowing us to develop the theory for regular matrices
only. More precisely, the results to follow are for matrices of the form (2.3), assuming that
A is SPD, that C is nonnegative definite, and that either B is full rank or C is positive
definite on the null space of BT (which, as note above, implies that A is nonsingular).

3 The proposed approach

Let DA = diag(A) and let α be a positive parameter such that α ≈ (λmax(D
−1
A A))−1 ; e.g.,

α = (‖D−1
A A‖∞)−1 . Defining

L =

(
In

αBD−1
A −Im

)
, U =

(
In −αD−1

A BT

Im

)
, (3.1)

our approach is firstly based on a change of variable:
(
u

p

)
= U

(
û

p̂

)
.

Then, multiplying both side of (2.2) to the left by L , we obtain

Â
(
û

p̂

)
= L

(
bu

bp

)
(3.2)

with Â = LAU ; i.e.,

Â =

(
Â B̂T

−B̂ Ĉ

)
=

(
A (In − αAD−1

A )BT

−B(In − αD−1
A A) C +B(2αD−1

A − α2D−1
A AD−1

A )BT

)
. (3.3)

Our approach consists then in solving the transformed system (3.2) with multigrid.
More precisely, we propose to use the “unknown-based” multigrid approach [9, 32], in
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which the coarsening for a system of discrete PDEs is obtained by considering separately
the diagonal blocks associated to the different type of unknowns. This is consistent with
the structure of the block diagonal part of Â :

diagblock

(
Â
)

=

(
A

Ĉ

)
(3.4)

is SPD. 1 Further, its diagonal blocks are “well adapted” to multigrid. Indeed, as noted in
the preceding section, each diagonal block of A (one per spatial dimension) is a discrete

representation of ξ − ν∆. Regarding Ĉ , there is no similar general argument, but, in
the two examples considered in Section 5, it turns out that Ĉ is a symmetric M-matrix
with nonnegative row-sum, and further that it corresponds to a stencil which is a linear
combination of several classical stencils for the Laplace operator. This is likely connected to
the fact that, for the suggested value of α , the dominating term in Ĉ is 2αBD−1

A BT , where
BT is the discrete gradient and (−B) the discrete divergence, whereas DA is essentially
proportional to the viscosity ν ; hence, BD−1

A BT ≈ −c ∇ · (ν−1 ∇) for some constant c .

Thus we pursue the discussion presuming that both A and Ĉ are “well adapted” to
multigrid, and hence that it is easy to set up relevant prolongations matrices PA and PĈ .
We further assume that these prolongations work well in combination with damped Jacobi
smoothing. Note that this is a natural requirement for prolongations obtained by applying
AMG methods to A and Ĉ , since this is part of the philosophy of these methods that the
prolongation is designed to work well with simple smoothers.

Equipped with these PA and PĈ , we define the prolongation for the global system

P =

(
PA

PĈ

)
. (3.5)

And, in fact, nothing else is needed to setup a relevant two-grid scheme for Â , combining
this prolongation with damped Jacobi smoothing and the Galerkin coarse grid matrix

Âc = PT Â P .

In particular, letting

D = diag
(
Â
)

=

(
diag(A)

diag
(
Ĉ
)
)

, (3.6)

we can define the iteration matrix associated with a basic scheme using only a single step
of damped Jacobi post-smoothing:

T =
(
I − ωD−1Â

)(
I − PÂ−1

c PT Â
)

. (3.7)

In the following section, we prove a bound on the spectral radius of T that necessitates only
the convergence of similar two-grid schemes for the diagonal blocks A and Ĉ (considered
separately).

1If 0 < α < 2(λmax(D
−1
A

A))−1 , then 2αD−1
A

− α2D−1
A

AD−1
A

is SPD, and hence Ĉ is SPD as well when
C is positive definite on the range of BT .
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Computational cost and implementation

Clearly, the transformed matrix (3.3) will be denser than the original matrix, with a
potential significant impact on the overall efficiency of the proposed approach. However,
most of this impact can be annihilated with a clever implementation.

Indeed, at fine grid level, instead of storing explicitly the transformed matrix, one can
keep the original one (2.3) together with the triangular factors (3.1), and implement the
matrix vector product with A as the product with, successively, U , A , and L . Because
B is usually very sparse, the extra cost compared with a mere multiplication by A will be
moderate.

Moreover, looking closely at the operations involved with this strategy, it turns out
that further saving is possible because the steps associated with B and BT (both present
in A and in either U or L) can be combined so as to perform only one multiplication with
these terms. The following algorithm computes

(
wu

wp

)
= Â

(
vu

vp

)

according this idea.

1. ŵu = BT vp

2. w̃u = vu − αD−1
A ŵu

3. wu = A w̃u + ŵu

4. w̄u = w̃u − αD−1
A wu

5. wp = −B w̄u + C vp

The validity of this algorithm can be checked following the steps backward, which gives

wp = B
(
αD−1

A wu − w̃u

)
+ C vp

= B
(
αD−1

A (A w̃u + ŵu)− w̃u

)
+ C vp

= B
((
αD−1

A A− I
) (

vu − αD−1
A ŵu

)
+ αD−1

A ŵu

)
+ C vp

= B
(
αD−1

A A− I
)
vu +B

(
2αD−1

A − α2D−1
A AD−1

A

)
BT vp + C vp

= − B̂ vu + Ĉ vp ,

wu = A
(
vu − αD−1

A ŵu

)
+ ŵu

= Avu +
(
I − αAD−1

A

)
BT vp

= Âvu + B̂T vp .

Exchanging steps 2 and 4 for w̃u = vu and w̄u = w̃u (i.e., setting α = 0), the above
algorithm reduces to a sensible implementation of the multiplication by the original matrix
A (up to a change sign of wp). Hence, steps 2 and 4 represent the only extra operations

involved by the transformation of A into Â . Storing the entries of the diagonal matrix
αD−1

A in a vector, this amounts to only two multiplications and two additions per velocity
unknown.
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4 Theoretical analysis

4.1 A preliminary motivating result

We first need to recall some results from the algebraic convergence theory of two-grid meth-
ods. We start with the definition of the approximation property constant K(G ,PG ,MG)
associated with a triplet of matrices G , PG and MG , where G is the matrix to which
the two-grid scheme is applied, PG the prolongation matrix of the two-grid scheme, and
MG a matrix related to the smoother (see below). For a SPD matrix G , the usage of
K(G ,PG , diag(G)) traces back to [4]. Here the definition is extended to general (possibly
nonsymmetric) matrices positive definite in R

n ; that is, to matrices G such that

vTGv > 0 ∀v ∈ R
n\{0} ,

or, equivalently, such that
GS = 1

2
(G+GT ) (4.1)

is SPD. For the sake of completeness, we give two formulations whose equivalence is well
known (see [28] for an explicit proof).

Definition 4.1. Let G and MG be n × n matrices such that G is positive definite in R
n

and MG is SPD. Let PG be an n×nc matrix of rank nc < n . The associated approximation
property constant is

K(G ,PG ,MG) = max
v∈Rn\{0}

vT MG

(
I − PG

(
P T
GMG PG

)−1
P T
GMG

)
v

vT Gv
. (4.2)

Equivalently, K(G ,PG ,MG) is the smallest constant K such that

∀u ∈ R
n ∃v ∈ R

nc such that ‖u− PG v‖2MG
≤ K ‖u‖2GS

, (4.3)

where GS is defined by (4.1).

In [4], a bound on the two grid convergence rate is obtained for G SPD, based on
K(G ,PG , diag(G)) and a further smoothing property constant. The theory has been
later improved and extended in, e.g., [32, 7, 13, 26] (see [28] for a review). In particular,
Corollary 2.1 in [26] allows to make a direct connection between the approximation property
constant and the convergence of a mere two-grid method with a single post-smoothing step;
namely, the two-grid method with iteration matrix

TG = (I −M−1
G G)(I − PGG

−1
c P T

GG) , (4.4)

where
Gc = P T

G GPG (4.5)

is the Galerkin coarse grid matrix. Furthermore, Corollary 2.2 of [26] extends this connec-
tion to nonsymmetric matrices positive definite in R

n . These results from [26] are recalled
in the following lemma.

8



Lemma 4.1. Let G and MG be n× n matrices such that G is positive definite in R
n and

MG is SPD. Let PG be an n× nc matrix of rank nc < n .
Letting TG be defined by (4.4), the eigenvalues of I − TG that are not equal to 1 are the

inverse of the nonzero eigenvalues of

G−1MG

(
I − PG

(
P T
GMG PG

)−1
P T
GMG

)
.

Moreover, letting K(G ,PG ,MG) be as in Definition 4.1, the nonzero eigenvalues λ of
TG satisfy

ℜe(λ) ≤ 1− 1

K(G ,PG ,MG)
. (4.6)

If, in addition, G is symmetric (i.e., SPD), then the eigenvalues of TG are real and

max
λ∈σ(T )\{0}

λ = 1− 1

K(G ,PG ,MG)
(4.7)

min
λ∈σ(T )\{0}

λ ≥ 1− λmax(M
−1
G G) . (4.8)

Applied to the SPD matrix A with PA and MA = ω−1diag(A) , this lemma tells us that,
for properly chosen ω (i.e., such that 1 ≤ ωλmax(D

−1
A A) ≪ 2), the two-grid method for A

with one single step of damped Jacobi smoothing converges fast if and only ifK(A , PA , DA)

is reasonably bounded. Similarly, the two-grid method for Ĉ with one single step of damped
Jacobi smoothing converges fast if and only ifK(Ĉ , PĈ , DĈ) is reasonably bounded. Hence
the requirement that the prolongations PA and PĈ work well in combination with damped

Jacobi smoothing amounts to the requirement that K(A , PA , DA) and K(Ĉ , PĈ , DĈ) are
reasonably bounded.

Now, consider the transformed matrix (3.3). A first observation is that its symmetric
part coincides with its block diagonal part:

ÂS = 1
2

(
Â+ ÂT

)
= diagblock

(
Â
)

=

(
A

Ĉ

)
.

Hence Â is positive definite in R
n . Further, it is clear from Definition 4.1 thatK(Â ,P ,M)

= K(ÂS ,P ,M) for any P ,M . Therefore, for P of the form (3.5) and D as in (3.6):

K
(
Â ,P ,D) = max

(
K(A , PA , DA) , K(Ĉ , PĈ , DĈ)

)
. (4.9)

Thus, in view of the preceding paragraph, the basic requirement that PA and PĈ work

well in combination with damped Jacobi smoothing suffices to guarantee that K
(
Â ,P ,D)

is reasonably bounded; that is, see (4.6), to guarantee that the iteration matrix (3.7)
associated with one single step of damped Jacobi smoothing for A has no eigenvalue close
to 1 . This is a major step: what prevents the fast convergence of iterative methods is
classically the presence of near singular modes for the system matrix, to which correspond
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eigenvalues of the iteration matrix that are very close to 1. Just with the above reasoning,
we already know that the suggested approach handles efficiently such modes.

This is, however, not yet a full convergence proof: the inequality (4.6) does not say
anything about the imaginary part of the eigenvalues, and does also not prevent eigenvalues
with large negative real part. In the SPD case, the result (4.8) offers a useful complement
to (4.7), but there is no such a general result for nonsymmetric matrices, except possibly
for M-matrices [26, 27]. Hence a specific analysis is needed, which is developed in the next
two subsections, the first one containing technical developments needed to prove the main
results that are stated in the second one.

4.2 Technical lemmas

The first lemma extends, for saddle point matrices in the form (4.10) (i.e., nonsymmetric
but positive definite in R

n+m), the eigenvalue analysis developed in [3, Proposition 2.12]
and [29, Theorem 4.1] to a form (4.12) of generalized eigenvalue problem where the right
hand side matrix is an orthogonal projector. Observe that the matrices (3.3) resulting
from the transformation suggested in Section 3 satisfy the assumptions of the lemma.

Lemma 4.2. Let

A =

(
A BT

−B C

)
(4.10)

be a matrix such that A and C are, respectively, n× n and m×m SPD matrices.
Let

Q =

(
QA

QC

)
(4.11)

be a matrix such that QA is n×nc and QC is m×mc with nc ≤ n , mc ≤ m and QT
AQA = Inc

,
QT

CQC = Imc
.

Letting
SA = A+BTC−1B and SC = C +BA−1BT ,

define

κA = λmax(Q
T
AA

−1QA) , γA = λmax(SA) ,

κC = λmax(Q
T
CC

−1QC) , γC = λmax(SC) ,

κ =
2 κA κC

κA + κC

, γ =
2 γA γC
γA + γC

.

The eigenvalues λ of the generalized eigenvalue problem

A z = λQQT z , QT z 6= 0 (4.12)

are such that either 



ℑm(λ) = 0

ℜe(λ) ≥
(
max (κA , κC)

)−1

ℜe(λ) ≤ max (γA , γC)

(4.13)
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or 



ℑm(λ) 6= 0

ℜe(λ) ≥ κ−1

∣∣λ− γ
2

∣∣ ≤ γ
2
.

(4.14)

Proof. The stated results (4.13), (4.14) are straightforward corollaries of Theorem 4.1
of [29] if we can show that the eigenvalues of (4.12) are also that of a matrix

F =

(
FA F T

B

−FB FC

)
(4.15)

with FA , FC SPD and such that

λmin(FA) ≥ κ−1
A , λmax(FA + F T

BF
−1
C FB) ≤ γA , (4.16)

λmin(FC) ≥ κ−1
C , λmax(FC + FBF

−1
A F T

B ) ≤ γC . (4.17)

Now, the eigenvalues of (4.12) are the inverse of the nonzero eigenvalues of A−1QQT ,
which, by virtue of Theorem 1.3.22 in [15] are also the eigenvalues of QTA−1Q . Thus, it

suffices to check the above relations for F =
(
QTA−1Q

)−1
.

In this view, note first that, for any matrix of the form (4.15), its inverse is given by
(

FA F T
B

−FB FC

)−1

=

(
S−1
FA

−S−1
FA

F T
BF

−1
C

F−1
C FB S−1

FA
S−1
FC

)
=

(
S−1
FA

−FA
−1F T

BS
−1
FC

S−1
FC

FB F−1
A S−1

FC

)

(4.18)
(see [1, p. 93]), where

SFA
= FA + F T

BF
−1
C FB , SFC

= FC + FBF
−1
A F T

B .

Applying the above identity to obtain the inverse of A then yields

F−1 = QTA−1Q =

(
QT

A S−1
A QA −QT

A A−1BTS−1
C QC

QT
C S−1

C BA−1QA QT
C S−1

C QC

)
. (4.19)

Comparing with (4.18), we immediately obtain that

FA + F T
BF

−1
C FB = (QT

A S−1
A QA)

−1 , FC + FBF
−1
A F T

B = (QT
C S−1

C QC)
−1 .

Therefore, the right inequalities (4.16), (4.17) amount to

λmin(Q
T
A S−1

A QA) ≥ γ−1
A , λmin(Q

T
C S−1

C QC) ≥ γ−1
C ,

which hold because (remembering the assumption QT
AQA = Inc

)

λmin(Q
T
A S−1

A QA) = min
v∈Rnc\{0}

vT QT
A S−1

A QA v

vT v

= min
v∈Rnc\{0}

vT QT
A S−1

A QA v

vT QT
A QA v

≥ min
v∈Rn\{0}

vT S−1
A v

vT v
= λmin(S

−1
A ) = γ−1

A ,
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and, similarly, λmin(Q
T
C S−1

C QC) ≥ λmin(S
−1
C ) = γ−1

C .
We are thus left with the proof of the left inequalities (4.16), (4.17). Here we consider

the application of (4.18) to the inverse of F expressed in (4.19). This shows that FA and
FC are equal to the inverse of the Schur complements of the matrix in the right hand side
of (4.19); that is,

F−1
A = QT

A

(
S−1
A + A−1BTS−1

C QC

(
QT

C SC QC

)−1
QT

C S−1
C BA−1

)
QA ,

and, similarly (permuting the roles of A and C),

F−1
C = QT

C

(
S−1
C + C−1BTS−1

A QA

(
QT

A SA QA

)−1
QT

A S−1
A B C−1

)
QC .

Now, for any positive definite RC , R
1/2
C QC(Q

T
CRCQC)

−1QT
CR

1/2
C is an orthogonal projec-

tor, entailing R
1/2
C QC(Q

T
CRCQC)

−1QT
CR

1/2
C ≤ I and therefore QC(Q

T
CRCQC)

−1QT
C ≤ R−1

C .
Hence,

F−1
A ≤ QT

A

(
S−1
A + A−1BTS−1

C BA−1
)
QA = QT

AA
−1QA ,

the last equality following from the fact that S−1
A +A−1BTS−1

C BA−1 is a Schur complement
of A−1 , hence its inverse has to be equal to the corresponding principal submatrix in A
(see again (4.18)).

Similarly one finds

F−1
C ≤ QT

C

(
S−1
C + C−1BTS−1

A B C−1
)
QC = QT

CC
−1QC .

Therefore:

λmin(FA) =
(
λmax(F

−1
A )
)−1 ≥

(
λmax(Q

T
AA

−1QA)
)−1

= κ−1
A

and
λmin(FC) =

(
λmax(F

−1
C )
)−1 ≥

(
λmax(Q

T
CC

−1QC)
)−1

= κ−1
C ;

i.e., the left inequalities (4.16), (4.17) that remained to be proved.

The second lemma states useful algebraic properties of the Schur complements of the
matrices (3.3) resulting from the transformation suggested in Section 3.

Lemma 4.3. Let

A =

(
A BT

B −C

)

be a matrix such that A is an n× n SPD matrix, and C and m ×m nonnegative definite
matrix. Let ZA be a nonsingular n× n matrix such that ZA + ZT

A − A is SPD, and let

L =

(
In

B Z−1
A −Im

)
, U =

(
In −Z−T

A BT

Im

)
.

12



The matrix

LAU =

(
A (In − AZ−T

A )BT

−B(In − Z−1
A A) C +B(Z−1

A + Z−T
A − Z−1

A AZ−T
A )BT

)
=

(
Â B̂T

−B̂ Ĉ

)

is such that its Schur complements satisfy

SÂ = Â + B̂T Ĉ−1 B̂ ≤ ZA (ZA + ZT
A − A)−1 ZT

A , (4.20)

SĈ = Ĉ + B̂ Â−1 B̂T = C +BA−1BT . (4.21)

Proof. The last result (4.21) can be checked by direct computation. To prove (4.20),

note first that, for any positive definite RC , R
1/2
C BT (C + BRCB

T )−1BR
1/2
C has the same

nonzero eigenvalues as BRCB
T (C +BRCB

T )−1 . Hence, since C is nonnegative definite,

λmax(R
1/2
C BT (C +BRCB

T )−1BR
1/2
C ) = max

v 6=0

vT BRCB
T v

vT (C +BRCBT )v
≤ 1 ,

showing that BT (C +BRCB
T )−1B ≤ R−1

C . Then, letting EA = ZA + ZT
A −A ,

SÂ = A+ (In − AZ−T
A )BT

(
C +B(Z−1

A + Z−T
A − Z−1

A AZ−T
A )BT

)−1
B(In − Z−1

A A)

≤ A+ (In − AZ−T
A )(Z−1

A + Z−T
A − Z−1

A AZ−T
A )−1(In − Z−1

A A)

= A+ (ZT
A − A)(ZA + ZT

A −A)−1(ZA −A)

= A+ (EA − ZA)E
−1
A (ZT

A − EA)

= ZAE
−1
A ZT

A .

4.3 Main results

We first prove a general result for matrices of the form

Â =

(
Â B̂T

−B̂ Ĉ

)
(4.22)

with Â and Ĉ SPD. Of course, more can be said for the specific case of matrices (3.3)
resulting from the transformation of the discrete Stokes equations as suggested in this
paper. This is considered in a subsequent corollary.

Theorem 4.4. Let Â be a matrix of the form (4.22) such that Â and Ĉ are, respectively,
n× n and m×m SPD matrices.

Let MÂ , MĈ be, respectively, n× n and m ×m SPD matrices, and let PÂ and PĈ be,
respectively, n× nc and m×mc matrices of rank nc < n and mc < m . Set

M =

(
MÂ

MĈ

)
, P =

(
PÂ

PĈ

)

13



and
T =

(
I −M−1Â

)(
I −PÂ−1

c PT Â
)

,

where
Âc = PT Â P .

Letting
SÂ = Â+ B̂T Ĉ−1B̂ and SĈ = Ĉ + B̂ Â−1B̂T ,

set, using Definition 4.1,

κÂ = K(Â , PÂ ,MÂ) , γÂ = λmax(M
−1

Â
SÂ) ,

κĈ = K(Ĉ , PĈ ,MĈ) , γĈ = λmax(M
−1

Ĉ
SĈ) ,

κ =
2 κÂ κĈ

κÂ + κĈ

, γ =
2 γÂ γĈ
γÂ + γĈ

.

The nonzero eigenvalues λ of T are such that either





ℑm(λ) = 0

ℜe(λ) ≤ 1−
(
max

(
κÂ , κĈ

))−1

ℜe(λ) ≥ 1−max
(
γÂ , γĈ

)
(4.23)

or 



ℑm(λ) 6= 0

ℜe(λ) ≤ 1− κ−1

∣∣λ−
(
1− γ

2

)∣∣ ≤ γ
2
.

(4.24)

Moreover,

ρ(T ) ≤ max

(
1− 1

κÂ

, 1− 1

κĈ

, γÂ − 1 , γĈ − 1 ,

√
1− 2− γ

κ

)
. (4.25)

Proof. By virtue of Lemma 4.1, the eigenvalues of I − T that are not equal to one are
the inverse of the nonzero eigenvalues of

Â−1M
(
I −P

(
PTMP

)−1PTM
)
.

Equivalently, they are the solutions of the generalized eigenvalues problem:

M−1/2ÂM−1/2z = λ
(
I −M1/2P(PTMP)−1PTM1/2

)
z , z 6∈ R(M1/2P) .

Because the matrix in the right hand side is an orthogonal projector, this eigenvalue prob-
lem can be formulate as a problem (4.12), where Q has the form (4.11) with QA such
that

QAQ
T
A = I −M

1/2

Â
PÂ(P

T
Â
MÂPÂ)

−1P T
Â
M

1/2

Â

14



and QC such that
QCQ

T
C = I −M

1/2

Ĉ
PĈ(P

T
Ĉ
MĈPĈ)

−1P T
Ĉ
M

1/2

Ĉ
.

Hence, we may apply Lemma 4.2 to Q defined from the above relations and

A = M−1/2ÂM−1/2 =

(
M

−1/2

Â
ÂM

−1/2

Â
M

−1/2

Â
B̂TM

−1/2

Ĉ

−M
−1/2

Ĉ
B̂ M

−1/2

Â
M

−1/2

Ĉ
Ĉ M

−1/2

Ĉ

)
.

This straightforwardly yields (4.23) and (4.24), providing that

κÂ = λmax

(
QT

AM
1/2

Â
Â−1M

1/2

Â
QA

)
, κĈ = λmax

(
QT

CM
1/2

Ĉ
Ĉ−1M

1/2

Ĉ
QC

)
. (4.26)

Now, by virtue of Theorem 1.3.22 in [15],
(
QT

AM
1/2

Â
Â−1/2

)(
Â−1/2M

1/2

Â
QA

)
has the same

nonzero eigenvalues as Â−1/2M
1/2

Â
QAQ

T
AM

1/2

Â
Â−1/2 , whereas

λmax

(
Â−1/2M

1/2

Â
QAQ

T
AM

1/2

Â
Â−1/2

)
= max

v∈Rn\{0}

vT M
1/2

Â
QAQ

T
AMÂ vT

vT Âv

= max
v∈Rn\{0}

vT MÂ

(
I − PÂ

(
P T
Â
MÂ PÂ

)−1

P T
Â
MÂ

)
v

vT Âv
.

The last right hand side coincides by definition with K(Â , PÂ ,MÂ) ; i.e., is equal to κÂ ,
proving the left equality (4.26). Reasoning similarly for the C block completes the proof
of (4.26), and thus that of (4.23) and (4.24).

We now consider (4.25). It is clear from (4.23) that the real eigenvalues of T satisfy

|λ| ≤ max

(
1− 1

κÂ

, 1− 1

κĈ

, γÂ − 1 , γĈ − 1

)
.

The proof of (4.25) is then complete if we can show that any eigenvalue λ = x + iy with
nonzero imaginary part y satisfies

|λ|2 = x2 + y2 ≤ max

(
(γ − 1)2 , 1− 2− γ

κ

)
.

(this is sufficient because γ ≤ max(γÂ , γĈ)). The condition
∣∣λ−

(
1− γ

2

)∣∣ ≤ γ
2
implies

x2 + y2 ≤ x(2 − γ)− (1− γ) .

For γ > 2 , this is largest for x as strongly negative as possible; i.e., for x = 1− γ , yielding
x2 + y2 ≤ (1− γ)2 . On the other hand, for γ < 2 , x2 + y2 is maximal when x is as large
as possible; i.e., when it reaches the limit imposed by the condition ℜe(λ) = x ≤ 1− κ−1 .
Then we have:

x2 + y2 ≤ (1− κ−1)(2− γ)− (1− γ) = 1− 2− γ

κ
,

concluding the proof of (4.25).
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Corollary 4.5. Let

A =

(
A BT

B −C

)

be a matrix such that A is an n× n SPD matrix and C is an m×m nonnegative definite
matrix. Assume that B has rank m or that C is positive definite on the null space of BT .

Let DA = diag(A) , let α a positive number such that α < 2(λmax(D
−1
A A))−1 , let L , U

be defined by (3.1), and let Â = LAU be given by (3.3).
Let PA and PĈ be, respectively, n×nc and m×mc matrices of rank nc < n and mc < m ,

and set, using Definition 4.1,

κ̂A = K(A , PA , DA) , γ̂A =
(
α (2− α λmax(D

−1
A A))

)−1
,

κ̂Ĉ = K(Ĉ , PĈ , DĈ) , γ̂Ĉ = λmax

(
D−1

Ĉ
(C +BA−1BT )

)
,

κ̃ =
2 κ̂A κ̂Ĉ

κ̂A + κ̂Ĉ

, γ̃ =
2 γ̂A γ̂Ĉ
γ̂A + γ̂Ĉ

,

where Ĉ = C +B(2αD−1
A − α2D−1

A AD−1
A )BT and DĈ = diag(Ĉ) .

Let then the matrix T be defined by (3.5), (3.6) and (3.7), where ω is a positive param-
eter. Its nonzero eigenvalues λ are such that either





ℑm(λ) = 0

ℜe(λ) ≤ 1− ω
(
max

(
κ̂A , κ̂Ĉ

))−1

ℜe(λ) ≥ 1− ω max
(
γ̂A , γ̂Ĉ

)
(4.27)

or 



ℑm(λ) 6= 0

ℜe(λ) ≤ 1− ω κ̃−1

∣∣∣λ−
(
1− ω γ̃

2

)∣∣∣ ≤ ω γ̃
2

.

(4.28)

Moreover,

ρ(T ) ≤ max

(
1− ω

κ̂A

, 1− ω

κ̂Ĉ

, ω γ̂A − 1 , ω γ̂Ĉ − 1 ,

√
1− ω (2− ω γ̃)

κ̃

)
. (4.29)

Proof. Firstly, observe that the condition 0 < α < 2(λmax(D
−1
A A))−1 implies the positive

definiteness of 2αD−1
A − α2D−1

A AD−1
A , and hence that of Ĉ since C is positive definite on

the range of BT . Thus we may apply Theorem 4.4 with MÂ = ω−1DA and MĈ = ω−1DĈ .
Moreover, we may use Lemma 4.3 with ZA = α−1DA to characterize SÂ and SĈ (noting
that the condition ZA + ZT

A −A SPD amounts to 0 < α < 2(λmax(D
−1
A A))−1). This yields

SĈ = C +BA−1BT

and
SÂ ≤ α−2DA(2α

−1DA −A)−1DA ≤
(
α (2− α λmax(D

−1
A A))

)−1
DA .
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Then, for the quantities in Theorem 4.4, we obtain

κÂ = K(Â , PÂ ,MÂ) = ω−1κ̂A , γÂ = λmax(M
−1

Â
SÂ) ≤ ω γ̂A ,

κĈ = K(Ĉ , PĈ ,MĈ) = ω−1κ̂Ĉ , γĈ = λmax(M
−1

Ĉ
SĈ) = ω γ̂Ĉ .

The stated results straightforwardly follow.

Note that there is no explicit restriction on the positive parameter ω in Corollary 4.5,
but the bound on the spectral radius becomes useless when ω ≥ 2/max

(
γ̂A , γ̂Ĉ

)
.

That said, we can pursue the discussion initiated in Section 4.1. If PA and PĈ work

well in combination with damped Jacobi smoothing for respectively A and Ĉ , κ̂A =
K(A , PA , DA) and κ̂Ĉ = K(Ĉ , PĈ , DĈ) will be reasonably bounded. The related bounds
in (4.23) and (4.24) then guarantee that the iteration matrix will have no eigenvalue close
to 1. Regarding this aspect, Corollary 4.5 offers in fact only a slight improvement over the
result already discussed in Section 4.1, based on Lemma 4.1 applied to Â in combination
with (4.9).

However, the further constraints provided by the last inequalities in (4.23) and (4.24)
allow us to complete the analysis. In particular, we now have an effective bound on the
spectral radius providing that, in addition to upper bounds on κ̂A and κ̂Ĉ , one can show
that ω γ̂A ≪ 2 and ω γ̂Ĉ ≪ 2 .

Regarding these requirements, first note that we intend to select ω as for damped Jacobi
smoothing applied to a discrete Laplacian; that is, typically, such that 0.5 ≤ ω ≤ 0.75 .
This immediately ensures ω λmax(D

−1
A A) ≪ 2 , and hence

ω γ̂A =
ω λmax(D

−1
A A)(

αλmax(DA
−1A)

) (
2− α λmax(D

−1
A A)

))

will also be away from 2 as soon as α is chosen reasonably close to (λmax(D
−1
A A))−1 (as

recommended in Section 3).
Regarding ω γ̂Ĉ , we need some additional conditions. These, however, seem not re-

strictive. At least, the results in the next Section will confirm that they are satisfied in the
typical examples considered there.

Firstly, recall that the approach is consistently defined if the diagonal block Ĉ in (3.4) is
“well adapted” to multigrid, because, as will be illustrated in the next section, it resembles
a discrete Laplacian. Then one will have ω λmax(D

−1

Ĉ
Ĉ) ≪ 2 when using ω tailored for

discrete Laplacian, and ω γ̂Ĉ ≪ 2 will hold if

λmax(D
−1

Ĉ
(C +BA−1BT ))

λmax(D
−1

Ĉ
Ĉ)

≈ 1 . (4.30)

Note that, because

(C +BA−1BT )− Ĉ = B (I − αD−1
A A)A−1(I − αAD−1

A )BT .
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is SPD, the above ratio can in fact not be smaller than 1. Now,

λmax(D
−1

Ĉ
Ĉ) = max

z∈Rn\{0}

zT Ĉ z

zT DĈ z
.

Let then v be any vector such that

vT
(
C +BA−1BT − Ĉ

)
v

vT (C +BA−1BT )v
=

vT B (I − αD−1
A A)A−1(I − αAD−1

A )BTv

vT (C +BA−1BT )v
= ε ≪ 1 .

(4.31)
There holds

λmax(D
−1

Ĉ
(C +BA−1BT ))

λmax(D
−1

Ĉ
Ĉ)

≤
λmax(D

−1

Ĉ
(C +BA−1BT ))
(

vT Ĉ v

vT D
Ĉ
v

) =
λmax(D

−1

Ĉ
(C +BA−1BT ))

(1 − ε)
(

vT (C+BA−1BT )v
vT D

Ĉ
v

) .

Hence, (4.30) holds if there exists such a vector v satisfying in addition

vT (C +BA−1BT )v

vT DĈ v
≈ max

z∈Rn\{0}

zT (C +BA−1BT ) z

zT DĈ z
= λmax

(
D−1

Ĉ
(C +BA−1BT )

)
.

(4.32)

Thus, the approach is well founded if, on the one hand, Ĉ resembles a discrete Lapla-
cian, and, on the other hand, there exist a vector v satisfying simultaneously (4.31) and
(4.32). Regarding this latter condition, we cannot supply a general algebraic argument,
but, considering the Stokes problem (2.1) with constant viscosity ν , we can anticipate that
there will be no difficulty at least in the two extreme cases of ξ = 0 and of ξ → ∞ .

Indeed, if ξ = 0 , it is a general property of stable discretizations that C + BA−1BT

is well conditioned (see below for finite difference schemes and [12, Section 5.5] for finite
element methods); and “well conditioned” means nothing but that the minimal and maxi-
mal values of the ratio zT (C +BA−1BT ) z/zT DĈ z are close to each other. (Because the
viscosity is assumed constant, DĈ is close to a multiple of the identity.) Hence, (4.32)
holds for any vector, including those satisfying (4.31).

On the other hand, consider ξ large enough, so thatA is fairly dominated by its diagonal.
It follows that, for properly chosen α ,

‖I − αA1/2D−1
A A1/2‖ = max

(
α λmax(D

−1
A A)− 1 , 1− αλmin(D

−1
A A)

)

is small. Then,

vT B (I − αD−1
A A)A−1(I − αAD−1

A )BTv

vT (C +BA−1BT )v
≤ ‖I − αA1/2D−1

A A1/2‖2 vT BA−1BT v

vT (C +BA−1BT )v

≤ ‖I − αA1/2D−1
A A1/2‖2

will be small as well for any v . That is, (4.31) is satisfied by any vector, including the
eigenvector associated with the largest eigenvalue of D−1

Ĉ
(C +BA−1BT ) (which obviously

satisfies (4.32)).
These reasonings will be further illustrated in the next section.
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5 Examples

In this section we intend, among other things, to discuss α , in order to validate the rule
α = (λmax(D

−1
A A))−1 while investigating the sensitivity with respect to variations around

this value (λmax(D
−1
A A) is in general only known approximately). Most often the results

are expressed as a function of
α̃ = α ‖D−1

A A‖∞ .

That is, we use ‖D−1
A A‖∞ as cheap approximation to λmax(D

−1
A A) , and α = (‖D−1

A A‖∞)−1

as practical implementation of the suggested rule α ≈ (λmax(D
−1
A A))−1 . Expressing the

results as a function of α̃ makes then easier their interpretation, since the rule amounts to
α̃ = 1 independently of the problem at hand.

5.1 Finite difference discretization on staggered grid

Here we consider the finite difference discretization of (2.1), in which the 2D domain Ω is
the unit square and the parameters ν > 0 and ξ ≥ 0 are constant. We use a staggered
grid, which ensures the natural stability of the discretization [38]. Hence the matrix (2.3)
of the resulting linear system (2.2) is such that C = 0 . We consider a uniform mesh size
h in both directions, with h such that h−1 is an even integer.

For the prolongation, we select plain aggregation for both the pressure and the velocity
components; that is, PA and PĈ have exactly one nonzero entry per row, which is further
equal to one. The position of the nonzero is determined by the partitioning in aggregates:
if the ith unknown belongs to the jth aggregate, the nonzero component in row i will be
the one in column j .

To keep the discussion of aggregation algorithms outside of this work, we consider a
model geometric-based aggregation. More precisely, we assume that regularly aligned 2×2
box aggregates are always formed whenever possible. If the number of grid points in one
of the directions is odd, this is completed with one line of aggregates of size 2. (For the
boundary conditions considered below, there is always, for each type of unknown, at least
one direction with an even number of grid points.)

Periodic boundary conditions

We first discuss the case of periodic boundary conditions for all velocity components in all
directions. The stencils for all matrices are then the same as for an infinite grid; that is, as
with the classical assumptions of local mode or local Fourier analysis (LFA; see, e.g., [33,
Chapter 4]). With periodic boundary conditions, however, we may apply our theoretical
results without raising the question of their extension of to infinite dimensions. As often
when using LFA, our motivation lies in a simplified setting (in particular, free from any
boundary effect) that allows to derive analytic estimates. Note, however that this will be
done without developing calculation in the Fourier basis.

Now, with these boundary conditions, the system matrix has one singular mode in
general (the vector corresponding to constant pressure and zero velocity) and two additional
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singular modes when ξ = 0 (the vectors corresponding to constant velocity). However, it is
well known that, in the LFA setting, these singular modes form an invariant subspace for all
components of the iteration matrix, and what matters is the spectral radius associated with
the set of other modes. Technically, it mean that we may apply our results in Section 4.3
to the matrices expressed in the Fourier basis, after discarding the rows and columns
corresponding to the singular mode(s). To avoid making explicitly this transformation,
we proceed as follows. We set C = ε I (where ε > 0) and consider in first instance that
ξ is positive. This allows to apply our results (that are restricted to regular matrices).
Next, by a continuity argument on the eigenvalues, the limit of the bounds for ε → 0 and
(possibly) for ξ → 0 provide valid bounds for the submatrices that one would obtain by
discarding explicitly the singular mode(s).

We now characterize the different matrices, which will allow us to derive bounds for
the quantities κ̂A , κ̂Ĉ , γ̂A , and γ̂Ĉ involved in Corollary 4.5.

The matrix A has two diagonal blocks, and each of them corresponds to the following
constant stencil acting on the periodic grid:

ν

h2




−1

−1 4
(
1 + h2 ξ

4 ν

)
−1

−1


 .

Hence, letting
DA0

= diag (A |ξ=0) = 4 ν
h2 I

and

η =
ξ h2

4 ν
,

one has DA = diag(A) = (1 + η)DA0
.

On the other hand, BD−1
A0
BT corresponds to the stencil

1

4 ν




−1
−1 4 −1

−1


 ,

whereas, for BD−1
A0
(A−DA)D

−1
A0
BT we obtain the following stencil:

1

16 ν




1
2 −4 2

1 −4 4 −4 1
2 −4 2

1




.

Then, for the matrix

Ĉ = C +B(2αD−1
A − α2D−1

A AD−1
A )BT

= C + (2α− α2)(1 + η)−1BD−1
A0
BT − α2(1 + η)−2BD−1

A0
(A−DA)D

−1
A0
BT ,
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and using α̃ = α ‖D−1
A A‖∞ = αλmax(D

−1
A A) = α (2 + η)/(1 + η) , we obtain the following

stencil:

1

16 ν (2 + η)2




−α̃2

−2 α̃2 −4(2 + η) α̃(2− α̃) −2 α̃2

−α̃2 −4(2 + η) α̃(2− α̃) s −4(2 + η) α̃(2− α̃) −α̃2

−2 α̃2 −4(2 + η) α̃(2− α̃) −2 α̃2

−α̃2




,

where s = 4
(
4(2 + η) α̃(2− α̃) + 3 α̃2

)
+ 16 ν (2 + η)2 ε ; i.e., the row-sum is equal to ε .

This stencil is that of an M-matrix as long as the condition 0 < α̃ < 2 holds, which is
also the condition 0 < α < 2(λmax(D

−1
A A))−1 needed to apply Corollary 4.5. One may also

observe that this stencil is in fact a linear combination of the application to three different
grids of the classical five point stencil for the Laplace operator: the standard grid of mesh
size h , the grid of mesh size 2 h , and the skew grid of mesh size

√
2h .

For the parameters in Corollary 4.5, we first obtain

γ̂A =
‖D−1

A A‖∞
α̃ (2− α̃)

=
2 + η

(1 + η) α̃(2− α̃)
≤ 2

α̃(2− α̃)
. (5.1)

Next, it is well known that, letting A0 = A |ξ=0 ,

λmax

(
BA−1

0 BT
)

= ν−1 ,

which further implies that, since A = A0 + ξ I ≥
(
1 + ξ

λmax(A0)

)
A0 =

(
1 + η

2

)
A0 ,

λmax

(
BA−1BT

)
≤ 2 ν−1

2 + η
.

Hence, since DĈ = 4(2+η) α̃(2−α̃)+3 α̃2+ν (2+η)2 ε
4 ν (2+η)2

I :

lim |ε→0 γ̂Ĉ ≤ 8 (2 + η)

4(2 + η) α̃(2− α̃) + 3 α̃2
≤ 2

α̃(2− α̃)
. (5.2)

This result is in fact in agreement with the discussion at the end of Section 4.3. This
is more easily seen for α̃ = 1 , because then the eigenvector of Ĉ associated with its largest
eigenvalue is the vector that, using a red black partitioning, takes the value +1 at red nodes
and the value -1 at black nodes. The corresponding eigenvalue is 2 ν−1/(2 + η) ; i.e., it is
equal to the above upper bound on λmax(BA−1BT ) . This means that λmax(BA−1BT ) and

λmax(Ĉ) are both equal to this value, since the former cannot be smaller than the latter.
Thus, (4.30) holds as an equality. Going to the details, we may associate this with the fact
that BA−1BT amounts to the identity for η = 0 . Hence, it suffices to have one vector v
satisfying (I − αAD−1

A )BTv = 0 to enforce the equality between the largest eigenvalues

of Ĉ and BA−1BT . On the other hand, with α = (λmax(D
−1
A A))−1 ,

∥∥(I − αD−1
A A)A−1(I − αAD−1

A )
∥∥ =

(
1− λmin(D

−1

A
A)

λmax(D
−1

A
A)

)2
λmin(A)

−1 ≤
(

2
2+η

)2
h2

4 ν η
,

21



showing that ‖BA−1BT − Ĉ‖ → 0 for η → ∞ .
Let us now return to (5.1) and (5.2). We deduce an upper bound on γ̃ using the left

inequalities for greater accuracy:

lim |ε→0 γ̃−1 =
γ̂−1
A + lim |ε→0 γ̂−1

Ĉ

2
≥ α̃ (32− 13 α̃) + η α̃ (24− 12 α̃)

32 + 16 η
.

A uniform bound w.r.t. η can then be derived by taking the worse of the values obtained
for η = 0 and η = ∞ , which gives

lim |ε→0 γ̃ ≤ max

(
32

α̃ (32− 13 α̃)
,

4

3 α̃ (2− α̃)

)
. (5.3)

Regarding κ̂A and κ̂Ĉ , we may apply the results in [21] to obtain bounds on the ap-
proximation property constant for aggregation-based prolongations. We first consider κ̂A .
A key ingredient is a splitting A = Ab +Ar of the matrix A such that both Ab and Ar are
nonnegative definite whereas Ab is block diagonal with respect to the partitioning in aggre-
gates. Then, particularized to the present context, and using Definition 4.1, Theorem 3.2
of [21] essentially says that

K(A , PA , DA) = max
over all aggregates i

K(A
(i)
b , 1i , D

(i)
A ) ,

where A
(i)
b is the diagonal block of Ab related to the unknowns in aggregate i , where 1i

is the constant vector of size equal to the number of unknowns in aggregate i , and where
D

(i)
A is the diagonal of A restricted to aggregate i .
For the model example under consideration, the application of this result is facilitated

by the fact that the coefficients are constant and that all the aggregates are similarly made
of 2×2 grid points. (With periodic boundary conditions and h−1 equal to an even integer,
the number of grid points in x and y directions is even for both velocity components.) For
each aggregate i , we take the corresponding diagonal block in Ab as

2

A
(i)
b =

ν

h2




2 + 4 η −1 −1 0
−1 2 + 4 η 0 −1
−1 0 2 + 4 η −1
0 −1 −1 2 + 4 η


 .

One may check that Ar = A−Ab is then an M-matrix with zero row-sum, hence nonnegative
definite. On the other hand, D

(i)
A = 4 ν (1+η)

h2 I . It follows that the constant vector is the

eigenvector of D
(i)
A

−1
A

(i)
b associated with its smallest eigenvalue. Then, Theorem 3.4 of [21]

2The offdiagonal entries of A
(i)
b

correspond to the two offdiagonal entries of A that connect each node
to other nodes belonging to the same aggregate (one on the same horizontal grid line and one on the
same vertical grid line). In addition, each nodes has two connections that points outside the aggregate;
altogether, these connections form the offdiagonal entries of Ar .
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further tells us that K(A
(i)
b , 1i , D

(i)
A ) is in fact equal to the inverse of the second smallest

eigenvalues. The related eigenvectors being (1 1 −1 −1)T and (1 −1 1 −1)T , this yields

K(A
(i)
b , 1i , D

(i)
A ) =

2 (1 + η)

1 + 2 η
.

Thus:

κ̂A ≤ 2 (1 + η)

1 + 2 η
≤ 2 . (5.4)

We proceed similarly for κ̂Ĉ . Using

Ĉ
(i)
b =

α̃
8 (2+η)2




4(2 + η)(2 − α̃) + α̃ −2(2 + η)(2− α̃) −2(2 + η)(2 − α̃) −α̃

−2(2 + η)(2 − α̃) 4(2 + η)(2 − α̃) + α̃ −α̃ −2(2 + η)(2− α̃)

−2(2 + η)(2 − α̃) −α̃ 4(2 + η)(2 − α̃) + α̃ −2(2 + η)(2− α̃)

−α̃ −2(2 + η)(2− α̃) −2(2 + η)(2 − α̃) 4(2 + η)(2− α̃) + α̃




ensures that Ĉr = Ĉ − Ĉb is an M-matrix with positive row-sum (equal to ε). With

D
(i)

Ĉ
=

4
(
4(2+η) α̃(2−α̃)+3 α̃2

)
+16 ν (2+η)2 ε

16 ν (2+η)2
I ,

the constant vector is again the eigenvector of D
(i)

Ĉ

−1
Ĉ

(i)
b associated with the smallest

eigenvalue. Further, the vectors (1 1 −1 −1)T and (1 −1 1 −1)T are also eigenvectors
associated with the second smallest eigenvalue, and computing its inverse yields

lim |ε→0 K(Ĉ
(i)
b , 1i , D

(i)

Ĉ
) =

4(2 + η) (2− α̃) + 3 α̃

2(2 + η)(2− α̃) + α̃
,

and, therefore,

lim |ε→0 κ̂Ĉ ≤ 4(2 + η) (2− α̃) + 3 α̃

2(2 + η)(2− α̃) + α̃
≤ 16− 5 α̃

8− 3 α̃
. (5.5)

Finally, combining the right inequalities (5.4) and (5.5), we get

lim |ε→0 κ̃
−1 =

κ̂−1
A + κ̂−1

Ĉ

2
≥ 32− 11 α̃

4 (16− 5 α̃)
. (5.6)

In view of (5.1–5.6), the upper bound (4.29) of Corollary 4.5 implies thus, for any ξ ≥ 0
(using the right inequalities to get uniform bounds w.r.t. η , and noting that 2 in (5.4)
cannot be larger than the right hand side of (5.5)),

ρ(T ) ≤ max(δ1 , δ2 , δ3) , (5.7)
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Figure 1: Staggered grid: analytical uniform (w.r.t. ν , h and ξ) bound (5.7) on ρ(T ) as a
function of user parameters α̃ , ω .

where

δ1 = 1− ω (8− 3 α̃)

16− 5 α̃
,

δ2 =
2ω

α̃(2− α̃)
− 1 ,

δ3 =


1−

4ω (16− 5 α̃)
(
2− ω max

(
32

α̃ (32−13 α̃)
, 4

3 α̃ (2−α̃)

))

32− 11 α̃




1/2

.

This result is illustrated in Figure 1. One sees that (5.7) guarantees that the spectral radius
is below 0.85 when α̃ is around 1 and ω around 0.6 . It is worth noting that this holds
uniformly with respect to ν , h and ξ without using any form of parameter adjustment.

Dirichlet boundary conditions

We use Dirichlet boundary conditions on all boundaries for both velocity components.
Then, away from the boundaries, the stencils of the different matrices are as with periodic
boundary conditions. However, perturbations are introduced near boundaries. In addition,
the staggered arrangement of the unknowns on the grid implies that, for each velocity
component, the number of grid points is odd in either the x or the y direction. Hence, box
aggregation cannot be used everywhere. Finally, according what is written at the end of
Section 2, the problem is regularized by removing the last pressure component from the
unknown set, fixing its value to zero.

24



κ̂A κ̂Ĉ γ̂A γ̂Ĉ (4.29) ρ(T )

ξ = 0
Estimates (5.1),(5.2), (5.4),(5.5) 2.00 2.20 2.00 1.45 0.85

Actual values for Dir. B.C. 2.09 1.60 2.00 1.93 0.85 0.71

ξ = 10 h−2

Estimates (5.1),(5.2), (5.4),(5.5) 1.17 2.10 1.29 1.71 0.74
Actual values for Dir. B.C. 1.16 1.76 1.29 1.78 0.73 0.60

Table 1: Staggered grid: results for h = 1/32 , ν = 1 , α̃ = 1 , and ω = 0.6 ; the bound
(4.29) on the spectral radius is computed using the quantities in the four columns to the
left on the same line; for the estimates (5.1),(5.2), (5.4),(5.5), we use in each case the left
inequalities (ξ = 10 h−2 and ν = 1 imply η = 2.5).

Altogether these departures from the ideal situation of the preceding case make un-
tractable the derivation of analytic bounds. We therefore illustrate the application of
Corollary 4.5 resorting to numerical computation for the assessment of the needed quan-
tities κ̂A , κ̂Ĉ , γ̂A , and γ̂Ĉ . The obtained values are reported in Table 1, in regard of the
analytic bounds derived for the case of periodic boundary conditions (using in all cases the
left inequalities to get the most accurate estimate). One sees that these analytic estimates
remain realistic despite the boundary effects.

In Figure 2, we plot the eigenvalue distribution of the iteration matrix in regards of
the inequalities provided in Corollary 4.5. One sees that the analysis reflects well the
actual distribution, which is much more clustered than indicated by the sole analysis of
the spectral radius. This suggests that it might be more effective to use the two-grid
method as a preconditioner for a Krylov subspace method (whose convergence is favored
by a good clustering of the eigenvalues).

Finally, it is worth checking the relevance of the transformation proposed in Section 3
independently of the theoretical results. In this view we depict in Figure 3, left, the actual
value of the spectral radius as a function of α̃ . One sees that α̃ ≈ 1 is indeed near optimal
as suggested by the analysis, whereas the results only weakly depend on α̃ when chosen
around this value. Thus, one may rely in practice on the rule α = (‖D−1

A A‖∞)−1 , and a
more accurate estimation of λmax(D

−1
A A) is not needed in practice.

5.2 Finite difference discretization on collocated grid

Here we consider again the finite difference discretization of (2.1) in which the 2D domain
Ω is the unit square. However, we use a collocated grid, whereas we restrict ourselves to
ξ = 0 , but consider two situations for the viscosity: constant viscosity, where ν is uniformly
equal to 1, and variable viscosity, where ν is equal to 103 in the central part of the domain
(i.e., in the square (0.25 , 0.75) × (0.25 , 0.75)) and ν = 1 elsewhere. Here also, we use
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Figure 2: Staggered grid. +: eigenvalues of T for h = 1/32 , ν = 1 , α̃ = 1 , and ω = 0.6 ;
---- : limit of the region of defined by the inequalities in Corollary 4.5 (horizontal lines close
to the real axis indicate regions where in fact only real eigenvalues are permitted); - - - :
bound (4.29) on the spectral radius.

a uniform mesh size h in both directions, with h such that h−1 is an even integer. We
consider only Dirichlet boundary conditions on all boundaries for all velocity components.

With collocated grids, all unknowns are located at the vertices of grid cells, which
makes the discretization somewhat easier but induces the presence of spurious pressure
modes with zero discrete divergence [38]. Hence a form of stabilization is required and,
according to the discussion in [17], we take here C equal to the five point discretization of
(16 ν)−1h2∆ (with Neumann boundary conditions).

On the other hand, as in the preceding section, the pressure is only determined up to
a constant, and we regularize the problem by removing the last pressure component from
the unknown set, fixing its value to zero.

On collocated grids, the classical prolongation based on bilinear interpolation is well
defined for all three types of unknowns. Hence we select this prolongation, noting that
classical AMG schemes aim at reproducing it for simple discretizations of the Laplace
operator.

A first remark here is that a simple transformation of (2.2) into
(

A BT

−B C

)(
u

p

)
=

(
bu

−bp

)
(5.8)

suffices to make the unknown-based coarsening well defined, since C is SPD (after regular-
ization) and further corresponds to a discrete Laplace matrix. Observing that the above
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Figure 3: ρ(T ) as a function of α̃ for h = 1/32 and ω = 0.6 .

system corresponds to the limit case of our approach for α → 0 , it is thus worth here to
start with the experiment that concluded the preceding section, and check the evolution of
the spectral radius with respect to α̃ = α ‖D−1

A A‖∞ . This is done in Figure 3, right. One
sees that the method is indeed still convergent for α̃ = 0 , but significantly slower than for
α̃ between 0.5 and 2 . Observe also that our approach performs equally well in the presence
of jumping viscosity.

We then focus on α̃ = 1 , according the recommendation in Section 3. Computation
reveal that, away from internal and external boundaries, Ĉ corresponds to the stencil

ν−1

256




−1
−1 −12 −1

−1 0 −13 0 −1
−1 −12 −13 112 −13 −12 −1

−1 0 −13 0 −1
−1 −12 −1

−1




.

Again, this stencil is that of an M-matrix with zero row-sum. Moreover, one sees that
the strong couplings correspond to a linear combination of the application to two different
grids of the classical five point stencil for the Laplace operator: the standard grid of mesh
size h , and the grid of mesh size 2 h .

Hence, Corollary 4.5 can be consistently applied. The numerically computed quantities
κ̂A , κ̂Ĉ , γ̂A , and γ̂Ĉ are reported in Table 2, as well as the related bound (4.29) and the
actual value of the spectral radius. Here again, one sees that the jump of the viscosity has
nearly no influence.

Finally, in Figure 4, right, we plot the eigenvalue distribution of the iteration matrix
in regards of the inequalities provided in Corollary 4.5 with the parameters as in Table 2.
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κ̂A κ̂Ĉ γ̂A γ̂Ĉ (4.29) ρ(T )
Constant viscosity 1.99 1.73 2.00 2.47 0.88 0.70
Variable viscosity 2.00 1.97 2.00 2.43 0.89 0.70

Table 2: Collocated grid: results for h = 1/32 , α̃ = 1 , and ω = 0.6 .
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Figure 4: Collocated grid. +: eigenvalues of T for h = 1/32 and ω = 0.6 (constant
viscosity); ---- : limit of the region of defined by the inequalities in Corollary 4.5 (α̃ > 0 only;
horizontal lines close to the real axis indicate regions where in fact only real eigenvalues
are permitted); - - - : bound (4.29) on the spectral radius.

This eigenvalue distribution can be compare with that plotted in Figure 4, left, which
corresponds to α̃ = 0 ; that is, to the case where one applies the multigrid scheme directly
to the system (5.8). This provides another illustration of the improvement brought by the
transformation proposed in this paper.

6 Comparison with block diagonal preconditioning

We mentioned in the introduction the family of block preconditioners for saddle points
matrices in their original form (2.3). Among these, the most popular is perhaps the mere
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block diagonal preconditioner (
Ã

S̃

)

where Ã is an approximation of A , and S̃ is an approximation of the Schur complement
C+BA−1BT . Indeed, this preconditioner is symmetric and positive definite, whereas Â is
symmetric; thus, the convergence can be accelerated with MINRES [31], which minimizes
the residual norm with a short recurrence algorithm. Of course, relevant approximations
Ã can be setup by applying any sensible AMG method, which should raise no difficulty
since A is made up with diagonal blocks that are discrete representations of ξ − ν∆.

Schur complement approximations require more care, but, in fact, a fairly complete
convergence analysis is available for Stokes type problems (e.g., [12, 19, 30]). Considering

the formulation (2.1), when ξ = 0 , S̃ can be taken as ν−1 times (an approximation of) the
pressure mass matrix, which further reduces to the identity in the finite difference case.
In the case of positive ξ , the Cahouet–Chabard preconditioner can be used [8], which
approximates the Schur complement with a Poisson-like operator; this latter can itself be
further replaced by, say, one application of an AMG preconditioner.

Now, a complete comparison of the approach suggested here with block diagonal pre-
conditioning lies outside the scope of the present work. This would require a dedicated
study like the one undertaken in [16] for geometric multigrid methods. More importantly,
we would need to address practically oriented questions such as which smoothing scheme
performs best in practice, which multigrid cycle is recommended, etc. As stated in the
introduction, these are deliberately left for future research because their answer likely de-
pends on the type of coarsening and possibly also on the class of Stokes problems under
consideration.

Nevertheless, we want to complete the proof of concept presented here by illustrating
that the proposed approach can be competitive even when used in a straightforward (and
perhaps naive) way. By “straightforward”, we mean just passing the transformed matrix

Â (3.3) to an AMG code, without any form of tuning or adaptation, besides the fact that
one requires “unknown-based” coarsening (i.e., the prolongation is setup separately for the

different type of unknowns, based on the corresponding diagonal block in Â).
We selected the aggregation-based algebraic multigrid methods (AGMG) from [25, 22,

27]. Indeed, a black box code is available [24], in which “unknown-based” coarsening is
available as an option. The package, although written in FORTRAN, has also a MATLAB
interface, which allowed us to use this environment to define the problem and also to
perform the matrix transformations described in Section 3. We set all parameters to
default, which, in particular, implies that the system is solved using the AMG method as
preconditioner for GCR [10] (restarted each 10 iterations).

Regarding the block diagonal preconditioner, the same AGMG code with default pa-
rameters was used to generate the needed approximation Ã; more precisely, the action of
Ã−1 was implemented as one call to the package, requesting one application of the (pre-
viously setup) AMG preconditioner. Note that here the main iteration was performed in
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Staggered grid Collocated grid

Block Prec. AMG for Â Block Prec. AMG for Â
h−1 #it time #it time #it time #it time
64 51 0.16 14 0.12 73 0.23 15 0.15
256 57 3.13 14 2.34 79 4.46 15 2.82
1024 64 58.97 17 44.35 87 81.23 17 55.50

Table 3: Number of iterations and total elapsed time (including setup) in seconds needed
to solve the linear system.

MATLAB, using the provided implementation of MINRES.
As test problem, we consider those of Sections 5.1 and 5.2 (with Dirichlet boundary

conditions) in their simplest form; i.e., with ξ = 0 and constant viscosity ν = 1 , which

simplifies a bit the discussion of the Schur complement approximation: S̃ = I is then a
standard choice (for the staggered grid, it would give the exact Schur complement on an
infinite grid). The right hand side was a vector with random velocity components and zero
pressure components, the initial approximation was the zero vector, and iteration were
stopped when the relative residual was below 10−6 .

The results are given in Table 3. As observed in [29], the numbers of iterations for
the block diagonal preconditioner can be made smaller by using a more involved AMG
method than the plain aggregation method of AGMG, but this is overall not necessarily
cost effective. Regarding AMG for the transformed matrix, the number of iterations is
roughly 50% larger than that reported in [23] for the solution of pure Poisson problems with
the same software. 3 This extra cost can be considered as moderate: typically, geometric
multigrid method for Stokes problems will achieve similar convergence rate as for pure
Poisson, but at the price of a much more costly smoothing procedure.

On the other hand, the timing results should be considered with care. The codes are
not really comparable, and one may think that the block preconditioner would benefit
from a pure FORTRAN implementation, although only matrix and vector operations are
performed in the MATLAB environment, and most of the time is spent in the calls to
AGMG. On the other hand, we mentioned above that the straightforward use of AGMG
for Â was perhaps naive, and this is certainly the case with respect to implementation: in
this way, we do not use the trick indicated at the end of Section 3; hence the timing results
can certainly be significantly improved with a dedicated implementation.

7 Conclusions

We developed the foundations of a new approach to solve discrete Stokes equation with
multigrid. It consist in pre-conditioning the original linear system in such a way that an

3Other algebraic multigrid methods often require less iterations while being overall slower because this
result is achieved thanks to larger complexities; see [23] for a comparative discussion.
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“unknown-based” multigrid approach can be straightforwardly applied to the transformed
system, allowing in particular the use of algebraic multigrid methods.

The approach has been validated via a detailed theoretical analysis of the iteration ma-
trix associated with a single step for damped Jacobi smoothing. It turns out that a uniform
bound on the spectral radius holds, under the main assumption that the “unknown-based”
multigrid approach is applied in a sensible way. Besides, some technical conditions are to
be checked, which seem however not restrictive regarding standard discretizations of Stokes
equations. At least, two examples of such discretizations were successfully investigated.

The analysis of the examples further reveals that the approach can be applied indiffer-
ently to stationary and time-dependent Stokes problems, and can also be robust in presence
of variable viscosity. Finally, a numerical comparison displays that the new approach can
indeed be a relevant alternative to the nowadays commonly used strategies based on the
combination of AMG with block preconditioning methods.
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