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Discrete-time intertemporal welfare optimization models often involve the choice of discount factors whose value is
determinantal, but usually unknown. In this note, we provide a general equilibrium formulation which involves intertemporal
wealth transfers instead. We illustrate our approach with a simple numerical example, and show that in a convex analysis
framework, it encompasses a version of the Golden Path Rule.

intertemporal optimization * discount factor * general equilibrium # savings

1. Introduction

A wide variety of economic models attempts to study issues that cannot be confined to particular points
in time, but have effects that range over a whole (possibly infinite) interval. The most popular approach is
to formulate them as discrete-time, finite-horizon, welfare optimization problems. Often, this involves the
choice of time discount factors, or, equivalently, time preference rates tying the single period utility flows
together. While this approach enjoys a number of advantages and most notably that of (relative)
computational efficiency, it also poses the following problem:

The solurion is, in general, quite sensitive to the choice of discount factors, yet, this choice is usually
indefensible in an empirically or analytically acceptable manner.

The credibility of the solution is even more questionable when implied key macroeconomic flows
exhibit a haphazard evolution pattern, inconsistent with empirical data or intuition (when empirical data
are not available). Such a key flow in intertemporal models is the implied savings/consumption ratio. It
has the advantage of being amenable to statistical estimation and is thus a valid basis for result evaluation.

* The paper was written while A. Svoronos was visiting CORE. We are grateful to a referee for useful comments.
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To illustrate the point consider the following simple macroeconomic welfare optimization model (it is a
simpler version of ETA, Manne [8]):

B>0
[,eR,

e, €R,
g <R,

F: R4 = RU(—c0)

NPT =

T
max Z B, log X+ Bra @i (kpyy, Ir.y),

t=1

s.t. xz+[t<yz, r=1,...
yx‘{E(kzv[rsen gl)__etet__Ytgt’ r=1,...
k:+1\<~5k:+§[[+1+77!,. i=0,...

ky, I given,

represents consumption for period f.

represents the capital at the start of period #; 8 is its survival rate.
represents investment for period ¢; £ (resp. ) is the fraction realized im-

mediately (resp. in the next period); £+ 5 = 1.
is the time discount factor for period r.

Is an exogenously specified labor supply for period ¢ {or a technological progress

parameter).
is electric energy for period 1.
is non-electric energy for period 1.

closed and concave.

is a four-factor production function for period 7. It is assumed to be proper

@10 Ry = RU{—o0}is a proper, closed and concave terminal stock and investment valuation function.
We have used the dual equilibrium method for truncating the underlying

It yields

infinite-horizon problem. This applies when

Broi =878, t=1, & isa one-period discount factor,

1T+t= (1 + gr)

=25

/, t>2, g, is a post-terminal growth rate,

&r=¢, Yr=v, E=F, t>T+2.
5
log xryq + g—5log £+ K7,4(g,, §),
T +1<FT+'1("CT+1’ Iri1s ersns gT+1) T E€rii€ryy
“Yr+1871+15
Droy(kryrs Irpy) = 2+ 1<F(k 16 g)—ee—vs,

if

. — o0 otherwise.

+n(1=8)(1 +g,) Iy,

forsome (XT+I76T+17 gT+])>Oﬂ ()‘59 k? 15 é: gA)>09

Note that this is but one of various competing methods of truncation. Alternatively, we could have used
a primal or dual target value approach, or a primal equilibrium method. For a theoretical justification of
these methods, as well as some convergence properties, the reader is referred to Grinold [5,6.7] and Evers

[4].

The model was calibrated for the whole of the EC countries and was run for a model horizon of 11
five-year (and one end-horizon) periods. For the precise value of the parameters, see Noél, de Groote and
Smeers [11]. Figure 1 shows the consumption/income pattern obtained from a constant annual discount

212



Volume 6, Number 3 OPERATIONS RESEARCH LETTERS November 1987

o, 4
301 13 e, e
» el v,
12% u
20 . 4 S —
Mg
10 [
i L .
30
YEAR

Fig. 1. Consumption /income ratios.

rate of 6%, 9% and 12%, respectively. In all cases it is in sharp contrast with available empirical data (see
C.C.E. [3]), which show a limited fluctuation between 21% and 18.5% for the last ten years. We should note
that the last periods’ behavior may be somewhat perturbed due to end-effects.

Our aim is to reformulate the model so as to ensure that consumption/savings ratios match a
predetermined pattern, and avoid the specification of an exogenous time discount factor.

In Section 2 we discuss the general model and present the main ideas. We introduce a general
equilibrium formulation, in which the optimizing agents’ behavior is independent of the discount factors.
Instead, it depends on patterns of intertemporal wealth transfers. These patterns may be empirically
measured, or, in certain simple cases, their optimal behavior may be analytically derived. We end by
applying our formulation to the numerical example presented earlier, and contrasting our results to those
obtained from the optimization approach. ~

Finally, in Section 3 we deal with a convex activity analysis model in which the capital accumulauon
mechanism is furthermore restricted. For this model, the results of Section 2 have a particularly
meaningful economic interpretation. In particular, we specify a pattern of intertemporal wealth transfers
that is consistent with a version of the Golden Rule of Capital Accumulation.

2. The model and main results

In what follows let

x,€R7 represent consumption for period .

I, eR" represent investment for period ¢.

S?CR™ be a closed convex non-empty set containing 0. It is usually taken to be
the whole of R™ or R7.

k, € R% represent the capital that is available at the beginning of period &.
y,ER" represent the production vector for period ¢ Its positive (negative)
elements denote outputs (resp. inputs).

ScRrR™ specify the capital / production pairs that are technologically feasible for
period ¢. It is assumed non-empty closed and convex.

R RU [~} is the utility function for period f. It is assumed to be proper closed and
concave.

w, represent the exogenously specified wealth for period 1.
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G, %, H specify the capital accumulation process. The capital available at period
t+1 is assumed to be a (usually increasing) linear function of the
previous period’s capital and investment outlays and the current period’s
investment vector. Typically,

0, is a diagonal matrix with non-negative entries at most equal to one;
the ith element of @, denotes the capital survival rate of capital of type i
in period 1. :

%, H, are non-negative diagonal matrices summing up to the identity
matrix. The ith element of Z, (resp. H,) denotes the fraction of invest-
ment of type i of period ¢ that is effective in the same (resp. next)
period.

Droyt RIXSF. > RU{—oo} is a closed and increasing proper concave function that evaluates the
terminal levels of capital and investment.

The feasible set, X7, is defined as follows:

T T e
XT: {('xt’ kt’ Vs [z)ls IT+19 kTV{»l/(xz’ km Yes It)l’ IT+1s kT+1 satisfies (1)}’

xo I <w, +y, t=1,...,7T,

kf<@,_lk,-1+3211+H[_1]t_1, r=1,...,T+1,

(kt> yz)ESrls =1,...,T,

I, €S2, t=1,...,T+1, (1)
Iy, k, given,

k,, x,=0, t=1,...,T,

kri =0.

Let the present value prices be 7, for capital goods, and p, for all other consumption goods ~ hereafter
termed simply goods.

If k, units of capital and y,” units of goods are inputs in the production process at period ¢, they yield
y," units of goods in the same period, and 6k, units of capital in the next (capital that survived).
Therefore, the net present value of profits due to productive activities is

Wt+1@tk1 +ptyt - Wtkt'

If 7, units of consumable goods are invested in period 7, they yield Z,I, units of capital in the same
period, and H, I, units of capital in the next. Therefore, the net present value of profits due to investment
activities is

T 1 +mZ 1~ pl,.

Let the wealth shares »,, (resp. p,,, A,), t=1,...,T+1, i=0,..., T denote the share of the ith period’s

endowment (resp. production profit, investment profit) allocated to period . Obviously, we require
T+1

T 20’ Z ()\ij1 :U’IJ? Vij)=(17 ]"1)9 ”O/ZO'
Jj=1

,,,,,

Then the budget of period 7 is given by

T T T
M, = E vo(pw,) + by i (M10,k; + py, — mk,) + Z Ao H L+ w5 T —pil).
i=1 i=0 i=0
For any wealth shares (A, u, ), and discount factors (8,)7*', we define a respective general equilibrium
problem, EQ7, and a welfare optimization problem, P7, as follows:
EQT: Find a set of quantities (x, kyy Yoo I)E, kpyy, Irey, and prices (p,, m)4 = 0 that satisfy conditions

(i)—(vi).
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(i) (x,)7 solve the consumers’ subproblems; to maximize their utility subject to their budget constraint,

maxu,(x,) s.t. px, <M,

X¢

and it is understood that the terms in which w,, p, appear are to be dropped in the above formulation.
(ii) (k,, y,)T solve the producers’, subproblems; to maximize the net present value of production profits,

maxm, 0k, +p,y,—mk, st. (k, y)ES!, k,>0 and k, is given.
ko ye

(iii) (I,)] solve the investors’ subproblems; to maximize the net present value of investment profits,

maxw, H I +7EZ1 —pl st [,€S5* and I, is given.
I

’

(iv) kpyy, Ly, solve the terminal condition subproblem,

A = 2
, max Proa(krers Irir) st mrpkro = mr Erdpyy < Mpoy, Ipg €574
T+1»4T7+1

(v) The no-excess-demand conditions are satisfied,
x,+ 1, <w, +y, t=1,...,T,
k1 <Ok, +ZE 1L, +HI, t=0,...,T.

(vi) The Walras law is satisfied,

T T+1
Z P:(xt+ It - wt“yt) + Z Wr(kr - @twlkz~1 - zrlz_ Hz—l’r-l) = 07
=1 =1
and
T
PT:max 3 Bu,(x,) + Brir@ri1(kpyy, Iryy)  subject to (1).
r=1

We now turn to discuss the relationships between these two problems. First, note that for any set of
discount factors for which PT is stable and finite, there exists a primal (quantity) solution
(x> ky Yoo 1YY, kpiqs Irpq, and supporting dual prices ( p,, )5, 7., > 0. Such a pair will be denoted
as an optimal primal—dual solution. Then we can show:

Theorem 1. Let (B)]"' be discount factors for which PT is stable and finite, and
(xps by Yoo IYE, kpirs Trins (P m)Y, mpyy @ primal-dual solution. Then, there exist wealth shares
(A, w, v) for which it also solves EQT.

Proof. If (x,, k,, ¥, I)1, Ir41, kpiq solves P with optimal dual prices ( p,, m,)7, my,,, it is clear that
conditions (i), (iii), (v), (vi) are satisfied for any wealth shares. It is also clear that we may find wealth
shares such that the budget constraints of optimization problems (i) and (iv) are all satisfied with equality
(e.g, let vy =p; =A;= mt/ZtT--lmn where m,=pw, +m Ok, —mk +py+mEL+ 7 HI—pl=
revenue generated in period ¢). Note that conditions (ii) and (iii) guarantee the non-negativity of these
wealth shares. From the Kuhn-Tucker conditions for PT, it follows that the Kuhn-Tucker conditions for
(1) and (iv) are satisfied with dual prices: 1/8,. Under our assumptions of convexity and stability they are
both necessary and sufficient for optimality. O

The above result relates the solutions of the welfare optimization problem P7 to those of the
equilibrium problem EQT with an appropriately chosen set of shares. This is only part of the link between
the two formulations. It can also be shown that each solution to the equilibrium problem EQT solves the
welfare optimization problem P7 with an appropriately chosen set of discount factors. For this we shall
need two additional assumptions:
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Assumption 1 (constraint qualification). For evéry choice of positive discount factors, P” is finite and
stable in terms of RHS perturbations.

Note that it need only be verified for (B,,..., 87.,) = (1, 0,...,0) -+ (0,...,0, 1), and is obviously
satisfied whenever the Slater constraint qualification holds.

Assumption 2 (minimum wealth for a given set of wealth shares). For every choice of positive discount
factors, the resulting income M, 1=1,..., T+ 1 is positive when evaluated at the optimal solution of the
resulting P7 and its supporting price vector.

It is more usual to assume conditions which ensure that Assumption 2 holds. Here we assume it
directly, because there is a wide variety of circumstances for which it holds, but none of them encompasses
all cases of interest. For example, it would be sufficient to guarantee that

T
Vi=1,...,T+1, 3i, 7 3 »,wi>0 and (u) >0,
j=1
where ()" denotes the ith right derivative of u._.
The condition above assures us that each consumer holds some proportion of a desired good. It is a
weaker form of the minimum wealth assumption introduced by Negishi [10].
Now we can state the converse to Theorem 1:

Theorem 2. If Assumption 1 holds, for any wealth shares (\, ., v) satisfying Assumption 2, there exisis a set
of discount factors (B)1"" and a primal-dual solution of PT that also solves EQ".

Proof. Similar to [10]; the only difference is that in our case the application of duality theory is guaranteed
by Assumption 1, rather than the Slater constraint qualification originally used by Negishi. O

The general equilibrium model developed in this section has the characteristic that its formulation does
not involve discount factors but wealth shares. Each period of the welfare optimization problem
corresponds to a ‘consumer’ and one need only specify the profit share of each economic activity that this
consumer will enjoy. A reasonable approach would be to require that the egonomic activities of period ¢
add only to the income of that same period and the next 1+ 1 (as savings). That would correspond to
requiring

(Xijs s v;)=1(0,0,0) whenever j>i+1 or j<i,

and would simplify our notation significantly. Such restricted transfers would not, in general, suffice to
generate all the possible choices of discount factors, and consequently Theorem 1 would no longer be
valid; they are, nonetheless, the most plausible candidates.

To illustrate our approach we have applied our equilibrium formulation to the example presented in the
introduction, NP”. The allocation of revenues between current consumption and savings was fixed to
follow the path shown in Figure 1, ie., to agree with the empirical data for 1985 and follow the last ten
years’ average (about 20%); from then on wealth shares were independent of the origin of the revenue
(labor, capital). The computations were performed using the Manne—Chao—Wilson [9] algorithm as
implemented in Boucher and Smeers [1]. The individual agents retained in the model are endowed with the
utility functions (i) and (iv). The terminal condition subproblem requires the specification of a discount
rate which is what the method is in principle designed to avoid. This inconsistency is part of the
assumptions introduced in order to define the (terminal) agent (investment pattern in the primal method,
dual variables evaluation, ...). The method should thus be viewed as a means to obtain sensible savings
patterns within the horizon of interest and not necessarily over an infinite one. The method finds the
weights, which, when applied to the utility functions of the individual agents, result in an optimization
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Fig. 2. Social discount rates.

problem whose solution is the desired equilibrium. In the multitemporal context of this problem, these
weights transform the single period utility functions into an additively separable multitemporal utility
index; the ratio of the weights of two successive periods is then equal to one plus the discount rate that
prevails between them. The implied discount rates are readily available without extra computational effort:
they are shown in Figure 2.

We shall not elaborate much on the negativity of the discount rate (—7%) between the first and second
periods. This results from the fact that the initial stock of capital is far too large compared to its
equilibrium value. The monotonicity of the discount rate, growing from 4% in period 3 to 15% in period 9,
is worth noting. It is in sharp contrast with the usual assumption of a constant discount rate frequently
found in economic planning models.

3. Convex activity analysis and the Golden Path Rule
We restrict our model by requiring
(i) (Simplified capital accumulation process) = =0, ©, = H, = Identity matrix,
(ii) (Investment free of sign restriction) §72= R™,
JR"€ 2,20,
A, (Zr):
K.(z,),

(iii) (Convex activity production processes) (k,, y,) €S8 { y
k,

<
=

where i
z, ER" denotes the activity intensity vector for period .
A, R"— R™ is a closed proper concave function specifying production for period r. Posmve (negative)
elements denote outputs (inputs); 4,(0) =0.
K,: R"— R’ is a closed proper convex function representing capital utilization for period 1; K A(0)=10.
We note that since %, =0 the terminal conditions’ evaluation will depend only on the terminal capital
stock. Therefore, we may write

O (kpers Irpy) =07y (kryy).
Then PT becomes

T
max Y Bu,(x,) + Brorbrii(kriy),
=1
cpT= |5t X,k =k, <w,+A4,(z,), t=1,...,T,
K, (z,)<k ‘ t=1,...,7,
X, k,pq, ,>O, t=1,...,T,
k, given.
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Letus denote by r, the capital utilization prices (rents). Then, for any shares (A by 7 )i2 11;; =0,
LM piy vy =(1,1,1), in a fashion similar to EQT, we define the following general equilibrium
j=1 ij ij i
problem:
CEQ': Find a set of quantities (x,, k,, z,)], kr.,, and prices ( p,, )7 > 0 that satisfy conditions (i)—(vi).
(i) (x,)] solve the consumers’ subproblems; to maximize their utility,
maxu,(x,) st px,<M,

i

where
r

T T
M, = Z ”i:(Psz) + Z F‘:x(Piki+ rk, _pl—}ki) + Z kn(PiA:(Zi) - riKi(Zi))“
i=1 i=1 i=1

(i) (k)% solve the capital holders’ subproblems; to maximize the net present profits due to capital
formation,

max p,k,+rk,—p, 1k, st. k,>0 and k, is given.
kl

(iii) (z,)7 solve the producing firms’ subproblems; to maximize the net present value of production
profits,

maxp,A4,(z,) —rK,(z,) st z,>0.

iv) k solves the terminal condition subproblem,
T+1 P

max¢(kr,1) St prhry < Mr,,.

T+1

(v) The no-excess-demand conditions are satisfied,

x, ko —k,<w,+A4,(z,), t=1,...,T,
K[(Z,)\{kr, t=1,...,T.
(vi) The Walras law is satisfied,
T T
Z pt(xt+kt+l “kt_wt'At(zt)) + Z ('}(Kr(zt) - kz) =0.
=1 =1

The interpretation of the subproblems is entirely analogous to that of EQ”. The only difference is that
for the activity analysis model we have succeeded in decoupling the capital utilization part of the problem
from the rest of the productive activities. If k,,, units of capital are set aside in period ¢, in period 7+ 1
they yield k,,, units (all the capital survives) at a price p,,,+r, (joint price for consumption and
rental). Therefore, the net present value of profits due to capital formation is

Povikior t ko —pkgg.
Similarly, if productive activities in period ¢ are z,, then, the actual inputs are A,(z,)  units of goods at
price p,, and K,(z,) units of capital rented at price r,; the outputs are 4 (z,)" units of goods in the same
period (at price p,). Therefore, the net present value of profits due to productive activities is
p,A,(Z,) - I‘,K!(Z,).
[t is precisely this property that will allow us to implement the Golden Rule. But first, we note that in a

fashion similar to that of Section 2, we may prove direct analogues of Theorems 1 and 2. The analogue to
Theorem 1 is

Theorem 3. Let (B,)1"" be discount factors for which CPT is stable and finite, and (x,, k2T, kpyy,
(P, 1)1 a primal-dual solution. Then, there exist wealth shares (A, u, v) for which it also solves CEQ”.

The analogues of Assumptions 1 and 2 for the new setting are given below:
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Assumption 3 (constraint qualification). For every choice of positive discount factors, CP7 is finite and
stable in terms of RHS perturbations.

Assumption 4 (minimum wealth for a given set of wealth shares). For every choice of positive discount
factors, the resulting income M,, t=1,..., 7+ 1 is positive when evaluated at the optimal solution of the
resulting CP” and its supporting price vector.

We note in passing, that the stability required by Assumption 3 includes perturbations to the capital
utilization constraints. The converse to Theorem 3 is:

Theorem 4. If Assumption 3 holds, for any wealth shares (N, 1, v) satisfying Assumption 4 there exists a set
of discount factors (B,) and a primal-dual solution of CP” that also solves CEQT.

The key issue is to devise a method for specifying the wealth shares. Focusing on transfer patterns in
which income generated at a given period may be passed on only to the next, let us set

v,=1, »,=0 whenever j#1,
Ap=1, A,=0 whenever j# 1,
Pere1=1, p;,;=0 whenever j+#r+1.

Then, we observe that

M,=m,+o0,_, —0, where

m,=pw, +P1A1(Zz) - rth(Zt) +pk,+rk,—p_k,, t=1,...,T (and My = 0)
is income generated at period .

o,=pk,+rk,~—p_.k, t=1,...,7 and oy,=0,,,=0

represents the part of current income m, that is not consumed immediately, but passed on to the next
period as savings. Observe also that from its definition, o, is easily seen to be the share of current income
generated by capital alone. This rule, ‘savings = capital’s share of income’, is one of the versions of the
Golden Rule of Capital Accumulation first introduced by Phelps (see, e.g., Phelps [12]). He has shown that
it describes behavior that maximizes per capita consumption in certain one-sectoral models, and Burmeis-
ter—Dobell [2] have generalized it to some multi-sectoral models. Their version, however, although
equivalent to that of Phelps for the one-sectoral model, differs from the one proposed here.
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