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Abstract

Radiative-capture reactions are studied in the potential model at very low energies including
energy zero. For the capture of charged particles, the astrophysicalS factor possesses a Taylor
expansion in powers of the energy of the relative motion. By using scaled scattering functions with
a finite non-zero limit at energy zero, theS factor is obtained in the potential model from a simple
integral which allows visualizing its behaviour at energies close to zero. The first coefficients of
this expansion can be calculated accurately from solutionsof the Schr̈odinger equation and its
derivatives with respect to energy, at energy zero. The3He(α,γ)7Be and7Be(p,γ)8B reactions are
used as illustrative examples. The same approach applies tothe proton-proton weak capture. For
neutron radiative capture, the productσv of the capture cross section and the relative velocity also
possesses a Taylor expansion in powers of the energy, which can be treated in a similar way. The
neutron capture by12C, 14C and16O are used as examples. The extension of these treatments to
microscopic models of radiative capture is discussed in thecontext of theR-matrix theory.
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1. Introduction

The determination of accurate radiative-capture cross sections is a fundamental problem in
astrophysics [1, 2, 3]. These reactions play an essential role in the synthesis of elements
and in particular of the light elements appearing in the sun through the pp chains. The
rates of these reactions are crucial for understanding the evolution of stars. In most burning
conditions in stars, the temperatures are very low in nuclear scales. The reactions between
charged particles occur in general far below the Coulomb barrier.

Radiative capture is nothing but an electromagnetic transition between a continuum
state and a bound state. It is more complicated than usual transitions in bound spectra
because the continuum state is not square integrable and depends on a parameter, the energy.
The continuum state may involve resonances at some energies. Resonances play a dominant
role in radiative captures of protons leading to heavier elements in the CNO cycle and
beyond. In general, resonant capture allows a simple approximate treatment. Here I focus
on non-resonant capture mostly encountered with light elements and its understanding. This
process is often called direct capture but this name can be misleading since resonant capture
can also be a direct process. It is sometimes incorrectly considered as always arising from
the compound-nucleus mechanism, i.e. a much slower mechanism not valid for light nuclei.

Quantum mechanics is essential to explain the radiative-capture cross sections at low
energies thanks to tunneling through the Coulomb barrier. Hence the radiative-capture pro-
cess is one of the simplest examples where one can observe wave functions at work. The
basic ingredient of the calculation of cross sections contains the overlap between a scatter-
ing wave function describing the collision of two nuclei and the bound-state wave function
of the nucleus created by their fusion. At a low energy of the relative motion, the scatter-
ing wave functions must be obtained in a situation where the Coulomb force dominates the
stronger nuclear force. This unusual situation leads to very small crosssections, for which
direct measurements are in general impossible in the energy range importantfor astro-
physics. Hence a theoretical input is indispensable but, in most cases, impossible to verify
experimentally. It is thus crucial to have a good physical understanding of the mechanism
of the radiative-capture reactions.

An important present goal for nuclear physics is to obtain the cross sections of astro-
physical interest fromab initio calculations, i.e. based on a model-independent solution
of a many-body Schrödinger equation involving realistic nucleon-nucleon and multinu-
cleon forces. Such calculations are in progress but do not provide anintuitive picture of
the behaviour of cross sections, or more practically of the correspondingastrophysicalS
factor, a quantity derived from the cross section presenting a much weaker variation with
respect to energy after the elimination of the main part of the barrier penetration effect.
The simple potential model, also called direct-capture model, can provide suchan intu-
itive picture in many cases by allowing us to visualize the energy dependenceof the crucial
matrix elements. Of course, it presents several simplifications such as the neglect of an-
tisymmetrization [4] and a model dependence through the use of a more or lessempirical
nucleon-nucleus or nucleus-nucleus interaction. An even stronger model assumption is that
the final bound state of the fused nucleus must be described as a two-body bound state of
the initial colliding nuclei. In spite of these drawbacks, the potential model canprovide a
qualitative understanding of several radiative-capture processes through simple pictures. It
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also allows a simple calculation of the behaviour of theS factor around zero energy that
paves the way to similar calculations in more elaborate models.

The aim of the present chapter is to describe the properties of the potentialmodel at
very low energies in a pedagogical way. The results presented at verylow energies and,
in particular, at energy zero can be reproduced with little numerical effort and provide
simple exercises for beginners in this field. They should represent a good training before
studies with more elaborate models. This approach is also hoped to lead to more transparent
physical interpretations of results obtained from microscopic models.

The rules of the game are presented in section 2. with the definitions of the astrophysical
S factor and of the Gamow peak. In section 3., the expressions of the radiative-capture cross
sections are given and the potential model is introduced. The radiative capture of charged
particles is discussed in section 4.. A brief parenthesis in section 5. shows that the proton-
proton weak capture can be explained with the same scheme. Neutron radiative capture is
addressed in section 6.. TheR-matrix approach which provides a link with more elaborate
models is briefly described in section 7.. A conclusion is presented in section 8..

2. Astrophysical S factor and Gamow peak

A reaction involving two nuclei with chargesZ1e andZ2e and massesA1 andA2 takes
place at the relative velocityv. The energy of their relative motion is

E =
1

2
µv2 =

h̄2k2

2µ
, (1)

whereµ is the reduced mass of the nuclei andk is the wave number. Let us start with the
case of a capture of charged particles (Z1Z2 6= 0). The neutron capture requires a separate
treatment (see section 6.).

When both particles are charged, the Coulomb repulsion hinders reactionsat energies
below the topEB of the Coulomb barrier. The order of magnitude of the penetration prob-
ability into the Coulomb barrier is roughly given by the Gamow factor

exp(−2πη), (2)

whereη is the Sommerfeld parameter

η =
Z1Z2e

2

h̄v
=

√
EN

E
. (3)

The second expression ofη involves the nuclear Rydberg energy

EN =
1

2
(Z1Z2α)

2µc2 =
h̄2

2µa2N
(4)

whereα = e2/h̄c is the fine structure constant andaN is the nuclear Bohr radius

aN =
h̄2

µZ1Z2e2
. (5)
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The nuclear Bohr radius and Rydberg energy are natural units for collision between charged
nuclei below the Coulomb barrier. The Sommerfeld parameter is inversely proportional
to the square root of the energy and increases thus whenE → 0. The productηk is
independent of the energy,

ηk =
1

aN
. (6)

The Gamow factor is a fast decreasing function whenE decreases. It does not possess a
Taylor expansion aroundE = 0.

Reaction cross sectionsσ(E) and, in particular, radiative-capture cross sections de-
crease very fast when the energy tends to zero, following roughly the behaviour of the
Gamow factor. They do not possess a Taylor expansion aroundE = 0. It is convenient
to introduce another quantity, the astrophysicalS factor, which varies much less rapidly at
low energy than the cross section (outside resonances, if any). It is defined by

S(E) = Ee2πησ(E). (7)

As explained below, it has the interesting property of having a finite non-zero limit for
E → 0 and a Taylor expansion around this energy,

S(E) = S(0) + S′(0)E + 1
2S

′′(0)E2 + . . . (8)

with S(0) 6= 0. This property allows studying the behaviour of theS factor at energies
arbitrarily close to zero.

In models of the chemical evolution of some astrophysical system, the crucialinforma-
tion is given by the reaction rate per particle pair [1]

〈σv〉 =
(

1

πµ

)1/2 ( 2

kBT

)3/2 ∫ ∞

0
e−E/kBT e−2πηS(E)dE, (9)

wherekB is the Boltzmann constant andT is the temperature. The integrand contains two
fast varying factors in addition to the slowly varying astrophysicalS factor. It is convenient
to study separately the behaviour of the fast varying factors. The function

g(E) = e−E/kBT e−2π
√

EN/E (10)

is depicted in Fig. 1. Its shape is known as the Gamow peak. It displays a maximum at the
energy

E0 =
(
πkBT

√
EN

)2/3
. (11)

This energy is known as the most efficient energy [1] although the true maximum of the
integrand in Eq. (9) may be slightly different due to the energy dependence ofS(E). It is
customary to express this energy in MeV as a function of the temperature in billion degrees
T9 = T/109 K as

E0 ≈ 0.122 (Z2
1Z

2
2A1A2/A)

1/3T
2/3
9 MeV. (12)
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Figure 1. Gamow peak.

This expression is however not intuitive. A better understanding is obtained by comparing
it with the energyEB of the Coulomb barrier. This energy is conveniently approximated as

EB ≈ 0.9
Z1Z2

A
1/3
1 +A

1/3
2

MeV. (13)

For proton andα capture by light nuclei, the ratio ofE0 toEB is roughly given by

E0

EB
≈ 0.3 T

2/3
9 . (14)

This approximate ratio has the merit to clearly show that capture takes place far below the
Coulomb barrier forT9 < 1.

If physics was classical, capture would be impossible below the Coulomb barrier. It
could still occur through the high-energy tail of the Boltzmann distribution. The integral
in (9) would start fromEB in place of 0 and the corresponding reaction rate would be
proportional to an exponential involving the Coulomb barrier energyEB,

〈σv〉cl. ∝ e−EB/kBT . (15)

But the real world obeys the laws of quantum physics and the tunneling through the
Coulomb barrier leads with Eq. (9) to

〈σv〉 ∝ g(E0) = e−3E0/kBT . (16)

As shown by the ratio (14), the quantum reaction rate is much larger forT9 < 1. If a reso-
nance occurs at energies below the Coulomb barrier, it is narrow and leads to a contribution
to the rate proportional to an exponential involving the resonance energyEr,

〈σv〉res. ∝ e−Er/kBT . (17)
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The rate can thus be significantly enhanced by resonances below or around the Gamow
peak.

The crucial ingredient for understanding the value of the reaction rate isthe coefficient
of g(E0) in Eq. (16) which depends on the value ofS(E0). More precisely, the reaction rate
depends on the values ofS(E) in the Gamow-peak domain. The study of the properties of
the astrophysicalS factor for non resonant radiative-capture reactions at very low energies
is the main topic of this chapter.

3. Radiative-capture models

3.1. General model cross sections

Let us consider a capture process where two nuclei with respective massesA1 andA2

and chargesZ1e andZ2e fuse into a nucleus with massA and chargeZe by emitting a
photon with wave numberkγ . Let I1 andI2 be the total internal angular momenta of the
colliding nuclei andI be a result of their coupling, known as the channel spin. The final
bound state is characterized by two good quantum numbers, its total angularmomentum
Jf and its parityπf . The initial scattering state possesses an infinity of partial waves. The
electromagnetic transition operator can be expanded into electric and magneticmultipoles.
For each multipole, selection rules limit the number of active initial partial waves.Let li be
the initial orbital angular momentum of the relative motion between the colliding nuclei in
the entrance channel for a given partial wave andJi be an initial total angular momentum
resulting from the coupling of this relative orbital momentum with the channel spin I.

The bound-state wave functionΨJfMfπf of the final nucleus has energyEJfπf with re-
spect to the elastic threshold. The transition operatorMσλ

µ with multipolarityλ corresponds
to an electric transition forσ = E or a magnetic transition forσ = M. The radiative-capture
cross section is given for example in Refs. [5, 6] as

σJfπf
(E) =

64π4

h̄v

2Jf + 1

(2I1 + 1)(2I2 + 1)

∑

σλ

k2λ+1
γ

[(2λ+ 1)!!]2
λ+ 1

λ

×
∑

liIJi

1

2li + 1
|〈ΨJfπf ||Mσλ||ΨJi

liI
(E)〉|2, (18)

whereΨJiMi
liI

(E) is a partial wave of the initial scattering wave function at the energyE of
the relative motion, with a specific normalization. The energyEγ and wave numberkγ of
the photon are given by

Eγ = h̄ckγ = E +Q− Ex (19)

as a function of theQ value of the reaction and of the excitation energyEx of the final
nucleus. A small recoil term is neglected.

The capture cross section (18) involves a sum over all multipoles, electric and magnetic.
For radiative capture, the emitted photons have energies smaller than 10 MeVin most cases
and the long-wavelength approximation is valid. The sum over multipoles is dominated
by the dipole term, except when it is forbidden by an isospin selection rule. When E1 is
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forbidden, the dominant component is E2 although the forbidden E1 component may be of
the same order of magnitude like in the12C(α, γ)16O reaction. The present study is thus
restricted to electric multipole operators, withλ = 1 or 2 in practice.

Let rp be the coordinates of protonp (p = 1 to Z) andRcm be the coordinate of the
centre of mass of the system ofA nucleons. The electric transition operators read at the
long-wavelength approximation

MEλ
µ = e

Z∑

p=1

r′λp Yλµ(Ω
′

p) (20)

where the sum runs over all protons. The operators depend on the relative coordinates
r
′

p = rp −Rcm = (r′p,Ω
′

p) with respect to the centre of mass of the system ofA nucleons.
Expression (18) is quite general. It is valid for microscopic models where all nucleons

are taken into account and the wave functions are properly antisymmetrized. This covers
the microscopic cluster model [5, 7] as well as recent or futureab initio calculations [8, 9].
In this chapter, the goal is understanding the radiative-capture process and its important
properties are better seen on a much simpler model, the potential model [4, 10, 11, 12].

3.2. Potential model

In the potential model, the internal structure of the reacting nuclei is essentially neglected.
They are treated as pointlike particles with a spin. The only quantal variable isthen the
relative coordinater = (r,Ω) between these nuclei. Their internal structure however deter-
mines the nucleus-nucleus interaction that is the main ingredient of the model. This local
interaction can be phenomenological or derived from a more elaborate model. Antisym-
metrization effects can even be partly simulated by introducing unphysical bound states
in the potential. These deeply bound states allow obtaining wave functions with anode
structure closer to the node structure of relative wave functions of more physical bound and
scattering states derived in microscopic models.

The model is based on a local nucleus-nucleus potential involving nuclearand Coulomb
components. The nuclear potential may contain a spin-orbit term involving for example a
coupling of the orbital momentum with the channel spinI. A bound state is characterized
by quantum numberslfJf and a scattering partial wave by quantum numbersliJi where
the total angular momenta result from the coupling of the orbital momenta withI. In the
potential model,I is both the channel spin of the scattering wave function and the total
intrinsic spin of the final nucleus. The energy of the final nucleus with respect to the elastic
threshold is denoted asElfJf .

After separation of the spin and angular components, the bound and scattering wave
functions are described for a given orbital momentuml and total angular momentumJ as
eigenfunctions of the radial Schrödinger equation

HlJulJ(r) = EulJ(r), (21)

with respective energiesElfJf andE. In Eq. (21), the radial Hamiltonian reads

HlJ = − h̄2

2µ

[
d2

dr2
− l(l + 1)

r2

]
+ V lJ

N (r) + VC(r), (22)
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whereV lJ
N (r) is the nuclear interaction between the clusters for the considered partial wave

lJ andVC(r) is the Coulomb interaction between them. PotentialVC usually differs from
the Coulomb interactionZ1Z2e

2/r between two point charges to partly take account of the
finite size of the nuclei. It is, for example, a point-sphere Coulomb interaction. For neutron
capture, the Coulomb potentialVC(r) vanishes.

For nuclei that can be considered as pointlike to a good approximation, the proton co-
ordinates of nucleus 1 differ only slightly from the coordinate of the centreof mass of this
nucleus with respect to the centre of mass of the full system,

r
′

p ≈ −A2

A
r (p = 1, . . . , Z1). (23)

In the same way, the proton coordinates of nucleus 2 differ only slightly from the coordinate
of the centre of mass of this nucleus with respect to the centre of mass of the system,

r
′

p ≈
A1

A
r (p = Z1 + 1, . . . , Z). (24)

Hence the electric transition operators (20) take the approximate form

MEλ
µ ≈ eZEλ

eff rλYλµ(Ω), (25)

whereZEλ
eff is an effective charge given by

ZEλ
eff = Z1

(
−A2

A

)λ

+ Z2

(
A1

A

)λ

. (26)

It is always strictly positive for E2 but can vanish or be negative for E1.
The radiative-capture cross section in the potential model is a particular case of Eq. (18)

where the wave functions depend on a single coordinater. It is given for example in
Ref. [3]. Using the potential model wave functions of the initial and final states and approx-
imation (25) for the transition operator, the cross section reads

σEλ
lfJf

(E) =
αc

k2v
k2λ+1
γ

∑

liJi

NEλ
liJi

[∫
∞

0
ulfJf (r) r

λ uliJi(E, r) dr

]2
. (27)

It implies that the scattering wave functions are normalized according to

ulJ(E, r) →
r→∞

cos δlJ(E)Fl(η, kr) + sin δlJ(E)Gl(η, kr) (28)

whereFl(η, kr) andGl(η, kr) are the regular and irregular Coulomb wave functions [13]
andδlJ(E) is the nuclear (or additional) phase shift at energyE for partial wavelJ . In
Eq. (27), the normalization factor is given by

NEλ
liJi = 8π

(
ZEλ
eff

)2 (λ+ 1)(2λ+ 1)

λ(2λ+ 1)!!2
(2Ji + 1)(2Jf + 1)(2li + 1)(2lf + 1)

(2I1 + 1)(2I2 + 1)

×
(

lf λ li
0 0 0

)2{
Jf lf I
li Ji λ

}2

. (29)

The photon wave number is related to the initial energyE through

kγ = (|ElfJf |+ E)/h̄c. (30)

These expressions are also valid for the neutral case withη = 0. The Coulomb functions
then reduce to spherical Bessel functions [13] multiplied bykr.
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4. Radiative capture of charged particles

4.1. Scattering functions for E → 0

WhenE tends towards zero,η tends to infinity and the scattering wave functions normalized
according to (28) tend to zero. This is illustrated in Fig. 2 where one can observe the fast
decrease of the wave functions with decreasing energy at fixedr. This behaviour is the

ulJ

3He + α

li = 0

0.05 MeV

0.3 MeV 0.2 MeV

0.1 MeV

0 20 40 60r (fm)

Figure 2. Radial wave functionsu0,1/2(E, r) of the 3He +α elastic collision normalized
according to Eq. (28) at various low energiesE. The final ground-state wave function
u1,3/2(r) of 7Be (×2) is represented as a dashed line.

consequence of the increase of the width of the Coulomb barrier when the energy tends to
zero. Mathematically, it is a consequence of the normalization (28). Indeed, the regular
functionFl tends to zero while the irregular functionGl tends to infinity.

Fl(η, kr) ∼ e−πη →
E→0

0, (31)

Gl(η, kr) ∼ e+πη →
E→0

∞. (32)

and the phase shifts tend to zero in such a way that

δlJ(E) →
E→0

− 2π
alJ

l!2a2l+1
N

e−2πη →
E→0

0, (33)

wherealJ is the scattering length (see Appendix). Hence the asymptotic form (28) of
ulJ(E, r) tends to zero whenE → 0,

ulJ(E, r) ∼ e−πη →
E→0

0, (34)

for anyr value.
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The usual normalization of the Coulomb wave functions is not practical nearE = 0. In
order to avoid properties (31) and (32), scaled Coulomb functions are defined as [12]

F l(E, r) = k−1/2eπηFl(η, kr) (35)

and

Gl(E, r) =
π

2
k−1/2e−πηGl(η, kr). (36)

Their advantage is that they have a finite limit whenE → 0. From the properties of the
standard Coulomb functions [13], one deduces the Wronskian

W{Gl,F l} = π/2, (37)

whereW{g, f} = g(df/dr)− f(dg/dr). Through Eqs. (35) and (36), the scaled Coulomb
functions are considered as directly depending on the energyE. In the following, primes are
used to designate derivativeswith respect to energy. For example, the first energy derivative
of F l is written as

F ′

l(E, r) =
∂

∂E
F l(E, r), (38)

and similar expressions for other functions and derivatives.
A scaled scattering wave functioñulJ(E, r) can be defined as

ũlJ(E, r) = k−1/2eπηulJ(E, r). (39)

The asymptotic form of̃ulJ(E, r) is given with the notations (35) and (36) by

ũlJ(E, r) →
r→∞

F l(E, r) +
2

π
e2πη tan δlJ(E)Gl(E, r). (40)

This normalization ensures thatũlJ has a finite limit whenE tends towards zero [14, 12].
This behaviour is illustrated in Fig. 3. The wave functions now tend to a finite non-zero limit
represented as a dotted line in the figure. This limit can be calculated by solvingEq. (63)
below. While theE = 0 curve tends to infinity forr → ∞, the curve atE = 0.01 MeV that
looks very close starts to oscillate beyond the classical turning point atZ1Z2e

2/E ≈ 576
fm, i.e. far beyond the range displayed in the figure. At large distances, the amplitude
of the oscillations of the scattering wave functionsũlJ(E, r) with respect tor increases
exponentially withexp(πη).

4.2. Potential-model expression of the astrophysical S factor

Rather than the radiative-capture cross section (27) in the potential model,it is easier to
immediately use an expression for theS factor by absorbing the factorsE exp(2πη) of
Eq. (7) andk−2v−1 of Eq. (27) into the initial wave function [14]. TheS factor for an
electric transition of multipolarityλ to the final statelfJf then reads

SEλ
lfJf

(E) = 1
2αh̄ck

2λ+1
γ

∑

liJi

NEλ
liJi [IliJi(E)]2. (41)
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ũlJ

3He + α

l = 0

0 MeV 0.01 MeV

0.1 MeV

0.2 MeV

0.3 MeV

0 20 40 60r (fm)

Figure 3. Scaled radial wave functionsũ0,1/2 of the3He +α elastic collision at various low
energiesE. The limitE → 0 is represented as a dotted line.

In practice, this expression may be multiplied by a spectroscopic factor for each component
lf of the final state. The totalS factor is obtained by summing over the final states.

Since the physics of low-energy dependences may vary from one initial partial wave
to another, it is convenient to focus on someliJi component ofSEλ

lfJf
. TheS factor corre-

sponding to this component is simply denoted asS(E) in the following. Also, spectroscopic
factors are not used, except when explicitly mentioned.

The matrix elementIliJi(E) is given by the one-dimensional integral

IliJi(E) =

∫
∞

0
ulfJf (r) r

λ ũliJi(E, r) dr (42)

whereũliJi is defined in Eq. (39). SincẽuliJi has a finite limit whenE tends towards zero,
IliJi(E) and thusSEλ

lfJf
(E) also have finite limits [14].

It is convenient to make use of a function of the phase shiftδlJ defined as

DlJ(E) =
2

π
[e2πη − 1] tan δlJ(E) (43)

which also has a finite limit whenE → 0 (see Appendix). In the following, I concentrate
on very low energies, i.e., on energies verifying

e−2πη ≪ 1. (44)

This condition is well satisfied for

η > 1 or E < EN . (45)

Then, the phase shiftδlJ is very small. With notation (43) and approximation (44), the
asymptotic form (40) of the radial wave function becomes forE < EN ,

ũlJ(E, r) →
r→∞

F l(E, r) +DlJ(E)Gl(E, r), (46)

which remains finite atE = 0.
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4.3. Properties of scaled Coulomb functions

Coulomb functions can be described at low energies on the basis of an expansion in powers
of 1/η2 = E/EN [15]. Rigorous expressions of such an expansion forFl and an asymptotic
approximation forGl have been derived by Humblet [16]. Using Eqs. (2.10a) and (4.8a) of
Ref. [16], the scaled functions (35) and (36) can be approximated by

F l(E, r) =

(
πwl(E)

1− e−2πη

)1/2

r1/2
[
f0(x)−

1

12η2
f1(x) +O

(
1

η4

)]
(47)

and

Gl(E, r) =

(
πwl(E)

1− e−2πη

)1/2

r1/2
[
g0(x)−

1

12η2
g1(x) +O

(
1

η4

)]
(48)

with

x = 2(2r/aN )1/2. (49)

The functionswl(E) read

wl(E) =
l∏

n=0

(
1 +

n2

η2

)
. (50)

They are polynomials of degreel of the energy. The first functionsfi read

f0(x) = I2l+1(x), (51)

f1(x) =

(
x

2

)2 [
3(l + 1)I2l+3(x) +

x

2
I2l+4(x)

]
, (52)

while the first functionsgi read

g0(x) = K2l+1(x), (53)

g1(x) =

(
x

2

)2 [
3(l + 1)K2l+3(x)−

x

2
K2l+4(x)

]
, (54)

whereIn andKn are modified Bessel, or Hankel, functions [13]. Using notations with an
upperscript 0 for functions calculated at zero energy, one deducesfrom these expressions
the limits

F0
l (r) = lim

E→0
F l(E, r) = (πr)1/2f0(x), (55)

G0
l (r) = lim

E→0
Gl(E, r) = (πr)1/2g0(x). (56)

Of course, these functions still satisfy the Wronskian relation (37),

W{G0
l ,F0

l } = π/2. (57)

The exponentialexp(−2πη) and all its derivatives tend to zero whenE tends to zero.
Therefore, the factor1 − exp(−2πη) in Eq. (47) or (48) behaves as a constant (i.e. unity)
in the calculation of a Taylor expansion aroundE = 0 and plays no role in this expansion.
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One can express with Eqs. (47) and (48) the limits of the first derivativeswith respect
to energy as

F ′0
l (r) =

(πr)1/2

12EN
[l(l + 1)(2l + 1)f0(x)− f1(x)] , (58)

G′0
l (r) =

(πr)1/2

12EN
[l(l + 1)(2l + 1)g0(x)− g1(x)] . (59)

Higher-order derivatives are given in Refs. [17, 18].

4.4. Expansion of S(E) around E = 0

All the ingredients needed to perform a Taylor expansion of theS factor near zero energy
are now known. Expansion (8) restricted to first order can be rewrittenas

S(E) ≈ S(0)(1 + s1E + . . .). (60)

One needs computable expressions of the coefficients. From Eqs. (41)and (42), one imme-
diately obtains

S(0) = 1
2αh̄cN

Eλ
liJi(|ElfJf |/h̄c)2λ+1[IliJi(0)]

2, (61)

with the integral

IliJi(0) =

∫
∞

0
ulfJf (r) r

λ ũ0liJi(r) dr. (62)

The radial wave functioñu0liJi(r) ≡ ũliJi(0, r) at zero energy is a solution of the
Schr̈odinger equation

HliJi ũ
0
liJi(r) = 0. (63)

This solution satisfies the boundary conditions

ũ0liJi(0) = 0 (64)

and

ũ0liJi(r) →
r→∞

F0
li(r) +DliJi(0)G0

li(r). (65)

The normalization of the functioñu0liJi is fixed by Eq. (65). Using Eq. (57), the normaliza-
tion condition can also be written as

W{G0
li , ũ

0
liJi} →

r→∞

π/2. (66)

This Wronskian allows one to properly normalize a numerical solution of Eq. (63) satisfying
condition (64). The coefficientDliJi(0) is related to the scattering length by Eq. (A4) and
can be calculated with Eq. (A5).
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For givenliJi, the first-order coefficients1 in Eq. (60) is obtained by differentiating
Eqs. (41) and (42) with respect toE [14], yielding

s1 =
S′(0)

S(0)
=

2λ+ 1

|ElfJf |
+

2I ′liJi(0)

IliJi(0)
, (67)

with the energy derivative of the integral given by

I ′liJi(0) =

∫
∞

0
ulfJf (r) r

λ ũ′0liJi(r) dr. (68)

The first term of Eq. (67) is always positive. Only the second term can explain negatives1
values.

The energy derivativẽu′0liJi of the radial wave function at zero energy is a solution of
the derivative of the Schrödinger equation (21) at the limitE → 0, i.e.,

HliJi ũ
′0
liJi(r) = ũ0liJi(r). (69)

The required solution of this inhomogeneous differential equation verifies

ũ′0liJi(0) = 0. (70)

Its asymptotic form is given by the energy derivative of Eq. (46) at the limitE → 0 as

ũ′0liJi(r) →
r→∞

F ′0
li (r) +DliJi(0)G′0

li (r) +D′

liJi(0)G
0
li(r), (71)

whereF ′0
li
(r) andG′0

li
(r) are given by Eqs. (58) and (59), respectively. In this expression,

D′

liJi
(0) is still unknown but this coefficient disappears in the Wronskian limit

W{G0
li , ũ

′0
liJi −F ′0

li −DliJi(0)G′0
li } →

r→∞

0. (72)

The coefficientD′

liJi
(0) is related to the effective range by Eq. (A7) and can be calculated

with Eq. (A8).
A numerical solution of Eq. (69) with the initial condition (70) does not necessarily

have the asymptotic behaviour (71) since it may contain an arbitrary component which is
solution of the homogeneous equation (63). Subtracting this component to obtain a solution
with the correct asymptotic behaviour can easily be performed from the Wronskian limits
(72) and (66) (see Ref. [12] for technical details).

4.5. Applications

The 3He(α,γ)7Be reaction is a good example of application of the potential model since
the 7Be bound states have anα+3He cluster structure. The dominant multipolarity is E1
(λ = 1). The spins of the colliding nuclei areI1 = 1/2 andI2 = 0. Hence the channel spin
is I = 1/2. The quantum numbers of the7Be ground state areJf = 3/2 andπf = −1. The
final orbital momentum is thuslf = 1. The capture to the1/2− first excited state behaves
in a similar way. In both cases, the capture can take place fromli = 0 and li = 2. The
capture from thes wave (Ji = 1/2) is dominant since this wave has no centrifugal barrier.
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Only this case is considered here. The Gaussian potential of Ref. [19] ischosen, like in
Ref. [12]. The Bohr radius isaN = 4.22 fm and the Rydberg energy isEN = 0.68 MeV.

Radial wave functions are shown at various energies in Fig. 2. The bound-state wave
function exhibits a node near 2 fm due to its orthogonality to a deep unphysical bound state
of the potential. With this node, the relative wave function between the clustersis more
similar to those obtained from microscopic calculations. Scaled scattering wavefunctions
are presented in Fig. 3.

The integrands in the radial integral (42) are displayed in Fig. 4. They tend to a finite
limit (dotted line) thanks to the renormalization withk−1/2eπη. They tend towards this limit
from below. One observes that the maximum of the integrand is located near 7.5 fm at very

ufrũi

3He + α

0 MeV
��

0.05 MeV

��

0.1 MeV
�
�

0.2 MeV
��

0.3 MeV
��

0 10 20 30r (fm)

Figure 4. Integrands of the radial E1 integralI0,1/2(E) for the3He(α,γ)7Be reaction. Nota-
tion uf stands foru1,3/2(r) andũi stands for̃u0,1/2(E, r). The limitE → 0 is represented
as a dotted line.

low energies. The capture thus takes mostly place when the two nuclei do notoverlap. The
role of the overlap region is restricted to distances below 5 fm. One observes oscillations
due to the node near 2 fm of the bound state (see Fig. 2) and the nodes near 1.5 and 3.7
fm of the scattering state (see Fig. 3). The external part of the integrandshould not differ
much in a more elaborate microscopic model, except possibly for its normalizationrelated
to the asymptotic normalization coefficient (ANC). The region below 5 fm is moremodel
dependent but plays a lesser though non negligible role in the value ofI0,1/2(0).

The behaviour of theS factor nearE = 0 is then given by (61) and (67) as [12]

Sg.s.(0) = 3.2× 10−4(1− 0.88EMeV) MeV b. (73)

For the1/2− excited state, one obtains

S1/2−(0) = 1.4× 10−4(1− 0.92EMeV) MeV b. (74)

The S factor thus decreases whenE increases fromE = 0. This is the result of two
competing effects. The first term in Eq. (67) is positive as always but Fig. 4 shows that the
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second term is negative since the area under the curve representing theintegrand decreases
asE increases. This second term is large enough to give a negatives1.

The7Be(p,γ)8B reaction is crucial for the understanding of the solar neutrino emissions
since the8B decay provides most of the high-energy neutrinos from the sun. The spins of
the colliding nuclei areI1 = 3/2 andI2 = 1/2. Hence the channel spin is eitherI = 1 or 2.
Microscopic calculations indicate thatI = 2 is dominant in the ground state. The present
illustration is restricted to that case for the sake of simplicity. The dominant multipolarity
is also E1. The quantum numbers of the8B ground state areJf = 2 andπf = +1. With
I = 2, the final orbital momentum is thuslf = 1 since the7Be cluster has a negative parity.
The capture can take place from the evenli = 0 and 2. Here also, I only consider the
dominant capture from thes wave (Ji = 2). The Gaussian potential of Ref. [19] is chosen,
like in Ref. [12]. The Bohr radius isaN = 8.24 fm and the Rydberg energy isEN = 0.35
MeV.

The scaled wave functions̃u02 are presented in Fig. 5 for various low energies and
compared with theE = 0 limit from Eq. (63). The corresponding integrands in the radial
integral (42) are displayed in Fig. 6. They tend from below to a finite limit thanks to
the renormalization withk−1/2eπη. They present a maximum around 40 fm. The capture

ũlJ

7Be + p

l = 0

0 MeV 0.01 MeV
0.1 MeV

0.2 MeV
0.3 MeV

0 50 100r (fm)

Figure 5. Scaled radial wave functionsũ02 of the7Be + p elastic collision. The limitE → 0
is represented as a dotted line.

essentially occurs when the7Be nucleus and the proton are far away from each other, much
farther away than the range of the attractive nuclear interaction. The overlap region is
almost totally negligible. The capture cross section at very low energies onlydepends on
asymptotic properties, i.e. the ANC of the bound state and the scattering lengtha02 of thes
wave. The dependence of theS factor on these quantities is discussed in the next subsection.
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ufrũi

7Be + p

0 MeV
�� 0.01 MeV
��

0.1 MeV
��

0.2 MeV
�
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��

0 50 100 150 200r (fm)

Figure 6. Integrands of the radial E1 integralI02 of the7Be(p,γ)8B reaction. Notationuf
stands foru12(r) andũi stands for̃u02(E, r). The limit E → 0 is represented as a dotted
line.

4.6. External capture approximation

The potential model can sometimes be simplified with the external capture approxima-
tion. When the capture essentially occurs at large distances like for7Be(p,γ)8B, a good
approximation can be obtained using only asymptotic expressions [20]. Equation (62) is
approximated as [21]

IliJi(0) =

∫
∞

0
ulfJf (r) r

λ [F0
li(r) +DliJi(0)G0

li(r)] dr. (75)

The approximation made in Eq. (75) is to replace the initial scattering wave function ũ0i (r)
at zero energy by its asymptotic form (46). In this way, one neglects the effect of nodes at
short distances in the scattering wave function which simulate the Pauli antisymmetrization
in thes wave. The constantDliJi(0) is related to the scattering lengthaliJi by Eq. (A4) as

DliJi(0) = − 4aliJi
li!2a

2li+1
N

. (76)

TheS factor at zero energy explicitly depends on the scattering length (which maynot have
the dimension of a length) through Eqs. (75) and (76).

Under the same model assumptions, the energy derivative of the radial integral is ap-
proximated at zero energy by

I ′liJi(0) =

∫
∞

0
ulfJf (r) r

λ [F ′0
li (r) +DliJi(0)G′0

li (r) +D′

liJi(0)G
0
li(r)] dr. (77)
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The energy derivative at zero energyũ′0liJi(r) of the scattering wave function is also re-
placed in Eq. (68) by its asymptotic expression (71). The constantD′

liJi
(0) is related to the

scattering lengthaliJi and to the effective rangerliJi by Eq. (A7).
For 7Be(p,γ)8B, the term involvingD′

liJi
(0) is negligible in Eq. (77) [21]. Equation

(68) can then be approximated by

I ′liJi(0) ≈
∫

∞

0
ulfJf (r) r [F ′0

li (r) +DliJi(0)G′0
li (r)] dr. (78)

In this approximation,s1 only depends on the scattering length. Over most of the integration
domain, the final bound state wave function is very close to its asymptotic form

ulfJf (r) →
r→∞

CW−ηb,lf+1/2(2kbr), (79)

whereηb = |EN/ElfJf |1/2, kb = (aNηb)
−1, andW is a Whittaker function [13]. The

asymptotic normalization constantC of the final bound state is the main unknown about
the nuclear properties ofS(0). The initial wave only depends on nuclear effects through
the scattering length. The coefficients1 is independent ofC. The determination of the ratio
S(0)/C2 is almost independent of the choice of the final potential. UsingulfJf rather than
its asymptotic expression (79) has the advantage that the integral automaticallyconverges
and that no regularization is needed.

In the evaluation of Eqs. (76) and (78) for7Be(p,γ)8B, the Woods-Saxon potential es-
tablished by Barker in Ref. [11] is used, with a slightly modified depth as in Ref. [21] to
match the proton separation energy0.137 keV. Evaluating Eq. (61) with (78) and (79) leads
to the expression [21]

S(0)/C2 ≈ 35.6(1− 0.0014a02) eV b fm, (80)

wherea02 is expressed in fm andC in fm−1/2. Only the linear term in thes wave scattering
lengtha02 is kept. Expression (80) assumes the dominance of external capture. Therefore it
should be an accurate approximation of most model calculations of the7Be(p,γ)8B reaction.
The dependence on the scattering length could be significant if this length happened to take
large values. However, the measured value of this scattering length does not seem to lead
to a correction beyond the percent level [22].

In the same way, a linearized approximation fors1 can be derived,

s1 ≈ −2.47(1 + 0.0072a02) MeV−1. (81)

One observes a larger sensitivity to the scattering length, enhanced by a factor of five with
respect to Eq. (80). This is due to the strong cancellation between the two terms of expres-
sion (67).

In Eq. (81), approximation (78) is used rather than (75), i.e. the effective-range effect
is neglected. Varyingr02 from 0 to the large value 5 fm modifiess1 by less than half a
percent. The effect of the effective range is about an order of magnitude smaller than the
effect of the scattering length.

Includingd-wave capture leads to the total values [21]

S(0)/C2 ≈ 38.0(1− 0.0013a02) eV b fm (82)
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and

s1 ≈ −1.81(1 + 0.0087a02) MeV−1. (83)

The dependence on the scattering length is thus weak.
Estimates of the dependence on the scattering length for other systems where

the external-capture approximation is valid for some states such as12C(α, γ)16O or
16O(p,γ)17F have shown an even weaker dependence on the scattering length.

4.7. Interpretation of external capture

External capture can be interpreted with the help of the WKB approximation [20, 4]. The
scaled Coulomb functions can be approximated as

F l(E, r) ≈ 1

2

(
1

2
aNr

)1/4

eϕl(k,r) (84)

and

Gl(E, r) ≈ π

2

(
1

2
aNr

)1/4

e−ϕl(k,r) (85)

where

ϕl(k, r) =

(
2r

aN

)1/2
(
2− l2aN

r
− 1

6
aNk2r

)
(86)

under the condition

aN < r < η2aN . (87)

The WKB approximation is thus valid only forE < EN . However, qualitatively, it can have
a larger range of validity. Hence the asymptotic form (40) of a scattering wave function can
be approximated as

ũlJ(E, r) →
r→∞

1

2

(
1

2
aNr

)1/4
[
eϕl(k,r) − π

alJ

l!2a2l+1
N

e−ϕl(k,r)

]
. (88)

One observes that the energy dependences of the two exponentials areopposite.
Let us apply this to the7Be+p capture in thes wave. The scattering length is close

to the value ofaN . At the low energies where the WKB approximation is valid, the first
term in (88) is much larger than the second one. More generally,F0 is much larger than
π(a02/aN )G0 at these energies. Hence the scattering wave function is well approximated
asymptotically by the first term of the WKB approximation (88). The energy dependence
in (86) explains the decrease of the scattering wave functions in Fig. 5 when the energy in-
creases from zero and thus the decrease of the integrand displayed in Fig. 6. Differentiating
exp[ϕl(k, r)] with respect toE and using the mean-value theorem leads to

s1 ≈
2λ+ 1

|ElfJf |
−

√
2

3EN

(
r̄

aN

)3/2

(89)
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wherer̄ is the location of the maximum ofulfJf (r) r
λ+3/2 ũ0liJi(r) [4]. The main merit of

this rough approximation is to show thats1 results from a subtraction of two quantities with
very different physical contents.

For theα+3He capture, the scattering length is larger [12, 7], i.e. approximately9aN ,
but the second exponential in Eq. (88) remains essentially negligible. Hence the scaled
scattering wave functions in Fig. 3 and the integrands in Fig. 4 decrease atlarge distances
when the energy increases from zero. The WKB approximation (confirmed by numerical
values of the Coulomb functions) offers a simple qualitative explanation of theorigin of
negatives1 values when external capture dominates.

The asymptotic form (79) of a bound-state wave function becomes at verylarge dis-
tances

ulJ(r) ∝ r−ηbe−kbr (90)

for r > η2baN or

ulJ(r) ∝ r1/4e−(2r/aN )1/2(2−l2aN/2r+aNk2r/6) (91)

for aN < r < η2baN . The location of the maximum of the integrand in Eq. (75) is then
roughly given either by [4]

rm ≈ 1

2
ηbaN

[
η
1/2
b +

(
2λ+ 1

2 − ηb
)1/2]2

(92)

or by

rm ≈ a
1/3
N [(2λ+ 1)Z1Z2α/

√
2kγ ]

2/3. (93)

These rough estimates of the location of the maximum can give an idea of the validity of
the external-capture approximation. The radiusr̄ appearing in Eq. (89) can be estimated
with (92) or (93) by replacingλ by λ+ 3/2.

5. Proton-proton weak capture

Although not a radiative-capture process, the proton-proton weak capture behaves in a very
similar way. In a proton-proton collision, the weak interaction can transforma proton into a
neutron to form a deuteron with emission of a positron and a neutrino. This reaction has the
smallQ value 0.42 MeV. The deuteron quantum numbers areJf = 1 andπf = +1. With
an intrinsic spinSf = 1, the orbital momentumlf is 0 or 2. The identity of the protons
imposesli + Si even. The parity does not change in this Gamow-Teller transition. The
initial orbital momentum is thusli = 0 or 2 withSi = 0.

Here I consider a very simplified model of this capture, i.e. the tensor forceis neglected
and the nucleon-nucleon interaction is approximated by the purely central Minnesota po-
tential [23]. The deuteron wave function is then limited to thes wave. After integration of
the leptonic part of the matrix elements, the weak-capture cross section reduces under these
approximations to the simple Gamow-Teller expression

σ(E) =
6mec

2

π2h̄vk2
G2

βλ
2f(E +Q)

[∫
∞

0
ud01(r)u

pp
00 (E, r)dr

]2
, (94)
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whereme is the electron mass,Gβ ≈ 3 × 10−12 is the dimensionlessβ-decay constant,
λ ≈ −1.25 is the Gamow-Teller to Fermi ratio,f(E) is the Fermi integral andud01 is the
deuteron radial wave function. The scattering wave functionupp00 is normalized as

upp00 (E, r) →
r→∞

cos δ00(E)F0(η, kr) + sin δ00(E)G0(η, kr) (95)

and thus tends to zero at any given distance whenE → 0. It is thus convenient to introduce
as before

ũpp00 (E, r) = k−1/2eπηupp00 (E, r). (96)

These functions are displayed in Fig. 7 for various small energies and for E = 0. For
comparison, the deuteron wave functionud01 is also represented. Because of the small
binding energy, it decreases slowly withr.

ũpp
00

p + p

li = 0

0 MeV
0.01 MeV

0.05 MeV

0.1 MeV

0.2 MeV
0.3 MeV

0 10 20 30 40r (fm)

Figure 7. Scaled radials wave functions̃upp00 of the elastic p + p collision for different
energiesE. The limit E → 0 is represented as a dotted line. The deuteron wave function
ud01 (×20) is displayed as a dashed line.

TheS factor is then simply given by

S(E) =
3

π2
mec

2G2
βλ

2f(E +Q)[I(E)]2 (97)

where

I(E) =

∫
∞

0
ud01(r)ũ

pp
00 (E, r)dr. (98)

The integrand is presented in Fig. 8. One observes that the area under the curve increases
with E. The Fermi integralf(Q + E) also increases withE as the phase space enlarges.
Hence, one expects theS factor to increase withE nearE = 0.
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Figure 8. Integrands of radial integralsI(E) of the p(p,e+νe)2H reaction for different ener-
giesE. The limitE → 0 is represented as a dotted line.

At zero energy, one obtains in the same way as before

S(0) =
3

π2
mec

2G2
βλ

2f(Q)[I(0)]2 (99)

calculated with the solution of Eq. (63) and

s1 =
f ′(Q)

f(Q)
+

2I ′(0)

I(0)
(100)

involving the solution of Eq. (69). After a multiplication by 0.94 to compensate the absence
of d component in the deuteron wave function, the low-energyS factor is given by

S(E) ≈ 4.0× 10−25(1 + 11.4EMeV) MeV b. (101)

The slope coefficients1 should be rather accurate in spite of the simplicity of the approxi-
mation. It agrees with various other estimates [24]. An accurate determinationof the value
of S(0) requires a more realistic interaction and taking account of exchange currents [24].

6. Neutron radiative capture

6.1. Expansion of σv

The non-resonant behaviour of neutron-capture cross sections atlow energy is well under-
stood theoretically. At low relative energiesE, as explained below, the productσv of the
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neutron-capture cross sectionσ(E) to a given bound state and of the initial relative velocity
v can be approximated by a Taylor expansion truncated at first order [25],

σv = S0E
li(1 + s1E + . . .), (102)

whereli is the smallest relevant orbital momentum of the initial scattering state.
In practice, a multipole transition starting fromli = 0 is always possible to some

bound state but it may be strongly hindered if its multipolarity (electric or magnetic)is
high. Hence, at sufficiently low energies, one always has

σv = S0(1 + s1E + . . .), (103)

but the energy range where this expression is valid may not be accessibleto experiment or
interesting for astrophysics. It can be far below the thermal energy.

Let me now justify Eq. (102) in the potential model. A neutron is captured by a nucleus
with massA1 and chargeZ1e from the initial partial waveliJi. The cross section (27)
multiplied by the relative velocityv is given in the potential model by

σv = αcNEλ
liJik

2λ+1
γ k2li [I(E)]2, (104)

whereNEλ
liJi

is given by (29) forA2 = 1 andZ2 = 0, i.e. ZEλ
eff = Z1(−1/A)λ. The

integralI(E) is still given by Eq. (42) in which the scaled radial functionũliJi possesses
the asymptotic behaviour

ũlJ(E, r) →
r→∞

cos δlJ(E) [F l(E, r) +DlJ(E)Gl(E, r)] , (105)

where the first factor can not be approximated by unity like in Eq. (46) andthe definitions
of the scaled functionsF l andGl are different. They are defined as [17, 25]

F l(E, r) = k−lrjl(kr) (106)

and

Gl(E, r) = kl+1rnl(kr) (107)

wherejl andnl = −yl are spherical Bessel functions [13]. The coefficient ofGl in Eq. (46)
is defined as

DlJ(E) = k−2l−1 tan δlJ(E). (108)

Notice that while the asymptotic behaviour (105) in the neutral case has a mathematical
form similar to (46) in the charged case, the dimensions ofF l, Gl andDlJ are different.

The Taylor expansion (102) can now be understood. The functionsF li andGli and
hence the scaled scattering functionũliJi with the asymptotic behaviour (46) have a finite
non-zero limit forE → 0. The same property is true forI(E). The factorEli in Eq. (102)
thus comes from the factork2li in expression (104) ofσv. The coefficientsS0 ands1 of the
Taylor expansion (102) can be derived by a simple direct calculation at energy zero [25].
Notice thatS0 as defined here [26] is slightly different from the definition in Ref. [25].It
differs fromS0 of Ref. [25] by a factor(2µ/h̄2)li .
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The limit of σv for E → 0 is given by

S0 = αcNEλ
liJi(|ElfJf |/h̄c)2λ+1(2µ/h̄2)li [IliJi(0)]

2. (109)

The integralI(0) is given by Eq. (62) but with a different definition for the normalization
of ũ0liJi . Since Eq. (64) does not fix the normalization, functionũ0liJi must be normalized
by imposing the condition

W{G0
li , ũ

0
liJi} →

r→∞

1, (110)

where the limits of the irregular spherical Bessel functions are [17]

G0
0 = 1, G0

1 = r−1, . . . (111)

The limits of the regular spherical Bessel functions are

F0
0 = r, F0

1 = r2/3, . . . (112)

General expressions forF0
l andG0

l and their energy derivatives can be found in Ref. [17].
The coefficients1 in expansion (102) reads

s1 =
2λ+ 1

|ElfJf |
+

2I ′liJi(0)

IliJi(0)
− δli0

2µa20Ji
h̄2

, (113)

wherea0Ji is thes-wave scattering length. Notice the occurrence of an additional term for
li = 0 coming from the factorcos δliJi(E) in Eq. (105) and the effective-range expansion
(A1) of the phase shift. The integralI ′liJi(0) is given by Eq. (68). The energy derivative
of the radial wave function at zero energyũ′0liJi is a solution of the derivative (69) of the
Schr̈odinger equation at the limitE → 0. Since solutions vanishing at the origin are not
uniquely fixed by this equation, one imposes the condition

W{G0
li , ũ

′0
liJi −F ′0

li + aliJiG′0
li )} →

r→∞

0, (114)

wherealiJi is the scattering length of partial waveliJi and

F ′0
0 = −r3/3, F ′0

1 = −r4/15, . . . (115)

G′0
0 = −r2, G′0

1 = r, . . . (116)

The scattering length can be accurately calculated with Eqs. (A3) and (A5)of the Appendix.

6.2. Applications

The12C(n,γ)13C capture reaction is well studied experimentally. Data exist for the capture
towards the four bound states of13C (see references in Ref. [25]). Most references use the
neutron energyEn rather than the energyE of the relative motion employed here. This
reaction is described in the potential model with the Woods-Saxon potentials given in Table
I of Ref. [25]. At very low energies, the capture proceeds dominantly towards the1/2−

ground state and the3/2− second excited state providing

σv ≈ 2.6× 10−5(1− 0.74EMeV + 23.5E2
MeV) mb c. (117)
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in agreement with Eq. (103) since E1 capture is possible from thes wave. Notice however
the large coefficient ofE2

MeV mostly coming fromd-wave capture. The potential-model re-
sults are multiplied by spectroscopic factors (0.88 for the ground state and 0.15 for the3/2−

state) derived by comparing the model with thermal capture cross sections (see Ref. [25]
for details and in particular Table II of that reference).

The capture from thep wave to the1/2+ excited state plays however a crucial role
above 1 keV. The integrand for thep1/2 to s1/2 transition is displayed in Fig. 9. One
observes that the capture takes place at rather large distances since themaximum is beyond
10 fm. The slow decrease of the wave function of the weakly bounds1/2 state leads to a
large integral. The area below the curves decreases rather fast with increasing energy. One
can expect the same behaviour forσv. The1/2+ state is a good single-particle state. Its

ufrũi

12C(n,γ)13C

li = 1

��
0 MeV

��
0.1 MeV

��
0.2 MeV

��
0.5 MeV

0 10 20 30 40r (fm)

Figure 9. Productufrũi for thep1/2 to s1/2 transition for the12C(n,γ)13C reaction. No-
tationuf stands foru0,1/2 and ũi stands for̃u1,1/2. The limit E → 0 is represented as a
dotted line.

spectroscopic factor is 0.95. The productσv follows Eq. (102) withli = 1 and is given by

σv ≈ 2.2× 10−3EMeV(1− 0.85EMeV) mb c. (118)

The calculated capture cross sections to the various bound states agree fairly well with
the available data between 20 and 500 keV. When summing the contributions (117) and
(118), one obtains

σv ≈ 2.6× 10−5(1 + 88EMeV − 50E2
MeV) mb c (119)

which provides a good parametrization of all sub-MeV experimental crosssections [25].
The famous1/v behaviour of the neutron-capture cross section is valid below 1 keV. But,
as displayed in Fig. 10, it is not followed above that energy as observedin experiments [27].
This should not be considered as a surprise. Above 1 keV, thep wave capture to the1/2+
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σv (mb c)
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16O(n,γ)17O

14C(n,γ)15C

Figure 10. Productσv at low energies for the12C(n,γ)13C (full line), 14C(n,γ)15C (dotted
line) and16O(n,γ)17O (dashed line) reactions.

excited state becomes dominant and Eq. (103) is replaced by Eq. (102) withli = 1. Such an
effect is made possible by the occurrence of states of both parities in the bound spectrum.

For the14C(n,γ)15C E1 capture, the reaction can proceed only from thep wave since
both15C bound states have positive parity. The single-particle nature of these states allows
using the potential model with good accuracy. No spectroscopic factors are used. The
Woods-Saxon potential is given in Table III of Ref. [26]. The main contribution comes
from the capture to the1/2+ ground state, the5/2+ excited state accounting only for a few
percents. The totalσv at low energy is given by

σv ≈ 1.76× 10−3EMeV(1− 0.85EMeV) mb c. (120)

Notice the additional factorEMeV due to the initialp wave. This parametrization agrees
with the few existing data points between 20 and 700 keV [26]. This behaviour is presented
in Fig. 10 but one should keep in mind that M1 transitions (which vanish exactlyin the
potential model but are not forbidden) should level off the curve somewhere at very low
energies. This flat part of the curve can in principle be deduced from measurements of the
capture cross section at thermal energies. However, one only knows the upper bound 1µb
for the thermal capture cross section. The1/v behaviour should be valid somewhere below
1 eV (σv < 7× 10−9 mb c).

The 16O(n,γ)17O capture reaction has been observed towards the three lowest17O
bound states (see references in Ref. [26]). The Woods-Saxon potential is given in Table
V of Ref. [26]. The main contributions come from the captures to the1/2+ first excited
state and the5/2+ ground state. These transitions correspond top-wave capture. Without
spectroscopic factors, they lead to

σv ≈ 6.72× 10−3EMeV(1 + 0.32EMeV) mb c. (121)
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Contrary to the14C(n,γ)15C case, the thermal capture cross section has been measured. It
allows evaluating approximately the cross sections for the capture processes dominant at
very low energies, i.e. the global effect of the E1 capture to the3/2− excited state and of
the M1 capture to the1/2+ state. These captures both start from thes wave and thus follow
Eq. (103). With an approximate treatment of these contributions fitting the thermal cross
section, the totalσv can be parametrized as [26]

σv ≈ 1.44× 10−6(1 + 4660EMeV + 1480E2
MeV) mb c. (122)

As shown in in Fig. 10, the1/v behaviour is valid below about 0.1 keV but a stronger
energy dependence starts to dominate above that energy. Parametrization(122) agrees with
the few existing data between 19 and 260 keV, and of course with the fitted thermal cross
section [26].

7. R-matrix descriptions

The previous studies are based on the potential model, where the internal structure of the
colliding nuclei and the effects of antisymmetrization are neglected. This is a good approx-
imation in some cases but many reactions require a more elaborate treatment. Nevertheless
the principle of the above analysis of very low energies remains valid in microscopic and
ab initio models. The renormalization of the Coulomb functions remains necessary at large
distances and imposes a modification of the wave functions at shorter distances where the
microscopic structure plays its role. This can easily be taken into account in the framework
of theR-matrix theory [6].

TheR-matrix method is useful both for microscopic and non microscopic descriptions
of radiative capture as well as for phenomenological fits of experimentaldata [6]. In this
method, the configuration space is separated into two parts. This separationis characterized
by a parameter, the channel radiusa. In the internal region, the Schrödinger equation is
solved, with full account of antisymmetrization in microscopic models. In the external
region, the wave functions are approximated by their asymptotic form, i.e. a product of
the internal functions of the colliding nuclei and the wave function of their relative motion
with appropriate angular momentum couplings; antisymmetrization effects and theresidual
nuclear interaction between the nuclei are neglected. When the channel radiusa is large
enough, the results are insensitive to its value. This procedure is also valid, and much
simpler, to calculate cross sections in the potential model, even if this potential is non local
[9, 28]. In all cases, the treatment in the external region is similar to the treatment of
asymptotic properties presented in previous sections.

A Taylor expansion ofS(E) can be derived in this general framework. TheS factor
can be derived from Eq. (18) as [29]

S(E) ∝
∑

σλ

k2λ+1
γ

∑

liIJi

|Mint(E) +Mext(E)|2 . (123)

In this expression, the internal transition matrix elementMint(E) is calculated over the
internal region, e.g. with antisymmetric wave functions in microscopic models. Itcan be
expressed as a function of poles and reduced widths in a typicalR-matrix way. In potential
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and microscopic models, the poles and reduced widths are obtained from solutions of the
Bloch-Schr̈odinger equation [6, 28]. In phenomenological models, they are obtainedfrom
fits to experiments.

The external transition matrix elementMext(E) is calculated along the ways explained
in previous sections. It involves an integral very similar to Eq. (75) but witha lower limita
of integration in place of 0. When internal capture is negligible, the model is equivalent to
the extranuclear-capture model described above. When external capture is negligible, only
Mint(E) must be taken into account. An example of this case can be found in Ref. [30].

TheS factor at energy zero and coefficients1 are directly obtained from Eq. (123). Both
partsMint(E) andMext(E) of the matrix element have a finite non-zero limit whenE tends
to zero. The technical details may be heavy and are not presented here.This approach is of
course also valid for the coefficients of a Taylor expansion ofσv in the neutral case.

8. Conclusion

The physics of radiative capture can be analyzed down to energy zeroin any model, mi-
croscopic or non-microscopic. To this end, a specific normalization of the scattering wave
functions is necessary, inspired by a scaling of the Coulomb functions thatleads to finite
non-zero limits forE = 0. TheS factor at zero energy, the slope of its energy depen-
dence near the origin and higher coefficients of its Taylor expansion, if necessary, can be
calculated accurately. An accurate theoretical description of this low-energy behaviour is
important as cross sections in this energy domain are in general not accessible to experiment
for the radiative capture of charged particles.

In the potential model, simple pictures of the integrands of the radial matrix elements
allow a qualitative understanding of the properties of theS factor at very low energies.
Some of those properties can be understood with the extranuclear capturemodel. The same
kind of analysis can be performed for the charged-particle and neutronradiative captures,
with different normalizations of the scattering wave functions. It also applies to the proton-
proton weak capture.

Microscopic models, and among themab initio models, can make use of the present
developments generalized in the context of theR-matrix theory.
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Appendix: Effective-range expansion

In this Appendix, the scattering length and effective range are derivedfrom solutions of the
Schr̈odinger equation (63) and its energy detivative (69) at zero energy [12, 17]. For an
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arbitrary partial wave, the effective-range expansion is given in the neutral case by [31, 32]

1

DlJ(E)
= − 1

alJ
+

1

2
rlJk

2 +O(k4), (A1)

whereDlJ is defined in Eq. (108), and in the charged case by [33, 34]

2wl(E)

l!2a2l+1
N

[
2

DlJ(E)
+ h(η)

]
= − 1

alJ
+

1

2
rlJk

2 +O(k4), (A2)

whereDlJ is defined in Eq. (43) and notations (5) and (50) are used. The low-energy
properties of functionh(η) [33, 34] are described in Refs. [12, 17].

By taking the limitE → 0 of both sides of Eqs. (A1) and (A2), the scattering length
reads in the neutral case [25]

alJ = −DlJ(0) (A3)

and in the charged case [12]

alJ = − l!2a2l+1
N

4
DlJ(0), (A4)

whereDlJ(0) is easily calculated with

DlJ(0) = −2µ

h̄2

∫
∞

0
F0

l (r)Vsr(r)ũ
0
lJ(r)dr. (A5)

In this integral,Vsr(r) = V lJ
N (r) + VC(r)− Z1Z2e

2/r is the short-range part of the poten-
tial. Equations (A3), (A4) and (A5) provide a simple and accurate way of calculating the
scattering length.

The value of the effective range is given in the neutral case by

rlJ = − h̄2

µa2lJ
D′

lJ(0) (A6)

and in the charged case by

rlJ =
1

3l!2a2l−1
N

[
1 +

4l(l + 1)(2l + 1)

DlJ(0)
− 24END′

lJ(0)

DlJ(0)2

]
, (A7)

where

D′

lJ(0) = −2µ

h̄2

∫
∞

0
Vsr(r)

[
F0

l (r)ũ
′0
lJ(r) + F ′0

l (r)ũ
0
lJ(r)

]
dr. (A8)

Accurate values of the effective rangerlJ can be deduced from Eqs. (A6) or (A7) since the
integrand in Eq. (A8) is short-ranged. The functionsF0

l andG0
l and the derivatives with

respect to energy are calculated with (111), (112), (115) and (116)in the neutral case and
with (55), (56), (58) and (59) in the charged case.
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For l = 0, this approach provides an alternative to the famous Schwinger-Bethe formula
[31, 32], which reads in the present notation for the charged case [12],

r0J =
16

πaND0J(0)2

∫
∞

0

{[
F0

0(r) +D0J(0)G0
0(r)

]2
−
[
ũ00J(r)

]2}
dr. (A9)

In the neutral case, the coefficient in front of the integral is2/D0J(0)
2. Equations (A6) and

(A7) converge much faster than Eq. (A9) and remain valid forl > 0.
The next term of the effective-range expansion is given in Ref. [17]. Higher orders are

considered in Ref. [18].
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[9] Navrátil, P.; Roth, R.; Quaglioni, S.Phys. Lett. B 2011,704, 379.

[10] Tombrello, T. A.Nucl. Phys. 1965,71, 459.

[11] Barker, F. C.Aust. J. Phys. 1980,33, 177.

[12] Baye, D.; Brainis, E.Phys. Rev. C 2000,61, 025801.

[13] Abramowitz, M.; Stegun, I. A.Handbook of Mathematical Functions (Dover: New
York), 1965.

[14] Baye, D.; Descouvemont, P.; Hesse, M.Phys. Rev. C 1998,58, 545.

[15] Hull Jr., M. H.; Breit, G. Encyclopedia of Physics; Flügge, S.; Ed.; Vol. XLI/1
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