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Abstract

Radiative-capture reactions are studied in the potentiatlehat very low energies including
energy zero. For the capture of charged particles, thepstsical S factor possesses a Taylor
expansion in powers of the energy of the relative motion. 8ipgi scaled scattering functions with

a finite non-zero limit at energy zero, tisefactor is obtained in the potential model from a simple
integral which allows visualizing its behaviour at enesgose to zero. The first coefficients of
this expansion can be calculated accurately from solutafnhe Schédinger equation and its
derivatives with respect to energy, at energy zero. He(x,v)"Be and”Be(p;y)®B reactions are
used as illustrative examples. The same approach applibg feroton-proton weak capture. For
neutron radiative capture, the produet of the capture cross section and the relative velocity also
possesses a Taylor expansion in powers of the energy, whithe treated in a similar way. The
neutron capture by?>C, *C and'%0 are used as examples. The extension of these treatments to
microscopic models of radiative capture is discussed irctimtext of theR-matrix theory.
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1. Introduction

The determination of accurate radiative-capture cross sections is anfiemtal problem in
astrophysics [1, 2, 3]. These reactions play an essential role in thieesys of elements
and in particular of the light elements appearing in the sun through the ppschéire
rates of these reactions are crucial for understanding the evolutiearsf i1 most burning
conditions in stars, the temperatures are very low in nuclear scales. ddt®rs between
charged particles occur in general far below the Coulomb barrier.

Radiative capture is nothing but an electromagnetic transition between awantin
state and a bound state. It is more complicated than usual transitions in boectdas
because the continuum state is not square integrable and dependsamatpa the energy.
The continuum state may involve resonances at some energies. Resoplaya dominant
role in radiative captures of protons leading to heavier elements in the CNI@ apd
beyond. In general, resonant capture allows a simple approximate tréatdeza | focus
on non-resonant capture mostly encountered with light elements and itstaragng. This
process is often called direct capture but this name can be misleadingessooant capture
can also be a direct process. It is sometimes incorrectly consideredasarising from
the compound-nucleus mechanism, i.e. a much slower mechanism not validhfardidei.

Quantum mechanics is essential to explain the radiative-capture crosmsett low
energies thanks to tunneling through the Coulomb barrier. Hence the vaetiatture pro-
cess is one of the simplest examples where one can observe wave farattisark. The
basic ingredient of the calculation of cross sections contains the ovestayedn a scatter-
ing wave function describing the collision of two nuclei and the bound-stateviunction
of the nucleus created by their fusion. At a low energy of the relative matienscatter-
ing wave functions must be obtained in a situation where the Coulomb force dt@witne
stronger nuclear force. This unusual situation leads to very small sezsi®ns, for which
direct measurements are in general impossible in the energy range imgdortastro-
physics. Hence a theoretical input is indispensable but, in most casessiltnlpdo verify
experimentally. It is thus crucial to have a good physical understanditigeanechanism
of the radiative-capture reactions.

An important present goal for nuclear physics is to obtain the cross seaifoastro-
physical interest fronab initio calculations, i.e. based on a model-independent solution
of a many-body Sclidinger equation involving realistic hucleon-nucleon and multinu-
cleon forces. Such calculations are in progress but do not provideitive picture of
the behaviour of cross sections, or more practically of the correspoadingphysicals
factor, a quantity derived from the cross section presenting a muchewegakation with
respect to energy after the elimination of the main part of the barrier pénateffect.
The simple potential model, also called direct-capture model, can provideasuirtiu-
itive picture in many cases by allowing us to visualize the energy dependétteecrucial
matrix elements. Of course, it presents several simplifications such asdleetnef an-
tisymmetrization [4] and a model dependence through the use of a more enigsascal
nucleon-nucleus or nucleus-nucleus interaction. An even strongei assilanption is that
the final bound state of the fused nucleus must be described as a twddodd state of
the initial colliding nuclei. In spite of these drawbacks, the potential modepoavide a
qualitative understanding of several radiative-capture processegthsimple pictures. It
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also allows a simple calculation of the behaviour of théactor around zero energy that
paves the way to similar calculations in more elaborate models.

The aim of the present chapter is to describe the properties of the poteotial at
very low energies in a pedagogical way. The results presented atowergnergies and,
in particular, at energy zero can be reproduced with little numericaltediiod provide
simple exercises for beginners in this field. They should representatgaiaing before
studies with more elaborate models. This approach is also hoped to lead toanspatent
physical interpretations of results obtained from microscopic models.

The rules of the game are presented in section 2. with the definitions of tbplastical
S factor and of the Gamow peak. In section 3., the expressions of the vaeiagpture cross
sections are given and the potential model is introduced. The radiafiereaf charged
particles is discussed in section 4.. A brief parenthesis in section 5. shatthéhproton-
proton weak capture can be explained with the same scheme. Neutronveadigiture is
addressed in section 6.. Tli&matrix approach which provides a link with more elaborate
models is briefly described in section 7.. A conclusion is presented in section 8

2. Astrophysical S factor and Gamow peak

A reaction involving two nuclei with charges;e and Z;e and massest; and A, takes
place at the relative velocity. The energy of their relative motion is
1 h2k?
E=_-m’=—— 1
5 MY T (1)
wherey is the reduced mass of the nuclei an& the wave number. Let us start with the
case of a capture of charged particl&s £> # 0). The neutron capture requires a separate
treatment (see section 6.).
When both particles are charged, the Coulomb repulsion hinders reaatiensrgies
below the topE's of the Coulomb barrier. The order of magnitude of the penetration prob-
ability into the Coulomb barrier is roughly given by the Gamow factor

exp(—2mn), 2)

wheren is the Sommerfeld parameter

71 Z9e? Ey
— — =N 3
n . \ & (3)

The second expression ginvolves the nuclear Rydberg energy

1 5 o  h?
EN = §(Z12204) ue: = 272 (4)
HaN
wherea = €2 /hc is the fine structure constant aag is the nuclear Bohr radius
h?
an (5)

T uZ1Z9e?
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The nuclear Bohr radius and Rydberg energy are natural units lfsiaon between charged
nuclei below the Coulomb barrier. The Sommerfeld parameter is inverseboiianal
to the square root of the energy and increases thus when 0. The productyk is
independent of the energy,

nk=—. (6)

The Gamow factor is a fast decreasing function witedecreases. It does not possess a
Taylor expansion arounfl = 0.

Reaction cross sections(F) and, in particular, radiative-capture cross sections de-
crease very fast when the energy tends to zero, following roughly ehaviour of the
Gamow factor. They do not possess a Taylor expansion aréued 0. It is convenient
to introduce another quantity, the astrophysigdactor, which varies much less rapidly at
low energy than the cross section (outside resonances, if any). fingeddy

S(E) = Ee*™o(E). (7)

As explained below, it has the interesting property of having a finite nom-it for
E — 0 and a Taylor expansion around this energy,

S(BE) = 5(0)+ S'(0)E + 35"(0)E® + ... (8)

with S(0) # 0. This property allows studying the behaviour of thactor at energies
arbitrarily close to zero.

In models of the chemical evolution of some astrophysical system, the cinfaaha-
tion is given by the reaction rate per particle pair [1]

1 1/2 2 3/2 %)
(ov) = (W) (k'BT) /0 e~ ElkeT =2 5 (B)dE, 9)

wherekg is the Boltzmann constant arfdis the temperature. The integrand contains two
fast varying factors in addition to the slowly varying astrophysicéctor. It is convenient
to study separately the behaviour of the fast varying factors. Theifumc

g(E) _ e—E/kBTe—Qﬂ'\/EN/E (10)

is depicted in Fig. 1. Its shape is known as the Gamow peak. It displays a nreyatthe
energy

Ey= (kaT\/E)Q/ ’ (11)

This energy is known as the most efficient energy [1] although the truénmax of the
integrand in Eq. (9) may be slightly different due to the energy deperedai€(£). It is
customary to express this energy in MeV as a function of the temperature imlidigrees
Ty =T/10° K as

Ey ~ 0.122 (2272 A1 Ao JA) 3T MeV . (12)
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exp(—E/kgT) exp(—2m\/En/E)

Figure 1. Gamow peak.

This expression is however not intuitive. A better understanding is olotdipeomparing
it with the energyE'p of the Coulomb barrier. This energy is conveniently approximated as

Ep~0.9 —122 __ MeV. (13)

For proton andy capture by light nuclei, the ratio d@f, to E is roughly given by

Ey 2/3
E—B ~03Ty"". (14)
This approximate ratio has the merit to clearly show that capture takes ptaoeldav the
Coulomb barrier fofly < 1.

If physics was classical, capture would be impossible below the Coulomigbaltr
could still occur through the high-energy tail of the Boltzmann distributione iFibegral
in (9) would start fromEp in place of 0 and the corresponding reaction rate would be
proportional to an exponential involving the Coulomb barrier endfgy

(o) o ¢~ En/ksT (15)

But the real world obeys the laws of quantum physics and the tunnelingghrthe
Coulomb barrier leads with Eqg. (9) to

(ov) x g(Eg) = e 3Fo/ksT, (16)

As shown by the ratio (14), the quantum reaction rate is much largéiyfer 1. If a reso-
nance occurs at energies below the Coulomb barrier, it is narrow agisltiea contribution
to the rate proportional to an exponential involving the resonance eigrgy

(V) 5. X e Er/ksT a7
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The rate can thus be significantly enhanced by resonances belowundatte Gamow
peak.

The crucial ingredient for understanding the value of the reaction r#te isoefficient
of g(Ep) in Eq. (16) which depends on the valueXifEy). More precisely, the reaction rate
depends on the values §f E) in the Gamow-peak domain. The study of the properties of
the astrophysica$' factor for non resonant radiative-capture reactions at very lowgese
is the main topic of this chapter.

3. Radiative-capture models

3.1. General model cross sections

Let us consider a capture process where two nuclei with respectiveesas and A,
and charge¥/;e and Zse fuse into a nucleus with mas$ and chargeZe by emitting a
photon with wave numbek,,. Let I; and > be the total internal angular momenta of the
colliding nuclei andl be a result of their coupling, known as the channel spin. The final
bound state is characterized by two good quantum numbers, its total anguiaentum
Jy and its parityr ;. The initial scattering state possesses an infinity of partial waves. The
electromagnetic transition operator can be expanded into electric and magnkipoles.
For each multipole, selection rules limit the number of active initial partial wdvetd,; be
the initial orbital angular momentum of the relative motion between the colliding inincle
the entrance channel for a given partial wave dnte an initial total angular momentum
resulting from the coupling of this relative orbital momentum with the chanriel5p

The bound-state wave functidn’s M7+ of the final nucleus has enerdy/s™ with re-
spect to the elastic threshold. The transition operA/ﬂqr\ with multipolarity A corresponds
to an electric transition fos = E or a magnetic transition far = M. The radiative-capture
cross section is given for example in Refs. [5, 6] as

647 2J; +1 5 ML N4+
hw (21 +1)(2I, + 1) =y [(2A+DN]2 A

>

1;1J;

0jpm;(B) =

g M () (18)

where®;i (E) is a partial wave of the initial scattering wave function at the endfgyf
the relative motion, with a specific normalization. The enefgyand wave numbek., of
the photon are given by

E,=lick, = E+Q—E, (19)

as a function of the&) value of the reaction and of the excitation enefgy of the final
nucleus. A small recoil term is neglected.

The capture cross section (18) involves a sum over all multipoles, elegtrimagnetic.
For radiative capture, the emitted photons have energies smaller than 1helét cases
and the long-wavelength approximation is valid. The sum over multipoles is domiinate
by the dipole term, except when it is forbidden by an isospin selection ruleenVl is
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forbidden, the dominant component is E2 although the forbidden E1 caanparay be of
the same order of magnitude like in th&C(c, )0 reaction. The present study is thus
restricted to electric multipole operators, with= 1 or 2 in practice.

Let r, be the coordinates of protgn(p = 1 to Z) and R.,, be the coordinate of the
centre of mass of the system dfnucleons. The electric transition operators read at the
long-wavelength approximation

Z
MA =e> 1Y) (20)
p=1
where the sum runs over all protons. The operators depend on thieealaordinates
T, = Tp — Rem = (7, (2},) with respect to the centre of mass of the syster oficleons.
Expression (18) is quite general. It is valid for microscopic models whereieleons
are taken into account and the wave functions are properly antisymmetfibésicovers
the microscopic cluster model [5, 7] as well as recent or fuabriitio calculations [8, 9].
In this chapter, the goal is understanding the radiative-capture prarekits important
properties are better seen on a much simpler model, the potential model [4, 1@] 1

3.2. Potential mode

In the potential model, the internal structure of the reacting nuclei is esbentglected.
They are treated as pointlike particles with a spin. The only quantal variathersthe
relative coordinate = (r, 2) between these nuclei. Their internal structure however deter-
mines the nucleus-nucleus interaction that is the main ingredient of the modslloc¢al
interaction can be phenomenological or derived from a more elaboratelmadtisym-
metrization effects can even be partly simulated by introducing unphysicaddostates

in the potential. These deeply bound states allow obtaining wave functions wibdex
structure closer to the node structure of relative wave functions of nitysigal bound and
scattering states derived in microscopic models.

The model is based on a local nucleus-nucleus potential involving neaieaZoulomb
components. The nuclear potential may contain a spin-orbit term involvingxeimple a
coupling of the orbital momentum with the channel spimA bound state is characterized
by quantum numberk.J; and a scattering partial wave by quantum numbigfswhere
the total angular momenta result from the coupling of the orbital momentalwith the
potential model,l is both the channel spin of the scattering wave function and the total
intrinsic spin of the final nucleus. The energy of the final nucleus withaeisto the elastic
threshold is denoted ds; , ;, .

After separation of the spin and angular components, the bound andiscattave
functions are described for a given orbital momentuamd total angular momentuthas
eigenfunctions of the radial Sdhdinger equation

Hyjuy(r) = Buy(r), (21)
with respective energie;, ;, andE. In Eq. (21), the radial Hamiltonian reads

2 1(l+1)
dr? 72

+ W (r) + Ve(r), (22)
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wherel}/ (r) is the nuclear interaction between the clusters for the considered panial wa
[J andV(r) is the Coulomb interaction between them. Poteritialusually differs from
the Coulomb interactiol; Z,¢? /r between two point charges to partly take account of the
finite size of the nuclei. Itis, for example, a point-sphere Coulomb interadéionneutron
capture, the Coulomb potentitit: () vanishes.

For nuclei that can be considered as pointlike to a good approximationrdtengo-
ordinates of nucleus 1 differ only slightly from the coordinate of the cesftraass of this
nucleus with respect to the centre of mass of the full system,

A
rp%—fr (p=1,..., 7). (23)
In the same way, the proton coordinates of nucleus 2 differ only slighthy fiee coordinate
of the centre of mass of this nucleus with respect to the centre of mass gkteens

A
r;%jr p=21+1,...,2). (24)
Hence the electric transition operators (20) take the approximate form
MEA ~ eng)‘r)‘YM(Q), (25)
whereZ5 is an effective charge given by
A\ AN
ZEB =7 (—2) Z (1> : 26
off =71 ) 44 (26)

It is always strictly positive for E2 but can vanish or be negative far E1
The radiative-capture cross section in the potential model is a particskaot&q. (18)
where the wave functions depend on a single coordinatdt is given for example in
Ref. [3]. Using the potential model wave functions of the initial and final statel approx-
imation (25) for the transition operator, the cross section reads
EX () — Q€ NS yEN | [ A Br)d 2 27
Ulf.]f( ) - kQ Y l;J; ulfJf(T)T uliJi( 7T) r : ( )
v LiJi 0
It implies that the scattering wave functions are normalized according to
w(E,r) — cosdiy(E)Ei(n, kr) + sin oy (E)Gi(n, kr) (28)

whereF;(n, kr) andG,(n, kr) are the regular and irregular Coulomb wave functions [13]
andd;;(E) is the nuclear (or additional) phase shift at enefgyor partial wavel.J. In
Eq. (27), the normalization factor is given by

2 O+ 12N+ 1) (2; + 1)(2T; + 1)(20; + 1)(2; + 1)
/\(2)\+1)!!2 (2[1+1)(2[2+1)

2 2
ly XU Jp 1y 1
X(OOO){li Ji)\}' (29)
The photon wave number is related to the initial enefghrough

ky = (|E1,;] + E)/he. (30)

These expressions are also valid for the neutral casenwith0. The Coulomb functions
then reduce to spherical Bessel functions [13] multiplied:by

NE) =87 (25)
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4. Radiative capture of charged particles

4.1. Scattering functionsfor £ — 0

WhenFE tends towards zerg,tends to infinity and the scattering wave functions normalized
according to (28) tend to zero. This is illustrated in Fig. 2 where one caerabshe fast
decrease of the wave functions with decreasing energy at fixéthis behaviour is the

Uy

0.3 MeV 0.2 MeV

0.1 MeV

0.05 MeV

20 40 r (fm) 60

Figure 2. Radial wave functiong, ; »(E,r) of the *He + « elastic collision normalized
according to Eq. (28) at various low energies The final ground-state wave function
uy 3/9(r) Of "Be (x2) is represented as a dashed line.

consequence of the increase of the width of the Coulomb barrier wheméngyetends to
zero. Mathematically, it is a consequence of the normalization (28). Indleedegular
function F; tends to zero while the irregular functids tends to infinity.

F(,br) ~ ™™ 5 0, (31)
E—0

Gi(n, kr) ~e™™ — oo, (32)
E—0

and the phase shifts tend to zero in such a way that

arj —27
E -2 K 33
% )Ejo 7T112a%+1 © Ejoo’ (33)

whereq;; is the scattering length (see Appendix). Hence the asymptotic form (28) of
ury(E, r) tends to zero whelt' — 0,

ug(E,r)~e ™ — 0, (34)

E—0

for anyr value.



10 Daniel Baye

The usual normalization of the Coulomb wave functions is not practicalBear0. In
order to avoid properties (31) and (32), scaled Coulomb functionsedireed as [12]

Fi(B,r) = k™2™ Fy(n, kr) (35)
and
Gi(B,r) = Sk~ e Gy, k). (36)

Their advantage is that they have a finite limit when— 0. From the properties of the
standard Coulomb functions [13], one deduces the Wronskian

WAG, Fi} = /2, (37)

whereW{g, f} = g(df /dr) — f(dg/dr). Through Egs. (35) and (36), the scaled Coulomb
functions are considered as directly depending on the erterdyy the following, primes are
used to designate derivativeith respect to energy. For example, the first energy derivative
of F; is written as

0
! [
fl(Evr)_aEfl(Ev’r)? (38)
and similar expressions for other functions and derivatives.
A scaled scattering wave functian;(E, r) can be defined as

U (E,r) = k=Y 2e™ (B, 7). (39)

The asymptotic form ofi;; (F, ) is given with the notations (35) and (36) by
2
ﬂlJ(E, T‘)Tjoofl(E, T) + ;627”7 tan 5[J(E)gl(E, ’I“). (40)

This normalization ensures that; has a finite limit whenE tends towards zero [14, 12].
This behaviour is illustrated in Fig. 3. The wave functions now tend to a finitezeoo limit
represented as a dotted line in the figure. This limit can be calculated by s@&lgin®3)
below. While theE) = 0 curve tends to infinity for — oo, the curve afZ = 0.01 MeV that
looks very close starts to oscillate beyond the classical turning poifit &te?/E ~ 576
fm, i.e. far beyond the range displayed in the figure. At large distancesartiplitude
of the oscillations of the scattering wave functiang(E,r) with respect tor increases
exponentially withexp (7).

4.2. Potential-model expression of the astrophysical S factor

Rather than the radiative-capture cross section (27) in the potential nibidegasier to
immediately use an expression for thefactor by absorbing the factot® exp(27n) of
Eq. (7) andk—2v~! of Eq. (27) into the initial wave function [14]. Th# factor for an
electric transition of multipolarity\ to the final staté,.J; then reads

S;?J L (B) = Lahck2A TN NP g ()P (41)
liJ;
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Uy 0 MeV 0.01 MeV

20 r (fm) 40 60

Figure 3. Scaled radial wave functiong; /, of the3He +« elastic collision at various low
energiest. The limit E — 0 is represented as a dotted line.

In practice, this expression may be multiplied by a spectroscopic factoaétr@mponent

Iy of the final state. The total factor is obtained by summing over the final states.
Since the physics of low-energy dependences may vary from one indtichlbwave

to another, it is convenient to focus on somé& component oﬁﬁf,f. The S factor corre-

sponding to this component is simply denote&&g') in the following. Also, spectroscopic
factors are not used, except when explicitly mentioned.
The matrix element;, ;, (E) is given by the one-dimensional integral

1,5.(E) = /0 w1, (r) iy, (B, ) dr (42)

whereu,, 5, is defined in Eq. (39). Sincg,, ;, has a finite limit whenE tends towards zero,
I,,5,(E) and thusSFf?,f (E) also have finite limits [14].
It is convenient to make use of a function of the phase shiftlefined as
2
Dy (E) = =[e*™ — 1] tan ., (E) (43)
™

which also has a finite limit wheR' — 0 (see Appendix). In the following, | concentrate
on very low energies, i.e., on energies verifying

e 2™ < 1. (44)
This condition is well satisfied for
n>1 or F<FEy. (45)

11

Then, the phase shif;; is very small. With notation (43) and approximation (44), the

asymptotic form (40) of the radial wave function becomesHot. Ey,
alJ(E‘a T)Tjoofl(E’T) + DZJ(E)gl(Evr)) (46)

which remains finite alZ = 0.
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4.3. Propertiesof scaled Coulomb functions

Coulomb functions can be described at low energies on the basis of ansétep in powers

of 1/n? = E/E\y [15]. Rigorous expressions of such an expansiorfa@nd an asymptotic
approximation foiGG; have been derived by Humblet [16]. Using Egs. (2.10a) and (4.8a) of
Ref. [16], the scaled functions (35) and (36) can be approximated by

FE.r) = (2 o ) - @0 (o) @
and
GiI(E,r)= (WW(_E))UQ /2 -go(x) — L91 (x)+ O (1) (48)
1—e—2m i 1272 n*) |
with
x =2(2r/an)"?. (49)

l
wi(E) =] <1+ "2) . (50)

They are polynomials of degré®f the energy. The first functiong read

fo(z) = Iy41(x), (51)
2
fi@) = (;) {3(1 1) Dares(2) + ;blﬂ(x)} , (52)
while the first functiong; read
go(z) = Kory1(), (53)
X 2 X
g1(x) = (2) [3(1 + 1) Kopp3(z) — 2K21+4(96)] : (54)

wherel,, and K,, are modified Bessel, or Hankel, functions [13]. Using notations with an
upperscript 0 for functions calculated at zero energy, one dedtm@sthese expressions
the limits

Fi(r) = Jim Fy(B,r) = ()2 fo(x), (55)
Gi(r) = lim Gi(E,r) = (wr)"*go ). (56)

Of course, these functions still satisfy the Wronskian relation (37),
WG, Fi} = m/2. (57)

The exponentiaéxp(—27n) and all its derivatives tend to zero whéhtends to zero.
Therefore, the factor — exp(—27n) in Eq. (47) or (48) behaves as a constant (i.e. unity)
in the calculation of a Taylor expansion aroulid= 0 and plays no role in this expansion.
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One can express with Egs. (47) and (48) the limits of the first derivatiiisrespect
to energy as

10 (7”")1/2
) = T 0+ 1)@+ D fole) — (@), (58)
)2
67 = T3~ 1+ )@ + Dgo(a) — g1 ()] (59

Higher-order derivatives are given in Refs. [17, 18].

4.4. Expansion of S(E)around E =0

All the ingredients needed to perform a Taylor expansion ofSttiactor near zero energy
are now known. Expansion (8) restricted to first order can be rewaien

S(E) =~ S(0)(1+s.E+...). (60)

One needs computable expressions of the coefficients. From Eqan@{42), one imme-
diately obtains

S(0) = 3aheN) (B g, | /1) (1, (0)]7, (61)
with the integral
I;,5,(0) = /0 g g, (1) [ ﬂ?ﬂi (r)dr. (62)

The radial wave functiomgji(r) = uy,,(0,7) at zero energy is a solution of the
Schibdinger equation

Hy, ;00 5. (r) = 0. (63)
This solution satisfies the boundary conditions
iy, ,(0) =0 (64)
and

@, (r) = FY(r) + Diy, (0)G5.(r). (65)

The normalization of the functiom; ;. is fixed by Eg. (65). Using Eqg. (57), the normaliza-
tion condition can also be written as

WAGL. i)y} = /2. (66)

This Wronskian allows one to properly normalize a numerical solution of&) qatisfying
condition (64). The coefficiend;, ;. (0) is related to the scattering length by Eq. (A4) and
can be calculated with Eq. (A5).
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For givenl;J;, the first-order coefficient; in Eq. (60) is obtained by differentiating
Egs. (41) and (42) with respect f0[14], yielding

S'(0)  2x+1 2L, (0)

$1 = = , 67
1750 T Byl 1,0 (©7)

with the energy derivative of the integral given by
1,(0) = /0 w1, (r) P G0 () dr. (68)

The first term of Eq. (67) is always positive. Only the second term gplam negatives;
values.

The energy derivativé?g?‘]i of the radial wave function at zero energy is a solution of
the derivative of the Sciidinger equation (21) at the limi — 0, i.e.,

Hy, gy, (r) = ag g, (7). (69)
The required solution of this inhomogeneous differential equation verifies
;. (0) = 0. (70)
Its asymptotic form is given by the energy derivative of Eq. (46) at the litnit> 0 as
@25, (r) = FR(r) + Dy,s, (0)G2(r) + Di s, (0)G5 (), (71)

where}‘g?(r) andgg?(r) are given by Eqgs. (58) and (59), respectively. In this expression,
D;. ;.(0) is still unknown but this coefficient disappears in the Wronskian limit

W{g?ﬂ ﬂE?JZ - ]:E? — Dy, (O)gi?}rjooo (72)
The coefficientD;i 7,(0) is related to the effective range by Eq. (A7) and can be calculated
with Eq. (A8).

A numerical solution of Eq. (69) with the initial condition (70) does not neagly
have the asymptotic behaviour (71) since it may contain an arbitrary compaéch is
solution of the homogeneous equation (63). Subtracting this componentio alsolution
with the correct asymptotic behaviour can easily be performed from th&$kian limits
(72) and (66) (see Ref. [12] for technical details).

4.5. Applications

The 3He(x,y)"Be reaction is a good example of application of the potential model since
the "Be bound states have an+3He cluster structure. The dominant multipolarity is E1
(A = 1). The spins of the colliding nuclei ale = 1/2 andl> = 0. Hence the channel spin
is I = 1/2. The quantum numbers of thBe ground state aré; = 3/2 andr; = —1. The

final orbital momentum is thus = 1. The capture to thé/2~ first excited state behaves

in a similar way. In both cases, the capture can take place from0 andl; = 2. The
capture from the wave (J; = 1/2) is dominant since this wave has no centrifugal barrier.
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Only this case is considered here. The Gaussian potential of Ref. [£8pb&en, like in
Ref. [12]. The Bohr radius ig = 4.22 fm and the Rydberg energy sy = 0.68 MeV.

Radial wave functions are shown at various energies in Fig. 2. Thedsstate wave
function exhibits a node near 2 fm due to its orthogonality to a deep unphbsicad state
of the potential. With this node, the relative wave function between the clustensre
similar to those obtained from microscopic calculations. Scaled scatteringfu@stons
are presented in Fig. 3.

The integrands in the radial integral (42) are displayed in Fig. 4. Thayttea finite
limit (dotted line) thanks to the renormalization with'/2e™ . They tend towards this limit
from below. One observes that the maximum of the integrand is located taefan @t very

U Ty

.0.05 MeV o+
e+ «

10 20 7 (fm) 30

Figure 4. Integrands of the radial E1 integfgl /»(E) for the®He(o,~)"Be reaction. Nota-
tion uy stands foru, 3/5(r) andu; stands forug ; o (E, ). The limit £ — 0 is represented
as a dotted line.

low energies. The capture thus takes mostly place when the two nuclei deertap. The
role of the overlap region is restricted to distances below 5 fm. One olsseseadlations
due to the node near 2 fm of the bound state (see Fig. 2) and the nodekmead 3.7
fm of the scattering state (see Fig. 3). The external part of the integtamdd not differ
much in a more elaborate microscopic model, except possibly for its normalizetaiad
to the asymptotic normalization coefficient (ANC). The region below 5 fm is muodel
dependent but plays a lesser though non negligible role in the vallyg gf(0).
The behaviour of thé& factor nearE = 0 is then given by (61) and (67) as [12]

Sy.5.(0) = 3.2 x 107*(1 — 0.88 Epjev) MeV b. (73)
For thel/2~ excited state, one obtains
S1/o-(0) = 1.4 x 107*(1 — 0.92 Eyjev) MeV b, (74)

The S factor thus decreases whénincreases from¥y = 0. This is the result of two
competing effects. The first term in Eq. (67) is positive as always butdFstpows that the

15
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second term is negative since the area under the curve representinggptiiand decreases
asF increases. This second term is large enough to give a negative

The"Be(p;)®B reaction is crucial for the understanding of the solar neutrino emissions
since the’B decay provides most of the high-energy neutrinos from the sun. Jihe sf
the colliding nuclei ard; = 3/2 and/> = 1/2. Hence the channel spin is eithet= 1 or 2.
Microscopic calculations indicate that= 2 is dominant in the ground state. The present
illustration is restricted to that case for the sake of simplicity. The dominant multigola
is also E1. The quantum numbers of ti@ground state ard; = 2 andny = +1. With
I = 2, the final orbital momentum is thug = 1 since the’Be cluster has a negative parity.
The capture can take place from the even= 0 and 2. Here also, | only consider the
dominant capture from thewave (J; = 2). The Gaussian potential of Ref. [19] is chosen,
like in Ref. [12]. The Bohr radius igy = 8.24 fm and the Rydberg energy 5y = 0.35
MeV.

The scaled wave functiongy, are presented in Fig. 5 for various low energies and
compared with theéZ = 0 limit from Eq. (63). The corresponding integrands in the radial
integral (42) are displayed in Fig. 6. They tend from below to a finite limit tlsatok
the renormalization wittk—1/2¢™. They present a maximum around 40 fm. The capture

(¥ 0 MeV 0.01 MeV

0.1 MeV

) 50W

Figure 5. Scaled radial wave functiofag of the”Be + p elastic collision. The limifZ — 0
is represented as a dotted line.

essentially occurs when ti8e nucleus and the proton are far away from each other, much
farther away than the range of the attractive nuclear interaction. Thdapweegion is
almost totally negligible. The capture cross section at very low energiesdeplgnds on
asymptotic properties, i.e. the ANC of the bound state and the scattering tepgthithe s
wave. The dependence of tRdactor on these quantities is discussed in the next subsection.
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U,

/O MeV
>/ 0.01 MeV
A

50 100 4 (fm) 150 200

Figure 6. Integrands of the radial E1 integfal of the "Be(p;y)®B reaction. Notation:
stands foru;2(r) andu; stands forige(E,r). The limit E — 0 is represented as a dotted
line.

4.6. External capture approximation

The potential model can sometimes be simplified with the external capture approx
tion. When the capture essentially occurs at large distances likéB(ip;y)*B, a good
approximation can be obtained using only asymptotic expressions [20gtiBqu62) is
approximated as [21]

IliJi(O) - /OOO UlypJy (7") 7“/\ [‘F?Z (T> + DliJi<O)gloi (T)] dr. (75)

The approximation made in Eq. (75) is to replace the initial scattering wavéidont, (r)
at zero energy by its asymptotic form (46). In this way, one neglects tbeteff nodes at
short distances in the scattering wave function which simulate the Pauli antidgimatien
in the s wave. The constard;, 5, (0) is related to the scattering lengih s, by Eq. (A4) as

4ay, j,

‘DliJi(O) == 20 +1° (76)
lilzaNH_

The S factor at zero energy explicitly depends on the scattering length (whicmotdave
the dimension of a length) through Egs. (75) and (76).

Under the same model assumptions, the energy derivative of the radguainite ap-
proximated at zero energy by

Il/i.]i (O) = /Ooo UlpJy (T) TA []'-2?(7“) + Dlsz(O)g;?(r) + DL—Ji (O)Q?Z (T)] dr. (77)
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The energy derivative at zero ener@’ﬁl?Ji (r) of the scattering wave function is also re-
placed in Eq. (68) by its asymptotic expression (71). The conﬂgg}(o) is related to the
scattering lengtly;, ;, and to the effective range, ;, by Eq. (A7).

For "Be(p;)®B, the term invoIvingD;iJi (0) is negligible in Eq. (77) [21]. Equation
(68) can then be approximated by

O % [y, 0 FRG) + DG ()] dr. 79)

In this approximations; only depends on the scattering length. Over most of the integration
domain, the final bound state wave function is very close to its asymptotic form

wip g (r) = CWop, 1,4172(2ker), (79)

wheren, = ]EN/ElfJf\l/z, ky = (anmp)~1, andW is a Whittaker function [13]. The
asymptotic normalization constaét of the final bound state is the main unknown about
the nuclear properties &f(0). The initial wave only depends on nuclear effects through
the scattering length. The coefficientis independent of’. The determination of the ratio
S(0)/C? is almost independent of the choice of the final potential. Using, rather than

its asymptotic expression (79) has the advantage that the integral automatiralgrges
and that no regularization is needed.

In the evaluation of Egs. (76) and (78) ftBe(p;)®B, the Woods-Saxon potential es-
tablished by Barker in Ref. [11] is used, with a slightly modified depth as in [Ré&f to
match the proton separation enefy¥37 keV. Evaluating Eq. (61) with (78) and (79) leads
to the expression [21]

S(0)/C? ~ 35.6(1 — 0.0014ag2) eV b fm, (80)

whereay, is expressed in fm an@ in fm—'/2. Only the linear term in the wave scattering
lengthags is kept. Expression (80) assumes the dominance of external capterefdite it
should be an accurate approximation of most model calculations 6Bt (@;y)®B reaction.
The dependence on the scattering length could be significant if this lengpleted to take
large values. However, the measured value of this scattering length dbssam to lead
to a correction beyond the percent level [22].

In the same way, a linearized approximation §prcan be derived,

51~ —2.47(1 4 0.0072a02) MeV L. (81)

One observes a larger sensitivity to the scattering length, enhancedbtpadf five with
respect to Eq. (80). This is due to the strong cancellation between the twe dééexpres-
sion (67).

In Eqg. (81), approximation (78) is used rather than (75), i.e. the efectinge effect
is neglected. Varyingg, from O to the large value 5 fm modifies by less than half a
percent. The effect of the effective range is about an order of magnsmaller than the
effect of the scattering length.

Includingd-wave capture leads to the total values [21]

5(0)/C? ~ 38.0(1 — 0.0013a02) €V b fm (82)



Understanding radiative-capture reactions at very low energies 19

and
51 ~ —1.81(1 4 0.0087agy) MeV L. (83)

The dependence on the scattering length is thus weak.

Estimates of the dependence on the scattering length for other systems where
the external-capture approximation is valid for some states suctf@g,~)°O or
160(p;y)'"F have shown an even weaker dependence on the scattering length.

4.7. Interpretation of external capture

External capture can be interpreted with the help of the WKB approximatidm]2 The
scaled Coulomb functions can be approximated as

1 1 1/4
Fi(E,r) ~ 3 (QGNT) e (k) (84)
and
1/4
GiI(E,7) ~ g (;a]\ﬂ’) e~1lkr) (85)
where
1/2 2
oi(k,r) = <2T) (2 — Fay — 1aNk2r> (86)
an T 6
under the condition
ay <1 < 772aN. (87)

The WKB approximation is thus valid only fdt < E». However, qualitatively, it can have
a larger range of validity. Hence the asymptotic form (40) of a scattering Wanction can
be approximated as

r—00 2

. LAY e WS i)
ug(E,r) — = SONT erii —7rl'2a2l+le . (88)
Y

One observes that the energy dependences of the two exponentiafgpasite.

Let us apply this to théBe+p capture in the wave. The scattering length is close
to the value ofay. At the low energies where the WKB approximation is valid, the first
term in (88) is much larger than the second one. More generajlys much larger than
m(ap2/an)Go at these energies. Hence the scattering wave function is well approximated
asymptotically by the first term of the WKB approximation (88). The energeddence
in (86) explains the decrease of the scattering wave functions in Fig. b thibkesnergy in-
creases from zero and thus the decrease of the integrand displaygdan Bifferentiating
explei(k, )] with respect ta& and using the mean-value theorem leads to

C20+1 V2 <F>3/2

s~ - — 89
"Bl 3BEN \aw (89)
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wherer is the location of the maximum af; () r**3/2@) ; (r) [4]. The main merit of
this rough approximation is to show thatresults from a subtraction of two quantities with
very different physical contents.

For thea+3He capture, the scattering length is larger [12, 7], i.e. approximately
but the second exponential in Eq. (88) remains essentially negligible. eHercscaled
scattering wave functions in Fig. 3 and the integrands in Fig. 4 decretmgadistances
when the energy increases from zero. The WKB approximation (cordibbgenumerical
values of the Coulomb functions) offers a simple qualitative explanation obrilgen of
negatives; values when external capture dominates.

The asymptotic form (79) of a bound-state wave function becomes atlasgpy dis-
tances

uy(r) oc r~ e kT (90)
for r > nZay or

UZJ(T) x T1/4ef(2r/aN)1/2(2leaN/2r+aNk2r/6) (91)

for ay < r < nfan. The location of the maximum of the integrand in Eq. (75) is then
roughly given either by [4]

1 1/2]2
P & 3TN [né/ 2+ (20 +3-m) ] (92)
or by
T ~ b2 [(2X + 1) 21 Zoor N/ 223, (93)

These rough estimates of the location of the maximum can give an idea of thigyvalid
the external-capture approximation. The radiugppearing in Eq. (89) can be estimated
with (92) or (93) by replacing by A + 3/2.

5. Proton-proton weak capture

Although not a radiative-capture process, the proton-proton weatkiieabehaves in a very
similar way. In a proton-proton collision, the weak interaction can transéopmoton into a
neutron to form a deuteron with emission of a positron and a neutrino. Tddsoa has the
small @ value 0.42 MeV. The deuteron quantum numbersjare- 1 andry = +1. With
an intrinsic spinSy = 1, the orbital momentuni; is O or 2. The identity of the protons
imposesl; + S; even. The parity does not change in this Gamow-Teller transition. The
initial orbital momentum is thug = 0 or 2 with S; = 0.

Here | consider a very simplified model of this capture, i.e. the tensor iereglected
and the nucleon-nucleon interaction is approximated by the purely cenimaklbta po-
tential [23]. The deuteron wave function is then limited to theave. After integration of
the leptonic part of the matrix elements, the weak-capture cross sectiaresaghder these
approximations to the simple Gamow-Teller expression

6mec? 2

o(B) = s G IE+ Q) [ u (b (B rar| (94)
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wherem, is the electron mass;z ~ 3 x 10~'2 is the dimensionlesg-decay constant,
A =~ —1.25 is the Gamow-Teller to Fermi ratigf,(E) is the Fermi integral andy; is the
deuteron radial wave function. The scattering wave funciighis normalized as

(95)

ubl (E, r>rj>>oo cos 8po(E) Fy(n, kr) + sin 600 (E)Go(n, k)

and thus tends to zero at any given distance whien 0. It is thus convenient to introduce
(96)

as before
ugh (E,r) = kil/Qe””ugg(E, r).

These functions are displayed in Fig. 7 for various small energies anfl fe& 0. For
comparison, the deuteron wave functiafy, is also represented. Because of the small

binding energy, it decreases slowly with

gy
0 MeV
© 0.01 MeV
p+Dp

0.05 MeV

0.1 MeV
i 0.2 MeV

; 0.3 MeV ‘

0 0 20 0, () =10

Figure 7. Scaled radial wave functionszufjj of the elastic p + p collision for different
energiesk. The limit £ — 0 is represented as a dotted line. The deuteron wave function

ud; (x20) is displayed as a dashed line.
The S factor is then simply given by
3
S(E) = 5 mec?GEN*F(E + Q)[I(E)? (97)

where
I(E) = / Tl ()R (B, v)dr. (98)

The integrand is presented in Fig. 8. One observes that the area uademre increases
with E. The Fermi integraff (Q + E) also increases witl’ as the phase space enlarges

Hence, one expects titefactor to increase wittk nearE = 0.
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0 10 20 30 r (fm) 40

Figure 8. Integrands of radial integrdl6E) of the p(p,€ v.)?H reaction for different ener-
giesE. Thelimit E — 0 is represented as a dotted line.

At zero energy, one obtains in the same way as before
3
S(0) = 5 meGENF(Q)U(0) (99)

calculated with the solution of Eq. (63) and

(@), 2I'0)

§1 = + 100
'RQ) IO (109
involving the solution of Eq. (69). After a multiplication by 0.94 to compensate ltiserce

of d component in the deuteron wave function, the low-engtdgctor is given by

S(E) ~ 4.0 x 107%(1 + 11.4Ey\ev) MeV b. (101)

The slope coefficient; should be rather accurate in spite of the simplicity of the approxi-
mation. It agrees with various other estimates [24]. An accurate determirvtioa value
of S(0) requires a more realistic interaction and taking account of exchangentsif24].

6. Neutron radiative capture

6.1. Expansion of ov

The non-resonant behaviour of neutron-capture cross sectitms ahergy is well under-
stood theoretically. At low relative energiés as explained below, the product of the
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neutron-capture cross sectioF) to a given bound state and of the initial relative velocity
v can be approximated by a Taylor expansion truncated at first ordgr [25

ov=S8E(1+sF+...), (102)

wherel; is the smallest relevant orbital momentum of the initial scattering state.

In practice, a multipole transition starting from = 0 is always possible to some
bound state but it may be strongly hindered if its multipolarity (electric or magnistic)
high. Hence, at sufficiently low energies, one always has

ov=S(1+sE+...), (103)

but the energy range where this expression is valid may not be acceass#xgeriment or
interesting for astrophysics. It can be far below the thermal energy.

Let me now justify Eq. (102) in the potential model. A neutron is captured hyckens
with massA; and chargeZ;e from the initial partial wavd;J;. The cross section (27)
multiplied by the relative velocity is given in the potential model by

ov = acNPy RN [1(E))?, (104)

where N[} is given by (29) ford, = 1 andZ; = 0, i.e. Zf = Zi(—1/A)*. The
integral I (E) is still given by Eq. (42) in which the scaled radial functiop;, possesses
the asymptotic behaviour

ﬂlJ(E, T)r—_>>oo CcOos (SU(E) [fl(E, 7’) + DlJ(E)Ql(E, T)] s (105)

where the first factor can not be approximated by unity like in Eq. (46)taadlefinitions
of the scaled functiong; andg, are different. They are defined as [17, 25]

FiuE,r) =k (kr) (106)
and
GiI(E,r) = kY rny (kr) (207)

wherej; andn; = —y; are spherical Bessel functions [13]. The coefficien§ pih Eq. (46)
is defined as

DZJ(E) = k_Ql_l tan (SZJ(E) (108)

Notice that while the asymptotic behaviour (105) in the neutral case has amadita
form similar to (46) in the charged case, the dimensiong 9t;; and D, ; are different.

The Taylor expansion (102) can now be understood. The funcflgnandg,;, and
hence the scaled scattering functi@n;, with the asymptotic behaviour (46) have a finite
non-zero limit forE — 0. The same property is true féf E). The factorE" in Eq. (102)
thus comes from the facté?" in expression (104) afv. The coefficientsSy ands; of the
Taylor expansion (102) can be derived by a simple direct calculationeagg zero [25].
Notice thatSy as defined here [26] is slightly different from the definition in Ref. [25].
differs fromS, of Ref. [25] by a facto2/h?)" .
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The limit of ov for E — 0 is given by
So = acN5 (|Biy, | /he)® 1 (2p/B?) 5 1, 1, (0)]7. (109)

The integrall (0) is given by Eqg. (62) but with a different definition for the normalization
of a?J Since Eg. (64) does not fix the normalization, functﬁanji must be normalized
by imposing the condition

WAGE i}, 5 1 (110)
where the limits of the irregular spherical Bessel functions are [17]
Go=1, ¢ =r"1 ... (111)
The limits of the regular spherical Bessel functions are
Fo=r, FP=r%/3, ... (112)

General expressions fdf) andGY and their energy derivatives can be found in Ref. [17].
The coefficients; in expansion (102) reads

20 +1 QIl/iJi(O) 2#@&
= — 0,0 3
|ElfJf| Ilsz(()) h?

whereqy s, is thes-wave scattering length. Notice the occurrence of an additional term for
l; = 0 coming from the factotos d;, 7, (E) in Eq. (105) and the effective-range expansion
(A1) of the phase shift. The integra;iJi(O) is given by Eq. (68). The energy derivative
of the radial wave function at zero ener@ﬁl?Ji is a solution of the derivative (69) of the
Schibdinger equation at the lim& — 0. Since solutions vanishing at the origin are not
uniquely fixed by this equation, one imposes the condition

(113)

S1

WAGE )y, — Fi, +ai,G1)} 5 0, (114)

whereq,, j, is the scattering length of partial wal/; and
Fo=-r*/3, F=—r*/15,... (115)
Gy =—r% GP=r,... (116)

The scattering length can be accurately calculated with Egs. (A3) ana{A%) Appendix.

6.2. Applications

The2C(n;)'3C capture reaction is well studied experimentally. Data exist for the capture
towards the four bound states '8fC (see references in Ref. [25]). Most references use the
neutron energy,, rather than the energk of the relative motion employed here. This
reaction is described in the potential model with the Woods-Saxon potentiatsigi Table

| of Ref. [25]. At very low energies, the capture proceeds dominantisatds thel /2~
ground state and th&/2~ second excited state providing

ov ~ 2.6 x 1075(1 — 0.74F\jev + 23.5F% /) mb c. (117)



Understanding radiative-capture reactions at very low energies 25

in agreement with Eq. (103) since E1 capture is possible from thave. Notice however
the large coefficient of’Z;.,, mostly coming fromi-wave capture. The potential-model re-
sults are multiplied by spectroscopic factors (0.88 for the ground state &5 éod the3 /2~
state) derived by comparing the model with thermal capture cross sectieadRef. [25]
for details and in particular Table Il of that reference).

The capture from the wave to thel /2" excited state plays however a crucial role
above 1 keV. The integrand for thd /2 to s1/2 transition is displayed in Fig. 9. One
observes that the capture takes place at rather large distances simztimeim is beyond
10 fm. The slow decrease of the wave function of the weakly bourid state leads to a
large integral. The area below the curves decreases rather fast withsing energy. One
can expect the same behaviour far. The1/2" state is a good single-particle state. Its

UpTU;

Figure 9. Product:¢ru; for the pl/2 to s1/2 transition for the'?C(ny)!3C reaction. No-
tationuy stands fory ; , andu; stands fori, ;.. The limit E — 0 is represented as a
dotted line.

spectroscopic factor is 0.95. The produetfollows Eq. (102) withl; = 1 and is given by
ov = 2.2 x 1072 Eyev (1 — 0.85 Eyiey) mb c. (118)

The calculated capture cross sections to the various bound statesaidyesdll with
the available data between 20 and 500 keV. When summing the contributiofjsaiid
(118), one obtains

ov =~ 2.6 x 107°(1 + 88F)\joy — 50F3 ) mb ¢ (119)

which provides a good parametrization of all sub-MeV experimental gessons [25].
The famousl /v behaviour of the neutron-capture cross section is valid below 1 keV. But,
as displayed in Fig. 10, it is not followed above that energy as obsereqgberiments [27].
This should not be considered as a surprise. Above 1 ke tive capture to thé/2+
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Figure 10. Productv at low energies for th&?C(n;)'3C (full line), '4C(n;y)'°C (dotted
line) and'%0O(n;y)'70 (dashed line) reactions.

excited state becomes dominant and Eq. (103) is replaced by Eq. (102) with Such an
effect is made possible by the occurrence of states of both parities in tinel lspectrum.

For the'C(n;y)'°C E1 capture, the reaction can proceed only fromytiveave since
both'5C bound states have positive parity. The single-particle nature of thées atlwws
using the potential model with good accuracy. No spectroscopic facterased. The
Woods-Saxon potential is given in Table IIl of Ref. [26]. The main dbation comes
from the capture to theé/2" ground state, thg/2" excited state accounting only for a few
percents. The totalv at low energy is given by

ov & 1.76 x 1073 Fyjev (1 — 0.85Epev) mb c. (120)

Notice the additional factoE\;.y due to the initialp wave. This parametrization agrees
with the few existing data points between 20 and 700 keV [26]. This behaigipuesented
in Fig. 10 but one should keep in mind that M1 transitions (which vanish exactlye
potential model but are not forbidden) should level off the curve sdmesvat very low
energies. This flat part of the curve can in principle be deduced froasunements of the
capture cross section at thermal energies. However, one only knewsper bound Lb
for the thermal capture cross section. The behaviour should be valid somewhere below
leV (v <7x107? mbe).

The °0O(n;y)!"O capture reaction has been observed towards the three |di@st
bound states (see references in Ref. [26]). The Woods-Saxontjabtie given in Table
V of Ref. [26]. The main contributions come from the captures tolthe" first excited
state and thé/2" ground state. These transitions corresponghteave capture. Without
spectroscopic factors, they lead to

ov & 6.72 x 1073 Fyjev (1 + 0.32E)ev) mb c. (121)
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Contrary to thé"*C(n;y)'®C case, the thermal capture cross section has been measured. It
allows evaluating approximately the cross sections for the capture pescésminant at

very low energies, i.e. the global effect of the E1 capture ta3§f2= excited state and of

the M1 capture to theé/2" state. These captures both start from4heave and thus follow

Eq. (103). With an approximate treatment of these contributions fitting the theross
section, the totatv can be parametrized as [26]

ov =~ 1.44 x 1075(1 4 4660 Eyfey + 1480FE%.y) mb c. (122)

As shown in in Fig. 10, thd /v behaviour is valid below about 0.1 keV but a stronger
energy dependence starts to dominate above that energy. Paramet(iz22pagrees with
the few existing data between 19 and 260 keV, and of course with the fittedaheross
section [26].

7. R-matrix descriptions

The previous studies are based on the potential model, where the inteacilie of the
colliding nuclei and the effects of antisymmetrization are neglected. This ieGauprox-
imation in some cases but many reactions require a more elaborate treatmemthdlegs
the principle of the above analysis of very low energies remains valid in nciopos and
abinitio models. The renormalization of the Coulomb functions remains necessarget la
distances and imposes a modification of the wave functions at shorter éistahere the
microscopic structure plays its role. This can easily be taken into accour frathework

of the R-matrix theory [6].

The R-matrix method is useful both for microscopic and non microscopic description
of radiative capture as well as for phenomenological fits of experimeatal [6]. In this
method, the configuration space is separated into two parts. This sep#&atianacterized
by a parameter, the channel radiusIn the internal region, the Sabdinger equation is
solved, with full account of antisymmetrization in microscopic models. In the reater
region, the wave functions are approximated by their asymptotic form, i.eocgugir of
the internal functions of the colliding nuclei and the wave function of théatikee motion
with appropriate angular momentum couplings; antisymmetrization effects anesidaal
nuclear interaction between the nuclei are neglected. When the chading« is large
enough, the results are insensitive to its value. This procedure is als¢ aatidmuch
simpler, to calculate cross sections in the potential model, even if this potentai iscal
[9, 28]. In all cases, the treatment in the external region is similar to the tretiofie
asymptotic properties presented in previous sections.

A Taylor expansion ofS(E) can be derived in this general framework. THdactor
can be derived from Eqg. (18) as [29]

S(E) o< > kST [ Ming(E) + Mext(E)J. (123)
oA l,LI.],L

In this expression, the internal transition matrix eleméft.(F) is calculated over the
internal region, e.g. with antisymmetric wave functions in microscopic modelsanitoe
expressed as a function of poles and reduced widths in a tyRicatrix way. In potential
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and microscopic models, the poles and reduced widths are obtained fhainors® of the
Bloch-Schibdinger equation [6, 28]. In phenomenological models, they are obt&ioed
fits to experiments.
The external transition matrix elemehf..(F) is calculated along the ways explained
in previous sections. It involves an integral very similar to Eq. (75) but witbwer limita
of integration in place of 0. When internal capture is negligible, the modelivaent to
the extranuclear-capture model described above. When extertate#ponegligible, only
M (E) must be taken into account. An example of this case can be found in REf. [30
The S factor at energy zero and coefficientare directly obtained from Eq. (123). Both
partsMiy (E) and M.y (E) of the matrix element have a finite non-zero limit whgtends
to zero. The technical details may be heavy and are not presented hisrapproach is of
course also valid for the coefficients of a Taylor expansiosoin the neutral case.

8. Conclusion

The physics of radiative capture can be analyzed down to energyirzarty model, mi-
croscopic or non-microscopic. To this end, a specific normalization ofddtesing wave
functions is necessary, inspired by a scaling of the Coulomb functiondethdd to finite
non-zero limits forE = 0. The S factor at zero energy, the slope of its energy depen-
dence near the origin and higher coefficients of its Taylor expansioncéssary, can be
calculated accurately. An accurate theoretical description of this lowggitehaviour is
important as cross sections in this energy domain are in general nosibbeés experiment
for the radiative capture of charged particles.

In the potential model, simple pictures of the integrands of the radial matrix etemen
allow a qualitative understanding of the properties of théactor at very low energies.
Some of those properties can be understood with the extranuclear cayoet The same
kind of analysis can be performed for the charged-particle and nerddiative captures,
with different normalizations of the scattering wave functions. It also appdi¢he proton-
proton weak capture.

Microscopic models, and among theah initio models, can make use of the present
developments generalized in the context of Byenatrix theory.

Acknowledgments

This text presents research results of the interuniversity attraction pmdeaonme P7/12
initiated by the Belgian-state Federal Services for Scientific, TechnichlCartural Af-
fairs.

Appendix: Effective-range expansion

In this Appendix, the scattering length and effective range are defiwedsolutions of the
Schiddinger equation (63) and its energy detivative (69) at zero endyl[7]. For an



Understanding radiative-capture reactions at very low energies 29

arbitrary partial wave, the effective-range expansion is given in ¢hral case by [31, 32]

1
7+ 7“ B +O0(k* Al
DU(E) - 17 (k%), (A1)

whereD;; is defined in Eq. (108), and in the charged case by [33, 34]

2w (E)
A+ 1
112a%5"

2 1 1
+h ]=—+ k* + O(kY), A2

where D;; is defined in Eq. (43) and notations (5) and (50) are used. The lovgene
properties of functiork(n) [33, 34] are described in Refs. [12, 17].

By taking the limit E — 0 of both sides of Egs. (A1) and (A2), the scattering length
reads in the neutral case [25]

ary = —Dy5(0) (A3)
and in the charged case [12]
l!2a2l+1
ayg = — iv Dy(0), (A4)

whereD; ;(0) is easily calculated with
2p
DlJ / fl sr ulJ( )d'l" (A5)

In this integral Vs, (r) = V& (r) + Vo (r) — Z1 Z2€? /r is the short-range part of the poten-
tial. Equations (A3), (A4) and (A5) provide a simple and accurate wayatmutating the
scattering length.
The value of the effective range is given in the neutral case by
R
ry = ——5Di;(0) (AB)
ary

and in the charged case by

1 41 +1)(20+1)  24ExD};(0)
Ty = 3“2@%71 { Di7(0) Dy;(0)2 } ) (A7)
where
D45(0) = 2 [ Valr) [P0 ) + FOa8s ()] ar (A8)

Accurate values of the effective rangg can be deduced from Eqgs. (A6) or (A7) since the
integrand in Eq. (A8) is short-ranged. The functioig andG) and the derivatives with
respect to energy are calculated with (111), (112), (115) and (hlt&f neutral case and
with (55), (56), (58) and (59) in the charged case.
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Forl = 0, this approach provides an alternative to the famous Schwinger-Bethal&o
[31, 32], which reads in the present notation for the charged cage [12

= mp i [ {800+ D] = [0 far o)

man Doy

In the neutral case, the coefficient in front of the integral/i®,;(0)2. Equations (A6) and
(A7) converge much faster than Eq. (A9) and remain valid for0.

The next term of the effective-range expansion is given in Ref. [Hdher orders are
considered in Ref. [18].
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