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Abstract

The development of accurate and reliable dynamical modeling procedures that describe the time evolution of gene
expression levels is a prerequisite to understanding and controlling the transcription process. We focused on data from DNA
microarray time series for 20 Drosophila genes involved in muscle development during the embryonic stage. Genes with
similar expression profiles were clustered on the basis of a translation-invariant and scale-invariant distance measure. The
time evolution of these clusters was modeled using coupled differential equations. Three model structures involving a
transcription term and a degradation term were tested. The parameters were identified in successive steps: network
construction, parameter optimization, and parameter reduction. The solutions were evaluated on the basis of the data
reproduction and the number of parameters, as well as on two biology-based requirements: the robustness with respect to
parameter variations and the values of the expression levels not being unrealistically large upon extrapolation in time.
Various solutions were obtained that satisfied all our evaluation criteria. The regulatory networks inferred from these
solutions were compared with experimental data. The best solution has half of the experimental connections, which
compares favorably with previous approaches. Biasing the network toward the experimental connections led to the
identification of a model that is only slightly less good on the basis of the evaluation criteria. The non-uniqueness of the
solutions and the variable agreement with experimental connections were discussed in the context of the different
hypotheses underlying this type of approach.
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Introduction

Dynamical modeling of transcriptional regulation networks is an

important goal of systems biology. It holds promise to understand

the functioning of these networks as well as their malfunctioning,

which can aid rational modification of some targeted properties.

This goal is expected to be within reach due to the impressive

amount of data generated during the last few years by powerful

high-throughput technologies, such as DNA microarrays that

provide the simultaneous expression levels of many or even all

genes in a cell sample [1,2]. Moreover, time series of DNA

microarray data yield information about the evolution of gene

expression levels during, for example, the developmental stages of

the host organism, the response to external perturbations, or the

cell cycle. If these time-dependent data were accurate and

numerous enough, they would, in principle, allow the reverse-

engineering of the transcriptional regulation network (see e.g. [3–

13]). However, the mathematical model structure to be used for

that purpose is unknown. Additional issues are the non-uniqueness

of the parameters of the model (see e.g. [14]), the usually high level

of intrinsic noise of the microarray data, and the impurity of the

samples that often contain mixtures of cell types. A possibility to

handle the degeneracy of the solutions is to include biology-based

constraints in the modeling procedure [13]. One constraint is the

robustness of the solutions with respect to parameter variations

(see e.g. [13,15–17]). It manages stochasticity and ensures that the

overall behavior of biological systems does not vary with changes

in the environment, except when large and specific perturbations

come into play that lead the system to another state. The second

biological constraint consists of requiring that the solutions be

stable when extrapolated in time. It is indeed reasonable to assume

that although the expression levels may drastically change in time,

up to a few orders of magnitude, they do not become unreasonably

large.

Another issue is the extremely large size of the transcription

regulation network, where basically all genes of an organism are,

directly or indirectly, connected. Even when large DNA micro-

array time series are available, the data are insufficient to identify

all parameters of the model structures. Moreover, oftentimes

different genes exhibit similar expression profiles, either because

they are coregulated or because the noise level does not allow

distinguishing them. To solve both of these problems, genes are

often clustered into groups, and the modeling procedure is applied

on these rather than the individual genes [9,11,13,18]. The

disadvantage of this approach is the lack of straightforward

physical interpretation of the resulting gene cluster networks.

Another approach is to consider the full transcription network of

an organism as separate subnetworks that are loosely connected

and can be modeled separately to a good approximation [19–22].

We consider in this paper Drosophila melanogaster as our model

organism, and focus on the subset of 20 genes that are involved in
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muscle development during the embryonic stage. This subset has

the advantage of being well described and of having available

experimental data about the transcriptional interactions. To tackle

modeling, we use a combination of the approaches described in

the previous paragraph: we disregard the connections with genes

outside this network, and cluster the genes that have similar

expression profiles into classes. We then proceed to model the

dynamical behavior of gene cluster expression, using coupled

differential equation. To reduce the number of solutions and select

those that have a biological meaning, we impose the robustness

and stability constraints described above. The resulting transcrip-

tional networks are compared to the experimental information

about the transcription factor-gene interactions.

Methods

Experimental data on Drosophila genes involved in
muscle development

A total of 20 genes were identified as being involved in Drosophila

muscle development [3]. These are: CG10293 (how), CG1429

(mef2), CG17927 (mhc), CG18251 (msp-300), CG1915 (sls),

CG2096 (flw), CG2328 (eve), CG2956 (twi), CG3992 (srp),

CG4376 (actn), CG4677 (lmd/gfl), CG4889 (wg), CG5596 (mlcl),

CG5939 (prm), CG7107 (up), CG7438 (myo31DF), CG7445 (fln),

CG7895 (tin), CG9155 (myo61F), CG9885 (dpp).

The time-dependent expression profiles of these 20 genes during

the embryonic development, relative to their expression in a

reference sample containing a standard mixture of cells at all

developmental stages, have been experimentally characterized by

DNA microarray techniques [23]; they have been deposited in

NCBI’s Gene Expression Omnibus [24] and are accessible

through GEO Series accession number GSE4347 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE4347). The DNA

microarray technique [1] proceeds by extracting the mRNA from

the cell sample of interest and from the reference sample, reverse

transcribing them into cDNA, labeling them by two types of

fluorophores, and letting them hybridize to their complementary

sequences attached to a microarray. The fluorescence intensities Im

emitted by the fluorophores from the sample of interest are

measured relative to the intensities IR
m emitted by the fluorophores

from the reference sample; the index m labels the mRNA

molecules (or equivalently, the corresponding genes or proteins).

Here we have m = 1,...,20. These intensities must be normalized to

correct for different effects including the unequal quantities of

RNA copies, differences in labeling or detection efficiencies

between the fluorescent dyes, and systematic biases in the

measured expression levels [25,26]. The gene expression levels

Xm are given as the ratio of the normalized intensities ~IIm and ~IIR
m ,

under the commonly made assumption that the RNA concentra-

tions and fluorescence intensities are proportional [27]. Time

series correspond to gene expression levels of the sample taken at

N different time points ti (i = 1,...,N). Here the time series contain

N = 31 time-points and cover the 24 hours of the embryonic

development, with varying sampling frequency (every 30 minutes

up to time point 14 and then every hour). The time-dependent

gene expression profile Xm(t) is thus defined as:

Xm(t)~
~IIm(t)

~IIR
m

: ð1Þ

The droID database [28] lists the interactions between genes

and gene products. For the 20 genes involved in Drosophila muscle

development, 36 experimentally proven interactions are listed.

These include 34 interactions between transcription factors and

genes, and 3 genetic interactions, defined as interactions whose

molecular mechanism is unknown or results from a cascade of

interactions [29]. These interactions are listed in Table S1 of File

S1. This table also contains four new interactions that were

unknown when this work was started. They are used for validation

purposes. Note that we overlooked protein-protein interactions

because most of them are not directly obtained from experiment;

rather, they are predicted from results on other species, and are

thus less reliable.

Clustering of gene expression profiles
The expression profiles Xm(t) that have a similar shape are

undistinguishable for modeling purposes, and we therefore cluster

them into groups. However, these profiles present a high noise

level and missing values. To alleviate this drawback, we first

preprocess the data. Two methods were tested. The first consists of

data filtering with a mobile mean procedure:

Xm(ti)?Xm(ti)=2zXm(ti{1)=4zXm(tiz1)=4; when some values

are missing in this equation, they are replaced by the neighboring

values. The second procedure consists of smoothing, using the

cubic splines algorithm csaps of Matlab (The MathWorks Inc.,

Natick, MA), with parameter value p = 0.999 so that the

interpolated curve follows very closely the experimental points

[9]. To cluster these preprocessed expression profiles, we need to

Table 1. Effect of the preprocessing procedure and clustering algorithm on the quality of the clusters.

Preprocessing Classification Intraclass Intraclass Interclass Interclass

procedure method vDw vDrepw vDw vDrepw

Filtering tree-like 0.43 0.39 1.05 1.06

k-means 0.41 0.31 1.01 1.08

Smoothing tree-like 0.33 0.29 1.00 1.00

k-means 0.29 0.23 0.94 1.00

Filtering & tree-like 0.31 0.29 0.94 0.99

Smoothing k-means 0.28 0.23 0.95 1.03

The number of classes is set to 10. The optimal procedure is indicated in bold. Intraclass vDw: average distance between members of the classes; Intraclass vDrepw:
average distance between members of the classes and their representative member; Interclass vDw: average distance between members of different classes;
Interclass vDrepw: average distance between representative members of different classes.

doi:10.1371/journal.pone.0090285.t001
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define a similarity measure and a clustering procedure. Several

distances between expression profiles can be defined [30]. Since

the expression levels Xm(t) to be modeled are relative levels with

respect to a gene-dependent and time-independent factor eq. (1),

no difference should be made between Xm(t) and aXm(t), where a

is an arbitrary positive real number. Moreover, we chose not to

take into account the difference between two profiles with the

same shape but different average expression levels, as such profiles

are merely translated with respect to each other. We thus require a

symmetric, translation-invariant and scaling-invariant distance

measure with zero scaling dimension: Va,b[R : D(Xm,Xnzb)~

D(Xm,Xn),D(Xm,aXn)~D(Xm,Xn), and D(Xm,Xn)~D(Xn,Xm).

The distance satisfying these constraints has the form [30]:

D(Xm,Xn)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

jXm(tk){SXmTj
fm

{
jXn(tk){SXnTj

fn

� �2

vuut , ð2Þ

in terms of the mean SXmT and standard deviation fm:

SXmT~
1

N

XN

k~1

Xm(tk) and fm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

Xm(tk){SXmT
� �2

vuut :ð3Þ

On the basis of this distance measure, the 20 genes were

classified into groups displaying similar expression profiles, using

two distinct clustering procedures, the k-means algorithm and a

tree-like hierarchical clustering algorithm [31]. The latter proceeds

by considering all profiles in separate classes and grouping them

two by two, in such a way that the average distance between any

pair of profiles in each class is minimum. The procedure is stopped

when a threshold distance or a maximum number of classes is

reached. Each of the C clusters so obtained, labeled by c

(c = 1,...,C), is represented by its normalized average profile, �XXc(t).
To compute this profile, we first identified the representative

profile of the cluster, defined as the profile for which the distance

with respect to all other members of the class is minimum. All the

profiles of the cluster were then superimposed on the represen-

tative, using the translation and scaling factors that minimize the

distance. The average profile corresponds to the average, at each

time point, of all translated and scaled profiles in the cluster. This

average profile is then normalized, by scaling and translation, so as

to ensure that the new standard deviation of each profile is 1 and

that the minimum expression level of all clusters is 0.

Model structures
We assumed the system to be autonomous, and considered

coupled differential equations with a transcription term and a

degradation term:

_�XX�XX c(t)~Hc( �XX ){Dc( �XX ) �XXc(t): ð4Þ

where �XX~( �XX1,:::, �XXC) and t is the real, continuous time. The dot

means the derivative with respect to t. Since the transcription term

Hc( �XX ) is defined to be positive, it increases the concentration �XXc of

cluster c, basically through the binding of transcription factors,

which either activates or represses genes in this cluster. The

positively defined function Dc( �XX ), called degradation factor,

Figure 1. Drosophila muscle gene expression profiles belonging
to a cluster. The 6 members of the cluster are listed at the top of the
figure. The results for all clusters are given in Figs S1-S2 of File S1. (a)
Filtered and normalized gene expression profiles contained in the
cluster; the representative profile is depicted in bold. (b) Expression
profiles superimposed onto the representative profile by translation
and scaling; the average profile is depicted in bold.
doi:10.1371/journal.pone.0090285.g001

Figure 2. Value of the objective function smax as a function of
the connectivity q, for different model structures. The results
obtained with the model structure m

exp
CN are represented by a solid line

with triangles, with m
exp
NC by a dotted line with crosses, and with m

exp
NN by

a dashed line with dots. The circled points indicate the solutions
selected for parameter reduction.
doi:10.1371/journal.pone.0090285.g002
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describes the degradation, destabilization or activity inhibition of

the gene products belonging to cluster c, or their removal from the

system. We used the model structure proposed in [13] for the full

Drosophila gene expression time series, as it showed to be flexible

and to lead to good results:

m
exp
NN : Hc(XX)~

lz
c zl{

c exp {
PC

d~1

Lcd
�XXd (t)

� �

1zexp {
PC

d~1

Lcd
�XXd (t)

� � ,

Dc(XX)~

kz
c zk{

c exp {
PC

d~1

Kcd
�XXd (t)

� �

1zexp {
PC

d~1

Kcd
�XXd (t)

� � ,

ð5Þ

with kz
c , k{

c , lz
c , l{

c §0. For defining this structure, it was

assumed that the transcription term and degradation factor are

modulated by interactions between genes and/or gene products.

For the transcription term, these interactions represent the binding

of activating or repressing transcription factors as well as the whole

cascade of protein-protein interactions occurring before the

binding of the transcription factors. For the degradation term,

these interactions tend to either prolong ( e.g. through stabilizing

complexes) or shorten ( e.g. through degradation by proteases) their

period of activity. The parameters kz
c and k{

c (lz
c and l{

c )

symbolize the maximum and minimum degradation rate (tran-

scription rate) when kz
c wk{

c (lz
c wl{

c ) and the converse when

kz
c vk{

c (lz
c vl{

c ), and Kcd and Lcd give the influence

(stabilizing or destabilizing according to their sign) of gene

(product) d on gene (product) c.

Two other model structures were also tested, which are

particular cases of the first. These are:

m
exp
CN : Hc(XX)~rc, Dc(XX)~

kz
c zk{

c exp {
PC

d~1

Kcd
�XXd (t)

� �

1zexp {
PC

d~1

Kcd
�XXd (t)

� � , ð6Þ

which is obtained from (5) by posing Lcd = 0, l{
c = 0 and

lz
c = 2rc, and

m
exp
NC : Hc(XX)~

lz
c zl{

c exp {
PC

d~1

Lcd
�XXd (t)

� �

1zexp {
PC

d~1

Lcd
�XXd (t)

� � , Dc(XX)~cc , ð7Þ

obtained from (5) by posing Kcd = 0, k{
c = 0 and kz

c = 2cc.

Parameter identification
The gene expression network was built iteratively by increasing

the connectivity q which is defined as the average number of

connections ending at a node (or class). In a first stage, the number

of connections was considered to be identical for all nodes. The

procedure starts by considering q = 1, and determines, for each

node, the connection (defined by a series of parameters) that

minimizes an objective function. It continues by incrementing q
until it is large enough to get sufficiently small values of the

objective function.

A two-step procedure, based on two different objective

functions, was used for parameter identification so as to manage

the large amount of parameters and the non-linearity of the

equations. The first step consists of constructing the network by

reproducing the derivatives of the gene expression levels rather

than the gene expression levels themselves. The objective function

f(J), where J denotes generically all parameters of the model, is

thus the square root of the square difference of the measured and

estimated expression level derivatives, summed over all time

points:

f(J)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

XC

c~1

1

N

XN

k~1

_�XX�XX c(tk){ _̂�XX�XX_�XX�XX c(tk,Jc)

� �2

vuut : ð8Þ

This entails considering the expression levels and their

derivatives as independent variables and reducing the identifica-

tion to an algebraic problem. Details of this procedure can be

found in [13]. In the second step, the connections defined in the

first stage for q = 1, 2,... are maintained and the parameters of

these connections are identified so as to minimize another

objective function, expressed as a function of the difference

between measured and estimated profiles rather than their

Table 2. Characteristics of the full and reduced solutions using the model structure m
exp
NN .

Model q Solution s smax spert x NC1 PC2 AC3

2 full 0.29 0.29 0.43 3.02 20 5/17(29%) 68/83 (82%)

reduced 0.27 0.27 0.30 13.78 20 5/17(29%) 68/83 (82%)

m
exp
NN

3 full 0.28 0.29 0.43 3.01 30 7/17(41%) 60/83 (72%)

reduced 0.28 0.29 0.43 0.95 20 4/17(24%) 67/83 (81%)

full 0.15 0.15 0.43 3.01 40 8/17(47%) 51/83 (61%)

reduced 0.20 0.21 0.39 2.77 29 8/17(47%) 62/83 (75%)

Biased m
exp
NN

3 full 0.45 0.46 0.73 1.68 30 17/17(100%) 70/83 (84%)

reduced 0.31 0.33 1.12 3.21 27 17/17(100%) 73/83 (88%)

The last two lines contain the solutions biased towards the experimental network. The networks corresponding to the solutions in bold are depicted in Fig. 4b-c. 1NC :

number of connections in the estimated network; 2PC: fraction of these connections that are among the 17 experimentally verified connections (see Table S1 in File S1);
3AC: fraction of the non-connections that are not among the 17 experimentally verified connections (thus that are among the 10610–17 = 83 experimental non-
connections).
doi:10.1371/journal.pone.0090285.t002
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derivatives. Two variants of this objective function are considered,

smax(J) and s(J). They are defined as:

smax(J)~ max
c

sc(J) and s(J)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

XC

c~1

sc(J)2

vuut , ð9Þ

where

sc(J)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

�XXc(tk){ �̂XX�XX c(tk,J)
h i2

vuut : ð10Þ

The estimate of the gene expression profiles, �̂XX�XX c, is obtained by

integration of the differential equations (4), using one of the model

structures given by eqs (5–7), and the ode45 routine of Matlab.

The parameters J are identified so as to minimize either s(J) or

smax(J), using Matlab’s fmincon optimization algorithm. The

initial values of the parameters are set to those obtained for the q-1

identification, with the newly added parameters set to zero.

Parameter reduction
The next step consists of eliminating unnecessary parameters

among Lcd and Kcd which appear in eqs (5–7), while requiring

that at least one connection per gene class be kept. We proceed by

dropping one parameter at a time at each step in the iteration,

according to two criteria:

1) the parameter of smallest absolute value; this procedure is

referred to as Yn;

2) the parameter which, when dropped, leads to the smallest

increase of smax; this procedure is called Ys.

These criteria turned out to be more effective than those based

on the Fisher information matrix [13]. After a parameter is

eliminated the remaining parameters are optimized again using

the local optimization algorithm fmincon from Matlab. The

elimination procedure is then reiterated.

Evaluation of the solutions
Four criteria were used to evaluate the quality of the estimated

profiles:

1) the number or remaining parameters;

2) the standard deviations s and smax between estimated and

experimental profiles, defined in eq. (9);

3) the robustness of the solution with respect to perturbations of

its parameters; this is estimated by adding to each parameter

in turn +1% of its value, determining which perturbation

leads to the largest deviation between measured and estimated

expression levels, j �XXc(tk){ �̂XX�XX c(tk)j, for any cluster c and time

point tk, and computing the value of the standard deviation s
obtained with this perturbed parameter, denoted spert;

4) the stability of the solution, evaluated by extrapolating the

estimated profiles up to a time tend and by computing the

difference between the average value of the estimated gene

expression levels over the measuring period and the

extrapolated level:

x~
XC

c~1

1

N

XN

k~1

�̂XX�XX c(tk)

 !
{ �̂XX�XX c(tend ) : ð11Þ

The time tend is taken to be 3 times the measured (embryonic)

time span.

Results

Clustering of the gene expression profiles
The raw data points representing the gene expression levels

Xm(t) of the 20 genes involved in the embryonic muscle

development of Drosophila, were first preprocessed to fill in the

missing points and to decrease the effect of measurement noise, as

described in Materials and Methods. Two procedures were tested,

consisting of filtering and/or smoothing. Moreover, given that

some of the expression profiles have very similar shapes and are

thus basically indistinguishable, we proceed to cluster them into

groups. Since the profiles are defined up to a gene-dependent

factor (see eq. (1)), the distance used to evaluate the similarity is a

translation and scaling-invariant measure of scaling dimension

zero, denoted D and defined in eq. (2). Two different classification

methods were tested with this distance, i.e. k-means and a tree-like

clustering algorithm (see Methods section).

To choose the most appropriate clustering and preprocessing

method, we computed: 1) the average distance D (defined by eq.

(2)) between the members of the same class; 2) the average distance

between members of different classes; 3) the average distance D
between the representative member of a class (defined in Methods)

and the other members; and finally 4) the average distance

between the representative members of different classes. To have

well-defined classes, the first and third distance measures that

correspond to intraclass distances must be as low as possible, while

the second and fourth distance measures must be as high as

possible.

The results are given in Table 1 for classifications into 10 classes

and in Table S2 in File S1 for 5–15 classes. Preprocessing the data

by successively filtering and smoothing decreases all the distances

in general, and decreases even more the intra- than the interclass

distances. We thus selected this preprocessing procedure. The

lowest intraclass distances and the highest interclass distances are

sometimes obtained with the tree-like clustering procedure and

sometimes with k-means, depending on the number of classes.

However, k-means performs more often slightly better and we thus

selected it as clustering procedure. The choice of the number of

Figure 3. Estimated and experimental expression profiles for a few clusters. The results for all clusters are given in Figs S3-S7 of File S1.
Dots: clustered, filtered and smoothed experimental data; (a)-(b): Estimated expression profiles for clusters {actn, wg, tin, dpp} and {fln} using the three
model structures; dashed line: m

exp
NN ; dotted line: m

exp
NC ; solid line: m

exp
CN ; (c)-(f): Estimated expression profiles for cluster {mef2} and {eve, twi} using the

model structure m
exp
NN and q = 2 (c), q = 3 (d) and q = 4 (e-f); solid line: before parameter reduction; dashed line: after parameter reduction using the Yn

procedure; (g)-(h): Estimated expression profiles for clusters {msp-300, sls} and {srp} using the model structure m
exp
NN , q = 3, and the biasing procedure

towards the experimental network; solid line: before parameter reduction; dashed line: after parameter reduction using the Yn procedure.
doi:10.1371/journal.pone.0090285.g003
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classes is somewhat arbitrary as we do not see a gap in the intra-

and interclass distances when decreasing the number of classes

(Table S2 in File S1).

To choose the total number of classes, we were guided by: the

concern for having basically indistinguishable profiles in the same

class; different profiles in different classes; and a sufficiently small

number of classes to ensure that the parameters can be reliably

identified from the available data. The analysis of Table S2i File

S1 indicates that the average distance between members of the

classes falls below 0.3 when clustering into 10 classes and more. A

visual inspection of the superimposed expression levels in the

classes confirmed that these 10 classes are well-defined (see Fig. S1

in File S1). We thus fixed the number of classes to 10. This

classification grouped together the genes {mhc, mlc1, prm, up,

myo31DF, myo61F}, {msp-300, sls}, {actn, wg, tin, dpp} and {eve, twi};

all other classes contain a single gene.

The representative and other members of these 10 classes are

shown in Fig. 1 and in Fig. S1 of File S1. Each of these clusters

labeled by c (c = 1,...,10) is represented by its normalized average

profile, �XXc(t), which is defined in the Methods section and is

depicted in Figs. 1, and S1 and S2 in File S1.

Dynamical modeling of gene expression profiles
The time-evolution of the 10 normalized average expression

levels, �XXc(t), of the 20 genes involved in muscle development was

modeled using an autonomous model structure (eq. (4)) with three

versions of the transcription term and degradation factor given by

eqs (5–7).

Because of the large number of parameters and the nonlinearity

of the equations, it is impossible to have a reliable direct

identification of all the parameters that define all the possible

connections between genes. So, assuming that the real gene

expression network is sparse, we first determine the necessary

connections, assuming a constant connectivity q for all nodes (see

section 2.4 for details). We start from q = 1 and increase it until the

value of the objective function is sufficiently small. Moreover, we

use successively two objective functions, denoted f and s, defined

in eqs (8–9). The first is given as a function of the difference

between the derivatives of the experimental and estimated profiles,

and the second as a function of the difference between the

experimental and estimated profiles. The first is used to define the

important connections and the second to optimize the parameters.

Moreover, two variants of the latter objective function are used:

s which is the standard deviation between estimated and

experimental profiles averaged over all classes, and smax which

is the largest standard deviation of all classes (eq. (9)). Using the

former has the drawback that some classes may be modeled very

well and others very poorly. Using the latter ensures that all classes

have sc values lower than smax, and gives thus slightly more

homogenous and satisfactory results. Hence we keep smax as the

objective function.

The evolution of smax during the network construction, from

connectivity q = 1 to q = 5, is shown in Fig. 2. Clearly, the model

structure that has the largest number of parameters, m
exp
NN , in

which neither the transcription term nor the degradation factor is

constant, is superior to the other two structures. For this structure,

the minimal connectivity required (for which the smax value is

reasonably low) is equal to 2, but a connectivity of 4 yields much

lower values of smax. Figs. 3a-b and Fig. S3 in File S1 illustrate the

superiority of m
exp
NN : only this structure allows the correct

reproduction of the data. We restrict ourselves to this model

structure and connectivity in the following.

To get rid of the unnecessary connections, we proceed to

parameter elimination. Two methods were tested: Yn and Ys,

where the eliminated parameters are those of smallest absolute

value or those that lead to the smallest increase of the objective

function smax (see Methods). Note that when several parameter

eliminations lead to the same value of smax, the one that increases

s the least was chosen. The elimination procedure was performed

until a threshold valued of smax was reached. This threshold was

set at 0.3, by visual inspection, so as to ensure a fair reproduction

of the experimental profiles. Moreover, in order to mimic

biological reality, we selected solutions that were robust against

perturbations of the parameters; in particular we required the

standard deviation spertv0.5 (see Methods). We did not put a

threshold on the stability of the solution, estimated by x (eq. (10)).

Note that these two characteristics, robustness and stability, are

quite important for modeling biological systems. Indeed, all such

systems have a stochastic behavior that depends, among others, on

changes in the environment, the amount of biomolecules, their

possible binding and function. However, these changes do not

affect the main properties of the system, which continues to give

similar responses to similar stimuli. Only very large or very specific

perturbations can bring the system out of its correctly functioning

state and lead it to another state, which can be functional or

dysfunctional, depending on the perturbation. It is thus very

important that the models that simulate biological systems have

the same properties, and thus do not yield very different solutions

for similar parameter values. The other characteristic of biological

systems is its stability. Even though the available data usually cover

only a part of the system’s life, it is reasonable to assume that the

expression levels continue to be of the same order of magnitude,

never becoming unrealistically large or negative. The same

property is expected to be built in the model: the solutions must

take realistic values until the next perturbation or developmental

stage, or the end of the organism’s life.

The results of the elimination procedures Yn and Ys for q = 2–4

are given in Table 2 and Table S3 in File S1. These two

procedures gave comparable results for the data reproduction, and

Yn gives usually better results for the stability and robustness,

especially for q~4. We will thus in the following only detail the

results obtained with Yn.

The estimated profiles are shown in Figs 3c-f and Figs S4-S6 in

File S1. The number of connections of the reduced solutions vary

between 20 (for q = 2–3) and 29 (for (q = 4) and, accordingly, the

reproduction of the experimental profiles is somewhat better for

q = 4 (s and smax = 0.2) than for q = 2–3 (s and smax = 0.3). Note

that 20 seems to be the minimum number of connections needed:

the reduction procedure applied on the q = 2 solution, with 20

initial connections, fails to eliminate further connections. All the

solutions show a fairly good robustness with respect to the

variations of the parameters, with values of spert between 0.3 and

0.4. In contrast, the stability upon extrapolation in time differs

Figure 4. Gene regulation networks. (a): Experimental connections; the dashed connections correspond to the 3 connections that were unknown
when this work was performed; (b): Network obtained with the model structure m

exp
NN and q = 4, after parameter reduction using the Yn procedure;

(c): Network obtained with the model structure m
exp
NN , q = 3 and the biasing procedure towards the experimental network, after parameter reduction;

(b-c): the connections in blue are the experimental connections that have been predicted; the blue dashed connections correspond to the new
experimental connections that have been predicted.
doi:10.1371/journal.pone.0090285.g004
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among the solutions. The best reduced solution is that obtained

from q = 3 (x = 0.9), followed by the q = 4 solution (x = 2.8); the

q = 2 solution is not stable at all (x = 13.8).

Comparison with the experimental network
The connections between gene clusters obtained by our

dynamical modeling procedure can be compared to the experi-

mentally determined connections, described in section 2.1 and

Table S1 in File S1. For this comparison, we first have to

transform the experimental network between individual genes into

a network between gene clusters. This is done by considering two

clusters as being connected if at least one member in each cluster is

connected to at least one member in another cluster. The

experimental cluster network so defined contains 17 connections;

it is shown in Fig. 4a. Note that these interactions are oriented but

unsigned, as the sign is not experimentally determined.

The intersection between the experimental and modeled

networks is indicated in Table 2. The smallest intersection is

obtained with the reduced q = 3 solutions (only 4 out of 17

reproduced connections), whereas the largest intersection is

obtained with the full and reduced q = 4 solutions (8 out of 17,

which amounts to 47%). The number of experimentally non-

observed connections that are also absent in the modeled solutions

is of course much larger (between 61% and 82%).

The number of common connections between the experimental

network and the different solutions can be compared to the

number of common connections that are expected at random. The

most significant result is found for the q = 4 reduced solution: the

probability of finding 8 common connections among two sets of 29

and 17 connections each, out of a total set of 100 connections, is

equal to 0.048. The same value is found for the absent

connections.

The network corresponding to this best solution (q = 4 reduced

solution) is depicted in Fig. 4b, with the correctly reproduced

connections highlighted. Among the 8 connections that are in

agreement with experiment, four involve the gene mef2 (myocyte

enhancing factor 2). In particular, the subnetwork involving the

genes and gene clusters mef2, srp, lmd, how, {eve, twi} and {actn, wg,

tin, dpp} is in good agreement with experiment.

Note moreover that all existing functional connections have not

yet been determined experimentally. Therefore some of the

predicted connections may in fact be real ones. This is indeed the

case: among the four new connections that were unknown when

this work was performed (indicated in Table S1 in File S1), which

correspond to three new connections between clusters (see Fig4a),

two were actually predicted, as shown in Fig. 4b. These correctly

predicted connections involve mef2, which supports the conclusion

that this region of the network is well reproduced by our model.

Adding these new connections increases the number of correctly

predicted connections to 10, out of a total of 20 experimental

connections.

Our gene regulation network connects gene clusters rather than

individual genes and is thus of a different type than the networks

obtained with other methods. Nevertheless, the fraction of

correctly predicted connections, either between genes or gene

clusters, can be compared among the different methods applied to

the same ensemble of Drososphila muscle development genes

[19,20]. These methods do not reach our 50% score.

Biasing towards the experimental network
To analyze if it is possible to find solutions that reproduce the

data well but are different from those obtained in the previous

section and are more consistent with the experimental data, we

perform a biased modeling procedure. This procedure follows the

same two steps: first the construction of the network from q = 1 to

higher q by minimizing the cost function f (eq. (8)), and then the

minimization of the cost function smax (eq. (9)) while keeping the

same network. However, here, instead of allowing a free choice

among all possible connections, the choice was biased towards the

experimentally proven connections: if, for a given cluster,

experimental connections do exist and have not yet been included

in the network in a previous step, the choice is limited to those;

otherwise the choice is free. Moreover, in the parameter reduction

procedure, parameters involved in the experimental connections

may be eliminated but the connection may not be dropped

entirely.

The results obtained with this procedure are given in the last

two lines of Table 2 and in Figs 3g-h and Fig S7 in File S1. The

reproduction of the expression profiles is somewhat less accurate

than with the unbiased method but remains good, with s = 0.4 and

0.3 for the full and reduced solutions starting at q = 3. Note that

the optimization of the solutions performs less well with some

imposed connections, as s is higher for the full than for the

reduced solution. The robustness of the reduced solution is also

somewhat less good than for the unbiased procedure (spert = 1.1),

whereas the stability is similar. Note that the total number of

connections in the reduced solution is equal to 27, and that we had

to add 10 connections in addition to the 17 experimental ones to

reach a reasonable accuracy in the profile reproduction. However,

the number of 27 connections is comparable to the number of

connections obtained with the unbiased procedure (20–29). Note

that among the three new experimental connections that were not

imposed in this procedure, one appears to be correctly predicted.

Conclusion

One successful result of our work is the consistent construction

of dynamical models, on the sole basis of the gene expression

profiles of the genes involved in Drosophila muscle development

obtained from DNA microarray series. The models obtained

reproduce the expression profiles quite well, are robust against

parameter variation and do not take unrealistically large values

when extrapolated in time. However, our results present two

important drawbacks. First, the solutions are not unique, and

different networks are obtained with very similar data reproduc-

tion abilities. The additional requirement of robust and stable

solutions filters out some of them, but the number of acceptable

solutions remains high. Second, half of the experimental connec-

tions are obtained by the best of our unbiased models. To obtain

all experimental connections, we had to bias the model

construction towards the experimental network.

The amount of 50% of the experimental connections found by

our models compares quite favorably with the results of other

analyses. However, our solution is still far from perfect and it is

worthwhile to question the basics of our approach. We made a

number of assumptions that, although commonly made in

biological modeling, could explain the limited overlap between

estimated and experimental connections. These assumptions are

detailed hereunder.

N We considered only the 20 genes known to be involved in

muscle development of Drosophila. In reality, these genes are

connected to other genes. We suppose here that these additional

connections are not (or much less) important for the transcrip-

tional regulation of these 20 genes. More generally, we disregarded

the effect of all external factors on the regulation of these 20 genes,

which is quite a bold (but common) assumption.

N As some of these 20 genes have similar experimental

expression profiles, which are moreover quite noisy, we prepro-
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cessed the data by filtering and smoothing them, and grouped the

similar profiles together using a k-means classification procedure

and a translation-invariant and scaling-invariant distance measure.

Although we tested several preprocessing and classification

procedures and although the selected ones appear to perform

quite well, we cannot be sure that the noise is eliminated in the

right way, and that the clusters are formed adequately.

N As some genes were clustered together, the transcriptional

model we derive connects gene clusters instead of individual genes.

The interpretation is that when a cluster is found to regulate

another cluster, some of their members do so, but not necessarily

all. It is indeed possible that the different members of a cluster –

even though their expression profiles are similar – are not

regulated by the same gene (cluster). The different – almost

equivalent – solutions in terms of data reproduction and

robustness that we found could well reflect the differences in

connections between individual members of the clusters.

N Another possibility is that the DNA microarray data, and thus

the networks predicted from them, correspond to external

conditions that differ from those of the experimental inter-gene

connections. It has for example been shown that networks may be

different when responding to different types of stress [32].

N The model structure we selected is quite flexible and gives

good results in terms of data reproduction; it could however be

argued that it does not mimic the biological mechanism and that

another model structure should be used.

N The experimentally determined interactions are listed as

regulatory interactions. However, some of them could be involved

only indirectly in regulation, and others could be side actors.

Moreover, not all interactions are known today, and some of the

predicted interactions – or of the non-predicted ones – will

perhaps be experimentally demonstrated in the future.

It is difficult at this point to identify the reason for the limited –

though substantial – overlap between experimental and estimated

connections and of the large number of almost equivalent

solutions. Note that the latter result could be taken as a positive

result that mimics reality. Indeed, gene regulation networks have

been shown experimentally to display some elasticity [33].

The results of our analysis indicate that more extensive and

more specific experimental data is needed to decide between the

different hypotheses. For example the existence of connections

predicted by our models, depicted in Fig. 4b-c, should be verified

experimentally. In particular the additional connections involving

the mef2 gene in Fig. 4b, which is at the center of a quite well

predicted subnetwork, are interesting candidates to be tested.
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