The Queen Elisabeth Musical Competition
How fair is the final ranking1

Renato G. Flôres Jr
CEME, Université Libre de Bruxelles and Fundação Getulio Vargas, Rio de Janeiro

Victor A. Ginsburgh
CEME, Université Libre de Bruxelles and CORE

Abstract
The Queen Elisabeth Musical Competition is the best-known international competition for violin and piano organised in Belgium, and is considered among the best and most demanding in the world. Each competition, organized in principle every four years, attracts some 40 violinists or 85 pianists, from many countries around the world.

There is little doubt that winning this contest may have a significant impact on the future course of an artist. Therefore it may be relevant to study whether the final ranking is fair, or whether it may depend on some exogenous factors, related to the organisation of the competition. In the paper, we examine whether one of these objectively observable factors, the order of appearance of a candidate, has an influence on his final ranking.

The tests show that the final rank is (unfortunately) not independent of the day in which the candidate appears; there is a statistically significant effect, especially for piano contests: those who appear first have a lower chance to be ranked among the first, while those who perform during the fifth day have a higher chance.

We believe that the result is partly due to the way the competition is organized, and suggest some changes to avoid the bias.

1The authors are grateful to R. Borenstein, M. Hummel and J. Vaerewyck for their help in retrieving the lists of musicians and their order of appearance in the contests as well as for providing explanations on the working of the Competition. O. Chanel’s and P. Waelbroeck’s help is gratefully acknowledged. We also thank two referees for very useful comments on a previous version, and particularly the one who gave us a hard time.
1 Introduction

The Queen Elisabeth Musical Competition is the best-known international competition for violin and piano organised in Belgium, and is considered among the best and most demanding in the world. The first competition took place in 1937, under the name of Concours Eugene Ysaye; David Oistrakh won the first violin competition in 1937, and Emil Guilels the first one for piano in 1938.\(^2\)

The competition was interrupted during the war, and resumed in 1951 under the name that it still bears today. Among those who won the first prize since, let us single out a few well-known names: Leonid Kogan (1951), Leon Fleisher (1952), Vladimir Askenazy (1956), Malcolm Frager (1960), Eugene Moguilevsky (1964), Valery Afanassiev (1972); many others, though not ranked first, became very famous, like Lazare Berman (1956), Guidon Kremer (1967), Emmanuel Ax (1972), to cite only a few.\(^4\)

The organizers of the contest were among the founding members of the Federation of International Musical Contests in 1957. The competition is considered as one of the most demanding: it requires the candidates to perform chamber music as well as a concerto (of their choice) with a full orchestra; the most unusual characteristic is that the twelve final laureates are given a single week to study a contemporary concerto composed on the occasion of the competition, and thus completely unknown to them (in the rest of the paper, we refer to the piece as the “unknown” concerto); this concerto is played by all twelve finalists.

Each competition, organized in principle every four years (see Appendix 1), attracts some 40 violinists or 85 pianists,\(^5\) from many countries around the world.\(^6\)

Members of the board of examination (the jury, for short) are selected among the world celebrities – teachers and interpreters; the list is impressive and quoting a few names would not do justice to the others.\(^7\)

\(^2\)Eugene Ysaye, a Belgian musician, composed mainly virtuoso pieces for the violin.

\(^3\)Arturo Benedetti Michelangeli was also among the twelve laureates in 1938.

\(^4\)The lists of winners between 1951 and 1993 can be provided upon request.

\(^5\)These are averages between 1951 and 1983, see Philippon (1985, Appendix 12) for details.

\(^6\)Among the 1,800 candidates between 1951 and 1983, 223 were US citizens, 130 Belgians, 87 came from France, 67 from Japan, 59 from the Soviet Union, 50 from Great Britain, etc. See Philippon (1985, Appendix 12), who quotes more than 50 countries of origin.

\(^7\)Lists of the member of the jurys between 1951 and 1985 can be found in Delhasse...
There is little doubt that winning this contest may have a significant impact on the future course of an artist. Therefore it may be relevant to study whether the final ranking is fair, or whether it may depend on some exogenous factors, related to the organisation of the competition. In the paper, we examine whether one of these objectively observable factors, the order of appearance of a candidate, has an influence on his final ranking.

The paper is organised as follows. Section 2 briefly describes the features of the contest that are necessary to understand how the grading is done by the jury, while section 3 gives the tests used and the results. In particular, they show that the rank is (unfortunately) not independent of the day in which the candidate appears; there is a statistically significant effect, especially for piano contests: those who appear first have a lower chance to be ranked among the first, while those who perform during the fifth day have a higher chance.

2 The working of the competition

The competition consists of three stages. In the first stage, 24 musicians among the candidates are selected and this number is reduced to 12 after a second selection; the order of appearance is drawn at random before the first stage, and remains unchanged for the second stage. In both stages, members of the jury, individually, grade candidates after every day of performance, and the marks are given without any discussion among the judges; the marks are turned in and locked in a safe by an usher who, at the end of each stage, computes averages, which give the final ranking.

Twelve candidates, the so-called laureates of the competition, are se-

(1985).

8There may of course exist other such factors, but they are unobservable.

9There is first a selection on the basis of the curriculum, without performance and the stages start after this first selection.

10The first stage may last an undefined number of days, depending on the number of candidates; the second stage lasts six days, with four candidates performing every day, two in the afternoon and two in the evening.

11Moreover, they cannot be changed after having been turned in; there is a proviso for the first day: the marks for the first and second days are turned in after the second day only.

12The grading is given on a scale between 0 and 100; if a member of the jury gives an “abnormal” mark, i.e. a mark which deviates by more than 20% from the average, it is discarded from the computation.

13There also exists a special tie-breaking rule.
lected after the second stage. There is a new random drawing to determine the order in which the candidates will appear in this third and last stage, and each of them is given the score of the “unknown” concerto exactly seven days before his public performance. At a rate of two per day, candidates have to perform the “unknown” concerto, one piece as soloists, and a concerto of their own choice, in that order.

The grading proceeds along the same lines as during the two first stages, except that the marks are turned in at the end of the competition only; but again, there is no discussion concerning the performance among members of the jury and the final order of the twelve candidates is generated by a straightforward averaging of the judges’ individual marks. These twelve last candidates are those we are interested in.

3 Analysis and results

The data consist of all results since the inception of the contest in 1951 (with the exception of the 1993 contest), totalling 120 violinists – 10 contests – and 132 pianists – 11 contests. They can be cast in two tables, displaying, for each contest, the order of appearance of the candidates according to their final rank, and can be looked at as ten (eleven) independent observations of the ranking of twelve individuals. If the order of appearance has no influence on the final ranking, each of the possible permutations of the twelve orders is equally likely. Taking this as the null hypothesis, a variety of calculations can be made.

Let us aggregate the final ranks into three consecutive groups of four ranks each. Under the null, the first performer should have the same probability of appearing in each of the three groups. However, inspection of the table for piano shows that he (or she) never appears in the upper group, only twice in the mid-group and nine times in the last one. For the vector of eleven elements (contests) displaying the group of the first performer, there are 3^{11} equally likely outcomes; the number of outcomes like zero-two-nine, the actual one, or which are more unfavourable is obtained by adding the number of cases in which the combinations zero-two-nine, zero-one-ten and zero-zero-eleven appear: each such case is obtained by a possible

\[14\] Violinists are accompanied by a piano.
\[15\] The two tables are displayed in Appendix 2.
\[16\] This approach that follows was suggested by one of the referees.
\[17\] This means zero times the first performer in the first group, two times in the following and nine times in the last one.
permutation of eleven elements, of which two and nine (or one and ten, or eleven) are equal. The probability of the event “actual outcome or outcome that is less favourable,” is then:

\[
\frac{(11! / 2! 9!) + (11! / 1! 10!) + (11! / 11!)}{3^{11}} = .00002,
\]
which is indeed very small.

On the other hand, the tenth performer, – who plays on the fifth day –, appears seven times in the first group, only once in the second group and three times in the last one. The probability of an outcome like this one or better is obtained by a similar reasoning and equals:

\[
\frac{(11! / 7! 3!) + (11! / 7! 2! 2!) + (11! / 7! 3! 1!) + (11! / 7! 4!)}{3^{11}} = .0340,
\]
which is still smaller than the usual acceptance level of 5%. Repeating this kind of calculation for the first and the ninth (who also performs during the fifth evening) violin players, leads to the probabilities .1702 and .0521, respectively.

This suggests – and more strongly for the piano than for the violin competition – that candidates playing during the first days are perhaps more likely to be ranked among the last, than those performing later on.

However, pursuing such a testing is cumbersome and a more compact view can be obtained by aggregating the original data into two 3x6 contingency tables, containing six columns (the days of appearance; recall that candidates appear at a rate of two per evening) and three rows (the ranks are again collapsed into three groups: Group 1 – the first four –, Group 2 – from fifth to eighth – and Group 3 – the last four). Table 1 shows the two matrices (violin and piano) that will be analyzed separately.

Visual inspection of both matrices also suggests that, in the first days, there is a concentration of results in the lower, third group, while those who perform during the fifth evening are more likely to be among the first. A standard \(\chi^2\)-test did however not reject the hypothesis of independence between order of appearance and final group, at the (usual) 5% probability level.\(^\text{18}\)

\(^{18}\)The aggregation performed entitles us to expect that, under the hypothesis of independence between day of performance and final group, the conditional distributions for any given day (or group) should be equal. This means that both tables can be considered to satisfy the assumptions needed in the models used in the sequel. As pointed out by one referee, use of the additional constraint that both tables have equal column and equal
Table 1
The 3x6 contingency tables

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Group 2</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Group 3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Piano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Group 2</td>
<td>8</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Group 3</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

In order to get a better idea of the structure of each matrix, a fully saturated log-linear model of the form:

$$\log p_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$$

(1)

with restrictions

$$\sum_i \alpha_i = \sum_j \beta_j = 0, \sum_i \gamma_{ij} = 0, j = 1, ..., 6; \sum_j \gamma_{ij} = 0, i = 1, ..., 3$$

was fitted to each table. The p_{ij} are the observed relative frequencies derived from Table 1; the α_is, β_js and γ_{ij}s respectively represent the row effects, the column effects and the interactions.

Table 2 displays the values of the estimated effects, together with their standard deviations, using Goodman’s method (Goodman (1973), (1978)).

To test significance, we make use of the standard normal distribution and run a two-tailed test.\(^{19}\) The value of the test-statistic z is significant at least at the 10% probability level for the coefficients followed by a † in Table 2. Note that this happens in both cases with the positive cross-effect between row totals could lead to sharper analyses.

\(^{19}\)This is a conservative approach. Given the evidence previously discussed, we could have started with one-tailed hypotheses, like $H_0 : \delta = 0$ against $H_1 : \delta < 0$ for Day 1 coefficients and $H_0 : \delta = 0$ against $H_1 : \delta > 0$ for Day 5 coefficients.
Table 2
Results of the saturated model

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>αᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>-0.095</td>
<td>0.059</td>
<td>-0.261</td>
<td>0.075</td>
<td>0.483‡</td>
<td>-0.261</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.297)</td>
<td>(0.288)</td>
<td>(0.311)</td>
<td>(0.290)</td>
<td>(0.279)</td>
<td>(0.311)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.055</td>
<td>-0.099</td>
<td>0.205</td>
<td>0.205</td>
<td>-0.437</td>
<td>0.071</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.288)</td>
<td>(0.297)</td>
<td>(0.283)</td>
<td>(0.283)</td>
<td>(0.334)</td>
<td>(0.290)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Group 3</td>
<td>0.040</td>
<td>0.040</td>
<td>0.056</td>
<td>-0.180</td>
<td>-0.046</td>
<td>0.190</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.287)</td>
<td>(0.287)</td>
<td>(0.289)</td>
<td>(0.310)</td>
<td>(0.304)</td>
<td>(0.282)</td>
<td>(0.131)</td>
</tr>
<tr>
<td>βⱼ</td>
<td>0.019</td>
<td>0.019</td>
<td>0.003</td>
<td>0.003</td>
<td>-0.048</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.205)</td>
<td>(0.205)</td>
<td>(0.208)</td>
<td>(0.208)</td>
<td>(0.216)</td>
<td>(0.208)</td>
<td></td>
</tr>
<tr>
<td>Piano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>-0.542†</td>
<td>-0.038</td>
<td>-0.250</td>
<td>0.213</td>
<td>0.534†</td>
<td>0.083</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.329)</td>
<td>(0.283)</td>
<td>(0.317)</td>
<td>(0.270)</td>
<td>(0.279)</td>
<td>(0.275)</td>
<td>(0.131)</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.183</td>
<td>-0.161</td>
<td>0.737††</td>
<td>-0.007</td>
<td>-0.734††</td>
<td>-0.019</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td>(0.284)</td>
<td>(0.293)</td>
<td>(0.271)</td>
<td>(0.284)</td>
<td>(0.364)</td>
<td>(0.283)</td>
<td>(0.133)</td>
</tr>
<tr>
<td>Group 3</td>
<td>0.360</td>
<td>0.199</td>
<td>-0.488</td>
<td>-0.207</td>
<td>0.201</td>
<td>-0.065</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.273)</td>
<td>(0.270)</td>
<td>(0.334)</td>
<td>(0.292)</td>
<td>(0.292)</td>
<td>(0.281)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>βⱼ</td>
<td>-0.008</td>
<td>0.048</td>
<td>-0.077</td>
<td>0.048</td>
<td>-0.072</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.209)</td>
<td>(0.200)</td>
<td>(0.218)</td>
<td>(0.200)</td>
<td>(0.222)</td>
<td>(0.198)</td>
<td></td>
</tr>
</tbody>
</table>

†: the coefficient is significantly different from zero at the 10% level; ††: the coefficient is significantly different from zero at the 5% level. See also text.

Group 1 and Day 5 (z = 1.73 and 1.91 for violin and piano respectively); for piano, moreover, the cross-effect between Group 1 and Day 1 is significantly negative (z = 1.65).

The above results, especially the cross effects for the fifth performance day, fully support the previous findings and justify looking for a more parsimonious representation which takes account of the ordinal character of our variables. We estimated the following row effects model (Goodman (1979); see also Agresti (1990, p. 269-271)):

\[
\log p_{ij} = \mu + \alpha_i + \beta_j + \gamma_i v_j
\] (2)
with restrictions

\[\sum_i \alpha_i = 0, \sum_j \beta_j = 0, \sum_i \gamma_i = 0, i = 1, ..., 3; j = 1, ..., 6 \]

where all variables are as before, and the \(v_j \) are scores \(v_1 \leq v_2 \leq ... \leq v_6 \) which reflect the ordered days of performance.

Model (2) was fitted by maximum likelihood, and the results, given in Table 3, point in the same direction. Both for violin and for piano, the cross coefficient for Group1 x Day comes out with a positive sign. For piano, it is significantly different from zero, showing that the further the day of performance, the larger the odds to be ranked among the first four (Group 1).

This formulation assumes that, for each group, there exists a log-linear relationship between the probability of belonging to that group and the day of performance. Reality is not as simple; for Group 1, for instance, the true underlying relation probably looks like an asymmetric inverted V, with maximal value in day 5.

Since our interest is in the absence of independence between order of appearance and rank, rather than in the log-linear relationship itself, we reordered performance days according to the mean rank for piano contests. Going from the highest to the lowest mean rank, this leads to the following sequencing of days: 1, 2, 3, 6, 4, 5. Adjusting again model (2) gives the Group x Day coefficients displayed in the two last rows of Table 3; the coefficient for Group1 x Day is positive both for violin and piano, which shows that the likelihood to be in Group 1 increases with (reordered) time; the coefficients are estimated with more precision than with the actual ordering of days, but there is still no statistical evidence to reject the independence assumption for violin.

As a further support to our results, we assumed as “representative” the distribution of groups resulting from the first day of performance, and computed \(\chi^2 \) distances to the other days.\(^{20}\) These values, displayed in Table 4 show that, both for violin and piano, day five is the furthest apart from day 1.

\(^{20}\)If \(x_{ij} \) represents day \(j \)'s relative frequency in group \(i \), then \(d(1,j) = \sum_i (x_{ij} - x_{i1})^2 / x_{i1} \).
Table 3
Results of the row effects model

<table>
<thead>
<tr>
<th></th>
<th>Violin</th>
<th>Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>St. dev.</td>
</tr>
<tr>
<td>Group 1</td>
<td>-0.0904</td>
<td>0.2972</td>
</tr>
<tr>
<td>Group 2</td>
<td>0.0898</td>
<td>0.2921</td>
</tr>
<tr>
<td>Day 1</td>
<td>-0.0007</td>
<td>0.2042</td>
</tr>
<tr>
<td>Day 2</td>
<td>0.0001</td>
<td>0.2041</td>
</tr>
<tr>
<td>Day 3</td>
<td>0.0006</td>
<td>0.2041</td>
</tr>
<tr>
<td>Day 4</td>
<td>0.0006</td>
<td>0.2041</td>
</tr>
<tr>
<td>Day 5</td>
<td>0.0001</td>
<td>0.2041</td>
</tr>
<tr>
<td>Group 1xDay</td>
<td>0.0257</td>
<td>0.0757</td>
</tr>
<tr>
<td>Group 2xDay</td>
<td>-0.0257</td>
<td>0.0757</td>
</tr>
</tbody>
</table>

Resequencing days

<table>
<thead>
<tr>
<th></th>
<th>Violin</th>
<th>Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff.</td>
<td>St. dev.</td>
</tr>
<tr>
<td>Group 1xDay</td>
<td>0.0863</td>
<td>0.0764</td>
</tr>
<tr>
<td>Group 2xDay</td>
<td>-0.0431</td>
<td>0.0760</td>
</tr>
</tbody>
</table>

A ‡ indicates that the coefficient is significantly different from zero at the 5% level. See text.

Table 4
Distances from the first day

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violin</td>
<td>-</td>
<td>0.310</td>
<td>0.310</td>
<td>0.881</td>
<td>4.095</td>
<td>0.738</td>
</tr>
<tr>
<td>Piano</td>
<td>-</td>
<td>2.850</td>
<td>6.075</td>
<td>7.975</td>
<td>15.775</td>
<td>5.025</td>
</tr>
</tbody>
</table>

The χ^2 formula is used to compute distances. See text.
4 Conclusions

We have shown that the final rank obtained is related to the day of performance. This seems to be a fact for the piano competition and a strong suggestion for violin. One of the reasons for this may be the “unknown” concerto; indeed, this is unknown not only to those who compete, but also to the members of the jury who, though they can of course read the score, did never have a chance to listen to it, before the first day’s performance. Though they are obviously trained to new scores, there may be some habit formation as the competition proceeds, with the effect of more severity during the first days of the competition. It may thus help the members of the jury to get used to the piece and have it performed once or twice for their own use, before the competition starts.

The learning process may also play a role in the global evaluation by a judge so that, starting with higher expectations and more strict rules, he will progressively adapt them to the reality of the actual performances. A similar phenomenon is at work when teachers grade written examinations: quite often, the first corrected papers are reassessed after a better idea of the performance of all students is gained. In other types of contests, especially in some sports, depending on established adverse starting conditions, candidates are allowed handicap scores to compensate for these drawbacks. How such rules could be adapted to a musical competition is by no means a clearcut matter.

Undoubtedly, it would be interesting to enlarge the dimension of the analysis, by comparing the results in the Queen Elisabeth competition with the candidates’ records in other contests and related measures of achievement. Though this may obviously add extra insights to our findings, we believe that the number of contests examined – 21 in total – and the random selection for the order of appearance of the candidates, support the validity of this sort of “marginal analysis,” pointing out an intrinsic bias on the results of the contest.

As a final note, it is interesting (and amusing) to mention that in the 1993 violin contest, which is not included in our calculations, the winner played on the fifth evening.

5 References

6 Appendix 1. Dates of the competitions

Violin

Piano

21The 1993 competition is not included in our calculations.
Appendix 2. Final ranking and order of appearance

<table>
<thead>
<tr>
<th>Year</th>
<th>Violin</th>
<th>Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>9 8 7 3 12 2 1 6 5 10 4 11</td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>9 12 5 7 1 3 11 6 10 4 2 8</td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>7 2 3 10 9 8 4 6 11 5 1 12</td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>3 12 9 4 8 7 11 1 10 5 6 2</td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>11 10 8 3 5 4 7 6 2 9 1 12</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>2 10 5 12 11 3 8 7 6 1 9 4</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>12 8 1 2 5 6 10 11 4 3 9 7</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>10 4 9 6 11 8 2 5 3 1 12 7</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>6 4 8 9 10 2 1 11 3 7 12 5</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>1 6 9 2 8 4 3 10 7 11 5 12</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>9 4 12 10 11 8 2 1 3 7 5 6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Violin</th>
<th>Piano</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>3 8 10 12 6 2 9 11 5 4 1 7</td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>9 6 7 10 4 3 5 2 1 12 11 8</td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td>5 10 2 4 7 6 12 8 9 3 1 11</td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>4 10 2 12 8 6 7 11 1 3 5 9</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>9 2 11 8 6 12 1 5 4 3 7 10</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>7 10 12 8 1 6 2 11 5 9 3 4</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>12 11 4 8 7 10 3 6 5 1 9 2</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>6 3 4 8 9 7 5 2 10 11 12 1</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>10 3 9 2 4 6 12 5 7 1 8 11</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>8 7 11 5 2 12 6 3 10 9 4 1</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>10 11 9 6 3 5 8 2 12 1 4 7</td>
<td></td>
</tr>
</tbody>
</table>
8 Appendix 3. Prize-winners 1951-1993

Names are ranked according to their final ranking; the number appearing between brackets after the candidate’s name is the order of appearance in the final round.22

\textbf{Violin 1951}

\textbf{Piano 1952}
1. Leon Fleisher (3); 2. Karl Engel (8); 3. Maria Tipo (10); 4. Frans Brouw (12); 5. Laurence Davis (6); 6. Lamar Crowson (2); 7. Theodore Lettvin (9); 8. Yury Boukoff (11); 9. Jacques Coulaud (5); 10. Philippe Entremont (4); 11. Hans Graf (1); 12. Janine Kinet (7).

\textbf{Violin 1955}
1. Berl Senofsky (9); 2. Julian Sitkovetsky (12); 3. Pierre Doukan (5); 4. Dorfeuille-Bousinot (7); 5. Victor Picaizin (1); 6. Alberto Lisy (3); 7. Marine Iashvilli (11); 8. Tessa Robbins (6); 9. Luben Yordanoff (10); 10. Clemens Quataker (4); 11. Igor Politkowsky (2); 12. Marcel Debot (8).

\textbf{Piano 1956}
1. Vladimir Askenazy (9); 2. John Browning (6); 3. Andrzej Czajkowski (7); 4. Cécile Ousset (10); 5. Lazare Berman (4); 6. Tamás Vasáry (3); 7. Stanislas Knor (5); 8. Claude Coppens (2); 9. Gorgy Banhalmi (1); 10. Hiroko Kashu (12); 11. Hans Graf (11); 12. Peter Frankl (8).

\textbf{Violin 1959}

22Numbers 1 and 2 play during the first evening, 3 and 4, during the second, etc.
Piano 1960

1. Malcolm Fraeger (5); 2. Ronald Turini (10); 3. Lee Luvisi (2); 4. Alice Mitchenko (4); 5. Gabor Gabos (7); 6. Shirley Seguin (6); 7. Walter Kampfer (12); 8. Youri Airapetian (8); 9. Jerome Lowenthal (9); 10. Augustin Anievas (3); 11. Alberto Gimenez Attenelle (1); 12. Kenneth Amada (11).

Violin 1963

1. Alexei Michlin (3); 2. Semion Snitkovsky (12); 3. Arnold Steinhardt (9); 4. Zariouss Schikhmursaieva (4); 5. Charles Castelman (8); 6. Masuko Usioda (7); 7. Yossef Zivoni (11); 8. Nejni Succari (1); 9. Jean Ter-Mergerian (10); 10. Hiderato Suzuki (5); 11. Paul Rosenthal (6); 12. Donald Weilerstein (2).

Piano 1964

1. Eugene Moguilevsky (4); 2. Nikolai Petrov (10); 3. Jean-Claude Vanden Eynden (2); 4. Anton Kuerty (12); 5. Richard Syracuse (8); 6. Michaël Ponti (6); 7. Eugene Rjanov (7); 8. Evelyne Flauw (11); 9. Dora Milanova (1); 10. Kou Chen-ying (3); 11. John Covelli (5); 12. Krassimir Gatev (9).

Violin 1967

Piano 1968

1. Ekaterina Novitzkaja (9); 2. Valere Kamychov (2); 3. Jeffrey Siegel (11); 4. Semion Kroutchine (8); 5. Andrè De Groote (6); 6. François-Joël Thiollier (12); 7. Edward Auer (1); 8. Eva-Maria Zuk (5); 9. Elisaveta Leonskaja (4); 10. Mitsuko Uchida (3); 11. François Duchable (7); 12. Waled Howrani (10).

Violin 1971

1. Miriam Fried (2); 2. Andrei Korsakov (10); 3. Hamao Fujiwara (5); 4. Ana Chumachenco de Lisy (12); 5. Edith Volkaert (11); 6. Yehoshua Epstein (3); 7. Rudolf Werthen (8); 8. Zinovy Vinnikov (7); 9. Geoffrey Michaels (6); 10. Vania Milanova (1); 11. Magdalena Rezler (9); 12. Zakhar Bron (4).
Piano 1972
1. Valeri Afanassiev (7); 2. Jeffrey Swann (10); 3. Joseph Alfidi (12); 4. David Lively (8); 5. Svetlana Navassardian (1); 6. Ikuyo Kamiya (6); 7. Emmanuel Ax (2); 8. James Tocco (11); 9. Cyprien Katsaris (5); 10. Jonathan Purvin (9); 11. Djeni Petrova (3); 12. Pi-hsien Chen (4).

Piano 1975
1. Mikhail Faerman (12); 2. Stanislav I golinski (11); 3. Iuri Egorov (4); 4. Larry Michaël Graham (8); 5. Serguei Iuchkevitch (7); 6. Olivier Gordon (10); 7. Michail Petoukhov (3); 8. Evelyne Brancart (6); 9. Harumi Hanafusa (5); 10. Daniel Rivera (1); 11. Dominique Cornil (9); 12. Seta Tanyel (2).

Violin 1976
1. Mikhail Bezverkhny (12); 2. Irina Medvedeva (8); 3. Dong-Suk Kang (1); 4. Grigory Jisline (2); 5. Shizuka Ishikawa (5); 6. Kaja Danczowska (6); 7. Marie-Annick Nicolas (10); 8. Eugene Drucker (11); 9. Eugene Sarbu (4); 10. Tadeusz Gadzina (3); 11. Gonçal Comellas Fabregas (9); 12. Philip Setzer (7).

Piano 1978

Violin 1980
1. Yuzuko Horigome (10); 2. Peter Zazofsky (4); 3. Takashi Shimizu (9); 4. Ruriko Tsukahara (6); 5. Mihaela Martin (11); 6. Piotr Milewski (8); 7. Eugene Sarbu (2); 8. Irina Tseitlin (5); 9. Véronique Bogaerts (3); 10. Andres-Jorge Cardenas-Cuevas (1); 11. Teresa Glabowna (12); 12. Sung Ju Lee (7).

Piano 1983
Violin 1985
1. Nai Yuan Hu (6); 2. Ik-hwan Bae (4); 3. Henry Raudales (8); 4. Kun Hu (9); 5. Mi-kyung Lee (10); 6. Chin Kim (2); 7. Tamara Smirnova (1); 8. Dene Olding (11); 9. Michaela Paetsch (3); 10. Peter Matzka (7); 11. Elisa Kawaguti (12); 12. Kyoko Shikata (5).

Piano 1987
1. Andrei Nikolski (8); 2. Akira Wakabayashi (7); 3. Rolf Plagge (11); 4. Johan Schmidt (5); 5. Ikuyo Nakamish (2); 6. Mi-joo Lee (12); 7. Kayo Miki (6); 8. Konstanze Eickhorst (3); 9. Chia Chou (10); 10. William Stephenson (9); 11. Hung Kuan Chen (4); 12. Balazs Szokolay (1).

Violin 1989
1. Vadim Repin (1); 2. Akiko Suwanai (6); 3. Evgeni Bouchkov (9); 4. Eretz Ofer (2); 5. Ulrike-Anima Mathe (8); 6. Catherine Cho (4); 7. Mieko Kanno (3); 8. Hiroko Suzuki (10); 9. Michi Sugihara (7); 10. Le Zhang (11); 11. Anna-lee Patipatanakoon (5); 12. Dimitri Berlinski (12).

Piano 1991
1. Frank Braley (10); 2. Stephen Prutsman (11); 3. Brian Ganz (9); 4. Hae-sun Paik (6); 5. Alexander Melnikov (3); 6. Igor Ardashev (5); 7. Chiharu Sakai (8); 8. Vadim Rudenko (2); 9. Jan Simon (12); 10. Sergei Babaiyan (1); 11. Rita Kinka (4); 12. Jan Michiels (7).

Violin 1993
1. Yayoi Toda (9); 2. Liviu Prunaru (4); 3. Keng-yuen Tseng(12); 4. Martin Beaver (10); 5. Natalia Prischepenko (11); 6. Chie Abiko (8); 7. Bin Huang (2); 8. Marco Rizzi (1); 9. Latica Honda-Rosenberg (3); 10. Kyung-Sun Lee (7); 11. Rachel Barton (5); 12. Stefan Milenkovic (6).