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Abstract

A matrix is called a multiple resultant matrix associated to two matrix polynomials when it
becomes singular if and only if the two matrix polynomials have at least one common eigenvalue.
In this paper a new multiple resultant matrix is introduced. It concerns the Fisher informa-
tion matrix (FIM) of a stationary vector autoregressive and moving average time series process
(VARMA). The two matrix polynomials are the autoregressive and the moving average matrix
polynomials of the VARMA process. In order to show that the FIM is a multiple resultant matrix
two new representations of the FIM are derived. To construct such representations appropriate
matrix differential rules are applied. The newly obtained representations are expressed in terms
of the multiple Sylvester matrix and the tensor Sylvester matrix. The representation of the FIM
expressed by the tensor Sylvester matrix is used to prove that the FIM becomes singular if and
only if the autoregressive and moving average matrix polynomials have at least one common eigen-
value. It then follows that the FIM and the tensor Sylvester matrix have equivalent singularity
conditions. In a simple numerical example it is shown however that the FIM fails to detect com-
mon eigenvalues due to some kind of numerical instability. Whereas the tensor Sylvester matrix
reveals it clearly, proving the usefulness of the results derived in this paper.

AMS classification: 15A23, 15A57, 15A69, 62B10, 62H12
Keywords: Matrix differential rules, multiple resultant matrix, tensor Sylvester matrix, matrix

polynomial, singularity, common eigenvalues, Fisher information matrix, VARMA process.

1 Introduction
A multiple resultant matrix associated to two matrix polynomials is singular if and only if the two
matrix polynomials have at least one common eigenvalue. Vector ARMA (autoregressive-moving
average) or VARMA(p, q) stochastic processes are general-purpose representations in order to describe
dynamic systems in engineering and in econometrics. From the formal definition given below, it will
be clear that they depend on two matrix polynomials of degrees p and q which are called the orders
and characterise the complexity of the representation. Statistical inference on the parameters of
such models, the matrix coefficients, is largely based on the asymptotic Fisher information matrix.
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Indeed, the (asymptotic) covariance matrix of the parameter estimators is the inverse of that Fisher
information matrix. Reliable bounds for the coeffients can therefore only be found if the Fisher
information matrix is non-singular.
In this paper it is proven that the asymptotic Fisher information matrix of a VARMA process

possesses the multiple resultant property associated with the coefficient matrix polynomials.
For the purpose of that proof, new compact representations of the Fisher information matrix are

derived in terms of structured matrices: the multiple Sylvester matrix and the tensor Sylvester matrix.
Gohberg and Lerer [2] have shown that the tensor Sylvester matrix has the multiple resultant property
but not the multiple Sylvester matrix. Using that property, it is shown that the Fisher information
matrix becomes singular if and only if the tensor Sylvester matrix is singular, in other words, if and
only if the autoregressive and moving average matrix polynomials of the VARMA process have at least
one common eigenvalue. Therefore, by checking the singularity of the tensor Sylvester matrix, it can
quickly be checked whether the Fisher information matrix is singular. In that case, the model orders
p and/or q need to be adapted. That check can also be used before generating artificial time series
from VARMA processes [22], [1], in particular in Monte Carlo studies or application of the bootstrap.
Before going on, let us introduce the statistical model more formally and explain the general context

of its application. Consider the n-dimensional mixed autoregressive moving average stationary time
stochastic process {y(t), t ∈ N} or VARMA process, of order (p, q) that satisfies,

pX
j=0

Aj y(t− j) =

qX
k=0

Bk ε(t− k), t ∈ N, (1)

where A0 ≡ B0 ≡ In, the n-dimensional identity matrix, and the white noise process {ε(t), t ∈ N} is
a n-dimensional vector random variable, such that

Eϑ {ε(t)} = 0 Eϑ
©
ε(s)ε>(t)

ª
= δstΣ.

The symbol Eϑ is the expected value under the parameter ϑ, an appropriate representation of ϑ which
consists of the VARMA parameters is given in the next section, > denotes transposition, δst is the
usual Kronecker delta and the covariance matrix Σ is positive definite.
The VARMA proces can also be summarized as follows

A(L)y(t) = B(L)ε(t),

where the matrix polynomials A(·) and B(·) are given by A(L) =
Pp

j=0AjL
j , B(L) =

Pq
j=0BkL

k

and L is the backward-shift operator Lky(t) = y(t−k). We further assume that the eigenvalues of the
matrix polynomials A(L) and B(L) lie outside the unit disc so the elements of A−1(L) and B−1(L)
can be written as power series in L with convergence radius one. These eigenvalues are obtained by
solving the scalar polynomials det A(L) = 0 and det B(L) = 0 of degree pn and qn respectively, det
X is the determinant of X.
The estimation of the (n× n) matrices A1, ..., Ap, B1, ..., Bq, and Σ have received considerable at-

tention in the time series and filtering of multiple time series literature [5], [6]. The Fisher information
matrix is of fundamental importance for describing the asymptotic covariance structure of the esti-
mated parameters since this covariance matrix is obtained by inverting the Fisher information matrix.
Consequently, only a nonsingular Fisher information matrix can produce reliable covariances of the
estimated VARMA parameters. Algorithms for the asymptotic Fisher information matrix have been
developed by several authors. Newton [18] has constructed an algorithm for the case of a VARMA
process at the scalar-level, when one element of the matrix is considered, and is based on Whittle’s
formula, see [25]. In [8], [9], algorithms are presented for a wider class of scalar time series processes
like the SISO (single-input-single-output) and MISO (multiple-input-single-output) structures. The
Fisher information matrix is also extensively studied in the statistical signal processing literature, see
for example Weiss and Friedlander [24], Scharf and McWorther [21], Karlsson et al [7].
To obtain the appropriate representations of the Fisher information matrix of a VARMA process,

matrix differential rules applied in [13], [14], [15] are used. These rules will be recalled in Section 2
before describing the compact representations which are the main contributions of this paper. We
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introduce also two simple examples: Example 1, with common eigenvalues, and Example 2, without a
common eigenvalue. Numerical experiments on these examples are discussed in Section 3. They first
show that the multiple Sylvester matrix gives a bad answer in both cases and that the tensor Sylvester
matrix leads, of course, to the right conclusion. Furthermore, the Fisher information matrix computed
numerically for Example 1 wrongly appears invertible, stressing the usefulness of the criterion based
on the tensor Sylvester matrix.

2 Compact representations of the Fisher information matrix

2.1 Block matrix representations

Assume that {y(t), t ∈ N} is a zero mean Gaussian time series. Then its stationary distribution
depends on parameters ϑ = (ϑ1, · · · , ϑ )>, where is the number of parameters of the vector autore-
gressive moving average model and is equal to n2(p+q). The choice for the parameter vector is ϑ = vec
{A1, ..., Ap, B1, ..., Bq}. The vec operator transforms a matrix into a vector by stacking the columns
of the matrix one underneath the other, vec X =col (col(Xij)

n
i=1)

n
j=1, where col(Xij)

n
i=1 refers to the

j-th column of the matrix X with elements X1j , . . . ,Xnj . When the representation of the parameter
vector ϑ as defined above is considered, the following equality holds for the n2(p + q) × n2(p + q)
asymptotic Fisher information matrix

F(ϑ) = Eϑ

(µ
∂ε

∂ϑ

¶>
Σ−1

µ
∂ε

∂ϑ

¶)
(2)

where ∂ε/∂ϑ is with dimension n×n2(p+q), and for simplicity t is omitted from ε(t) in the right-hand
side of (2).
In this section we will derive two compact expressions for the Fisher information matrix of VARMA

processes. Contrarily to Whittle’s formula [25] and the algorithm developed in [18] which are both at
the scalar-level, the Fisher information matrix developed in this paper is at the vector-matrix level,
meaning that the matrix is considered as a whole, which is the only way to exhibit algebraic properties.
For an efficient description of the blocks constituting F(ϑ) we decompose the vector parameter ϑ
accordingly to obtain, ϑ =

¡
ϑ>a ϑ>b

¢>
where ϑa = vec{A1, ..., Ap} , and ϑb = vec{B1, ..., Bq}.We

shall proceed with the block representation of F(ϑ) which is given by

F(ϑ) =
µ Faa(ϑ) Fab(ϑ)
Fba(ϑ) Fbb(ϑ)

¶
.

In a dynamic stationary stochastic context it has long been shown useful to use Fourier transform
representations or, alternatively, circular integral representations, also called z-transform. We want
to express F(ϑ) by integral representations like

F(ϑ) = 1

2πi

I
|z|=1

I(z)dz
z
=

1

2πi

I
|z|=1

µ Iaa(z) Iab(z)
Iba(z) Ibb(z)

¶
dz

z
, (3)

where the integration is counterclockwise around the unit circle. Explicit expressions for I(z) or
the blocks Iaa(z), Iab(z), Iba(z) and Ibb(z) will be given in our new representations (9), (15), (17).
Representation (17) will allow us to prove the resultant property of the Fisher information matrix of
the VARMA process. In order to evaluate the blocks Faa(ϑ), Fab(ϑ) = F>ba(ϑ) and Fbb(ϑ) matrix
differential rules shall be applied, see [17].
We now evaluate ∂ε/∂ϑa and ∂ε/∂ϑb with dimension n× n2p and n× n2q respectively. For that

purpose we rewrite the VARMA process as y(t) = A−1(L)B(L)ε(t) and we derive a form for the
n× n2(p+ q) matrix ∂ε/∂ϑ which can be decomposed in two terms, one term is associated with the
vector autoregressive part and the second term with the vector moving average part. This will allow
appropriate expressions for the different blocks to be set forth.
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2.2 Some differential rules

Consider a real, differentiable (m×n) matrix function X(ϑ) of a real ( ×1) vector ϑ = (ϑ1, . . . , ϑ )>,
where m, n and are positive integers. Let (m× n) matrices ∂rX = (∂Xij/∂ϑr) with r = 1, . . . , be
the first order derivatives of X(ϑ) in partial derivative form with Xij being the first (i, j) element of
X. Write dXij =

P
r=1(∂Xij/∂ϑr)dϑr, where dϑr is an arbitrary perturbation of ϑr. The (m × n)

matrix dX = (dXij) is the differential form of the first order derivative X(ϑ). An expression in
differential form can instantaneously be put into a partial derivative form by replacing d with ∂r for
r = 1, . . . , . Let us vectorize X(ϑ) then the (mn× ) matrix ∂vecX(ϑ) / ∂ϑ is the gradient form of
first order derivatives of X(ϑ) and can be defined as vecdX(ϑ) = (∂(vecX(ϑ)) / ∂ϑ)dϑ = dvecX(ϑ).
Let X(ϑ) and Y (ϑ) be real (m× n) and (n× p) differentiable matrix functions of the real vector

ϑ( × 1), where m,n, p, and are positive integers. The usual scalar product rule of differentiation
yields

d(XY ) = (dX)Y +X(dY ).

The following properties are taken into account. The first property to be considered is ∂ y(t)/∂ϑ =
0, this holds because the given realization of y(t) is independent of variations in ϑ, and as a second
property the next differential rule is used

dA−1(L) = −A−1(L)dA(L)A−1(L).
This enables us to formulate the following equation for the VARMA process

dε = B−1(L)dA(L)A−1(L)B(L)ε−B−1(L)dB(L)ε.

Recall the rule
vecABC =

¡
C> ⊗A

¢
vecB,

where ⊗ denotes the Kronecker product, A, B and C have appropriate dimensions. Componentwise
application of this rule yields for dε

dε =
³¡
A−1(L)B(L)ε

¢> ⊗B−1(L)
´
vec dA(L)− ¡ε> ⊗B−1(L)

¢
vec dB(L)

=
©
(A−1(L)B(L)ε)> ⊗B−1(L)

ª ∂vec A(L)
∂ϑ

dϑ− ¡ε> ⊗B−1(L)
¢ ∂vec B(L)

∂ϑ
dϑ.

Consequently, we obtain

∂ε

∂ϑ
=
n¡

A−1(L)B(L)ε
¢> ⊗B−1(L)

o ∂ vec A(L)
∂ϑ

− ¡ε> ⊗B−1(L)
¢ ∂ vec B(L)

∂ϑ
.

This representation of ∂ε/∂ϑ can be summarized as

∂ε

∂ϑ
=

µ
∂ε

∂ϑa

... 0n×n2q

¶
+

µ
0n×n2p

...
∂ε

∂ϑb

¶
=

µ
∂ε

∂ϑa

∂ε

∂ϑb

¶
.

Note that

∂ε

∂ϑa
=
n¡

A−1(L)B(L)ε
¢> ⊗B−1(L)

o ∂ vec A(L)
∂ϑa

and
∂ε

∂ϑb
= − ¡ε> ⊗B−1(L)

¢ ∂ vec B(L)
∂ϑb

.

2.3 Representation with reordered factors

An appropriate representation for the four blocks which compose F(ϑ) can then be set forth by
applying formula (2). We shall use block Faa(ϑ) to illustate how the representations of the blocks
are obtained. For that purpose a useful equality is introduced. Consider the discrete-time stationary
process x(t) where x(t) = H(L)u(t) and H(L) is an asymptotically stable filter. For evaluating the
covariance matrix of x(t), the following equation holds true

Eϑ
©
x(t)x>(t)

ª
=

πZ
−π
Φx(ω)dω, (4)

4



where Φx(ω) is the spectral density of the process x(t) and is defined as Φx(ω) = H(eiω)Φu(ω)H(e
−iω)>,

with Φu(ω) being the spectral density of the input process u(t). In order to apply equality (4) to
block Faa(ϑ) that is given by

Faa(ϑ) = Eϑ
(µ

∂ε

∂ϑa

¶>
Σ−1

µ
∂ε

∂ϑa

¶)
, (5)

we rearrange the elements of the right-hand side of (5) so that representation x(t)x>(t) is obtained.
For that purpose the rule

(A1 ⊗B1) (A2 ⊗B2) . . . (Am ⊗Bm) = (A1A2 . . . Am)⊗ (B1B2 . . . Bm) (6)

is used, where the matrices A1,A2,. . .,Am and B1,B2,. . .,Bm have appropriate dimensions, see e.g. [16].
Note that we will use precedence of the Kronecker product over the matrix product and, consequently,
omit the parentheses in the right-hand side of (6). We therefore rewrite ∂ε/∂ϑa accordingly, to obtain¡

ε> ⊗ In
¢n¡

A−1(L)B(L)
¢> ⊗B−1(L)

o ∂ vec A(L)
∂ϑa

.

We now can write µ
∂ε

∂ϑa

¶>
Σ−1

µ
∂ε

∂ϑa

¶
=

µ
∂ vec A(L)

∂ϑa

¶> ©
A−1(L)B(L)⊗B−>(L)

ª
(ε⊗ In)Σ

−1 ¡ε> ⊗ In
¢n¡

A−1(L)B(L)
¢> ⊗B−1(L)

o ∂ vec A(L)
∂ϑa

=

µ
∂ vec A(L)

∂ϑa

¶> ©
A−1(L)B(L)⊗B−>(L)

ª ¡
ε⊗ Σ−1¢ ¡ε> ⊗ In

¢n¡
A−1(L)B(L)

¢> ⊗B−1(L)
o ∂ vec A(L)

∂ϑa
.

In order to obtain a symmetric expression we apply a Cholesky factorization to Σ−1. Since Σ is
positive definite we can write Σ−1 = ΓΓ>, where Γ is a unique lower triangular matrix with positive
diagonal entries. To obtain

Eϑ

(µ
∂ε

∂ϑa

¶>
Σ−1

µ
∂ε

∂ϑa

¶)
=

Eϑ

(µ
∂ vec A(L)

∂ϑa

¶> ©
A−1(L)B(L)⊗B−>(L)

ª
(ε⊗ Γ) (ε⊗ Γ)>

n¡
A−1(L)B(L)

¢> ⊗B−1(L)
o ∂ vec A(L)

∂ϑa

)
.

2.4 First integral representation

We have now a similar representation to the left-hand side of (4) where

x(t) =

µ
∂ vec A(L)

∂ϑa

¶> ©
A−1(L)B(L)⊗B−>(L)

ª
(ε⊗ Γ) .

The next step consists of formulating the spectral density of (ε⊗ Γ). For that purpose the corre-
sponding covariance matrix has to be computed, to obtain

Eϑ
n
(ε⊗ Γ) (ε⊗ Γ)>

o
= Eϑ

©
εε> ⊗ ΓΓ>ª = Σ⊗ Σ−1.

Since the white noise process ε has a constant spectral density (independent of the frequency ω), then
it is straightforward to conclude that in view of (4) the value of the spectral density of (ε⊗ Γ) is
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(1/2π)
¡
Σ⊗ Σ−1¢. As a consequence, in view of (4), the matrix block Faa(ϑ) can now be given by

the integral expression

1

2π

πZ
−π

µ
∂ vec A(eiω)

∂ϑa

¶> ©
A−1(eiω)B(eiω)⊗B−>(eiω)

ª ¡
Σ⊗ Σ−1¢×

n¡
A−1(e−iω)B(e−iω)

¢> ⊗B−1(e−iω)
oµ∂ vec A(e−iω)

∂ϑa

¶
dω =

1

2π

πZ
−π

µ
∂ vec A(eiω)

∂ϑa

¶> ©
A−1(eiω)B(eiω)Σ⊗B−>(eiω)Σ−1

ª×
n¡

A−1(e−iω)B(e−iω)
¢> ⊗B−1(e−iω)

oµ∂ vec A(e−iω)
∂ϑa

¶
dω,

to obtain

1

2π

πZ
−π

µ
∂ vec A(eiω)

∂ϑa

¶> n
A−1(eiω)B(eiω)Σ

¡
A−1(e−iω)B(e−iω)

¢> ⊗B−>(eiω)Σ−1B−1(e−iω)
oµ∂ vec A(e−iω)

∂ϑa

¶
dω.

It can be seen that the integrand, the spectral density of the derived representation of x(t), is Her-
mitian. Equivalently for z = eiω we have

Faa(ϑ) = 1

2πi

I
|z|=1

µ
∂ vec A(z)

∂ϑa

¶> ¡
A−1(z)B(z)ΣB>(z−1)A−>(z−1)⊗B−>(z)Σ−1B−1(z−1)

¢µ∂ vec A(z−1)
∂ϑa

¶
dz

z
.

Analogously for the remaining blocks, to obtain

Fab(ϑ) = Eϑ
(µ

∂ε

∂ϑa

¶>
Σ−1

µ
∂ε

∂ϑb

¶)
=

− 1

2πi

I
|z|=1

µ
∂ vec A(z)

∂ϑa

¶> ¡
A−1(z)B(z)Σ⊗B−>(z)Σ−1B−1(z−1)

¢µ∂ vec B(z−1)
∂ϑb

¶
dz

z
,

Fba(ϑ) = Eϑ
(µ

∂ε

∂ϑb

¶>
Σ−1

µ
∂ε

∂ϑa

¶)
=

− 1

2πi

I
|z|=1

µ
∂ vec B(z)

∂ϑb

¶> ¡
ΣB>(z−1)A−>(z−1)⊗B−>(z)Σ−1B−1(z−1)

¢µ∂ vec A(z−1)
∂ϑa

¶
dz

z

and

Fbb(ϑ) = Eϑ
(µ

∂ε

∂ϑb

¶>
Σ−1

µ
∂ε

∂ϑb

¶)
=

1

2πi

I
|z|=1

µ
∂ vec B(z)

∂ϑb

¶> ¡
Σ⊗B−>(z)Σ−1B−1(z−1)

¢µ∂ vec B(z−1)
∂ϑb

¶
dz

z
.

The representation of the parameter vector ϑ leads to the equalities

∂ vec A(z)
∂ϑa

= zu>p (z)⊗ In2 and
∂ vec B(z)

∂ϑb
= zu>q (z)⊗ In2 , (7)

where u>x (z) = (1, z, z2, . . . , zx−1) for positive integers x.
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2.5 Second integral representation

Before proceeding with additional developments, the next property is set forth. Consider the parti-
tioned matrix

A =

µ
A11 A12
A21 A22

¶
,

then the Kronecker product A⊗B takes the form

A⊗B =

µ
A11 ⊗B A12 ⊗B
A21 ⊗B A22 ⊗B

¶
. (8)

The rules (6) and (8) as well as the properties given in the right-hand sides of the equalities in (7) are
applied to the newly obtained representations of the blocks Faa(ϑ), Fab(ϑ), Fba(ϑ) and Fbb(ϑ) which
constitute F(ϑ). Consequently, the Fisher information matrix can be written as

F(ϑ) = 1

2πi

I
|z|=1

µ
Faa(z) Fab(z)
Fba(z) Fbb(z)

¶
⊗B−>(z)Σ−1B−1(z−1)

dz

z
, (9)

where

Faa(z) = up(z)u
>
p (z
−1)⊗A−1(z)B(z)ΣB>(z−1)A−>(z−1)

Fab(z) = −©up(z)u>q (z−1)⊗A−1(z)B(z)Σ
ª

Fba(z) = −©uq(z)u>p (z−1)⊗ ΣB>(z−1)A−>(z−1)
ª

Fbb(z) = uq(z)u
>
q (z
−1)⊗ Σ.

The matrix
µ

Faa(z) Fab(z)
Fba(z) Fbb(z)

¶
can then be set forth accordingly, to obtain

µ
up(z)⊗A−1(z)(−B(z))
uq(z)⊗A−1(z)A(z)

¶
Σ

µ
up(z)⊗A−1(z)(−B(z))
uq(z)⊗A−1(z)A(z)

¶∗
, (10)

where Y ∗ denotes the complex conjugate transpose of the matrix Y . It can be verified that represen-
tation (9) can also be obtained when ∂ε/∂ϑ is substituted in (2). The block matrices in (10) when
multiplied with Ip and Iq can be rewritten as

Ipup(z)⊗A−1(z)(−B(z)) = (Ip ⊗A−1(z))(up(z)⊗ (−B(z))), (11)

Iquq(z)⊗A−1(z)A(z) = (Iq ⊗A−1(z))(uq(z)⊗A(z)). (12)

2.6 Representation based on the multiple Sylvester matrix

In order to write the Fisher information matrix F(ϑ) in a compact form and in terms of a structured
matrix, we introduce the matrix block version of the Sylvester matrix which is given by the n(p+q)×
n(p+ q) matrix

S(−B,A) =



−In −B1 · · · −Bq 0n×n · · · 0n×n

0n×n
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n×n
0n×n · · · 0n×n −In −B1 · · · −Bq

In A1 · · · Ap 0n×n · · · 0n×n

0n×n
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n×n
0n×n · · · 0n×n In A1 · · · Ap


.
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In the scalar case the Sylvester matrix S(−b, a) associated with the polynomials a(z) and b(z) and
having the form given above is called a resultant matrix. A resultant matrix of two scalar polynomials
a(z) and b(z) becomes singular if and only if the polynomials a(z) and b(z) have at least one common
root, see e.g. [16]. The number of common roots (counting multiplicities) of the polynomials a(z) and
b(z) is equal to dim Ker S(−b, a).
However, in the matrix polynomial case the Sylvester matrix S(−B,A) does not have the same

property as in the scalar case. We illustrate this with two examples. Consider the matrix polynomials
A(z) and B(z) given by:

Example 1: A(z) =
µ
1 + 0.6 z 0.2 z
0.4 z 1− 0.6 z

¶
and B(z) =

µ
1 + 0.5 z 0.76 z
0.25 z 1− 0.5 z

¶
.

This choice of A(z) and B(z) does not result in a singular matrix S(−B,A) despite the fact that
the corresponding eigenvalues of both matrix polynomials A(z) and B(z) coincide and are equal to
−1.50756 and 1.50756. These eigenvalues are obtained by solving the scalar polynomials det A(z) = 0
and det B(z) = 0 so that det A(z) = det B(z) = 1 − 11

25z
2. Analogously, consider the matrix

polynomials given by:

Example 2: A(z) =
µ
1− 0.8 z 0.2 z
−1.2 z 1− 0.2 z

¶
and B(z) =

µ
1 z

−0.5 z 1 + 0.5 z

¶
.

In this case the matrix S(−B,A) is not invertible although the matrix polynomials A(z) and B(z) do
not have common eigenvalues.
It is clear that when the Fisher information matrix F(ϑ) is expressed in terms of the Sylvester

matrix S(−B,A), one will not get insight in the singularity condition of F(ϑ). Despite this property we
shall proceed constructing a representation of F(ϑ) in terms of S(−B,A). This can be justified since
the purpose of this paper also consists of developing new representations of the Fisher information
matrix F(ϑ) that are expressed in terms of known structured matrices.
It can be shown through matrix multiplication that

S(−B,A) (up+q(z)⊗ In) =

µ
up(z)⊗ (−B(z))
uq(z)⊗A(z)

¶
. (13)

Equations (11) and (12) combined with (13), results in the following form for the first matrix in the
right-hand side of (10) µ

up(z)⊗A−1(z)(−B(z))
uq(z)⊗A−1(z)A(z)

¶
=µ

Ip ⊗A−1(z) 0pn×qn
0qn×pn Iq ⊗A−1(z)

¶µ
up(z)⊗ (−B(z))
uq(z)⊗A(z)

¶
=
¡
Ip+q ⊗A−1(z)

¢
S(−B,A) (up+q(z)⊗ In) .

(14)
Combining (9),(10) and (14) leads to a compact form of the Fisher information matrix in terms of the
structured matrix S(−B,A) which is given in the following proposition.

Proposition 2.1 The Fisher information matrix of a VARMA process when expressed in terms of
S(−B,A) has the following representation

F(ϑ) = 1

2πi

I
|z|=1

Ψ(z)ΣΨ∗(z)⊗B−>(z)Σ−1B−1(z−1)
dz

z
, (15)

where
Ψ(z) =

¡
Ip+q ⊗A−1(z)

¢
S(−B,A) (up+q(z)⊗ In) .

The components of F(ϑ) can be computed from (15) by applying Cauchy’s residue theorem to a
Hermitian matrix polynomial. For each element of this matrix polynomial it consists of evaluating
integrals of a rational function over the unit circle in the complex plane, the algorithm of Peterka
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and Vidinčev [19] can be applied. However, contrariwise to the scalar ARMA case [12], from (15) we
cannot infer that the Fisher information matrix becomes singular if the Sylvester matrix S(−B,A)
becomes singular or vice versa. However, we will show below that when the matrix polynomials A(z)
and B(z) have at least one common eigenvalue the Fisher information matrix F(ϑ) becomes singular
irrespective of the nonsingularity of the matrix S(−B,A). It can be concluded that the singularity
condition of F(ϑ) is hidden when representation (15) is considered. To characterize singularity of
F(ϑ) a new resultant matrix will be used.

2.7 Representation based on the tensor Sylvester matrix

Gohberg and Lerer [2] have set forth the tensor resultant S⊗(−B,A) , S(−B ⊗ In, In ⊗ A) and
proved that the matrix polynomials A(z) and B(z) have at least one common eigenvalue if and only
if det S⊗(−B,A) = 0 or when the matrix S⊗(−B,A) is singular. In other words, the tensor resultant
S⊗(−B,A) becomes singular if and only if the scalar polynomials det A(z) = 0 and det B(z) = 0
have at least one common root. The n2(p+ q)× n2(p+ q) tensor Sylvester matrix is given by

S⊗(−B,A) =



(−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In 0n2×n2 · · · 0n2×n2

0n2×n2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n2×n2
0n2×n2 · · · 0n2×n2 (−In)⊗ In (−B1)⊗ In · · · (−Bq)⊗ In
In ⊗ In In ⊗A1 · · · In ⊗Ap 0n2×n2 · · · 0n2×n2

0n2×n2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0n2×n2
0n2×n2 · · · 0n2×n2 In ⊗ In In ⊗A1 · · · In ⊗Ap


.

For inserting S⊗(−B,A) in (3) we rewrite the integrand of (9) accordingly, to obtainµ Iaa(z) Iab(z)
Iba(z) Ibb(z)

¶
=

µ
up(z)⊗A−1(z)(−B(z))⊗ In
uq(z)⊗A−1(z)A(z)⊗ In

¶¡
Σ⊗B−>(z)Σ−1B−1(z−1)

¢µ up(z)⊗A−1(z)(−B(z))⊗ In
uq(z)⊗A−1(z)A(z)⊗ In

¶∗
.

(16)
Next some property of the tensor Sylvester matrix S⊗(−B,A) is given. It is straightforward to verify
that (13) can be extended to the representation

S⊗(−B,A) (up+q(z)⊗ In2) =

µ
up(z)⊗ (−B(z))⊗ In
uq(z)⊗ In ⊗A(z)

¶
.

We now proceed with the first matrix term in the right-hand side of (16) which can be rewritten when
the rule

A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C)

is used, as µ
Ipup(z)⊗

¡
A−1(z)⊗ In

¢
(−B(z)⊗ In)

Iquq(z)⊗
¡
A−1(z)⊗ In

¢
(A(z)⊗ In)

¶
.

Taking the property¡
A−1(z)⊗ In

¢
(A(z)⊗ In) = In ⊗ In =

¡
In ⊗A−1(z)

¢
(In ⊗A(z))

into account, the first matrix block of (16) can be represented asµ ¡
Ip ⊗A−1(z)⊗ In

¢
(up(z)⊗ (−B(z)⊗ In))¡

Iq ⊗ In ⊗A−1(z)
¢
(uq(z)⊗ In ⊗A(z))

¶
=

9



µ
Ip ⊗A−1(z)⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗A−1(z)

¶µ
up(z)⊗ (−B(z))⊗ In
uq(z)⊗ In ⊗A(z)

¶
=µ

Ip ⊗A−1(z)⊗ In 0pn2×qn2
0qn2×pn2 Iq ⊗ In ⊗A−1(z)

¶
S⊗(−B,A) (up+q(z)⊗ In2) .

This derivation leads to an alternative representation for the Fisher information matrix F(ϑ) that will
be given in the next proposition.

Proposition 2.2 The Fisher information matrix of a VARMA process when expressed in terms of
the tensor Sylvester matrix has the following representation

F(ϑ) = 1

2πi

I
|z|=1

Φ(z)Θ(z)Φ∗(z)
dz

z
, (17)

where

Φ(z) =

µ
Ip ⊗A−1(z)⊗ In 0pn2×qn2

0qn2×pn2 Iq ⊗ In ⊗A−1(z)

¶
S⊗(−B,A) (up+q(z)⊗ In2)

and
Θ(z) = Σ⊗B−>(z)Σ−1B−1(z−1).

2.8 New multiple resultant matrices

The representation of the Fisher information matrix F(ϑ) in (17) shall be used for proving that F(ϑ)
will become singular if and only if the autoregressive and moving average matrix polynomials A(z)
and B(z) have at least one common eigenvalue. In other words, the matrix F(ϑ) will become singular
if and only if the tensor Sylvester matrix S⊗(−B,A) is singular. We proceed as follows. Set

Φ(z)Θ(z)Φ∗(z) = I(z)

and

Λ(z) =

µ
Ip ⊗A(z)⊗ In 0pn2×qn2
0qn2×pn2 Iq ⊗ In ⊗A(z)

¶
,

to obtain

Λ(z)I(z)Λ∗(z) = S⊗(−B,A) (up+q(z)⊗ In2)Θ(z) (up+q(z)⊗ In2)
∗ £S⊗(−B,A)¤> .

Then

M(ϑ) =
1

2πi

I
|z|=1

Λ(z)I(z)Λ∗(z)dz
z
= S⊗(−B,A)P(ϑ) £S⊗(−B,A)¤> , (18)

where

P(ϑ) = 1

2πi

I
|z|=1

(up+q(z)⊗ In2)Θ(z) (up+q(z)⊗ In2)
∗ dz
z
.

In [12], a representation similar to (18) is derived to prove the resultant property of the Fisher
information matrix of a scalar ARMA time series process. For establishing the resultant property of
the Fisher information matrix F(ϑ) of a VARMA process, we first establish the resultant property of
M(ϑ). This will be summarized in the next lemma.

Lemma 2.3 The matrix M(ϑ) as formulated in (18) becomes singular iff the matrix polynomials
A(z) and B(z) have at least one common eigenvalue.

Proof. Clearly the matrixM(ϑ) becomes singular if the matrix polynomials A(z) and B(z) have
at least one common eigenvalue in view of equation (18) and the resultant property of S⊗(−B,A).
In order to prove the converse, it suffices to prove that P(ϑ) is strictly positive definite or P(ϑ) > 0.
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This can be shown via the following computation. Suppose that there is a fixed vector x such that
P(ϑ)x = 0. So,

0 =
1

2πi

I
|z|=1

(up+q(z)⊗ In2)Θ(z) (up+q(z)⊗ In2)
∗ x

dz

z
.

Take z = eiω, we then get

0 =
1

2π

2πZ
0

x∗
¡
up+q(e

iω)⊗ In2
¢
Θ(eiω)

¡
up+q(e

iω)⊗ In2
¢∗
xdω.

Note that
¡
up+q(e

iω)⊗ In2
¢
Θ(eiω)

¡
up+q(e

iω)⊗ In2
¢∗ > 0.

Then we must have x∗
¡
up+q(e

iω)⊗ In2
¢
Θ(eiω) ≡ 0, but since Θ(eiω) > 0 we have

x∗
¡
up+q(e

iω)⊗ In2
¢ ≡ 0. Fully written as
x∗
¡
In2 , e

iωIn2 , e
2iωIn2 , . . . , e

(p+q−1)iωIn2
¢> ≡ 0

or ¡
x∗1, x∗2 , . . . , x∗p+q

¢ ¡
In2 , zIn2 , z

2In2 , . . . , z
(p+q−1)In2

¢>
= 0 with z ∈ C.

It is straightforward to see that for z = 0 we have x∗1 = 0, to obtain
zx∗2In2 + z2x∗3In2 + · · ·+ z(p+q−1)x∗p+qIn2 = 0,

divide by z and take then z = 0 results in x∗2 = 0. A similar approach is done for the remaining
components of x∗ to conclude that x∗j = 0 for j = 1, 2, . . . , p+ q. As a consequence, x = 0 and hence
P(ϑ) > 0.
The equivalence of the singularity conditions of the Fisher information matrix F(ϑ) and the matrix

M(ϑ) is shown in the next proposition.

Proposition 2.4 The Fisher information matrix F(ϑ) becomes singular iff the matrix M(ϑ) is sin-
gular.

Proof. If F(ϑ) is singular, there exists a fixed vector x 6= 0, such that F(ϑ)x = 0. Representation
(17) yields

0 =
1

2πi

I
|z|=1

x∗I(z)xdz
z
.

But I(z) > 0 for all | z |= 1 yields I(z)x ≡ 0, since x 6= 0 it can be concluded that singularity of
F(ϑ) implies det I(z) = 0.
It is straightforward to verify that det I(z) ≡ 0 results in a singular matrix F(ϑ). The proof

follows directly from the approach just applied.
We shall now establish the singularity condition for the matrixM(ϑ).
IfM(ϑ) is singular there exists a fixed vector y 6= 0, such that M(ϑ)y = 0. From Lemma 2.3 it

can be deduced that this implies a singular tensor Sylvester matrix S⊗(−B,A). From equation (18)
it then follows that

0=
1

2πi

I
|z|=1

Λ(z)I(z)Λ∗(z)ydz
z
.

Taking z = eiω, we get

0=
1

2π

2πZ
0

y∗Λ(eiω)I(eiω)Λ∗(eiω)ydω.

As before we conclude from this Λ(eiω)I(eiω)Λ∗(eiω)y ≡ 0 and hence det Λ(eiω)I(eiω)Λ∗(eiω) = 0.
But since det Λ∗(eiω) 6= 0 and det Λ(eiω) 6= 0, we must have det I(eiω) ≡ 0 or det I(z) ≡ 0. But
then the Fisher information matrix F(ϑ) becomes singular. Conversely, if det I(z) ≡ 0 it leads to a
singular matrixM(ϑ), this can be directly shown by virtue of the proof just done. If F(ϑ) is singular
then det I(z) ≡ 0 and hence triviallyM(ϑ) is singular in view of (18).
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2.9 Main conclusions

By combining Lemma 2.3 and Proposition 2.4 one concludes that the Fisher information matrix F(ϑ)
becomes singular if and only if the tensor Sylvester resultant matrix S⊗(−B,A) is singular. By virtue
of Gohberg and Lerer (1976), this will happen if and only if the matrix polynomials A(z) and B(z)
have at least one common eigenvalue. This explains the aspect of singularity of the Fisher information
matrix F(ϑ). This also allows us to introduce a new resultant matrix, namely the matrix F(ϑ). In
other words, the Fisher information matrix F(ϑ) of a VARMA process has the same fundamental
algebraic property as the tensor Sylvester resultant matrix S⊗(−B,A). In [12] and [11] it is proved
that the Fisher information matrix of scalar ARMA and ARMAX time series processes have the
resultant property. Apparently the class of matrices consisting of the Fisher information matrices
associated with various stationary time series processes ( the scalar ARMA, ARMAX and vector
ARMA processes) represents a new class of resultant matrices. However, the question of singularity
of F(ϑ) is also interesting from a statistical point of view. In [10] a Wald test is formulated for testing
common roots between the autoregressive and moving average polynomials of a scalar ARMA process.
Such a test is equivalent with testing the singularity of the corresponding Fisher information matrix.
Consequently, the results obtained in this paper should allow a similar test to be formulated in the
multiple time series case.
For the evaluation of the matrix polynomials (A(z))−1, (B(z))−1,

¡
A(z−1)

¢−1
and

¡
B(z−1)

¢−1
which appear in (15) and (17), a property proved in Gohberg, Lancaster and Rodman [3] is considered.

2.10 Inverting matrix polynomials

Let eA(z) = zpA(z−1) and eB(z) = zqB(z−1). The companion matrices associated with the matrix
polynomials eA(z) and eB(z) are defined by the np× np and nq × nq matrices

CA =


0 I 0 . . . 0
0 0 I . . . 0
...

. . .
0 I
−Ap −Ap−1 · · · · · · −A1

 and CB =


0 I 0 . . . 0
0 0 I . . . 0
...

. . .
0 I
−Bq −Bq−1 · · · · · · −B1


respectively. As in the scalar case, the properties

det (Iz − CA) = det eA(z) and det (Iz − CB) = det eB(z)
and

det (I − zCA) = det A(z) and det (I − zCB) = det B(z)

hold, see [3].
The following equalities hold for every z ∈ C which is not an eigenvalue of the matrix polynomialseA(z) and eB(z), ³ eA(z)´−1 = PA(Iz − CA)

−1RA and
³ eB(z)´−1 = PB(Iz − CB)

−1RB

with

the n× np matrix PA =
¡
I 0 . . . 0

¢
and np× n matrix RA =

¡
0 . . . 0 I

¢>
,

the n× nq matrix PB =
¡
I 0 . . . 0

¢
and nq × n matrix RB =

¡
0 . . . 0 I

¢>
.

Since
¡
A(z−1)

¢−1
= zp

³ eA(z)´−1 and ¡B(z−1)¢−1 = zq
³ eB(z)´−1 we then have¡

A(z−1)
¢−1

= zpPA(Iz − CA)
−1RA and

¡
B(z−1)

¢−1
= zqPB(Iz − CB)

−1RB

and
(A(z))−1 = z−p+1PA(I − zCA)

−1RA and (B(z))
−1 = z−q+1PB(I − zCB)

−1RB.

These properties will enable us to evaluate the Fisher information matrix in a more efficient way. In
the next section some numerical illustration is provided.
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3 Numerical experiments
In this section numerical experiments are carried out in order to illustrate that an unnecessary com-
putation of the Fisher information matrix of a VARMA process can be avoided when the results
obtained in this paper are taken into consideration. The experiments were performed using MATLAB
and Mathematica. The two examples of Section 2 that correspond with a VARMA process when
n = 2 and p = q = 1, are considered. As a first example we consider the tensor Sylvester matrix in
the presence of common eigenvalues and establish its singularity.

3.1 Tensor Sylvester matrix for Example 1

For Example 1, the tensor Sylvester matrix is

S⊗(−B,A) =



−1 0 0 0 −0.5 0 −0.76 0
0 −1 0 0 0 −0.5 0 −0.76
0 0 −1 0 −0.25 0 0.5 0
0 0 0 −1 0 −0.25 0 0.5
1 0 0 0 0.6 0.2 0 0
0 1 0 0 0.4 −0.6 0 0
0 0 1 0 0 0 0.6 0.2
0 0 0 1 0 0 0.4 −0.6


.

It can easily be checked that the determinant of that matrix is equal to zero and even that its rank is
equal to 6. This illustrates that, contrariwise to the Sylvester matrix S(−B,A), the tensor Sylvester
matrix becomes singular when the matrix polynomials A(z) and B(z) have at least one common
eigenvalue.

3.2 Tensor Sylvester matrix for Example 2

For that example, the tensor Sylvester matrix is

S⊗(−B,A) =



−1 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 −1
0 0 −1 0 0.5 0 −0.5 0
0 0 0 −1 0 0.5 0 −0.5
1 0 0 0 −0.8 0.2 0 0
0 1 0 0 −1.2 −0.2 0 0
0 0 1 0 0 0 −0.8 0.2
0 0 0 1 0 0 −1.2 −0.2


.

The determinant of that matrix is different from zero. This confirms that the matrix polynomials
A(z) and B(z) have no common eigenvalue in spite of the fact that the Sylvester matrix S(−B,A)
is singular, with rank 3. Indeed the two sets of eigenvalues are complex, with a modulus respectively
equal to 1.5811 for A(z) and 1.4142 for B(z).
Let us now look at the Fisher information matrix and the resultant matrixM(ϑ) for the first example
of Section 2. The second example is not interesting as far as the illustration of this paper is concerned
because we expect a nonsingular Fisher information matrix.

3.3 The Fisher information matrix for Example 1

The Fisher information matrix is

F(ϑ) = 1

2πi

I
|z|=1

R(z)dz,

where R(z) can be deduced from (15) or (17). Even in this simple example, it is much too cumbersome
to give all the rational elements of R(z) in detail. Therefore we confine ourselves to give for example,
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element (1,1) which is equal to

R11(z) =
25
¡
8− 21 z + 8 z2¢ ¡87500 + 66090 z − 393209 z2 + 66090 z3 + 87500 z4¢

256 (−25 + 11 z2)2 (−11 + 25 z2)2 .

Evaluating the integral using e.g. the Peterka and Vidinčev [19] algorithm implemented by Södertröm
[23], yields the following matrix:

F(ϑ) =



4.20240 1.66919 −0.17265 −0.34627 −1.81825 −0.46554 0.93619 0.81064
1.66919 3.35066 −0.02293 0.20263 −0.42162 −2.26694 0.56469 −0.17981
−0.17265 −0.02293 1.33498 0.10744 −0.12168 −0.19206 −1.37124 −0.15414
−0.34627 0.20263 0.10744 2.30449 −0.12618 0.22791 −0.19806 −2.17429
−1.81825 −0.42162 −0.12168 −0.12618 1.62760 0.31622 0.0 0.0
−0.46554 −2.26694 −0.19206 0.22791 0.31622 2.26637 0.0 0.0
0.93619 0.56469 −1.37124 −0.19806 0.0 0.0 1.62760 0.31622
0.81064 −0.17981 −0.15414 −2.17429 0.0 0.0 0.31622 2.26637


.

(shown with 5 decimals but the computations were done in double precision). The same results were
obtained in Mathematica using the procedure deduced from Cauchy’s residue theorem which is simple
here since there are only two poles to consider: ±√11/5. It can be verified that the determinant of
that matrix is numerically not equal to zero, although the value is close to zero namely 0.01176 and
that its rank is equal to 8 so it has full rank. The eigenvalues of the matrix evaluated by Mathematica
are, in decreasing order: 7.1174, 4.7505, 3.4032, 2.7438, 0.7789, 0.1213, 0.0588, and 0.0067. For
understanding this result we locate close roots in the numerators and the denominators, the following
elements possess close roots:

R51(z), R61(z), R52(z), R62(z). Numerator : 0.643717, denominator: 0.663325
R15(z), R25(z), R16(z), R26(z). Numerator : 1.55348, denominator: 1.50756
R71(z), R81(z), R72(z), R82(z). Numerator : 0.635714, denominator: 0.663325
R17(z), R27(z), R18(z), R28(z). Numerator : 1.57303, denominator: 1.50756

with a total of 16 elements with close roots. Note, the close root in the denominators is either the
common eigenvalue or its inverse. It has already been checked in other contexts that evaluation of
integrals in these circumstances is not at all accurate which explains the fact that the theoretical
result is not confirmed numerically. It leads to the superiority of the tensor Sylvester matrix for con-
firming the presence of common eigenvalues between the autoregressive and moving average matrix
polynomials. There are no numerical problems occurring since all the elements of the tensor Sylvester
matrix are directly available. Therefore, before computing the Fisher information matrix it is rec-
ommended to check the rank of the tensor Sylvester matrix and improve the ratio of the largest to
the smallest eigenvalue of that matrix e.g. [4]. In this simple numerical example we see that, simply
for numerical reasons, the Fisher information matrix fails to detect common eigenvalues whereas the
tensor Sylvester matrix reveals it clearly, proving the usefulness of the results derived in this paper.
Since the matrix is numericaly invertible, we have inverted it in order to obtain the asymptotic

covariance matrix of the estimators. There, two variances (those of the third and seventh parameters)
are abnormally high (respectively equal to 65.8 and 69.0) which may suggest an identification problem.
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3.4 New matrix resultant for Example 1

The resultant matrixM(ϑ) = S⊗(−B,A)P(ϑ) [S⊗(−B,A)]> has the form

M(ϑ) =



2.08175 −0.32386 −1.31682 −1.08175 −1.02042 −0.08512 −0.11168 0.46935
−0.32386 5.03487 −0.90113 0.32386 0.19338 −1.12887 0.06209 0.25876
−1.31682 −0.90113 3.02909 1.31682 −0.03674 0.15439 −0.87348 −0.70268
−1.08175 0.32386 1.31682 2.08175 0.02042 0.08512 0.11168 −1.46935
−1.02042 0.19338 −0.03674 0.02042 1.01878 −0.04473 0.0 0.0
−0.08512 −1.12887 0.15439 0.08512 −0.04473 1.25637 0.0 0.0
−0.11168 0.06209 −0.87348 0.11168 0.0 0.0 1.01878 −0.04473
0.46935 0.25876 −0.70268 −1.46935 0.0 0.0 −0.04473 1.25637


.

The matrix M(ϑ) has rank equal to 6, this is equivalent with the rank of the corresponding tensor
Sylvester matrix (Section 3.1). The resultant property ofM(ϑ) is confirmed in this numerical example
in contrast to the case of the Fisher information matrix.
Note that the elements of

P(ϑ) = 1

2πi

I
|z|=1

(up+q(z)⊗ In2)Θ(z) (up+q(z)⊗ In2)
∗ dz
z

are much easier to compute than those of the Fisher information matrix . For example, the integrand
of element (1,1) is equal to

625
¡
8− 21 z + 8 z2¢

16 (−25 + 11 z2) (−11 + 25 z2) .

The matrix P(ϑ) has the following form

P(ϑ) =



1.62760 0.31622 0 0 −0.89286 −0.72470 0 0
0.31622 2.26637 0 0 −1.07887 0.89286 0 0
0 0 1.62760 0.31622 0 0 −0.89286 −0.72470
0 0 0.31622 2.26637 0 0 −1.07887 0.89286

−0.89286 −1.07887 0 0 1.62760 0.31622 0 0
−0.72470 0.89286 0 0 0.31622 2.26637 0 0

0 0 −0.89286 −1.07887 0 0 1.62760 0.31622
0 0 −0.72470 0.89286 0 0 0.31622 2.26637


.

In this numerical example it can be seen that the matrix P(ϑ) is symmetric block Toeplitz. However,
a generalization of the block Toeplitz property of P(ϑ) should be investigated. The matrix P(ϑ) is
strictly positive definite with the numerical eigenvalues, 3.46132, 3.46132, 3.1278, 3.1278, 0.766171,
0.766171, 0.43265, 0.43265 and determinant equal to 12.8792.

4 Conclusion
It is shown that the Fisher information matrix F(ϑ) of a VARMA process is a multiple resultant
matrix with respect to the autoregressive and moving average matrix polynomials. For that purpose
we have developed compact representations of F(ϑ) so they can be summarized in one single equation
consisting of one term. Other representations of the Fisher information matrix of a VARMA process as
outlined in [15] consist of four till sixteen terms. In this paper it is reduced to just one term. This has
allowed us to establish new elegant algebraic results about the Fisher information matrix that could
not be obtained using the alternative representations. The representation of the Fisher information
matrix F(ϑ) that is explained by the tensor Sylvester matrix S⊗(−B,A) is used to prove that the
Fisher information matrix F(ϑ) is singular if and only if the autoregressive and moving average matrix
polynomials have at least one common eigenvalue. It then follows that the Fisher information matrix
and the tensor Sylvester matrix have equivalent singularity conditions. In the case of scalar ARMA
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processes the Sylvester matrix S(−B,A) and the tensor Sylvester matrix S⊗(−B,A) coincide. But
in the multivariate case only the tensor Sylvester matrix has the resultant property.
This can have interesting applications when numerical aspects are considered. The results derived

in this paper suggest that during the modeling procedure one should first consider the tensor Sylvester
matrix S⊗(−B,A) before computing the Fisher information matrix F(ϑ). It is clear that the issue
of singularity is much easier to check with the tensor Sylvester matrix S⊗(−B,A) than with Fisher’s
information matrix. Since the components of the matrix S⊗(−B,A) are directly available in terms
of the matrix coefficients of the VARMA process, no additional computation is necessary. Contrarily,
the Fisher information matrix F(ϑ) is composed of elements that have to be computed by means
of Cauchy’s residue theorem applied to rational functions. These rational functions consist of high
degree scalar polynomials. In the example considered in Section 3.3, a VARMA process with n = 2
and p = q = 1, the degree of the scalar polynomials appearing in the numerator and denominator can
sometimes be equal to 8.
Let us assume that an empirical researcher has identified a given model and estimated its pa-

rameters using the approach described in e.g. [20]. He could then check the obtained model by
computing the determinant of the tensor Sylvester matrix S⊗(−B,A). This is a straightforward ex-
ercise. Knowledge of the singularity condition of the Fisher information matrix F(ϑ) is then directly
available. This knowledge is crucial because it informs us whether we should start computing the
elements of the Fisher information matrix F(ϑ) or not. It is clearly illustrated in Section 3 that
an apparently nonsingular F(ϑ) can be obtained in a case where it should be singular according to
S⊗(−B,A).
When the tensor Sylvester matrix S⊗(−B,A) is singular one should consider a different VARMA

process, generally simpler, and constitute the entries of the corresponding tensor Sylvester matrix
S⊗(−B,A). One shall proceed in this way until the tensor Sylvester matrix S⊗(−B,A) of the new
model has full rank. This will guarantee a nonsingular Fisher information matrix F(ϑ) and one can
then compute its elements. This approach saves a lot of unnecessary computations and will eventually
result in more reliable covariances of the estimated VARMA parameters. In the example of Section
3, these covariances would be non-sense.
The results obtained in this paper can be used to examine some additional algebraic or other math-

ematical properties of the Fisher information matrix of a VARMA process. Whereas in a statistical
framework, the results derived in this paper can be applied to set forth a statistical test for testing
possible common eigenvalues of the autoregressive and moving average matrix polynomials.
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