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Abstract. We consider the iterative solution of large sparse symmetric positive definite linear
systems. We present an algebraic multigrid method which has a guaranteed convergence rate for the
class of nonsingular symmetric M-matrices with nonnegative row sum. The coarsening is based on
the aggregation of the unknowns. A key ingredient is an algorithm that builds the aggregates while
ensuring that the corresponding two-grid convergence rate is bounded by a user-defined parameter.
For a sensible choice of this parameter, it is shown that the recursive use of the two-grid procedure
yields a convergence independent of the number of levels, provided that one uses a proper AMLI-
cycle. On the other hand, the computational cost per iteration step is of optimal order if the mean
aggregate size is large enough. This cannot be guaranteed in all cases but is analytically shown
to hold for the model Poisson problem. For more general problems, a wide range of experiments
suggests that there are no complexity issues and further demonstrates the robustness of the method.
The experiments are performed on systems obtained from low order finite difference or finite element
discretizations of second order elliptic partial differential equations (PDEs). The set includes two-
and three-dimensional problems, with both structured and unstructured grids, some of them with
local refinement and/or reentering corner, and possible jumps or anisotropies in the PDE coefficients.
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1. Introduction. Efficient solution of large sparse symmetric positive definite
(SPD) n× n linear systems

(1.1) Ax = b

is critical for many of today’s applications in science and engineering. For systems
arising from the discretization of elliptic partial differential equations (PDEs), alge-
braic multigrid (AMG) methods are known to be particularly suitable and robust
[5, 6, 7, 8, 16, 25, 26, 29, 28]. These algorithms combine the effects of a smoother
and of a coarse grid correction. The smoother is generally based on a simple iterative
scheme such as the Gauss–Seidel method. The coarse grid correction consists in com-
puting an approximate solution to the residual equation on a coarser grid which has
fewer unknowns. The approach is applied recursively until the coarse system is small
enough to make negligible the cost of an exact solution. Unlike geometric multigrid
methods [14, 27], which require information from the discretization of the PDE, AMG

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section December
17, 2010; accepted for publication (in revised form) January 11, 2012; published electronically April
10, 2012.

http://www.siam.org/journals/sisc/34-2/81850.html
†Computational Research Division, Lawrence Berkeley National Laboratory (M.S. 50A-1148), 1

Cyclotron Rd., Berkeley, CA 94720 (anapov@lbl.gov). This author’s research was supported by the
Belgian FNRS (“Aspirant”). The work on the revised version of the manuscript was supported by
Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department
of Energy under contract DE-AC02-05CH11231.

‡Service de Métrologie Nucléaire, Université Libre de Bruxelles (C.P. 165/84), 50, Av. F.D. Roo-
sevelt, B-1050 Brussels, Belgium (ynotay@ulb.ac.be, homepages.ulb.ac.be/∼ynotay). This author’s
research was supported by the Belgian FNRS (“Directeur de recherches”).

A1079



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1080 ARTEM NAPOV AND YVAN NOTAY

methods build the needed hierarchy of coarse systems exclusively from the system ma-
trix, without additional input. This provides them with enough flexibility to solve
problems arising from the discretization of PDEs on unstructured grids.

In this work, we consider more particularly aggregation-based multigrid schemes,
in which the hierarchy of coarse systems is obtained from a mere aggregation of
the unknowns. This approach is sometimes referred to as “plain” or “unsmoothed”
aggregation to distinguish it from “smoothed aggregation AMG” initiated in [29].1

Plain aggregation AMG has some appealing features such as cheap setup stage and
modest memory requirements. However, it is somehow nonstandard because it does
not mimic any well-established geometric multigrid method. As a result, although
the seminal papers [4, 9] are not recent, the method has attracted little attention
as it was originally unclear how to achieve optimal convergence rate; see, e.g., [26,
pp. 522–524] (here and in what follows, the rate of convergence is “optimal” if it is
bounded independently of the system size).

However, a number of recent works show that the approach can be both theo-
retically well founded and practically efficient [12, 17, 19, 20, 22], provided that the
aggregates are formed in an appropriate way, and that one uses an enhanced multigrid
cycle, that is, the K-cycle [24], in which the iterative solution of the residual equation
at each level is accelerated with a Krylov subspace method.

In particular, in [20], we analyze the basic two-grid method (with exact solution of
the coarse system) for a class of matrices which includes symmetric M-matrices with
nonnegative row sum (that is, weakly diagonally dominant matrices with nonpositive
off-diagonal entries). We show that the convergence rate can be bounded assessing for
each aggregate a local quantity which in some sense measures its quality, the bound
being determined by the worst aggregate’s quality. Moreover, this bound seems able to
accurately predict the actual convergence, at least when applied to PDEs discretized
on regular grids with regular (geometric-based) aggregation patterns.

However, these results suffer from two important limitations. First, they are
only for a model two-grid scheme. In practice, the method has to be recursively
used in a multigrid cycle, and no guarantee is given that the convergence rate will
then remain optimal, i.e., will not deteriorate with the number of levels. Second,
the analysis can in principle be applied to any “algebraic” aggregation algorithm
that automatically builds aggregates inspecting connections in the system matrix.
However, as a general rule, such algorithms tend to always produce a limited number of
badly shaped aggregates, and, since the bound is determined by the worst aggregate’s
quality, even a few of these can significantly impact the resulting bound. The latter is
also difficult to predict in the case of PDEs discretized on unstructured grids. Hence,
although we have proper tools to assess aggregation-based two-grid methods, what
can actually be proved for a truly algebraic method remains unclear.

Here we overcome these limitations mainly by introducing a new aggregation
algorithm based on the explicit control of aggregate quality. It tends to optimize
the latter while imposing some minimal requirements; i.e., the algorithm has as main
input parameter the upper bound on the two-grid condition number that is required to
hold. Recall that the condition number κ is the ratio of the extremal eigenvalues of the
preconditioned matrix.2 Note that not only is the aggregation algorithm new, but the
approach itself seems to correspond to a new paradigm. It follows the current trend

1This latter approach has its own convergence theory [28, 31, 8], which, however, has little in
common with the one developed in this paper; see section 2 for further comments.

2For this type of methods, it is related to the convergence factor ρ via the relation ρ = 1− 1/κ.
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with AMG schemes, which is to define the ingredients of the method by algorithms
which attempt to optimize quantities that are relevant with respect to some theoretical
analysis; see, e.g., [6, 7, 10, 15, 18, 32, 33, 34, 35]. However, to the best of our
knowledge, we present here the first attempt to go one step further by imposing an
explicit control on the two-grid convergence rate.

Of course, such an approach potentially induces an increase of the algorithmic
complexity. In the multigrid context, mastering the complexity means ensuring that
the cost of each iteration step does not grow more than linearly with the number of the
unknowns. Taking into account that the two-grid method has to be used recursively,
this further means ensuring that the number of unknowns decreases sufficiently fast
from one level to the next. With aggregation-based methods, the factor by which the
number of unknowns is decreased is actually the mean aggregate size (i.e., the mean
number of unknowns inside an aggregate). Whereas with heuristic aggregation algo-
rithms it is relatively easy to control this mean aggregate size, the present approach
introduces more uncertainty: one may form aggregates of a given target size, but
there is no a priori guarantee that they will satisfy the quality criterion that allows
us to control the condition number.

Now, we prove below that our aggregation algorithm, when applied to the five-
point discretization of the Poisson problem, allows us to guarantee that the condition
number of the matrix preconditioned by the two-grid method is below 11.5 while
reducing the number of unknowns by a factor of at least 8. This is still a model
problem analysis, but is somehow nonstandard because it holds for a truly algebraic
method applied in a black box fashion. Moreover, it does not hold only at the fine
grid level: we show that one can recursively apply the coarsening algorithm and yet
at each stage guarantee the same combination of condition number and coarsening
speed. Further, numerical experiments performed on a wide set of discrete PDEs
suggest that there are no complexity issues: putting the same threshold of 11.5 on
the condition number, the algorithm succeeds in producing aggregates of mean size
8 or close to 8 also for, e.g., three-dimensional problems and/or problems discretized
on unstructured grids.

All in all, there are two advantages in explicitly controlling the convergence rate
(or the condition number) instead of the complexity. First, in a typical situation, a
“complexity oriented” algorithm will form a few badly shaped aggregates. As already
mentioned, this may have a dramatic impact on the convergence analysis. If there
are only a few such bad aggregates, their influence on the actual convergence may or
not be significant; in general we just do not know. However, one should be careful as
the analysis in [20] reveals that our bound may remain sharp even in the presence of
a relatively small number of “bad” aggregates. On the other hand, an algorithm that
explicitly controls the condition number will refuse to form these bad aggregates and
stay instead with a few aggregates of smaller size or even some unaggregated nodes.
Compared with the previous situation, here we know that if there is only a small
number of such aggregates, then the impact on the efficiency of the method will be
minor, since it would only affect the mean aggregate size in a unessential way.

A second advantage of the approach is that it fits well with the use of the so-
called AMLI-cycle [2, 3, 30, 31]. With this cycle, the iterative solution of the coarse
system at each level is accelerated with a semi-iterative method based on Chebyshev
polynomials. As the main advantage, it allows us to build optimal multigrid schemes
using only two-grid analysis. Hence, using the AMLI-cycle, the explicit control of the
convergence rate mentioned above is not restricted to a model two-grid scheme: it
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carries over to the multilevel variant. In this paper, we exploit this feature to obtain
a bound on the convergence rate that remains fixed independently of the number of
levels.

The remainder of this paper is organized as follows. We first outline in section
2 our main result, namely the bound on a convergence rate that is guaranteed by
our AMG method. In section 3 we recall needed two-grid analysis results from [20],
particularizing them to the context of this paper. The AMLI-cycle is described in
section 4. In section 5 we present our aggregation algorithm and explain why and
how it allows us to guarantee the bound announced in section 2. Numerical results
are reported in section 6.

Notation. For any ordered set Γ, |Γ| is its size and Γ(i) its ith element. [1, k] =
{1, 2, . . . , k} stands for the set of the first k integers. For any matrix B, N (B) is its
null space. For any square matrix C, ρ(C) is its spectral radius (that is, its largest
eigenvalue in modulus). For any SPD matrix D, κ(D) is its condition number (that
is, the quotient of its largest and smallest eigenvalues). I stands for identity matrix.

2. Outline of the main result. Building an optimal method with the AMLI-
cycle is possible if there are a known upper bound κ̄TG on the condition number of the
two-grid method at every level and an integer γ (related to the degree of Chebyshev
polynomials) such that

(2.1)
√
κ̄TG < γ < τ,

where τ stands for the mean factor by which the matrix size is reduced from one
level to the next. Both inequalities should be interpreted in a restrictive way: for
an efficient method,

√
κ̄TG should be substantially away from γ and the latter itself

substantially away from τ . The left inequality guarantees that the condition number
remains bounded even for infinitely many levels, and the right one ensures an optimal
computational complexity. That said, the left inequality is the most difficult to deal
with because, recall, it has to be checked by an upper bound on the two-grid condition
number, which has to hold at every level of the hierarchy and, further, has to be
known explicitly because it enters the definition of the parameters of the AMLI-cycle.
Therefore, by introducing a new approach based on the explicit control of the two-grid
condition number, we facilitate the use of the AMLI-cycle, which here is, seemingly
for the first time, combined with a truly AMG method.

Observe that, with γ = 4 , the conditions (2.1) fit well with the numbers κ̄TG =
11.5 and τ = 8 cited in the introduction. This is on purpose: when assessing our
aggregation algorithm below, we target parameter choices allowing a sensible appli-
cation of the AMLI-cycle. Using the latter with γ = 4 and κ̄TG = 11.5 , the induced
multilevel preconditioner B satisfies

(2.2) κ
(
B−1A

) ≤ 27.06,

independently of the number of levels; that is, the explicit control of the two-grid
condition number obtained thanks to our aggregation algorithms carries over to the
multigrid scheme thanks to the use of the AMLI-cycle. On the other hand, with
τ ≈ 8, the algorithmic complexity of one application of this preconditioner is only
about twice that of the smoothing iterations at the fine grid level.

Regarding assumptions, the upper bound (2.2) requires only the system matrix
A to be a symmetric M-matrix with nonnegative row sum. We consider that this
property holds in the reminder of this paper. It is in particular satisfied with low
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order finite difference or finite element discretizations of scalar second order elliptic
PDEs, with, in the case of finite elements, some restriction on the elements’ shape. For
this class of applications, we thus obtain the same uniform bound independently of
the mesh or problem size and of the structure or lack of structure of the discretization
grid, regardless of whether the problem is two-dimensional (2D) or three-dimensional
(3D), and independently of problem peculiarities such as jumps or anisotropy in the
PDE coefficients, reentering corners, or lack of full elliptic regularity.

The bound (2.2) provides the first complete convergence analysis of an AMG
method based on plain aggregation. Moreover, it also seems to compare favorably
with available theoretical analyses of other AMG schemes. Classical AMG methods
along the lines of the seminal papers [5, 25] also have a supporting theory based on
the M-matrix assumption; see [26] for a nice summary. However, this theory is only
for the two-grid case, and it is unclear whether it can produce such uniform estimates.
For instance, it should in principle apply to the method implemented in the old but
classical code that was used in [22] for numerical comparison and which failed to
converge for some anisotropic problems, even though the matrix was an M-matrix. It
is more difficult to develop a comparison with analyses of methods based on smoothed
aggregation, as initiated in [28] and further improved in [31] and [8]. Indeed just the
statement of the assumptions in [8] would require a significant amount of space; hence
we refer the reader to the aforementioned works and just point out that these analyses
are also for the multilevel case, while the resulting bound is hard to compare with
(2.2) since it depends on the number of levels and involves an unknown constant C .
Regarding assumptions, it is probably correct to state that the theory in [28, 31, 8]
allows us to cover several discretizations of PDEs that do not result in an M-matrix,
whereas some M-matrix cases such as finite difference discretizations are excluded.
Note also that the discussion of these assumptions involves geometric considerations
such as the mesh size h at the fine grid level and the diameter of the aggregates; hence
it is unclear how it could apply to problems with strong local refinement.

Eventually, as already stated above, except for the model Poisson problem, the
bound (2.2) should not be seen as a proof of optimality, since there remains some
uncertainty on the algorithmic complexity. However, as commented in the first para-
graph of section 7 in [8], the difficulty of proving that an AMG method has bounded
algorithmic complexity is not peculiar to our approach and remains a challenge for
truly black box methods that do not exploit any geometric information. Hence, al-
though limited to a model problem, our complexity analysis also seems to represent
some advance with respect to the state of the art.

3. Two-grid analysis. We first introduce some notation (related to our two-
grid setting). We consider symmetric two-grid schemes, using SPD smoother M with
one pre- and one post-smoothing step. We also assume that the coarse grid matrix
is of Galerkin type; that is, given an n × nc prolongation matrix P , the coarse grid
matrix is Ac = PTAP . The corresponding iteration matrix is then

T = (I −M−1A)(I − P A−1
c PTA)(I −M−1A),

which also implicitly defines the two-grid preconditioner BTG via the relation

I −B−1
TGA = T.

Equivalently, one has

(3.1) B−1
TG = M−1(2M −A)M−1 + (I −M−1A)P A−1

c PT (I −AM−1) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1084 ARTEM NAPOV AND YVAN NOTAY

Now, with the coarsening by aggregation, the prolongation is obtained from the
agglomeration of the unknowns into nc nonempty disjoint sets Gk, k = 1, . . . , nc ,
called aggregates. To each aggregate Gk is associated one unknown at the next coarse
level in the hierarchy. In addition, following [20], some unknowns can also be kept
outside the coarsening process, and the corresponding (possibly empty) set is noted
G0; that is, G0 gathers the unknowns that are not associated with any coarse un-
known. As a result, G0 together with Gk, k = 1, . . . , nc , defines a partitioning of the
index set [1, n] which uniquely determines the prolongation P : for i = 1, . . . , n and
j = 1, . . . , nc ,

(3.2) (P )ij =

{
1 if i ∈ Gj ,
0 otherwise .

Hence a row of P is zero if and only if the corresponding unknown is in G0, whereas
the other rows have exactly one nonzero entry. As made clearer below, the role of
G0 is to gather nodes that need not be represented on the coarse grid because the
corresponding error components are sufficiently damped by the smoother alone.

Note also that the entries in the coarse grid matrix Ac = PTAP , where A = (aij),
can be obtained from a simple summation process:

(3.3) (Ac)kl =
∑
i∈Gk

∑
j∈Gl

aij , k, l = 1, . . . , nc.

It follows from this relation that if A is an M-matrix with nonnegative row sum,
then Ac inherits these properties; see Theorem 3.6 in [17] for an explicit proof.3 This
observation is important: it means that if a matrix A satisfies the basic assumptions
of Theorem 3.2 below, then all successive coarse grid matrices will satisfy them as
well; i.e., the theorem can be applied at any level in the hierarchy.

Our analysis is first based on the well-known result from [13, 31], which, when
the smoother M is SPD and such that vMv ≥ vAv for all v, states that

(3.4) vTAv ≤ vTBTGv ≤ μvTAv ∀v ∈ R
n

with

(3.5) μ = max
v �=0

vTM
(
I − P (PTM P )−1PTM

)
v

vTAv
.

This is further combined with Theorem 3.2 in [20], which yields an upper bound on μ
for prolongations P based on aggregation. For the sake of readability, we recall this
latter result in the following lemma.

Lemma 3.1. Let A and M be n × n SPD matrices. Let Gk, k = 0, . . . , nc , be
some partitioning of [1, n] , and define P by (3.2). Assume that M is block diagonal
with respect to the partitioning Gk; i.e., (M)ij = 0 if i , j do not belong to the same
subset Gk .

Further, let Ab , Ar be nonnegative definite symmetric matrices such that A =
Ab + Ar and Ab is also block diagonal with respect to the partitioning Gk. For k =

3Strictly speaking, it is assumed in [17] that the prolongation matrix has exactly one nonzero per
row, whereas we allow some zero rows; the extension of the proof is, however, straightforward since
the “exactly one nonzero” property is used only for further results related to irreducibility, which are
not needed here.
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0, . . . , nc, let AGk
be the diagonal block of Ab corresponding to indices in Gk; that is,

with an appropriate reordering of unknowns, Ab = blockdiag(AG0 , AG1 , . . . , AGnc
).

Similarly, let MGk
denote the diagonal block of M corresponding to indices in Gk,

and, hence, M = blockdiag(MG0 , MG1 , . . . ,MGnc
). There holds

(3.6) max
v �=0

vTM
(
I − P (PTM P )−1PTM

)
v

vTAv
≤ max

k=0,...,nc

μ(k),

where

μ(0) =

{
0 if G0 is empty,

maxv
vTMG0v

vTAG0v
otherwise,

and where, for k = 1, . . . , nc ,

μ(k) =

⎧⎨⎩0 if |Gk| = 1,

supv/∈N (AGk
)

vTMGk
(I−1Gk

(1T
Gk

MGk
1Gk

)−11T
Gk

MGk
)v

vTAGk
v otherwise,

with 1Gk
= (1, 1, . . . , 1)T being a vector of size |Gk|.

To apply this lemma, one first needs a proper splitting of the matrix into two
nonnegative definite matrices. When A is an M-matrix with nonnegative row sum,
this splitting is easy to obtain: regarding the off-diagonal entries, Ab gathers those
connecting unknowns inside every aggregate, and Ar keeps the others; on the other
hand, the diagonals are such that Ar has zero row sum and therefore Ab acquires
the same (nonnegative) row sum as A . In other words, Ab is obtained from A by
discarding and lumping to the diagonal the entries that are in the block off-diagonal
part with respect to the partitioning in aggregates. This lumping ensures that both
Ab and Ar are weakly diagonally dominant and hence nonnegative definite.

Then, as follows from (3.5) and (3.6), the measure μ involved in (3.4) can be
controlled if the parameter μ(k) associated with each aggregate is efficiently bounded.
And this parameter depends only on the corresponding diagonal blocks in Ab and M ;
i.e., on quantities “local” to the aggregate: the “local” matrix entries and the row sum
at “local” nodes. Observe that the lumping process mentioned above tends to make
these diagonal blocks AGk

ill-conditioned, or even singular when the row sum of A is
zero at every node of the aggregate. But, for regular aggregates (k > 0), it does not
mean that μ(k) is unbounded since the matrix MGk

(I−1Gk
(1T

Gk
MGk

1Gk
)−11T

Gk
MGk

)
is also, by construction, singular with the constant vector in its kernel. This is not true
for μ(0) , because nodes in G0 are kept outside the aggregation and are actually not
represented anymore on the coarse grid. Therefore, smoothing iterations alone should
be sufficient to efficiently damp the error at these nodes, which, in this analysis, is
reflected by the requirement that the corresponding block AG0 be well-conditioned. In
practice, as will be seen below, this requirement can be checked via a strong diagonal
dominance criterion.

Now, this works for smoothers that are block diagonal with respect to the parti-
tioning in aggregates. A particular example is of course the damped Jacobi smoother.
As discussed below, better results can, however, be obtained with more general
smoothers. We therefore introduce the class of smoothers M = (mij) , with off-
diagonal entries obtained from that of A = (aij) by keeping those inside a given
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symmetric sparsity pattern and discarding the others:

(3.7) mij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aij if i �= j and (i, j) ∈ sp(M),

aii +
∑
s�=i

(i,s) �∈sp(M)

|ais| if i = j,

0 otherwise,

where sp(M) stands for the chosen sparsity pattern; the discarded off-diagonal entries
are further added in absolute value to the diagonal. This ensures the weak diagonal
dominance of M −A, which is therefore nonnegative definite as required for (3.4).

Note that the smoother defined by (3.7) is not necessarily block diagonal. This
depends upon the chosen sparsity pattern. We can allow this because our analysis is
actually slightly more general than the mere combination of (3.4) with Lemma 3.1.
Indeed, as shown in the proof of Theorem 3.2 below (based on previous results in [20];
see also [31]), (3.4) also holds with μ defined as in (3.5) in which the smoother M
is replaced by any matrix M such that vMv ≤ vMv for all v . Then, to properly
apply Lemma 3.1, only this M should be block diagonal. Given a smoother M defined
by (3.7), a relevant M = (mij) is obtained using the same rule while restricting the
sparsity pattern to the block diagonal part:

sp
(
M

)
= {(i, j) ∈ sp(M) | i, j belong to the same aggregate}.

Such M has the required block diagonal structure, whereas, according to the rule
(3.7), the further discarded entries from the off-diagonal blocks are added in absolute
value to the diagonal, ensuring that M −M is weakly diagonal dominant and hence
nonnegative definite. It is worth noting that, since the bound depends upon M , it
is thus not influenced by the off-diagonal block part of the sparsity pattern. This
observation is taken into account below when we discuss some relevant choices for
sp(M) .

Now, particularizing the analysis sketched above to smoothers defined via (3.7)
yields the following theorem. Note that the matrices AG and MG in this theorem
represent the diagonal blocks of Ab = blockdiag(AG0 , AG1 , . . . , AGnc

) and M =
blockdiag(MG0 , MG1, . . . ,MGnc

) .
Theorem 3.2. Let A = (aij) be an n× n nonsingular symmetric M-matrix with

nonnegative row sum. Let Gk, k = 0, . . . , nc, be a partitioning of [1, n] , let sp(M) be
some symmetric sparsity pattern, and define P , M = (mij), and BTG by (3.2), (3.7),
and (3.1), respectively.

For any subset G of [1, n], let A|G and M |G be the submatrices of A and M ,
respectively, corresponding to indices in G. Moreover, let ΣG, ΔG be |G|×|G| diagonal
matrices with

(ΣG)ii =
∑
j /∈G

|aG(i)j | and (ΔG)ii = aG(i)G(i) +
∑
j∈G

j �=G(i) and (G(i),j)/∈sp(M)

|aG(i)j |,

where G(i) is the ith element in G. Set AG = A|G − ΣG and let MG be such that
offdiag(MG) = offdiag(M |G) and diag(MG) = ΔG +ΣG . Define, if |G| > 1,

(3.8) μ(G) = sup
v/∈N (AG)

vTMG(I − 1G(1
T
GMG1G)

−11T
GMG)v

vTAGv
,

where 1G = (1, 1, . . . , 1)T is a vector of size |G|.
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If for a given κ̄TG ≥ 1, there holds
(i)

(3.9) aii ≥ κ̄TG + 1

κ̄TG − 1

⎛⎝ n∑
j=1,j �=i

|aij |
⎞⎠ ∀i ∈ G0; and

(ii) for k = 1, . . . , nc , either |Gk| = 1 or

(3.10) μ(Gk) ≤ κ̄TG,

then

(3.11) vTAv ≤ vTBTGv ≤ κ̄TG vTAv ∀v ∈ R
n .

Proof. We first show that (3.4) holds with

(3.12) μ = max
v �=0

vTM
(
I − P (PTM P )−1PTM

)
v

vTAv

for any matrix M such that vMv ≤ vMv.
The left inequality is actually a standard result (e.g., [31, section 3.2]); we give

a short proof for the sake of completeness: since A is SPD, A1/2PA−1
c PTA1/2 is

an orthogonal projector; hence, vTPA−1
c PTv ≤ vTA−1v for all v and, using this

inequality in (3.1), one has for all v ∈ R
n

vTB−1
TGv ≤ vTM−1(2M −A)M−1v+vT (I −M−1A)A−1 (I −AM−1)v = vTA−1v.

To prove the right inequality, we note that

λmin(B
−1
TGA) = 1− λmax(I −B−1

TGA) = 1− ρ(I −B−1
TGA) ,

where the second equality follows from the left inequality just proved. Hence we need
to prove ρ(I − B−1

TGA) ≤ 1 − μ−1 . To this end, one may apply Theorem 3.1 of [20].
In this theorem, X denotes the equivalent global smoother. Hence, for BTG defined
by (3.1), one has X = (2M−1 −M−1AM−1)−1 . Since M −M is weakly diagonally
dominant, one then has, for all v ∈ R

n (using also vTM−1/2AM−1/2v ≤ 1 which
follows from the nonnegative definiteness of M −A),

vTM
−1

v ≤ vTM−1v ≤ vT (2M−1 −M−1AM−1)v = vTX−1v;

that is,

max
v

vTXv

vTMv
≤ 1.

Then, noting that the matrixD referenced in Theorem 3.1 of [20] can be freely chosen,
and setting D = M = blockdiag(MG0 , MG1 , . . . ,MGnc

), the relations (7) and (8) in
this theorem together with λmax(X

−1A) ≤ λmax(M
−1A) ≤ 1 imply the required

result; that is, ρ(I −B−1
TGA) ≤ 1− μ−1 and therefore (3.4) holds with μ as in (3.12).

Clearly, the required result (3.11) follows if μ ≤ κ̄TG . We then consider Lemma 3.1
with the splitting A = Ab + Ar, Ab = blockdiag(AG0 , AG1 , . . . , AGnc

) , which in fact
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corresponds to the construction procedure described just after the lemma. One sees
that the condition (3.10) indeed entails μ ≤ κ̄TG if, in addition,

max
v∈R|G0|

vTMG0v

vTAG0v
≤ κ̄TG.

Now, vTMG0v ≤ vTM
(0)
G0

v , where M
(0)
G0

= diag(aG0(i)G0(i) +
∑

j �=G0(i)
|aG0(i)j |) (one

may check that M
(0)
G0
−MG0 is weakly diagonally dominant). The result then follows

from

max
v∈R|G0|

vTM
(0)
G0

v

vTAG0v
≤ max

i∈G0

aii +
∑n

j=1,j �=i |aij |
aii −

∑n
j=1,j �=i |aij |

≤ κ̄TG ,

where the first inequality holds since AG0−diag(aG0(i)G0(i)−
∑n

j=1,j �=G0(i)
|aG0(i)j |) is

nonnegative definite (it has negative off-diagonal entries and zero row sum), whereas
the second inequality stems from (3.9).

We now discuss how to best select the sparsity pattern of the smoother. A first
possibility consists in discarding all off-diagonal entries, yielding a diagonal smoother
M = diag(

∑n
j=1 |aij |) . Since A is diagonally dominant, we then have mii ≤ 2aii,

with equality when the corresponding row of A has zero sum. Hence such a smoother
does not differ much from the classical damped Jacobi smother M = ω−1

Jacdiag(aii)
with damping factor ωJac = 0.5 .

Here we advocate further choices, which yield better “quality” estimates μ(Gk)
for the aggregates and therefore make the constraint (3.10) less restrictive. As noted
above, the bound is not improved if more entries connecting different aggregates
are added to the sparsity pattern. However, consider that, starting from a given
smoother, say M (1), one creates another smoother M (2) by including in the sparsity
pattern some additional connections internal to an aggregate Gk. One sees from (3.7)

that the related matrices M
(1)
Gk

and M
(2)
Gk

will be such that M
(1)
Gk
−M

(2)
Gk

is weakly
diagonally dominant and, hence, nonnegative definite. It can then be inferred from
[20, Theorem 3.1] that μ(Gk) is at least as small for M (2) as it is for M (1). That
is, putting in the sparsity pattern of M more off-diagonal entries internal to the
aggregates never deteriorates the quality estimates μ(Gk), and, in fact, as numerical
computation reveals, most often improves them.

Moreover, optimizing the sparsity pattern by including for every aggregate all its
internal connections has only a moderate impact on the computational cost as long
as the aggregates are relatively small or have small bandwidth. From now on, we
therefore consider that the smoother is one of the two described below; except in
numerical experiments, it does not matter which one is actually used since, according
to the discussion above, they lead to identical convergence estimates.

Block diagonal smoother. (i, j) ∈ Sp(M) if and only if i and j belong to the same
aggregate Gk , 1 ≤ k ≤ nc.

Band smoother. This smoother assumes that the matrix has been explicitly re-
ordered according to the partitioning in aggregates; that is, the unknowns in the same
set Gk , k = 0, 1, . . . , nc, occupy successive positions in the index set. It then follows
that the above block diagonal smoother has an explicit block diagonal structure, and it
may be interesting to extend the sparsity pattern so that it comprises the whole band
that includes all these diagonal blocks (except, possibly, the one corresponding to G0);
that is, (i, j) ∈ Sp(M) if and only if |i−j| ≤ δ, where δ = max1≤k≤nc bandwidth(AGk

).
This allows us to use a fast band solver such as the one available in LAPACK [1].
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4. The AMLI-cycle. The AMLI-cycle implements the recursive use of a two-
level method. The exact solution of the coarse system that is needed to compute the
action of a two-grid preconditioner is exchanged for the approximate solution obtained
with a few steps of an iterative solution method. This iterative solution itself uses
the two-grid preconditioner on that coarse level, leading to a recursive scheme. The
recursion is stopped when the coarse system is sufficiently small to allow a direct
solution method at negligible cost. Note that this description applies as well to the
other cycles, such as the W-cycle [14, 27]. What makes the AMLI-cycle different is
the use, for the solution of each coarse system, of a semi-iterative method based on
shifted Chebyshev polynomials. The number of iterations γ is also typically larger
than the two iterations associated with the W-cycle.

This polynomial acceleration allows us to obtain a stabilized condition number
(i.e., a condition number that is bounded independently of the number of levels) under
rather weak conditions; see below. There is a price to pay, however. At each level,
the parameters of the polynomial acceleration are to be defined according to explicit
bounds on the eigenvalues of the matrix preconditioned by the two-grid method.
Moreover, the overall efficiency of the scheme depends on the sharpness of these
bounds.

The AMLI-cycle was originally developed in [2, 3, 30] for multilevel precondition-
ers based on recursive 2× 2 block incomplete factorizations, and was further adapted
to multigrid methods in [31]. We do not bring additional contributions to that topic
and therefore present only a short summary here, focusing on facts and practical as-
pects, whereas justifications are omitted and theoretical properties are stated without
proof. We essentially follow the presentation in section 5.6 of [31], to which we refer
the reader for more details.

First we introduce some additional notation. We assume that the multigrid pre-
conditioner involves L levels, level 1 being the finest (on which the system (1.1) is
solved) and level L being the coarsest. A�, M�, and P� are, respectively, the matrix,
the smoother, and the prolongation at level 	 . Hence we have A1 = A and, because we
assume that the successive coarse grid matrices are of Galerkin type, A�+1 = PT

� A�P� ,
	 = 1, . . . , L− 1.

Regarding assumptions, the system matrix has to be SPD and the smoother such
that

(4.1) ρ
(
I −M−1

� A�

)
< 1, 	 = 1, . . . , L− 1.

Furthermore, as stated above, one should know constants α� , 	 = 1, . . . , L − 1, such
that, for all v of appropriate size,

(4.2) vTA�v ≤ vTBTG,�v ≤ α� vTA�v,

where BTG,� is a two-grid preconditioner at level 	; that is, the matrix defined in (3.1)
with A = A� , M = M� , P = P�, and Ac = A�+1 on the right-hand side.

Now, as discussed in the preceding section, the smoothers considered in this work
are SPD and such that M� − A� is nonnegative definite. Hence the eigenvalues of
M−1

� A� belong to the interval (0, 1), and the condition (4.1) always holds. On the
other hand, we intend to use Theorem 3.2 to guarantee (4.2) with a uniform bound
κ̄TG on α�. We therefore continue the presentation, setting α� = κ̄TG for all 	.

In Algorithm 4.1 we make clear how the AMLI-cycle can be used in a practical
implementation. As stated above, except for 	 = L − 1 , the coarse system is solved
with γ iterations that use the preconditioner on the next coarse level (see step 4).
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Algorithm 4.1. Multigrid preconditioner at level 	: z← B−1
� r.

(1) Relax with smoother M� : z←M−1
� r

(2) Compute residual: r← r−A�z

(3) Restrict residual: rc ← PT
� r

(4) Compute (approximate) solution ẽc to A�+1ec = rc
if (	 = L− 1) ẽc = A−1

L rc
else : Initialize: ẽc ← 0 ; w̃c ← rc

Iterate: for j = 0, . . . , γ − 1 do

if (j > 0) wc ← A�+1vc

vc ← B−1
�+1wc

ẽc ← ẽc + ξ
(j)
� vc

(5) Coarse grid correction: z← z+ P�ẽc
(6) Compute residual: r← r−A�z

(7) Relax with smoother M� : z← z+M−1
� r

The weights ξ
(j)
� , j = 0, . . . , γ − 1, are defined as follows. First, one sets κL−1 =

κ̄TG and recursively computes (bottom to top)

κ� = κ̄TG + κ̄TG

κ�+1(1− κ−1
�+1)

γ(∑γ
j=1

(
1 +

√
κ−1
�+1

)γ−j (
1−

√
κ−1
�+1

)j−1
)2 , 	 = L− 2, . . . , 1.

(4.3)

Then, at each level 	, the weights in Algorithm 4.1 are the coefficients of the polyno-
mial

(4.4) p�(t) =

γ−1∑
j=0

ξ
(j)
� t j =

1

t

Tγ

(
1+κ−1

�+1

1−κ−1
�+1

)
− Tγ

(
1+κ−1

�+1−2t

1−κ−1
�+1

)
1 + Tγ

(
1+κ−1

�+1

1−κ−1
�+1

) ,

where Tγ is the Chebyshev polynomial of degree γ, as defined by the recursion

(4.5) T0(t) = 1 , T1(t) = t, and, for k > 1, Tk(t) = 2t Tk(t)− Tk−1(t) .

Under the assumptions recalled above, it can be shown that the preconditioner
at level 	 as defined in Algorithm 4.1 satisfies

(4.6) vTA�v ≤ vTB�v ≤ κ� v
TA�v .

Hence, in particular, κ1 is an upper bound on the condition number of the multigrid
preconditioner used to solve the fine grid linear system.

Further, the analysis of the recursion (4.3) reveals that κ� ≥ κ�+1 . In other
words, the fine grid upper bound κ1 increases with the depth of the recursion, that
is, with the number of levels. However, κ1 is uniformly bounded above if and only if

(4.7) κ̄TG < γ2;

that is, under this condition, one has

κ1 ≤ κ∗ = lim
L→∞

κ1 <∞ .
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Thus, when sharp two-grid bounds are available, the AMLI-cycle allows us to
automatically construct a multigrid method with level-independent convergence rate,
selecting the number of iterations γ large enough to match the condition (4.7).

However, the computational cost has to be taken into account. Indeed, each
application of the preconditioner B1 at the first (finest) level involves γ − 1 multipli-
cations by the coarse grid matrix A2 and γ applications of the preconditioner B2 at
the second level, and each of the latter involves γ − 1 multiplications by the matrix
A3 and γ applications of the preconditioner B3 at the third level, and so on. Now,
to be more specific, let nnz(A�) be the number of nonzero entries in A�, and, further,

for 	 = 1, . . . , L− 1, let c
(mv)
� nnz(A�) represent the cost of one matrix vector product

with A�, and let c
(sm)
� nnz(A�) represent the cost of all operations in the above algo-

rithm except step 4 (which is essentially the cost of smoothing operations at level 	);
moreover, let cLnnz(AL) be the cost of the exact solution at level L. The overall cost
associated with the top level preconditioner is then

(4.8)

W1 = c
(sm)
1 nnz(A1) +

L−1∑
�=2

γ�−1

(
c
(sm)
� +

γ − 1

γ
c
(mv)
�

)
nnz(A�) + γL−1cLnnz(AL).

Now, as is made clear in section 6, the bandwidth of the smoother is bounded

at every level, and, hence, so is c
(sm)
� . On the other hand, the idea is to use enough

levels to ensure that the size of AL is small enough to make cL of the same order

as, say, c
(sm)
1 . As a consequence, there exist constants c1, c2 independent of problem

peculiarities and such that

c1 ≤ c
(sm)
1 , cL, c

(sm)
� + γ−1

γ c
(mv)
� , 	 = 2, . . . , L− 1 ≤ c2.

Therefore, setting

CW =

L∑
�=1

γ�−1 nnz(A�)

nnz(A1)
,

there holds

c1 nnz(A1) CW ≤ W1 ≤ c2 nnz(A1) CW .

Hence, while γ has to be chosen sufficiently large so that (4.7) holds, it should
also be sufficiently small to ensure that CW is not much larger than one. We call
the latter number the weighted complexity; it can be seen as a generalization of the
so-called operator complexity

CA =

L∑
�=1

nnz(A�)

nnz(A1)
,

which is often used to assess the coarsening of AMG methods (see, e.g., [26, p. 487]).
Whereas this operator complexity reflects well the memory requirements of the method,
it is representative of its cost only if the so-called V-cycle is used. The weighted com-
plexity is certainly more appropriate in this respect when using an AMLI-cycle.
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Now, let τ be such that, for 	 = 2, . . . , L,

nnz(A�)

nnz(A�−1)
<

1

τ
;

that is, let τ be a uniform bound on the coarsening factor (with respect to the number
of nonzero entries). If

(4.9) γ < τ,

then CW ≤ 1
1−γ/τ , independently of L.

Thus γ should be chosen such that both (4.7) and (4.9) hold. The first condition
ensures that the number of iterations is bounded independently of L, whereas the
second guarantees an optimal bound on the cost of each iteration. Obviously, these
requirements are conflicting and such a γ might well not exist. In the context of
this work, this can be seen as a constraint on the coarsening process: it should be
designed in such a way that both (4.7) and (4.9) hold for some γ. In this respect,
note also that in practice these conditions have to be interpreted in a rather restrictive
sense: actually, one needs κ̄TG

γ2 significantly below one for having the bound κ∗ on the

multigrid condition number not much larger than κ̄TG, and also γ
τ significantly below

one for having a meaningful bound on CW .

5. Aggregation procedure.

5.1. Preliminaries. AMG methods are often designed in such a way as to repro-
duce the behavior of a geometric multigrid method on some model problems. Along
the same lines, and before we focus on practical details of the aggregation scheme, it
is instructive to determine which kind of regular aggregation pattern would allow us
to satisfy the two conflicting requirements stated in the previous section.

In this view, consider the matrix associated with a 3D Cartesian grid equipped
with a seven-point symmetric stencil, as obtained from the finite difference discretiza-
tion of the PDE

−αx
∂2u

∂x2
− αy

∂2u

∂y2
− αz

∂2u

∂z2
= f

in the interior of any region in which the (positive) coefficients αx, αy, αz are constant.
Note that for the discussion below neither the matrix scaling nor the direction of the
strongest coefficient is important. Therefore, we assume αx = 1 ≥ αy, αz , without
loss of generality.

The aggregation scheme considered in this work is based on a few passes of a
pairwise matching algorithm, which groups unknowns into pairs. Therefore, we con-
sider model aggregates that can be obtained with two or three passes, that is, the
size 4 and size 8 aggregates depicted in Figure 1, oriented in any direction. In Fig-
ure 2, we represent on the left the smallest quality μ(G) from all possible such size
4 aggregates, as a function of αy and αz . We do the same on the right for size
8 aggregates. The qualities μ(G) are computed according to (3.8) with respect to
the block diagonal or band smoother. We consider the aggregate of the best qual-
ity for each value of αy and αz because of our intention to design an aggregation
algorithm that automatically adapts the aggregate’s shape to match a given quality
requirement.
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Fig. 1. Model aggregate shapes.
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Fig. 2. Smallest μ(G) from all possible aggregates of shape depicted in Figure 1, as a function
of αy and αz. Left: size 4 aggregates; right: size 8 aggregates.

We first discuss size 4 aggregates. The best quality μ(G) is most often between 4
and 5, but the function grows up to 7.65 in some region. It means that an aggregation
procedure driven by our analysis should use a quality threshold κ̄TG at least as large
as 7.65 to guarantee that aggregates of size at least 4 can be formed for any αx ,
αy , αz. Now, the coarsening factor as defined in the previous section is about equal
to the aggregates size. The only integer γ such that both conflicting requirements
κ̄TG ≈ 7.65 < γ2 and γ < 4 hold is γ = 3. However, this would not be very cost
effective. Indeed, the corresponding bound on the multigrid condition number is
κ∗ = 31.17 , whereas, even with a coarsening factor effectively around 4, one gets a
relatively high complexity CW ≈ 4 .

This leads us to consider size 8 aggregates. In this case, the best quality μ(G) is
most often around 5–6, with a peak value equal to 11.46 for αx, αy ≈ 0.07. Setting
κ̄TG = 11.5 , it is possible to use γ = 4 . Then, the condition (4.7) holds and the limit
value is κ∗ = 27.06 , yielding the upper bound (2.2) stated in section 2. On the other
hand, if one effectively succeeds in forming size 8 aggregates almost everywhere, one
will get CW ≈ 2 . This is a sensible target, especially if one takes into account that
the smoothing procedure is cheap (and fast if properly implemented).

Before presenting the algorithm that implements this strategy, let us remark that
the above discussion also implicitly includes 2D model problems. Indeed, it turns out
that the best quality from all possible aggregates in a 2D grid coincides with that
in a 3D grid in the limit case of one vanishing coefficient. Of course, as one can
see from Figure 1, restricting the discussion to this limit case would allow smaller
threshold κ̄TG and hence possibly some other choice for γ. We did not pursue this
direction because we aimed at a truly algebraic procedure, which should therefore
work regardless of the dimensionality of the underlying PDE.
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5.2. Automatic aggregation. A naive approach when trying to build high
quality aggregates of desired size would be to explore the matrix graph while testing
all suitable aggregates. This is a costly strategy because of the often large number
of possibilities and the need to compute the quality estimate for each of them. An
alternative would be to guess a few potentially interesting aggregates of targeted size
or larger and choose the most appropriate.

Here we follow the latter idea by considering an aggregation procedure based on
a few passes of a pairwise algorithm, which attempts to group unknowns into pairs.
This approach is inspired by the double pairwise aggregation algorithm in [22], which,
although based on heuristic arguments, was found to be capable of building sensible
aggregates in an inexpensive way. Further motivation comes from the fact that, when
there are only two unknowns in G, the quality μ(G) as defined in (3.8) reduces to an
easy-to-compute function involving only the off-diagonal entry connecting these two
unknowns, their respective diagonal entries, and the sum of all off-diagonal elements
in the corresponding rows. Therefore, precomputing the latter, it is inexpensive to
find the best pair that contains a given unknown.

On the other hand, we observe that, whereas assessing μ(G) for larger |G| may
become costly, it remains relatively cheap to check that μ(G) ≤ κ̄TG for a given
threshold. Indeed, this condition holds if and only if

κ̄TG AG −MG

(
I − 1G(1

T
GMG1G)

−11T
GMG

)
is nonnegative definite, which is true if and only if the Cholesky factorization of this
matrix exists (i.e., no pivot is negative). Hence, requirement (ii) of Theorem 3.2 can
be checked in only O(|G|3) operations. This is taken into account in our aggregation
procedure, which allows us to ensure that all aggregates satisfy the needed quality
requirement, and hence that the relation (3.11) holds, while avoiding an explicit com-
putation of μ(G) for any subset G with more than two unknowns.

Now the initial pairwise aggregation as applied during the first pass is presented
in Algorithm 5.1. It is largely inspired by Theorem 3.2. One first forms the set
G0 of unknowns that can be kept outside the aggregation by checking whether the
condition (3.9) holds. Next one picks up one unknown at a time and searches, among
its still unassigned neighbors, for the unknown yielding the pair with the best quality.
Then, it is checked whether or not this quality satisfies the acceptance criterion; if not,
the unknown initially picked up remains unassociated in the coarse grid. It is shown
in Appendix A that the given expression for μ({i, j}) indeed matches the definition
(3.8).

To obtain larger aggregates, we compute the auxiliary coarse grid matrix Ã = (ã)ij
corresponding to this initial pairwise aggregation. Then, we apply essentially the same
algorithm to this matrix to form pairs of pairs, or, in subsequent applications, pairs
of aggregates from the previous pass.

However, some care is needed because both conditions (3.9) and (3.10) are to be
checked with respect to the initial matrix. In particular, the set G0 has to remain the
one initially defined during the first pass. Furthermore, the estimate μ̃({i, j}) used
to assess the quality of the pair {i, j} has to be adapted so as to correctly reflect
the quality of the corresponding aggregate μ(Gi ∪ Gj) in the original matrix. This
is obtained by using the same formula as in Algorithm 5.1 but slightly changing the
definition of s̃i. This change is needed to ensure that μ̃({i, j}) is a lower bound on
μ(Gi ∪ Gj) (see Appendix B for a proof). It means that if μ̃({i, j}) is above the
threshold, the pair should be rejected anyway because μ(Gi ∪ Gj) cannot be smaller
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Algorithm 5.1. Initial pairwise aggregation.

input: n× n matrix A = (aij)

threshold κ̄TG

output: nc and sets G0, . . . , Gnc

(0) Initialize: G0 = {i | aii ≥ κ̄TG+1
κ̄TG−1 (

∑n
k=1,k �=i |aik|)}

(1) U ← [1, n]\G0

nc ← 0

si ← −
∑

j �=i aij for all i ∈ U

(2) Iterate: while U �= ∅ do
(2a) Select i ∈ U

(2b) Find j ∈ U\{i} such that aij �= 0 and

μ({i, j}) =
−aij +

(
1

aii+si+2aij
+ 1

ajj+sj+2aij

)−1

−aij +
(

1
aii−si

+ 1
ajj−sj

)−1

is minimal

(2c) nc ← nc + 1

(2d) if (μ({i, j}) ≤ κ̄TG) Gnc = {i, j}; U ← U\{i, j}
else Gnc = {i}; U ← U\{i}

than κ̄TG . It also means that μ̃({i, j}) ≤ κ̄TG can only be a preliminary acceptance
criterion, which has to be supplemented by an explicit check that μ(Gi ∪Gj) ≤ κ̄TG ;
however, as indicated above, this can be done by factorizing a |Gi ∪ Gj | × |Gi ∪ Gj |
matrix. These considerations lead to Algorithm 5.2.

Eventually, we make explicit in Algorithm 5.3 how these pairwise aggregation
procedures are put together. An uncommon feature is that one can perform an ar-
bitrary number of passes of pairwise aggregation without degrading the upper bound
on the condition number. In practice, the process is stopped either if the specified
maximal number of passes has been reached or once the coarsening factor is above a
given target.

5.3. Priority rules. So far, we have not discussed how to select the unknown
in U at step (2a) of the pairwise aggregation algorithms. For a given unknown i ,
there also may be several neighbors j for which μ({i, j}) or μ̃({i, j}) is minimal. If no
priority rules are specified, the resulting aggregation will be sensitive to the ordering
of the unknowns and/or the way in which off-diagonal entries are stored.

Now, note that whereas the regularity of the aggregation is not an objective
in itself, in practice it favors the coarsening speed at the subsequent coarse levels.
Hence, after having tested several priority rules inspired from those in [26, 22], we
found that the best results were obtained with a simple rule which primarily aims
at producing regular aggregation patterns on regular grids. Somewhat surprisingly,
good performance carries over to problems on unstructured grids: in such cases results
obtained with the rule given below are at least as good as those obtained with more
sophisticated choices based on the dynamic update of the unknowns’ degree.

The rule is as follows for the initial pairwise aggregation of the top level (fine
grid) matrix. We first compute a Cuthill–McKee (CMK) permutation [11]; that is,
we assign the number 1 to a node with minimal degree, and we assign the next
numbers to its neighbors, ordered again by increasing degree; then, we number the
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Algorithm 5.2. Further pairwise aggregation.

input: n× n matrix A = (aij)

threshold κ̄TG

tentative ñc and sets G̃k, k = 1, . . . , nc

corresponding ñc × ñc matrix Ã = (ãij)

output: nc and sets G1, . . . , Gnc

(1) Initialize: U ← [1, ñc]

nc ← 0

s̃i ← −
∑

k∈Gi

∑
j /∈Gi

akj for all i ∈ U

(2) Iterate: while U �= ∅ do
(2a) Select i ∈ U

(2b) Set T = {j | ãij �= 0 and μ̃({i, j}) ≤ κ̄TG}, where

μ̃({i, j}) =
−ãij +

(
1

ãii+s̃i+2ãij
+ 1

ãjj+s̃j+2ãij

)−1

−ãij +
(

1
ãii−s̃i

+ 1
ãjj−s̃j

)−1

(2c) nc ← nc + 1

(2b) if (T �= ∅)
Select j ∈ T with minimal μ̃({i, j})
if (μ(G̃i ∪ G̃j) ≤ κ̄TG) Gnc = G̃i ∪ G̃j ; U ← U\{i, j}
else T ← T \{j}; goto step (2b)

else Gnc = G̃i; U ← U\{i}

Algorithm 5.3. Multiple pairwise aggregation.

input: n× n matrix A

threshold κ̄TG

maximal number of passes npass

target coarsening factor τ

output: nc and sets G0, . . . , Gnc

corresponding aggregation matrix Ac

(1) First pass: Apply Initial pairwise aggregation algorithm

to matrix A with threshold κ̄TG;

Output: n
(1)
c , G0, and G

(1)
1 , . . . , G

(1)
nc ;

(2) Form A(1) ← PTAP with P defined via (3.2)

with respect to G
(1)
1 , . . . , G

(1)
nc

(3) Iterate: for s = 2, . . . , npass

(3a) Next passes: Apply Further pairwise aggregation algorithm

to matrix A with threshold κ̄TG, ñc = n
(s−1)
c ,

G̃k = G
(s−1)
k , k = 1, . . . , n

(s−1)
c , and Ã = A(s−1) ;

Output: n
(s)
c , G

(s)
1 , . . . , G

(s)
nc ;

(3b) Form A(s) ← PTAP with P defined via (3.2)

with respect to G
(s)
1 , . . . , G

(s)
nc

(3c) if (nnz(A(s)) ≤ nnz(A)
τ ) goto step (4)

(4) nc ← n
(s)
c , Gk ← G

(s)
k , k = 1, . . . , nc, and Ac ← A(s)
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Fig. 3. CMK ordering for a five-point stencil on a 5× 5 grid.

unnumbered neighbors of the node that has just been given the number 2, still by
increasing degree; we next proceed with the neighbors of node 3, and so on until
all nodes are numbered. For example, when applying this procedure to a rectangu-
lar grid equipped with a five-point stencil, one obtains an ordering as illustrated in
Figure 3.

Note that there is still some uncertainty in this process, since there are in general
several nodes with minimal degree, and hence several possible starting nodes. A given
node may also have several unnumbered neighbors with same degree. However, the
impact of the choices made here seems minimal. For instance, consider the example
of Figure 3. The only possible starting nodes are the four corner nodes. Once the
algorithm has started from, say (as illustrated), the bottom left corner node, we can
assign the number 2 to either its northern or eastern neighbor—the eastern one in
the case of Figure 3. This is, however, the last step where some freedom is left: all
nodes processed subsequently have only one unnumbered neighbor, except those on
the bottom line of the grid, but their neighbor which is itself on the bottom line has a
smaller degree and therefore should be numbered first. Moreover, with other choices
during the first two steps one would obtain orderings with identical structure, just
rotated and/or mirrored. Hence, the remaining choices seem unimportant, and we
do not specify how they should be made. Note that we tested the consistency of
our approach by repeating the numerical experiments in the next section with ran-
domized choices anywhere it was possible, obtaining for each problem nearly identical
performances.

Now, once this CMK permutation has been computed, we apply the initial pair-
wise aggregation algorithm, always giving priority to the node with the smallest num-
ber in this CMK permutation. This rule is used in Algorithm 5.1 both at step (2a)
to select the unknown i in U and at step (2b) to discriminate between neighbors j
yielding the same quality (up to rounding errors) for the pair {i, j} .

For the subsequent passes (Algorithm 5.2), and also for all passes at the coarser
levels, we note that the ordering in the matrix at hand is driven by the ordering in
which the pairs have been formed, which, during the first pass, is itself driven by
the CMK permutation. Hence we simply give priority at any stage to the node with
the smallest number in the current ordering. Proceeding recursively in this way, the
initial CMK permutation induces the choices throughout all levels.

We illustrate in Figure 4 the performance of the resulting aggregation algorithm
with three passes at each level. This configuration is obtained, e.g., by using Algo-
rithm 5.3 with κ̄TG = 11.5 , τ = 8, and npass ≥ 3. The first three pictures show
the aggregation pattern produced by these three successive passes at the top level,
whereas the last picture (bottom right) gives at once the result of the multiple pairwise
aggregation at the next level.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1098 ARTEM NAPOV AND YVAN NOTAY

Fig. 4. Aggregation for the model Poisson problem on the unit square with h = 1/32 ; dark (red)
boxes correspond to nodes in G0, whereas light gray (green) boxes correspond to aggregates. Top:
after one (left) and two (right) pairwise aggregations passes applied to the level 1 matrix. Bottom:
the complete result of the multiple pairwise aggregation algorithm with three passes at level 1 (left)
and level 2 (right); in the right-hand picture, nodes that are not in any box are those in G0 at the
previous level and hence are not represented anymore in the coarse grid matrix.

5.4. Model problem analysis. One sees in Figure 4 that after two successive
aggregation steps with three passes each, the coarse grid has a regular structure similar
to the one on the fine grid. One may then wonder if this regularity depends on the
problem size. In Figure 5 we display the aggregation pattern obtained for the same
problem with h = 1/64. Clearly, the structure of the resulting coarse grid is similar to
that for h = 1/32. This is not surprising. With our algorithm, aggregates are formed
in a regular fashion starting from the corner in which the CMK ordering has been
initiated. Irregularities occur only when reaching opposite boundaries. But if two

grids with n
(1)
x ×n

(1)
y and n

(2)
x ×n

(2)
y nodes are such that |n(1)

x −n
(2)
x | and |n(1)

y −n
(2)
y |

are multiples of 8, these irregularities will be treated in exactly the same way and
hence the resulting matrices will have similar structure. Therefore, generally speaking,
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Fig. 5. Aggregation for the model Poisson problem on the unit square with h = 1/64: result of
the multiple pairwise aggregation algorithm with three passes at level 1 (left) and level 2 (right).

starting from a matrix corresponding to h = 2−k (that is, a grid with (2k−1)×(2k−1)
nodes), one obtains a (2k−3 − 1) × 2k−3 grid with five-point connectivity; this holds
for any k ≥ 5. Note that, starting from a square grid we obtain a rectangular grid
with rectangle “orientation” depending on which neighbor of the starting corner node
has been numbered first when computing the CMK ordering (the discussion above
assumes that the CMK permutation is as in Figure 3).

Now, one may wonder if these observations can be recursively applied to anticipate
the result of further coarsening steps. Here, a key argument is that when discarding
the (lines and columns of) nodes that are closest to boundaries (which will be assigned
to G0 in a further aggregation process), all remaining aggregates are square, regularly
aligned, and have the same size. Hence (see (3.3)), the entries in the stencil will be
those of the standard five-point stencil we have started from, up to a scaling factor.
Moreover, one may check that the ordering of this coarse grid matrix is a CMK
ordering, similar to (and induced by) the fine grid one. Hence a recursive application
of the above observations is possible, providing that they can be extended to cases
where the starting grid is a (2k − 1) × 2k grid, instead of a (2k − 1) × (2k − 1) grid
as considered so far. In Figure 6, we display the aggregation pattern obtained for
such a 63× 64 grid. One sees that the coarse grid (and, hence, the associated coarse
grid matrix) after two steps corresponds to a 7 × 8 grid and is in fact identical to
that obtained in Figure 5 when coarsening the matrix associated to the 63× 63 grid.
Moreover, one may check that the ordering associated to every coarse grid node is
identical in both cases. We have therefore shown the essential part of the following
proposition.

Proposition 5.1. Let A = A1 be the matrix corresponding to the five-point
discretization of the Poisson equation on the unit square with uniform mesh size h =
2−k for some positive integer k. Consider 	 successive applications of the multiple
pairwise aggregation algorithm with three passes, using the priority rules described in
section 5.3. If 	 is a positive even integer such that k − 3�

2 ≥ 2, then the resulting
coarse grid matrix A� corresponds to a five-point stencil on a rectangular grid with
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Fig. 6. Aggregation for the model Poisson problem on the 1× (1 + h) rectangle with h = 1/64:
result of the multiple pairwise aggregation algorithm with three passes at level 1 (left) and level 2
(right).

(2k−
3�
2 − 1)× 2k−

3�
2 nodes, and one has

(5.1) nnz(A�) ≤ 8−� nnz(A).

Proof. The discussion above shows the main result, and it remains to prove (5.1).
We have nnz(A1) = 5(2k − 1)2 − 4(2k − 1), whereas

nnz(A�) = 5(2k−
3�
2 − 1)2k−

3�
2 − 2(2k−

3�
2 − 1)− 2 · 2k− 3�

2 .

Hence, since k ≥ 3�
2 + 2, by assumption

nnz(A1)− 23� nnz(A�) = 2k(9 · 2 3�
2 − 14) + 9− 2 · 23�

≥ 4(9 · 23� − 14 · 2 3�
2 ) + 9− 2 · 23�

= 34 · 23� − 56 · 2 3�
2 + 9.

The latter (bottommost) expression is a second degree polynomial in 2
3�
2 , which is in-

deed always positive when the argument is not less than 8, as ensured by the condition
	 positive and even, which entails 	 ≥ 2.

5.5. Illustration. We conclude this section with an illustration of our aggrega-
tion procedure on an example with unstructured mesh. More precisely, we consider
the linear finite element discretization of

(5.2)

{
−∂2u

∂x2 − ∂2u
∂y2 = 0 on Ω = [−1, 1]2\[0, 1]× [−1, 0],

u = r
2
3 sin(2θ3 ) on ∂Ω,

where (r, θ) is the polar coordinate representation of (x, y) . The discretization is
performed on the mesh illustrated in Figure 7, in which the simplex size is progres-
sively decreased near the reentering corner, in such a way that the mesh size in its
neighborhood is about 10 times smaller.
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Fig. 7. L-shaped domain with unstructured mesh refined near the reentering corner (left) and
zoom on the region near the corner delimited with blue (dark) contour (right).

The result of the application of Algorithm 5.3 to this problem is illustrated in
Figure 8. Priority rules are as indicated in subsection 5.3, and the parameters are
threshold κ̄TG = 11.5, maximal number of passes npass = 5, and target coarsening
factor τ = 8 . In practice, four passes have been necessary at level 1, three at level
2, and only two at level 3 (thanks to the large number of nodes in G0). Hence the
coarsening factor is in all cases above the target, but this sometimes requires more
than the three passes needed in the case of a regular grid. In fact, as one can see in
the figure, especially at the top level, the aggregates here are far from “geometric,”
and, if the mean aggregate size is above 8, the actual aggregate size ranges from 1 to
16.

6. Numerical experiments. Our first set of test problems corresponds to finite
element and finite difference discretizations on structured grids with uniform mesh size
h in all directions; all problems are defined on a unit square (2D) or a unit cube (3D).
We give only brief descriptions of these problems here and refer the reader to [22] for
further details. Our test problems include

• five-point discretization of constant coefficients problem in two dimensions
with coefficients (1 , εy); we consider εy = 1 (Mod2D), εy = 10−2 (Ani2Da),
and εy = 10−4 (Ani2Db);
• seven-point discretization of constant coefficients problem in three dimen-
sions with coefficients (εx , εy , 1); we consider εx, εy = 1 (Mod3D), εx =
0.07, εy = 1 (Ani3Da), εx = 0.07, εy = 0.25 (Ani3Db), εx = 0.07, εy = 0.07
(Ani3Dc), εx = 0.005, εy = 1 (Ani3Dd), εx = 0.005, εy = 0.07 (Ani3De),
εx = 0.005, εy = 0.005 (Ani3Df );
• five- and seven-point discretizations of piecewise-constant coefficient problem
in two dimensions (Jump2D) and in three dimensions (Jump3D);
• nine-point bilinear finite element discretization of isotropic constant coeffi-
cient problem in two dimensions (BFE).

The remaining test problems consist of finite element discretizations on (mainly)
unstructured grids.
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Fig. 8. Aggregation for the problem (5.2) discretized on the mesh depicted in Figure 7. Top:
after one application of the multiple pairwise aggregation algorithm (left) and zoom near the reen-
tering corner (right). Bottom: after two (left) and three (right) applications of the multiple pairwise
aggregation algorithm.

Problem LUnfSt: Linear finite element discretization of (5.2) on a uniform mesh
with right triangles.

Problem LRfUstr: Linear finite element discretization of (5.2) on an unstruc-
tured mesh with simplex size progressively decreased near the reentering corner, in
such a way that the mesh size in its neighborhood is about 10 r times smaller, with r
going from 0 (LRfUst0) to 5 (LRfUst5); for r = 1, this is the mesh illustrated in
Figure 7, further uniformly refined four times (size S1) or five times (size S2).

Problem SphUnfd: Linear finite element discretization of⎧⎪⎪⎨⎪⎪⎩
−∇ · d∇u = 0 on Ω̃ = {r = (x, y, z)T | ‖r‖ < 1},
−∇ · ∇u = 0 on Ω = [−2.5, 2.5]3\Ω̃,

u = 0 for |x| = 2.5, −2.5 ≤ y, z ≤ 2.5,
u = 1 elsewhere on ∂Ω
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Table 1

Problem sizes.

S1 S2

Problem n
106

nnz(A)

106
n

106
nnz(A)

106

LUnfSt 0.20 1.0 3.1 16
LRfUst 0.72 → 1.8 5.1 → 12 2.9 → 7.1 20 → 50
SphUnf 0.53 7.6 4.2 61
SphRf 0.15 2.2 1.2 18

with ∇ = 1x
∂
∂x + 1y

∂
∂y + 1z

∂
∂z on an unstructured quasi-uniform mesh; we consider

d = 10−3 (SphUnf−3), d = 1 (SphUnf0), and d = 103 (SphUnf3).

Problem SphRfd: Same as above, but with five times smaller sphere Ω̃ having 10
times smaller simplices near its surface.

Every test problem may lead to systems with variable size n. For finite difference
problems on structured grids we consider three system sizes:

• S1, corresponding to h−1 = 600 in two dimensions (n ≈ 0.36 106) and h−1 =
80 in three dimensions (n ≈ 0.51 106);
• S2, corresponding to h−1 = 1600 in two dimensions (n ≈ 2.5 106) and h−1 =
160 in three dimensions (n ≈ 4.1 106);
• S3, corresponding to h−1 = 5000 in two dimensions (n ≈ 25 106) and h−1 =
320 in three dimensions (n ≈ 33 106).

Regarding finite element discretizations on unstructured grids, we use only two sizes:
S1 and S2, which roughly correspond to O(105) and O(106) unknowns, respectively;
see Table 1 for more details.

Our method has been applied to all test problems in a uniform (black box) fashion.
The multilevel algorithm was used as a preconditioner for the conjugate gradient
method and implemented as in Algorithm 4.1, using the band smoother described in
section 3. The AMLI cycle was used with γ = 4 iterations on the coarse levels and with

weights ξ
(j)
� being the coefficients of polynomials (4.4) based on the recursive estimate

(4.3) with κ̄TG = 11.5. For the coarsening, we uniformly use the same parameters
as in section 5.5: threshold κ̄TG = 11.5, maximal number of passes npass = 5, and
target coarsening factor τ = 8. It means that one may occasionally obtain a few
aggregates of size much larger than the target (up to 32). We therefore slightly
modified Algorithm 5.2 to avoid a harmful impact on the smoother’s bandwidth; that
is, we further reject at step (2b) also those pairs whose acceptance would induce a
bandwidth larger than 10 for the band smoother. This turns out to have a limited
impact on the coarsening (only aggregates of size larger than 10 can be rejected)
while ensuring a reasonable computational cost of the smoothing iterations. We also
checked that this modification has no impact on the coarsening depicted in Figure 8;
i.e., although there are some aggregates of size 10 to 16, none of them has a bandwidth
larger than 10.

The conjugate gradient method was used with the zero vector as initial approxi-
mation, and iterations were stopped when the relative residual error was below 10−6.
Results are reported in Tables 2 and 3. All timings are elapsed times when running a
Fortran 90 implementation of the method on a computing node with two Intel XEON
L5420 processors at 2.50GHz and 16Gb RAM memory.

What is perhaps the most striking from these results is the regularity of the
method performance. Take, for instance, as reference the Mod2D problem for which
our analysis also covers the coarsening speed, and consider the S3 size. The weighted
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Table 2

Computational complexity, condition number, and number of iterations needed to reduce the
residual norm by 10−6.

CW κ(B−1
1 A) #Iter

Problem S1 S2 S3 S1 S2 S3 S1 S2 S3
Mod2D 1.9 2.0 2.0 7.0 7.4 7.6 23 24 26
Mod3D 1.8 1.9 1.9 6.0 6.1 6.1 18 18 19
Ani2Da 1.7 1.9 1.9 9.1 8.8 8.9 21 25 25
Ani2Db 1.8 1.8 1.9 1.3 2.0 7.5 7 11 16
Ani3Da 1.4 1.4 1.4 6.4 6.9 7.4 20 22 24
Ani3Db 1.5 1.5 1.5 7.1 7.6 8.2 18 19 26
Ani3Dc 1.7 1.7 1.8 6.0 6.0 6.4 19 20 21
Ani3Dd 1.4 1.4 1.4 10.2 13.1 13.1 26 30 31
Ani3De 1.4 1.4 1.4 11.5 12.0 12.6 26 28 29
Ani3Df 1.6 1.6 1.9 1.8 7.2 8.5 10 20 23
Jump2D 1.5 1.5 1.6 10.4 11.2 12.2 27 29 32
Jump3D 1.5 1.5 1.5 6.5 7.1 7.5 22 24 25
BFE 1.6 1.6 1.6 5.6 5.9 6.1 21 23 24
LRfUst0 1.7 1.7 5.3 6.5 7 9
LRfUst1 1.7 1.7 5.0 5.6 6 7
LRfUst2 1.7 1.7 5.0 6.4 6 8
LRfUst3 1.7 1.7 5.0 6.2 6 8
LRfUst4 1.7 1.7 5.0 6.2 6 8
LRfUst5 1.7 1.6 5.1 5.3 6 6
LUnfSt 1.9 2.0 6.2 6.8 16 17
SphRf−3 2.6 2.8 4.2 4.4 12 12
SphRf0 2.6 2.8 4.2 4.4 12 12
SphRf3 2.6 2.8 4.2 4.4 12 12
SphUnf−3 2.5 2.8 4.3 4.8 12 12
SphUnf0 2.6 2.8 4.3 4.8 12 12
SphUnf3 2.6 2.9 4.3 4.9 12 12

complexity is actually smaller for all other test problems, except 3D problems on an
unstructured grid, for which it is at worst 50% larger. The resulting condition number
is also at most twice that forMod2D, and in fact remains in all cases smaller than half
of the guaranteed bound (2.2). Along the same lines, the number of iterations ranges
between half of and 25% more than that needed to solve the reference model problem.
Eventually, the total time per unknown is in all cases within a modest factor of that
of the Mod2D problem—a factor which most often is related to a larger number of
nonzero entries per row in the matrix.

Note also that this stability in performance holds for both structured and un-
structured grid problems, despite the fact that our aggregation algorithm mimics
well a “geometric” aggregation algorithm in the structure case but may work quite
differently in the unstructured one (compare Figures 4 and 8).

Eventually, we compare the method presented here with different versions of
aggregation-based AMG, and also, when feasible, with the sparse direct solver avail-
able in MATLAB via the “\” command. The total solution time (including setup) is
reported in Table 4 for a representative sample of our test examples. AggGar stands
for the method described in the present paper, and AGMG 2.3 is the 2.3 version of
the AGMG software [21], which implements the heuristic method from [22]. On the
other hand AGMGar uses our new aggregation algorithm but defines the other ingre-
dients essentially as in [22]; that is, the coarsening is obtained using Algorithm 5.3
with threshold κ̄TG = 8 , maximal number of passes npass = 2, and target coarsening
factor τ = 4 , and this is combined with the Gauss–Seidel smoother and the K-cycle
(i.e., the coarse system is solved at each level with two conjugate gradient iterations).
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Table 3

Set-up time, solution time, and total time reported here per million of unknowns (with Ttotal =
Tsol + Tsetup).

Tsetup Tsol Ttot
Problem S1 S2 S3 S1 S2 S3 S1 S2 S3
Mod2D 1.2 1.1 1.7 6.4 7.6 8.7 7.5 8.8 10.3
Mod3D 1.6 2.6 2.9 5.7 6.5 7.3 7.3 9.1 10.1
Ani2Da 1.8 1.7 2.3 5.1 7.4 8.0 6.8 9.1 10.3
Ani2Db 1.8 1.7 2.5 1.8 3.1 4.9 3.6 4.9 7.4
Ani3Da 2.1 3.6 4.0 5.3 6.5 7.3 7.5 10.1 11.4
Ani3Db 2.4 4.0 4.5 4.8 5.6 8.3 7.1 9.6 12.8
Ani3Dc 2.8 4.7 5.2 6.2 7.4 8.1 9.1 12.1 13.3
Ani3Dd 2.3 3.8 4.2 6.6 8.6 9.0 8.9 12.4 13.3
Ani3De 2.4 4.1 4.6 6.3 7.3 7.9 8.6 11.4 12.5
Ani3Df 2.3 4.2 4.6 2.9 6.3 8.2 5.2 10.5 12.8
Jump2D 1.6 1.7 2.2 8.5 10.4 11.9 10.1 12.1 14.1
Jump3D 2.2 3.1 3.4 7.2 8.5 9.3 9.4 11.6 12.6
BFE 1.8 1.7 2.2 7.7 9.4 10.3 9.5 11.1 12.5
LRfUst0 2.2 2.2 2.9 3.9 5.1 6.0
LRfUst1 2.2 2.2 2.5 3.0 4.7 5.2
LRfUst2 2.1 2.1 2.5 3.6 4.6 5.6
LRfUst3 2.2 2.1 2.6 3.6 4.7 5.7
LRfUst4 2.2 2.1 2.5 3.6 4.7 5.8
LRfUst5 2.2 2.1 2.5 2.6 4.7 4.7
LUnfSt 1.8 1.8 6.1 6.8 7.8 8.7
SphRf−3 7.5 7.3 8.0 10.0 15.5 17.4
SphRf0 6.7 7.3 8.2 10.1 14.9 17.4
SphRf3 6.6 7.2 8.1 10.0 14.7 17.3
SphUnf−3 6.7 7.4 8.6 10.4 15.3 17.9
SphUnf0 6.7 7.4 8.7 10.4 15.4 17.8
SphUnf3 6.7 7.4 8.8 10.6 15.5 18.0

Table 4

Total solution time for the different versions of aggregation-based AMG and the MATLAB
direct solver (“ \”), reported per million of unknowns.

S1 S2 S3 S1 S2 S1 S2 S1 S2
Mod2D LRfUst0 LRfUst2 LRfUst4

AGMG 2.3 4.7 5.3 6.3 6.9 10.9 9.2 21.1 162.2 –
AggGar 7.5 8.8 10.3 5.1 6.0 4.6 5.6 4.7 5.8

AGMGar 3.4 3.5 3.9 3.3 3.0 3.4 2.8 2.9 2.9
MATLAB “\” 6.2 6.6 – 8.5 10.8 10.0 11.8 9.8 12.5

Mod3D SphRf−3 SphRf0 SphRf3

AGMG 2.3 5.0 6.3 6.9 11.0 10.8 10.6 10.9 10.6 10.9
AggGar 7.3 9.1 10.1 15.5 17.4 14.9 17.4 14.7 17.3

AGMGar 3.5 4.3 5.0 8.5 7.4 7.1 7.5 8.4 7.4

One sees that when AGMG 2.3 works well, it requires about 40% less time than
the method presented here. However, like any heuristic method, AGMG 2.3 may occa-
sionally fail; see the 2D example with strong local refinement. Then it pays off to use
the method with guaranteed convergence rate (AggGar). Further, AGMGar seems to
combine the advantages of both approaches. We explain this as follows. The relative
slowness of AggGar (compared with AGMG 2.3) is mainly due to the constraints as-
sociated with the use of the AMLI-cycle, in particular the need to perform four inner
iterations at each level. However, in practice (this cannot be proved), the K-cycle is
as efficient as the AMLI-cycle in stabilizing the condition number once the two-grid
scheme satisfies some minimal requirements [24] and such minimal requirements are
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met when using the new aggregation with the parameters indicated above. Hence
combining the new aggregation algorithm with the K-cycle allows AGMGar to be as
fast as the heuristic method AGMG 2.3, while preserving the additional robustness
associated with the new aggregation algorithm.

On the other hand, the comparison with MATLAB “\” allows us to consider the
performances of aggregation-based methods from a more general viewpoint. One sees
that AGMG 2.3 and AGMGar are both faster on the model Poisson problem in two
dimensions, for which the direct solver is practically scalable and known as “hard to
beat.” Further, interestingly enough, the AMG variants based on the new coarsening
algorithm are apparently more robust in the presence of strong local refinement.

7. Conclusions. We have presented a purely algebraic (black box) multigrid
method that has a guaranteed convergence rate for any symmetric M-matrix with
nonnegative row sum. Like many AMG schemes, our method has some uncertainty in
the coarsening factor and, hence, in the computational cost per iteration. However, we
showed that a sufficiently fast coarsening is guaranteed at least for a model 2D prob-
lem, whereas numerical results indicate that satisfactory complexities are obtained in
quite diverse cases without any parameter tuning.

Moreover, the results obtained with AGMGar (see Table 4) show that the aggre-
gation method presented here can also be useful in a more general context. Of course,
AGMGar would deserve a more detailed presentation, and these results raise several
further questions, such as the applicability to non–M-matrices. However, we do not
pursue this discussion here, as it would lead us outside the scope of the present paper.
We only briefly mention that the aggregation algorithms of section 5 can actually
be applied to SPD matrices that are not M-matrices, i.e., that have some positive
off-diagonal entries. If the matrix has nonnegative row sum, the main steps of our
analysis still apply, except that the matrix Ar in the splitting A = Ab+Ar referred to
in section 3 is no longer guaranteed to be nonnegative definite; hence, the approach
corresponds to a sensible heuristic in applications for which this matrix, which still
has zero row sum, remains close enough to nonnegative definiteness. On the other
hand, it is worth noting that the approach developed here has been further extended
in [23] to nonsymmetric M-matrices.

Software. The results of this research have been integrated in the AGMG soft-
ware [21] (released under the terms of the GNU General Public License), whose version
3.1.1 is nearly identical to the code referred to above as AGMGar.

Appendix A. Here we derive an explicit expression for the quality μ(G) of an
aggregate G = {i, j}. In this context,

AG =

(
aii − si − aij aij

aji ajj − sj − aji

)
= −aij

(
1 −1
−1 1

)
+

(
δ1

δ2

)
,

where si = −
∑

k �=i aik, sj = −∑
k �=j ajk, δ1 = aii − si, and δ2 = ajj − sj . Since we

consider the block-diagonal (or the band) smoother,

MG =

(
aii + si + aij aij

aji ajj + sj + aji

)
= −aij

(
1 −1
−1 1

)
+

(
η1

η2

)
,

where ηi = aii+ si+2aij , ηj = ajj + sj +2aij . Using these expressions in (3.8), some
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elementary algebra leads to

μ(G) =

(
−aij + η1η2

η1 + η2

)
sup
v �=1

vT ( 1 −1
−1 1

)v

vTAGv

=

(
−aij + η1η2

η1 + η2

)
sup

(v1,v2) �=(1,1)

(v1 − v2)
2

−aij(v1 − v2)2 + δ1v21 + δ2v22
.

Now, if δ1 = δ2 = 0, we have μ(G) = 1+ 1
−aij

η1η2

η1+η2
, whereas otherwise the supremum

is reached in (v1, v2) = (δ2,−δ1), which yields

μ(G) =

(
−aij + η1η2

η1 + η2

)/(
−aij + δ1δ2

δ1 + δ2

)
.

Eventually, replacing ηk, δk, k = 1, 2 , by their expression yields the formula for
μ({i, j}) in Algorithm 5.1, in which the denominator should be interpreted as equal
to −aij if either δ1 = aii − si = 0 or δ2 = ajj − sj = 0 .

Appendix B. Here, we prove that

(B.1) μ(Gi ∪Gj) ≥ μ̃({i, j}) ,
where μ(·) is defined as in Theorem 3.2 with respect to AGi∪Gj and MGi∪Gj , where Gi

and Gj are two disjoint sets, and where μ̃({i, j}) is defined as in the further pairwise
aggregation algorithm, with s̃i = −

∑
k∈Gi

∑
l/∈Gi

akl, s̃j = −∑
k∈Gj

∑
l/∈Gj

akl, and

Ã = PTAP and with P satisfying (3.2) with respect to Gi, Gj .
Let

Ã{i,j} =

(
ãii − s̃i − ãij ãij

ãji ãjj − s̃j − ãji

)
,

M̃{i,j} =

(
ãii + s̃i + ãij ãij

ãji ãjj + s̃j + ãij

)
,

and

Pf =

(
1Gi

1Gj

)
.

One has, as shown below,

Ã{i,j} = Pf
T AGi∪GjPf ,(B.2)

M̃{i,j} = Pf
T MGi∪GjPf .(B.3)

Noting that 1Gi∪Gj = Pf1{i,j} , the inequality (B.1) follows from

μ( Gi ∪Gj )

= sup
v/∈N (AGi∪Gj

)

vTMGi∪Gj (I − 1Gi∪Gj (1
T
Gi∪Gj

MGi∪Gj1Gi∪Gj )
−11T

Gi∪Gj
MGi∪Gj )v

vTAGi∪Gjv

≥ sup
w/∈N ( ˜A{i,j})

wT M̃{i,j}(I − 1{i,j}(1T
{i,j}M̃{i,j}1{i,j})−11T

{i,j}M̃{i,j})w

wT Ã{i,j}w

= μ̃({i, j}),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1108 ARTEM NAPOV AND YVAN NOTAY

where we have used v = Pfw to obtain the inequality in the second line and where
the last equality is shown in Appendix A.

We eventually prove (B.2), the proof of (B.3) following along the same lines.

Regarding the first diagonal element of Ã{i,j}, we have, using (3.3) and the definition
of s̃i,

(Ã{i,j})11 = ãii − s̃i − ãij

=
∑
k∈Gi

∑
l∈Gi

akl+
∑
k∈Gi

∑
l/∈Gi

akl −
∑
k∈Gi

∑
l∈Gj

akl

=
∑
k∈Gi

∑
l∈Gi

akl −
∑
k∈Gi

∑
l/∈Gi∪Gj

|akl|

= (PT
f A|Gi∪GjPf )11 − (PT

f ΣGi∪GjPf )11 .

Similarly, for the off-diagonal element,

(Ã{i,j})12 = ãij =
∑
k∈Gi

∑
l∈Gj

akl = (PT
f A|Gi∪GjPf )12 .

Hence, since AGi∪Gj = A|Gi∪Gj − ΣGi∪Gj and (PT
f ΣGi∪GjPf )12 = 0, the equality

(B.2) follows.
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