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Nonlinear dynamics of an injected quantum cascade laser
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The stability properties of an injected quantum cascade laser are investigated analytically on the basis of
current estimates of the laser parameters. We show that in addition to stable locking, Hopf bifurcations leading
to pulsating intensities are possible. We discuss the stability diagrams in terms of the detuning and the injection
rate for different values of the linewidth enhancement factor. The analysis indicates domains of coexistence
between two stable steady states (bistability) or between a stable steady state and stable periodic oscillations. All
predictions are verified numerically by determining bifurcation diagrams from the laser rate equations.
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I. INTRODUCTION

Quantum cascade (QC) lasers are midinfrared semiconduc-
tor light sources based on intersubband electron transitions
in coupled quantum-well systems. They are characterized by
ultrafast (picosecond) carrier lifetimes, which contrast to the
slow carrier lifetime of conventional semiconductor lasers
(nanosecond). This property makes QC lasers ideally suited
for high-speed operation. Moreover, they can be fabricated to
operate anywhere between 3.5 and 20 μm, which makes them
an ideal choice for infrared chemical sensing. A particular
feature of QC lasers is the absence of relaxation oscillations.
Relaxation oscillations are observed in most lasers used
in applications (solid state, quantum well semiconductor,
and CO2 lasers) and result from the relative large carrier
lifetime compared to the photon lifetime. A slight external
perturbation (modulation, injection, or optical feedback) is
enough to induce sustained pulsating intensities [1]. In the
case of infrared chemical sensing, frequency stabilization by
injection locking has been successfully used [2]. However,
the possibility that a locked state may become unstable and
lead to pulsating intensity regimes has never been observed
experimentally.

The optically injected laser problem is the simplest exper-
imental set-up that allows us to test the nonlinear stability
of a specific laser. The dynamical possible regimes of an
injected quantum well laser are well documented (see Ref. [3]
for a review). More recently, the injection locking properties
of vertical-cavity-surface emitting lasers [4], two-color (two-
mode) lasers [5], and quantum-dot (QD) lasers [6,7] have been
explored experimentally.

Most theoretical studies on the stability properties of lasers
and their bifurcations are based on rate equations [1], but
if we wish to determine fundamental properties of QCLs
such as the gain spectra or the linewidth enhancement factor,
other approaches based on microscopic kinetic equations are
currently developed [8]–[10].

A recent theoretical analysis by Meng and Wang [14]
concluded that the locked state of a QC laser is always
stable. Wang et al. [15] examined the modulation properties
of an injected QC laser and found instabilities for positive
detunings. The main objective of this paper is to demonstrate
that pulsating instabilities generated by a Hopf bifurcation are
possible even for low values of the linewidth enhancement
factor. To this end, we consider a minimal three-variable rate
equation model. As we shall review in the next section, there
is a good agreement in the literature for the values of the
fixed time constants. Only the value of α remains unclear
and values from −2 to 2 have been reported (see Section 3.2 in
Ref. [14]). This is why analytical investigations of the injection
laser problem with α as a free parameter are needed.

Specifically, we formulate the rate equations in dimension-
less form and analyze the linear stability of the steady states.
We show that two distinct Hopf bifurcations appear at the edges
of the locking domain for a zero linewidth enhancement factor
(α = 0). Both Hopf bifurcations then progressively invade the
locking domain as α is increased from zero. Above a critical
value of α, one of the two Hopf bifurcations passes through
the zero detuning line, limiting the locking domain to low
injection rates.

The plan of the paper is as follows. In Sec. II, we formulate
the rate equations and review parameter values from several
references. We then carefully formulate dimensionless rate
equations that are the basis of our analysis. The values of the
dimensionless parameters motivate the adiabatic elimination
of one of the carrier variables. The reduced equations are
analyzed in Sec. III. Expressions for the stability boundaries
in the detuning versus injection rate space are derived and their
predictions are verified by determining numerical bifurcation
diagrams in Sec. IV. Our main results are summarized and
discussed in Sec. V. Mathematical details on the dimensionless
formulation and on the linear stability analysis are relegated
in Appendix A and B, respectively.

032907-11539-3755/2013/88(3)/032907(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.032907


ERNEUX, KOVANIS, AND GAVRIELIDES PHYSICAL REVIEW E 88, 032907 (2013)

TABLE I. Values of the time constants (all in ps).

Parameter Symbol [11] [13] [14] [15]

Photon lifetime τp 5.77 3.7 27.6/9.91 1
Photon scatt. time (3 → 2) τ32 2.1 2 1.77/0.66 1.5
Photon scatt. time (3 → 1) τ31 2.6 2.44 ∞ ∞
Photon scatt. time (2 → 1) τ21 0.3 0.3 0.26/0.14 0.21/1.2
τ−1

3 = τ−1
31 + τ−1

32 τ3 1.16 1.1 τ3 = τ32 τ3 = τ32

II. FORMULATION

We consider the rate equations formulated by Gensty
et al. [11] and Gensty and Elsäßer [12]. The active region
of a QC laser consists of a period of Np cascaded gain
stages (Np = 25 − 35). Each gain stage incorporates three
energy levels labeled 1, 2, and 3 (see Fig. 1 in Ref. [12]).
The carriers are injected into level 3, i.e., the upper laser
level, by resonant tunneling. After the radiative laser transition
(3 → 2), the carriers relax into level 1 by the emission of a
longitudinal-optical phonon (2 → 1) and tunnel through the
exit barrier into the subsequent miniband. For a QC laser
incorporating Np cascaded gain stages, the total number of
rate equations equals 4Np. But under reasonable assumptions,
we may reduce these equations to the following equations for
the carrier populations N2 and N3, corresponding the energy
level 2 and 3, respectively, and the total photon number within
the laser cavity S

dN3

dt
= Iin

q
− N3

τ32
− N3

τ31
− g(N3 − N2)S, (1)

dN2

dt
= N3

τ32
− N2

τ21
+ g(N3 − N2)S, (2)

dS

dt
=

[
Npg(N3 − N2) − 1

τp

]
S. (3)

In Eqs. (1)–(3), Iin is the injected current into level 3, q is
the electron charge, and g is the gain coefficient. The phonon
scattering times between level 3 and level 2, between level
3 and level 1, and between level 2 and level 1 are denoted
by τ32, τ31, and τ21, respectively. τp is the photon lifetime
[11,12]. Typical values of the time constants are documented in
Table I. Equations (1)–(3) are the same as the equations
investigated by Petitjean et al. [13] with τ3 ≡ (τ−1

32 + τ−1
31 )−1

and τ2 ≡ τ21.

Supplemented by the contribution of the injected sig-
nal, the rate equations for the slave laser are given by
[Einj = √

Si exp(iωit), Eslave = √
S exp(iφ) exp(iωt), where

ω ≡ ωi − ω0 is the frequency detuning between master and
slave lasers]

dN3

dt
= Iin

q
−

(
1

τ32
+ 1

τ31

)
N3 − g(N3 − N2)S, (4)

dN2

dt
= N3

τ32
− N2

τ21
+ g(N3 − N2)S, (5)

dS

dt
=

[
Npg(N3 − N2) − 1

τp

]
S + 2η

√
SiS cos(φ), (6)

dφ

dt
= α

2

[
Npg(N3 − N2) − 1

τp

]
− ω − η

√
Si

S
sin(φ). (7)

η
√

Si measures the amplitude of the injected field and α is
defined as the linewidth enhancement factor. These equations
are the same as the equations studied by Meng et al. [14] and
Wang et al. [15] with τ−1

31 = 0. The α parameter describes
the coupling between the gain and the refractive index. For
conventional diode lasers, α is typically 3–6 and arises because
the two bands involved in the laser transition have opposite
curvature in k space, resulting in a spectrally asymmetric
differential gain. For QC lasers, the two laser subbands are
within the conduction band and exhibit the same reciprocal
space curvature. Consequently, QC lasers should display a
symmetric differential gain and a zero α [16]. However,
experiments determined nonzero values going from α = 0 to
α = 2 [17]– [20].

In order to determine the solutions of Eqs. (4)–(7), we
reformulate these equations in dimensionless form. This
reformulation is essential for the success of our analysis and
we detail the different steps in Appendix A. The dimensionless
evolution equations exhibit a reduced number of parameters
compared to Eqs. (4)–(7) and are given by

dZ

ds
= γ1[P + γ3V − γ4Z − (1 + 2Z)Y ], (8)

dV

ds
= γ2[2Z − V + (1 + 2Z)Y ], (9)

dY

ds
= 2YZ + 2γ

√
Y cos(φ), (10)

dφ

ds
= αZ − � − γ

√
1

Y
sin(φ), (11)

where s is time measured in units of the photon lifetime
(s ≡ t/τp). The parameters γ1, γ2, γ3, γ4, P , γ, and � are
defined by

γ1 = τp

τ32
, γ2 =

(
τ32

τ21
− 1

)
τp

τ32
,

γ3 =
(

τ32

2τ21
− 1 − τ32

2τ31

)
1(

τ32
τ21

− 1
) ,

(12)

γ4 = 2

(
1 + τ32

2τ31

)
, P ≡ Npgτpτ32

2

Iin − Ith

q
,

γ = ητp

√
Yi, and � = ωτp.

Using Table I, we may determine their values (see Table II).
Note the relatively large values of γ2 (underlined in Table II)
compared to γ1, γ3, and γ4.
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TABLE II. Dimenionless parameters.

[11] [13] [14] [15]

γ1 2.75 1.85 15.59/15.02 0.67/0.67

γ2 16.49 10.48 90.56/55.77 4.1/0.17

γ3 0.35 0.34 0.41/0.37 0.42/ − 1.5

γ4 2.81 2.82 2/2 2/2

III. FAST ESCAPE OF CARRIERS AT
THE LOWER LEVEL 2

The large value of γ2 (see Table II) suggests to eliminate V

by a quasisteady state approximation. In the limit τp/τ21 →
∞, we first note from Eq. (12) that

γ3 → 1

2
and P →

(
1 + τ32

τ31

)
(I − Ith)

2Ith
. (13)

Eliminating then V adiabatically from Eq. (9) gives

V = 2Z + (1 + 2Z)Y. (14)

Inserting Eq. (14) into the remaining equations, we obtain

dZ

ds
= γ1

[
P − γ41Z − (1 + 2Z)

Y

2

]
, (15)

dY

ds
= 2ZY + 2η

√
Y cos(φ), (16)

dφ

ds
= αZ − � − η

√
1

Y
sin(φ), (17)

where γ41 ≡ γ4 − 1 = 1.8 for the first two columns in Table II.
For the next two columns in Table II, γ41 = 1 and we
recover the traditional semiconductor laser rate equations. By
introducing γ41 = 1 and Y = 2R2 into Eqs. (15)–(17), we find

dZ

ds
= γ1[P − Z − (1 + 2Z)R2], (18)

dR

ds
= ZR + η1 cos(φ), (19)

dφ

ds
= αZ − � − η1

R
sin(φ), (20)

which are the dimensionless rate equations for a quantum well
semiconductor laser with η1 ≡ η/

√
2 [1]. There is, however,

an important difference between Eqs. (18)–(20) and the rate
equations of a conventional diode laser. Here, γ1 is an O(1)
quantity, while γ1 is O(10−3) small for the conventional
semiconductor laser. Provided γ1 > 8P (1 + 2P )−2, we have
verified that the solitary laser (η1 = 0) admits no relaxation
oscillations. It is also worthwhile to stress that Eqs. (18)–(20)
are not the equations for a Class A injected laser. For a Class
A laser (such as He-Ne and Ar+ lasers), the carrier Z is
adiabatically eliminated and α = 0 [1]. Equations (18)–(20)
then reduce to Eqs. (19) and (20) with

Z = P − R2

1 + 2R2
. (21)

This reduced model (with α) was studied by Mayol et al. [21].
Motivated by recent work on injected locked quantum dot
lasers [6,7], Eqs. (18)–(20) were recently analyzed by Kelleher
et al. [24]

We now propose to analyze the linear stability of the steady
state. As we shall demonstrate, it is possible to obtain analytical
solutions in parametric form. The procedure is similar to the
analysis detailed in Ref. [26] for quantum well semiconductor
lasers and in Refs. [6,7] for quantum dot lasers.

From Eqs. (15)–(17), we determine the steady-state solu-
tions for Y and Z as a function of η. The solution in parametric
form is (Z is the parameter)

Y = 2(P − γ41Z)

1 + 2Z
, (22)

η2 = [Z2 + (αZ − �)2]
2(P − γ41Z)

1 + 2Z
. (23)

From the linearized equations (see Appendix B), we eliminate
the trigonometric functions of φ by using the steady-state
equations. We then determine the following characteristic
equation:

λ3 − T1λ
2 + T2λ − T3 = 0, (24)

where

T1 = 2Z − γ1(γ41 + Y ), (25)

T2 = −2γ1(γ41 + Y )Z + γ1(γ41 + 2Z)Y + Z2 + (αZ − �)2,

(26)

T3 = −γ1(γ41 + Y )[Z2 + (αZ − �)2]

+ γ1(γ41 + 2Z)

[
YZ

+α(αZ − �)Y

]
. (27)

We next eliminate Y using Eq. (22). The coefficients of the
characteristic equation then only depend on the steady state
value of Z.

We wish to determine the stability diagram in terms of the
injection rate and detuning. There are two neutral stability
boundaries that delimit the regions of a stable steady state.
First the locking condition (saddle-node bifurcation with one
zero root) and second the Hopf bifurcation condition (two
purely imaginary roots). The first case implies T3 = 0, or
equivalently,

−γ41 + 2P

1 + 2Z
[Z2 + (αZ − �)2]

+2(P − γ41Z)[Z + α(αZ − �)] = 0. (28)

The second case implies T1T2 − T3 = 0 and T2 > 0.After
simplifying T1T2 − T3 = 0, we find

2Z

[
− 2γ1

γ41 + 2P

1 + 2Z
Z + Z2 + (αZ − �)2

]

−2γ 2
1

γ41 + 2P

1 + 2Z

[
−γ41 + 2P

1 + 2Z
Z + P − γ41Z

]
−γ12(P − γ41Z)[−Z + α(αZ − �)] = 0. (29)

The second Hopf condition T2 > 0 requires the inequality

−2γ1
γ41 + 2P

1 + 2Z
Z + γ12(P − γ41Z) + Z2

+ (αZ − �)2 > 0. (30)

The solution of these equations exists in parametric form
(Z is the parameter). Changing gradually Z (−1/2 < Z <
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FIG. 1. (Color online) Stability diagram for P = 1, γ1 = 2.5, and γ41 ≡ 1.81. The line SN (black) delimits the domain L of steady-state
locking through a saddle-node bifurcation (SN). H1 and H2 denote Hopf bifurcation lines (red) emerging from the SN line at Bogdanov-Takens
bifurcation points (dots). From left to right, the value of α is changed from 0 to 2. The domain of stable locked steady states is bounded by the
SN and Hopf lines.

P/γ41), we determine (αZ − �) from the quadratic Eqs. (28)
and (29). In this way we obtain � as a function of Z. From
Eq. (23), we then determine η as a function of Z. Three stability
diagrams are shown in Fig. 1 for three different values of α. If
α = 0, the stability diagram is symmetric with respect to the
� = 0 axis and two Hopf bifurcation lines emerge from the
edges of the locking domain. This diagram is similar to the
one for an injected Class A laser (see Fig. 2 in Ref. [21]). As
soon as α increases, the locking domain becomes asymmetric
and the Hopf bifurcation lines are moving inside the domain.
The one that appears for positive detuning (H1) is responsible
for a change of stability of the locked steady state as we
progressively increase the detuning from a low positive value
(injection rate fixed). Similarly, the second Hopf bifurcation
(H2) marks a change of stability of a steady state as we decrease
the detuning from a low negative value. As we shall show

FIG. 2. Loci of the BT points in the (α,�) diagram. The two
branches correspond to the BT points associated to the Hopf
bifurcations H1 and H2, respectively. If α > αc, a Hopf bifurcation
H2 is possible for � = 0. The values of the fixed parameters P, γ1,
and γ41 are the same as described in the legend of Fig. 1.

in the next section, these two Hopf bifurcations are playing
determinant roles in the bifurcation diagram of the stable
steady and periodic solutions.

Both Hopf bifurcation lines in Fig. 1 emerge from the
locking boundaries at Bogdanov-Takens (BT) points. They are
codimension-two bifurcation points that satisfy the conditions

T2 = T3 = 0. (31)

Using Eq. (31), we may determine a parametric solution for
�(Z) and α(Z) (not shown). We find two branches of solutions
corresponding to the BT points associated with either H1 or
H2;see Fig. 2. We are now ready to answer the question how
a Hopf bifurcation may appear at zero detuning ( � = 0).
Figure 2 indicates that this is possible for H2 if α > αc �
4.17. α = αc can be determined analytically by using Eq. (31)
together with � = 0.We find that α2

c is given by

α2
c = 2γ1(P − γ41Z)/Z2 − 1 � 0, (32)

where Z is the positive root of the quadratic equation

− 4γ41Z
2 + (2P − 3γ41)Z + 2P = 0. (33)

For the values of the fixed parameters P, γ1, and γ41

documented in Fig. 1, we find Z = 0.3396 and αc = 4.1679.

In summary, the domain of locked steady states has a
triangular shape in the injection versus detuning diagram (see
Fig. 1). As the linewidth enhancement factor is increased from
zero, this triangle increases in size with a larger contribution
in the negative detuning region α. Two Hopf bifurcations
are already present in the stability diagram for α = 0. As
α increases, they penetrate into the triangular domain of the
locked steady states. These Hopf bifurcations are leading to
pulsating intensity regimes, which we examine in the next
section.

IV. SIMULATIONS

If the detuning is negative, a region of steady-state
bistability is possible because a Hopf bifurcation stabilizes
the low-intensity steady-state branch; see Fig. 3. Simulations
of Eqs. (15)–(17) have been done by increasing and then
decreasing the detuning � in order to verify the hysteresis
of the steady-state branch.
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FIG. 3. (Color online) Same values of the fixed parameters as
described in the legend of Fig. 1. α = 1 and η = 0.7. The figure
represents the bifurcation diagram of the extrema of Y (black dots)
of the stable steady and periodic solutions. They are obtained by
simulating numerically Eqs. (15)–(17). The full line (green) comes
from the analytical expression of the steady state given by Eqs. (22)
and (23). The inset is a blow-up of the stability diagram in the vicinity
of the Hopf bifurcation (SN and Hopf lines are in black and red,
respectively).

The same bistability phenomenon is possible for the
conventional edge-emitting laser provided that the pump
parameter is close to threshold [25] . For those lasers,
experiments have been realized with a pump parameter slightly
below or slightly above threshold [22,23]. As the inset in Fig. 3
indicates, the H2 line passes one of the two SN lines as �

passes through � = −0.46. It allows the coexistence of stable
periodic and stable steady states.

In the case of positive detuning, the Hopf bifurcation
destabilizes the locked steady state as we increase the detuning
from a low value of � see Fig. 4. A jump to large amplitude
oscillations then appear as we pass the Hopf bifurcation point.
Simulations of Eqs. (15)–(17) have been done by increasing
and then decreasing the detuning � and reveal a large domain
of overlap between stable steady and periodic solutions.

V. DISCUSSION

We have considered a three-variable rate equation model
for a QC laser and have shown that Hopf bifurcations are
possible even for low values of the linewidth enhancement
factor. We also found that two locked steady states may coexist
(bistability) in the negative detuning region. Furthermore,
the coexistence of a stable periodic and a stable steady
state is possible in the negative or positive detuning regions.
This coexistence is, however, more significant in the positive
detuning region.

The analysis of the Hopf bifurcation conditions was
motivated by the fact that even a single mode class A laser (one
single equation for the field and no relaxation oscillations)
admit Hopf bifurcations if subject to an injected signal [1].

FIG. 4. (Color online) Same values of the fixed parameters as
described in the legend of Fig. 1. α = 1 and η = 0.229. The figure
represents the bifurcation diagram of the extrema of Y of the stable
steady and periodic solutions (black dots). They are obtained by
simulating numerically Eqs. (15)–(17). The full line (green) comes
from the analytical expression of the steady state given by Eqs. (22)
and (23). The inset is a blow-up of the stability diagram in the vicinity
of the Hopf bifurcation (SN and Hopf lines are in black and red,
respectively).

The stability diagram of an injected QC laser bears striking
analogies with the one of a QD laser when the latter admits
strongly damped relaxation oscillations [6,7]. However, the
values of the parameters appearing in the rate equations for
QD lasers are not as well documented as for QC lasers. The
dynamical properties of QD lasers depend on their design and
fabrication, which may or may not significantly increase the
damping rate of the relaxation oscillations [27].

For all our numerical simulations, we didn’t find any
transitions to more complex time-dependent regimes. We
attribute the absence of higher-order bifurcations to the low
values of α we have considered and the stronger stability of the
solitary QCL compared to the conventional laser (no damped
relaxation oscillations).

In order to observe the Hopf bifurcation transitions, we need
sufficiently large (negative or positive) detunings of the order
of 50–100 GHz. The detuning and injection strength required
to observed pulsating intensities are thus a factor 10–20 larger
than what is required for optically injected quantum well lasers.
But this condition strongly depends on α. If α > αc � 4, we
found that a Hopf bifurcation may appear in the middle of the
locking domain (zero detuning).

Close to the Hopf bifurcations, the intensities exhibit
oscillations with frequencies close to the Hopf bifurcation
frequency ωH = √

T2 = O(1)where T2 is defined by Eq. (26).
The frequency in real time is then proportional to the inverse
of the photon lifetime (fH ∼ τ−1

p = 100–200 GHz) but can be
smaller if � is close to the BT points (see Fig. 5).

Wang et al. [15] investigate the case of a slow escape
of the carriers at level 2. If τ21 ∼ τ32 (γ2 ∼ 0) or if τ21 ∼
τ32 [2(1 + τ32/τ31)]−1(γ3 ∼ 0), V disappears from the equa-
tion for Z. The dynamical problem then reduces to three
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FIG. 5. Hopf bifurcation frequencies of the two Hopf bifurcation
shown in Fig. 1 for α = 2. The Hopf bifurcation frequencies ωH =√

T2 become zero at the BT bifurcation points.

equations for Z, Y , and φ. They are given by Eqs. (18)–(20)
provided we rescale the intensity and three parameters (Y →
Y/γ4,γ1 → γ1γ4,P → P/γ4, and γ → γ /

√
γ4). We found

similar stability diagrams as shown in Fig. 1.
A QCL subject to optical feedback is another classical set-

up for testing its stability. Experiments have been performed
recently and interpreted using the Lang and Kobayachi equa-
tions modeling a conventional semiconductor laser subject to
a delayed optical feedback [28]. The authors determined the
first oscillatory instability (Hopf bifurcation) and explored the
stabilizing effect of a large photon to carrier lifetime ratio.
They also confirmed that α needs to be sufficiently large in
order to destabilize the laser.
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APPENDIX A: DIMENSIONLESS EQUATIONS

We consider Eqs. (4)–(7). We first introduce the new
time s ≡ t/τp and the new variable N ≡ N3 − N2. The later
is motivated by the fact that N3 − N2 appears in all four
equations. We rewrite Eqs. (4)–(7) in terms of s, N , N2, S,

and φ and obtain

1

τp

dN

ds
= Iin

q
−

(
2

τ32
+ 1

τ31

)
N

+
[

1

τ21
−

(
2

τ32
+ 1

τ31

)]
N2 − 2gNS, (A1)

1

τp

dN2

ds
= N

τ32
−

(
1

τ21
− 1

τ32

)
N2 + gNS, (A2)

dS

ds
= [NpgτpN − 1]S + 2ητp

√
SiS cos(φ), (A3)

dφ

ds
= α

2
[NpgτpN − 1] − ωτp − ητp

√
Si

S
sin(φ). (A4)

Second, the expression in brackets in Eqs. (A3) and (A4)
motivates us to rename N so that this expression can be
reduced to a single term. Specifically, we introduce the new
variable Z as

N = 1 + 2Z

Npgτp

. (A5)

After inserting Eq. (A5) into Eqs. (A1)–(A4), we obtain

2

Npgτp

dZ

ds
= τp

τ32

[
Iinτ32

q
− (

2 + τ32
τ31

)(
1+2Z
Npgτp

)
+[

τ32
τ21

− (
2 + τ32

τ31

)]
N2 − 2gτ32

(
1+2Z
Npgτp

)
S

]
,

(A6)

dN2

ds
= τp

τ32

[(
1 + 2Z

Npgτp

)
−

(
τ32

τ21
− 1

)
N2

+ gτ32

(
1 + 2Z

Npgτp

)
S

]
, (A7)

dS

ds
= 2ZS + 2ητp

√
SiS cos(φ), (A8)

dφ

ds
= αZ − ωτp − ητp

√
Si

S
sin(φ). (A9)

Third, the laser threshold of the solitary laser corresponds
to Z = S = 0. From Eq. (A7) at steady state, this then implies
that N2 = [Npgτp( τ32

τ21
− 1)]−1. This expression motivates in-

troducing the new variable V as

N2 = 1

NpgτP

1 + V(
τ32
τ21

− 1
) . (A10)

Inserting Eq. (A10) into Eqs. (A6)–(A9), we obtain

dZ

ds
= τp

τ32

⎧⎨
⎩

Npgτpτ32

2q
(Iin − Ith) − (

2 + τ32
τ31

)
Z

+[
τ32
τ21

− (
2 + τ32

τ31

)]
1
2

V(
τ32
τ21

−1
) − gτ32(1 + 2Z)S

⎫⎬
⎭,

(A11)

dV

ds
= τp

τ32

(
τ32

τ21
− 1

)
[2Z − V + gτ32(1 + 2Z)S], (A12)

dS

ds
= 2ZS + 2ητp

√
SiS cos(φ), (A13)

dφ

ds
= αZ − ωτp − ητp

√
Si

S
sin(φ), (A14)

where the threshold current Ith satisfies the equation

Npgτpτ32

2

Ith

q
−

(
1 + τ32

2τ31

)

+
(

τ32

2τ21
− 1 − τ32

2τ31

)
1(

τ32
τ21

− 1
) = 0. (A15)

The solitary laser threshold now corresponds to Z =
S = V = 0.
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Last, we introduce the rescaled intensities Y and Yi as

Y = gτ32S and Yi = gτ32Si, (A16)

and Eqs. (A11) and (A12) reduce to Eqs. (8)–(11).

APPENDIX B: STABILITY CONDITIONS

From the linearized equations, we determine the Jacobian matrix

M =

⎛
⎜⎜⎝

−γ1(γ41 + Y ) −γ1(1 + 2Z) 1
2 0

2Y 2Z + ηY−1/2 cos(φ) −2η
√

Y sin(φ)

α
η

2 Y−3/2 sin(φ) −η

√
1
Y

cos(φ)

⎞
⎟⎟⎠ ,

where all coefficients are evaluated at steady state. We then eliminate the trigonometric functions by using the steady-state
equations and find

M =

⎛
⎜⎝

−γ1(γ41 + Y ) −γ1(1 + 2Z) 1
2 0

2Y Z −2(αZ − �)Y

α 1
2Y−1(αZ − �) Z

⎞
⎟⎠ .

We are now ready to formulate the characteristic equation for the growth rate λ. It has the form

λ3 − T1λ
2 + T2λ − T3 = 0,

where

T1 = −γ1(γ41 + Y ) + 2Z,

T2 = −2γ1(γ41 + Y )Z + γ1(1 + 2Z)Y + Z2 + (αZ − �)2,

T3 = −γ1(γ41 + Y )[Z2 + (αZ − �)2] + γ1(1 + 2Z)Y [Z + (αZ − �)α].

The stability conditions are (Routh-Hurwitz conditions)

T1 < 0, T3 < 0, T1T2 − T3 < 0.

The condition T1T2 − T3 = 0 is the first condition for a Hopf bifurcation. It is given by

0 = −γ1(γ41 + Y )[−2γ1(γ41 + Y )Z + γ1(1 + 2Z)Y + Z2 + (αZ − �)2]

+ 2Z[−2γ1(γ41 + Y )Z + γ1(1 + 2Z)Y + Z2 + (αZ − �)2]

+ γ1(γ41 + Y )[Z2 + (αZ − �)2] − γ1(1 + 2Z)Y [Z + (αZ − �)α] , (B1)

which can be simplified as

0 = −γ1(γ41 + Y )[−2γ1(γ41 + Y )Z + γ1(1 + 2Z)Y ] + 2Z[−2γ1(γ41 + Y )Z + Z2 + (αZ − �)2]

− γ1(1 + 2Z)Y [−Z + (αZ − �)α]. (B2)

Noting that

γ41 + Y = γ41 + 2P

1 + 2Z

(1 + 2Z)Y = 2(P − γ41Z),

Eq. (B2) can be rewritten as

0 = −2γ 2
1

γ41 + 2P

1 + 2Z

[
−γ41 + 2P

1 + 2Z
Z + P − γ41Z

]
+ 2Z

[
−2γ1

γ41 + 2P

1 + 2Z
Z + Z2 + (αZ − �)2

]
− γ12(P − γ41Z) [−Z + (αZ − �)α] . (B3)

The condition for a saddle-node (SN) bifurcation is T3 = 0:

− γ41 + 2P

1 + 2Z
[Z2 + (αZ − �)2] + 2(P − γ41Z)[Z + (αZ − �)α] = 0. (B4)
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[11] T. Gensty, W. Elsäßer, and C. Mann, Opt. Express 13, 2032
(2005).

[12] T. Gensty and W. Elsäßer, Opt. Commun. 256, 171
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Opt. Lett. 31, 2574 (2006).

[19] M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa,
K. Fujita, and T. Edamura, Electron. Lett. 45, 1168 (2009).

[20] R. P. Green, J.-H. Xu, L. Mahler, A. Tredicucci,
F. Beltram, G. Giuliani, H. E. Beere, and
D. A. Ritchie, Appl. Phys. Lett. 92, 071106 (2008).

[21] C. Mayol, R. Toral, C. R. Mirasso, and M. A. Natiello, Phys.
Rev. A 66, 013808 (2002).

[22] G. H. M. van Tartwijk, H. de Waardt, B. H. Verbeek, and D.
Lenstra, IEEE J. Quantum Electron. 30, 1763 (1994); G. van
Tarwijk, Ph.D. Thesis, Vrije Universiteit Amsterdam, 1994,
chap. 5.

[23] A. Hohl, H. J. C. van der Linden, R. Roy, G. Goldsztein, F.
Broner, and S. H. Strogatz, Phys. Rev. Lett. 74, 2220 (1995).

[24] B. Kelleher, S. P. Hegarty, and G. Huyet, Phys. Rev. E 86,
066206 (2012).

[25] T. Erneux, A. Gavrielides, and V. Kovanis, Quantum Semiclass.
Opt. 9, 811 (1997).

[26] A.Gavrielides, V. Kovanis, T. Erneux, Opt. Commun. 136, 253
(1997).

[27] T. Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A 76,
023819 (2007).

[28] F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco,
S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and
G. Scamarcio, Opt. Express 21, 13748 (2013).

032907-8

http://dx.doi.org/10.1016/j.saa.2003.12.057
http://dx.doi.org/10.1016/j.physrep.2005.06.003
http://dx.doi.org/10.1364/OL.35.000937
http://dx.doi.org/10.1063/1.3272675
http://dx.doi.org/10.1063/1.3272675
http://dx.doi.org/10.1063/1.4767373
http://dx.doi.org/10.1063/1.4767373
http://dx.doi.org/10.1063/1.3687913
http://dx.doi.org/10.1063/1.3687913
http://dx.doi.org/10.1364/OPEX.13.002032
http://dx.doi.org/10.1364/OPEX.13.002032
http://dx.doi.org/10.1016/j.optcom.2005.07.020
http://dx.doi.org/10.1016/j.optcom.2005.07.020
http://dx.doi.org/10.1109/JSTQE.2010.2045476
http://dx.doi.org/10.1109/JSTQE.2010.2045476
http://dx.doi.org/10.1364/OE.20.001450
http://dx.doi.org/10.1364/OE.20.001450
http://dx.doi.org/10.1063/1.4790883
http://dx.doi.org/10.1063/1.4790883
http://dx.doi.org/10.1126/science.264.5158.553
http://dx.doi.org/10.1063/1.2345035
http://dx.doi.org/10.1063/1.2345035
http://dx.doi.org/10.1364/OL.31.002574
http://dx.doi.org/10.1049/el.2009.2782
http://dx.doi.org/10.1063/1.2883950
http://dx.doi.org/10.1103/PhysRevA.66.013808
http://dx.doi.org/10.1103/PhysRevA.66.013808
http://dx.doi.org/10.1109/3.301640
http://dx.doi.org/10.1103/PhysRevLett.74.2220
http://dx.doi.org/10.1103/PhysRevE.86.066206
http://dx.doi.org/10.1103/PhysRevE.86.066206
http://dx.doi.org/10.1088/1355-5111/9/5/012
http://dx.doi.org/10.1088/1355-5111/9/5/012
http://dx.doi.org/10.1016/S0030-4018(96)00705-5
http://dx.doi.org/10.1016/S0030-4018(96)00705-5
http://dx.doi.org/10.1103/PhysRevA.76.023819
http://dx.doi.org/10.1103/PhysRevA.76.023819
http://dx.doi.org/10.1364/OE.21.013748



