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Abstract

In this paper an algorithm is developed for the exact Fisher information matrix

of a Gaussian vector ARMAX or VARMAX process. The algorithm proposed in

this paper is composed by Chandrasekhar recursion equations at a vector-matrix

level, and some of these recursions consist of derivatives based on appropriate

differential rules applied to a state space model for a vector process. The chosen

representation is such that the recursions extracted from the state space model

are given in terms of expectations of derivatives of innovations, and not the

process and observation disturbances. The algorithm will be illustrated by an

example. On that example, a comparison is made with results from E4, a

toolbox for Matlab, and with the asymptotic information matrix.
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1. Introduction

This paper is devoted to the computation of the exact Fisher information

matrix of an m-dimensional time series {y1, . . . , yN} of length N , generated by

a Gaussian vector ARMAX, or VARMAX, process of order (p, e, s), {yt, t ∈ Z},
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Z the set of integers. More precisely, consider the equation representation of a

dynamic linear system,

p∑
j=0

αj yt−j = γ0 +

e∑
j=1

γj ut−j +

s∑
j=0

βj wt−j , t ∈ Z, (1)

where yt, ut and wt are, respectively, the observed output, the r-dimensional

observed input, and the unobserved errors, and where αj ∈ Rm×m, γ0 ∈ Rm×1,

γj ∈ Rm×r, and βj ∈ Rm×m are the associated parameter matrices. We addi-

tionally assume α0 ≡ β0 ≡ Im, the m×m identity matrix. The error {wt, t ∈ Z}

is a collection of Gaussian independent zero mean m-dimensional random vari-

ables with a positive definite covariance matrix Σ. In the following, we denote

transposition by ⊤ and the mathematical expectation by E. We assume either

that ut is non stochastic or that ut is stochastic. In the latter case, we assume

E{ut w
⊤
t′ } = 0, for all t, t′, and that statistical inference is performed condition-

ally on the values taken by ut. Note that observations for ut should be available

for t ≥ 1− e.

We use z to denote the backward shift operator, for example z ut = ut−1.

Then (1) can be written as

α(z) yt = γ0 + γ(z) ut + β(z) wt, (2)

where α(z) =
∑p

j=0 αj zj , γ(z) =
∑e

j=1 γj zj , β(z) =
∑s

j=0 βj zj are the

associated polynomial matrices, where z ∈ C (with a duplicate use of z as an

operator and as a complex variable which is usual in the signal and time series

literature, e.g. [2], [8]). The assumptions det(α(z)) ̸= 0 and det(β(z)) ̸= 0 will

be imposed so that the eigenvalues of the matrix polynomials α(z) and β(z) will

be outside the unit circle.

Estimation of the matrices α1, α2, ..., αp, β1, β2, ..., βs, γ0, γ1, γ2, ..., γe, and

Σ has received considerable attention in the time series and filtering theory lit-

erature [2], [8], [25] and [32]. Let us store the coefficients in an (ℓ × 1) vector

θ = vec(α, β, γ), where ℓ = m2(p+ s) +m(re+ 1), α = vec(α1, α2, ..., αp), β =

vec(β1, β2, ..., βs), γ = vec(γ0, γ1, γ2, ..., γe), where vecX = col(col(Xij)
n
i=1)

n
j=1,
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see e.g. [23]. In [9], the authors study the asymptotic properties of the maxi-

mum likelihood estimator of the coefficients of a VARMAX process based on N

observations, θ̂N or more simply θ̂.

For that purpose, we need the Fisher information matrix. In time series

models, we can distinguish the asymptotic Fisher information matrix and the

exact Fisher information matrix. Most of the literature is devoted to the former

but the exact Fisher information matrix is worth to be considered. On the one

hand, using (2) for all t ∈ Z to determine the residual wt(θ), and assuming that

ut is stochastic and that (yt, ut) is a Gaussian stationary process, the asymptotic

Fisher information matrix F(θ) is defined by the following (ℓ× ℓ) matrix which

does not depend on t

F(θ) = E
{
(∂θwt(θ))

⊤
Σ−1 (∂θwt(θ))

}
,

where ∂θ(·) denotes the (υ×ℓ) matrix ∂(·)/∂θ⊤ for any (υ×1) column vector (·).

See [22] for more details and Appendix B for examples. On the other hand, the

exact Fisher information matrix JN (θ) is based on the exact Gaussian likelihood

L(θ), more precisely on

l(θ) = − logL(θ) =

N∑
t=1

{
m

2
log(2π) +

1

2
log det(Bt) +

1

2
ỹ⊤t B

−1
t ỹt

}
, (3)

where ỹt, the sample innovation, is defined below by (8) and Bt = E[ỹtỹ⊤t ]

is its covariance matrix. The exact information matrix is given by JN (θ) =

(1/N)E
(
∂2l(θ)/∂θ∂θ⊤

)
. It is shown in [21], where a formal proof is given at the

matrix level that the following holds true

JN (θ)=
1

N

N∑
t=1

[
1

2
(∂θvecBt)

⊤
(Bt ⊗Bt)

−1
(∂θvecBt) + E

{
(∂θỹt)

⊤
B−1

t (∂θỹt)
}]

.

(4)

A proof for the scalar version of (4) is given in [31]. Note that, strictly speaking,

the Fisher information matrix I(θ) is defined as a limit for N → ∞ and is such

that
√
N(θ̂N − θ) → N (0, I−1(θ)), in distribution, as N → ∞ where N is the

normal distribution. This is true under suitable regularity assumptions. Here we
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are interested in the case of finite N , either F(θ) or JN (θ), and more specifically

the latter.

In standard statistical theory (e.g. [24, Chapters 2 and 6]), assuming that

the estimator is unbiased, the inverse of I(θ) yields the Cramér-Rao bound

and, provided that the estimators are asymptotically efficient, the asymptotic

covariance matrix. For most purposes, the Fisher information matrix should be

evaluated at the unknown true value θ but, more practically, at the maximum

likelihood estimate θ̂, obtained for the series of observations, generally using

an optimization algorithm. Then, tests on coefficients can be derived but the

reverse problem can also be solved: how long should the series be in order to

obtain a given statistical significance, see [6]. In [19], the authors considered the

asymptotic Fisher information matrix of a VARMA process. They show that

the Fisher information matrix is singular if and only if the matrix polynomials

α(z) and β(z) have at least one common root. Let us now present algorithms

for computing the asymptotic and then the exact Fisher information matrices.

In [28], an algorithm for the asymptotic Fisher information matrix of a

VARMA process is developed at the scalar-level. It is based on a frequency

domain representation of the Fisher information matrix, known as Whittle’s

formula, see [39]. That approach can be generalized to VARMAX processes

and put in matrix-level form, see [22]. The procedures used to evaluate the

asymptotic information matrix rely on evaluating integrals of a rational function

over the unit circle. These integrals can be computed by recurrences with respect

to the degrees of the polynomials (e.g. [30]). However, the most efficient method

consists in transforming the problem to the evaluation of the autocovariances of

an ARMA model, see e.g. [14]. In [15], the authors have been mainly concerned

with the single input single output (SISO) model but have also indicated that

their method can be used for the VARMA model. For recent references about

the asymptotic information matrix, see [35].

More recently, the exact information matrix has been studied. In [31] Porat

and Friedlander have described an algorithm for a univariate ARMA model

with a deterministic additive component. The method is both complex and also
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computationally intensive since the number of scalar operations is of order N2.

Independently, in [40], [41] and [36] the respective authors have given a much

more efficient algorithm based on the Kalman filter. This has been applied to

the VARMA model in [40] and [41], and to the general state space form by

[36]. The latter general case has also been treated by [33] and [34] but in an

approximate way. Although the algorithms in [40], [41], [42], and [36] need a

number of operations which is proportional to N , these algorithms are not very

efficient because the number of operations at each time is roughly proportional

to the square of the size of the model. That number is generally smaller than

N but not so much, so that the improvement with respect to the Porat and

Friedlander method [31] can only be apparent. Generalizing [26], Terceiro in [36]

has described the whole estimation procedure using the more computationally

efficient Chandrasekhar equations instead of the better known Kalman filter

recursions but he has not mentioned at all that the Chandrasekhar equations

can also be used to derive the information matrix. This was done in [20] with

an application to VARMA models. Working with the prediction error of the

state vector made it difficult to handle correctly the initial conditions (see also

[16]) and impossible to generalize the approach to VARMAX models.

Meanwhile a software called E4 [37] has been developed on the basis of

[36] but also of more recent contributions (see the references in [11]). Under

the form of a Matlab toolbox it offers various methods of estimation, signal

extraction and decomposition for models represented in state space form. E4

can handle seasonal polynomials and does allow for the treatment of missing

data. There is no problem to apply it to ARMA, ARMAX, SISO, VARMA, or

VARMAX models. However, there is no detailed exposition of the computation

of the exact Fisher information matrix beyond [36]. In particular, there is no

detailed documentation of the various options related to the initial state vector

(maximum likelihood, exogenous first value, exogenous mean value, zero) and

the initial covariance matrix of the state vector (zero, Lyapunov or de Jong,

except the last one which refers to [4]).

In this paper, we consider the exact Fisher information matrix JN (θ) of

5



VARMAX processes, as a generalization with some improvements of the method

proposed in [26] and [20]. The main contributions are (a) the use of recursions

at a vector-matrix level, (b) derivation of exact and explicit initial conditions,

and (c) computational performance. Indeed, (a) instead of writing recursions

for each element of the information matrix, we write recursions as concisely

as possible at the vector-matrix level. For that purpose, the differential rules

used in [20] are applied. Then (b), contrarily to [20], the approach is based on

derivatives of the estimated state vector, not on the error of estimation of the

state vector. A substantial complexity reduction is obtained. Moreover explicit

and exact initial conditions are deduced, as illustrated in Section 3. Finally, (c)

computational performance also follows, partly because Chandrasekhar equa-

tions are used. A practical comparison with E4 is performed. The results are

very close, although not identical, depending on the model and the E4 options

used. This is a confirmation of the high quality of this relatively little known

package. It may be that the relations used are similar to ours but this cannot

be confirmed since they are not documented.

The article is organized as follows. In Section 2, we present the model as well

as a closed form expression for the Kalman and the Chandrasekhar recursions

needed to evaluate the information matrix at a matrix level and not component-

wise. In Section 3, we examine the special case of the VARMAX model. In

Section 4, we compare the exact information obtained by our method with the

results given by E4. This is done by using a specific model and some data, and

we confront the exact information with the asymptotic information.

2. State space model and exact information

2.1. The state space model

As will be seen in Section 3, our vector linear times series model can be put

under a more general state space form. Let xt ∈ Rn be the vector of the state

variables, and ϕ, Γ, F , γ0, H be matrices of dimensions, respectively, n × n,
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n× r, n×m, m× 1, m× n. The state space structure is:

xt+1 = ϕxt + Γut + Fwt (5)

yt = γ0 +Hxt + wt. (6)

2.2. The Kalman equations

There are several ways to compute the exact likelihood (3) of a VARMAX

time series. Except for the closed form expression of a normal multivariate

density, a simple representation is based on the Kalman filter equations, due to

[12] and [13]. We use the traditional notation e.g. ŷt|t−1 to define the linear

prediction of yt conditionally on the information at time t− 1. It is given by

ŷt|t−1 = γ0 +Hx̂t|t−1, (7)

where x̂t|t−1 is the one-step-ahead prediction of the state vector, yielding the

residual

ỹt = yt − ŷt|t−1 = yt − γ0 −Hx̂t|t−1. (8)

Now x̂t|t−1 is based on the recurrence

x̂t+1|t = ϕx̂t|t−1 + Γut +Ktỹt, (9)

where the Kalman filter gain Kt is given below and the initial condition is

discussed at the end of Section 3.

The Kalman filter consists of a collection of recursions, one of them giving

Pt+1|t, the covariance matrix of the prediction error of the state vector

x̃t = xt − x̂t|t−1. (10)

Recall that Bt = E[ỹtỹ⊤t ]. Note that the same noise is used in (5) and (6).

Hence the standard recursions (e.g. [1, Chapter 5]) are slightly simplified under

the form of

Bt = HPt+1|tH
⊤ +Σ,

Kt = (ϕPt|t−1H
⊤ + FΣ)B−1

t (11)

Pt+1|t = ϕPt|t−1ϕ
⊤ + FΣF⊤ −KtBtK

⊤
t ,
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giving, respectively, the covariance matrix Bt needed in (4), the Kalman filter

gain Kt used in (11) and the so-called Riccati equation. The initial condition

for the latter is provided in the present stationary case by the linear system of

equations P1|0 = ϕP1|0ϕ
⊤ + FΣF⊤. For other approaches on the Kalman filter

in time series, see [7] and [10].

2.3. The Chandrasekhar equations

Given time-invariance of the state space model, an alternative to the Kalman

filter equations is provided by the so-called Chandrasekhar recursion equations

[27], see also [1, Chapter 6] and [2]. These equations are the most computation-

ally efficient, even with respect to the Kalman filter.

In our context the Chandrasekhar equations make use of matrices Xt and

Yt with respective dimensions m×m, n×m. Besides (7-9), the recurrences are

Bt = Bt−1 +HYt−1Xt−1Y
⊤
t−1H

⊤,

Kt = [Kt−1Bt−1 + ϕYt−1Xt−1Y
⊤
t−1H

⊤]B−1
t ,

Yt = [ϕ−Kt−1H]Yt−1, (12)

Xt = Xt−1 −Xt−1Y
⊤
t−1H

⊤B−1
t HYt−1Xt−1.

The initial conditions are: B1 = HP1|0H
⊤ + Σ, Y1 = ϕP1|0H

⊤ + FΣ, K1 =

Y1B
−1
1 , X1 = −B−1

1 . Note that the operation count is reduced because the

n×n matrix Pt+1|t does not need to be computed, except a part of it, P1|0H
⊤,

for t = 0.

2.4. The exact Fisher Information Matrix

In this subsection, we use the differential rules of [20] recalled in Appendix A

in order to compute the exact Fisher information matrix at the vector-matrix

level. The technique for evaluating the necessary derivatives of the recursion

equations is equivalent to [20], where the authors have used the prediction er-

ror of the state vector (10). In this paper recursions are expressed in terms

of expectations of derivatives of the x̂t|t−1 and this leads to an explicit or im-

plementable algorithm at the general state space level. This implies that the
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VARMA or VARMAX version can be obtained by substituting the appropriate

parameters of the corresponding state space form. We shall only illustrate the

main recursion for the general case but a complete set of recursions is provided

in Section 3 for the VARMAX process. The derived algorithm is then imple-

mentable. The suggested differential rules are displayed using the notations

recalled in Appendix A.

Taking into account the property ∂θyt = 0 and ∂θut = 0 (justified because

the realization does not depend on the parameters α, β, and γ) and dΣ = 0, (9)

yields dx̂t+1|t = dϕ x̂t|t−1+ϕ dx̂t|t−1+ dΓ ut+ dKt ỹt+Kt dỹt. Component-wise

application of Rule 7 in Appendix A to (9) gives

dx̂t+1|t =
(
x̂⊤
t|t−1 ⊗ In

)
vecdϕ+ϕdx̂t|t−1+

(
u⊤
t ⊗ In

)
vecdΓ+

(
ỹ⊤t ⊗ In

)
vecdKt+Ktdỹt.

We can now formulate the appropriate derivative of x̂t+1|t with respect to

θ by applying the approach described in [20], and recalled in Appendix A, to

obtain

∂θx̂t+1|t =
(
x̂⊤
t|t−1 ⊗ In

)
∂θvecϕ + ϕ∂θx̂t+1|t +

(
u⊤
t ⊗ In

)
∂θvecΓ

+
(
ỹ⊤t ⊗ In

)
∂θvecKt +Kt∂θỹt. (13)

Similarly for the derivative of ỹt, we obtain from (8)

∂θỹt = −
{
∂θγ0 + (x̂⊤

t |t−1 ⊗ Im)∂θvecH +H ∂θx̂t|t−1

}
. (14)

For computing the first term of (4) the derivatives of the Chandrasekhar equa-

tions are needed. The second term of (4) consists of the expected value of a

stochastic component. We therefore vectorize JN (θ) according to Rule 7, see

Appendix A:

vecJN (θ) =
1

N

N∑
t=1

{
1

2
[(∂θvecBt)⊗ (∂θvecBt)]

⊤
vec (Bt ⊗Bt)

−1

+E {∂θỹt ⊗ ∂θỹt}⊤ vecB−1
t

}
. (15)

Equations (13) and (14) allow the right-hand side of (15) to be written in an

appropriate way. This is fully done for the VARMAX case in Section 3.
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3. An algorithm for the vector ARMAX model

An appropriate choice for a parametrization of (5) and (6) is given by

ϕ =


−α1 Im 0m

−α2 0m
. . .

...
. . . Im

−αh 0m · · · 0m

 , F =


β1 − α1

β2 − α2

...

βh − αh

 , Γ =


γ1

γ2
...

γh

 , (16)

and H =
(

Im 0m . . . 0m

)
(17)

and h = max(p, s, e), 0m is the m×m zero matrix, αi = 0, i > p, βi = 0, i > s,

γi = 0, i > e, and consequently n = hm. More precisely the i-th m × 1 block,

i = 1, ..., h, of the state vector xt is composed of

(xt)i = −
p∑

j=i

αj yt−j+i−1 +

e∑
j=i

γj ut−j+i−1 +

s∑
j=i

βj wt−j+i−1, t = 1, . . . , N.

(18)

Note that ∂θvecH = 0. Hence (14) simplifies to ∂θỹt = −∂θγ0 −H∂θx̂t|t−1 and

we obtain a main recurrence equation analogous to (32) of [20]:

E (∂θỹt ⊗ ∂θỹt) = (H ⊗H)E
(
∂θx̂t|t−1 ⊗ ∂θx̂t|t−1

)
+ ∂θγ0 ⊗ ∂θγ0

+ ∂θγ0 ⊗
(
H E

(
∂θx̂t|t−1

))
+
(
H E

(
∂θx̂t|t−1

))
⊗ ∂θγ0, (19)

but much shorter. Of course it is necessary to update the expectations in the

right hand side of (19) by using, from (13), with the notation for commutation
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matrices Mm,r given in Appendix A,

E
(
∂θx̂t+1|t ⊗ ∂θx̂t+1|t

)
= (ϕ⊗ ϕ)E

(
∂θx̂t|t−1 ⊗ ∂θx̂t|t−1

)
+ (Kt ⊗Kt)E (∂θỹt ⊗ ∂θỹt)

+
{[{

E(x̂⊤
t|t−1 ⊗ x̂⊤

t|t−1)⊗ In

}
Mn,n2

]
⊗ In

}
(∂θvecϕ⊗ ∂θvecϕ)

+
{
Mn,n

[{
ϕE

(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)}
⊗ In

]
Mℓ,n2

}
(∂θvecϕ⊗ Iℓ)

+
(
(E(x̂⊤

t|t−1)⊗ In)∂θvecϕ
)
⊗
(
(u⊤

t ⊗ In)∂θvecΓ
)

+
[
Mn,n

{
KtE

(
∂θỹt ⊗ x̂⊤

t|t−1

)
⊗ In

}
Mℓ,n2

]
(∂θvecϕ⊗ Iℓ)

+ (Kt ⊗ In)
{
E
(
∂θỹt ⊗ x̂⊤

t|t−1

)
⊗ In

}
(Iℓ ⊗ ∂θvecϕ)

+ (ϕ⊗ In)
{
E
(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)
⊗ In

}
(Iℓ ⊗ ∂θvecϕ)

+
{
ϕ⊗ u⊤

t ⊗ In
}{

E
(
∂θx̂t|t−1

)
⊗ ∂θvecΓ

}
+ (ϕ⊗Kt)E

(
∂θx̂t|t−1 ⊗ ∂θỹt

)
+ (Kt ⊗ ϕ)E

(
∂θỹt ⊗ ∂θx̂t|t−1

)
+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗
((

E
(
x̂⊤
t|t−1

)
⊗ In

)
∂θvecϕ

)
+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗
{
ϕE

(
∂θx̂t|t−1

)}
+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗
(
(u⊤

t ⊗ In)∂θvecΓ
)

+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗ {KtE (∂θỹt)}

+
{[{

E
(
ỹ⊤t ⊗ ỹ⊤t

)
⊗ In

}
Mm,nm

]
⊗ In

}
(∂θvecKt ⊗ ∂θvecKt)

+ {KtE (∂θỹt)} ⊗
(
(u⊤

t ⊗ In)∂θvecΓ
)
, (20)

since E [ỹt] = 0, E
[
x̂t|t−1 ⊗ ỹt

]
= 0, E

[
(∂θx̂t|t−1)⊗ ỹt

]
= 0, E [(∂θỹt)⊗ ỹt] = 0.

Indeed sample innovations ỹt are zero mean uncorrelated random variables.

Also E(x̂t|t−1⊗ỹt) = 0 because x̂t|t−1 is in the space spanned by the observations

till time t−1 included, whereas ỹt is orthogonal to that space. The explanation

is similar for ∂θx̂t|t−1 and ∂θỹt. Note that there are several ways to write terms

in (20). We have made sure to reduce computations for large n and ℓ. Note

that

E
(
∂θỹt ⊗ x̂⊤

t|t−1

)
= −∂θγ0E(x̂⊤

t|t−1)−HE
(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)
.

For the implementation of the fundamental recurrence equation (20), we
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need four additional recursions as follows:

1. E
(
∂θx̂t+1|t ⊗ x̂⊤

t+1|t

)
=

{[
E(x̂⊤

t|t−1 ⊗ x̂⊤
t|t−1)⊗ In

]
Mn,n2

}(
∂θvecϕ⊗ ϕ⊤)

+
[
E(x̂⊤

t|t−1)⊗ In

]
(∂θvecϕ)⊗ (u⊤

t Γ
⊤)

+
{
ϕE

(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)}
(Iℓ ⊗ ϕ⊤)

+
(
ϕE

(
∂θx̂t|t−1

))
⊗ (u⊤

t Γ
⊤) +KtE

(
∂θỹt ⊗ x̂⊤

t|t−1

)
(Iℓ ⊗ ϕ⊤)

+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗ (E(x̂⊤

t|t−1)ϕ
⊤)

+
(
(u⊤

t ⊗ In)∂θvecΓ
)
⊗
(
u⊤
t Γ

⊤)+ (KtE (∂θỹt))⊗ (u⊤
t Γ

⊤)

+ [{(vecBt)
⊤ ⊗ In}Mm,mn]

(
∂θvecKt ⊗K⊤

t

)
. (21)

2. E
(
∂θx̂t+1|t

)
=

[
(Ex̂t|t−1)

⊤ ⊗ In
]
∂θvecϕ

+ (ϕ−KtH)E
(
∂θx̂t|t−1

)
+ (u⊤

t ⊗ In)∂θvecΓ. (22)

3. E
(
x̂t+1|t ⊗ x̂t+1|t

)
= (ϕ⊗ ϕ)E(x̂t|t−1 ⊗ x̂t|t−1) + (ϕ⊗ Γ)

[
E(x̂t|t−1)⊗ ut

]
+ (Γ⊗ ϕ)

[
ut ⊗ E(x̂t|t−1)

]
+ (Γ⊗ Γ) (ut ⊗ ut) + (Kt ⊗Kt) vecBt.

(23)

4. E
(
x̂t+1|t

)
= ϕE(x̂t|t−1) + Γut.

This set of recursions is nevertheless much lighter than equations (52) to (65)

in [20]. Of course the derivatives of the Chandrasekhar equations, equations (46)

to (49) in [20], recalled in Appendix A, are also needed.

To be complete we also need to state P1|0H
⊤ and its derivatives. This was

done in [20, Section 5, pp. 225-228] and doesn’t need to be repeated here to save

space. Note that the already complex initializations for E ((∂θx̃1)⊗ (∂θx̃1)),

with x̃1 defined by (10) and other expressions (most of p. 229) were wrong

and replaced by a still more complex initialization procedure described in [16].

Fortunately, things are much simpler here. Besides B1, K1, Y1, X1, and P1|0H
⊤,

and their derivatives with respect to θ, the following initial values are needed.

Because of (18) for t = 1, after projection in the initial state space we have for

12



each subvector of dimension m

(x̂1|0)i =
e∑

j=i

γj ui−j , (24)

for i = 1, ..., h, if e > 0 and 0, otherwise, hence

E(x̂1|0)i =
e∑

j=i

γjui−j , E(x̂1|0 ⊗ x̂1|0)i,g =
e∑

j=i

e∑
k=g

(γj ⊗ γk)(ui−j ⊗ ug−k),

E
(
∂θx̂1|0

)
i
=

e∑
j=i

(u⊤
i−j ⊗ Im)∂θvecγj ,

E
[(
∂θx̂1|0

)
⊗ x̂⊤

1|0

]
i,g

=
e∑

j=i

e∑
k=g

(
u⊤
i−j ⊗ Im ⊗ u⊤

g−k

) (
∂θvecγj ⊗ γ⊤

k

)
,

E
[(
∂θx̂1|0

)
⊗
(
∂θx̂1|0

)]
i,g

=
e∑

j=i

e∑
k=g

(u⊤
i−j ⊗ Im ⊗ u⊤

g−k ⊗ Im) (∂θvecγj ⊗ ∂θvecγk) ,

for i, g = 1, ..., h, also if e > 0 and 0 otherwise. Note that i and g are block in-

dices and that the elements of ((∂θvecγ1), ..., (∂θvecγe))
⊤
are related to ∂θvecΓ

through a commutation matrix
(
(∂θvecγ1)

⊤
, ..., (∂θvecγe)

⊤
)⊤

= Mhmr,hmr∂θvecΓ.

4. A numerical example and a comparison with the E4 Toolbox

In this section some numerical results are displayed for an example. Fur-

thermore, the results are compared to those of E4, a toolbox for Matlab ([37],

[11]), which can be used to evaluate the exact information matrix of general

state space models. Our implementation is available at location

http:\\homepages.ulb.ac.be\˜gmelard\rech\km12prog.zip. It is heavily based on

[29] and [17], which were developed for VARMA models without exogenous

variables.

4.1. The example

The results obtained through the algorithm described in this paper will be

compared with the values of the entries of the asymptotic Fisher information

matrix of a VARMAX process. First the asymptotic case is handled on the basis

13



of [22]. The VARMAX process considered in this example is such that m = 2,

r = 3 and p = q = s = e = 1. We further assume,

Σ = I2 and Ω = I3, (25)

where Ω denotes the instantaneous covariance matrix of the white noise process

used to generate u, assumed to be independent from w. The parameter vector

configuration is given by θ = vec(α1, β1, γ1, γ2), where

α1 =

 α11
1 α12

1

α21
1 α22

1

 , β1 =

 β11
1 β12

1

β21
1 β22

1

 , γj =

 γ11
j γ12

j γ13
j

γ21
j γ22

j γ23
j

 , j = 1, 2.

For the numerical illustration, like in [22], we assume

α1 = 0, γ1 = 0, γ2 = 0, (26)

and specific entries of the matrix polynomial β(z) with

β11
1 = 6/5, β12

1 = 1/2, β21
1 = −(7/5) and β22

1 = −(1/5). (27)

4.2. The asymptotic Fisher information matrix

A partitioned form of the asymptotic Fisher information matrix is considered

in Appendix B. It is partially based on the theory in [21] and on the example

limited there to the case of the γ’s. As a by-product of the present paper, it

appears that the formulas for the mixed blocks involving α and β are wrong.

Corrected versions of these blocks are displayed in Appendix B.

The results for the exact information matrix at θ = (α1, β1, γ1, γ2) are close

to those of the asymptotic information matrix. Note that the results are de-

pendent on the simulated values for u, since our exact information matrix is

conditional on u. More precisely, the blocks for γ would not be the same for

another set of simulations whereas those for α and β would be the same. Of

course, in practice, the Fisher information matrix is evaluated not at the un-

known true value θ but rather at the maximum likelihood estimate θ̂. In that

case, different blocks for α and β will be obtained for another series.

For N = 1000000, the results for JN (θ) are given in Appendix C. That

suggests the conjecture of convergence of the exact Fisher information matrix

14



to the asymptotic Fisher information matrix. That property is established by

[18] for VARMA models and should be extended to VARMAX models, at least

under some assumptions. Note also that the asymptotic information matrix

considered here is not conditional, which means that an alternative conditional

definition should be used.

4.3. Comparison with the E4 Toolbox

We have mentioned in the introduction E4, a toolbox for Matlab ([37], [11])

which can evaluate the exact information matrix of general state space models,

and can be specialized to VARMAX models. Note that E4 can be used to esti-

mate the parameters of the models by themselves or in composite formulation,

unconstrained or subject to linear and/or nonlinear constraints on the param-

eters, under standard conditions or in an extended framework that allows for

observation errors, missing data or vector GARCH errors.

For a comparison with E4, we have used the same simulated series as in

the previous subsection but with N = 100. We have then derived the exact

information by using E4 with the several options for econd (ml or maximum

likelihood, iu or exogenous first value, au or exogenous mean, or zero) and vcond

(idejong or based on [4], lyapunov or zero). It appears that for our model (and

perhaps because of the particular configuration of the coefficients), the econd =

auto option is identical to econd = ml, the maximum likelihood estimation of the

initial state vector, and that the results for vcond = idejong and vcond = lyapunov

are identical.

We have first examined the blocks (α, γ) and (β, γ) of the exact information

matrix which were exactly 0. For some combinations of the options of E4, these

blocks are not exactly 0. This is the case for econd = ml or the maximum

likelihood estimation of the initial state vector. Note however that when econd

= ml but vcond = zero (zero initial covariance matrix of the state vector), the

block (β, γ) is exactly 0 but not the block (α, γ). E4 can also provide an

approximation of the information matrix, the Watson and Engle approximation

[38].
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We have looked further in Table 1 at the other option combinations of E4

for which the blocks (α, γ) and (β, γ) are exactly zero, by comparing the E4

estimated standard errors (i.e. the square roots of the diagonal elements of

J−1
N (θ)/N) for the 20 parameters to those obtained by our exact method. To

save space, Table 1 contains only the results for a subset of parameters, i.e. α11
1 ,

β11
1 and γ23

2 . It appears that the results are identical for the parameters α and

β for these option combinations vcond = lyapunov (or vcond = idejong therefore

omitted from the table) and econd = iu or econd = au or econd = zero. For these

parameters, they are not identical to our exact results (denoted by KM in the

tables) when vcond = zero or when econd = ml. The results are not identical for

the parameters γ. On the contrary, the Watson-Engle approximation is bad for

the parameters α and β but is nearly as good as the other E4 results for the

parameters γ.

These results lead to the suggestion that, at least when e > 1, which is the

case here, none of the E4 state vector initializations corresponds to (24). In order

to illustrate the differences between the E4 options in a case where they are more

sensitive than in the previous example, we have changed the generation of the

exogenous variables so that the first value is more different from zero and also

from the mean value, in order to increase the difference between the initial state

vector options. As a matter a fact, we have generated the three variables u by a

VAR process with a mean vector different from 0. To emphasize the differences,

we have also reduced the length of the series from 100 to 50. For the reasons

mentioned above, only vcond = lyapunov was considered. As shown in Table 2,

the results are different for the γ’s. None of the three options is uniformly better

for the 12 parameters γ but econd = iu has the smallest standard deviation than

econd = au or econd = zero. A closer look at the E4 Toolbox manual [37] and

at [3] reveals that they refer to [5] for the deterministic case whereas [3] treats

stochastic but uncorrelated exogenous variables. Apparently an equation like

(24) is not mentioned. Nevertheless, our analysis is largely confirmed by the E4

results, and, likewise, the power of E4, which can handle a larger variety of state

space models (including the case of nonstationary roots) is also emphasized.
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Table 1: For different option combinations of E4 and the method of the paper (KM), results
for the information matrix for the blocks (α, γ) and (β, γ), and for the standard errors of the
parameters α11

1 , β11
1 , and γ23

2 . These results were obtained for simulated time series of 100
observations. Underlined E4 standard errors are identical to our KM results.

Method econd vcond (α, γ) (β, γ) α11
1 β11

1 γ23
2

E4 ml lyapunov ̸= 0 ̸= 0 0.4217 0.4454 0.14579
zero ̸= 0 0 0.4198 0.4431 0.14579

iu lyapunov 0 0 0.4278 0.4517 0.14490
zero 0 0 0.4265 0.4501 0.14576

au lyapunov 0 0 0.4278 0.4517 0.14574
zero 0 0 0.4265 0.4501 0.14576

zero lyapunov 0 0 0.4278 0.4517 0.14576
zero 0 0 0.4265 0.4501 0.14576

E4 Watson-Engle ml lyapunov ̸= 0 ̸= 0 0.3448 0.3611 0.1467
ml zero ̸= 0 ̸= 0 0.3457 0.3616 0.1468
iu lyapunov ̸= 0 ̸= 0 0.3506 0.3682 0.1459

au/zero lyapunov ̸= 0 ̸= 0 0.3741 0.3626 0.1470
not ml zero ̸= 0 ̸= 0 0.3507 0.3683 0.1468

KM 0 0 0.4278 0.4517 0.14565

5. Conclusion

This paper has established recursions at the matrix level for the exact Fisher

information matrix of a VARMAX stochastic process, conditionally with respect

to exogenous (deterministic or stochastic) variables. It can be seen as a gener-

alization of [20] which was restricted to VARMA processes but the approach is

more useful and also simpler. We could compare our results with E4, a Matlab

Toolbox, which is aimed at estimation of a more general state space model, in-

cluding the evaluation of the gradient and the exact information matrix. Note

that, although the general principle stated by [36] is the same, the expressions

there are not given at the matrix level but at the scalar level, and we could not

find the detailed expressions in the literature, e.g. the papers cited in [11]. Our

results are close to those obtained using E4 but not identical. We have pointed

out the cause of discrepancy, more specifically that (24), the exact initialization

when e > 1, is not supported by E4. For long series we have compared our

results with the asymptotic information matrix, as proposed and illustrated by
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Table 2: For some option combinations of E4 and the method of the paper (KM), results for the

standard errors of the parameters αij
1 , βij

1 , i, j = 1, 2, γij
1 and γij

2 , i = 1, 2, j = 1, 2, 3. These
results were obtained for simulated time series of 50 observations. Underlined E4 standard
errors are the closest from KM results.

Method econd vcond α11
1 α21

1 α12
1 α22

1

E4 iu/au/zero lyapunov 0.6108 0.7244 0.5625 0.6672
KM 0.6108 0.7244 0.5625 0.6671

β11
1 β21

1 β12
1 β22

1

E4 iu/au/zero lyapunov 0.6452 0.7356 0.4555 0.6991
KM 0.6452 0.7356 0.4555 0.6991

γ11
1 γ21

1 γ12
1 γ22

1 γ13
1 γ23

1

E4 iu lyapunov 0.0877 0.1053 0.0843 0.1193 0.0594 0.1073
au lyapunov 0.0893 0.1072 0.0849 0.1180 0.0405 0.0573
zero lyapunov 0.0889 0.1052 0.0857 0.1193 0.0569 0.0936

KM 0.0875 0.1085 0.0861 0.1194 0.0613 0.1092
γ11
2 γ21

2 γ12
2 γ22

2 γ13
2 γ23

2

E4 iu lyapunov 0.1179 0.1554 0.1039 0.1439 0.0547 0.0948
au lyapunov 0.1201 0.1556 0.1021 0.1400 0.0423 0.0599
zero lyapunov 0.1201 0.1544 0.1045 0.1424 0.0529 0.0853

KM 0.1177 0.1532 0.1061 0.1443 0.0554 0.0958

[22]. That comparison leads to the suggestion of a conjecture generalizing [18]

from VARMA to VARMAX models. A first investigation of that conjecture

indicates that it will not be true without additional assumptions.
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107-119.

A. Appendix

First let us recall the notations for the derivatives with respect to vectors

and the needed related rules also used in [20].

Consider a real differentiable (m × n) matrix function X(θ) of real (ℓ × 1)

vector θ = (θ1, . . . , θℓ)
⊤, where m, n and ℓ are positive integers. Let (m × n)

matrices ∂rX = ∂θXij with r = 1, . . . , ℓ be the first order derivatives of X(θ)

in partial derivative form with Xij being the element (i, j) of X. Then the

(mn× ℓ) matrix ∂θvecX(θ) is defined.

We further recall the rules also used in [20].

Rule 1. (A⊗B)(C⊗D) = AC⊗BD, where A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k,

and D ∈ Rq×l.

Rule 2. (A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D.

Rule 3. (A⊗B)
⊤
= A⊤ ⊗B⊤.

Rule 4. (A⊗B)
−1

= A−1 ⊗B−1 if A−1 and B−1 exist.

Rule 5. Let A ∈ Rm×n, B ∈ Rp×q, then Mp,m(A⊗B)Mn,q = B ⊗A,

where the commutation matrixMm,r is defined byMm,r =
∑m

i=1

∑r
j=1(Eij⊗E⊤

ij )

∈ Rmr×mr, where Eij = emi
(
erj
)⊤

, and emi is the i-th unit standard basis column

vector in Rm and erj is the j-th unit standard basis column vector in Rr. Note

also the properties M⊤
r,m = Mm,r and M1,m = Mm,1 = Im and taking the

orthogonality into account yields Mr,mMm,r = Imr.

Before formulating the next rule, we consider the random vectors x ∈ Rn and

y ∈ Rm , jointly distributed with E(x)=µ1, E(y) = µ2 and E
{
(y − µ2)(x− µ1)

⊤} =

Ω, leads to

Rule 6. E(x⊗ y) = vecΩ + µ1 ⊗ µ2.

We add

Rule 7. vecABC =
(
C⊤ ⊗A

)
vecB, where A ∈ Rm×n, B ∈ Rn×p and C ∈

Rp×s.
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Computationally, the recursions of the paper are written in the less demand-

ing form. Several times Rules 1 and 5 have been used to put random variables

next to each other to set forth expectations whereas Rule 1 has been avoided

when possible because otherwise the number of operations is increased without

necessity. Indeed, the left hand side of Rule 1 requires mpnq + nqkl +mpnqkl

multiplications, generally bigger than what is required by the right hand side

mnk + pql +mkpl multiplications.

The equation for the general state space, which is a generalization of (19),

is of the form:

E (∂θỹt ⊗ ∂θỹt) =
{{

Mm,1(E(x̂⊤
t|t−1 ⊗ x̂⊤

t|t−1)⊗ Im)Mmn,n

}
⊗ Im

}
(∂θvecH ⊗ ∂θvecH)

+
{
Mm,m

[{
HE

(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)}
⊗ Im

]
Mmn,ℓ

}
(∂θvecH ⊗ Iℓ)

+
[{

HE
(
∂θx̂t|t−1 ⊗ x̂⊤

t|t−1

)}
⊗ Im

]
(Iℓ ⊗ ∂θvecH)

+ (H ⊗H)E
(
∂θx̂t|t−1 ⊗ ∂θx̂t|t−1

)
+ ∂θγ0 ⊗

(
(E

(
x̂⊤
t |t−1

)
⊗ Im)∂θvecH +H E

(
∂θx̂t|t−1

))
+

(
(E

(
x̂⊤
t |t−1

)
⊗ Im)∂θvecH +H E

(
∂θx̂t|t−1

))
⊗ ∂θγ0

+ ∂θγ0 ⊗ ∂θγ0, (A.1)

where the commutation matrix Ma,b is defined in Rule 5.

Finally, the derivatives of the Chandrasekhar equations are considered, using

the rule dA−1 = −A−1 (dA) A−1 to obtain

∂θvecBt = ∂θvecBt−1 +
[(
HYt−1X

⊤
t−1

)
⊗H

]
∂θvecYt−1 + [(HYt−1)⊗ (HYt−1)] ∂θvecXt−1

+ [H ⊗ (HYt−1Xt−1)] ∂θvecY
⊤
t−1, (A.2)

∂θvecKt =
[(
B−1

t Bt−1

)
⊗ In

]
∂θvecKt−1 +

[(
B−1

t HYt−1X
⊤
t−1Y

⊤
t−1

)
⊗ In

]
∂θvecϕ

+
[
B−1

t ⊗Kt−1

]
∂θvecBt−1 +

[(
B−1

t HYt−1X
⊤
t−1

)
⊗ ϕ

]
∂θvecYt−1

−
[
B−1

t ⊗
(
Kt−1Bt−1B

−1
t

)]
∂θvecBt

+
[(
B−1

t HYt−1

)
⊗ ϕYt−1

]
∂θvecXt−1

+
[(
B−1

t H
)
⊗ (ϕYt−1Xt−1)

]
∂θvecY

⊤
t−1

−
[
B−1

t ⊗
(
ϕYt−1Xt−1Y

⊤
t−1H

⊤B−1
t

)]
∂θvecBt, (A.3)
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∂θvecYt =
[
Y ⊤
t−1 ⊗ In

]
∂θvecϕ+ [Ik ⊗ ϕ] ∂θvecYt−1

−
[(
Y ⊤
t−1H

⊤)⊗ In
]
∂θvecKt

− [Ik ⊗ (KtH)] ∂θvecYt−1, (A.4)

∂θvecXt = ∂θvecXt−1 −
[(
X⊤

t−1Y
⊤
t−1H

⊤B−1
t HYt−1

)
⊗ Ik

]
∂θvecXt−1

−
[(
X⊤

t−1Y
⊤
t−1H

⊤B−1
t H

)
⊗Xt−1

]
∂θvecY

⊤
t−1

+
[(
X⊤

t−1Y
⊤
t−1H

⊤B−1
t

)
⊗

(
Xt−1Y

⊤
t−1H

⊤B−1
t

)]
∂θvecBt

−
[
X⊤

t−1 ⊗
(
Xt−1Y

⊤
t−1H

⊤B−1
t H

)]
∂θvecYt−1

−
[
Ik ⊗

(
Xt−1Y

⊤
t−1H

⊤B−1
t HYt−1

)]
∂θvecXt−1. (A.5)

B. Appendix

We derive the asymptotic information matrix for the example of Section 4.1.

The appropriate matrix polynomials are

α(z) =

 1 + α11
1 z α12

1 z

α21
1 z 1 + α22

1 z

 , β(z) =

 1 + β11
1 z β12

1 z

β21
1 z 1 + β22

1 z

 ,

and

γ(z) =

 γ11
1 + γ11

2 z γ12
1 + γ12

2 z γ13
1 + γ13

2 z

γ21
1 + γ21

2 z γ22
1 + γ22

2 z γ23
1 + γ23

2 z

 . (B.1)

Let us consider the partitioned form of the asymptotic information matrix

F(θ) =


Fαα(θ) Fαβ(θ) Fαγ(θ)

Fβα(θ) Fββ(θ) Fβγ(θ)

Fγα(θ) Fγβ(θ) Fγγ(θ)

 . (B.2)

Taking into consideration that the input ut and the white noise wt are orthogonal

processes leads to the property

Fγβ(θ) = 0. (B.3)

The numerical example displayed in [22] is such that the authors focus on

some entries of the submatrix Fγγ(θ), considering the crucial role of the γ
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parameters in VARMAX processes. The computations are extended here in

order to compute the whole asymptotic information matrix. The partitioned

form of Fγγ(θ) is considered, to obtain

Fγγ(θ) =

 Fγ1γ1(θ) Fγ1γ2(θ)

Fγ2γ1(θ) Fγ2γ2(θ)

 . (B.4)

The parametrization of input coefficient matrix γ =
(
(vecγ1)

⊤, (vecγ2)
⊤)⊤ is

given by vecγj = (γ11
j , γ21

j , γ12
j , γ22

j , γ13
j , γ23

j )⊤, j = 1, 2. Like in the numerical

illustrations proposed in [22], we assume the specific values given by (26) and

(27). The basic assumption that the eigenvalues of the matrix polynomial β(z)

lie outside the unit circle is fulfilled since the eigenvalues are (5/23)
(
−5± i

√
21
)

with modulus equal to 1.47442. This assumption is fundamental for evaluating

the appropriate integrals displayed in this paper and in [22], so that the Peterka

and Vidinčev [30] algorithm can be implemented. According to [22], with Eij as

defined in Appendix A, Rule 5, the elements of (B.4) can be written

(Fγγ(ϑ))
d,g
i,j,l,f =

1

2πi

∮
|z|=1

zd−gTr
(
β−1(z)EijRu(z)E⊤

lfβ
−∗(z)Σ−1

) dz
z
,

where Tr(M) is the trace of a square matrix M , and the subscripts are i, l =

1, 2, . . . ,m and j, f = 1, 2, . . . , r and the superscripts are d, g = 1, . . . , e. The

Cauchy integral is counterclockwise, X∗ is the complex conjugate transpose of

complex matrix X and X−∗ is its inverse. The spectral density Ru(z) of the

input process ut is an r × r Hermitian matrix. For a definition, see e.g. [2]

and in [22] it is given by the equations (17) and (18) page 679. Given (25),

Ru(z) = I3, and we obtain in the example

(Fγ1γ1(θ))
1,1
1,1,1,1 =

1

2πi

∮
|z|=1

Tr
(
β−1(z)E11E⊤

11β
−∗(z)

) dz
z

= − 1

2πi

∮
|z|=1

500 z (1− 15z + z2)

(50 + 50z + 23z2) (23 + 50z + 50z2)

dz

z

= 7.82242.
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We proceed accordingly for the remaining γ parameters. It yields the fol-

lowing submatrices of (B.4) rounded to 3 decimal places

Fγ1γ1(θ) = Fγ2γ2(θ) =



7.822 2.780 0 0 0 0

2.780 2.500 0 0 0 0

0 0 7.822 2.780 0 0

0 0 2.780 2.500 0 0

0 0 0 0 7.822 2.780

0 0 0 0 2.780 2.500


and

Fγ1γ2(θ) = F⊤
γ2γ1

(θ) =



−5.495 0.163 0 0 0 0

−3.355 −0.890 0 0 0 0

0 0 −5.495 0.163 0 0

0 0 −3.355 −0.890 0 0

0 0 0 0 −5.495 0.163

0 0 0 0 −3.355 −0.890


.

It can be seen that the submatrices of Fγγ(θ) are block Toeplitz matrices.

The parametrization for the submatrix β is vecβ1 = (β11
1 , β21

1 , β12
1 , β22

1 )⊤.

We have according to [22]

(Fββ(θ))
c,s
i,j,l,f =

1

2πi

∮
|z|=1

zc−sTr
(
β−1(z)EijΣE

⊤
lfβ

−∗(z)Σ−1
) dz

z
,

where c, s = 0, 1, . . . , q− 1 and i, j, l, f = 1, . . . ,m and when applied to the case

Σ = I2, and taking c, s = 1, it yields

(Fββ(θ))
1,1
i,j,l,f =

1

2πi

∮
|z|=1

Tr
(
β−1(z)EijE

⊤
lfβ

−∗(z)
) dz

z
,

where the m × m matrix Eij = emi (emj )⊤, where emi and emj are defined in

Appendix A, Rule 5. The case m = 2, and i, j, l, f = 1, 2, leads to (to 3 decimal
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places)

Fββ(θ) =


7.822 2.780 0 0

2.780 2.500 0 0

0 0 7.822 2.780

0 0 2.780 2.500

 .

Let vecα1 = (α11
1 , α21

1 , α12
1 , α22

1 )⊤. Now we set forth the general representa-

tion of the entries of the asymptotic Fisher information submatrix Fαα(θ) which

are computed according to [22], to obtain

(Fαα(θ))
k,v
i,j,l,f = (Fu

αα(θ))
k,v
i,j,l,f + (Fw

αα(θ))
k,v
i,j,l,f ,

where

(Fu
αα(θ))

k,v
i,j,l,f =

1

2πi

∮
|z|=1

zk−vTr
(
β−1(z)Eijα

−1(z)γ(z)Ru(z)γ
∗(z)α−∗(z)E⊤

lfβ
−∗(z)Σ−1

) dz
z

(B.5)

and

(Fw
αα(θ))

k,v
i,j,l,f =

1

2πi

∮
|z|=1

zk−vTr
(
β−1(z)Eijα

−1(z)β(z)Σβ∗(z)α−∗(z)E⊤
lfβ

−∗(z)Σ−1
) dz

z
,

(B.6)

where k, v = 0, 1, . . . , p − 1 and i, j, l, f = 1, . . . ,m. Since in the example

γ(z) = 0, (B.5) vanishes, and since α = 0, α(z) = I2, the block (α, α) of

the Fisher information matrix given by (B.6) becomes

(Fαα(θ))
1,1
i,j,l,f =

1

2πi

∮
|z|=1

Tr
(
β−1(z)Eijβ(z)β

∗(z)E⊤
lfβ

−∗(z)
) dz

z
,

giving after computation for i, j, l, f = 1, 2

Fαα(θ) =


7.855 3.648 −8.979 −6.855

3.648 4.588 −0.170 −3.648

−8.979 −0.170 25.665 8.979

−6.855 −3.648 8.979 7.855

 .

The submatrix associated with αβ is now considered. The entries of the
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appropriate Fisher information submatrix are computed according to

(Fαβ(θ))
k,s
i,j,l,f =

1

2πi

∮
|z|=1

zk−sTr
(
−β−1(z)Eijα

−1(z)β(z)ΣE⊤
lfβ

−∗(z)Σ−1
) dz

z
.

(B.7)

The choice, Σ = α(z) = I2, combined with k, s = 1, m = 2 and i, j, l, f = 1, 2,

yields

(Fαβ(θ))
1,1
i,j,l,f =

1

2πi

∮
|z|=1

Tr
(
−β−1(z)Eijβ(z)E

⊤
lfβ

−∗(z)
) dz

z
,

giving after computation

Fαβ(θ) = F⊤
βα(θ) =


−1.229 1.246 2.747 1.678

−2.976 −1.431 −0.082 0.445

−7.693 −4.697 −8.921 −3.451

0.229 −1.246 −2.747 −2.678

 .

Note that the entries of Fβα(θ) are computed according to

(Fβα(θ))
s,k
l,f,i,j =

1

2πi

∮
|z|=1

zs−kTr
(
−Σ−1β−1(z)ElfΣβ

∗(z)α−∗(z)E⊤
ijβ

−∗(z)
) dz

z
.

(B.8)

The entries of the submatrices Fαγ(θ) and Fγα(θ) are given by the following

equations when expressed by Cauchy integrals

(Fαγ(θ))
k,g
i,j,l,f =

1

2πi

∮
|z|=1

zk−gTr
(
−β−1(z)Eijα

−1(z)γ(z)Ru(z)E⊤
lfβ

−∗(z)Σ−1
) dz

z

(B.9)

and

(Fγα(θ))
g,k
l,f,i,j =

1

2πi

∮
|z|=1

zg−kTr
(
−Σ−1β−1(z)ElfRu(z)γ

∗(z)α−∗(z)E⊤
ijβ

−∗(z)
) dz

z
,

(B.10)

where the subscripts are k = 0, ..., p − 1, g = 1, ..., e, i, j, l = 1, . . . ,m and

f = 1, . . . , r. Note that the aforementioned equations (B.7), (B.8), (B.9) and

(B.10) are corrected with respect to [22]. The property Fαγ(θ) = F⊤
γα(θ) holds.

When the input matrix polynomial γ(z) = 0 then Fαγ(θ) = 0.
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We have generated 1000 observations of ut and wt, using Gaussian deviates

with mean 0 and variance 1 and then obtained yt using (1) with α1 = 0, γ1 = 0,

γ2 = 0, and β1 as given above. The data are available at http:\\homepages.ulb.ac.be

\˜gmelard\rech\km12data.zip. By using now the method developed in this paper

we have computed the exact information matrix. This model (and also simpler

models) allowed us to check (and sometimes correct) the Matlab program based

on the theory. For these single simulated series of N = 1000 observations, we

obtained for the exact Fisher information

(JN (θ))γ1γ1 =



7.678 2.735 0.450 0.084 −0.107 0.014

2.735 2.459 0.205 0.099 −0.098 −0.055

0.450 0.205 6.608 2.438 0.000 −0.114

0.084 0.099 2.438 2.324 0.131 0.012

−0.107 −0.098 0.000 0.131 7.481 2.661

−0.014 −0.055 −0.114 0.012 2.661 2.383


,

(JN (θ))γ2γ2 =



7.704 2.743 0.479 0.099 −0.100 0.003

2.743 2.462 0.213 0.104 −0.094 −0.057

0.479 0.213 6.634 2.450 0.015 −0.119

0.099 0.104 2.450 2.330 0.140 0.011

−0.100 −0.094 0.015 0.140 7.472 2.647

0.003 −0.057 −0.119 0.011 2.647 2.376


,

(JN (θ))γ1γ2 = (JN (θ))⊤γ2γ1
=



−5.405 0.147 −0.274 0.057 −0.049 −0.107

−3.286 −0.864 −0.288 −0.117 0.095 0.012

−0.480 −0.110 −4.401 0.342 0.219 0.160

−0.221 −0.133 −2.883 −0.687 0.013 0.094

0.123 0.021 −0.212 −0.146 −5.274 0.126

0.076 0.064 −0.055 −0.115 −3.140 −0.793


,

30



(JN (θ))αα =


7.834 3.639 −8.952 −6.835

3.639 4.580 −0.167 −3.639

−8.952 −0.167 25.593 8.951

−6.835 −3.639 8.951 7.834

 , (JN (θ))ββ =


7.799 2.772 0.005 0.001

2.772 2.493 0.005 0.003

0.005 0.005 7.790 2.766

0.001 0.003 2.766 2.489

 ,

(JN (θ))αβ = (JN (θ))⊤βα =


−1.227 1.241 2.739 1.672

−2.970 −1.431 −0.083 0.443

−7.671 −4.685 −8.896 −3.440

0.229 −1.242 −2.739 −2.670

 .

C. Appendix

For N = 1000000 observations, we obtained for the exact information matrix

(JN (θ))γ1γ1 =



7.810 2.775 0.003 0.004 −0.009 −0.012

2.775 2.495 −0.002 0.001 0.005 −0.004

0.003 −0.002 7.788 2.770 0.007 0.004

0.004 0.001 2.770 2.494 0.000 0.001

−0.009 0.005 0.007 0.000 7.832 2.784

−0.012 −0.004 0.004 0.001 2.784 2.504


,

(JN (θ))γ2γ2 =



7.810 2.775 0.003 0.004 −0.009 −0.012

2.775 2.495 −0.002 0.001 0.005 −0.004

0.003 −0.002 7.788 2.770 0.007 0.004

0.004 0.001 2.770 2.494 0.000 0.001

−0.009 0.005 0.007 0.000 7.832 2.784

−0.012 −0.004 0.004 0.001 2.784 2.504


,
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and

(JN (θ))γ1γ2 = (JN (θ))⊤γ2γ1
=



−5.487 0.162 −0.007 −0.003 0.019 0.010

−3.349 −0.888 −0.003 −0.003 0.004 0.006

0.003 0.004 −5.465 0.168 −0.010 −0.003

−0.001 0.002 −3.342 −0.885 −0.005 −0.004

−0.010 −0.013 −0.004 0.000 −5.500 0.165

0.007 −0.002 −0.001 0.002 −3.362 −0.893


,

(JN (θ))αα =


7.855 3.648 −8.979 −6.855

3.648 4.588 −0.170 −3.648

−8.979 −0.170 25.665 8.979

−6.855 −3.648 8.979 7.855

 , (JN (θ))ββ =


7.822 2.780 0.000 0.000

2.780 2.500 0.000 0.000

0.000 0.000 7.822 2.780

0.000 0.000 2.780 2.500

 ,

and finally

(JN (θ))αβ = (JN (θ))⊤βα =


−1.229 1.246 2.747 1.678

−2.976 −1.431 −0.082 0.445

−7.693 −4.697 −8.921 −3.451

0.229 −1.246 −2.747 −2.678

 .
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