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When testing symmetry of a univariate density, (parametric classes of) densities skewed by
means of the general probability transform introduced in [7] are appealing alternatives. This
paper first proposes parametric tests of symmetry (about a specified centre) that are locally
and asymptotically optimal (in the Le Cam sense) against such alternatives. To improve on
these parametric tests, which are valid under well-specified density types only, we turn them
into semiparametric tests, either by using a standard studentization approach or by resorting
to the invariance principle. The second approach leads to robust yet efficient signed-rank tests,
which include the celebrated sign and Wilcoxon tests as special cases, and turn out to be Le
Cam optimal irrespective of the underlying original symmetric density. Optimality, however,
is only achieved under well-specified “skewing mechanisms”, and we therefore evaluate the
overall performances of our tests by deriving their asymptotic relative efficiencies with respect
to the classical test of skewness. A Monte-Carlo study confirms the asymptotic results.
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1. Introduction

1.1. Testing for symmetry

Symmetry is one of the most important and fundamental structural assumptions
in statistics, playing a major role, for instance, in the identifiability of location or
intercept under nonparametric conditions; see, e.g., [2], [23], and [24]. This explains
the huge variety of existing tests for the null hypothesis of symmetry in an i.i.d.
sample X1, . . . ,Xn—hypothesis under which there exists some real value θ such
that the common cumulative distribution function (cdf) of the Xi’s is θ-symmetric;
throughout, a cdf F (resp., a probability density function (pdf) f) is said to be θ-
symmetric iff F (θ − x) = 1 − F (θ + x) a.e. in x (resp., iff f(θ − x) = f(θ + x) a.e.
in x). Essentially, the tests for symmetry available in the literature belong to two
distinct classes.

(a) The first class contains tests achieving consistency under any alternative,
and are usually of a Kolmogorov-Smirnov or Cramér-von Mises type; see,
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e.g., [3], [12], [17], [18], and [22]. The price to pay, however, for univer-
sal consistency is in terms of convergence rates, which are nonparametric,
implying that such procedures typically require a large number of observa-
tions.

(b) Procedures in the second class usually rather focus on some favored alter-
natives, against which they (i) achieve (semi)parametric consistency rates
and (ii) sometimes even are (semi)parametrically optimal; see, e.g., [4], [5],
and [14]. While such tests cannot be universally consistent, their main dis-
advantage remains their important lack of flexibility: typically, the choice
of the favored alternatives is very restricted, and, to some extent, quite
arbitrary.

The tests we propose in this paper belong to the second class, hence do not
achieve universal consistency, but improve on existing similar procedures by giv-
ing practitioners the freedom to choose virtually any favored skewed alternative.
This nice feature is achieved by deriving tests that are designed to behave well
(see below) against essentially arbitrary—yet fixed—classes of skewed alternatives,
more precisely against asymmetric distributions generated via the general skewing
scheme recently proposed in [7].

1.2. General skewing mechanisms

Ferreira and Steel presented in [7] a general mechanism allowing to skew any uni-
variate symmetric distribution. Their idea is to introduce skewness by means of
a probability transform that weights the quantile space. More specifically, the θ-
symmetric cdf F is turned into a cdf of the form

x 7→ FL(x) = L(F (x)), (1)

where L is a cdf over [0, 1] that is not 1
2 -symmetric; it is easy to show that FL is

indeed θ-symmetric iff L is 1
2 -symmetric. Hence, (1) provides a convenient way to

skew any θ-symmetric distribution (note that the terminology “skew” here stands
for asymmetry with respect to θ, and that a θ-skewed distribution could very well
be θ′-symmetric for θ′ 6= θ). If F (resp., L) admits the pdf f (resp., ℓ), the pdf
associated with FL takes the form

x 7→ fL(x) = ℓ(F (x)) f(x), (2)

which, by construction, is a weighted version of the original pdf f . If one restricts
to distributions that admit an almost everywhere positive pdf over the real line,
any form of skewness can be achieved by means of such a probability transform,
since any distribution can clearly be mapped to any other distribution via (1)-(2).
This surjectivity property thus implies that any type of asymmetric densities over
the real line can be obtained via this method, including, e.g., the skew-normal
distribution of [1] or the inverse scale factors densities of [6].

These considerations lead to defining a skewing mechanism as a collection L =
{L} of cdfs over [0, 1] containing no other 1

2 -symmetric cdf than the identity func-

tion I—which of course leaves any density f untouched (f I = f). For any sym-
metric density f , the resulting collection of densities {fL : L ∈ L \ {I}} then is a
family of skewed versions of f . A major advantage of this construction lies in the
possibility of choosing the skewing mechanism L independently of the pdf f to be
skewed; see [7] for a discussion. The choice of L, which of course crucially deter-
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mines the type of skewness that is achieved, can be made by imposing that the
resulting skewed distributions retain some properties of the initial symmetric den-
sity, such as, e.g., fixing the mode or the median of the symmetric density, leaving
one of its tails untouched, maintaining the existence of moments, etc. For instance,
it is clear that the median of the skewed versions of any symmetric density f is
fixed under the action of L = {L} iff L(1

2 ) = 1
2 for all L ∈ L. Note that the latter

requirement prevents location shifts, hence leads to “pure” skewed altenatives.

1.3. Our methodology

Restricting, for the sake of simplicity, to the problem of testing for symmetry about
a specified centre θ, we intend to develop testing procedures that perform well
against alternatives obtained by means of an arbitrary prespecified skewing mech-
anism L = {L}. As mentioned above, practitioners then would be given the flexibil-
ity of choosing freely L—equivalently, the favored skewed alternatives—according
to their needs or to the modeling assumptions that they are ready to adopt. Again,
the surjectivity property stated in the previous section implies that all alternatives
to the null of θ-symmetry enter this framework, hence explains why we regard this
approach as “flexible” and “general”.

1.3.1. ULAN and Le Cam optimality of parametric tests of symmetry

This flexibility, of course, should not be obtained at the expense of efficiency
and/or robustness of the resulting tests. Aiming first at efficiency, we restrict to
parametric skewing mechanisms (PSMs) L = {Lδ} indexed by some real (skew-
ness) parameter δ, and introduce scale-asymmetry models PL(n) in which this
skewness δ, the value of a scale parameter σ, and a standardized (θ-symmetric)
density f1 remain unspecified. We then show that, under extremely mild regularity
assumptions on f1, the fixed-f1 parametric submodels PL(n)

f1
are uniformly locally

and asymptotically normal. This ULAN property is the key result that allows to
derive Le Cam optimal tests of symmetry in such parametric models.

1.3.2. Robustness and semiparametric tests of symmetry

Such tests, however, are in general valid—in the sense that they asymptotically
meet the nominal level constraint—at standardized density f1 only, hence are of
little practical interest, as it appears highly unrealistic to assume that the underly-
ing f1 is known. We solve that problem by introducing (i) studentized versions and
(ii) signed-rank versions of the optimal f1-parametric tests. While the former are
obtained by means of standard studentization arguments, the latter follow from
the rich group invariance structure of the null hypothesis of symmetry.

Both resulting f1-semiparametric tests of symmetry inherit the optimality prop-
erties, at f1, from their parametric counterparts, while remaining valid under a
much broader class of densities. It is remarkable that the signed-rank tests are even
Le Cam optimal uniformly in f1. In both cases, optimality, however, is achieved
under the prespecified PSM only. To investigate the overall performances of the
proposed tests, we compute their asymptotic relative efficiencies (AREs) with re-
spect to a standard benchmark procedure, namely the classical test of skewness.
These AREs show that our tests exhibit very good performances, even when based
on a PSM that is not well-specified. This is confirmed in small samples through a
Monte-Carlo study.

Quite interestingly, two particular cases of the proposed signed-rank tests of sym-
metry are the celebrated sign and Wilcoxon signed-rank tests. Le Cam optimality
of both tests—each against a specific PSM, but uniformly in the underlying density
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type f1—follows from our general results. Since the corresponding local alterna-
tives are not (pure) location alternatives, such optimality results are of a different
nature than the well-known optimality of the sign test (resp., the Wilcoxon test)
against Laplace (resp., logistic) location alternatives.

1.4. Outline of the paper

The paper is organized as follows. In Section 2, we define the notation used
throughout, list the assumptions needed on PSMs, and describe the resulting scale-
asymmetry models. Section 3 states that these models are ULAN in the vicinity of
symmetry, and presents the resulting optimal parametric tests of symmetry. Semi-
parametric versions of these tests are developed in Section 4.1 (studentized tests)
and Section 4.2 (signed-rank tests). In Section 5, we introduce several examples of
PSMs, and derive, in each case, the resulting optimal parametric and semiparamet-
ric tests of symmetry. The asymptotic relative efficiencies of our tests with respect
to the classical test of skewness are computed in Section 6. A Monte-Carlo study
then investigates the small-sample performances of the proposed tests in Section 7.
Eventually, Section 8 gives some final comments, and an appendix collects technical
proofs.

2. Notation and assumptions

As announced in the Introduction, we intend to develop tests for symmetry about
a specified centre—we simply write symmetry in the sequel, and will throughout
let this specified centre be the origin of the real line, which is of course without
any loss of generality since testing for symmetry about any fixed θ can be obtained
by replacing the observations Xi with Xi − θ. More precisely, restricting to the
absolutely continuous case, we want to test the null that the underlying density f
belongs to

F :=
{

f : f(x) > 0 a.e., f(−x) = f(x) ∀x,
∫ ∞
−∞ f(x) dx = 1

}

.

Even in a parametric context, assuming that the underlying density is fully specified
is not reasonable, and it should rather be assumed that only the underlying density
type—that is, the density up to a scale factor, σ say—is specified. This motivates
rewriting F as F = {f1σ : σ ∈ R+

0 , f1 ∈ F1}, where we let f1σ(x) := 1
σf1

(

x
σ

)

and

F1 :=
{

f1 ∈ F :
∫ 1
−∞ f1(x) dx = 0.75

}

.

Clearly, if X has pdf f1σ, then σ = Med[|X|], so that σ can be interpreted as
a robust scale measure, in the sense that, unlike the usual standard deviation,
it avoids any moment assumption. Denoting by P

(n)
σ;f1

(f1 ∈ F1) the hypothesis
under which X1, . . . ,Xn are i.i.d. with common density f1σ, we will discriminate

between the null hypothesis H(n)
0,f1

:= ∪σ{P(n)
σ;f1

} of symmetry with specified density

type f1 (throughout, we write ∪σ instead of ∪σ∈R+
0
) and the nonparametric null

hypothesis H(n)
0 := ∪f1∈F1

H(n)
0,f1

.
Asymmetric alternatives will be defined in terms of the skewing mechanisms de-

scribed in the Introduction. Since we want to rely on Le Cam’s theory of asymptotic
experiments and develop tests for symmetry that are locally and asymptotically
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optimal, we will consider parametric skewing mechanisms, that is, skewing mech-
anisms that are indexed by a real parameter δ (that plays the role of a skewness
parameter).

Definition 1. A parametric skewing mechanism (PSM) is a collection L =
{Lδ : δ ∈ D ⊂ R} of cdfs over [0, 1] such that (i) D is an open and connected
set containing the value δ = 0, (ii) L0 = I, and (iii) the only value of δ ∈ D for
which Lδ is 1

2-symmetric is δ = 0.

Now, for any PSM L = {Lδ : δ ∈ D}, denote by P
L(n)
σ,δ;f1

, with σ ∈ R+
0 , δ ∈ D,

and f1 ∈ F1, the joint distribution of an n-tuple of i.i.d. observations X1, . . . ,Xn

with common pdf

x 7→ 1
σf

Lδ

1 (x
σ ) = 1

σ ℓδ(F1(
x
σ )) f1(

x
σ ),

where ℓδ stands for the pdf associated with Lδ; see (2). For consistency, we simply

write P
(n)
σ;f1

instead of P
L(n)
σ,0;f1

—since it is assumed throughout that L0 = I, no

reference to the PSM is indeed needed there. Any couple (f1,L) then induces the
parametric scale-asymmetry model

PL(n)
f1

:=
{

P
L(n)
σ,δ;f1

: σ ∈ R+
0 , δ ∈ D

}

, (3)

whereas any PSM L defines the nonparametric scale-asymmetry model PL(n) :=
⋃

f1∈F1
PL(n)

f1
.

Depending on the nature of the proposed tests, PSMs will have to satisfy various
mild assumptions. For the sake of convenience, we group those assumptions into

Assumption A. (i) The PSM L = {Lδ : δ ∈ D} is independent of the initial
symmetric density to be skewed; (ii) for any δ ∈ D such that −δ ∈ D, we have

L−δ(u) = 1 − Lδ(1 − u), ∀u ∈ [0, 1]; (4)

(iii) the cdf Lδ, for any δ ∈ D, admits a pdf ℓδ, and the mapping δ 7→ ℓ
1/2
δ (·)

is differentiable in quadratic mean at δ = 0, with quadratic mean derivative

∂δℓ
1/2
δ (·)|δ=0 =: 1

2J
L(·); (iv) (resp., (iv)′) the mapping u 7→ JL(u) is continuous

over (0, 1) (resp., over (1
2 , 1)) and can be written as the difference of two monotone

increasing functions.

The independence condition in Assumption A(i) is natural (see [7]) and will play
an important role in the uniform optimality of the proposed signed-rank tests; see
Section 4.2. The duality assumption in A(ii) is desirable when interpreting δ as a
skewness parameter. Indeed, this assumption ensures that the joint distribution of

the Xi’s is P
L(n)
σ,δ;f1

iff that of their reflections with respect to the origin is P
L(n)
σ,−δ;f1

; in

other words, this states that if δ is associated with some skewness to the left, then
the corresponding skewness to the right is obtained for the value −δ of the skewness
parameter, and vice versa. The regularity assumptions in A(iii) are needed to derive
the uniform local asymptotic normality (ULAN) property of the considered scale-
asymmetry models (see Theorem 3.1 below), which plays a crucial role in the
construction of our optimal tests. Note that Assumption A(iii) is fulfilled whenever
the mapping δ 7→ ℓδ(u) admits a (standard) derivative that is a square-integrable
function of u ∈ (0, 1), in which case we simply may write JL(u) = ∂δℓδ(u)|δ=0.
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Finally, the technical conditions in Assumptions A(iv)-(iv)′ are only required by
the proposed optimal semiparametric tests.

3. ULAN and optimal parametric tests

Let X
(n)
i , i = 1, . . . , n, be a triangular array of observations, such that the joint

distribution of (X
(n)
1 , . . . ,X

(n)
n ) is in PL(n)

f1
(see (3)) for some fixed pdf f1 ∈ F1 and

some fixed PSM L, and consider the problem of testing the null hypothesis H(n)
0,f1

of symmetry with specified density type f1.
The optimal tests we derive below are based on the ULAN property, in the

vicinity of symmetry, of the parametric model PL(n)
f1

. ULAN however requires
some further mild assumptions on f1. To be able to state the latter assumptions,
we introduce the following definitions. Consider the measurable space (Ω,BΩ),
where Ω ⊂ R is an open subset and BΩ is its Borel σ-field. Denote by L2(Ω, ν)
the space of square-integrable functions with respect to the Lebesgue measure
with weight ex on (Ω,BΩ), that is, the space of measurable functions h : Ω → R
satisfying

∫

Ω[h(x)]2exdx <∞. Recall that g ∈ L2(Ω, ν) admits a weak derivative T

iff
∫

Ω g(x)ϕ
′(x)dx = −

∫

Ω T (x)ϕ(x)dx for all infinitely differentiable (in the classi-
cal sense) compactly supported functions ϕ on Ω. The mapping T is also called the
derivative of g in the sense of distributions in L2(Ω, ν). Furthermore, if T itself is
in L2(Ω, ν), then g belongs to W 1,2(Ω, ν), the Sobolev space of order 1 on L2(Ω, ν).

As we will state below, the parametric family PL(n)
f1

is ULAN in the vicinity

of symmetry provided that f1 belongs to the collection FULAN
1 of densities in F1

for which the mapping x 7→ f
1/2
1;exp(x) := f

1/2
1 (ex) belongs to W 1,2(R, ν). Letting

ψf1
(x) := − 2

x(f
1/2
1;exp)′(log |x|)/f1/2

1;exp(log |x|), where (f
1/2
1;exp)′ stands for the weak

derivative of f
1/2
1;exp in L2(R, ν), this regularity condition ensures the finiteness of the

Fisher information for scale If1
:=

∫ ∞
−∞(xψf1

(x) − 1)2f1(x) dx. At first sight, such
a condition may appear highly technical and not easy to deal with; however, any
function f1 that (i) is absolutely continuous with a.e.-derivative f ′1 and (ii) satisfies
∫ ∞
−∞(xϕf1

(x)− 1)2f1(x) dx <∞, with ϕf1
(x) := −f ′1(x)/f1(x), belongs to FULAN

1 ,
and ϕf1

(·) = ψf1
(·). In practice, most densities fulfill the latter requirements.

ULAN of the parametric model PL(n)
f1

with respect to ϑ = (σ, δ)′, in the vicinity
of symmetry, then takes the following form.

Theorem 3.1 : Let f1 ∈ FULAN
1 and L be a PSM satisfying Assumptions A(i)-

(iii). Then, for any σ ∈ R+
0 , the family of probability distributions PL(n)

f1
is ULAN

at ϑ = (σ, 0)′, with central sequence

∆
L(n)
f1

(σ) :=

(

∆
(n)
f1;1

(σ)

∆
L(n)
f1;2

(σ)

)

:=
1√
n

n
∑

i=1





1
σ

(X
(n)
i

σ ψf1

(X
(n)
i

σ

)

− 1
)

JL(

F1

(X(n)
i

σ

))





and diagonal information matrix ΓL
f1

(σ), with upper-left entry Γf1;11(σ) := If1
/σ2

and lower-right entry ΓL
22 :=

∫ 1
0 (JL(u))2 du. More precisely, for any ϑ(n) =

(σ(n), 0)′ = ϑ + O(n−1/2) and any bounded sequence τ (n) = (τ
(n)
1 , τ

(n)
2 )′ ∈ R2,
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we have

Λ
L(n)
ϑ(n)+n−1/2τ (n)/ϑ(n);f1

:= log
(

dP
L(n)
ϑ(n)+n−1/2τ (n);f1

/dP
L(n)
ϑ(n);f1

)

= τ (n)′∆
L(n)
f1

(σ(n)) − 1

2
τ (n)′ ΓL

f1
(σ)τ (n) + oP(1)

and ∆
L(n)
f1

(σ(n))
L→ N (0,ΓL

f1
(σ)), both under P

(n)
ϑ(n);f1

as n→ ∞.

Actually, as shown in the proof of this theorem, Assumption A(i) is not required

for PL(n)
f1

to be ULAN. This assumption however guarantees that the lower-right

entry of ΓL
f1

(σ) does not depend on the density type f1, which—jointly with the fact

that this quantity does not involve the value of the scale parameter—justifies the
notation ΓL

22 in Theorem 3.1 (similarly, note that Γf1;11(σ) does not depend on L).

Moreover, even when Assumption A(ii) fails to hold, PL(n)
f1

remains ULAN, but

then with ∆
L(n)
f1;2

(σ) := 1√
n

∑n
i=1[J

L(F1(
X(n)

i

σ )) −
∫ 1
0 J

L(u) du] and a possibly non-

diagonal information matrix ΓL
f1

(σ). We point out that Assumption A(ii) implies
in fact that

JL(·) = −JL(1 − · ), a.e. in (0, 1), (5)

which entails that ∆
L(n)
f1;2

(σ) = ∆
L(n)
f1;2

(σ) and that ∆
(n)
f1;1

(σ) and ∆
L(n)
f1;2

(σ) are asymp-

totically uncorrelated under P
(n)
σ;f1

. The diagonality of ΓL
f1

(σ) is important as it is

the structural reason why replacing σ with an adequate estimate σ̂(n) has no asymp-

totic impact on the δ-part of the central sequence ∆
L(n)
f1

(σ), in the sense that, for

any σ ∈ R+
0 and any f1 ∈ FULAN

1 , ∆
L(n)
f1;2

(σ̂(n)) = ∆
L(n)
f1;2

(σ) + oP(1) as n → ∞,

under P
(n)
σ;f1

; see Lemma B.1 in the Appendix. More precisely, this actually requires

Assumption B. The sequence of estimators σ̂(n) (n ∈ N0) is (i) root-n consis-

tent (i.e., n1/2(σ̂(n) − σ) = OP(1) as n → ∞, under ∪g1∈F1
P

(n)
σ;g1) and (ii) locally

asymptotically discrete, meaning that, for all σ ∈ R+
0 and all c > 0, there exists an

M = M(c) > 0 such that the number of possible values of σ̂(n) in intervals of the
form {t ∈ R : n1/2|t− σ| ≤ c} is bounded by M , uniformly as n→ ∞.

It should be noted that Assumption B(ii) is a purely technical requirement, with
little practical implications (for fixed sample size, any estimator indeed can be con-
sidered part of a locally asymptotically discrete sequence), so that Assumption B
essentially only requires consistency of σ̂(n) under the null at the standard root-n
rate. Of course, an obvious example of estimators σ̂(n) satisfying Assumption B is

(a discretized version of) the sample median of |X(n)
1 |, |X(n)

2 |, . . . , |X(n)
n |.

Most importantly, the construction of locally and asymptotically optimal tests

for H(n)
0,f1

against two-sided alternatives of the form HL(n)
1,f1

:= ∪σ ∪δ 6=0 {PL(n)
σ,δ;f1

}
readily follows from the ULAN structure of PL(n)

f1
in Theorem 3.1. More precisely,

denoting by zβ the upper β-quantile of the standard Gaussian distribution, it fol-

lows from Section 11.9 of [16] that the test φ
L(n)
f1

that rejects H(n)
0,f1

in favor of HL(n)
1,f1

whenever

∣

∣

∣
Q

L(n)
f1

∣

∣

∣
> zα/2, with Q

L(n)
f1

:=
∆

L(n)
f1;2

(σ̂(n))
(

ΓL
22

)1/2
, (6)
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is locally and asymptotically maximin at asymptotic level α. Clearly, optimal para-
metric tests against one-sided alternatives are derived along the same lines.

4. Semiparametric tests

The optimal tests φ
L(n)
f1

of the previous section present a major drawback: in
general, they are valid—in the sense that they meet asymptotically the α-level
constraint—at the corresponding density type f1 only, that is, under the null hy-

pothesis H(n)
0,f1

only. In practice, assuming that the underlying density type f1 is
known is of course highly unrealistic, and it is desirable to define tests that are

valid under the nonparametric null hypothesis H(n)
0 = ∪f1∈F1

H(n)
0,f1

. In this section,
we introduce two classes of tests that enjoy the optimality properties of the para-

metric tests φ
L(n)
f1

above, but are valid under much broader conditions. The first

class is obtained via a studentization argument (Section 4.1), whereas the second

class arises naturally from the group invariance structure of H(n)
0 (Section 4.2).

4.1. Optimal studentized tests

Under P
(n)
σ;g1 , ∆

L(n)
f1;2

(σ), with f1 ∈ FULAN
1 , is asymptotically normal with mean 0

and variance CL
g1

(f1) :=
∫ ∞
−∞[JL(F1(x))]

2g1(x) dx, provided that the latter quantity

is finite. It is therefore natural to consider the studentized test φ
L(n)
∗;f1

that rejects

(at asymptotic level α) the null of symmetry H(n)
0 in favor of HL(n)

1 := ∪σ ∪δ 6=0

∪g1∈F1
{PL(n)

σ,δ;g1
} as soon as

∣

∣

∣
Q

L(n)
∗;f1

∣

∣

∣
> zα/2, with Q

L(n)
∗;f1

:=
∆

L(n)
f1;2

(σ̂(n))
(

CL(n)(f1)
)1/2

,

where CL(n)(f1) := 1
n

∑n
i=1[J

L(F1(X
(n)
i /σ̂(n)))]2 and σ̂(n) satisfies Assumption B.

The asymptotic properties of such tests, under any g1 ∈ FL
∗;f1

:=
{

g1 ∈ FULAN
1 :

∫ ∞
−∞[JL(F1(x))]

2g1(x) dx < ∞
}

, easily follow from the asymptotic linearity in
Lemma B.1 (see the Appendix) and are summarized in the following result.

Theorem 4.1 : Fix f1 ∈ FULAN
1 . Let L (resp., LU ) be a PSM satisfying As-

sumptions A(i)-(iv) (resp., A(i)-(iii)), and let Assumption B hold. Then,

(i) under ∪σ ∪g1∈FL
∗;f1

{

P
(n)
σ;g1

}

, Q
L(n)
∗;f1

L→ N (0, 1) as n→ ∞, so that the sequence of

tests φ
L(n)
∗;f1

has asymptotic level α under the same hypothesis;

(ii) under ∪σ

{

P
LU (n)
σ,n−1/2τ2;g1

}

with g1 ∈ FL
∗;f1

, Q
L(n)
∗;f1

L→ N ((CL
g1

(f1))
−1/2CL,LU

g1 (f1, g1)τ2, 1)

as n→ ∞, where CL,LU
g1 (f1, g1) :=

∫ ∞
−∞ JL(F1(x))J

LU (G1(x))g1(x) dx;

(iii) under ∪σ

{

P
(n)
σ;f1

}

, Q
L(n)
∗;f1

= Q
L(n)
f1

+ oP(1) as n → ∞, so that the sequence

of tests φ
L(n)
∗;f1

is locally and asymptotically maximin, at asymptotic level α, when

testing ∪σ ∪g1∈FL
∗;f1

{

P
(n)
σ;g1

}

against alternatives of the form ∪σ ∪δ 6=0

{

P
L(n)
σ,δ;f1

}

.

Theorem 4.1(i) shows that the studentized tests φ
L(n)
∗;f1

are valid under a much

larger null hypothesis than H(n)
0,f1

, namely under ∪σ ∪g1∈FL
∗;f1

{

P
(n)
σ;g1

}

. For the sake
of generality, we have also considered above alternatives where the underlying
density g1 is turned into an asymmetric density by means of a PSM LU that might
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be different from the PSM L used in the construction of the test. Note, however,
that optimality is achieved only against local alternatives characterized by LU = L
and g1 = f1.

4.2. Optimal signed-rank tests

It is well-known that the nonparametric null hypothesis of symmetry H(n)
0 enjoys

a strong group invariance structure. More precisely, H(n)
0 is generated by the group

G(n)
h , ◦ of transformations gh of Rn defined by gh(x1, . . . , xn) := (h(x1), . . . , h(xn)),

where h : R → R is any continuous, odd, and strictly monotone increasing func-
tion satisfying limx→∞ h(x) = ∞. When the null is invariant under a group of
transformations, the invariance principle suggests restricting to tests that are mea-
surable with respect to the corresponding maximal invariant. In the present con-

text, the maximal invariant is the vector of signed ranks (S
(n)
1 R

(n)
1 , . . . , S

(n)
n R

(n)
n ),

where S
(n)
i := Sign(X

(n)
i ) stands for the sign of X

(n)
i and R

(n)
i denotes the rank

of |X(n)
i | among |X(n)

1 |, . . . , |X(n)
n |. The invariance structure of H(n)

0 thus naturally
brings signed-rank tests into the picture.

Now, since F1 is the cdf of a symmetric distribution, we have that F1(x) =

(1 + Sign(x)F+
1 (|x|))/2, where F+

1 stands for the cdf of |X(n)
1 | under P

(n)
1;f1

. This,

combined with the symmetry property of JL(·) in (5), allows for rewriting the δ-
part of the central sequence as

∆
L(n)
f1;2

(σ) =
1√
n

n
∑

i=1

S
(n)
i JL((

1 + F+
1

(∣

∣

X(n)
i

σ

∣

∣

))

/2
)

=
1√
n

n
∑

i=1

S
(n)
i JL

+

(

F+
1

(∣

∣

X(n)
i

σ

∣

∣

))

,

where we let JL
+(u) := JL(1+u

2 ). Defining

∆
L(n)
†;2 :=

1√
n

n
∑

i=1

S
(n)
i JL

+

( R
(n)
i

n+ 1

)

,

Hájek’s classical projection result for linear signed-rank statistics (see, e.g., Chap-
ter 3 of [20]) then readily yields the following.

Lemma 4.2: Let L be a PSM satisfying Assumptions A(i)-(iv)′. Then, for

any σ ∈ R+
0 and any g1 ∈ F1, ∆

L(n)
†;2 = ∆

L(n)
g1;2

(σ) + oP(1), as n→ ∞, under P
(n)
σ;g1 .

The resulting signed-rank test φ
L(n)
† then rejects H(n)

0 in favor of HL(n)
1 (at asymp-

totic level α) as soon as

∣

∣

∣
Q

L(n)
†

∣

∣

∣
> zα/2, with Q

L(n)
† :=

∆
L(n)
†;2

(

ΓL
22

)1/2
.

Unlike the studentized tests of the previous section, these signed-rank tests do
not require any estimation of the underlying scale value σ. The following theorem

states the asymptotic properties of the tests φ
L(n)
† .

Theorem 4.3 : Let L (resp., LU ) be a PSM satisfying Assumptions A(i)-(iv)′

(resp., A(i)-(iii)), and define CL,LU :=
∫ 1
0 J

L(u)JLU (u) du. Then,

(i) under ∪σ ∪g1∈F1

{

P
(n)
σ;g1

}

, Q
L(n)
†

L→ N (0, 1) as n → ∞, so that the sequence of
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tests φ
L(n)
† has asymptotic level α under the same hypothesis;

(ii) under ∪σ

{

P
LU (n)
σ,n−1/2τ2;g1

}

with g1 ∈ F1, Q
L(n)
†

L→ N ((ΓL
22)

−1/2CL,LUτ2, 1) as
n→ ∞;

(iii) under ∪σ

{

P
(n)
σ;g1

}

with g1 ∈ F1, Q
L(n)
† = ∆

L(n)
g1;2

(σ)/
(

ΓL
22

)1/2
+ oP(1) as n →

∞, so that the sequence of tests φ
L(n)
† is locally and asymptotically maximin, at

asymptotic level α, when testing ∪σ ∪g1∈F1

{

P
(n)
σ;g1

}

against alternatives of the form

∪σ ∪δ 6=0 ∪g1∈F1

{

P
L(n)
σ,δ;g1

}

.

This result shows that the signed-rank tests improve on the studentized ones
in several respects. First of all, the signed-rank tests meet the asymptotic α-level

constraint under broader conditions, namely under ∪σ ∪g1∈F1

{

P
(n)
σ;g1

}

(whereas

studentized tests are valid under ∪σ ∪g1∈FL
∗;f1

{

P
(n)
σ;g1

}

). Secondly, in sharp contrast

with the optimal studentized test φ
L(n)
∗;f1

, which achieves Le Cam optimality at the

target density type f1(∈ FULAN
1 ) only, the signed-rank tests φ

L(n)
† are optimal at

any g1 ∈ F1. Such uniform optimality rarely occurs in rank-based inference. Note
however that, exactly as for the studentized tests, optimality of the signed-rank
tests is not uniform in the PSM: optimality is achieved only if the underlying
PSM LU coincides with the PSM L used in the tests.

5. Some particular cases

In this section, we consider four examples of PSMs satisfying Assumption A and
derive, in each case, the corresponding parametric, studentized, and signed-rank
test statistics introduced above. For the sake of illustration, Figure 1 provides
plots of several cdfs belonging to each PSM, along with the corresponding skewed
(Gaussian) densities.

As a first example, consider the skewing mechanism L1 := {L1δ : δ ∈ R} defined
by

L1δ(u) :=

{

ueδ(u−1) if δ ≥ 0

1 − (1 − u)eδu if δ < 0.

Straightforward calculations reveal that JL1(u) = 2u − 1 and ΓL1

22 = 1/3, so that
the parametric and the studentized test statistics achieving Le Cam optimality at
target density f1 are given by

Q
L1(n)
f1

=

√

3

n

n
∑

i=1

(

2F1(X
(n)
i /σ̂(n)) − 1

)

and

Q
L1(n)
∗;f1

=

1√
n

∑n
i=1

(

2F1(X
(n)
i /σ̂(n)) − 1

)

(

1
n

∑n
i=1

(

2F1(X
(n)
i /σ̂(n)) − 1

)2)1/2
,

respectively (throughout this section, σ̂(n) stands for an arbitrary estimator satisfy-
ing Assumption B). The score function JL1

+ simply reduces to the identity function,
which implies that the corresponding signed-rank test coincides with the celebrated
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Wilcoxon signed-rank test, based on

Q
L1(n)
† =

√

3

n

n
∑

i=1

S
(n)
i

R
(n)
i

n+ 1
.

The second PSM L2 := {L2δ : δ ∈ [−1, 1]} is defined by

L2δ(u) :=

{

u(1 − δ) if 0 ≤ u ≤ 1
2

u+ δ(u− 1) if 1
2 < u ≤ 1

(if |δ| > 1, L2δ(·) is not monotone increasing over (0, 1), hence fails to be a cdf).
Although this PSM is not as smooth as the other examples considered in this
section, it satisfies Assumption A, with |JL2(·)| = JL2

+ (·) = 1 a.e. in (0, 1). Quite
interestingly, this implies that all f1-parametric tests, as well as their respective
studentized and signed-rank counterparts, are based on the statistic

Q
L2(n)
f1

= Q
L2(n)
∗;f1

= Q
L2(n)
† =

1√
n

n
∑

i=1

S
(n)
i ,

hence coincide with the classical sign test.
In most textbooks about nonparametric statistics (see, e.g., [9], [19], and [21]),

the Wilcoxon signed-rank test and the sign test are presented both as one-sample
location tests and as symmetry tests. Their optimality properties, however, are
stated against location alternatives only; more precisely, the Wilcoxon test (resp.,
the sign test) is reported to be locally most powerful against logistic (resp., Laplace)

location alternatives, i.e., alternatives of the form X
(n)
i = θ + σZ

(n)
i , with θ 6= 0,

σ > 0, and where the Z
(n)
i ’s are i.i.d. with pdf x 7→ exp(x)/(1 + exp(x))2 (resp.,

pdf x 7→ exp(−|x|)/2). In view of Theorem 4.3, the Wilcoxon test (resp., the

sign test) is also Le Cam optimal against the alternatives ∪σ ∪δ 6=0 ∪g1∈F1

{

P
Lj(n)
σ,δ;g1

}

,

with j = 1 (resp., j = 2), which are not pure location alternatives. Moreover,
note that the logistic and Laplace densities do not play any special role here,
as optimality is uniform in the underlying density type g1. We stress that other
PSMs actually also lead to the Wilcoxon test, hence provide further asymmetric
alternatives against which Wilcoxon is Le Cam optimal. Examples of such PSMs
are obtained by defining, for δ ≥ 0 (the values for δ < 0 are obtained from the
duality assumption in (4)), Lδ = u(1 − arctan(δ(1 − u))) or Lδ = u(1 + δ)u−1.

As a further example, which does not lead to a classical signed-rank test of
symmetry, consider the PSM L3 := {L3δ : δ ∈ [−π−1, π−1]} defined by

L3δ(u) := u− δ sin(πu).

It can easily be checked that JL3(u) = −π cos(πu) and ΓL3

22 = π2/2, so that the
proposed test statistics are based on trigonometric score functions, that is,

Q
L3(n)
f1

= −
√

2

n

n
∑

i=1

cos(πF1(X
(n)
i /σ̂(n))),

Q
L3(n)
∗;f1

=
− 1√

n

∑n
i=1 cos(πF1(X

(n)
i /σ̂(n)))

(

1
n

∑n
i=1 cos2(πF1(X

(n)
i /σ̂(n)))

)1/2
,



May 11, 2009 3:26 Journal of Nonparametric Statistics Steel˙revised3

12 Chr. Ley and D. Paindaveine

and

Q
L3(n)
† =

√

2

n

n
∑

i=1

S
(n)
i sin

( πR
(n)
i

2(n+ 1)

)

. (7)

The last example we consider is the PSM L4 := {L4δ : δ ∈ D}, where

L4δ(u) :=

{

ueδ(u−
1

2
)3 if 0 ≤ u ≤ 1

2

1 − (1 − u)eδ(u−
1

2
)3 if 1

2 < u ≤ 1

and the interval D is such that L4δ(·) is monotone increasing. Note that L4δ(
1
2) = 1

2
for any δ ∈ D so that this skewing mechanism, unlike the previous ones, fixes the
median of the original symmetric distribution. Since the argument of the exponen-
tial term in L4δ contains a third-order polynomial in u, we obtain quite naturally
that JL4(u) = 4(u − 1

2)2[u − 1
2 − 3

8Sign(u− 1
2)], leading to ΓL4

22 = 3
2240 and to test

statistics based on third-order score functions, i.e.

Q
L4(n)
f1

= 32

√

35

3
n−1/2

n
∑

i=1

(F1(X
(n)
i /σ̂(n)) − 1

2)2[F1(X
(n)
i /σ̂(n)) − 1

2 − 3
8S

(n)
i ],

Q
L4(n)
∗;f1

=

1√
n

∑n
i=1(F1(X

(n)
i /σ̂(n)) − 1

2)2[F1(X
(n)
i /σ̂(n)) − 1

2 − 3
8S

(n)
i ]

(

1
n

∑n
i=1(F1(X

(n)
i /σ̂(n)) − 1

2)4[F1(X
(n)
i /σ̂(n)) − 1

2 − 3
8S

(n)
i ]2

)1/2
,

and

Q
L4(n)
† = 16

√

35

3
n−1/2

n
∑

i=1

S
(n)
i

(

R
(n)
i

n+ 1

)2( R
(n)
i

n+ 1
− 3

4

)

.

6. Asymptotic relative efficiencies

We now compare the performances of the various proposed tests by deriving their
asymptotic relative efficiencies (AREs) with respect to a benchmark test of sym-

metry, namely the classical test of skewness (φ
(n)
skew, say). At asymptotic level α,

the latter rejects the null of symmetry H(n)
0 in favor of HL(n)

1 (for any L) iff

∣

∣

∣
Q

(n)
skew

∣

∣

∣
> zα/2, with Q

(n)
skew :=

n1/2m
(n)
3

(

m
(n)
6

)1/2
,

where m
(n)
ℓ := 1

n

∑n
i=1(X

(n)
i )ℓ stands for the sample moment of order ℓ. Clearly,

asymptotic validity of this test requires finite sixth-order moments.

Computing the AREs of the proposed tests with respect to φ
(n)
skew of course re-

quires determining the asymptotic behavior of the latter under the local alterna-
tives considered in this paper. This is achieved in the following result (the proof,
which is similar to those of Theorems 4.1 and 4.3, is left to the reader).
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Figure 1. Plots of Ljδ , j = 1, 2, 3, and 4 ((a), (c), (e), and (g)) and of
the resulting skewed versions of the standard Gaussian density ((b), (d), (f),
and (h)) for δ = 0, 0.5, 2, 5 in (a)-(b), for δ = 0, 0.2, 0.5, 0.8 in (c)-(d), for
δ = 0, 0.1, 0.2, 0.3 in (e)-(f), and for δ = 0, 5, 8, 10 in (g)-(h). Increasing values
of δ are successively associated with dotted, dash-dot, dashed, and solid lines.

Proposition 6.1: Let LU be a PSM satisfying Assumptions A(i)-(iii). De-
fine F skew

1 :=
{

g1 ∈ F1 : µ6;g1
< ∞

}

, where µℓ;g1
:=

∫ ∞
−∞ xℓg1(x) dx, and let

CLU

skew(g1) :=
∫ ∞
−∞ x3JLU (G1(x))g1(x) dx. Then,

(i) under ∪σ ∪g1∈F skew
1

{

P
(n)
σ;g1

}

, Q
(n)
skew

L→ N (0, 1) as n → ∞, so that the sequence

of tests φ
(n)
skew has asymptotic level α under the same hypothesis;

(ii) under ∪σ

{

P
LU (n)
σ,n−1/2τ2;g1

}

with g1 ∈ F skew
1 , Q

(n)
skew

L→ N ((µ6;g1
)−1/2CLU

skew(g1)τ2, 1)
as n→ ∞.

The shifts in the asymptotic non-null distributions provided in Theorems 4.1
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and 4.3 as well as in Proposition 6.1 allow for computing the desired ARE values,
which are simply the squared ratios of those local shifts. As the proposed signed-
rank tests do not require any moment assumption, their ARE values with respect

to φ
(n)
skew can be considered as being infinite under any PSM LU and any g1 with

infinite sixth-order moment µ6;g1
.

Theorem 6.2 : Let L and LU be two PSMs satisfying Assumptions A(i)-(iii).
Then, (i) if f1 ∈ FULAN

1 and if Assumption B holds, the ARE of the studen-

tized test φ
L(n)
∗;f1

with respect to φ
(n)
skew, for local alternatives of the form P

LU(n)
σ,n−1/2τ2;g1

,

with τ2 6= 0 and g1 ∈ FL
∗;f1

∩ F skew
1 , is given by

ARELU ,g1
(φ

L(n)
∗;f1

/φ
(n)
skew) =

(CL,LU
g1 (f1, g1))

2µ6;g1

(CLU

skew(g1))2CL
g1

(f1)
,

provided that L further satisfies Assumption A(iv); (ii) the ARE of the signed-

rank test φ
L(n)
† with respect to φ

(n)
skew, for local alternatives of the form P

LU(n)
σ,n−1/2τ2;g1

,

with τ2 6= 0 and g1 ∈ F skew
1 , is given by

ARELU ,g1
(φ

L(n)
† /φ

(n)
skew) =

(CL,LU )2µ6;g1

(CLU

skew(g1))2Γ
L
22

,

provided that L further satisfies Assumption A(iv)′.

Table 1 provides numerical values of the AREs, with respect to φ
(n)
skew and under

various alternatives, of the Wilcoxon signed-rank test φ
L1(n)
† , the sign test φ

L2(n)
† ,

the signed-rank test φ
L3(n)
† based on (7), and of several studentized tests φ

Lj(n)
∗;f1

(j = 1, 3); see Section 5. The alternatives considered are those obtained by skewing,
via the PSMs Lj (j = 1, 2, 3), Student densities (gtν

) with ν = 7 and 10 degrees of
freedom, Gaussian densities (gφ), and power-exponential densities (geη

) with η = 2
and 5; here, power-exponential densities with parameter η refer to densities of the
form x 7→ geη

(x) = cησ
−1 exp(−aη(x/σ)2η), where cη is a normalization constant,

η > 0 determines the tail weight, and aη > 0 is such that geη
∈ F1.

Those ARE values are uniformly high, underlining that the proposed tests
strongly dominate the classical test of skewness, with the only exception of the per-
formance of the sign test under L1-skewed versions of the light-tailed density ge5

.
In particular, our tests maintain very good performances when they are based on
a PSM that does not correspond to the one generating local alternatives. For some
specific tests, however, the latter remark might fail to hold when considering alter-
natives generated via PSMs that fix the median (for instance, the sign test would
not exhibit any power under L4-alternatives). Eventually, note that those AREs
clearly confirm the uniform optimality, under each PSM Lj (j = 1, 2, 3), of the
corresponding signed-rank test φ

Lj(n)
† .

7. Simulation results

In order to examine the finite-sample performances of the proposed procedures,
we generated N = 10, 000 independent samples of size n = 200 from symmetric
Gaussian and Student (with ν = 2, 7, and 10 degrees of freedom) densities, and
increasingly skewed (to the right) versions of the same densities (three positive
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Table 1. AREs, with respect to φ
(n)
skew, under Lj-alternatives (j =

1, 2, 3; see Section 5) with tν (ν = 7 and 10), Gaussian, and eη

(η = 2 and 5) densities, of the Wilcoxon signed-rank test φ
L1(n)

†
, the

sign test φ
L2(n)

†
, the signed-rank test φ

L3(n)

†
, and various studentized

tests φ
Lj(n)

∗;f1
, j = 1, 3.

Underlying PSM LU and density g1

gt7 gt10 gφ ge2 ge5

Test L1

φ
L1(n)
∗;ft7

13.70210 5.18938 2.51315 1.56880 1.26913

φ
L1(n)
∗;ft10

13.70200 5.18942 2.51320 1.56871 1.26920

φ
L1(n)
∗;fφ

13.70030 5.18913 2.51327 1.56848 1.26935

φ
L1(n)
∗;fe2

13.45630 5.10287 2.47841 1.57080 1.26895

φ
L1(n)
∗;fe5

13.43670 5.09584 2.47551 1.56926 1.27022

φ
L1(n)
†

13.70210 5.18942 2.51327 1.57080 1.27022

φ
L2(n)
†

10.27660 3.89206 1.88496 1.17810 0.95266

φ
L3(n)
∗;ft7

13.50390 5.11844 2.48294 1.56755 1.26310

φ
L3(n)
∗;ft10

13.49240 5.11435 2.48128 1.56747 1.26301

φ
L3(n)
∗;fφ

13.46280 5.10380 2.47692 1.56724 1.26277

φ
L3(n)
∗;fe2

12.95680 4.91504 2.38928 1.54807 1.24658

φ
L3(n)
∗;fe5

12.99950 4.93140 2.39740 1.55345 1.25184

φ
L3(n)
†

13.50390 5.11435 2.47692 1.54807 1.25184

L2

φ
L1(n)
∗;ft7

26.02340 9.60127 4.42407 2.48236 1.92523

φ
L1(n)
∗;ft10

26.02440 9.60000 4.42185 2.47980 1.92362

φ
L1(n)
∗;fφ

26.03780 9.60082 4.41786 2.47360 1.91974

φ
L1(n)
∗;fe2

27.67520 10.18720 4.66468 2.49912 1.92270

φ
L1(n)
∗;fe5

27.35630 10.06660 4.60579 2.44426 1.88239

φ
L1(n)
†

26.02340 9.60000 4.41786 2.49912 1.88239

φ
L2(n)
†

34.69780 12.80000 5.89049 3.33216 2.50985

φ
L3(n)
∗;ft7

28.12500 10.36080 4.75367 2.59295 1.99023

φ
L3(n)
∗;ft10

28.16560 10.37530 4.75968 2.59397 1.99068

φ
L3(n)
∗;fφ

28.26490 10.41080 4.77465 2.59669 1.99191

φ
L3(n)
∗;fe2

29.74780 10.95650 5.02325 2.70095 2.05567

φ
L3(n)
∗;fe5

29.52880 10.87480 4.98454 2.67214 2.03441

φ
L3(n)
†

28.12500 10.37530 4.77465 2.70095 2.03441

L3

φ
L1(n)
∗;ft7

17.93350 6.67356 3.12851 1.83980 1.44737

φ
L1(n)
∗;ft10

17.93820 6.67485 3.12858 1.83913 1.44707

φ
L1(n)
∗;fφ

17.95230 6.67898 3.12919 1.83749 1.44631

φ
L1(n)
∗;fe2

18.17070 6.76371 3.17095 1.85060 1.44925

φ
L1(n)
∗;fe5

18.13480 6.75011 3.16424 1.83594 1.43982

φ
L1(n)
†

17.93350 6.67485 3.12919 1.85060 1.43982

φ
L2(n)
†

14.74970 5.48985 2.57365 1.52206 1.18421

φ
L3(n)
∗;ft7

18.19670 6.77275 3.17475 1.86590 1.45756

φ
L3(n)
∗;ft10

18.19650 6.77283 3.17493 1.86617 1.45764

φ
L3(n)
∗;fφ

18.19400 6.77235 3.17512 1.86684 1.45784

φ
L3(n)
∗;fe2

17.94200 6.68371 3.13930 1.87776 1.46050

φ
L3(n)
∗;fe5

17.97390 6.69547 3.14466 1.87718 1.46096

φ
L3(n)
†

18.19670 6.77283 3.17512 1.87776 1.46096
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Table 2. Rejection frequencies (out of N = 10, 000 replications), under various symmetric and L1-

skewed Gaussian and Student (with ν = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon

signed-rank test φ
L1(n)

†
, the sign test φ

L2(n)

†
, the signed-rank test φ

L3(n)

†
, various studentized tests

φ
Lj(n)

∗;f1
(j = 1, 3), the classical test of skewness φ

(n)
skew, the Laplace, Wilcoxon, and normal-score

versions of the signed-rank tests φ
(n)
Ca,L, φ

(n)
Ca,W, and φ

(n)
Ca,N and the runs test φ(n)

runs.

gt2 gt7

Test δ = 0 δ = .15 δ = .30 δ = .45 δ = 0 δ = .15 δ = .30 δ = .45

φ
L1(n)
∗;ft2

0.0505 0.2153 0.6194 0.9127 0.0508 0.2219 0.6284 0.9110

φ
L1(n)
∗;ft7

0.0506 0.2143 0.6188 0.9123 0.0520 0.2221 0.6289 0.9132

φ
L1(n)
∗;ft10

0.0509 0.2138 0.6185 0.9123 0.0520 0.2224 0.6291 0.9132

φ
L1(n)
∗;fφ

0.0504 0.2133 0.6174 0.9124 0.0520 0.2223 0.6301 0.9134

φ
L1(n)
†

0.0505 0.2146 0.6185 0.9123 0.0527 0.2209 0.6266 0.9120

φ
L2(n)
†

0.0620 0.1943 0.5239 0.8331 0.0570 0.1894 0.5326 0.8371

φ
L3(n)
∗;ft2

0.0504 0.2138 0.6147 0.9091 0.0501 0.2191 0.6210 0.9073

φ
L3(n)
∗;ft7

0.0500 0.2144 0.6154 0.9099 0.0506 0.2204 0.6220 0.9070

φ
L3(n)
∗;ft10

0.0497 0.2142 0.6155 0.9102 0.0503 0.2207 0.6224 0.9070

φ
L3(n)
∗;fφ

0.0498 0.2144 0.6155 0.9105 0.0506 0.2206 0.6222 0.9072

φ
L3(n)
†

0.0505 0.2139 0.6148 0.9097 0.0512 0.2201 0.6195 0.9071

φ
(n)
skew 0.0095 0.0155 0.0351 0.0698 0.0340 0.0787 0.2057 0.3912

φ
(n)
Ca,L 0.0518 0.1974 0.5594 0.8699 0.0482 0.1934 0.5654 0.8680

φ
(n)
Ca,W 0.0505 0.1837 0.5270 0.8409 0.0475 0.1811 0.5321 0.8387

φ
(n)
Ca,N 0.0516 0.1665 0.4802 0.7931 0.0475 0.1637 0.4827 0.7922

φ
(n)
runs 0.0458 0.0511 0.0957 0.1857 0.0438 0.0534 0.0904 0.1793

gt10 gφ

Test δ = 0 δ = .15 δ = .30 δ = .45 δ = 0 δ = .15 δ = .30 δ = .45

φ
L1(n)
∗;ft2

0.0548 0.2279 0.6293 0.9065 0.0520 0.2166 0.6230 0.9077

φ
L1(n)
∗;ft7

0.0549 0.2272 0.6286 0.9074 0.0522 0.2164 0.6243 0.9087

φ
L1(n)
∗;ft10

0.0549 0.2272 0.6280 0.9071 0.0523 0.2167 0.6247 0.9086

φ
L1(n)
∗;fφ

0.0551 0.2272 0.6281 0.9071 0.0522 0.2170 0.6243 0.9090

φ
L1(n)
†

0.0545 0.2267 0.6265 0.9068 0.0515 0.2147 0.6219 0.9081

φ
L2(n)
†

0.0598 0.1925 0.5257 0.8266 0.0578 0.1862 0.5245 0.8247

φ
L3(n)
∗;ft2

0.0548 0.2219 0.6214 0.9010 0.0513 0.2128 0.6140 0.9014

φ
L3(n)
∗;ft7

0.0545 0.2212 0.6228 0.9014 0.0516 0.2138 0.6152 0.9026

φ
L3(n)
∗;ft10

0.0544 0.2213 0.6234 0.9015 0.0516 0.2137 0.6150 0.9029

φ
L3(n)
∗;fφ

0.0544 0.2216 0.6233 0.9021 0.0512 0.2136 0.6149 0.9033

φ
L3(n)
†

0.0544 0.2228 0.6214 0.9028 0.0515 0.2138 0.6136 0.9033

φ
(n)
skew 0.0433 0.0951 0.2425 0.4484 0.0434 0.1219 0.3256 0.5799

φ
(n)
Ca,L 0.0544 0.2045 0.5652 0.8611 0.0509 0.1932 0.5689 0.8639

φ
(n)
Ca,W 0.0549 0.1915 0.5335 0.8287 0.0484 0.1795 0.5338 0.8393

φ
(n)
Ca,N 0.0553 0.1721 0.4861 0.7811 0.0473 0.1647 0.4815 0.7860

φ
(n)
runs 0.0438 0.0553 0.0928 0.1846 0.0438 0.0554 0.0982 0.1778

values of the skewness parameter δ were used in each case). Skewing was achieved
through the PSMs Lj (j = 1, 2, 3) defined in Section 5. For each resulting sample,
we performed the following tests of symmetry under two-sided form at asymp-

totic level α = 5%: the Wilcoxon signed-rank test φ
L1(n)
† , the sign test φ

L2(n)
† , the

signed-rank test φ
L3(n)
† , various studentized tests φ

Lj(n)
∗;f1

(j = 1, 3), the classical

test of skewness φ
(n)
skew, the Laplace, Wilcoxon, and normal-score versions of the

signed-rank tests φ
(n)
Ca,L, φ

(n)
Ca,W, and φ

(n)
Ca,N proposed in [4], and the runs test φ

(n)
runs,

introduced in [17]. Rejection frequencies are reported in Tables 2, 3, and 4.
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Table 3. Rejection frequencies (out of N = 10, 000 replications), under various symmetric and L2-

skewed Gaussian and Student (with ν = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon

signed-rank test φ
L1(n)

†
, the sign test φ

L2(n)

†
, the signed-rank test φ

L3(n)

†
, various studentized tests

φ
Lj(n)

∗;f1
(j = 1, 3), the classical test of skewness φ

(n)
skew, the Laplace, Wilcoxon, and normal-score

versions of the signed-rank tests φ
(n)
Ca,L, φ

(n)
Ca,W, and φ

(n)
Ca,N and the runs test φ(n)

runs.

gt2 gt7

Test δ = 0 δ = .10 δ = .19 δ = .27 δ = 0 δ = .10 δ = .19 δ = .27

φ
L1(n)
∗;ft2

0.0502 0.2273 0.6457 0.9232 0.0493 0.2352 0.6603 0.9259

φ
L1(n)
∗;ft7

0.0503 0.2238 0.6360 0.9165 0.0493 0.2302 0.6500 0.9194

φ
L1(n)
∗;ft10

0.0503 0.2231 0.6348 0.9162 0.0496 0.2297 0.6494 0.9190

φ
L1(n)
∗;fφ

0.0499 0.2222 0.6317 0.9147 0.0494 0.2286 0.6462 0.9165

φ
L1(n)
†

0.0498 0.2254 0.6442 0.9219 0.0489 0.2296 0.6487 0.9189

φ
L2(n)
†

0.0579 0.3077 0.7782 0.9754 0.0550 0.3103 0.7813 0.9740

φ
L3(n)
∗;ft2

0.0508 0.2415 0.6805 0.9403 0.0488 0.2482 0.6824 0.9410

φ
L3(n)
∗;ft7

0.0510 0.2396 0.6763 0.9376 0.0491 0.2458 0.6789 0.9393

φ
L3(n)
∗;ft10

0.0510 0.2393 0.6761 0.9376 0.0493 0.2454 0.6784 0.9390

φ
L3(n)
∗;fφ

0.0510 0.2391 0.6744 0.9371 0.0494 0.2451 0.6775 0.9379

φ
L3(n)
†

0.0516 0.2434 0.6813 0.9402 0.0493 0.2466 0.6801 0.9386

φ
(n)
skew 0.0096 0.0130 0.0246 0.0369 0.0364 0.0585 0.1352 0.2336

φ
(n)
Ca,L 0.0476 0.1707 0.4938 0.7990 0.0490 0.1732 0.4980 0.7919

φ
(n)
Ca,W 0.0480 0.1496 0.4195 0.7162 0.0515 0.1502 0.4259 0.7088

φ
(n)
Ca,N 0.0476 0.1317 0.3622 0.6358 0.0512 0.1326 0.3690 0.6343

φ
(n)
runs 0.0435 0.0583 0.1251 0.2631 0.0464 0.0616 0.1306 0.2589

gt10 gφ

Test δ = 0 δ = .10 δ = .19 δ = .27 δ = 0 δ = .10 δ = .19 δ = .27

φ
L1(n)
∗;ft2

0.0496 0.2410 0.6616 0.9249 0.0564 0.2400 0.6710 0.9309

φ
L1(n)
∗;ft7

0.0491 0.2344 0.6498 0.9183 0.0557 0.2359 0.6591 0.9248

φ
L1(n)
∗;ft10

0.0491 0.2344 0.6486 0.9177 0.0559 0.2353 0.6573 0.9239

φ
L1(n)
∗;fφ

0.0493 0.2333 0.6458 0.9155 0.0553 0.2326 0.6549 0.9225

φ
L1(n)
†

0.0489 0.2326 0.6481 0.9178 0.0547 0.2317 0.6538 0.9225

φ
L2(n)
†

0.0561 0.3070 0.7821 0.9759 0.0580 0.3143 0.7914 0.9746

φ
L3(n)
∗;ft2

0.0508 0.2511 0.6851 0.9380 0.0567 0.2529 0.6987 0.9408

φ
L3(n)
∗;ft7

0.0506 0.2497 0.6819 0.9351 0.0564 0.2488 0.6937 0.9387

φ
L3(n)
∗;ft10

0.0506 0.2491 0.6814 0.9348 0.0564 0.2486 0.6929 0.9385

φ
L3(n)
∗;fφ

0.0505 0.2486 0.6802 0.9343 0.0564 0.2484 0.6911 0.9378

φ
L3(n)
†

0.0508 0.2492 0.6826 0.9371 0.0559 0.2483 0.6915 0.9373

φ
(n)
skew 0.0357 0.0747 0.1659 0.2859 0.0484 0.0861 0.2137 0.3876

φ
(n)
Ca,L 0.0514 0.1772 0.5022 0.8033 0.0541 0.1726 0.5042 0.8006

φ
(n)
Ca,W 0.0505 0.1535 0.4290 0.7177 0.0514 0.1500 0.4298 0.7208

φ
(n)
Ca,N 0.0487 0.1376 0.3703 0.6417 0.0518 0.1313 0.3697 0.6389

φ
(n)
runs 0.0440 0.0614 0.1280 0.2665 0.0454 0.0621 0.1287 0.2645

All nonparametric/semiparametric tests meet the 5% nominal level constraint
under each symmetric density considered, and seem to be unbiased. In contrast with
this, the classical test of skewness is strongly conservative under Student densities
with 2 degrees of freedom, which have infinite second-order (hence also sixth-order)
moments. This classical test has essentially flat (empirical) power curves under
skewed versions of the same densities, irrespective of the considered PSM. This
is not the case for the other tests, which maintain significant powers under such
heavy-tailed densities.

At densities under which the classical test of skewness is valid, our tests strongly
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Table 4. Rejection frequencies (out of N = 10, 000 replications), under various symmetric and L3-

skewed Gaussian and Student (with ν = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon

signed-rank test φ
L1(n)

†
, the sign test φ

L2(n)

†
, the signed-rank test φ

L3(n)

†
, various studentized tests

φ
Lj(n)

∗;f1
(j = 1, 3), the classical test of skewness φ

(n)
skew, the Laplace, Wilcoxon, and normal-score

versions of the signed-rank tests φ
(n)
Ca,L, φ

(n)
Ca,W, and φ

(n)
Ca,N and the runs test φ(n)

runs.

gt2 gt7

Test δ = 0 δ = .04 δ = .07 δ = .11 δ = 0 δ = .04 δ = .07 δ = .11

φ
L1(n)
∗;ft2

0.0493 0.2419 0.5858 0.9370 0.0525 0.2426 0.5950 0.9380

φ
L1(n)
∗;ft7

0.0490 0.2408 0.5831 0.9359 0.0523 0.2416 0.5934 0.9372

φ
L1(n)
∗;ft10

0.0485 0.2409 0.5826 0.9359 0.0527 0.2417 0.5929 0.9366

φ
L1(n)
∗;fφ

0.0486 0.2400 0.5825 0.9353 0.0527 0.2415 0.5913 0.9363

φ
L1(n)
†

0.0494 0.2416 0.5849 0.9364 0.0528 0.2394 0.5916 0.9364

φ
L2(n)
†

0.0564 0.2188 0.5259 0.8891 0.0560 0.2215 0.5322 0.8957

φ
L3(n)
∗;ft2

0.0484 0.2409 0.5925 0.9405 0.0523 0.2453 0.5979 0.9404

φ
L3(n)
∗;ft7

0.0487 0.2417 0.5925 0.9409 0.0524 0.2450 0.5974 0.9402

φ
L3(n)
∗;ft10

0.0486 0.2417 0.5925 0.9409 0.0524 0.2451 0.5971 0.9402

φ
L3(n)
∗;fφ

0.0484 0.2421 0.5922 0.9405 0.0524 0.2446 0.5966 0.9401

φ
L3(n)
†

0.0486 0.2418 0.5925 0.9396 0.0518 0.2444 0.5959 0.9398

φ
(n)
skew 0.0089 0.0142 0.0272 0.0567 0.0337 0.0703 0.1572 0.3423

φ
(n)
Ca,L 0.0478 0.1980 0.4954 0.8744 0.0495 0.1985 0.4970 0.8791

φ
(n)
Ca,W 0.0470 0.1823 0.4542 0.8374 0.0502 0.1814 0.4523 0.8430

φ
(n)
Ca,N 0.0468 0.1635 0.4045 0.7744 0.0493 0.1618 0.3985 0.7822

φ
(n)
runs 0.0436 0.0558 0.0944 0.2135 0.0430 0.0563 0.0862 0.2018

gt10 gφ

Test δ = 0 δ = .04 δ = .07 δ = .11 δ = 0 δ = .04 δ = .07 δ = .11

φ
L1(n)
∗;ft2

0.0507 0.2433 0.5972 0.9407 0.0485 0.2315 0.5963 0.9393

φ
L1(n)
∗;ft7

0.0504 0.2412 0.5925 0.9394 0.0483 0.2314 0.5930 0.9394

φ
L1(n)
∗;ft10

0.0506 0.2407 0.5923 0.9393 0.0484 0.2316 0.5931 0.9392

φ
L1(n)
∗;fφ

0.0507 0.2396 0.5912 0.9395 0.0480 0.2324 0.5915 0.9384

φ
L1(n)
†

0.0503 0.2390 0.5917 0.9393 0.0472 0.2303 0.5905 0.9386

φ
L2(n)
†

0.0573 0.2188 0.5237 0.8896 0.0544 0.2137 0.5337 0.8914

φ
L3(n)
∗;ft2

0.0531 0.2428 0.6019 0.9415 0.0478 0.2333 0.5954 0.9388

φ
L3(n)
∗;ft7

0.0530 0.2434 0.6012 0.9423 0.0477 0.2325 0.5954 0.9387

φ
L3(n)
∗;ft10

0.0530 0.2434 0.6010 0.9426 0.0478 0.2325 0.5954 0.9386

φ
L3(n)
∗;fφ

0.0529 0.2438 0.6009 0.9426 0.0474 0.2326 0.5953 0.9388

φ
L3(n)
†

0.0525 0.2417 0.6010 0.9425 0.0473 0.2315 0.5950 0.9395

φ
(n)
skew 0.0372 0.0823 0.1873 0.4119 0.0458 0.1090 0.2544 0.5413

φ
(n)
Ca,L 0.0493 0.1998 0.5008 0.8769 0.0504 0.1937 0.4985 0.8763

φ
(n)
Ca,W 0.0489 0.1842 0.4557 0.8363 0.0507 0.1776 0.4566 0.8382

φ
(n)
Ca,N 0.0483 0.1623 0.4012 0.7831 0.0492 0.1614 0.4047 0.7819

φ
(n)
runs 0.0453 0.0517 0.0886 0.2145 0.0454 0.0575 0.0883 0.2028

dominate this procedure as suggested by the AREs of the previous section. The
hierarchy between tests associated with a common PSM is not always compatible
with the rankings of the AREs, which is mainly due to the tiny differences in the
latter. On the contrary, the ARE hierarchy between tests associated with different
PSMs is perfectly reflected in our simulations. In particular, for any j = 1, 2, 3, the
tests based on the PSM Lj appear to be the best ones under densities skewed by
means of Lj.

Finally, the proposed tests almost always do better than their signed-rank com-
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petitors φ
(n)
Ca,L, φ

(n)
Ca,W, and φ

(n)
Ca,N, and clearly outperform the runs test, which was to

be expected since the latter, as a universally consistent test of symmetry (see [11]),
cannot compete with our tests against such alternatives.

8. Final comments

This paper considers the problem of testing symmetry about a specified centre θ.
Although this is a classical problem, testing for symmetry about an unspecified
centre is more natural in various statistical setups (e.g., when testing symmetry of
conditional distributions in a regression context). The present work then may be
regarded as a first step towards a general theory of optimal testing for symmetry—
the next step consisting in treating the unspecified-θ case. This short section briefly
discusses how to achieve this next step.

First, we need considering models that explicitly include location, i.e., location-
scale-asymmetry models under which observations admit the common pdf

x 7→ 1
σf

Lδ

1 (x−θ
σ ) = 1

σ ℓδ(F1(
x−θ
σ )) f1(

x−θ
σ ).

In these new models, it is of course crucial to prevent any possible confounding
between θ and δ, which can be achieved by restricting to skewing mechanisms that
fix the median of the original symmetric distribution.

The scale-asymmetry ULAN property in Theorem 3.1 then has to be extended
to this more general model, in which the resulting central sequence decomposes
into

∆
L(n)
f1

(θ, σ) :=









∆
(n)
f1;1

(θ, σ)

∆
(n)
f1;2

(θ, σ)

∆
L(n)
f1;3

(θ, σ)









:=
1√
n

n
∑

i=1











1
σψf1

(X
(n)
i −θ
σ

)

1
σ

( (X(n)
i −θ)
σ ψf1

(X(n)
i −θ
σ

)

− 1
)

JL(

F1

(X(n)
i −θ
σ

))











,

where ∆
(n)
f1;1

(θ, σ) stands for the location part of the central sequence. The corre-

sponding information matrix ΓL
f1

(σ) is here of the form

ΓL
f1

(σ) :=









Γf1;11(σ) 0 ΓL
f1;31

(σ)

0 Γf1;22(σ) 0

ΓL
f1;31

(σ) 0 ΓL
f1;33

(σ)









,

with ΓL
f1;31

(σ) := 1
σ

∫ ∞
−∞ ψf1

(x)JL(F1(x))f1(x)dx. Since the function x 7→
ψf1

(x)JL(F1(x))f1(x) is symmetric with respect to zero, this information matrix,
contrarily to the θ-specified case, is (in general) not block-diagonal. This implies
that, when testing for symmetry about an unspecified centre, not knowing θ has
a positive cost. In such a setup, ULAN and the convergence of local experiments
to the Gaussian shift experiment imply that locally and asymptotically optimal
(at f1) parametric tests for symmetry about an unspecified centre should be based
on the f1-efficient central sequence for asymmetry

∆
∗L(n)
f1;3

(θ, σ) := ∆
L(n)
f1;3

(θ, σ) − ΓL
f1;31(σ)Γ−1

f1;11
(σ)∆

(n)
f1;1

(θ, σ). (8)
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More precisely, tests of symmetry are obtained by substituting in ∆
∗L(n)
f1;3

(θ, σ)
appropriately discretized root-n consistent estimators for θ and σ, and by defining

test statistics based on the limiting distribution of ∆
∗L(n)
f1;3

(θ, σ). Note that the

strong dependence of ∆
∗L(n)
f1;3

(θ, σ) on f1 makes clear that signed-rank versions of
the resulting parametric tests will no longer be independent of the underlying
density type f1, which implies that uniform (in f1) optimality of signed-rank tests
for symmetry is lost in this θ-unspecified setup.

Note that if one does not restrict to skewing mechanisms fixing the median of the
original symmetric distribution, then information about asymmetry under unspec-
ified location might be arbitrarily small due to the possibly dramatic confounding
between location and skewness parameters; for instance, along a sequence of density
types f1 converging to the logistic (resp., Laplace) density type, local powers of the
θ-unspecified L1-based (“Wilcoxon-type”) signed-rank test (resp., L2-based (“sign-
type”) test) will converge to the nominal level α, due to an increasing collinearity

between the central sequences for location ∆
(n)
f1;1

(θ, σ) and skewness ∆
L(n)
f1;3

(θ, σ).
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Appendix A. Proof of Theorem 3.1

Our proof relies on Lemma 1 of [25]—more precisely, on its extension in [8]. The suf-
ficient conditions for LAN in those results readily follow from standard arguments
(hence are left to the reader), once it is shown that (σ, δ)′ 7→ 1

σ1/2 (fLδ

1 (x
σ ))1/2 =

1
σ1/2 ℓ

1/2
δ

(

F1

(

x
σ

))

f
1/2
1

(

x
σ

)

(see (2)) is quadratic mean differentiable at any (σ, 0)′,
which we establish in the following lemma.

Lemma A.1: Fix f1 ∈ FULAN
1 and let L be a PSM satisfying Assumptions A(i)-

(iii). Define gσ,δ;f1,L(x) := 1
σ ℓδ

(

F1

(

x
σ

))

f1

(

x
σ

)

,

Dσg
1/2
σ,0;f1,L(x) :=

1

2
σ−3/2f

1/2
1

(x

σ

)(x

σ
ψf1

(x

σ

)

− 1
)

,

and

Dδg
1/2
σ,δ;f1,L(x)|δ=0 := σ−1/2f

1/2
1

(x

σ

)

∂δℓ
1/2
δ

(

F1

(x

σ

))∣

∣

∣

δ=0
.

Then, for any σ ∈ R+
0 and δ ∈ R, we have that, as (r, s) → (0, 0),

(i)
∫ ∞
−∞{g1/2

σ+s,r;f1,L(x) − g
1/2
σ+s,0;f1,L(x) − rDδg

1/2
σ+s,δ;f1,L(x)|δ=0}2dx = o(r2),

(ii)
∫ ∞
−∞{g1/2

σ+s,0;f1,L(x) − g
1/2
σ,0;f1,L(x) − sDσg

1/2
σ,0;f1,L(x)}2dx = o(s2),
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(iii)
∫ ∞
−∞{Dδg

1/2
σ+s,δ;f1,L(x)|δ=0 −Dδg

1/2
σ,δ;f1,L(x)|δ=0}2dx = o(1), and

(iv)
∫ ∞
−∞{g1/2

σ+s,r;f1,L(x)−g1/2
σ,0;f1,L(x)−

(

s
r

)′
(

Dσg
1/2
σ,0;f1,L(x)

Dδg
1/2
σ,δ;f1,L(x)|δ=0

)

}2dx = o
(∣

∣

∣

∣

∣

∣

(

s
r

)∣

∣

∣

∣

∣

∣

2)

.

Proof of Lemma A.1. In this proof, all o(·) and O(·) quantities are taken as their
arguments converge to zero.

(i) Rewriting the integral under the form

(σ + s)−1

∫ ∞

−∞
f1

( x

σ + s

)[

ℓ1/2
r

(

F1

( x

σ + s

))

− 1 − r ∂δℓ
1/2
δ

(

F1

( x

σ + s

))∣

∣

∣

δ=0

]2
dx

and substituting u for F1(
x

σ+s ) yields
∫ 1
0 [ℓ

1/2
r (u)−1−r ∂δℓ

1/2
δ (u)|δ=0]

2du, a quantity

that is o(r2) in view of Assumption A(iii).

(ii) Letting y = x
σ , the left-hand side of (ii) takes the form

∫ ∞

−∞

[

1

(1 + s
σ )1/2

f
1/2
1

( y

1 + s
σ

)

−f1/2
1 (y)− s

2σ
f

1/2
1 (y)(yψf1

(y)−1)

]2

dy ≤ C(T1+T2+T3),

where C is some positive constant,

T1 :=

∫ ∞

−∞

[

1

(1 + s
σ )1/2

− 1 +
s

2σ

]2

f1

( y

1 + s
σ

)

dy,

T2 :=
s2

4σ2

∫ ∞

−∞

[

f
1/2
1

( y

1 + s
σ

)

− f
1/2
1 (y)

]2
dy,

and

T3 :=

∫ ∞

−∞

[

f
1/2
1

( y

1 + s
σ

)

− f
1/2
1 (y) − s

2σ
f

1/2
1 (y)yψf1

(y)
]2
dy.

Clearly, routine Taylor series arguments directly yield

T1 =
(

1 +
s

σ

)[ 1

(1 + s
σ )1/2

− 1 +
s

2σ

]2
= o(s2).

Now, using the symmetry of f1 with respect to zero and substituting z for log(y)
leads to

T2 =
s2

2σ2

∫ ∞

0

[

f
1/2
1;exp

(

log(y) − log
(

1 +
s

σ

))

− f
1/2
1;exp(log(y))

]2
dy

=
s2

2σ2

∫ ∞

−∞

[

f
1/2
1;exp

(

z − log
(

1 +
s

σ

))

− f
1/2
1;exp(z)

]2
ez dz ; (A1)

since f
1/2
1;exp ∈ L2(R, ν), quadratic mean continuity implies that the integral in (A1)

is o(1), which implies that T2 = o(s2). As for T3, performing similar manipulations
as for T2 and taking into account the fact that ψf1

(·) is an antisymmetric function
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yields

T3 = 2

∫ ∞

0

[

f
1/2
1;exp

(

log(y) − log
(

1 +
s

σ

))

− f
1/2
1;exp(log(y)) − s

2σ
f

1/2
1;exp(log(y))yψf1

(y)
]2
dy

= 2

∫ ∞

0

[

f
1/2
1;exp

(

log(y) − log
(

1 +
s

σ

))

− f
1/2
1;exp(log(y)) +

s

σ
(f

1/2
1;exp)′(log(y))

]2
dy

= 2

∫ ∞

−∞

[

f
1/2
1;exp

(

z − log
(

1 +
s

σ

))

− f
1/2
1;exp(z) +

s

σ
(f

1/2
1;exp)′(z)

]2
ez dz

≤ 4(T3a + T3b),

where

T3a :=

∫ ∞

−∞

[

f
1/2
1;exp

(

z − log
(

1 +
s

σ

))

− f
1/2
1;exp(z) + log

(

1 +
s

σ

)

(f
1/2
1;exp)′(z)

]2
ez dz

and

T3b :=
( s

σ
− log

(

1 +
s

σ

))2
∫ ∞

−∞
[(f

1/2
1;exp)′(z)]2ez dz.

Lemma A.2 in [10] and the fact that log
(

1+ s
σ

)

= O(s) imply that T3a = o(s2). By

assumption, (f
1/2
1;exp)′ belongs to L2(R, ν), so that the fact that s

σ −log
(

1+ s
σ

)

= o(s)

yields that T3b (hence, also T3) is o(s2). The claim in (ii) follows.

(iii) Split the left-hand side of (iii) into two integrals, one over R− and the other
over R+, and consider at first the latter integral. Defining F+

1;exp(x) := F1(e
x),

trivial manipulations show that

∫ ∞

0
{Dδg

1/2
σ+s,δ;f1,L(x)|δ=0 −Dδg

1/2
σ,δ;f1,L(x)|δ=0}2 dx

=

∫ ∞

0

{

(

1 +
s

σ

)−1/2
f

1/2
1;exp

(

log(y) − log
(

1 +
s

σ

))

∂δℓ
1/2
δ

(

F+
1;exp

(

log(y) − log
(

1 +
s

σ

)))∣

∣

∣

δ=0

−f1/2
1;exp(log(y)) ∂δℓ

1/2
δ (F+

1;exp(log(y)))|δ=0

}2

dy.

Substituting z for log(y) leads to

∫ ∞

−∞

{

e
1

2
(z−log(1+ s

σ
)) f

1/2
1;exp

(

z − log
(

1 +
s

σ

))

∂δℓ
1/2
δ

(

F+
1;exp

(

z − log
(

1 +
s

σ

)))∣

∣

∣

δ=0

− e
z

2 f
1/2
1;exp(z) ∂δℓ

1/2
δ (F+

1;exp(z))|δ=0

}2

dz. (A2)

Assumption A(iii) implies that z 7→ e
z

2 f
1/2
1;exp(z)∂δℓ

1/2
δ (F+

1;exp(z))|δ=0 is square-
integrable over the real line; quadratic mean continuity thus implies that (A2)
is o(1) as s → 0. Now, if one writes F1(z) = F−

1;exp(log(−z)), with F−
1;exp(x) :=

F1(−ex), instead of F1(z) = F+
1;exp(log(z)) and uses the symmetry of f1, the same

reasoning yields that the integral over R− is also o(1). The result follows.
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(iv) The left-hand side in (iv) is bounded by C(S1 + S2 + r2S3), where

S1 =

∫ ∞

−∞
{g1/2

σ+s,r;f1,L(x) − g
1/2
σ+s,0;f1,L(x) − rDδg

1/2
σ+s,δ;f1,L(x)|δ=0}2 dx,

S2 =

∫ ∞

−∞
{g1/2

σ+s,0;f1,L(x) − g
1/2
σ,0;f1,L(x) − sDσg

1/2
σ,0;f1,L(x)}2 dx,

and

S3 =

∫ ∞

−∞
{Dδg

1/2
σ+s,δ;f1,L(x)|δ=0 −Dδg

1/2
σ,δ;f1,L(x)|δ=0}2 dx.

The result then follows from (i), (ii), and (iii). �

We stress that, as announced in Section 3, the proof of Lemma A.1—hence also

the uniform local asymptotic normality of the family PL(n)
f1

—actually does not

require Assumptions A(i)-(ii).

Appendix B. Asymptotic linearity

The following asymptotic linearity result is needed to study the asymptotic behav-
ior of the optimal studentized tests introduced in Section 4.1.

Lemma B.1: Fix f1 ∈ F1 and g1 ∈ FL
∗;f1

, and let L be a PSM satisfying Assump-

tions A(i)-(iv). Then, for any σ ∈ R+
0 and any s ∈ R, we have that, under P

(n)
σ;g1,

(i) ∆
L(n)
f1;2

(σ + n−1/2s) = ∆
L(n)
f1;2

(σ) + oP(1) and (ii) 1
n

∑n
i=1[J

L(F1(X
(n)
i /(σ +

n−1/2s)))]2 = 1
n

∑n
i=1[J

L(F1(X
(n)
i /σ))]2 + oP(1), as n→ ∞. Moreover, (iii) if σ̂(n)

satisfies Assumption B, then both ∆
L(n)
f1;2

(σ̂(n))−∆
L(n)
f1;2

(σ) and CL(n)(f1)−CL
g1

(f1)

are oP(1) as n→ ∞, under P
(n)
σ;g1 .

Proof of Lemma B.1(i). Throughout this proof, we write Zi, Zi;n, Si, and

Si;n for X
(n)
i /σ, X

(n)
i /(σ + n−1/2s), Sign(Zi), and Sign(Zi;n), respectively, and let

Jf1;g1
(u) := JL(F1(G

−1
1+(u))), where G1+ stands for the cdf of |X(n)

i | under P
(n)
1;g1

.

Since JL(F1(z)) = Sign(z)Jf1;g1
(G1+(|z|)) for all real number z, we actually have

to prove that, under P
(n)
σ;g1 , as n→ ∞,

D(n) :=
1√
n

n
∑

i=1

[Si;nJf1;g1
(G1+(|Zi;n|)) − SiJf1;g1

(G1+(|Zi|))] = oP(1). (B1)

To do so, truncate (for any m ∈ N0) the score function Jf1;g1
into J

(m)
f1;g1

, where

J
(m)
f1;g1

(u) :=































0 if u ≤ 1
m

Jf1;g1

(

2
m

)

m
(

u− 1
m

)

if 1
m < u ≤ 2

m

Jf1;g1
(u) if 2

m < u ≤ 1 − 2
m

Jf1;g1

(

1 − 2
m

)

m
((

1 − 1
m

)

− u
)

if 1 − 2
m < u ≤ 1 − 1

m

0 if u > 1 − 1
m .
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Assumption A(iv) implies that J
(m)
f1;g1

is then continuous (hence, bounded) on [0, 1];
moreover, it can be assumed without loss of generality that Jf1;g1

is a monotone
increasing function (rather than the difference of two monotone increasing func-

tions), hence |J (m)
f1;g1

| is bounded by |Jf1;g1
| uniformly in m and u (at least for m

sufficiently large). Now, decompose D(n) into V (n,m) −W
(n,m)
1 +W

(n,m)
2 , where

V (n,m) :=
1√
n

n
∑

i=1

[

Si;nJ
(m)
f1;g1

(G1+(|Zi;n|)) − SiJ
(m)
f1;g1

(G1+(|Zi|))
]

,

W
(n,m)
1 :=

1√
n

n
∑

i=1

Si

[

Jf1;g1
(G1+(|Zi|)) − J

(m)
f1;g1

(G1+(|Zi|))
]

,

and

W
(n,m)
2 :=

1√
n

n
∑

i=1

Si;n

[

Jf1;g1
(G1+(|Zi;n|)) − J

(m)
f1;g1

(G1+(|Zi;n|))
]

.

To establish (B1), it is clearly sufficient to prove

Lemma B.2: With the same notation as above, (a) for any fixed m, V (n,m) is

oP(1) under P
(n)
σ;g1, as n → ∞; (b) W

(n,m)
1 is oP(1) as m → ∞, uniformly in n,

under P
(n)
σ;g1; (c) W

(n,m)
2 is oP(1) as m → ∞, uniformly in n (for n sufficiently

large), under P
(n)
σ;g1.

Proof of Lemma B.2. (a) Since, for any n, the random variables

Si;nJ
(m)
f1;g1

(G1+(|Zi;n|)) − SiJ
(m)
f1;g1

(G1+(|Zi|)), i = 1, . . . , n, are i.i.d. with mean 0,

we have that (E0 stands for expectation under P
(n)
σ;g1)

E0[(V
(n,m))2] = E0[(S1;nJ

(m)
f1;g1

(G1+(|Z1;n|)) − S1J
(m)
f1;g1

(G1+(|Z1|)))2]

≤ 2E0[(V
(n,m)
1 )2] + 2E0[(V

(n,m)
2 )2],

with

V
(n,m)
1 := (S1;n − S1)J

(m)
f1;g1

(G1+(|Z1;n|))

and

V
(n,m)
2 := J

(m)
f1;g1

(G1+(|Z1;n|)) − J
(m)
f1;g1

(G1+(|Z1|)).

Clearly, for n sufficiently large, we have that S1;n = S1 a.e., hence also that

E0[(V
(n,m)
1 )2] = 0. As for V

(n,m)
2 , first note that ||Zi;n| − |Zi|| ≤ |Zi;n −Zi| = oP(1)

as n→ ∞. The continuity of J
(m)
f1;g1

◦G1+ then implies that V
(n,m)
2 converges to zero

in probability as n→ ∞, hence also in quadratic mean (in view of the boundedness

of J
(m)
f1;g1

).



May 11, 2009 3:26 Journal of Nonparametric Statistics Steel˙revised3

Journal of Nonparametric Statistics 25

(b) Under P
(n)
σ;g1 , one easily obtains that

E0[(W
(n,m)
1 )2] =

∫ 1

0

(

Jf1;g1
(u) − J

(m)
f1;g1

(u)
)2
du.

For any u ∈ (0, 1), the mapping J
(m)
f1;g1

converges to Jf1;g1
as m → ∞ and the

integrand is bounded (uniformly in m) by 4(Jf1;g1
(u))2, which is integrable on (0, 1)

(with integral 4CL
g1

(f1)), since g1 is assumed to belong to FL
∗;f1

. Thus the Lebesgue

dominated convergence theorem allows to conclude that E0[(W
(n,m)
1 )2] = o(1) as

m→ ∞, uniformly in n.

(c) The claim is exactly the same as in (b), with Zi;n replacing Zi (hence also
with Si;n = Sign(Zi;n) replacing Si = Sign(Zi)). Consequently, (c) holds under

P
(n)
σ+n−1/2s;g1

. That it also holds under P
(n)
σ;g1 follows from Lemma 3.5 in [13]. �

Proof of Lemma B.1(ii). For the sake of simplicity, let us write Ji;n,+ :=

JL(F1(X
(n)
i /(σ+n−1/2s))) and Ji;n := JL(F1(X

(n)
i /σ)), i = 1, . . . , n. Then, denot-

ing again by E0 the expectation under P
(n)
σ;g1 , similar manipulations as in the proof

of Lemma A.1(iii) entail that

E0[(J1;n,+ − J1;n)2]

= 2

∫ ∞

0

{

JL
(

F+
1;exp

(

log(y) − log
(

1 +
s

σ
√
n

)))

− JL(F+
1;exp(log(y)))

}2
g1;exp(log(y)) dy,

where we wrote g1;exp(x) := g1(e
x) and F+

1;exp(x) := F1(e
x). Substituting z

for log(y) yields

E0[(J1;n,+−J1;n)2] = 2

∫ ∞

−∞

{

JL
(

F+
1;exp

(

z−log
(

1+
s

σ
√
n

)))

−JL(F+
1;exp(z))

}2
g1;exp(z) ez dz,

which, from quadratic mean continuity, is o(1) as n → ∞. Note indeed that g1 ∈
FL
∗;f1

implies that

E0

[

J2
1;n

]

= 2

∫ ∞

−∞

[

JL(F+
1;exp(z))

]2
g1;exp(z) ez dz <∞. (B2)

We conclude that

E0

[(

J1;n,+ − J1;n

)2]
= o(1) as n→ ∞. (B3)

Clearly, (B2)-(B3) entail that E0

[

J2
1;n,+

]

= O(1) as n→ ∞. Therefore,

E2
0[| 1n

∑n
i=1(J

2
i;n,+ − J2

i;n)|] ≤ E0

[(

J1;n,+ − J1;n

)2] × E0

[(

J1;n,+ + J1;n

)2]

≤ 2E0

[(

J1;n,+ − J1;n

)2] ×
(

E0

[

J2
1;n,+

]

+ E0

[

J2
1;n

])

= o(1)

as n → ∞. This establishes the result, since convergence in the L1 sense implies
convergence in probability. �

Proof of Lemma B.1(iii). The result directly follows from Lemma 4.4 in [15],



May 11, 2009 3:26 Journal of Nonparametric Statistics Steel˙revised3

26 Chr. Ley and D. Paindaveine

since the latter shows that Assumption B allows to replace the nonrandom quan-
tity σ + n−1/2s with the random one σ̂(n) in Parts (i) and (ii) of the Lemma. �

Appendix C. Proofs of Lemma 4.2 and of Theorems 4.1-4.3

Proof of Lemma 4.2. First note that Assumptions A(iii)-(iv)′ imply that the
score function u 7→ JL

+(u) is a continuous and square-integrable function over (0, 1)
that can be written as the difference of two monotone increasing functions. Hence,

since the signed ranks of the X
(n)
i /σ’s, under P

(n)
σ;g1 , with σ ∈ R+

0 and g1 ∈ F1, are
those of n i.i.d. random variables with common cdf G1, Hájek’s classical projection
theorem for linear signed-rank statistics (see, e.g., Chapter 3 in [20]) entails that

∆
L(n)
†;2 −∆

L(n)
g1;2

(σ) converges to zero in quadratic mean as n→ ∞ under P
(n)
σ;g1 , which

establishes the result. �

Proof of Theorem 4.1. Fix σ ∈ R+
0 and g1 ∈ FL

∗;f1
. Lemma B.1(iii) entails that

Q
L(n)
∗;f1

=
∆

L(n)
f1;2

(σ)
(

CL
g1

(f1))1/2
+ oP(1) (C1)

as n → ∞, under P
(n)
σ;g1 . Part (i) of the result then follows from the fact

that ∆
L(n)
f1;2

(σ), under P
(n)
σ;g1 , is asymptotically normal with mean 0 and vari-

ance CL
g1

(f1).

Now, under P
LU(n)
σ,n−1/2τ2;g1

, the asymptotic normality of ∆
L(n)
f1;2

(σ) with

mean CL,LU
g1 (f1, g1)τ2 and variance CL

g1
(f1) is obtained as usual, by establish-

ing the joint normality of ∆
L(n)
f1;2

(σ) and log
(

dP
LU(n)

σ,n−1/2τ (n)
2 ;g1

/dP
(n)
σ;g1

)

under P
(n)
σ;g1

and then applying Le Cam’s third Lemma. Since (C1), from contiguity, also

holds under P
LU(n)
σ,n−1/2τ2;g1

, this yields Part (ii) of the Theorem. Finally, applying

Lemma B.1(iii) (with g1 = f1) to the statistic Q
L(n)
f1

defined in (6) and noting that

ΓL
22 = CL

f1
(f1) yields that

Q
L(n)
f1

=
∆

L(n)
f1;2

(σ)
(

ΓL
22

)1/2
+ oP(1) =

∆
L(n)
f1;2

(σ)
(

CL
f1

(f1))1/2
+ oP(1),

as n → ∞, under P
(n)
σ;f1

. Jointly with the g1 = f1 version of (C1), this establishes

Part (iii) of the result. �

Proof of Theorem 4.3. Fix σ ∈ R+
0 and g1 ∈ F1. Note that the fact that

Q
L(n)
† =

∆
L(n)
g1;2

(σ)
(

ΓL
22

)1/2
+ oP(1) (C2)

as n → ∞, under P
(n)
σ;g1—hence, also Part (iii) of the result—is a direct corollary

of Lemma 4.2. Part (i) also follows from (C2) since ∆
L(n)
g1;2

(σ), under P
(n)
σ;g1 , is clearly

asymptotically normal with mean 0 and variance ΓL
22.

Now, under P
LU(n)
σ,n−1/2τ2;g1

, the asymptotic normality of ∆
L(n)
g1;2

(σ) with
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mean CL,LUτ2 and variance ΓL
22 is obtained as in the proof of Theorem 4.1, by

establishing the joint normality of ∆
L(n)
g1;2

(σ) and log
(

dP
LU (n)

σ,n−1/2τ
(n)
2 ;g1

/dP
(n)
σ;g1

)

un-

der P
(n)
σ;g1 and then applying Le Cam’s third Lemma. Since (C2), from contiguity,

also holds under P
LU (n)
σ,n−1/2τ2;g1

, this yields Part (ii) of the Theorem. �
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