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When testing symmetry of a univariate density, (parametric classes of) densities skewed by
means of the general probability transform introduced in [7] are appealing alternatives. This
paper first proposes parametric tests of symmetry (about a specified centre) that are locally
and asymptotically optimal (in the Le Cam sense) against such alternatives. To improve on
these parametric tests, which are valid under well-specified density types only, we turn them
into semiparametric tests, either by using a standard studentization approach or by resorting
to the invariance principle. The second approach leads to robust yet efficient signed-rank tests,
which include the celebrated sign and Wilcoxon tests as special cases, and turn out to be Le
Cam optimal irrespective of the underlying original symmetric density. Optimality, however,
is only achieved under well-specified “skewing mechanisms”, and we therefore evaluate the
overall performances of our tests by deriving their asymptotic relative efficiencies with respect
to the classical test of skewness. A Monte-Carlo study confirms the asymptotic results.
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1. Introduction

1.1. Testing for symmetry

Symmetry is one of the most important and fundamental structural assumptions
in statistics, playing a major role, for instance, in the identifiability of location or
intercept under nonparametric conditions; see, e.g., [2], [23], and [24]. This explains
the huge variety of existing tests for the null hypothesis of symmetry in an i.i.d.
sample X1,..., X,—hypothesis under which there exists some real value 6 such
that the common cumulative distribution function (cdf) of the X;’s is #-symmetric;
throughout, a cdf F' (resp., a probability density function (pdf) f) is said to be 6-
symmetric iff F/( —x) =1— F(0 + x) a.e. in x (resp., iff f(6 —x) = f(0 + z) a.e.
in x). Essentially, the tests for symmetry available in the literature belong to two
distinct classes.

(a) The first class contains tests achieving consistency under any alternative,
and are usually of a Kolmogorov-Smirnov or Cramér-von Mises type; see,
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e.g., [3], [12], [17], [18], and [22]. The price to pay, however, for univer-
sal consistency is in terms of convergence rates, which are nonparametric,
implying that such procedures typically require a large number of observa-
tions.

(b) Procedures in the second class usually rather focus on some favored alter-
natives, against which they (i) achieve (semi)parametric consistency rates
and (ii) sometimes even are (semi)parametrically optimal; see, e.g., [4], [5],
and [14]. While such tests cannot be universally consistent, their main dis-
advantage remains their important lack of flexibility: typically, the choice
of the favored alternatives is very restricted, and, to some extent, quite
arbitrary.

The tests we propose in this paper belong to the second class, hence do not
achieve universal consistency, but improve on existing similar procedures by giv-
ing practitioners the freedom to choose virtually any favored skewed alternative.
This nice feature is achieved by deriving tests that are designed to behave well
(see below) against essentially arbitrary—yet fixed—classes of skewed alternatives,
more precisely against asymmetric distributions generated via the general skewing
scheme recently proposed in [7].

1.2. General skewing mechanisms

Ferreira and Steel presented in [7] a general mechanism allowing to skew any uni-
variate symmetric distribution. Their idea is to introduce skewness by means of
a probability transform that weights the quantile space. More specifically, the 6-
symmetric cdf F' is turned into a cdf of the form

& FHa) = L(F()), 1)

where L is a cdf over [0, 1] that is not %—symmetric; it is easy to show that F is
indeed 6-symmetric iff L is %—symmetric. Hence, (1) provides a convenient way to
skew any #-symmetric distribution (note that the terminology “skew” here stands
for asymmetry with respect to 6, and that a 6-skewed distribution could very well
be ¢'-symmetric for 6’ # 6). If F (resp., L) admits the pdf f (resp., £), the pdf
associated with F'* takes the form

z = fH(z) = U(F(2)) f(o), (2)

which, by construction, is a weighted version of the original pdf f. If one restricts
to distributions that admit an almost everywhere positive pdf over the real line,
any form of skewness can be achieved by means of such a probability transform,
since any distribution can clearly be mapped to any other distribution via (1)-(2).
This surjectivity property thus implies that any type of asymmetric densities over
the real line can be obtained via this method, including, e.g., the skew-normal
distribution of [1] or the inverse scale factors densities of [6].

These considerations lead to defining a skewing mechanism as a collection £ =
{L} of cdfs over [0,1] containing no other i-symmetric cdf than the identity func-
tion I—which of course leaves any density f untouched (f! = f). For any sym-
metric density f, the resulting collection of densities {f¥ : L € £\ {I}} then is a
family of skewed versions of f. A major advantage of this construction lies in the
possibility of choosing the skewing mechanism £ independently of the pdf f to be
skewed; see [7] for a discussion. The choice of £, which of course crucially deter-
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mines the type of skewness that is achieved, can be made by imposing that the
resulting skewed distributions retain some properties of the initial symmetric den-
sity, such as, e.g., fixing the mode or the median of the symmetric density, leaving
one of its tails untouched, maintaining the existence of moments, etc. For instance,
it is clear that the median of the skewed versions of any symmetric density f is
fixed under the action of £ = {L} iff L(3) = 4 for all L € L. Note that the latter
requirement prevents location shifts, hence leads to “pure” skewed altenatives.

1.3. Owur methodology

Restricting, for the sake of simplicity, to the problem of testing for symmetry about
a specified centre 6, we intend to develop testing procedures that perform well
against alternatives obtained by means of an arbitrary prespecified skewing mech-
anism £ = {L}. As mentioned above, practitioners then would be given the flexibil-
ity of choosing freely L—equivalently, the favored skewed alternatives—according
to their needs or to the modeling assumptions that they are ready to adopt. Again,
the surjectivity property stated in the previous section implies that all alternatives
to the null of #-symmetry enter this framework, hence explains why we regard this
approach as “flexible” and “general”.

1.3.1. ULAN and Le Cam optimality of parametric tests of symmetry

This flexibility, of course, should not be obtained at the expense of efficiency
and/or robustness of the resulting tests. Aiming first at efficiency, we restrict to
parametric skewing mechanisms (PSMs) £ = {Ls} indexed by some real (skew-
ness) parameter J, and introduce scale-asymmetry models PL(M) in which this
skewness 0, the value of a scale parameter o, and a standardized (f-symmetric)
density fi remain unspecified. We then show that, under extremely mild regularity
assumptions on fi, the fixed- f; parametric submodels P £ are uniformly locally
and asymptotically normal. This ULAN property is the key result that allows to
derive Le Cam optimal tests of symmetry in such parametric models.

1.3.2.  Robustness and semiparametric tests of symmetry

Such tests, however, are in general valid—in the sense that they asymptotically
meet the nominal level constraint—at standardized density f; only, hence are of
little practical interest, as it appears highly unrealistic to assume that the underly-
ing f1 is known. We solve that problem by introducing (i) studentized versions and
(ii) signed-rank versions of the optimal fi-parametric tests. While the former are
obtained by means of standard studentization arguments, the latter follow from
the rich group invariance structure of the null hypothesis of symmetry.

Both resulting fi-semiparametric tests of symmetry inherit the optimality prop-
erties, at f1, from their parametric counterparts, while remaining valid under a
much broader class of densities. It is remarkable that the signed-rank tests are even
Le Cam optimal uniformly in fi. In both cases, optimality, however, is achieved
under the prespecified PSM only. To investigate the overall performances of the
proposed tests, we compute their asymptotic relative efficiencies (AREs) with re-
spect to a standard benchmark procedure, namely the classical test of skewness.
These AREs show that our tests exhibit very good performances, even when based
on a PSM that is not well-specified. This is confirmed in small samples through a
Monte-Carlo study.

Quite interestingly, two particular cases of the proposed signed-rank tests of sym-
metry are the celebrated sign and Wilcoxon signed-rank tests. Le Cam optimality
of both tests—each against a specific PSM, but uniformly in the underlying density
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type fi—follows from our general results. Since the corresponding local alterna-
tives are not (pure) location alternatives, such optimality results are of a different
nature than the well-known optimality of the sign test (resp., the Wilcoxon test)
against Laplace (resp., logistic) location alternatives.

1.4. Owutline of the paper

The paper is organized as follows. In Section 2, we define the notation used
throughout, list the assumptions needed on PSMs, and describe the resulting scale-
asymmetry models. Section 3 states that these models are ULAN in the vicinity of
symmetry, and presents the resulting optimal parametric tests of symmetry. Semi-
parametric versions of these tests are developed in Section 4.1 (studentized tests)
and Section 4.2 (signed-rank tests). In Section 5, we introduce several examples of
PSMs, and derive, in each case, the resulting optimal parametric and semiparamet-
ric tests of symmetry. The asymptotic relative efficiencies of our tests with respect
to the classical test of skewness are computed in Section 6. A Monte-Carlo study
then investigates the small-sample performances of the proposed tests in Section 7.
Eventually, Section 8 gives some final comments, and an appendix collects technical
proofs.

2. Notation and assumptions

As announced in the Introduction, we intend to develop tests for symmetry about
a specified centre—we simply write symmetry in the sequel, and will throughout
let this specified centre be the origin of the real line, which is of course without
any loss of generality since testing for symmetry about any fixed 6 can be obtained
by replacing the observations X; with X; — . More precisely, restricting to the
absolutely continuous case, we want to test the null that the underlying density f
belongs to

F = {f : f(z) > 0ae., f(—z)=f(z) Ve, [F f(z)de= 1}.

Even in a parametric context, assuming that the underlying density is fully specified
is not reasonable, and it should rather be assumed that only the underlying density
type—that is, the density up to a scale factor, o say—is specified. This motivates
rewriting F as F = {fi1, : 0 € [Rg',fl € F1}, where we let fi,(z) := %fl (%) and

Fp o= {f1 eF: 1 filz)de = 0.75}.

Clearly, if X has pdf fi,, then ¢ = Med[|X]|], so that o can be interpreted as
a robust scale measure, in the sense that, unlike the usual standard deviation,
it avoids any moment assumption. Denoting by P((::J)fl (f1 € F1) the hypothesis
under which Xy,..., X, are i.i.d. with common density fi,, we will discriminate
o
type f1 (throughout, we write U, instead of erﬂ?ﬁ) and the nonparametric null
hypothesis H((]n) =Ufper 'H(()n}l.

Asymmetric alternatives will be defined in terms of the skewing mechanisms de-
scribed in the Introduction. Since we want to rely on Le Cam’s theory of asymptotic
experiments and develop tests for symmetry that are locally and asymptotically

between the null hypothesis H )1 = UJ{P((f}l} of symmetry with specified density
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optimal, we will consider parametric skewing mechanisms, that is, skewing mech-
anisms that are indexed by a real parameter § (that plays the role of a skewness
parameter).

DEFINITION 1. A parametric skewing mechanism (PSM) is a collection L =
{Ls : § € D C R} of cdfs over [0,1] such that (i) D is an open and connected
set containing the value 6 = 0, (ii) Ly = I, and (iii) the only value of § € D for
which Lg is %—symmetric is 6 = 0.

Now, for any PSM £ = {Ls : § € D}, denote by Pf(;}l, with 0 € R, § € D,
and f; € Fi, the joint distribution of an n-tuple of i.i.d. observations X1,..., X,
with common pdf

T éffé(g) = %%(Fl(%))fl(g),

where /s stands for the pdf associated with Ls; see (2). For consistency, we simply
write PS?J)H instead of Pi(orf}l—since it is assumed throughout that Ly = I, no
reference to the PSM is indeed needed there. Any couple (f1, L) then induces the
parametric scale-asymmetry model

P = P50 e RY, 0 €D}, (3)
whereas any PSM £ defines the nonparametric scale-asymmetry model P£() .=
L
Uf1€]:1 P 1(n)

Depending on the nature of the proposed tests, PSMs will have to satisfy various
mild assumptions. For the sake of convenience, we group those assumptions into

AssumMPTION A. (i) The PSM L = {Ls : § € D} is independent of the initial
symmetric density to be skewed; (ii) for any 6 € D such that — € D, we have

Losu)=1—Ls(1 —u), Yuel0,1]; (4)

(iii) the cdf Ls, for any 6 € D, admits a pdf s, and the mapping § +— €§/2(-)
is differentiable in quadratic mean at & = 0, with quadratic mean derivative
(956;/2(-)\5:0 =: 2J£(-); (iv) (resp., (iv)) the mapping w — J*(u) is continuous
over (0,1) (resp., over (%, 1)) and can be written as the difference of two monotone
increasing functions.

The independence condition in Assumption A(i) is natural (see [7]) and will play
an important role in the uniform optimality of the proposed signed-rank tests; see
Section 4.2. The duality assumption in A(ii) is desirable when interpreting § as a
skewness parameter. Indeed, this assumption ensures that the joint distribution of

the X;’s is Pf((sn}l iff that of their reflections with respect to the origin is Pg(f();,fl; in
other words, this states that if § is associated with some skewness to the léft; then
the corresponding skewness to the right is obtained for the value —§ of the skewness
parameter, and vice versa. The regularity assumptions in A(iii) are needed to derive
the uniform local asymptotic normality (ULAN) property of the considered scale-
asymmetry models (see Theorem 3.1 below), which plays a crucial role in the
construction of our optimal tests. Note that Assumption A(iii) is fulfilled whenever
the mapping § — ¢s(u) admits a (standard) derivative that is a square-integrable
function of u € (0,1), in which case we simply may write J*(u) = 95s(u)|s—o-
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Finally, the technical conditions in Assumptions A(iv)-(iv)" are only required by
the proposed optimal semiparametric tests.

3. ULAN and optimal parametric tests

Let Xi("), i =1,...,n, be a triangular array of observations, such that the joint

distribution of (X%n), e ,X,(Ln)) is in Pﬁ(n) (see (3)) for some fixed pdf f; € F; and
some fixed PSM L, and consider the problem of testing the null hypothesis H((f}l
of symmetry with specified density type fi.

The optimal tests we derive below are based on the ULAN property, in the
vicinity of symmetry, of the parametric model Pﬁl(n). ULAN however requires
some further mild assumptions on f;. To be able to state the latter assumptions,
we introduce the following definitions. Consider the measurable space (£2,Bg),
where 0 C R is an open subset and Bq is its Borel o-field. Denote by L*(Q,v)
the space of square-integrable functions with respect to the Lebesgue measure
with weight e on (€, Bg), that is, the space of measurable functions h : Q@ — R
satisfying [, [h(z)]?e“dz < co. Recall that g € L*(Q,v) admits a weak derivative T
iff [ g(x)¢/ (x)de = — [, T(x)p(x)dx for all infinitely differentiable (in the classi-
cal sense) compactly supported functions ¢ on €. The mapping T is also called the
derivative of g in the sense of distributions in L?(€2,v). Furthermore, if T itself is
in L2(Q,v), then g belongs to W12(Q, v), the Sobolev space of order 1 on L?(€, v).

As we will state below, the parametric family Pﬁ(n) is ULAN in the vicinity

of symmetry provided that f; belongs to the collection fPLAN of densities in F

for which the mapping = — fll/eip(:c) = f11/2(ex) belongs to W12(R,v). Letting
Vr(x) = —2(file,) (ogle])/ file, (log [2), where (f)/%,) stands for the wealk
derivative of fll;é:ip in L?(R, v), this regularity condition ensures the finiteness of the
Fisher information for scale Zy, := [~ (xty, (x) — 1)? f1(z) dz. At first sight, such
a condition may appear highly technical and not easy to deal with; however, any
function f; that (i) is absolutely continuous with a.e.-derivative f] and (ii) satisfies

7 @y, (@) — 1) f1(x) d < oo, with ¢y, (z) := — f{(2)/ f1(z), belongs to FULAN,
and @y (-) = 1y, (+). In practice, most densities fulfill the latter requirements.

ULAN of the parametric model Pﬁ(n) with respect to ¥ = (o,4)’, in the vicinity
of symmetry, then takes the following form.

Theorem 3.1: Let f; € FUYAN and L be a PSM satisfying Assumptions A(i)-

#i). Then, for any o € R, the family of probability distributions PE™ s ULAN
0 f1

at 9 = (0,0)', with central sequence

and diagonal information matrix I‘Jﬁcl(a), with upper-left entry Tg,.11(0) := Iy, /o?
and lower-right entry T, = fol(JE(u))2 du. More precisely, for any 9 =
(c™ 0 = 9 + O(n~'?) and any bounded sequence (™ = (7'1("),7'2("))’ € R?
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we have

L L L
Aﬂfz)—l—nfl/zfr(")/ﬁ(");fl = 10g (dPﬂg‘l))-i-n*l/?T(");ﬁ /dPﬂfz);fl)

1

= 7 ALO (o) §T<">' T4 (0)7™ + op(1)

and A?l(n)(a(”)) £ N(0, Fﬁ (0)), both under Pérfz),fl as n — oo.

Actually, as shown in the proof of this theorem, Assumption A(i) is not required
for Pﬁ(n) to be ULAN. This assumption however guarantees that the lower-right
entry of I’Jﬁc1 (o) does not depend on the density type fi, which—jointly with the fact
that this quantity does not involve the value of the scale parameter—justifies the
notation I'%, in Theorem 3.1 (similarly, note that I's,.11 (o) does not depend on L).

Moreover, even when Assumption A(ii) fails to hold, Pﬁ(n) remains ULAN, but
. L () .

then with éfl(g)(a) = % Z?Zl[Jﬁ(Fl(XjT)) — fol JF(u) du] and a possibly non-

diagonal information matrix I‘j}l (0). We point out that Assumption A(ii) implies

in fact that

JE() =—=J5(1—-), ae. in (0,1), (5)

which entails that A?l(g)(a) = A?l(g)(a) and that A;?;)l(a) and Aﬁ(g)(a) are asymp-

totically uncorrelated under P((:}l. The diagonality of I‘Jﬁcl(a) is important as it is

the structural reason why replacing o with an adequate estimate (™ has no asymp-

totic impact on the J-part of the central sequence Aﬁ(n)(

any 0 € R} and any f; € FURAN, A]lfl(g)(&(")) = A?l(g)(a) + op(1) as n — oo,
(n) . 7 :

under P o 13 S€e Lemma B.1 in the Appendix. More precisely, this actually requires

0), in the sense that, for

ASSUMPTION B. The sequence of estimators 6™ (n € Ng) is (i) root-n consis-
tent (i.e., n'/?(6™ — o) = Op(1) as n — oo, under Uglefng?g),l) and (i) locally
asymptotically discrete, meaning that, for all o € IRSr and all ¢ > 0, there exists an
M = M(c) > 0 such that the number of possible values of &™) in intervals of the
form {t € R : n'/?|t — 0| < ¢} is bounded by M, uniformly as n — co.

It should be noted that Assumption B(ii) is a purely technical requirement, with
little practical implications (for fixed sample size, any estimator indeed can be con-
sidered part of a locally asymptotically discrete sequence), so that Assumption B
essentially only requires consistency of 6™ under the null at the standard root-n
rate. Of course, an obvious example of estimators (™ satisfying Assumption B is

(a discretized version of) the sample median of ]Xf") l, \Xén)\, cey ]X,(L") |.
Most importantly, the construction of locally and asymptotically optimal tests
for H((f}l against two-sided alternatives of the form Hf(f?) = U Uszo {Pf%n}l}

readily follows from the ULAN structure of Pﬁ(") in Theorem 3.1. More precisely,
denoting by 2z the upper S-quantile of the standard Gaussian distribution, it fol-

lows from Section 11.9 of [16] that the test (;5?1(”) that rejects Hf)”}l in favor of Hf(f?)
whenever ’ ’

L(n) : L(n) _ T fi52
‘Qfl ‘>za/27 with Q7 := W7 (6)
22
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is locally and asymptotically maximin at asymptotic level «. Clearly, optimal para-
metric tests against one-sided alternatives are derived along the same lines.

4. Semiparametric tests

The optimal tests ¢l:1(n) of the previous section present a major drawback: in
general, they are valid—in the sense that they meet asymptotically the a-level
constraint—at the corresponding density type fi only, that is, under the null hy-

pothesis 'H( ") _only. In practice, assuming that the underlying density type f1 is
known is of course highly unrealistic, and it is desirable to define tests that are

valid under the nonparametric null hypothesis 'Hé =Uye le( ") Tn this section,
we introduce two classes of tests that enjoy the optimality propertles of the para-

metric tests ¢§l(n) above, but are valid under much broader conditions. The first
class is obtained via a studentization argument (Section 4.1), whereas the second

(n)

class arises naturally from the group invariance structure of H; "’ (Section 4.2).

4.1. Optimal studentized tests

Under ngl, A?l(,g)(a), with f; € FUMAN is asymptotically normal with mean 0

and variance C’gﬁ1 (f1) == [T [J5(Fi(2))]%g1 () dz, provided that the latter quantity

is finite. It is therefore natural to consider the studentized test (ﬁf%) that rejects

(at asymptotic level «) the null of symmetry H(()n)
L(n

Uglefl{Po((sgl} as soon as

in favor of Hj M= U, Us£0

L(n)(~(n
coy Afl (())

L(n)
> 2y, with = —h2®
‘Q z /2 W1 Q *; f1 (C‘C’( )(fl))1/2

where CEM(f)) := LS AR (Xi(n)/ﬁ(”)))]2 and (™ satisfies Assumption B.
The asymptotic properties of such tests, under any ¢g; € .7: of = { g1 € .7:ULAN :

2 TE(FL(2)]Pg1(w) do < oo}, easily follow from the asymptotic linearity in
Lemma B.1 (see the Appendix) and are summarized in the following result.

Theorem 4.1: Fiz f; € FUMAN. Let £ (resp., Ly) be a PSM satisfying As-
sumptions A(i)-(iv) (resp A(1)- (m)) and let Assumption B hold. Then,

(i) under Uy Uy, ez {Pagl} Q ") £
tests ¢, (f has asymptotzc level a under the same hypothesis;

(ii) under Uy {P1! "R/QT o} with g € FEL QI E N((CE (1) V2C5 0 (F1.91)m. 1)

as n — oo, where C’g1 Y(fr,01) = [T JE(Fu(x ))J‘:U(Gl(ﬂv))gl(aﬂ) dx;
(iii) under U {PU f1} Qﬁ(n Qﬁ(n + op(l) as n — o0, so that the sequence

N(0,1) as n — oo, so that the sequence of

of tests ¢ 18 locally and asymptotically maximin, at asymptotic level o, when
testing Uy Uglej_-a {P ,gl} against alternatives of the form U, Uso {Pg(énfl}

Theorem 4.1(i) shows that the studentized tests gb f are vahd under a much
larger null hypothesis than Hé } , namely under Uy Ug ¢ FE, { P(7 gl} For the sake
of generality, we have also considered above alternatlves 'where the underlying

density g; is turned into an asymmetric density by means of a PSM L7 that might
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be different from the PSM L used in the construction of the test. Note, however,
that optimality is achieved only against local alternatives characterized by Ly = £
and g1 = f1.

4.2. Optimal signed-rank tests
(n)

It is well-known that the nonparametric null hypothe31s of symmetry 'HO enjoys

(n)

a strong group invariance structure. More precisely, 'HO is generated by the group

Qh ,0 of transformations g of R™ defined by gp(z1,...,2,) = (h(x1),...,h(x,)),
where h : R — R is any continuous, odd, and strictly monotone increasing func-
tion satisfying lim, .o h(z) = o0o. When the null is invariant under a group of
transformations, the invariance principle suggests restricting to tests that are mea-
surable with respect to the corresponding maximal invariant. In the present con-
text, the maximal invariant is the vector of signed ranks (S(n)R(n), e ,S,(f) R,(ln)),
where S( - Slgn( Z(n)) stands for the sign of X( ") and R( ™) denotes the rank
of | X;" () | among |X | |X | The invariance structure of H(() ") thus naturally
brings signed-rank tests mto the picture.

Now, since F) is the cdf of a symmetric distribution, We have that Fj(z) =

(1 + Sign(z)F; (|z]))/2, where F; stands for the cdf of \X ] under P( ) . This,

combined with the symmetry property of J*(-) in (5), allows for rewrltlng the o-
part of the central sequence as

N = o S (50)/2) = 5 S SIEE (),

where we let J£(u) := J5(1%). Defining

RrR™

; ’ ZS (n—|—1>

Héjek’s classical projection result for linear signed-rank statistics (see, e.g., Chap-
ter 3 of [20]) then readily yields the following.

Lemma 4.2: Let £ be a PSM satisfying Assumptions A(i)-(iv). Then, for

any o € R{ and any g1 € F1, Aﬁ(n) = Ajl(n)( )+ op(1), as n — oo, under Pgiy, .
The resulting signed-rank test ng ) then rejects H((] ") in favor of Hf(n) (at asymp-

totic level «) as soon as

£(n) oy _ A5
‘QT ‘ > Za/g, Wlth QT = W
22

Unlike the studentized tests of the previous section, these signed-rank tests do
not require any estimation of the underlying scale value o. The following theorem

states the asymptotic properties of the tests (bf(n).

Theorem 4.3: Let L (resp., Ly) be a PSM satisfying Assumptions A(i)-(iv)
(resp., A(i)-(iii)), and define C*+*v .= f JE(u)JFv (u) du. Then,
(1) under Uy Ug, c 7, {PU gl} Qﬁ(n N(0,1) as n — oo, so that the sequence of
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tests QSTE(H) has asymptotic level o under the same hypothesis;

(ii) under U, {Pf’; Ti)/QT - b owith g1 € F, QTL(") £ N((T5)"YV2CE vy 1) as
n — oo,

(#ii) under Uy, {PU gl} with g1 € Fi, QT = Agl(g)(a)/(l“é)l/2 +op(1) as n —
00, so that the sequence of tests gb £) s locally and asymptotically mazximin, at

asymptotic level a, when testing Uy Ug, cr, {PU gl} against alternatives of the form

Us Ué;ﬁo Ug1€.7:1{ 0591}

This result shows that the signed-rank tests improve on the studentized ones
in several respects. First of all, the signed-rank tests meet the asymptotic a-level
constraint under broader conditions, namely under Us Ugier, {P(,- gl} (whereas
studentized tests are valid under U, Ug eFL, {PU ‘1 }). Secondly, in sharp contrast
with the optimal studentized test qﬁ £n ) Wthh achieves Le Cam optimality at the
target density type f1(€ fULAN) only, the signed-rank tests qS are optimal at
any g1 € Fi1. Such uniform optimality rarely occurs in rank-based inference. Note
however that, exactly as for the studentized tests, optimality of the signed-rank
tests is not uniform in the PSM: optimality is achieved only if the underlying
PSM Ly coincides with the PSM £ used in the tests.

5. Some particular cases

In this section, we consider four examples of PSMs satisfying Assumption A and
derive, in each case, the corresponding parametric, studentized, and signed-rank
test statistics introduced above. For the sake of illustration, Figure 1 provides
plots of several cdfs belonging to each PSM, along with the corresponding skewed
(Gaussian) densities.

As a first example, consider the skewing mechanism £y := {Lq5: § € R} defined

by
uedw=1) if >0
Lyg(u) = { o=
1—(1—w)e™ if §<0.

Straightforward calculations reveal that J%*(u) = 2u — 1 and F% = 1/3, so that
the parametric and the studentized test statistics achieving Le Cam optimality at
target density f1 are given by

zzl(n \fz 2F1X(” 5y —1)

and

I W e
" (5 2 (2R (Xi(”)/(}(n)) _ 1)2)1/2

n

respectively (throughout this section, 6" stands for an arbitrary estimator satisfy-
ing Assumption B). The score function J f ! simply reduces to the identity function,
which implies that the corresponding signed-rank test coincides with the celebrated
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Wilcoxon signed-rank test, based on

n (n)
Q= \/; ZZ:; 5 n+1
The second PSM Ly := {Lgs : 6 € [—1,1]} is defined by

1
<u 5
<u<l

Los(u) = {

IAIA

u(l—19) if 0
u+d(u—1) if 1
(if |8] > 1, Los(+) is not monotone increasing over (0, 1), hence fails to be a cdf).
Although this PSM is not as smooth as the other examples considered in this
section, it satisfies Assumption A, with |J%2(-)| = J£2(-) = 1 a.e. in (0,1). Quite
interestingly, this implies that all fi-parametric tests, as well as their respective
studentized and signed-rank counterparts, are based on the statistic

| VriS

hence coincide with the classical sign test.

In most textbooks about nonparametric statistics (see, e.g., [9], [19], and [21]),
the Wilcoxon signed-rank test and the sign test are presented both as one-sample
location tests and as symmetry tests. Their optimality properties, however, are
stated against location alternatives only; more precisely, the Wilcoxon test (resp.,
the sign test) is reported to be locally most powerful against logistic (resp., Laplace)
location alternatives, i.e., alternatives of the form Xin) =0+ O'Zi(n , with 6 # 0,
o > 0, and where the Zi(")’s are i.i.d. with pdf » — exp(z)/(1 + exp(z))? (resp.,
pdf x — exp(—|z])/2). In view of Theorem 4.3, the Wilcoxon test (resp., the

sign test) is also Le Cam optimal against the alternatives Uy Uso Ug, 7, Pfjé(zz },
with 7 = 1 (resp., j = 2), which are not pure location alternatives. Moreover,

note that the logistic and Laplace densities do not play any special role here,
as optimality is uniform in the underlying density type gi. We stress that other
PSMs actually also lead to the Wilcoxon test, hence provide further asymmetric
alternatives against which Wilcoxon is Le Cam optimal. Examples of such PSMs
are obtained by defining, for § > 0 (the values for § < 0 are obtained from the
duality assumption in (4)), Ls = u(1 — arctan(§(1 — u))) or Ls = u(1 + 6)*~L.

As a further example, which does not lead to a classical signed-rank test of
symmetry, consider the PSM L3 := {L3s : 6 € [-7~!,771]} defined by

Lss(u) := u — dsin(mwu).

It can easily be checked that J%(u) = —7cos(mu) and 53 = 72/2, so that the
proposed test statistics are based on trigonometric score functions, that is,

Eg n 2 = n ~(n
Qfl( ) = —\/; Zcos(ﬂFl(Xi( )/0( ),
i=1

1 n (n) Ja(n
Qﬁs(n) _ _ﬁ ziZl COS(?TFl(Xi /0-( )))
*; f1 (l Z?:l COS2(7TF1 (X(n) /5'(")))) 1/2

n K3
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and

()
\[ Z i sin ( nR+ 1)) (7)

The last example we consider is the PSM L4 := {Lys5 : 6 € D}, where

ued@=3)’ ifo<u
1—(1—u)e3) if 1 <u

List) = {

and the interval D is such that Ls(+) is monotone increasing. Note that L45(%) = %
for any 0 € D so that this skewing mechanism, unlike the previous ones, fixes the
median of the original symmetric distribution. Since the argument of the exponen-
tial term in L45 contains a third-order polynomial in u, we obtain quite naturally
that J54(u) = 4(u — $)?[u — 3 — 3Sign(u — 3)], leading to % = 2= and to test

2240
statistics based on thlrd—order score functions, i.e.

Q§14( — 39 / n-1/2 Z i(n)/a.(n)) _ %)Z[Fl(Xi(n)/a.(n)) _ % _ %Si(n)]’

Q5 _ 7 Lim(A <X " f5m) — DR (XM 6™) — L~ 350
AT (B (M f5m) — DR (X fa) — § - S5V

n

and

6. Asymptotic relative efficiencies

We now compare the performances of the various proposed tests by deriving their
asymptotic relative efficiencies (AREs) with respect to a benchmark test of sym-

metry, namely the classical test of skewness ((bgﬁgw,

the latter rejects the null of symmetry H(()n) in favor of 'Hf(n) (for any L) iff

say). At asymptotic level a,

n1/2m§")
‘stew > Fa/2; with stew = W’
(mg")
where mg =1 ) 1( ) stands for the sample moment of order ¢. Clearly,

asymptotic Vahdlty of thls test requires finite sixth-order moments

Computing the AREs of the proposed tests with respect to ¢Skew of course re-
quires determining the asymptotic behavior of the latter under the local alterna-
tives considered in this paper. This is achieved in the following result (the proof,
which is similar to those of Theorems 4.1 and 4.3, is left to the reader).
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(2) (h)

Figure 1. Plots of Lj5, j = 1,2,3, and 4 ((a), (c), (e), and (g)) and of
the resulting skewed versions of the standard Gaussian density ((b), (d), (f),
and (h)) for § = 0,0.5,2,5 in (a)-(b), for § = 0,0.2,0.5,0.8 in (c)-(d), for
6=0,0.1,0.2,0.3 in (e)-(f), and for § = 0, 5,8, 10 in (g)-(h). Increasing values
of § are successively associated with dotted, dash-dot, dashed, and solid lines.

Proposition 6.1: Let Ly be a PSM satisfying Assumptions A(i)-(iii). De-
fine FFEV = {g1 € F1 ¢ peyg < 00}, where ppg, = [ a'gi(x)dx, and let
Chity ) = [ (G ) . Then,

S

(i) under Uy Uy, ¢ prew {P ,gl} stew N(0,1) as n — oo, so that the sequence
of tests (b(

skew Nas asymptotic level oo under the same hypothesz'S'

(11) under U, {Pf’; Ti)/QT - } with g, € FreV stew £ N ((p6:9,)~ 1/2Cskew(g1)7'2,1)

as n — oQ.

The shifts in the asymptotic non-null distributions provided in Theorems 4.1
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and 4.3 as well as in Proposition 6.1 allow for computing the desired ARE values,
which are simply the squared ratios of those local shifts. As the proposed signed-
rank tests do not require any moment assumption, their ARE values with respect

to (b(n) can be considered as being infinite under any PSM Ly and any ¢, with

skew
infinite sixth-order moment yg.g, -

Theorem 6.2: Let L and Ly be two PSMs satisfying Assumptions A (i)-(iii).

Then, (i) zf fi € FUMAN and zf Assumption B holds, the ARE of the studen-
tized test ¢, f1) with respect to ¢skew’ for local alternatives of the form PEU(nl)/2

with 79 £ 0 and g1 € f N fSkeW, is given by

72391’

(Co5v (fy, 91))% 16,9,
ARE = R
EU791( /¢skew) (Cs%;w( 1))2051(]01)

provided that L further satisfies Assumption A(iv); (ii) the ARE of the signed-

rank test gbf( with respect to gbgkgw, for local alternatives of the form PEU(nl)/2

with T # 0 and g1 € F*V, is given by

T2;91’

n n (CL EU)QNG'H
ARE£U7 1(¢£( /gbgkgw) = — )
! (C44,(91))°T5,

provided that L further satisfies Assumption A(iv).

Table 1 provides numerical values of the AREs, with respect to ¢Skew and under
L1(n)
, the sign test QST

the signed-rank test gb ) based on (7), and of several studentlzed tests gbﬁ f(n)
(7 = 1,3); see Section 5 The alternatives considered are those obtained by skewing,
via the PSMs £; (j = 1,2,3), Student densities (g;,) with v = 7 and 10 degrees of
freedom, Gaussian densities (g4 ), and power-exponential densities (ge, ) with 7 = 2
and 5; here, power-exponential densities with parameter 7 refer to densities of the
form z — g, (z) = ¢,0 ' exp(—a,(z/0)?"), where ¢, is a normalization constant,
n > 0 determines the tail weight, and a, > 0 is such that g. € Fi.

Those ARE values are uniformly high, underlining that the proposed tests
strongly dominate the classical test of skewness, with the only exception of the per-
formance of the sign test under £;-skewed versions of the light-tailed density ge..
In particular, our tests maintain very good performances when they are based on
a PSM that does not correspond to the one generating local alternatives. For some
specific tests, however, the latter remark might fail to hold when considering alter-
natives generated via PSMs that fix the median (for instance, the sign test would
not exhibit any power under L4-alternatives). Eventually, note that those AREs
clearly confirm the uniform optlmahty, under each PSM £; (j = 1,2,3), of the
corresponding signed-rank test (bJr

various alternatives, of the Wilcoxon signed-rank test qS

7. Simulation results

In order to examine the finite-sample performances of the proposed procedures,
we generated N = 10,000 independent samples of size n = 200 from symmetric
Gaussian and Student (with v = 2, 7, and 10 degrees of freedom) densities, and
increasingly skewed (to the right) versions of the same densities (three positive
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Table 1. AREs, with respect to ¢(n) under Lj-alternatives (j =

skew?

1,2,3; see Section 5) with t, (v = 7 and 10), Gaussian, and e,

(n = 2 and 5) densities, of the Wilcoxon signed-rank test ¢TL1("), the
sign test ¢TL2(”), the signed-rank test d)fg'("), and various studentized
tests ¢f§7}(ln), j=1,3.
Underlying PSM Ly and density g1
gty Gtio 9o Geo Jes
Test L1
d)flfi:) 13.70210 5.18938 2.51315 1.56880  1.26913
qbflf(tn) 13.70200 5.18942 2.51320 1.56871 1.26920
Mty
¢f1(n8 13.70030 5.18913 2.51327 1.56848  1.26935

St () 13.45630  5.10287  2.47841 1.57080  1.26895
oo™ 1343670 509584 247551 156926 1.27022
ST 1370210 5.18942  2.51327  1.57080  1.27022
62 1027660  3.89206  1.88496 1.17810  0.95266
6530 1350390  5.11844  2.48294  1.56755 1.26310
673" 1349240  5.11435 248128  1.56747  1.26301
13.46280  5.10380  2.47692 1.56724  1.26277
P2 () 12.95680  4.91504  2.38928  1.54807  1.24658
653 1299950 4.93140  2.39740  1.55345  1.25184
#F3™  1350390  5.11435  2.47692  1.54807 1.25184

Lo
¢f;ﬁj> 26.02340  9.60127  4.42407  2.48236  1.92523
SR 2602440 9.60000 442185 2.47980  1.92362

¢S 26.03780  9.60082  4.41786  2.47360  1.91974
o5 ) 9767520 1018720 466468 249912 192270
“1™ 9735630 10.06660 4.60579 244426  1.88239
ST 2602340 9.60000  4.41786  2.49912  1.88239
™2™ 3469780  12.80000 5.89049  3.33216  2.50985
=3 9812500  10.36080 4.75367  2.59205  1.99023
#3 2816560  10.37530  4.75968  2.59397  1.99068

*;5 ftq
pL3 () 2826490 1041080 477465 250669 199191
¢>f7§2) 20.74780 1095650 5.02325  2.70095  2.05567
¢53 2052880  10.87480 4.98454  2.67214  2.03441

¢f3(") 28.12500  10.37530  4.77465  2.70095  2.03441

L3
¢f,lf(f:) 17.93350 6.67356 3.12851  1.83980  1.44737
SR 17.93820 667485 312858 183913 144707
o™ 1705230 6.67898  3.12919  1.83749  1.44631
¢>f;;§;) 1817070  6.76371  3.17095 1.85060  1.44925
¢*£,1f(ez) 18.13480 6.75011 3.16424  1.83594  1.43982

651 1703350 6.67485  3.12919  1.85060  1.43982
¢;?" 1474970 548985  2.57365 1.52206  1.18421
¢f7ﬁ';) 18.19670  6.77275  3.17475 1.86590  1.45756

d)ES(n) 18.19650  6.77283  3.17493  1.86617  1.45764

*;5 ftq
qbfd(ng 18.19400 6.77235 3.17512  1.86684  1.45784
qbf‘}g)n) 17.94200 6.68371 3.13930  1.87776  1.46050

sJeg
d)fdfiz) 17.97390 6.69547 3.14466  1.87718  1.46096

quS(") 18.19670  6.77283  3.17512  1.87776  1.46096

15
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Table 2. Rejection frequencies (out of N = 10,000 replications), under various symmetric and £1-
skewed Gaussian and Student (with v = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon

signed-rank test ¢£1(n) the sign test ¢£2(n) the blgned rank test ¢£3( ™)
]f(ln) (7 = 1,3), the classical test of skewness d)hkuw’

versions of the signed-rank tests ¢g;)L, ‘bg;)W’ and d)éna)N and the runs test d>(”)

, various studentized tests
the Laplace, Wilcoxon, and normal-score

runs -’

Gto gtr
Test 6=0 6=.15 6=.30 6=.45 §=0 &6=.15 6=.30 &=.45
¢j;ﬁ2) 0.0505 0.2153  0.6194  0.9127 0.0508 0.2219  0.6284  0.9110
¢f;}§:) 0.0506 0.2143  0.6188  0.9123 0.0520 0.2221  0.62890  0.9132
65" 00509 02138 0.6185 09123 0.0520 0.2224  0.6291  0.9132
ity
¢>f}<"(5 0.0504 02133  0.6174  0.9124 0.0520 0.2223  0.6301  0.9134
¢>flg)") 0.0505 0.2146  0.6185  0.9123 0.0527  0.2209  0.6266  0.9120
¢7207 00620 01943 05239  0.8331 0.0570  0.1894  0.5326  0.8371
¢f;iz) 0.0504 0.2138  0.6147  0.9091 00501 02191  0.6210  0.9073
¢>f;ﬁ';) 0.0500 0.2144  0.6154  0.9099 0.0506  0.2204  0.6220  0.9070
653™ 00497 02142 06155  0.9102 0.0503  0.2207  0.6224  0.9070
ity
¢>fﬁ“3 0.0498 02144  0.6155  0.9105 0.0506  0.2206  0.6222  0.9072
¢>f3g)") 0.0505 0.2139  0.6148  0.9097 00512  0.2201  0.6195  0.9071
T 00095 00155  0.0351  0.0698 0.0340 0.0787  0.2057  0.3912
T 00518 01974 05594  0.8699 0.0482  0.1934  0.5654  0.8680
o 00505 01837 05270  0.8409 0.0475 0.1811  0.5321  0.8387
¢ 00516 0.1665  0.4802  0.7931 0.0475  0.1637  0.4827  0.7922
(. 0.0458 0.0511  0.0957  0.1857 0.0438  0.0534  0.0904  0.1793
Gtio 9¢
Test 6=0 6=.15 6=.30 6=.45 §=0 &6=.15 6=.30 &=.45
¢j;ﬁ2) 0.0548  0.2279  0.6293  0.9065 0.0520 0.2166  0.6230  0.9077
65™ 00549 02272 06286 0.9074 0.0522 0.2164  0.6243  0.9087
Pt (") 00549 02272 06280 09071 0.0523  0.2167  0.6247  0.9086
*3fty
¢“L™ 00551 0.2272  0.6281  0.9071 00522 02170  0.6243  0.9090
¢>f1?") 0.0545 0.2267  0.6265  0.9068 0.0515 0.2147  0.6219  0.9081
62207 0.0598 01925 05257  0.8266 0.0578  0.1862  0.5245  0.8247
¢>f;ﬁ2) 0.0548 0.2219  0.6214  0.9010 00513 02128 0.6140  0.9014
‘155?(,:) 0.0545 0.2212  0.6228  0.9014 00516 0.2138  0.6152  0.9026
qsf_i}:) 0.0544 02213  0.6234  0.9015 0.0516  0.2137  0.6150  0.9029
¢“3™ 00544 02216 06233  0.9021 00512 02136  0.6149  0.9033
¢>f3?") 0.0544 02228  0.6214  0.9028 0.0515 0.2138 06136  0.9033
T 0.0433  0.0951  0.2425  0.4484 0.0434  0.1219  0.3256  0.5799
o). 00544 02045 05652  0.8611 0.0509 0.1932  0.56890  0.8639
¢ 00549 01915  0.5335  0.8287 0.0484  0.1795  0.5338  0.8393
o 00553 01721 04861  0.7811 0.0473  0.1647  0.4815  0.7860
() 0.0438  0.0553  0.0928  0.1846 0.0438  0.0554  0.0982  0.1778

values of the skewness parameter 0 were used in each case). Skewing was achieved
through the PSMs £; (j = 1,2, 3) defined in Section 5. For each resulting sample,
we performed the following tests of symmetry under two—sided form at asymp-
totic level @ = 5%: the Wilcoxon signed-rank test gb , the sign test ¢T Z(n), the
signed-rank test gbt , various studentized tests gb f ) (j = 1,3), the classical
test of skewness qﬁ the Laplace VVllcoxon7 and normal-score versions of the
signed-rank tests qﬁgZ)L, gbcaw, and ¢CaN proposed in [4], and the runs test gbﬁﬁ%s,

introduced in [17]. Rejection frequencies are reported in Tables 2, 3, and 4.
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Table 3. Rejection frequencies (out of N = 10,000 replications), under various symmetric and Lo-
skewed Gaussian and Student (with v = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon
signed-rank test ¢f1(n), the sign test ¢f2(n), the signed-rank test ¢f3(n), various studentized tests

Lj(n)

ity (7 = 1,3), the classical test of skewness ¢
versions of the signed-rank tests ¢g;)L, ‘bg;)W’ and d)én;N

Steel revised3

Journal of Nonparametric Statistics

(n)

skew’

the Laplace, Wilcoxon, and normal-score
and the runs test ¢

(n)

runs -’

Jgto gty
Test §=0 4§=.10 §=.19 §=.27 §=0 §=.10 §=.19 §=.27
Ot 00502 02273 06457 0.9232 0.0493 02352  0.6603  0.9259
Sl 00503 02238 0.6360  0.9165 0.0493 02302  0.6500  0.9194
65" 00503 02231 0.6348 09162 0.0496  0.2297  0.6494  0.9190
ity
¢>f}("(5 0.0499  0.2222  0.6317  0.9147 0.0494 02286  0.6462  0.9165
¢>flg)") 0.0498  0.2254  0.6442  0.9219 0.0489  0.2296  0.6487  0.9189
¢2070.0579 03077 0.7782  0.9754 0.0550  0.3103  0.7813  0.9740
O 00508 02415 0.6805  0.9403 0.0488  0.2482  0.6824  0.9410
GO 0.0510 0.2396  0.6763  0.9376 0.0491  0.2458  0.6789  0.9393
$53™ 00510 02393 06761  0.9376 0.0493 02454  0.6784  0.9390
ity
¢§3("3 0.0510 02391  0.6744  0.9371 0.0494 02451  0.6775  0.9379
¢>f3€)") 0.0516  0.2434  0.6813  0.9402 0.0493  0.2466  0.6801  0.9386
6T 00096 0.0130  0.0246  0.0369 0.0364 00585 0.1352  0.2336
T 00476 01707  0.4938  0.7990 0.0490 01732  0.4980  0.7919
oM 00480 01496 04195  0.7162 0.0515 01502  0.4259  0.7088
g0V 00476 01317  0.3622  0.6358 0.0512 01326  0.3690  0.6343
). 00435 00583 01251  0.2631 0.0464 0.0616  0.1306  0.2589
Gtio 9¢
est = = . = . = . = = . = . = .
T §=0 §=.10 §=.19 §=.27 §=0 §=.10 §=.19 §=.27
G 0.0496 02410 0.6616  0.9249 0.0564 0.2400  0.6710  0.9309
CUY 00491 02344 0.6498  0.9183 0.0557  0.2359  0.6591  0.9248
*5 ftor
PO 0.0091 02344 0.6486  0.9177 0.0559  0.2353  0.6573  0.9239
¢“1™ 00493 0.2333  0.6458  0.9155 0.0553  0.2326  0.6549  0.9225
¢>f1?") 0.0489  0.2326  0.6481  0.9178 0.0547 02317  0.6538  0.9225
22 00561 03070 07821  0.9759 0.0580 03143  0.7914  0.9746
;
OO 0.0508 02511 0.6851  0.9380 0.0567 0.2529  0.6987  0.9408
#L3M 0.0506  0.2497  0.6819  0.9351 0.0564 0.2488  0.6937  0.9387
*5 fto
qsfj}:) 0.0506  0.2491  0.6814  0.9348 0.0564  0.2486  0.6929  0.9385
¢“3™ 00505 0.2486  0.6802  0.9343 0.0564 0.2484  0.6911  0.9378
¢>f3?") 0.0508 0.2492  0.6826  0.9371 0.0559  0.2483  0.6915  0.9373
T 00357 00747 01659  0.2859 0.0484  0.0861 02137  0.3876
o). 00514 01772 05022 0.8033 0.0541 01726  0.5042  0.8006
¢ 00505 01535  0.4290  0.7177 0.0514 01500  0.4298  0.7208
oM 0.0487 01376 0.3703  0.6417 0.0518 01313  0.3697  0.6389
e 00440 0.0614 0.1280  0.2665 0.0454  0.0621  0.1287  0.2645

17

All nonparametric/semiparametric tests meet the 5% nominal level constraint
under each symmetric density considered, and seem to be unbiased. In contrast with
this, the classical test of skewness is strongly conservative under Student densities
with 2 degrees of freedom, which have infinite second-order (hence also sixth-order)
moments. This classical test has essentially flat (empirical) power curves under
skewed versions of the same densities, irrespective of the considered PSM. This
is not the case for the other tests, which maintain significant powers under such
heavy-tailed densities.

At densities under which the classical test of skewness is valid, our tests strongly
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Table 4. Rejection frequencies (out of N = 10,000 replications), under various symmetric and L3-
skewed Gaussian and Student (with v = 2, 7, and 10 degrees of freedom) densities, of the Wilcoxon
signed-rank test ¢f1(n), the sign test ¢f2(n), the signed-rank test ¢f3(n)
L.
*;Jf(ln) (7 = 1,3), the classical test of skewness d)izgw, the Laplace, Wilcoxon, and normal-score

versions of the signed-rank tests ¢g;)L, ‘bg;)W’ and d)én;N and the runs test d>(”’)

, various studentized tests

runs -’

Jgto gty
est = = . = . = . = = . = . = .
T 5 §=04 §=.07 §=.11 5 §=.04 §=.07 §=.11
O 00493 02419 05838 0.9370 0.0525 02426  0.5950  0.9380
Gl 0.0490 02408 05831 0.9359 0.0523  0.2416  0.5934  0.9372
65" 00485 02409  0.5826  0.9359 0.0527  0.2417  0.5929  0.9366
ity
¢>f}<’3 0.0486  0.2400  0.5825  0.9353 0.0527 02415 05913  0.9363
651 ™ o094 02416 05849 09364 0.0528 02394 05916  0.9364
:
¢2070.0564 02188 05250  0.8891 0.0560 02215 05322  0.8957
Ot 0.0484 02409 05925 0.9405 0.0523  0.2453 05979  0.9404
GO 0.0487 02417 05925 0.9409 0.0524  0.2450  0.5974  0.9402
653™  0.0486  0.2417 05925 0.9409 0.0524  0.2451  0.5971  0.9402
’ 1
¢>fﬁ“3 0.0484  0.2421  0.5922  0.9405 0.0524  0.2446  0.5966  0.9401
¢>f3g)") 0.0486  0.2418  0.5925  0.9396 0.0518  0.2444  0.5959  0.9398
o) 0.0089 00142 00272 0.0567 0.0337 00703 01572  0.3423
T 00478 01980 04954  0.8744 0.0495 0.1985 04970  0.8791
o 00470 01823 04542  0.8374 0.0502 01814  0.4523  0.8430
g0V 0.0468 01635  0.4045  0.7744 0.0493 01618  0.3985  0.7822
). 00436 00558 0.0944 0.2135 0.0430  0.0563  0.0862  0.2018
Gtio 9¢
Test §=0 §=.04 §=.07 §=.11 §=0 §=.04 §=.07 §=.11
G 0.0507 02433 05972 0.9407 0.0485 02315 05963  0.9393
oY 00504 02412 05925 0.9394 0.0483 02314 05930  0.9394
¢f_1f(:) 0.0506  0.2407  0.5923  0.9393 0.0484 02316  0.5931  0.9392
¢“L™ 00507 0.2396  0.5912  0.9395 0.0480 0.2324 05915  0.9384
¢>‘lf") 0.0503  0.2390  0.5917  0.9393 0.0472  0.2303  0.5905  0.9386
:
62207 0.0573 02188 05237  0.8896 0.0544 02137 05337  0.8914
GO 00531 02428 0.6019  0.9415 0.0478 02333  0.5954  0.9388
orsY 00530 0.2431 06012 0.9423 0.0477 02325 05954  0.9387
qsfj}:) 0.0530 0.2434  0.6010  0.9426 0.0478 0.2325  0.5954  0.9386
¢“3™ 0.0520  0.2438  0.6009  0.9426 0.0474 02326  0.5953  0.9388
¢>f3&) 0.0525 02417  0.6010  0.9425 0.0473 02315  0.5950  0.9395
T 00372 0.0823  0.1873  0.4119 0.0458 01090  0.2544  0.5413
o). 00493 01998  0.5008  0.8769 0.0504 01937  0.4985  0.8763
¢ 00489 01842  0.4557  0.8363 0.0507 01776  0.4566  0.8382
oM 00483 01623 04012 0.7831 0.0492 01614  0.4047  0.7819
e 00453 0.0517 0.0886  0.2145 0.0454 00575  0.0883  0.2028

dominate this procedure as suggested by the AREs of the previous section. The
hierarchy between tests associated with a common PSM is not always compatible
with the rankings of the AREs, which is mainly due to the tiny differences in the
latter. On the contrary, the ARE hierarchy between tests associated with different
PSMs is perfectly reflected in our simulations. In particular, for any j = 1,2, 3, the
tests based on the PSM L; appear to be the best ones under densities skewed by
means of L;.

Finally, the proposed tests almost always do better than their signed-rank com-
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petitors qﬁga) L gbgg w» and qﬁga) N and clearly outperform the runs test, which was to
be expected since the latter, as a universally consistent test of symmetry (see [11]),
cannot compete with our tests against such alternatives.

8. Final comments

This paper considers the problem of testing symmetry about a specified centre 6.
Although this is a classical problem, testing for symmetry about an unspecified
centre is more natural in various statistical setups (e.g., when testing symmetry of
conditional distributions in a regression context). The present work then may be
regarded as a first step towards a general theory of optimal testing for symmetry—
the next step consisting in treating the unspecified-6 case. This short section briefly
discusses how to achieve this next step.

First, we need considering models that explicitly include location, i.e., location-
scale-asymmetry models under which observations admit the common pdf

@ ke (e20) = Lys(py(220)) fr(259).

In these new models, it is of course crucial to prevent any possible confounding
between 6 and 9, which can be achieved by restricting to skewing mechanisms that
fix the median of the original symmetric distribution.

The scale-asymmetry ULAN property in Theorem 3.1 then has to be extended
to this more general model, in which the resulting central sequence decomposes
into

(m) _
A% (9, 0) . 205 ()
AL (0,0) = | Aph0.0) | 1= 2= D0 | H(ET gy, (K2 ) |
L(n) =1 n
A (0:9) TE(R(5570)

where ASZ:,)I(G, o) stands for the location part of the central sequence. The corre-

sponding information matrix I‘ﬁ (o) is here of the form

Lfi1(0) 0 chl;m(a)
% (0) = 0 Tpi() 0

F§1;31(U) 0 F]l”:l;33(a)

with Fffl;Bl(U) = 1% 4 (2)JF(Fi () fi(z)de. Since the function z —
Yy, (z)J5(Fi(2)) fi(z) is symmetric with respect to zero, this information matrix,
contrarily to the #-specified case, is (in general) not block-diagonal. This implies
that, when testing for symmetry about an unspecified centre, not knowing 6 has
a positive cost. In such a setup, ULAN and the convergence of local experiments
to the Gaussian shift experiment imply that locally and asymptotically optimal
(at f1) parametric tests for symmetry about an unspecified centre should be based
on the fi-efficient central sequence for asymmetry

L(n L(n _ n
A0,0) = AL (0,0) — TF 4y ()T () A1, (0, 0). 8)

fi fi; fi;
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More precisely, tests of symmetry are obtained by substituting in A ( )(9,0)
appropriately discretized root-n consistent estimators for 8 and o, and by deﬁnlng

test statistics based on the limiting distribution of A*L(n)(H o). Note that the

strong dependence of A ( )(9 o) on fi; makes clear that signed-rank versions of
the resulting parametrlc tests will no longer be independent of the underlying
density type f1, which implies that uniform (in f;) optimality of signed-rank tests
for symmetry is lost in this #-unspecified setup.

Note that if one does not restrict to skewing mechanisms fixing the median of the
original symmetric distribution, then information about asymmetry under unspec-
ified location might be arbitrarily small due to the possibly dramatic confounding
between location and skewness parameters; for instance, along a sequence of density
types fi converging to the logistic (resp., Laplace) density type, local powers of the
f-unspecified £1-based (“Wilcoxon-type”) signed-rank test (resp., Lo-based (“sign-
type”) test) will converge to the nominal level «, due to an increasing collinearity

between the central sequences for location ASC?;)I(H, o) and skewness Afﬁ(g) 0,0).
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Appendix A. Proof of Theorem 3.1

Our proof relies on Lemma 1 of [25]—more precisely, on its extension in [8]. The suf-
ficient conditions for LAN in those results readily follow from standard arguments
(hence are left to the reader), once it is shown that (o,d)" — 011/2( f“(%))l/2 =

11/261/2( Fi(%)) 11/2(5) (see (2)) is quadratic mean differentiable at any (c,0),
Wthh we establish in the following lemma.

Lemma A.1: Fiz f; € FUYAN and let £ be a PSM satisfying Assumptions A (i)-
(ii). Define o c(x) = Hes(F1(2)) 1 (2),

Doty elw) = 57207 (2) (S0 (7) ~1),
and

Digy'gep, c(®)la=0 —071/2101/2( )Mlﬂ( (9)\5:0'

Then, for any o € R and 6 € R, we have that, as (r,s) — (0,0),

1/2 1/2
(i) [ A9 g (@) = 920 g e (@) = Dsgl2 s p £ (@)]sm0}2d = o(r),

1/2 1/2
(ii) [ 4922 05c@) = gos £(x) = $Doghle . o(@)}2da = o(s?),
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(iii) [°2, {Dag;fs,&fl,ammzo — Dsgys s o(@)]s—0}2dz = o(1), and

(i) [ A0S g, @) =0 g, 2() (3)'< Dot (2 >}2d (
0 Yo+srf 90,0 f,,\T) 2 o
rorfut 05N ) \ Dsgll2; ()50

)

Proof of Lemma A.1. In this proof, all o(-) and O(-) quantities are taken as their
arguments converge to zero.

(i) Rewriting the integral under the form

oot [ n(R) (A GE) e (B ()L e

and substituting u for F1(;75) yields fo 1/2 (u)—1-—r 856{1;/2 (u)|5=0]?du, a quantity
that is o(r?) in view of Assumption A(iii).

(ii) Letting y = Z, the left-hand side of (ii) takes the form

00 1 S 2
| a1 w5 27000 dy < DTy,

where C' is some positive constant,

ST [ T

) dy,

s
o

2 o]

= _OO[ 1”%#)— f/Q(y)]Zd%

S

and

ni= [ 1P (1) - 0 - 5 AP 0] v

Clearly, routine Taylor series arguments directly yield

T, = <1+§>[@—1+%r:0(32).

Now, using the symmetry of f; with respect to zero and substituting z for log(y)

leads to
T = % [fll;{aip(log(y) — log <1 + g)) B fll;éip(l()g(y))] 2 dy
g [P (1) - e e

since fll;{j(p € L*(R,v), quadratic mean continuity implies that the integral in (A1)
is o(1), which implies that Tb = o(s?). As for T, performing similar manipulations
as for T5 and taking into account the fact that ¢y, (-) is an antisymmetric function
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yields

Ty =2 /O (7122, (1oaty) —1og (14 2)) = £112, (08) — o= 7312, Gom (), ()] dy

2 [ (112, (10200 —1or (14 2)) = 522y loz) + Z(712, ) oxt)] dy
=2 [ (A (stor (14 2)) - () + 2L )] ¢ s

< A(T3q + Tap),

where

T i= [~ (12 (=108 (14 2)) = AL ) 10w (14 D) (A2, ()] e e

and
Ty := (g — log <1 + §>>2 /Z[(fll;gp)'(z)]%z dz.

Lemma A.2 in [10] and the fact that log (1+2) = O(s) imply that T3, = o(s?). By
assumption, (f1 exp) belongs to L(R, v), so that the fact that £ —log (1+£) = o(s)
yields that T, (hence, also T) is o(s?). The claim in (ii) follows

(iii) Split the left-hand side of (iii) into two integrals, one over R~ and the other
over RT, and consider at first the latter integral. Defining Ffrexp( x) = Fi(e"),
trivial manipulations show that

o0
1/2
/O (D592 5. £(@)lsm0 — Dsg2; 1(@)lsm0)? da

= [0 2 (o) s (14 2)) (i (vt s (14 2)))
— 112 (og(y)) dsty % (F 1exp<log<y>>>ra:o}2dy.

Substituting z for log(y) leads to

/°° {eé(zlog(hrf)) fll;{j(p <z — log <1 + g)) 0551/2< Liexp <Z — log <1 + g))) ‘5:0

—00

2
RO Ll e ))|60} dz. (A2)

Assumption A(iii) implies that z +— eéfll;/eip( )3561/2( 1eXp( z))|s=o0 is square-
integrable over the real line; quadratic mean continuity thus implies that (A2)
is o(1) as s — 0. Now, if one writes Fi(z) = I (log(—=2)), with F} . (z) =
Fi(—e€"), instead of Fy(z) = F}. exp(log( z)) and uses the symmetry of f;, the same
reasoning yields that the integral over R~ is also o(1). The result follows.
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(iv) The left-hand side in (iv) is bounded by C(S; + S + 7253), where

1/2 1/2 1/2
$= [ pel) — g @) = Dagll g ool

1/2 1/2 1/2
S5 = / (072 os o@) = g2, o(2) — 5 Doghl?, o(2)}2ds,
and

So= [ D0l gy @m0~ Doglli, pl)li—o) do.

The result then follows from (i), (ii), and (iii). O

We stress that, as announced in Section 3, the proof of Lemma A.1-—hence also
the uniform local asymptotic normality of the family Pﬁ(n)—actually does not
require Assumptions A (i)-(ii).

Appendix B. Asymptotic linearity

The following asymptotic linearity result is needed to study the asymptotic behav-
ior of the optimal studentized tests introduced in Section 4.1.

Lemma B.1: Fiz fi € 1 and g1 € ff;fﬁ and let L be a PSM satisfying Assump-
tions A(i)-(iv). Then, for any o € R and any s € R, we have that, under PS,’};,
() X330+ %) = AGEI0) + op) and (i) 3 SR (0 +

n~12))2 =1 LS TR(F(X () JoN]24o0p(1), as n — oo. Moreover, (iii) if &™)
satisfies Assumption B, then both A (n)( )y — A?l(g)(a) and CFM(f1) — gﬁl(fl)

are op(1) as n — oo, under P¢(77£)71'

Proof of Lemma B.1(i). Throughout this proof, we write Z;, Z;,,, S;, and
Sip for Xi(")/a7 XZ-(n)/(a +n~12s), Sign(Z;), and Sign(Z;.,), respectively, and let
g, (1) := JL(Fl(Gl_ (u))), where G14 stands for the cdf of |X(n | under P( )

Since JX(Fy(2)) = Sign(z)Jy,.q, (G14(]2])) for all real number z, we actually have

to prove that, under PSJ}QU as n — oo,
n 1 .
D™ = % Z [Sind 1139, (Gr4(1Zisnl)) — Sid 119, (G11(1Zi]))] = op (1) (B1)
i=1

To do so, truncate (for any m € Ng) the score function Jy,.4, into JJ(C ; , Where

0 ifu < %

Ttisgn () m (u = 32) if L<u<2
J}Tgl(u) = Jfl%!h(u) lf % <Uu S 1-— %

Jfl;gl(l_%)m((l—%)—u) ifl—%<u§1—%

0 ifu>1-—-<L.
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Assumption A(iv) implies that J (™) "is then continuous (hence, bounded) on [0, 1];
moreover, it can be assumed Wlthout loss of generality that Jy,. g is a monotone
increasing functlon (rather than the difference of two monotone increasing func-

tions), hence ]J \ is bounded by |Jy,.g, | uniformly in m and w (at least for m
sufficiently large). Now, decompose D™ into V(mm) — Wl(n ™y Wz(n m), where

yrm ::—Z im0 (Gre (1 Zinl)) = SiTi00 (G4 (1Z)],
n,m 1 m
Wi : = _Zsi[Jfl§gl(G1+(‘Zi‘)) JJ(Cl g)l(GH—(’ZiD)]7
\/ﬁz‘=1
and

Wy = IZSW Tti0(G1 (1 Zisnl) — T (G111 Zil))] -

To establish (B1), it is clearly sufficient to prove

Lemma B.2: With the same notation as above, (a) for any fired m, y(m) g

n) m)

op(1) under Pg;gl, asn — oo; (b) W™ is op(1) as m — oo, uniformly in n,

under P((f;)h ; (c) WQ(n’m) is op(1) as m — oo, uniformly in n (for n sufficiently

large), under nggl.

Proof of Lemma B.2. (a) Since, for any n, the random variables

Si;nJ}Tg)l(GHﬂZi;nD) - SZ-J}Tg)I(GHﬂZiD), i =1,...,n, are i.i.d. with mean 0,
(n)

we have that (Eg stands for expectation under Pg.g, )

Eol(V™™)2] = Eo[(St;n ") (G (1Z1n])) — S117) (G14-(121])))?)

< 2B [(V™™)?] + 2 Bo[(V,™"™)?),

with
VM = (St — S1)IE (Gri (| Z1nl)
and
V= I (G (1 Zual) = T, (Gre(1Z1]):
Clearly, for n sufficiently large, we have that Si.,, = S; a.e., hence also that

Bo[(V{™™)2] = 0. As for V"™ first note that || Zsn| — | Zi|| < |Zim — Zi| = op(1)

as n — oo. The continuity of J ](cm) oG14 then implies that Vz(n’m) converges to zero

1591
in probability as n — oo, hence also in quadratic mean (in view of the boundedness
of Tl
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(b) Under ngl, one easily obtains that

Eol[(W{™™)?] = /0 1 (Tronw) = 77, ().

(m)
J

fiign
integrand is bounded (uniformly in m) by 4(Jy,.,, (v))?, which is integrable on (0, 1)

(with integral 4051 (f1)), since gy is assumed to belong to F: f . Thus the Lebesgue

For any u € (0,1), the mapping converges to Jy., as m — oo and the

dominated convergence theorem allows to conclude that Eo[(Wl(n’m))2] = o(1) as
m — o0, uniformly in n.

(c) The claim is exactly the same as in (b), with Z;, replacing Z; (hence also
with S;., = Sign(Z;.,,) replacing S; = Sign(Z;)). Consequently, (c¢) holds under
p™) . That it also holds under Pg}gl follows from Lemma 3.5 in [13]. O

o+n=1/2s;g1

Proof of Lemma B.1(ii). For the sake of simplicity, let us write Ji, 4+ :=
JL(Fl(XZ-(n)/(U—Fn_l/Qs))) and J;.p, := JE(Fl(Xi(n)/O')), i =1,...,n. Then, denot-
ing again by Eg the expectation under Pg?gl, similar manipulations as in the proof
of Lemma A.1(iii) entail that

EO[(Jl;n,-i- - Jl;n)Q]
- /0 - {JL (Ff;xp (log(y) ~log (1 + ﬁ))) - Jﬁ(FlfeXp(log(y)))}zgl;exp(log(y)) dy,

where we wrote grexp(®) = g¢1(e®) and Flfexp(x) := Fi(e”). Substituting z
for log(y) yields

> s

Eol(Tin s =T =2 [ {7 (B (7108 (14252) ) ) =5 P (D)} hesp(2) €

which, from quadratic mean continuity, is o(1) as n — oo. Note indeed that ¢; €

F. ffl implies that

B[22 =2 [ [P ()] risp(2) e d < . (52)

—00

We conclude that
Eo[(Jins — Jin)?] = 0(1)  asn — oo. (B3)
Clearly, (B2)-(B3) entail that Eq[Jf,, , | = O(1) as n — co. Therefore,
Egll i (i — 2] < Eol (Fins = Juin) ] Bo[(Jin s + Jisn) ]
< 2Eo[(Jimt — Jin)?] % (Bo[J2ni] + Eo[J2,]) = o(1)

as n — oo. This establishes the result, since convergence in the L' sense implies
convergence in probability. O

Proof of Lemma B.1(iii). The result directly follows from Lemma 4.4 in [15],
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since the latter shows that Assumption B allows to replace the nonrandom quan-
tity o +n~1/2s with the random one (™ in Parts (i) and (ii) of the Lemma. (]

Appendix C. Proofs of Lemma 4.2 and of Theorems 4.1-4.3

Proof of Lemma 4.2. First note that Assumptions A(iii)-(iv)’ imply that the
score function u — J£(u) is a continuous and square-integrable function over (0, 1)
that can be written as the difference of two monotone increasing functions. Hence,
since the signed ranks of the XZ-(n)/a’s, under P((,T;Lg,l, with o € Rar and g1 € Fi, are
those of n i.i.d. random variables with common cdf GGy, Héjek’s classical projection
theorem for linear signed-rank statistics (see, e.g., Chapter 3 in [20]) entails that
Af(n) Aj(g)(a) converges to zero in quadratic mean as n — oo under P((, 5),1, which
establishes the result. 0

Proof of Theorem 4.1. Fix o € R} and g; € fffl. Lemma B.1(iii) entails that

L(n)

Afo (o
L(n) — f17
Yo = ey “

as n — 00, under PS;};I. Part (i) of the result then follows from the fact
that A]lc:l(g)(a), under P((,T;LE),I, is asymptotically normal with mean 0 and vari-

ance C'ng (f1)-

Now, under pLv®

/2 the asymptotic normality of A?l(g)(a) with
mean Cgﬁl’LU (f1,91)72 and variance Cﬁ (f1) is obtained as usual, by establish-
ing the joint normality of Aﬁ(ﬂ)( ) and log (dP (1/2 o /dP ,gl) under P(%),l
and then applying Le Cam’s third Lemma. Since (Cl) from contiguity, also
holds under PEU(nl)/sz;g
Lemma B.1(iii) (with g; = f1) to the statistic Qs " ) defined in (6) and noting that

rs, = C’ﬁ (f1) yields that

this yields Part (ii) of the Theorem. Finally, applying

AL(,")(U) A (o
QM = T2 o op(1) = L2 1 op(1),
by (CF ()2

as n — 0o, under P((:_L}l. Jointly with the g1 = f; version of (C1), this establishes
Part (iii) of the result. 0

Proof of Theorem 4.3. Fix o € IRSr and g1 € F1. Note that the fact that

n A (o
Q" = 22 4 op(1) (C2)

as m — oo, under Pg?;l—hence, also Part (iii) of the result—is a direct corollary

of Lemma 4.2. Part (i) also follows from (C2) since A;:l(z)(a), under P((,f?;l, is clearly

asymptotically normal with mean 0 and variance I'%,
Pﬁu(n)

Now, under o1/ gy the asymptotic normality of Agl(g)(a) with



May 11, 2009 3:26 Journal of Nonparametric Statistics Steel revised3

REFERENCES 27

mean C*Ury and variance I'4, is obtained as in the proof of Theorem 4.1, by
establishing the joint normality of Agl(g) (o) and log (deZ(j?/szg / dP((,rfg)h) un-

der P((,rgl and then applying Le Cam’s third Lemma. Since (C2), from contiguity,
also holds under P~ ") , this yields Part (ii) of the Theorem. O

on"215g,
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