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Some 27 Hartree-Fock-Bogoliubov (HFB) mass models have been developed by the Brussels-Montreal
collaboration. Each of these models has been obtained with different model prescriptions or corresponds to a
significantly different minimum in the parameter space. The corresponding uncertainties in the mass extrapolation
are discussed. In addition, for each of these models, uncertainties associated with local variations of the model
parameters exist. Those are estimated for the HFB-24 mass model using a variant of the backward-forward Monte
Carlo method to propagate the uncertainties on the masses of exotic nuclei far away from the experimentally
known regions. The resulting uncertainties are found to be significantly lower than those arising from the 27 HFB
mass models. In addition, the derived correlations between the calculated masses and between model parameters
are analyzed.
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I. INTRODUCTION

The nuclear energy density functional theory has been very
successful in describing the properties and the dynamics of a
wide range of nuclei [1]. Among the most popular functionals
are those obtained from zero-range effective interactions of
the Skyrme type, which allow fast numerical computations in
the framework of the self-consistent Hartree-Fock-Bogoliubov
(HFB) method. The parameters of these interactions are
determined so as to reproduce a set of nuclear data selected
according to a specific purpose. The nonuniqueness of the
fitting procedure has thus led to a large number of different
parametrizations. Some of them may yield very different
predictions when applied outside the domain where they were
fitted [2].

This situation is particularly unsatisfactory for nuclear
astrophysical applications, which require the knowledge of
nuclear masses for nuclei so neutron rich that there is no hope
of measuring them in the foreseeable future; such nuclei play
a vital role in the r-process of nucleosynthesis [3] and are also
found in the outer crust of neutron stars [4]. Extrapolations far
beyond the neutron drip line are required for the description of
the inner crust of neutron stars where at high densities neutron-
proton clusters coexist with free neutrons in Wigner-Seitz-type
cells [5]. The need for more reliable extrapolations of these
nuclear models has motivated recent efforts to construct mass
models within the Skyrme-HFB framework that can compete
with the most sophisticated microscopic-macroscopic mass
models. Those Skyrme functionals are adjusted to reproduce,
in addition to the properties of finite nuclei, the predictions in
infinite homogeneous nuclear matter (INM), in particular pure
neutron matter, as given by realistic calculations.

During the past decade there has been a considerable
increase in the demand for nuclear data that provide some
specification of the estimated uncertainties in the results [6].
New stochastic methods have been developed to estimate
uncertainties from theoretical calculations including both
parameter [7] and model uncertainties [8]. Monte Carlo
(MC) methods (e.g., see Ref. [6]) allow to combine model
calculations with the available experimental data to reduce the

uncertainties of the evaluated data [9–11]. Modern nuclear
system analysis procedures are now able to accommodate
nuclear data uncertainties, thereby providing further stimulus
for their estimation. Although sensitivity analyses have been
performed in the framework of mass models [12,13], no
uncertainty propagation to experimentally unknown masses
has been performed. It remains therefore unknown how
accurate a model prediction can be when extrapolated to
exotic nuclei, as those involved in nuclear applications like
nucleosynthesis. The goal of the present paper is to apply
modern evaluation techniques to assess the uncertainties
on HFB-predicted nuclear masses that are needed in many
nuclear applications (e.g., nuclear power applications and
astrophysics), but which cannot be measured. In Sec. II, the
Brussels-Montreal HFB mass models are described and the
1σ uncertainties between the 27 mass tables estimated for
the 8500 nuclei included in these tables. In Sec. III, the
uncertainties associated with local variations of the model
parameters around the HFB-24 minimum are calculated on
the basis of an MC uncertainty propagation. The corresponding
analysis provides in Sec. IV a study of the various correlations
inherent to the model as well as those existing between the
model parameters.

II. HFB MASS MODELS

Since the publication of the first HFB mass model [14],
another 26 HFB mass models have been developed and
published [15–28]. While the first HFB-1 mass model [14]
aimed at proving that is was possible to reach a low root-
mean-square (rms) deviation with respect to all experimental
masses available at that time, most of the subsequent models
were developed to further explore the parameter space widely
or to take into account additional constraints. In this way, the
interaction was refitted either to consider new experimental
mass data [15,27] or to improve the description of empirical
fission barriers [21] or to study the sensitivity of the mass
model accuracy and extrapolation to major changes in the
description of the pairing interaction [16,20,23] or of the
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FIG. 1. (Color online) 1σ uncertainty corresponding to the 27
HFB mass models for all the 8500 nuclei included in the mass tables
from Z = 8 up to Z = 110.

nuclear matter properties, such as the effective mass [17], the
symmetry energy [19,26,27], and the stability of the equation
of state [23,26]. Some model uncertainties, in particular in the
treatment of number projection [18] or Coulomb correlations
[22] were also studied. Two breakthroughs were achieved
when improvements in the parameter adjustments allow us
to reach the subjective 0.6 [24] and 0.5 MeV [28] thresholds
in the model rms deviation.

With respect to the 2353 measured masses [29], the 27 HFB
mass models present rms deviations between 0.51 MeV for
HFB-27 [28] and 0.79 MeV for HFB-1 [14]. However, when
dealing with exotic nuclei far away from stability, deviations
between the HFB mass predictions can become significant,
not only in the rigidity of the mass parabola, but also in the
description of the shell gaps or pairing correlations. The 1σ
variance between the 27 HFB mass predictions are illustrated
in Fig. 1 where deviations larger than 3 MeV can be found at the
neutron drip lines. Such large uncertainties can be interpreted
as our model uncertainties (due to model defects) [8] and are
considered to be independent of parameter uncertainties, but
rather a property of the given HFB model.

To estimate the model parameter uncertainties and the
corresponding uncertainties in the mass predictions associated
with each of these mass models, we consider the functional
BSk24 and corresponding mass model HFB-24 [27]. Though
all details about the HFB calculation and the elaboration of
the HFB-24 mass model can be found in Ref. [27], we recall
here some of the important features. The BSk24 functional is
based on an effective force with the 16-parameter generalized
Skyrme form

vij = t0(1 + x0Pσ )δ(rrrij )
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where rrrij = rrri − rrrj , rrr = (rrri + rrrj )/2, pppij = −i�(∇∇∇ i − ∇∇∇j )/2
(this is the relative momentum), Pσ is the two-body spin-
exchange operator, and n(rrr) = nn(rrr) + np(rrr) is the total local
density, with nn(rrr) and np(rrr) being the neutron and proton
densities, respectively. The t4 and t5 terms are unconventional,
being density-dependent generalizations of the t1 and t2 terms,
respectively. The full formalism for this generalized Skyrme
force is presented in the Appendix of Ref. [25], but note that
all the terms in J 2 and J 2

q are dropped from the Hamiltonian
density, as discussed in Ref. [26].

The pairing force has a δ-function form

vpair
q (ririri,rjrjrj ) = f π

q v[ρn(rrr),ρp(rrr)]δ(rrrij ), (2)

where v[ρn,ρp] is a functional of both the neutron and proton
densities, calculated analytically at each point in the nucleus
in question in such a way as to reproduce the 1S0 pairing gaps
of INM at the appropriate density and charge asymmetry, as
determined by many-body calculations with realistic two- and
three-nucleon forces [23,24]. The INM constraint determines
the strength of the pairing force almost completely, but we
introduce some fine-tuning of the strengths in the form of
the four global renormalization parameters f π

q , which allow
the overall strength to be slightly different for neutrons than
for protons, and which also permit each of these strengths
to depend on whether there is an even or odd number of
nucleons of the charge type in question. In this way we take into
account Coulomb effects as well as the slight violation of time
reversibility implicit in our treatment of odd nuclei. A cutoff
parameter ε
 to the single-particle spectrum is introduced, as
described in Ref. [23].

Finally, the total energy is deduced from the HFB energy by
subtracting an estimate for the spurious collective energy based
on the cranking approximation [21], and a phenomenological
Wigner correction energy [15] which contributes significantly
only for light nuclei or nuclei with N close to Z.

BSk24 has been shown to reproduce the 2353 measured
masses of nuclei with N and Z � 8 appearing in the 2012
Atomic Mass Evaluation [29] with an rms deviation of
0.549 MeV. In making the parameter adjustment, the Skyrme
part of the functional was simultaneously constrained to fit
the stiff zero-temperature equation of state of homogeneous
neutron matter, as determined by many-body calculations with
realistic two- and three-nucleon forces [30] to support the more
massive observed neutron stars. In addition, BSk24 was also
constrained to reproduce several other properties of INM as
obtained from many-body calculations. Among those, (i) the
ratio of the isoscalar effective mass m∗

s to bare nucleon mass
m in symmetric INM at saturation was set to the realistic value
of 0.8; (ii) a neutron effective mass that is larger than the
proton effective mass in neutron-rich matter, as found both
experimentally and from microscopic calculations; (iii) the
incompressibility of symmetric INM at saturation K (which
was required to fall in the experimental range 240 ± 10 MeV,
according to the authors of Ref. [31]); (iv) supports the heaviest
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observed neutron stars. Finally, all unphysical instabilities of
nuclear matter, including the transition to a polarized state in
neutron-star matter, are eliminated with BSk24.

III. MODEL PARAMETER UNCERTAINTIES

In HFB-24, all together, there are 30 model parameters,
namely 16 Skyrme parameters, 5 pairing parameters, 4 Wigner
parameters, and 5 collective parameters. Each parameter
has been adjusted to optimize the prediction of the 2353
experimental masses of nuclei with N and Z � 8 appearing
in the 2012 Atomic Mass Evaluation [29], leading to an
rms deviation σexp = 0.549 MeV. However, each of the
30 parameters is affected by some uncertainty that could
propagate and modify in particular the mass extrapolations
of particular interest in nuclear applications. It is possible to
estimate the impact of such model-parameter uncertainties on
calculated masses by propagating the parameter uncertainties
by Monte Carlo sampling constrained by available experi-
mental masses [29]. The method considered here is similar to
the backward-forward Monte Carlo (BFMC) method [32–34].
It relies on the sampling of model parameters and on the
use of a generalized χ2 estimator to quantify the likelihood
of each model calculation result respective to a given set of
experimental constraints on calculated masses. At this stage
the correlation between model parameters appear. We avoided
a resampling from the derived distribution of the parameters as
proposed in the original BFMC method. Instead, we used the
backward MC only for the selection of the suitable samples
that agree with experimental constraints. Then, we used this
selected set of the MC sample to calculate masses of nuclei not
measured in the forward MC step. Finally, the mean values,
uncertainties, and correlations on extrapolated masses were
derived from the sampled population.

The adopted BFMC method consists of the following steps.

(i) Assessing the allowed range of variation in the vicinity
of the local minimum for each of the model parameters.

(ii) Sampling model-parameter sets using assessed param-
eter uncertainties and assuming that model parameters
are independent.

(iii) (Backward MC step [33,34]): Selecting those param-
eter sets from the sampled population using different
weighting factors that depend on available experimen-
tal data.

(iv) (Forward MC step [33,34]): Using selected sampled
parameter sets to additionally calculate experimentally
unknown masses (without resampling from derived
parameter distributions).

(v) Deriving the first and second moments (the mean value
and covariance) of the estimated observables (nuclear
masses) from the sample obtained for all nuclei in
step 4.

It should be remarked that the method proposed above
does not require to derive model-parameter uncertainties and
covariances at the backward MC step (even if we can do
that to study the statistical distribution of those quantities).
Instead, the full sampled parameter sets are used. This avoids

the approximation of neglecting the third and higher moments
of the model-parameter distribution.

In the BFMC method introduced in Refs. [32–34], the χ2

estimator is used to estimate a likelihood function that will
weight the {p1, . . . ,pn} sample more when the associated
observables {M1, . . . ,Mm} are close to the experimental data.
More specifically, the suggested weighting function is

wi = C exp
( − (

χ2
i /χ2

min

)2)
, (3)

where χ2
min represents the minimal value of the χ2 function,

i.e., the reference HFB-24 χ2 in our case. C is a normalizing
constant that is not relevant for mean value and covariance
calculations as it cancels out. The tabulation of experimental
masses does not contain estimates of experimental correlations
between measured masses, although such correlations may
exist. In this work we assume that all experimental measured
mass values are independent, which may reduce our assessed
uncertainty. However, our focus is to study the uncertainties
of predicted masses, where no experimental data are available.
This assumption allows us to use a simple χ2 criteria instead
of the generalized one. In addition to this weighting function,
we also consider here the threshold function

wi = 1 for χi � χcrit,

0 for χi > χcrit, (4)

where χcrit is a critical value. Note that both functions are
biased towards model predictions rather than experimental
data [9–11]. An unbiased weighting function was proposed
in the unified Monte Carlo approach (UMC-B [35])

wi = C exp
( − χ2

i

)
. (5)

The main difference to Eq. (3) is the lack of the renormalization
factor χ2

min. However, the UMC-B method would require an
even larger numerical effort than with the above-mentioned
weighting functions given by Eqs. (3) and (4). The reason
is that the absolute χ2

i value tends to be larger than the
normalized quantity χ2

i /χ2
min, so the weight calculated by

Eq. (5) is smaller in the UMC-B. Therefore, a much larger
set of sampled parameters is required to achieve convergence
of the mean value and covariance calculations.

Unfortunately, HFB calculations remain very time con-
suming due to the large number of experimental data (2353
masses) on one side and exotic nuclei of interest in nuclear
astrophysics applications (typically some 8000 nuclei), there-
fore some simplifying strategies need to be adopted, even
within the BFMC method. Applications of UMC-B would
require massive parallel calculations. In this work, we made
the following simplifying assumptions.

(i) All sensitivity calculations of the model parameters
are performed assuming nuclei are spherical. All
calculations assume that the deformation energy (i.e.,
the difference between the energy in the spherical con-
figuration and the potentially deformed ground-state
energy) remains unaffected by the small parameter
variations.

(ii) Only the 21 parameters corresponding to the gen-
eralized Skyrme and pairing interactions are varied
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since varying the five collective parameters would
imply breaking the spherical symmetry and the Wigner
parameters have a restricted impact on light or Z � N
nuclei only. In addition, the 21 parameters are assumed
to be independent.

(iii) The major experimental constraint stemming from
measured masses is reduced to a sample of 729 nuclei,
i.e., a third of the |N − Z| > 2 measured masses [29],
as used in the fitting procedure explained in Ref. [27].

(iv) The study of mass uncertainties of experimentally
unknown nuclei is restricted to the 1707 even-even
nuclei with 8 � Z � 110 and lying between the proton
and neutron drip lines.

Finally, as the χ2 estimator, we consider here the mean
square deviation σ 2

exp with respect to the 729 nuclei used in our
sample of experimental masses. This choice is consistent with
the quantitative criterion used to adjust the HFB parameters
[27]. Since all the 27 HFB mass models are characterized with
an rms deviation smaller than typically 0.8 MeV, a natural
choice of the the critical value entering Eq. (4) would be to
take the same value. To test the sensitivity of our results with
respect to the adopted weighting function, we also consider
in the present work the two values of 0.6 and 1 MeV, as well
as the original weighting function [Eq. (3)] introduced in the
BFMC method [32–34]. Future analysis along the UMC-B
approach will be reported in a forthcoming work. Each of the
BFMC steps are now detailed in the next sections.

A. Assessing HFB parameter uncertainties

To estimate the uncertainty affecting our 21 model pa-
rameters, we use the rms deviation with respect to the 729
experimental masses. Each of the 21 parameters p defining
the Skyrme and pairing interactions have been varied and
given a relative uncertainty �p/p such that an individual
change of each parameter leads to a maximum 10% increase
of the rms deviation with respect to the 729 experimental
masses in our sample. Our local HFB-24 minimum gives rise
to an rms deviation of 0.510 MeV (=χ2

min) with respect to
the 729 masses. The relative uncertainty for each of the 21
parameters therefore corresponds to an individual parameter
change leading to an rms deviation of the order of 0.560 MeV.
Note that the 10% increase of the rms deviation is chosen to
optimize the sampling needed to get a significant statistics in
the BFMC method (see below), but is not expected to affect the
results. Indeed, a larger value would essentially request more
cases to be calculated to achieve a similar significant sample
of runs constrained by the χ2 estimator on experimental data
[as given by Eqs. (3) and (4)].

The associated relative uncertainties for each parameter
are shown in Fig. 2 and are seen to be rather small for the
adopted criterion of a 10% increase of the rms deviation
(the largest uncertainty of 9% is found for the x1 parameter,
which consequently needs to be significantly modified to affect
the masses). Obviously a systematic modification of all the
parameters would lead to a larger increase of the rms deviation,
as will be shown in Sec. IIIB. However, on the basis of
Fig. 2, it is believed that the deformation energy as well as the

10-4

10-3

10-2

10-1

100

101

102

0 2 4 6 8 10 12 14 16 18 20 22

p/
p 

[%
]

Parameter number

t
0

t
1

t
2

t
3

t
4

t
5

x
0

x
1

x
2

x
3

x
4

x
5

W
0
f
n

+ f
n

- f
p

+ f
p

-

FIG. 2. Assumed relative uncertainties on each of the 21 model
parameters of the BSk24 functional. The relative parameter uncer-
tainty is defined as the relative change leading to an increase of the
rms deviation by 10%. The parameter labeling is shown on the upper
x axis.

collective and Wigner correction energies are not significantly
affected by such local variations; this justifies the simplifying
assumptions made that the parameter uncertainties can be
essentially estimated in the spherical approximation. Since the
21 parameters are assumed to be independent, the associated
parameter covariance matrix is the unit matrix. It should be
noted that the assumption that parameters are uncorrelated will
be invalidated as soon as we consider experimental constraints,
as will be shown in the next section.

Each of the 21 model parameters with their relative
uncertainty �p/p is assumed to be normally distributed with
the mean value 〈p〉 equal to the BSk24 value. Such an
assumption is justified by the small parameter uncertainties
shown in Fig. 2. Based on such a multidimensional probability
density function, 29 300 spherical HFB calculations with
randomly chosen sets of the 21 parameters are performed to
obtain the full sample population.

B. Backward Monte Carlo step

The rms deviation with respect to the 729 experimental
masses of our sample is used as the χ2 estimator of the
backward Monte Carlo step (point 3 above). The resulting
distribution of rms deviations σexp on the 729 experimental
masses is illustrated in Fig. 3. While only 1768 runs have an
rms deviation σexp < 0.6 MeV, rms deviations up to 4.0 MeV
are found in the full sample set. From the obtained 29 300
samples of model parameter sets it is possible to derive (using
the weighted formulas) the first (mean value 〈p〉) and second
moments (covariances 〈�pi�pj 〉) of the sampled parameter
distribution.

Randomly sampled parameter sets are also used to calculate
the masses of those nuclei having experimental information
and the main nuclear matter properties, i.e., the Fermi mo-
mentum kF and the incompressibility K of charge-symmetric
INM, the symmetry coefficient J , the slope L of the symmetry
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FIG. 3. (Color online) Distribution of rms deviations with respect
to the 729 experimental masses [29] for the 29 300 MC calculations.
The distributions are binned in steps of 0.2 MeV.

energy at the saturation density, and the isoscalar (m∗
s /m)

and isovector (m∗
v/m) effective nucleon masses. From those

random samples it is also possible to derive the first (e.g.,
the mean nuclear mass 〈M〉) and second momenta (e.g.,
mass covariance 〈�Mi�Mj 〉) of the calculated masses and
nuclear matter properties. The diagonal elements 〈�Mi〉2 of
the derived covariance matrix corresponds to the square of
the absolute uncertainty �Mi of the nuclear mass (or nuclear
matter property). Derived mean values of the nuclear matter
properties are given in Table I. The mean values are seen
to be almost identical to the initial BSk24 values and the
relative uncertainties remain rather small, as follows from
the small variation allowed around the local BSk24 minimum
(Fig. 2).

We also compared derived the mean value of nuclear
masses 〈M〉 with the reference calculation Mref that uses
the mean value of the parameters 〈p〉 (without sampling).
The differences between the mean mass values derived from
the full sample with the reference calculation are found to be
much smaller than the estimated mass uncertainty. This allows
us to estimate the model nonlinearity and safely assume that
estimated mass uncertainties can be used for the reference
HFB-24 model without introducing an additional uncertainty.

C. Forward Monte Carlo step

The forward step of the BFMC method considers a given
distribution of model parameters (represented by selected
samples) that represents both the response of the model to
parameter variations, and the experimental data that were used
to constrain the distribution of model parameters. Out of the
29 300 calculations performed in Sec. III B, most of the runs
can be qualified as giving rise to rather large deviations with
respect to the bulk of measured masses, the rms deviation
reaching values up to 4.0 MeV. However, 1768 runs have
an rms deviation σexp � 0.6 MeV, 11 013 predict measured
masses with σexp � 0.8 MeV, and 17 059 with σexp � 1.0 MeV.
Applying the weighting functions given in Eqs. (3) and (4),
the 1σ uncertainty can be estimated on the masses of all the
1707 even-even nuclei with 8 � Z � 110 and lying between
the proton and neutron drip lines. The results are illustrated
in Fig. 4. Uncertainties smaller than typically 2 MeV are
found, only values up to 3 MeV can be reached for heavy
nuclei at the neutron drip line. The resulting uncertainties
are obviously greatest for the largest sample with σexp �
1.0 MeV [weighting function given by Eq. (4)], while the
original BFMC method with the weighted function given by
Eq. (3) provides uncertainties smaller than 2 MeV (lowest
panel in Fig. 4). For all the cases considered here, comparing
Figs. 1 and 4 clearly shows that the uncertainties associated
with local changes of the HFB parameters remain significantly
smaller than those associated with nonlocal changes as
described by the 27 HFB mass models. The large degrees
of freedom offered by the latter approach also allow for
significantly different predictions of shell effects, pairing
energies, deformation transitions, while the present analysis
restricts the changes in the vicinity of the local minimum and
consequently does not give rise to major changes, as is also
seen for the derived INM mean properties given in Table I.

IV. MODEL AND PARAMETER CORRELATIONS

The BFMC analysis allows us to study the various correla-
tions inherent to the model as well as those existing between
the parameters used to describe the underlying physics. This
represents a significant advantage for model developers by
reducing the parameter space. Many of those correlations have
already been studied earlier on grounds of algebraic relations
or covariance analysis [12,13,36]. Three different kinds of

TABLE I. Mean 〈pd〉, absolute �pd , and relative �pd/pd uncertainties on the nuclear matter properties derived from the HFB parameters.
The first column corresponds to BSk24 values, the next three columns to mean value, absolute, and relative uncertainties from the 29 300
unconstrained Monte Carlo calculations and the next three columns to the 11 013 subset of runs with an rms deviation σexp < 0.8 MeV (with
respect to the 729 measured masses).

BSk24 〈pd〉 �pd �pd/pd [%] 〈pd〉 �pd �pd/pd [%]

kF [fm−1] 1.3270 1.3270 1.8×10−4 0.014 1.3270 1.2×10−4 0.009
av [MeV] −16.048 −16.048 7.1×10−3 0.044 −16.048 4.6×10−3 0.029
J [MeV] 30.000 30.000 1.4 ×10−1 0.454 30.001 1.2×10−1 0.384
K [MeV] 245.523 245.524 1.0×10−1 0.042 245.522 6.7×10−2 0.027
L [MeV] 46.523 46.402 6.6×10−1 1.432 46.395 5.7×10−1 1.236
m∗

s /m 0.800 0.800 8.5×10−5 0.011 0.800 7.5×10−5 0.009
m∗

v/m 0.713 0.713 1.4×10−3 0.202 0.713 1.3×10−3 0.189
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FIG. 4. (Color online) 1σ uncertainty for all even-even nuclei
from Z = 8 up to Z = 110 lying between the proton and neutron
drip lines and corresponding to (a) the 1768 runs with σexp <

0.6 MeV, (b) the 11 013 runs with σexp < 0.8 MeV, (c) the 17 059 runs
with σexp � 1.0 MeV, or (d) all the runs with the weighted function
given by Eq. (3).

covariance analysis are described in the next sections. It is
worth noting that it is also possible to undertake evaluations
in the observable (mass) space as done in UMC-B methods
[9–11]. Such a choice would minimize the impact of model
nonlinearities on our uncertainty quantification at the price
of losing the ability to derive parameter correlations, and
therefore to potentially improve the modeling.

A. Mass correlations

The BFMC method used here allows us to build the full
covariance matrix for the calculated masses. It is illustrated in
Fig. 5 for a sample of 105 masses out of the 729 considered
in our sample of experimental masses. This sample covers
the lightest (Z = 8) to the heaviest nuclei (Z = 110) with
an equidistant step in mass number (step = 7 amu). Of
particular interest is the observation that strong correlations
(typically larger than 0.4) exist between the masses all over
the full (N,Z) plane. Such strong correlations are typical

FIG. 5. (Color online) Color plot of the mass correlations
〈�pi�pj 〉 estimated on the basis of the backward MC step.
Correlations are calculated for a sample of 105 out of the 729 masses
from our experimental masses covering the lightest (Z = 8) to the
heaviest nuclei (Z = 110) with equidistant step in mass number.

of models, they reflect the fact that we use a very small
number of parameters to describe a much larger set of
observables. We expect models to be strongly correlated to use
them for extrapolation to the regions where no experimental
information is available. Similar behavior has been observed
in energy-energy correlations of nuclear reaction models (see
Fig. 1 of Ref. [37]). From this figure we see that modifying
model parameters affect the lightest as well as the heaviest
nuclei. These strong correlations are at the basis of the strong
predictive power of the HFB model.

B. Correlation between HFB model parameters

The 21 HFB parameters that have been varied are assumed
to be independent. By definition, the initial backward MC
covariance matrix therefore corresponds to the unitary matrix.
However, as soon as experimental constraints are included
in the forward method, correlations are introduced. These
are illustrated in Fig. 6. The stronger the constraint (i.e., the
lower χcrit), the stronger the correlations. However, the level of

FIG. 6. (Color online) Color plot of the correlation matrix be-
tween the 21 model parameters (see upper x axis of Fig. 2 for the
parameter labeling) considering the 1768 runs with σexp < 0.6 MeV.
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FIG. 7. (Color online) Color plot of the correlation matrix be-
tween the 7 INM model parameters (see Table I) considering the
11 013 runs with σexp < 0.8 MeV.

correlation remains weak (typically smaller than ±0.15). This
can be understood through the large number of parameters and
the various ways that can achieve the corresponding parameter
change. The strongest correlations are found between the x0

and x1, x0 and x3, x1 and x4, x3 and x4, and anticorrelations
between x1 and x3 and x0 and x4. The four pairing parameters
f π

q (parameter number 17 to 20) also present nonnegligible
anticorrelations, in particular f +

n and f −
n as well as f +

n and f +
p .

Note that the correlations between our HFB model parameters
are globally found to be smaller than those obtained in
Refs. [12,13]. This can partially be explained by the larger
number of parameters in our framework, which implies that a
given parameter change can be counterbalanced in more ways
than if only a few parameters were varied.

C. Correlation between INM model parameters

Of particular interest are the correlations between the
INM parameters. Only seven INM parameters have been
considered here, as shown in Table I. The correlation matrix
is shown in Fig. 7 in the case of the 11 013 runs with σexp <
0.8 MeV. Very strong correlations exist among all the pa-
rameters, except maybe between M∗

s and J , L, or M∗
v . Part

of these correlations is due to the model framework, another
part is due to the constraint on the experimental masses. To
illustrate this feature, we show in Fig. 8 the correlation plots
between J and the other six INM parameters. Clearly, there
exist no intrinsic model correlations between J and kF , aV ,
K , or M∗

s , but a strong correlation between J and L and a
nonnegligible correlation between J and M∗

v is clearly inherent
to our HFB framework. Similar results can be found in the
correlation matrices of Refs. [12,13]. However, the constraint
on experimental masses (red diamonds and blue open circles in
Fig. 8) brings additional and significant correlations between
these parameters, except between J and M∗

s , as already pointed
out in Fig. 7.

FIG. 8. (Color online) Correlation between the symmetry coefficient J and the six other INM properties considered in the present paper,
i.e., (a) kF , (b) aV , (c) K , (d) L, (e) M∗

s , and (f) M∗
v . The black squares correspond to the 29 300 runs, the red diamonds to the 11 013 runs with

σexp < 0.8 MeV, and the blue open circles to the 1768 runs with σexp < 0.6 MeV.
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V. CONCLUSION

A variation of the BFMC approach has been applied to
estimate the uncertainties on theoretical mass predictions
associated with the HFB parameters in the vicinity of the
HFB-24 local minimum. Making use of different weighting
functions in the BFMC framework, the uncertainties associated
with local changes of the HFB parameters are found to
remain smaller than those associated with nonlocal changes
as described by the 27 HFB mass models. It should be
kept in mind that this result has been obtained assuming
the deformation energy is not affected by local parameter
changes. Even if larger uncertainties could not be excluded for
strongly deformed nuclei, our results are exact for the spherical
nuclei and in particular for those lying close to the neutron
shell closures of particular interest for r-process applications.

This result also highlights that differences between 27 HFB
mass models are significant, but additional uncertainty is
due to the parameter uncertainties for each model. The large
number of degrees of freedom offered by the nonlocal changes
also give rise to significantly different predictions of shell
effects, pairing energies, and deformation transitions, while
the present analysis restricts the changes in the vicinity of
the local minimum and consequently does not allow for
major changes.
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